-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
144 lines (112 loc) · 4.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.externals import joblib
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
from pandas.io.json import json_normalize
from google.cloud import storage
import pickle
# Use the application default credentials
cred = credentials.ApplicationDefault()
firebase_admin.initialize_app(cred, {
'projectId': 'tflow-bbd2b',
})
db = firestore.client()
storage_client = storage.Client()
bucket_name='tflow-bbd2b.appspot.com'
bucket = storage_client.get_bucket(bucket_name)
model_bucket='eye_finalized_model.sav'
model_local='/tmp/eye_finalized_model_local.sav'
#select bucket file
blob = bucket.blob(model_bucket)
#download that file and name it 'local.joblib'
blob.download_to_filename(model_local)
#load that file from local file
loaded_model=joblib.load(model_local)
#Load the model from disk
loaded_model = joblib.load('eye_finalized_model1.sav')
with open(pkl_filename, 'rb') as file:
loaded_model = pickle.load(file)
def to_str(var):
return str(list(np.reshape(np.asarray(var), (1, np.size(var)))[0]))[1:-1]
def simplify_ages(df):
df.Age = df.Age.fillna(-0.5)
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
group_names = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior']
categories = pd.cut(df.Age, bins, labels=group_names)
df.Age = categories
return df
def transform_features(df):
df = simplify_ages(df)
return df
#Normalize#########################################################
from sklearn import preprocessing
def encode_features(df_train):
features = ['Age']
for feature in features:
le = preprocessing.LabelEncoder()
le = le.fit(df_train[feature])
df_train[feature] = le.transform(df_train[feature])
return df_train
#Main function#########################################################
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import make_scorer, accuracy_score
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import json
def modelprediction(request):
request_json = request.get_json()
if request_json and 'message' in request_json:
returnstr = '2'+ request_json['message']
return returnstr
elif request_json and 'uuid' in request_json:
uuid = request_json['uuid']
print('uuid = ', uuid)
#Retrive firestore data
diagnose_ref = db.collection('diagnose').document(uuid)
result_ref = db.collection('diagnose_result').document(uuid)
df = pd.read_csv('train_probability_eye2.csv')
headers = list(df)
print('headers = ', headers)
try:
#Get data
doc = diagnose_ref.get()
print('doc = ', doc)
#Convert JSON to dataframe
outputpd = json_normalize(doc.to_dict())
print('outputpd = ', outputpd)
df = pd.DataFrame(data=outputpd, columns=headers)
print('df = ', df.head(100).to_string())
#Drop the output column
#df = df.drop(['Disease'], axis=1)
#Get the list of headers
#newlist = list(df)
#Fill all column with NaN to 0
df[headers] = df[headers].fillna(0)
#Rearrange data
data_test = df
data_test = transform_features(data_test)
data_test = encode_features(data_test)
print('data_test = ', data_test.head(100).to_string())
#Drop the output column
X_all = data_test.drop(['Disease'], axis=1)
y_all = data_test['Disease']
predictions = loaded_model.predict(X_all)
probability = loaded_model.predict_proba(X_all)
#Make a dataframe with output and probability
output = pd.DataFrame(data=probability, columns=loaded_model.classes_)
print(output.head(100).to_string())
#Convert Dataframe to JSON
outputjson = output.to_json(orient='records', lines=True)
print(outputjson)
#Set outputjson to firestore
#result_ref.set(outputjson)
#Convert JSON to JSONString
finaljsonString = json.loads(json.dumps(outputjson))
return finaljsonString
except google.cloud.exceptions.NotFound:
print(u'No such document!')
return 'error404'