-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbaselines.py
259 lines (205 loc) · 10.5 KB
/
baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This the code for the paper:
[1] Zhi Wang, Chunlin Chen, and Daoyi Dong, "Lifelong Incremental Reinforcement Learning with
Online Bayesian Inference", IEEE Transactions on Neural Networks and Learning Systems, 2021.
https://github.com/HeyuanMingong/llinrl.git
This file is the implementation of the baseline approaches investigated in the paper, including:
CA: Continuous Adapt a single policy model during lifelong learning
Robust: leverages domain randomization to train a robust policy for all environments
Adaptive: leverages domain randomization to train an LSTM policy for all environments
MAML: trains a meta-policy using Model-Agnostic Meta-Learning
"""
### common lib
import sys
import gym
import numpy as np
import argparse
import torch
from tqdm import tqdm
import os
import time
from torch.optim import Adam, SGD
import scipy.io as sio
import copy
from collections import OrderedDict
import torch.nn.functional as F
import pickle
import shutil
import random
### personal lib
from myrllib.episodes.episode import BatchEpisodes
from myrllib.samplers.sampler import BatchSampler
from myrllib.policies import NormalMLPPolicy, NormalLSTMPolicy
from myrllib.baselines.baseline import LinearFeatureBaseline
from myrllib.algorithms.reinforce import REINFORCE
from myrllib.algorithms.trpo import TRPO
from myrllib.algorithms.ppo import PPO
from myrllib.algorithms.maml import MetaLearner
from myrllib.mixture.inference import CRP
start_time = time.time()
######################## Arguments ############################################
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=16,
help='number of rollouts/learning episodes in one policy iteration')
parser.add_argument('--hidden_size', type=int, default=200,
help='hidden size of the policy network')
parser.add_argument('--num_layers', type=int, default=2,
help='number of hidden layers of the policy network')
parser.add_argument('--num_iter', type=int, default=100,
help='number of policy iterations')
parser.add_argument('--lr', type=float, default=1e-3,
help='learning rate, if REINFORCE algorithm is used')
parser.add_argument('--output', type=str, default='output/navi_v1',
help='output folder for saving the experimental results')
parser.add_argument('--model_path', type=str, default='saves/navi_v1',
help='the folder for saving and loading the pretrained model')
parser.add_argument('--algorithm', type=str, default='reinforce',
help='reinforce or trpo, the base algorithm for policy gradient')
parser.add_argument('--opt', type=str, default='sgd',
help='sgd or adam, if using the reinforce algorithm')
parser.add_argument('--env', type=str, default='Navigation2D-v1')
parser.add_argument('--baseline', type=str, default=None,
help='linear or None, baseline for policy gradient step')
parser.add_argument('--num_periods', type=int, default=50)
parser.add_argument('--robust', action='store_true', default=False)
parser.add_argument('--adaptive', action='store_true', default=False)
parser.add_argument('--maml', action='store_true', default=False)
parser.add_argument('--ca', action='store_true', default=False)
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
print(args)
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
np.random.seed(args.seed); torch.manual_seed(args.seed); random.seed(args.seed)
np.set_printoptions(precision=3)
######################## Small functions ######################################
### build a learner given a policy network
def generate_learner(policy):
if args.algorithm == 'trpo':
learner = TRPO(policy, baseline=args.baseline, device=device)
elif args.algorithm == 'ppo':
learner = PPO(policy, baseline=args.baseline, lr=args.lr, opt=args.opt, device=device)
else:
learner = REINFORCE(policy, baseline=args.baseline, lr=args.lr, opt=args.opt, device=device)
return learner
######################## Main Functions #######################################
### build a sampler given an environment
env = gym.make(args.env).unwrapped
state_dim = int(np.prod(env.observation_space.shape))
action_dim = int(np.prod(env.action_space.shape))
print('state dim: %d; action dim: %d'%(state_dim,action_dim))
if not os.path.exists(args.model_path): os.makedirs(args.model_path)
if not os.path.exists(args.output): os.makedirs(args.output)
### get the task information
tasks = np.load(os.path.join(args.model_path, 'task_info.npy'))[:, :-1]
###############################################################################
if args.robust:
print('\n======== Robust baseline =========')
policy_robust = NormalMLPPolicy(state_dim, action_dim,
hidden_sizes=(args.hidden_size,) * args.num_layers)
learner_robust = generate_learner(policy_robust)
sampler = BatchSampler(args.env, args.batch_size, num_workers=args.batch_size, seed=args.seed)
print('Training the robust policy...')
rews_pre_robust = np.zeros(args.num_iter)
for idx in tqdm(range(args.num_iter)):
_ = sampler.domain_randomization()
episodes = sampler.sample(policy_robust, device=device)
rews_pre_robust[idx] = episodes.evaluate()
learner_robust.step(episodes, clip=True)
print('Test in execution time...')
policy = NormalMLPPolicy(state_dim, action_dim,
hidden_sizes=(args.hidden_size,) * args.num_layers)
learner = generate_learner(policy)
rews_robust = np.zeros((args.num_periods, args.num_iter))
for period in range(args.num_periods):
print('\nTask %d'%(period+1), tasks[period])
policy.load_state_dict(policy_robust.state_dict())
sampler.reset_task(tasks[period])
for idx in tqdm(range(args.num_iter)):
episodes = sampler.sample(policy, device=device)
rews_robust[period, idx] = episodes.evaluate()
learner.step(episodes, clip=True)
print('Average return: %.2f'%np.mean(rews_robust[period]))
name = os.path.join(args.output, 'rews_robust.npy')
np.save(name, rews_robust)
###############################################################################
if args.adaptive:
print('\n======== Adaptive baseline =========')
policy_adapt = NormalLSTMPolicy(state_dim, action_dim, bs=args.batch_size, device=device)
learner_adapt = generate_learner(policy_adapt)
sampler = BatchSampler(args.env, args.batch_size, num_workers=args.batch_size, seed=args.seed)
print('Training the adaptive policy...')
rews_pre_adapt = np.zeros(args.num_iter)
for idx in tqdm(range(args.num_iter)):
_ = sampler.domain_randomization()
episodes = sampler.sample(policy_adapt, recurrent=True, device=device)
rews_pre_adapt[idx] = episodes.evaluate()
learner_adapt.step(episodes, recurrent=True, clip=True)
print('Test in execution time...')
policy = NormalLSTMPolicy(state_dim, action_dim, bs=args.batch_size, device=device)
learner = generate_learner(policy)
rews_adapt = np.zeros((args.num_periods, args.num_iter))
for period in range(args.num_periods):
print('\nTask %d'%(period+1), tasks[period])
policy.load_state_dict(policy_adapt.state_dict())
sampler.reset_task(tasks[period])
for idx in tqdm(range(args.num_iter)):
episodes = sampler.sample(policy, recurrent=True, device=device)
rews_adapt[period, idx] = episodes.evaluate()
learner.step(episodes, recurrent=True, clip=True)
print('Average return: %.2f'%np.mean(rews_adapt[period]))
np.save(os.path.join(args.output, 'rews_adapt.npy'), rews_adapt)
################################################################################
if args.maml:
print('\n======== MAML baseline =========')
policy_maml = NormalMLPPolicy(state_dim, action_dim,
hidden_sizes=(args.hidden_size,) * args.num_layers)
sampler = BatchSampler(args.env, args.batch_size, num_workers=args.batch_size, seed=args.seed)
print('Training the maml policy...')
learner_maml = MetaLearner(sampler, policy_maml, fast_lr=args.lr, opt=args.opt,
lr=args.lr, baseline=args.baseline, device=device)
rews_pre_maml = np.zeros((2, args.num_iter))
for idx in tqdm(range(args.num_iter)):
random_tasks = sampler.sample_task(num_tasks=args.batch_size)
episodes = learner_maml.sample(random_tasks)
learner_maml.step_ppo(episodes, clip=True)
for (train_episodes, valid_episodes) in episodes:
rews_pre_maml[0, idx] += train_episodes.evaluate()
rews_pre_maml[1, idx] += valid_episodes.evaluate()
rews_pre_maml[:, idx] /= len(episodes)
print('iter %d'%idx, rews_pre_maml[:, idx])
print('Test in execution time...')
policy = NormalMLPPolicy(state_dim, action_dim,
hidden_sizes=(args.hidden_size,) * args.num_layers)
learner = generate_learner(policy)
rews_maml = np.zeros((args.num_periods, args.num_iter))
for period in range(args.num_periods):
print('\nTask %d'%(period+1), tasks[period])
policy.load_state_dict(policy_maml.state_dict())
sampler.reset_task(tasks[period])
for idx in tqdm(range(args.num_iter)):
episodes = sampler.sample(policy, device=device)
rews_maml[period, idx] = episodes.evaluate()
learner.step(episodes, clip=True)
print('Average return: %.2f'%np.mean(rews_maml[period]))
np.save(os.path.join(args.output, 'rews_maml.npy'), rews_maml)
################################################################################
if args.ca:
print('\n======== CA baseline =========')
policy = NormalMLPPolicy(state_dim, action_dim,
hidden_sizes=(args.hidden_size,) * args.num_layers)
learner = generate_learner(policy)
sampler = BatchSampler(args.env, args.batch_size, num_workers=args.batch_size, seed=args.seed)
rews_ca = np.zeros((args.num_periods, args.num_iter))
for period in range(args.num_periods):
print('\nTask %d'%(period+1), tasks[period])
sampler.reset_task(tasks[period])
for idx in tqdm(range(args.num_iter)):
episodes = sampler.sample(policy, device=device)
rews_ca[period, idx] = episodes.evaluate()
learner.step(episodes, clip=True)
print('Average return: %.2f'%np.mean(rews_ca[period]))
np.save(os.path.join(args.output, 'rews_ca.npy'), rews_ca)
print('Running time: %.2f minutes'%((time.time()-start_time)/60.0))