-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdct-tests.c
750 lines (604 loc) · 22.3 KB
/
dct-tests.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <pthread.h>
#define PSUDO_WIDTH 2560
#define PSUDO_HEIGHT 1440
/*
// RESOLUTION: QVGA
#define PSUDO_WIDTH 320
#define PSUDO_HEIGHT 240
// RESOLUTION: VGA
#define PSUDO_WIDTH 640
#define PSUDO_HEIGHT 480
// RESOLUTION: HD
#define PSUDO_WIDTH 1280
#define PSUDO_HEIGHT 720
// RESOLUTION: WQHD
#define PSUDO_WIDTH 2560
#define PSUDO_HEIGHT 1440
*/
// Controller for the pixel value types (e.g. floats, doubles, etc.)
typedef double valueType;
// Pixel structure definition
// --------------------------
//
// r : Value of intensity of 'red' of this pixel
// g : Value of intensity of 'green' of this pixel
// b : Value of intensity of 'blue' of this pixel
// i : Value of grayscale intensity of this pixel
//
typedef struct {
valueType r, g, b;
valueType i;
} pixel;
// Image structure definition
// --------------------------
//
// width : Amount of pixels in the x-direction
// height : Amount of pixels in the y-direction
// m : The matrix itself containing all pixels
//
typedef struct {
int width;
int height;
int channels;
pixel** m;
} image;
// Thread Info structure definition
// --------------------------
//
// threadIndex: What 'i-th' index a thread is in all threads used
// start : Starting height index for thread to iterate over
// end : Starting height index for thread to iterate over
// padIndex : Starting index for padding in an image
// srcIMG : Pointer to the source image
// dctIMG : Pointer to the DCT image
// idctIMG : Pointer to the IDCT image
//
typedef struct {
int threadIndex;
int start;
int end;
int padIndex;
image* srcIMG;
image* dctIMG;
image* idctIMG;
} threadInfo;
typedef struct {
int validation;
double time_spent;
long double err1;
long double err2;
long double err3;
} testResults;
// ALLOCATION & INITIALIZATION
image* allocateImage(int width, int height, int channels);
image* generateImage(int width, int height, int channels, int padding);
int imGetPadSize(int totalThreads, int startingSize);
void imRemovePadding(image* srcIMG, image* dctIMG, image* idctIMG, int padAmnt);
void imread(image* im, FILE *inFile);
void imwrite(image* im, char* fileName);
void imDelete(image* srcIMG, image* dctIMG, image* idctIMG);
// VALIDATION
int imValidate(image* imA, image* imB, double threshold);
double imERR1(image* imA, image* imB);
double imERR2(image* imA, image* imB);
long double imMSE(image* imA, image* imB);
// OPERATIONS
void imPrint(image* im);
void imDCT(image* inIMG, image* outIMG);
void imIDCT(image* inIMG, image* outIMG);
void imBlockIDCT(image* inIMG, image* outIMG, int i, int j);
void imBlockDCT(image* inIMG, image* outIMG, int i, int j);
// PRIMARY CALLS
testResults* runTest(int totalThreads, int width,
int height, int channels);
void* imProcess(void* arg);
int main(int argc, char* argv[]) {
///////////////////////////////////////////
// INTITIAL SETUP //
///////////////////////////////////////////
long double time_AVG, err1_AVG, err2_AVG, err3_AVG;
int height, width, bits, channels, totalThreads;
char* format = (char*)malloc(sizeof(char)*5);
// Initialize file pointer and fopen() the image file
FILE *inFile = fopen((argc == 1? "imtest2.ppm":argv[1]), "r+");
// Read in the image file characteristics (e.g. height & width) and
// generate an image based off the characteristics read in
fscanf(inFile, "%s\n %i %i\n%i", format, &width, &height, &bits);
channels = 1, width = PSUDO_WIDTH, height = PSUDO_HEIGHT;
// Print the object information for verification
printf("Format: %s\nHeight: %i\nWidth: %i\nBits: %.0f\nChannels: %i\n\n",
format, height, width, log2(bits+1), channels);
///////////////////////////////////////////
// TEST ITERATIONS //
///////////////////////////////////////////
// Perform the tests and print out each set of results
for (int thread = 1; thread <= 10; thread++) {
// Reset the running averages
time_AVG = (long double)0;
err1_AVG = (long double)0;
err2_AVG = (long double)0;
err3_AVG = (long double)0;
// Perform a certain amount of iterations with the same
// exact parameters to average over as the final result
for (int it = 0; it < 25; it++) {
// Run the test with current parameters
testResults* result = runTest(thread, PSUDO_WIDTH,
PSUDO_HEIGHT, channels);
// Print the test results
printf(" Time Elapsed: %.15f\n", result->time_spent);
printf(" imValidate() return: %i\n", result->validation);
printf("imERR1() return value: %.25Le\n", result->err1);
printf("imERR2() return value: %.25Le\n", result->err2);
printf(" imMSE() return value: %.25Le\n", result->err3);
printf("\n\n");
// Increment the running averages
time_AVG += (long double)result->time_spent;
err1_AVG += (long double)result->err1;
err2_AVG += (long double)result->err2;
err3_AVG += (long double)result->err3;
free(result);
}
// Print the overall averages for tests
// with current parameters
printf("\n------------------------------------------\n");
printf("\n FINISHED ITERATIONS FOR '%i' THREADS \n\n", thread);
printf("Average Time Elapsed: %.15Lf\n", (time_AVG/(long double)25.0));
printf(" Average imERR1(): %.25Le\n", (err1_AVG/(long double)25.0));
printf(" Average imERR2(): %.25Le\n", (err2_AVG/(long double)25.0));
printf(" Average imMSE(): %.25Le\n", (err3_AVG/(long double)25.0));
printf("\n------------------------------------------\n");
printf("\n\n\n\n\n\n\n\n\n\n\n\n");
}
return 0;
}
testResults* runTest(int totalThreads, int width,
int height, int channels) {
///////////////////////////////////////////
// INTITIAL SETUP //
///////////////////////////////////////////
// Create structure to hold runtime results
testResults* results = (testResults*)malloc(1*sizeof(testResults));
// Check for padding requirements
int padding = 0, paddedSize = imGetPadSize(totalThreads, height);
if (paddedSize != -1 && paddedSize != height && totalThreads != 1)
padding = paddedSize - height;
// Randomly generate the input image based on characteristics given
image* srcIMG = generateImage(width, height, channels, padding);
// Allocate for the DCT & IDCT images
image* dctIMG = allocateImage(width, (height + padding), channels);
image* idctIMG = allocateImage(width, (height + padding), channels);
///////////////////////////////////////////
// THREADING SETUP //
///////////////////////////////////////////
// Create threading information
pthread_t tid[totalThreads];
threadInfo* th = (threadInfo*)malloc(totalThreads*sizeof(threadInfo));
for (int i = 0; i < totalThreads; i++) {
th[i].threadIndex = i;
th[i].start = i*(height + padding)/totalThreads;
th[i].end = (i + 1)*(height + padding)/totalThreads;
th[i].padIndex = height;
th[i].srcIMG = srcIMG;
th[i].dctIMG = dctIMG;
th[i].idctIMG = idctIMG;
}
///////////////////////////////////////////
// THREADING RUNTIME //
///////////////////////////////////////////
struct timespec start, end;
clock_gettime(CLOCK_REALTIME, &start);
// Launch all threads
for (int i = 0; i < totalThreads; i++)
pthread_create(&tid[i], NULL, (void*)imProcess, &th[i]);
// Collect all threads launched
for (int i = 0; i < totalThreads; i++)
pthread_join(tid[i], NULL);
// Save the amount of time spent on processing the image
clock_gettime(CLOCK_REALTIME, &end);
results->time_spent = (end.tv_sec - start.tv_sec) +
(end.tv_nsec - start.tv_nsec) / 1e9;
///////////////////////////////////////////
// COLLECTING RESULTS //
///////////////////////////////////////////
// Unpad the image for cases of thread amount & height mismatch
if (paddedSize != -1 && paddedSize != height && totalThreads != 1)
imRemovePadding(srcIMG, dctIMG, idctIMG, (paddedSize - height));
// """Manual verification"""
// (Yes, this needs sarcastic triple-quotes, it's that big)
/*
printf("Original Image:\n");
imPrint(srcIMG);
printf("\n\n");
printf("DCT Image:\n");
imPrint(dctIMG);
printf("\n\n");
printf("IDCT Image:\n");
imPrint(idctIMG);
printf("\n\n");
*/
// Collect information about the error generated in processing
int DOP = 12;
double precision = (double)(1.0/(pow(10.0, (double)DOP)));
results->validation = imValidate(srcIMG, idctIMG, precision);
results->err1 = imERR1(srcIMG, idctIMG);
results->err2 = imERR2(srcIMG, idctIMG);
results->err3 = imMSE(srcIMG, idctIMG);
// NOTE: If you don't delete the picture before returning
// this whole thing leaks memory like a damn seive
//
imDelete(srcIMG, dctIMG, idctIMG);
return results;
}
void* imProcess(void* arg) {
// Parse the argument into a local (struct info*) structure
threadInfo* input = (threadInfo*)arg;
// Iterate through the rows corrosponding to this thread
for (int y = input->start; (y < input->end) && (y < input->padIndex); y += 8) {
// Iterate through the columns corrosponding to this thread
for (int x = 0, width = input->srcIMG->width; x < width; x += 8) {
// Perform a DCT -> IDCT on a 8x8 macroblock
// centered at the point (x, y)
imBlockDCT(input->srcIMG, input->dctIMG, x, y);
imBlockIDCT(input->dctIMG, input->idctIMG, x, y);
}
}
}
/*
Perform the DCT algorithm over an 8x8 block in the image starting
at the point inIMG[i][j] and ending at inIMG[i+8][j+8]
*/
void imBlockDCT(image* inIMG, image* outIMG, int i, int j) {
double OOSQT = 1.0/sqrt(2.0);
double sum = 0.0;
double HPW = (double)16.0;
for (int u = 0; u < 8; u++) {
for (int v = 0; v < 8; v++) {
sum = 0.0;
for (int x = 0; x < 8; x++) {
for (int y = 0; y < 8; y++) {
sum += (double)inIMG->m[i + x][j + y].i *
cos(((2.0*(double)(x)+1.0) * (double)u * M_PI)/HPW) *
cos(((2.0*(double)(y)+1.0) * (double)v * M_PI)/HPW);
}
}
outIMG->m[i + u][j + v].i = 0.25
* (u == 0? OOSQT:1.0)
* (v == 0? OOSQT:1.0)
* sum;
}
}
}
/*
Perform the inverse DCT algorithm over an 8x8 block in the image
starting at the point inIMG[i][j] and ending at inIMG[i+8][j+8]
*/
void imBlockIDCT(image* inIMG, image* outIMG, int i, int j) {
double OOSQT = 1.0/sqrt(2.0);
double sum = 0.0;
double MPOL = M_PI/(double)16.0;
for (int x = 0; x < 8; x++) {
for (int y = 0; y < 8; y++) {
sum = 0.0;
for (int u = 0; u < 8; u++) {
for (int v = 0; v < 8; v++) {
sum += inIMG->m[i + u][j + v].i *
(u == 0? OOSQT:1.0) *
(v == 0? OOSQT:1.0) *
cos((2.0*(double)(x)+1.0) * (double)u * MPOL) *
cos((2.0*(double)(y)+1.0) * (double)v * MPOL);
}
}
outIMG->m[i + x][j + y].i = sum * 0.25;
}
}
}
/*
Perform the DCT algorithm over an entire image;
This loses accuracy over larger and larger image sizes
past an 8x8
*/
void imDCT(image* inIMG, image* outIMG) {
double OOSQT = 1.0/sqrt(2.0);
double sum = 0.0;
double HPW = (double)(inIMG->height + inIMG->width);
for (int u = 0; u < inIMG->width; u++) {
for (int v = 0; v < inIMG->height; v++) {
sum = 0.0;
for (int x = 0; x < inIMG->width; x++) {
for (int y = 0; y < inIMG->height; y++) {
sum += (double)inIMG->m[x][y].i *
cos(((2.0*(double)x+1.0) * (double)u*M_PI)/HPW) *
cos(((2.0*(double)y+1.0) * (double)v*M_PI)/HPW);
}
}
outIMG->m[u][v].i = 1.0/((double)inIMG->height/2.0) *
(!u? OOSQT:1.0)*(!v? OOSQT:1.0) *
sum;
}
}
}
/*
Perform the inverse DCT algorithm over an entire image;
This loses accuracy over larger and larger image sizes
past an 8x8
*/
void imIDCT(image* inIMG, image* outIMG) {
double OOSQT = 1.0/sqrt(2.0);
double sum = 0.0;
double HPW = (double)(inIMG->height + inIMG->width);
double MPOL = M_PI/(double)(HPW);
for (int x = 0; x < inIMG->width; x++) {
for (int y = 0; y < inIMG->height; y++) {
sum = 0.0;
for (int u = 0; u < inIMG->width; u++) {
for (int v = 0; v < inIMG->height; v++) {
sum += inIMG->m[u][v].i *
(!u? OOSQT:1.0) *
(!v? OOSQT:1.0) *
cos((2.0*(double)x+1.0) * (double)u*MPOL) *
cos((2.0*(double)y+1.0) * (double)v*MPOL);
}
}
outIMG->m[x][y].i = sum/((double)inIMG->height/2.0);
}
}
}
/*
Print an image to STDOUT
*/
void imPrint(image* im) {
// If input image is a grayscale image
if (im->channels == 1) {
for (int y = 0; y < im->height; y++) {
for (int x = 0; x < im->width; x++) {
// NOTE: This should be a %X.Yf, where
// X = Y+5 for spacing values and
// the sign of the values neatly
//
printf("[%8.3f] ", im->m[x][y].i);
}
printf("\n");
}
}
// Else the input is a RGB image
else {
for (int y = 0; y < im->height; y++) {
for (int x = 0; x < im->width; x++) {
printf("[%3f,%3f,%3f]\t",
im->m[x][y].r,
im->m[x][y].g,
im->m[x][y].b);
}
printf("\n");
}
}
}
/*
Get the amount of average error per ELEMENT of two images;
This is helpful in illustrating the percision of doubles
as you +/- the percision in imValidate()
*/
double imERR1(image* imA, image* imB) {
double avg_err = 0.0;
for (int y = 0; y < imA->height; y++) {
for (int x = 0; x < imA->width; x++) {
// In the case of either being zero you get really bad
// values, and I'm not sure what else to do but skip it
if (imA->m[x][y].i == 0.0 || imB->m[x][y].i == 0.0)
continue;
avg_err += fabs(imB->m[x][y].i - imA->m[x][y].i)/imA->m[x][y].i;
}
}
return avg_err;
}
/*
Get the amount of average error over the entirety of two images
*/
double imERR2(image* imA, image* imB) {
double total_A = 0.0;
double total_B = 0.0;
for (int y = 0; y < imA->height; y++) {
for (int x = 0; x < imA->width; x++) {
total_A += (double)fabs(imA->m[x][y].i);
total_B += (double)fabs(imB->m[x][y].i);
}
}
return (100.0 * fabs(total_B - total_A)/total_A);
}
/*
Get the mean-squared-error of two images
*/
long double imMSE(image* imA, image* imB) {
image* imC = allocateImage(imA->width,
imA->height,
imA->channels);
long double MSE = (long double)0.0;
for (int y = 0; y < imA->height; y++) {
for (int x = 0; x < imA->width; x++) {
MSE += pow((long double)(imB->m[x][y].i - imA->m[x][y].i),
(long double)2.0);
}
}
return (MSE / (long double)(imA->height * imA->width));
}
/*
Check wether two images are the same given a
particular amount of precision
*/
int imValidate(image* imA, image* imB, double threshold) {
if (imA->height != imB->height)
return -7;
if (imA->width != imB->width)
return -6;
if (imA->channels != imB->channels)
return -5;
// If input image is a grayscale image
if (imA->channels == 1) {
for (int y = 0; y < imA->height; y++) {
for (int x = 0; x < imA->width; x++) {
if (fabs(imA->m[x][y].i - imB->m[x][y].i) >= threshold) {
printf("INVALID POINT: (%i, %i)\n", x, y);
printf("A(%i, %i): [%.20f]\n", x, y, imA->m[x][y].i);
printf("B(%i, %i): [%.20f]\n", x, y, imB->m[x][y].i);
printf("A(x,y) - B(x,y): %.38f\n\n",
imA->m[x][y].i - imB->m[x][y].i);
return -4;
}
}
}
}
// Else the input is a RGB image
else {
for (int y = 0; y < imA->height; y++) {
for (int x = 0; x < imA->width; x++) {
if (fabs(imA->m[x][y].r - imB->m[x][y].r) >= threshold)
return -1;
if (fabs(imA->m[x][y].g - imB->m[x][y].g) >= threshold)
return -2;
if (fabs(imA->m[x][y].b - imB->m[x][y].b) >= threshold)
return -3;
}
}
}
return 0;
}
/*
Allocate space for a (width x height) size image and
return it's pointer
*/
image* allocateImage(int width, int height, int channels) {
// Allocate an image structure
//
// NOTE:
//
// To be able to index with im[x][y], I need
// to initialize with WIDTH, and then iterate over
// WIDTH allocating for each column of a certain HEIGHT
//
image* im = (image*)malloc(1*sizeof(image));
im->m = (pixel**)malloc((width)*sizeof(pixel));
// Allocate each column of the image matrix
for (int x = 0; x < width; x++)
im->m[x] = (pixel*)malloc((height)*sizeof(pixel));
im->height = height;
im->width = width;
im->channels = channels;
return im;
}
/*
Randomly generate a (width x height) size image and
return it's pointer
*/
image* generateImage(int width, int height, int channels, int padAmnt) {
// Allocate the image structure
image* im = allocateImage(width, (height + padAmnt), channels);
// Randomly generate values at each pixel
srand((unsigned)time(NULL));
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
im->m[x][y].i = (double)(rand() % 255);
// Initialize all padded area to 0's
for (int y = height, sz = (height + padAmnt); y < sz; y++)
for (int x = 0; x < width; x++)
im->m[x][y].i = 0;
return im;
}
/*
Return a height that an image should have with extra padding;
This number is determined by the starting (minimum) size
and the amount of threads used in the process
Ts = idx * s / totalThreads;
Te = (idx+1) * s / totalThreads;
For it to work, either (Te-Ts)%8 == 0
or (h/totalThreads)%8 == 0
*/
int imGetPadSize(int totalThreads, int startingSize) {
int found = 0, sizeFound = 0;
for (int s = startingSize; s < 15000; s++) {
for (int idx = 0; idx < totalThreads; idx++) {
int start = idx * s / totalThreads;
int end = (idx+1) * s / totalThreads;
if (((end-start) % 8) == 0)
found = 1;
else {
found = 0;
break;
}
}
if (found == 1)
return s;
}
return -1;
}
/*
Remove padding from an image and reset it's variables
for dimensions based on the padding amount removed
*/
void imRemovePadding(image* srcIMG, image* dctIMG, image* idctIMG, int padAmnt) {
for (int y = srcIMG->height, nSize = (srcIMG->height - padAmnt); y >= nSize; y--) {
free(srcIMG->m[y]);
free(dctIMG->m[y]);
free(idctIMG->m[y]);
}
srcIMG->height = (srcIMG->height - padAmnt);
dctIMG->height = (dctIMG->height - padAmnt);
idctIMG->height = (idctIMG->height - padAmnt);
}
/*
Read a file into an image structure
*/
void imread(image* im, FILE *inFile) {
// If input image is a grayscale image
if (im->channels == 1) {
int value;
for (int y = 0; y < im->height; y++) {
for (int x = 0; x < im->width; x++) {
fscanf(inFile, "\n%i", &value);
im->m[x][y].i = (valueType)value;
}
}
}
// Else the input is a RGB image
else {
int rv, gv, bv;
for (int y = 0; y < im->height; y++) {
for (int x = 0; x < im->width; x++) {
fscanf(inFile, "\n%i %i %i",
&rv, &gv, &bv);
im->m[x][y].r = (valueType)rv;
im->m[x][y].g = (valueType)gv;
im->m[x][y].b = (valueType)bv;
}
}
}
}
/*
Write an image structure out to a file
*/
void imwrite(image* im, char* fileName) {
FILE *inFile = fopen(fileName, "w+");
fprintf(inFile, "P2\n%i %i\n255\n", im->height, im->width);
for (int y = 0; y < im->height; y++) {
for (int x = 0; x < im->width; x++) {
if (im->m[x][y].i >= (valueType)0.0)
fprintf(inFile, "%.0f%s", im->m[x][y].i,
(x+1 == im->width? "\n":" "));
else
fprintf(inFile, "0%s", (x+1 == im->width? "\n":" "));
}
}
}
/*
Delete an image from memory
*/
void imDelete(image* srcIMG, image* dctIMG, image* idctIMG) {
for (int y = 0; y < srcIMG->height; y++) {
free(srcIMG->m[y]);
free(dctIMG->m[y]);
free(idctIMG->m[y]);
}
}