-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathenv_clustering.py
287 lines (234 loc) · 11.1 KB
/
env_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This the code for the paper:
[1] Zhi Wang, Chunlin Chen, and Daoyi Dong, "Lifelong Incremental Reinforcement Learning with
Online Bayesian Inference", IEEE Transactions on Neural Networks and Learning Systems, 2021.
https://github.com/HeyuanMingong/llinrl.git
This file is for clustering the environment models in a latent space with online
Bayesian inference. The prior distribution on the mixture of environment models
is instantiated as the Chinese Restaurant Process.
"""
### common lib
import sys
import gym
import numpy as np
import argparse
import torch
from tqdm import tqdm
import os
import time
from torch.optim import Adam, SGD
import scipy.io as sio
import copy
from collections import OrderedDict
import torch.nn.functional as F
import pickle
import shutil
import random
### personal lib
from myrllib.episodes.episode import BatchEpisodes
from myrllib.samplers.sampler import BatchSampler
from myrllib.policies import NormalMLPPolicy, UniformPolicy
from myrllib.baselines.baseline import LinearFeatureBaseline
from myrllib.algorithms.reinforce import REINFORCE
from myrllib.algorithms.trpo import TRPO
from myrllib.mixture.env_train import env_update, env_nominal_train
from myrllib.mixture.env_model import EnvModel, construct_env_io
from myrllib.mixture.inference import CRP, compute_likelihood
start_time = time.time()
######################## Arguments ############################################
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=16,
help='number of rollouts/learning episodes in one policy iteration')
parser.add_argument('--model_path', type=str, default='saves/navi_v1',
help='the folder for saving and loading the pretrained model')
parser.add_argument('--env', type=str, default='Navigation2D-v1')
parser.add_argument('--env_num_layers', type=int, default=2,
help='the number of hidden layers of the environment model')
parser.add_argument('--env_hidden_size', type=int, default=200,
help='the size of the hidden layer of the environment model')
parser.add_argument('--H', type=int, default=4,
help='using the consecutive H transitions to construct the data')
parser.add_argument('--num_periods', type=int, default=50,
help='number of the environment changes')
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--et_length', type=int, default=1,
help='length of episodic transitions for collecting samples')
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
print(args)
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
np.set_printoptions(precision=3)
np.random.seed(args.seed); torch.manual_seed(args.seed); random.seed(args.seed)
######################## Small functions ######################################
def softmax_normalize(array, temperature=1.0):
array = np.array(array).reshape(-1)
array -= array.mean()
array_exp = np.exp(array * temperature)
array_exp /= array_exp.sum()
return array_exp
### generate legal tasks for the type II and III navigation tasks
def puddle_filtering(start=[0.0, 0.0], radius=[0.1, 0.15, 0.2]):
tasks_ori = np.random.uniform(-0.5, 0.5, size=(1000, 6))
tasks = []
for idx, row in enumerate(tasks_ori):
centers = row.reshape(-1, 2)
legal = True
for jdx, center in enumerate(centers):
dist = np.sqrt((center[0] - start[0])**2 + (center[1] - start[1])**2)
if dist <= radius[jdx]:
legal = False
if legal:
tasks.append(row.reshape(1,-1))
if len(tasks) == args.num_periods:
break
return np.concatenate(tasks, axis=0)
######################## Hyperparameters #####################################
### tune these hyperparameters to get different clustering results
SIGMA = 0.25; TAU1 = 1.0; TAU2 = 1.0; EM_STEPS = 1
######################## Main Functions #######################################
""" ENV_TYPE: the type of parameterizing the environment
Select a model to parameterize the environment
reward: using reward function, default
state-transition: using state transition function
both: using the concatenation of both functions
"""
### get the task parameters for each experimental domain
if args.env == 'Navigation2D-v1':
### the task is to reaching a dynamic goal by a point agent
tasks = np.random.uniform(-0.5, 0.5, size=(1000, 2))
ENV_TYPE = 'reward'
elif args.env == 'Navigation2D-v2':
tasks = puddle_filtering(start=[-0.5, -0.5])
ENV_TYPE = 'state-transition'
elif args.env == 'Navigation2D-v3':
puddles = puddle_filtering(start=[0, 0])
goals = np.random.uniform(-0.5, 0.5, size=(args.num_periods, 2))
tasks = np.concatenate((puddles, goals), axis=1)
ENV_TYPE = 'both'
elif args.env == 'HalfCheetahVel-v1':
tasks = np.random.uniform(0.0, 2.0, size=(args.num_periods, 1))
ENV_TYPE = 'reward'
elif args.env == 'HopperVel-v1':
tasks = np.random.uniform(0.0, 1.0, size=(args.num_periods, 1))
ENV_TYPE = 'reward'
elif args.env == 'AntVel-v1':
tasks = np.random.uniform(0.0, 0.5, size=(args.num_periods, 1))
ENV_TYPE = 'reward'
### build a sampler given an environment
sampler = BatchSampler(args.env, args.batch_size, num_workers=args.batch_size, seed=args.seed)
env = gym.make(args.env).unwrapped
state_dim = int(np.prod(sampler.envs.observation_space.shape))
action_dim = int(np.prod(sampler.envs.action_space.shape))
print('state dim: %d; action dim: %d'%(state_dim, action_dim))
### generate a uniform policy to collect samples for environment parameterization
action_l, action_h = sampler.envs.action_space.low, sampler.envs.action_space.high
policy_uni = UniformPolicy(state_dim, action_dim, low=action_l, high=action_h)
################ in the initial time period, nominal model ####################
if not os.path.exists(args.model_path): os.makedirs(args.model_path)
task = tasks[0]
print('The nominal task: ', task)
sampler.reset_task(task)
### generate a batch of episodes to collect samples for environment parameterization
def collect_episodes():
episodes = []
for _ in range(args.et_length):
episodes.append(sampler.sample(policy_uni, device=device))
return episodes
### constrict the input-output pairs w.r.t. the environment model accroding to the type
episodes = collect_episodes()
inputs, outputs = construct_env_io(episodes, env_type=ENV_TYPE, H=args.H)
### construct the MLP of the environment model
env_model = EnvModel(inputs.shape[1], outputs.shape[1],
hidden_sizes=(args.env_hidden_size,) * args.env_num_layers).to(device=device)
### train the environment model for the nominal task
print('Training the nominal environment model...')
env_model, tloss = env_nominal_train(env_model, inputs, outputs, device=device)
### initialize the Dirichlet mixture of environment models
env_models = [env_model]
### initilize the CRP prior distribution
crp = CRP(zeta=1.0)
'''
We train a universal model for the initialization of new environment models.
In principle, the new environment models can be initialized in any way,
e.g., randomly initialization.
'''
epi_list = []
for idx in range(20):
task = tasks[idx]; sampler.reset_task(task)
episodes = sampler.sample(policy_uni, device=device)
epi_list.append(episodes)
inputs, outputs = construct_env_io(epi_list, env_type=ENV_TYPE, H=args.H)
env_model_init = EnvModel(inputs.shape[1], outputs.shape[1],
hidden_sizes=(args.env_hidden_size,) * args.env_num_layers).to(device=device)
print('Training the universal model for initialization of new environment models...')
env_model_init, tloss = env_nominal_train(env_model_init, inputs, outputs, device=device)
########## in the following time periods, dynamic environments ################
tasks = tasks[:args.num_periods]
### the id of the sequential tasks, the id of the first task is 1
task_ids = np.zeros((tasks.shape[0], 1)); task_ids[0] = 1
for period in range(1, args.num_periods):
print('\n----------- Time period %d--------------'%period)
L = crp._L; prior = crp._prior
task = tasks[period]
print('Taks information', task)
sampler.reset_task(task)
episodes = collect_episodes()
inputs, outputs = construct_env_io(episodes, env_type=ENV_TYPE, H=args.H)
### create a potentially new environment model
env_model_new = EnvModel(inputs.shape[1], outputs.shape[1],
hidden_sizes=(args.env_hidden_size,) * args.env_num_layers).to(device=device)
env_model_new.load_state_dict(env_model_init.state_dict())
### predictive likelihood of the collected samples, including the empty new model
llls = np.zeros(L+1)
for idx in range(L):
llls[idx] = compute_likelihood(env_models[idx], inputs, outputs, sigma=SIGMA)
llls[-1] = compute_likelihood(env_model_new, inputs, outputs, sigma=SIGMA)
llls = softmax_normalize(llls, temperature=TAU1)
print('Predictive likelihood: ', llls)
prior = softmax_normalize(prior, temperature=TAU2)
print('Prior distribution: ', prior)
posterior = llls * prior[:llls.shape[0]]
posterior = softmax_normalize(posterior)
print('Posterior over environment models: ', posterior)
l_post = np.argmax(posterior) + 1
print('Posterior selection: %d'%l_post)
if l_post == L+1:
print('Add a new cluster...')
env_models.append(env_model_new)
### update the CRP prior distribution using the posterior selection
crp.update(l_post)
def Estep(env_models, inputs, outputs):
### the Expectation-step, compute the posterior of environment-to-cluster assignment
llls = np.zeros(len(env_models))
for idx in range(len(env_models)):
llls[idx] = compute_likelihood(env_models[idx], inputs, outputs, sigma=SIGMA)
llls = softmax_normalize(llls, temperature=100)
posterior = llls * prior[:llls.shape[0]]
posterior = softmax_normalize(posterior, temperature=100)
return llls, posterior
def Mstep(env_models, inputs, outputs, posterior):
### the Maximization-step, update parameters of the mixture model
for idx in range(len(env_models)):
env_model = env_models[idx]
env_model, _ = env_update(env_model, inputs, outputs,
posterior=posterior[idx], device=device)
env_models[idx] = env_model
return env_models
print('********** EM Algorithm **********')
for _ in range(EM_STEPS):
llls, posterior = Estep(env_models, inputs, outputs)
print('Predictive likelihood: ', llls)
print('Posterior: ', posterior)
env_models = Mstep(env_models, inputs, outputs, posterior)
print('********** EM Algorithm **********')
### compute the final assignment of the current environment
updated_llls, posterior = Estep(env_models, inputs, outputs)
l_star = np.argmax(updated_llls) + 1
task_ids[period] = l_star
print('Updated likelihood: ', updated_llls)
print('Choosing the cluster %d'%l_star)
task_info = np.concatenate((tasks, task_ids), axis=1)
np.save(os.path.join(args.model_path, 'task_info.npy'), task_info)
print('Running time: %.2f mimutes.'%((time.time()-start_time)/60.0))