-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.html
487 lines (434 loc) · 29.6 KB
/
references.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>References | RNA-Sequencing to improve characterisation and production of iPSC-induced cardiomyocytes</title>
<meta name="description" content="References | RNA-Sequencing to improve characterisation and production of iPSC-induced cardiomyocytes" />
<meta name="generator" content="bookdown 0.18 and GitBook 2.6.7" />
<meta property="og:title" content="References | RNA-Sequencing to improve characterisation and production of iPSC-induced cardiomyocytes" />
<meta property="og:type" content="book" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="References | RNA-Sequencing to improve characterisation and production of iPSC-induced cardiomyocytes" />
<meta name="author" content="Harithaa Anandakumar" />
<meta name="date" content="2020-01-01" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="summary.html"/>
<script src="libs/jquery-2.2.3/jquery.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<script src="libs/htmlwidgets-1.5.1/htmlwidgets.js"></script>
<script src="libs/plotly-binding-4.9.0/plotly.js"></script>
<script src="libs/typedarray-0.1/typedarray.min.js"></script>
<link href="libs/crosstalk-1.0.0/css/crosstalk.css" rel="stylesheet" />
<script src="libs/crosstalk-1.0.0/js/crosstalk.min.js"></script>
<link href="libs/plotly-htmlwidgets-css-1.46.1/plotly-htmlwidgets.css" rel="stylesheet" />
<script src="libs/plotly-main-1.46.1/plotly-latest.min.js"></script>
<script src="libs/kePrint-0.0.1/kePrint.js"></script>
<link href="libs/bsTable-3.3.7/bootstrapTable.min.css" rel="stylesheet" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="1" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i><b>1</b> Introduction</a><ul>
<li class="chapter" data-level="1.1" data-path="index.html"><a href="index.html#need-for-better-therapeutics"><i class="fa fa-check"></i><b>1.1</b> Need for better therapeutics</a><ul>
<li class="chapter" data-level="1.1.1" data-path="index.html"><a href="index.html#immunological-responses-in-transplantations"><i class="fa fa-check"></i><b>1.1.1</b> Immunological Responses in Transplantations</a></li>
</ul></li>
<li class="chapter" data-level="1.2" data-path="index.html"><a href="index.html#engineered-human-myocardium"><i class="fa fa-check"></i><b>1.2</b> Engineered Human Myocardium</a><ul>
<li class="chapter" data-level="1.2.1" data-path="index.html"><a href="index.html#cgmp-and-quality-control-of-tissue-engineered-products"><i class="fa fa-check"></i><b>1.2.1</b> cGMP and Quality Control of Tissue Engineered Products</a></li>
</ul></li>
<li class="chapter" data-level="1.3" data-path="index.html"><a href="index.html#rnaseq"><i class="fa fa-check"></i><b>1.3</b> RNA Sequencing</a><ul>
<li class="chapter" data-level="1.3.1" data-path="index.html"><a href="index.html#bulkrna"><i class="fa fa-check"></i><b>1.3.1</b> Single cell versus bulk RNA Seq</a></li>
</ul></li>
<li class="chapter" data-level="1.4" data-path="index.html"><a href="index.html#compdeconv"><i class="fa fa-check"></i><b>1.4</b> Computational deconvolution</a></li>
<li class="chapter" data-level="1.5" data-path="index.html"><a href="index.html#exploratory-data-analysis-in-rna-sequencing"><i class="fa fa-check"></i><b>1.5</b> Exploratory Data Analysis in RNA-Sequencing</a><ul>
<li class="chapter" data-level="1.5.1" data-path="index.html"><a href="index.html#pca"><i class="fa fa-check"></i><b>1.5.1</b> Principal Component Analysis (PCA)</a></li>
</ul></li>
<li class="chapter" data-level="1.6" data-path="index.html"><a href="index.html#rationale"><i class="fa fa-check"></i><b>1.6</b> Rationale for the current work</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="aims-and-objectives.html"><a href="aims-and-objectives.html"><i class="fa fa-check"></i><b>2</b> Aims and Objectives</a></li>
<li class="chapter" data-level="3" data-path="methods.html"><a href="methods.html"><i class="fa fa-check"></i><b>3</b> Methods</a><ul>
<li class="chapter" data-level="3.1" data-path="methods.html"><a href="methods.html#general-analysis-pipeline-of-bulk-rna-seq-data"><i class="fa fa-check"></i><b>3.1</b> General Analysis Pipeline of Bulk RNA-Seq Data</a></li>
<li class="chapter" data-level="3.2" data-path="methods.html"><a href="methods.html#singleCell"><i class="fa fa-check"></i><b>3.2</b> Single Cell Reference Data and CIBERSORTX</a><ul>
<li class="chapter" data-level="3.2.1" data-path="methods.html"><a href="methods.html#processing-of-single-cell-data"><i class="fa fa-check"></i><b>3.2.1</b> Processing of Single Cell Data</a></li>
</ul></li>
<li class="chapter" data-level="3.3" data-path="methods.html"><a href="methods.html#analysis-of-rhesus-rna-seq"><i class="fa fa-check"></i><b>3.3</b> Analysis of Rhesus RNA-Seq</a></li>
<li class="chapter" data-level="3.4" data-path="methods.html"><a href="methods.html#estBacVir"><i class="fa fa-check"></i><b>3.4</b> Estimating Bacterial and Viral Contaminants</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="results-and-discussion.html"><a href="results-and-discussion.html"><i class="fa fa-check"></i><b>4</b> Results and Discussion</a><ul>
<li class="chapter" data-level="4.1" data-path="results-and-discussion.html"><a href="results-and-discussion.html#general-workflow-and-mapping-statistics"><i class="fa fa-check"></i><b>4.1</b> General Workflow and Mapping Statistics</a></li>
<li class="chapter" data-level="4.2" data-path="results-and-discussion.html"><a href="results-and-discussion.html#exploring-potential-microbial-contamination-using-rna-seq-data"><i class="fa fa-check"></i><b>4.2</b> Exploring Potential Microbial Contamination using RNA-Seq Data</a></li>
<li class="chapter" data-level="4.3" data-path="results-and-discussion.html"><a href="results-and-discussion.html#global-view-of-the-transcriptomic-data"><i class="fa fa-check"></i><b>4.3</b> Global view of the transcriptomic data</a><ul>
<li class="chapter" data-level="4.3.1" data-path="results-and-discussion.html"><a href="results-and-discussion.html#correlation-amongst-groups"><i class="fa fa-check"></i><b>4.3.1</b> Correlation amongst groups</a></li>
<li class="chapter" data-level="4.3.2" data-path="results-and-discussion.html"><a href="results-and-discussion.html#gene-level-analysis"><i class="fa fa-check"></i><b>4.3.2</b> Gene-level analysis</a></li>
</ul></li>
<li class="chapter" data-level="4.4" data-path="results-and-discussion.html"><a href="results-and-discussion.html#deconvolution-of-bulk-cms-and-ehms-rna-seq-data"><i class="fa fa-check"></i><b>4.4</b> Deconvolution of Bulk CMs and EHMs RNA-Seq Data</a><ul>
<li class="chapter" data-level="4.4.1" data-path="results-and-discussion.html"><a href="results-and-discussion.html#limits-of-deconvolution"><i class="fa fa-check"></i><b>4.4.1</b> Limits of deconvolution</a></li>
</ul></li>
<li class="chapter" data-level="4.5" data-path="results-and-discussion.html"><a href="results-and-discussion.html#basic-characterisation-of-rhesus-cardiomyocytes"><i class="fa fa-check"></i><b>4.5</b> Basic characterisation of Rhesus Cardiomyocytes</a></li>
</ul></li>
<li class="chapter" data-level="5" data-path="conclusion-and-future-work.html"><a href="conclusion-and-future-work.html"><i class="fa fa-check"></i><b>5</b> Conclusion and Future Work</a></li>
<li class="chapter" data-level="" data-path="summary.html"><a href="summary.html"><i class="fa fa-check"></i>Summary</a><ul>
<li class="chapter" data-level="" data-path="summary.html"><a href="summary.html#task-at-hand"><i class="fa fa-check"></i>Task At Hand</a></li>
<li class="chapter" data-level="" data-path="summary.html"><a href="summary.html#work-done"><i class="fa fa-check"></i>Work Done</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">RNA-Sequencing to improve characterisation and production of iPSC-induced cardiomyocytes</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="references" class="section level1 unnumbered">
<h1>References</h1>
<div id="refs" class="references">
<div>
<p>1. Max Roser, E. O.-O. & Ritchie, H. Life expectancy. <em>Our World in Data</em> (2020).</p>
</div>
<div>
<p>2. Ritchie, H. & Roser, M. Causes of death. <em>Our World in Data</em> (2020).</p>
</div>
<div>
<p>3. Taylor, C. J. <em>et al.</em> Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: Population based cohort study. <em>BMJ</em> <strong>364</strong>, (2019).</p>
</div>
<div>
<p>4. Liao, L., Allen, L. A. & Whellan, D. J. Economic burden of heart failure in the elderly. <em>PharmacoEconomics</em> <strong>26</strong>, 447–462 (2008).</p>
</div>
<div>
<p>5. Cook, C., Cole, G., Asaria, P., Jabbour, R. & Francis, D. P. The annual global economic burden of heart failure. <em>International Journal of Cardiology</em> <strong>171</strong>, 368–376 (2014).</p>
</div>
<div>
<p>6. Lesyuk, W., Kriza, C. & Kolominsky-Rabas, P. Cost-of-illness studies in heart failure: A systematic review 20042016. <em>BMC Cardiovascular Disorders</em> <strong>18</strong>, 74 (2018).</p>
</div>
<div>
<p>7. Trivedi, J. R. <em>et al.</em> (574) - Risk Factors of Waiting List Mortality for Patients Awaiting Heart Transplant. <em>The Journal of Heart and Lung Transplantation</em> <strong>35</strong>, S214 (2016).</p>
</div>
<div>
<p>8. Eurotransplant - Statistics.</p>
</div>
<div>
<p>9. Metra, M. & Teerlink, J. R. Heart failure. <em>The Lancet</em> <strong>390</strong>, 1981–1995 (2017).</p>
</div>
<div>
<p>10. Bergmann, O. <em>et al.</em> Dynamics of Cell Generation and Turnover in the Human Heart. <em>Cell</em> <strong>161</strong>, 1566–1575 (2015).</p>
</div>
<div>
<p>11. Thomson, J. A. <em>et al.</em> Embryonic stem cell lines derived from human blastocysts. <em>Science (New York, N.Y.)</em> <strong>282</strong>, 1145–1147 (1998).</p>
</div>
<div>
<p>12. Takahashi, K. <em>et al.</em> Induction of pluripotent stem cells from adult human fibroblasts by defined factors. <em>Cell</em> <strong>131</strong>, 861–872 (2007).</p>
</div>
<div>
<p>13. Burridge, P. W., Keller, G., Gold, J. D. & Wu, J. C. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. <em>Cell Stem Cell</em> <strong>10</strong>, 16–28 (2012).</p>
</div>
<div>
<p>14. Nguyen, P. K., Neofytou, E., Rhee, J.-W. & Wu, J. C. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review. <em>JAMA cardiology</em> <strong>1</strong>, 953–962 (2016).</p>
</div>
<div>
<p>15. Inagawa, K. & Ieda, M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. <em>Journal of Cardiovascular Translational Research</em> <strong>6</strong>, 37–45 (2013).</p>
</div>
<div>
<p>16. Kubin, T. <em>et al.</em> Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. <em>Cell Stem Cell</em> <strong>9</strong>, 420–432 (2011).</p>
</div>
<div>
<p>17. Gnecchi, M. <em>et al.</em> Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. <em>Nature Medicine</em> <strong>11</strong>, 367–368 (2005).</p>
</div>
<div>
<p>18. Sekine, H. <em>et al.</em> Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. <em>Tissue Engineering. Part A</em> <strong>17</strong>, 2973–2980 (2011).</p>
</div>
<div>
<p>19. Weinberger, F. <em>et al.</em> Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. <em>Science Translational Medicine</em> <strong>8</strong>, 363ra148 (2016).</p>
</div>
<div>
<p>20. Yang, T. <em>et al.</em> Cardiac engraftment of genetically-selected parthenogenetic stem cell-derived cardiomyocytes. <em>PloS One</em> <strong>10</strong>, e0131511 (2015).</p>
</div>
<div>
<p>21. Zimmermann, W.-H. <em>et al.</em> Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. <em>Nature Medicine</em> <strong>12</strong>, 452–458 (2006).</p>
</div>
<div>
<p>22. Liu, Y.-W. <em>et al.</em> Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. <em>Nature Biotechnology</em> <strong>36</strong>, 597–605 (2018).</p>
</div>
<div>
<p>23. Neofytou, E., O’Brien, C. G., Couture, L. A. & Wu, J. C. Hurdles to clinical translation of human induced pluripotent stem cells. <em>The Journal of Clinical Investigation</em> <strong>125</strong>, 2551–2557 (2015).</p>
</div>
<div>
<p>24. Sayed, N., Liu, C. & Wu, J. C. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine. <em>Journal of the American College of Cardiology</em> <strong>67</strong>, 2161–2176 (2016).</p>
</div>
<div>
<p>25. Martin, U. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. <em>Frontiers in Medicine</em> <strong>4</strong>, (2017).</p>
</div>
<div>
<p>26. Taylor, C. J. <em>et al.</em> Banking on human embryonic stem cells: Estimating the number of donor cell lines needed for HLA matching. <em>The Lancet</em> <strong>366</strong>, 2019–2025 (2005).</p>
</div>
<div>
<p>27. Nakatsuji, N., Nakajima, F. & Tokunaga, K. HLA-haplotype banking and iPS cells. <em>Nature Biotechnology</em> <strong>26</strong>, 739–740 (2008).</p>
</div>
<div>
<p>28. Bogomiakova, M. E., Eremeev, A. V. & Lagarkova, M. A. At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines? <em>Molecular Biology</em> <strong>53</strong>, 638–652 (2019).</p>
</div>
<div>
<p>29. Han, X. <em>et al.</em> Generation of hypoimmunogenic human pluripotent stem cells. <em>Proceedings of the National Academy of Sciences</em> <strong>116</strong>, 10441–10446 (2019).</p>
</div>
<div>
<p>30. Tiburcy, M. <em>et al.</em> Defined Engineered Human Myocardium with Advanced Maturation for Applications in Heart Failure Modelling and Repair. <em>Circulation</em> <strong>135</strong>, 1832–1847 (2017).</p>
</div>
<div>
<p>31. 2006, E. EMEA/chmp 2006. Guideline on human cell-based medicinal products. EMEA/chmp/410869/2006. (2006).</p>
</div>
<div>
<p>32. CD-P-TO. Guideline to the quality and safety of tissues and cells for human applications. <em>European Committee on Organ Transplantation,EDQM</em> (2017).</p>
</div>
<div>
<p>33. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. <em>Nature reviews. Genetics</em> <strong>10</strong>, 57–63 (2009).</p>
</div>
<div>
<p>34. Conesa, A. <em>et al.</em> A survey of best practices for RNA-seq data analysis. <em>Genome Biology</em> <strong>17</strong>, 13 (2016).</p>
</div>
<div>
<p>35. Tang, F. <em>et al.</em> mRNA-Seq whole-transcriptome analysis of a single cell. <em>Nature Methods</em> <strong>6</strong>, 377–382 (2009).</p>
</div>
<div>
<p>36. Montoro, D. T. <em>et al.</em> A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. <em>Nature</em> <strong>560</strong>, 319–324 (2018).</p>
</div>
<div>
<p>37. Asp, M. <em>et al.</em> Spatial detection of fetal marker genes expressed at low level in adult human heart tissue. <em>Scientific Reports</em> <strong>7</strong>, (2017).</p>
</div>
<div>
<p>38. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. <em>Nature Reviews. Genetics</em> <strong>16</strong>, 133–145 (2015).</p>
</div>
<div>
<p>39. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. <em>Nature Protocols</em> <strong>13</strong>, 599–604 (2018).</p>
</div>
<div>
<p>40. Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. <em>Genome Biology</em> <strong>18</strong>, 220 (2017).</p>
</div>
<div>
<p>41. Becht, E. <em>et al.</em> Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. <em>Genome Biology</em> <strong>17</strong>, 218 (2016).</p>
</div>
<div>
<p>42. Kang, K. <em>et al.</em> CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. <em>PLOS Computational Biology</em> <strong>15</strong>, e1007510 (2019).</p>
</div>
<div>
<p>43. Newman, A. M. & Alizadeh, A. A. High-throughput genomic profiling of tumor-infiltrating leukocytes. <em>Current Opinion in Immunology</em> <strong>41</strong>, 77–84 (2016).</p>
</div>
<div>
<p>44. Quon, G. <em>et al.</em> Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. <em>Genome Medicine</em> <strong>5</strong>, 29 (2013).</p>
</div>
<div>
<p>45. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. <em>eLife</em> (2017) doi:<a href="https://doi.org/10.7554/eLife.26476">10.7554/eLife.26476</a>.</p>
</div>
<div>
<p>46. Shen-Orr, S. S. & Gaujoux, R. Computational deconvolution: Extracting cell type-specific information from heterogeneous samples. <em>Current Opinion in Immunology</em> <strong>25</strong>, 571–578 (2013).</p>
</div>
<div>
<p>47. Newman, A. M. <em>et al.</em> Determining cell type abundance and expression from bulk tissues with digital cytometry. <em>Nature Biotechnology</em> <strong>37</strong>, 773–782 (2019).</p>
</div>
<div>
<p>48. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with CIBERSORT. <em>Methods in molecular biology (Clifton, N.J.)</em> <strong>1711</strong>, 243–259 (2018).</p>
</div>
<div>
<p>49. Hudson, N. J., Dalrymple, B. P. & Reverter, A. Beyond differential expression: The quest for causal mutations and effector molecules. <em>BMC Genomics</em> <strong>13</strong>, 356 (2012).</p>
</div>
<div>
<p>50. Witteveen, E. <em>et al.</em> Increased Early Systemic Inflammation in ICU-Acquired Weakness; A Prospective Observational Cohort Study*. <em>Critical Care Medicine</em> <strong>45</strong>, 972–979 (2017).</p>
</div>
<div>
<p>51. Cuomo, A. S. E. <em>et al.</em> Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. <em>Nature Communications</em> <strong>11</strong>, 1–14 (2020).</p>
</div>
<div>
<p>52. Han, X. <em>et al.</em> Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing. <em>Genome Biology</em> <strong>19</strong>, 47 (2018).</p>
</div>
<div>
<p>53. McCracken, I. <em>et al.</em> Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing. <em>Eur Heart J</em> (2019) doi:<a href="https://doi.org/10.1093/eurheartj/ehz351">10.1093/eurheartj/ehz351</a>.</p>
</div>
<div>
<p>54. Müller, G. A., Tarasov, K. V., Gundry, R. L. & Boheler, K. R. Human ESC/iPSC-based ‘omics’ and bioinformatics for translational research. <em>Drug Discovery Today: Disease Models</em> <strong>9</strong>, e161–e170 (2012).</p>
</div>
<div>
<p>55. Wesolowska-Andersen, A. <em>et al.</em> Analysis of Differentiation Protocols Defines a Common Pancreatic Progenitor Molecular Signature and Guides Refinement of Endocrine Differentiation. <em>Stem Cell Reports</em> <strong>14</strong>, 138–153 (2020).</p>
</div>
<div>
<p>56. Wu, H. <em>et al.</em> Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. <em>Cell Stem Cell</em> <strong>23</strong>, 869–881.e8 (2018).</p>
</div>
<div>
<p>57. Freedman, B. S. Better Being Single? Omics Improves Kidney Organoids. <em>Nephron</em> <strong>141</strong>, 128–132 (2019).</p>
</div>
<div>
<p>58. Friedman, C. E. <em>et al.</em> Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. <em>Cell Stem Cell</em> <strong>23</strong>, 586–598.e8 (2018).</p>
</div>
<div>
<p>59. Kuppusamy, K. T. <em>et al.</em> Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. <em>Proceedings of the National Academy of Sciences of the United States of America</em> <strong>112</strong>, E2785–2794 (2015).</p>
</div>
<div>
<p>60. Mills, R. J. <em>et al.</em> Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. <em>Proceedings of the National Academy of Sciences of the United States of America</em> <strong>114</strong>, E8372–E8381 (2017).</p>
</div>
<div>
<p>61. Pavlovic, B. J., Blake, L. E., Roux, J., Chavarria, C. & Gilad, Y. A Comparative Assessment of Human and Chimpanzee iPSC-derived Cardiomyocytes with Primary Heart Tissues. <em>Scientific Reports</em> <strong>8</strong>, 15312 (2018).</p>
</div>
<div>
<p>62. Pervolaraki, E., Dachtler, J., Anderson, R. A. & Holden, A. V. The developmental transcriptome of the human heart. <em>Scientific Reports</em> <strong>8</strong>, (2018).</p>
</div>
<div>
<p>63. Yan, L. <em>et al.</em> Epigenomic Landscape of Human Fetal Brain, Heart, and Liver. <em>The Journal of Biological Chemistry</em> <strong>291</strong>, 4386–4398 (2016).</p>
</div>
<div>
<p>64. Sangiovanni, M., Granata, I., Thind, A. S. & Guarracino, M. R. From trash to treasure: Detecting unexpected contamination in unmapped NGS data. <em>BMC Bioinformatics</em> <strong>20</strong>, 168 (2019).</p>
</div>
<div>
<p>65. Schaffer, J. N. & Pearson, M. M. Proteus mirabilis and Urinary Tract Infections. <em>Microbiology spectrum</em> <strong>3</strong>, (2015).</p>
</div>
<div>
<p>66. Drzewiecka, D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. <em>Microbial Ecology</em> <strong>72</strong>, 741–758 (2016).</p>
</div>
<div>
<p>67. Grandi, N. & Tramontano, E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. <em>Frontiers in Immunology</em> <strong>9</strong>, (2018).</p>
</div>
<div>
<p>68. Küry, P. <em>et al.</em> Human Endogenous Retroviruses in Neurological Diseases. <em>Trends in Molecular Medicine</em> <strong>24</strong>, 379–394 (2018).</p>
</div>
<div>
<p>69. Nelson, P. N. <em>et al.</em> Demystified . . . Human endogenous retroviruses. <em>Molecular Pathology</em> <strong>56</strong>, 11–18 (2003).</p>
</div>
<div>
<p>70. Strong, M. J. <em>et al.</em> Microbial Contamination in Next Generation Sequencing: Implications for Sequence-Based Analysis of Clinical Samples. <em>PLoS Pathogens</em> <strong>10</strong>, (2014).</p>
</div>
<div>
<p>71. K’eki, Z., Gr’ebner, K., Bohus, V., M’arialigeti, K. & T’oth, E. M. Application of special oligotrophic media for cultivation of bacterial communities originated from ultrapure water. <em>Acta Microbiologica Et Immunologica Hungarica</em> <strong>60</strong>, 345–357 (2013).</p>
</div>
<div>
<p>72. Kulakov, L. A., McAlister, M. B., Ogden, K. L., Larkin, M. J. & O’Hanlon, J. F. Analysis of bacteria contaminating ultrapure water in industrial systems. <em>Applied and Environmental Microbiology</em> <strong>68</strong>, 1548–1555 (2002).</p>
</div>
<div>
<p>73. Salter, S. J. <em>et al.</em> Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. <em>BMC Biology</em> <strong>12</strong>, 87 (2014).</p>
</div>
<div>
<p>74. Bengoechea, J. A. & Sa Pessoa, J. Klebsiella pneumoniae infection biology: Living to counteract host defences. <em>FEMS Microbiology Reviews</em> <strong>43</strong>, 123–144 (2019).</p>
</div>
<div>
<p>75. Escobar, A., Rodas, P. I. & Acuña-Castillo, C. MacrophageNeisseria gonorrhoeae Interactions: A Better Understanding of Pathogen Mechanisms of Immunomodulation. <em>Frontiers in Immunology</em> <strong>9</strong>, (2018).</p>
</div>
<div>
<p>76. Park, S.-J. <em>et al.</em> A systematic sequencing-based approach for microbial contaminant detection and functional inference. <em>BMC Biology</em> <strong>17</strong>, 72 (2019).</p>
</div>
<div>
<p>77. Madeira, A., Camps, M., Zorzano, A., Moura, T. F. & Soveral, G. Biophysical Assessment of Human Aquaporin-7 as a Water and Glycerol Channel in 3T3-L1 Adipocytes. <em>PLOS ONE</em> <strong>8</strong>, e83442 (2013).</p>
</div>
<div>
<p>78. Nordquist, E., LaHaye, S., Nagel, C. & Lincoln, J. Postnatal and Adult Aortic Heart Valves Have Distinctive Transcriptional Profiles Associated With Valve Tissue Growth and Maintenance Respectively. <em>Frontiers in Cardiovascular Medicine</em> <strong>5</strong>, (2018).</p>
</div>
<div>
<p>79. Tiburcy Malte <em>et al.</em> Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. <em>Circulation</em> <strong>135</strong>, 1832–1847 (2017).</p>
</div>
<div>
<p>80. Cai Wenxuan <em>et al.</em> An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem CellDerived Cardiomyocytes. <em>Circulation Research</em> <strong>125</strong>, 936–953 (2019).</p>
</div>
<div>
<p>81. Fougerousse, F. <em>et al.</em> Calpain3 expression during human cardiogenesis. <em>Neuromuscular disorders: NMD</em> <strong>10</strong>, 251–256 (2000).</p>
</div>
<div>
<p>82. Liu Qing <em>et al.</em> Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. <em>Circulation Research</em> <strong>121</strong>, 376–391 (2017).</p>
</div>
<div>
<p>83. Ng, A. <em>et al.</em> Loss of glypican-3 Function Causes Growth Factor-dependent Defects in Cardiac and Coronary Vascular Development. <em>Developmental biology</em> <strong>335</strong>, 208–215 (2009).</p>
</div>
<div>
<p>84. Pawlak, M. <em>et al.</em> Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. <em>Genome Research</em> <strong>29</strong>, 506–519 (2019).</p>
</div>
<div>
<p>85. Schiaffino, S., Rossi, A. C., Smerdu, V., Leinwand, L. A. & Reggiani, C. Developmental myosins: Expression patterns and functional significance. <em>Skeletal Muscle</em> <strong>5</strong>, 22 (2015).</p>
</div>
<div>
<p>86. Wang, T. Y. <em>et al.</em> Human cardiac myosin light chain 4 (MYL4) mosaic expression patterns vary by sex. <em>Scientific Reports</em> <strong>9</strong>, 1–7 (2019).</p>
</div>
<div>
<p>87. Sheng, J.-J. & Jin, J.-P. TNNI1, TNNI2 and TNNI3: Evolution, Regulation, and Protein Structure-Function Relationships. <em>Gene</em> <strong>576</strong>, 385–394 (2016).</p>
</div>
<div>
<p>88. Machiraju, P. & Greenway, S. C. Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes. <em>World Journal of Stem Cells</em> <strong>11</strong>, 33–43 (2019).</p>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="summary.html" class="navigation navigation-prev navigation-unique" aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/lunr.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": null,
"toc": {
"collapse": "subsection"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>