-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNetworks.py
88 lines (68 loc) · 2.23 KB
/
Networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class Representation_Model(nn.Module):
def __init__(self, num_in, num_hidden):
super().__init__()
self.num_in = num_in
self.num_hidden = num_hidden
network = [
nn.Linear(num_in, 50),
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, num_hidden)
]
self.network = nn.Sequential(*network)
def forward(self, x):
return self.network(x)
class Dynamics_Model(nn.Module):
# action encoding - one hot
def __init__(self, num_hidden, num_actions):
super().__init__()
self.num_hidden = num_hidden
self.num_actions = num_actions
network = [
nn.Linear(num_hidden + 1, 50), # hidden, action encoding
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, num_hidden + 1) # add reward prediction
]
self.network = nn.Sequential(*network)
def forward(self, x):
out = self.network(x)
hidden, reward = out[:, 0:self.num_hidden], out[:, -1]
return hidden, reward
class Prediction_Model(nn.Module):
def __init__(self, num_hidden, num_actions):
super().__init__()
self.num_actions = num_actions
self.num_hidden = num_hidden
network = [
nn.Linear(num_hidden, 50),
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, 50),
nn.ReLU(),
nn.Linear(50, num_actions + 1) # value & policy prediction
]
self.network = nn.Sequential(*network)
def forward(self, x):
out = self.network(x)
p = out[:, 0:self.num_actions]
v = out[:, -1]
# softmax probs
p = F.softmax(p, dim=1)
#print(p,v)
return p, v