-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
89 lines (72 loc) · 3.47 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from pathlib import Path
import collections
import numpy as np
import json
from torch_geometric.data import Data, DataLoader
import torch
import pandas as pd
data_folder = '../DATA_Standardized'
preselect_path = 'BM25_preselect_100.txt'
triplet_path = 'no_overlap_triplets.csv'
train_graph_dict_path = 'train_graph_whole.json'
train_node_emb_path = 'train_node_whole_emb.npy'
test_graph_dict_path = 'test_graph_whole.json'
test_node_emb_path = 'test_node_whole_emb.npy'
def load_nodes_features(edges_list, nodes_emb):
nodes_feature = []
nodes_degree = collections.Counter(edges_list[0])
# this iteration in counter can preserve the origin order (1....n)
for node_id in nodes_degree:
node_feature = np.array(nodes_emb[node_id])
nodes_feature.append(node_feature)
nodes_feature = np.array(nodes_feature)
return nodes_feature
def load_graph_dict(graph_dict_path, node_emb_path):
with open(Path(data_folder) / Path(graph_dict_path)) as f:
graph_dict = json.load(f)
node_emb_dict = dict(np.load(Path(data_folder) / Path(node_emb_path), allow_pickle=True).item())
# convert list to ndarray, then to torch.Tensor
for k, v in graph_dict.items():
if (len(v) == 0):
continue
tmp = np.array(v)
edges_list = np.transpose(tmp)
nodes_emb = node_emb_dict[k]
nodes_feature = load_nodes_features(edges_list, nodes_emb)
graph_dict[k] = Data(x=torch.tensor(nodes_feature, dtype=torch.float), edge_index=torch.tensor(
edges_list, dtype=torch.long))
return graph_dict
def get_train_loader(folder_path, query_embedding, batch_size):
train_graph_dict = load_graph_dict(train_graph_dict_path, train_node_emb_path)
triplets_df = pd.read_csv(Path(folder_path) / Path(triplet_path))
# for train dataset, add the triplets to the list
train_dataset = []
for row_index, row in triplets_df.iterrows():
qid = row['qid']
positive_docid = row['doc+']+'.txt'
negative_docid = row['doc-']+'.txt'
if positive_docid in train_graph_dict and negative_docid in train_graph_dict:
if isinstance(train_graph_dict[positive_docid], list):
continue
if isinstance(train_graph_dict[negative_docid], list):
continue
train_dataset.append((qid, query_embedding[str(qid)], positive_docid, train_graph_dict[positive_docid],
negative_docid, train_graph_dict[negative_docid]))
print("number of triplets in train_dataset: {}".format(len(train_dataset)))
train_loader = DataLoader(train_dataset, batch_size=batch_size)
return train_loader
def get_test_loader(folder_path, query_embedding):
test_graph_dict = load_graph_dict(test_graph_dict_path, test_node_emb_path)
preselect_df = pd.read_csv(Path(folder_path) / Path(preselect_path), sep=" ", names=["qid", "Q0", "docid", "rank", "score", "tag"])
# for test dataset, only query-document pairs to the list
test_dataset = []
for row_index, row in preselect_df.iterrows():
qid = row['qid']
docid = row['docid']+'.txt'
if docid in test_graph_dict:
if isinstance(test_graph_dict[docid], list):
continue
test_dataset.append((qid, query_embedding[str(qid)], docid, test_graph_dict[docid]))
print("number of q-doc pairs in test_dataset: {}".format(len(test_dataset)))
test_loader = DataLoader(test_dataset, batch_size=1)
return test_loader