-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcode05.v
212 lines (193 loc) · 7.4 KB
/
code05.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
From Coq Require Import ZArith.ZArith.
From Coq Require Import Strings.String.
From Coq Require Import Program.Equality.
Definition Var := string.
Definition Var_eq := String.eqb.
Definition Int := Z.
Definition Int_add := Z.add.
Definition Int_mul := Z.mul.
Inductive AExp :=
| AEVar : Var -> AExp
| AEInt : Int -> AExp
| AEAdd : AExp -> AExp -> AExp
| AEMul : AExp -> AExp -> AExp.
Inductive BExp :=
| Btrue : BExp
| Bfalse : BExp
| BLt : AExp -> AExp -> BExp.
Inductive Com :=
| CSkip : Com
| CAsst : Var -> AExp -> Com
| CSeq : Com -> Com -> Com
| CITE : BExp -> Com -> Com -> Com
| CWhile : BExp -> Com -> Com.
Definition Store := Var -> Int.
Definition StoreUpdate (s : Store) (x : Var) (n : Int) : Store :=
fun (y : Var) => if (Var_eq x y) then n else (s y).
Inductive ASStep : (AExp * Store) -> (AExp * Store) -> Prop :=
| ASSVar : forall x s,
ASStep (AEVar x, s) (AEInt (s x), s)
| ASSAdd : forall n m s,
ASStep (AEAdd (AEInt n) (AEInt m), s) (AEInt (Int_add n m), s)
| ASSMul : forall n m s,
ASStep (AEMul (AEInt n) (AEInt m), s) (AEInt (Int_mul n m), s)
| AELAdd : forall a1 a1' a2 s,
ASStep (a1, s) (a1', s) ->
ASStep (AEAdd a1 a2, s) (AEAdd a1' a2, s)
| AELMul : forall a1 a1' a2 s,
ASStep (a1, s) (a1', s) ->
ASStep (AEMul a1 a2, s) (AEMul a1' a2, s)
| AERAdd : forall n a2 a2' s,
ASStep (a2, s) (a2', s) ->
ASStep (AEAdd (AEInt n) a2, s) (AEAdd (AEInt n) a2', s).
Inductive BSStep : (BExp * Store) -> (BExp * Store) -> Prop :=
| BSSLt_t : forall n m s,
(n < m)%Z ->
BSStep (BLt (AEInt n) (AEInt m), s) (Btrue, s)
| BSSLt_f : forall n m s,
(n >= m)%Z ->
BSStep (BLt (AEInt n) (AEInt m), s) (Bfalse, s)
| BSSLlt : forall a1 a1' a2 s,
ASStep (a1, s) (a1', s) ->
BSStep (BLt a1 a2, s) (BLt a1' a2, s)
| BSSRlt : forall n a2 a2' s,
ASStep (a2, s) (a2', s) ->
BSStep (BLt (AEInt n) a2, s) (BLt (AEInt n) a2', s).
Inductive CSStep : (Com * Store) -> (Com * Store) -> Prop :=
| CSSSeq : forall c2 s,
CSStep (CSeq (CSkip) c2, s) (c2, s)
| CSSAsst : forall n x s,
CSStep (CAsst x (AEInt n), s) (CSkip, StoreUpdate s x n)
| CSSITE_t : forall c1 c2 s,
CSStep (CITE Btrue c1 c2, s) (c1, s)
| CSSITE_f : forall c1 c2 s,
CSStep (CITE Bfalse c1 c2, s) (c2, s)
| CSSSeq1 : forall c1 c1' c2 s s',
CSStep (c1, s) (c1', s') ->
CSStep (CSeq c1 c2, s) (CSeq c1' c2, s')
| CSSAsst1 : forall x a a' s,
ASStep (a, s) (a', s) ->
CSStep (CAsst x a, s) (CAsst x a', s)
| CSSITE1 : forall b b' c1 c2 s,
BSStep (b, s) (b', s) ->
CSStep (CITE b c1 c2, s) (CITE b' c1 c2, s)
| CSSWhile : forall b c s,
CSStep (CWhile b c, s) (CITE b (CSeq c (CWhile b c)) CSkip, s).
Inductive ALStep : (AExp * Store) -> Z -> Prop :=
| ALSInt : forall n s,
ALStep (AEInt n, s) n
| ALSVar : forall x s,
ALStep (AEVar x, s) (s x)
| ALSAdd : forall n1 n2 a1 a2 s,
ALStep (a1, s) n1 ->
ALStep (a2, s) n2 ->
ALStep (AEAdd a1 a2, s) (n1+n2)
| ALSMul : forall n1 n2 a1 a2 s,
ALStep (a1, s) n1 ->
ALStep (a2, s) n2 ->
ALStep (AEMul a1 a2, s) (n1*n2).
Inductive BLStep : (BExp * Store) -> bool -> Prop :=
| BLStrue : forall s,
BLStep (Btrue, s) true
| BLSfalse : forall s,
BLStep (Bfalse, s) false
| BLSlt_t : forall n m a1 a2 s,
ALStep (a1, s) n ->
ALStep (a2, s) m ->
(n < m)%Z ->
BLStep (BLt a1 a2, s) true
| BLSlt_f : forall n m a1 a2 s,
ALStep (a1, s) n ->
ALStep (a2, s) m ->
(n >= m)%Z ->
BLStep (BLt a1 a2, s) false.
Inductive CLStep : (Com * Store) -> Store -> Prop :=
| CLSSkip : forall s,
CLStep (CSkip, s) s
| CLSAsst : forall n x a s,
ALStep (a, s) n ->
CLStep (CAsst x a, s) (StoreUpdate s x n)
| CLSSeq : forall c1 c2 s s' s'',
CLStep (c1, s) s' ->
CLStep (c2, s') s'' ->
CLStep (CSeq c1 c2, s) s''
| CLSITE_t : forall b c1 c2 s s',
BLStep (b, s) true ->
CLStep (c1, s) s' ->
CLStep (CITE b c1 c2, s) s'
| CLSITE_f : forall b c1 c2 s s',
BLStep (b, s) false ->
CLStep (c2, s) s' ->
CLStep (CITE b c1 c2, s) s'
| CLSWhile_f : forall b c s,
BLStep (b, s) false ->
CLStep (CWhile b c, s) s
| CLSWhile_t : forall b c s s' s'',
BLStep (b, s) true ->
CLStep (c, s) s' ->
CLStep (CWhile b c, s') s'' ->
CLStep (CWhile b c, s) s''.
Definition equiv (c c' : Com) : Prop := forall s s', CLStep (c, s) s' <-> CLStep (c', s) s'.
Theorem While_ITE_equiv_explore :
forall b c, equiv (CWhile b c) (CITE b (CSeq c (CWhile b c)) CSkip).
Proof.
unfold equiv. unfold iff. split; intros.
- inversion H; subst.
+ eapply CLSITE_f. assumption. apply CLSSkip.
+ apply CLSITE_t. assumption. eapply CLSSeq. eassumption. assumption.
- inversion H; subst; inversion H6; subst.
+ eapply CLSWhile_t. eassumption. eassumption. assumption.
+ apply CLSWhile_f. assumption.
Qed.
Theorem While_ITE_equiv :
forall b c, equiv (CWhile b c) (CITE b (CSeq c (CWhile b c)) CSkip).
Proof.
unfold equiv. unfold iff. split; intros.
- inversion H; subst.
+ apply CLSITE_f; auto. apply CLSSkip.
+ apply CLSITE_t; auto. now apply CLSSeq with (s' := s'0).
- inversion H; subst.
+ inversion H6; subst. now apply CLSWhile_t with (s' := s'0).
+ inversion H6; subst. now apply CLSWhile_f.
Qed.
(* more automation *)
Theorem While_ITE_equiv2 :
forall b c, equiv (CWhile b c) (CITE b (CSeq c (CWhile b c)) CSkip).
Proof.
unfold equiv, iff. split; intros;
inversion H; try inversion H6; subst; eauto using CLStep.
Qed.
(* reasoning about non-termination,
assuming non-stuck *)
Theorem infinite_SS: forall s, ~exists s',
CSStep (CWhile Btrue CSkip, s) (CSkip, s').
(* For any s, there exists no s', such that
<While true skip, s> --> <skip, s'> *)
Proof.
intros. unfold "~".
(* We need to show that
for any s,
(there exists s', such that <While true skip, s> --> <skip, s'>)
implies a contradiction. *)
intros.
destruct H as [s' H].
(* Call H the statement <While true skip, s> --> <skip, s'> .*)
inversion H.
(* By inversion, nothing is left. *)
Qed.
Theorem infinite_LS: forall s, ~exists s',
CLStep (CWhile Btrue CSkip, s) s'.
(* for any s, <While true skip,s> does not take a large step. *)
Proof.
intros. unfold "~". intros.
(* We need to show that
for any s,
(While true skip takes a large step)
implies a contradiction. *)
destruct H as [s' H].
dependent induction H.
- inversion H.
(* Contradiction: <true,s> does not evaluate to false. *)
- eapply IHCLStep2. reflexivity.
(* By the IH for the evaluation of <While true skip,s>. *)
Qed.