-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodels_mae_learn_feature_loss.py
356 lines (282 loc) · 13.9 KB
/
models_mae_learn_feature_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# UM-MAE: https://github.com/implus/UM-MAE
# --------------------------------------------------------
from functools import partial
import numpy as np
import timm.models
import torch
import torch.nn as nn
from einops import rearrange
from timm.models.vision_transformer import PatchEmbed, Block, DropPath, Mlp
from util.pos_embed import get_2d_sincos_pos_embed
class MaskedAutoencoderViT(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False,
asymmetric_decoder=False, mask_ratio=0.75, vis_mask_ratio=0.,
learning_loss=True):
super().__init__()
self.vis_mask_ratio = vis_mask_ratio
if vis_mask_ratio > 0:
self.vis_mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.learning_loss = learning_loss
# --------------------------------------------------------------------------
# MAE encoder specifics
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim),
requires_grad=False) # fixed sin-cos embedding
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MAE decoder specifics (projector, predictor, and loss predictor)
self.decoder_embed_dim = decoder_embed_dim
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim),
requires_grad=False) # fixed sin-cos embedding
# reconstructor (e.g., projector at feature-level)
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
# self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size ** 2 * in_chans, bias=True) # decoder to patch
# self.decoder_pred = nn.Linear(decoder_embed_dim, embed_dim, bias=True) # dino/ema
self.decoder_pred = nn.Linear(decoder_embed_dim, decoder_embed_dim, bias=True) # clip
# loss predictor
if self.learning_loss:
self.decoder_blocks_losspred = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None,
norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm_losspred = norm_layer(decoder_embed_dim)
self.decoder_pred_losspred = nn.Linear(decoder_embed_dim, patch_size ** 2 * in_chans, bias=True)
# --------------------------------------------------------------------------
self.norm_pix_loss = norm_pix_loss
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches ** .5),
cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1],
int(self.patch_embed.num_patches ** .5), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
if hasattr(self, 'vis_mask_token'):
torch.nn.init.normal_(self.vis_mask_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def patchify(self, imgs):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
"""
p = self.patch_embed.patch_size[0]
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p ** 2 * 3))
# x = rearrange(imgs, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
return x
def unpatchify(self, x):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = self.patch_embed.patch_size[0]
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs
def forward_encoder(self, x, mask):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
N, _, D = x.shape
x = x[~mask].reshape(N, -1, D)
if self.vis_mask_ratio > 0:
vis_mask_token = self.vis_mask_token + self.pos_embed[:, 1:, :]
vis_mask_token = vis_mask_token.expand(N, -1, -1)
vis_mask_token = vis_mask_token[~mask].reshape(N, -1, D)
L = x.size(1)
noise = torch.rand(N, L, device=x.device)
ids_restore = torch.argsort(noise, dim=1)
len_keep = int(L * (1 - self.vis_mask_ratio))
vis_mask = torch.ones([N, L], device=x.device)
vis_mask[:, :len_keep] = 0
vis_mask = torch.gather(vis_mask, dim=1, index=ids_restore).unsqueeze(-1)
x = x * (1. - vis_mask) + vis_mask_token * vis_mask
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def forward_decoder(self, x, mask):
# embed tokens
x = self.decoder_embed(x)
x_vis = x[:, 1:, :]
N, _, D = x_vis.shape
# append mask tokens to sequence
expand_pos_embed = self.decoder_pos_embed[:, 1:, :].expand(N, -1, -1)
pos_vis = expand_pos_embed[~mask].reshape(N, -1, D)
pos_mask = expand_pos_embed[mask].reshape(N, -1, D)
x_ = torch.cat([x_vis + pos_vis, self.mask_token + pos_mask], dim=1)
# add cls_token + decoder_pos_embed
x = torch.cat([x[:, :1, :] + self.decoder_pos_embed[:, :1, :], x_], dim=1)
loss_pred = x.clone()
# apply reconstructor
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
x = self.decoder_pred(x)
x = x[:, 1:, :]
if self.learning_loss:
# apply loss predictor
for blk in self.decoder_blocks_losspred:
loss_pred = blk(loss_pred)
loss_pred = self.decoder_norm_losspred(loss_pred)
loss_pred = self.decoder_pred_losspred(loss_pred)
loss_pred = loss_pred[:, 1:, :] # (N, L, 1)
return x, pos_mask.shape[1], loss_pred.mean(dim=-1)
return x, pos_mask.shape[1]
def forward_loss(self, pred, target, mask):
"""
pred: [N, mask, D]
target: [N, L, D]
mask: [N, L], 0 is keep, 1 is remove,
"""
N, _, D = target.shape
target = target[mask].reshape(N, -1, D)
pred = torch.nn.functional.normalize(pred, p=2, dim=-1)
target = torch.nn.functional.normalize(target, p=2, dim=-1)
loss = ((pred - target) ** 2).sum(dim=-1)
return {'mean': loss.mean(), 'matrix': loss}
def forward(self, imgs, mask):
latent = self.forward_encoder(imgs, mask) # returned mask may change
if self.learning_loss:
pred, mask_num, loss_pred = self.forward_decoder(latent, mask) # [N, L, p*p*3]
else:
pred, mask_num = self.forward_decoder(latent, mask)
# loss = self.forward_loss(imgs, pred[:, -mask_num:], mask)
# return loss, pred, mask
out = {
'pix_pred': pred,
'mask': mask,
'mask_num': mask_num,
'features': latent,
}
if self.learning_loss:
out['loss_pred'] = loss_pred
return out
def generate_mask(self, loss_pred, mask_ratio=0.75, images=None, guide=True, epoch=0, total_epoch=200):
loss_pred = loss_pred.squeeze()
N, L = loss_pred.shape
len_keep = int(L * (1 - mask_ratio))
ids_shuffle_loss = torch.argsort(loss_pred, dim=1) # (N, L)
# keep `keep_ratio` loss and `1 - keep_ratio` random
keep_ratio = 0.2
ids_shuffle = torch.zeros_like(ids_shuffle_loss, device=loss_pred.device).int()
if guide:
keep_ratio = float((epoch + 1) / total_epoch) * 0.5
## top 0 -> 0.5
if int((L - len_keep) * keep_ratio) <= 0:
# random
noise = torch.randn(N, L, device=loss_pred.device)
ids_shuffle = torch.argsort(noise, dim=1)
else:
for i in range(N):
## mask top `keep_ratio` loss and `1 - keep_ratio` random
len_loss = int((L - len_keep) * keep_ratio)
ids_shuffle[i, -len_loss:] = ids_shuffle_loss[i, -len_loss:]
temp = torch.arange(L, device=loss_pred.device)
deleted = np.delete(temp.cpu().numpy(), ids_shuffle[i, -len_loss:].cpu().numpy())
np.random.shuffle(deleted)
ids_shuffle[i, :(L - len_loss)] = torch.LongTensor(deleted).to(loss_pred.device)
ids_restore = torch.argsort(ids_shuffle, dim=1)
# generate mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=loss_pred.device)
mask[:, :len_keep] = 0
# unshuffle to get final mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask
def forward_learning_loss(self, loss_pred, mask, loss_target, relative=False):
"""
loss_pred: [N, L, 1]
mask: [N, L], 0 is keep, 1 is remove,
loss_target: [N, L]
"""
# N, L = loss_target.shape
# loss_pred = loss_pred[mask].reshape(N, L)
assert self.learning_loss
if relative:
# binary classification for LxL
labels_positive = loss_target.unsqueeze(1) > loss_target.unsqueeze(2)
labels_negative = loss_target.unsqueeze(1) < loss_target.unsqueeze(2)
labels_valid = labels_positive + labels_negative
loss_matrix = loss_pred.unsqueeze(1) - loss_pred.unsqueeze(2)
loss = - labels_positive.int() * torch.log(torch.sigmoid(loss_matrix) + 1e-6) \
- labels_negative.int() * torch.log(1 - torch.sigmoid(loss_matrix) + 1e-6)
return loss.sum() / labels_valid.sum()
else:
# normalize by each image
mean = loss_target.mean(dim=1, keepdim=True)
var = loss_target.var(dim=1, keepdim=True)
loss_target = (loss_target - mean) / (var + 1.e-6) ** .5 # [N, L, 1]
loss = (loss_pred - loss_target) ** 2
loss = loss.mean()
return loss
def mae_vit_base_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_large_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_huge_patch14_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=14, embed_dim=1280, depth=32, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model