-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore.py
266 lines (230 loc) · 11.6 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Code modified based on https://github.com/AI-secure/semantic-randomized-smoothing
import torch
from scipy.stats import norm, binom_test
import numpy as np
from math import ceil, sqrt
from statsmodels.stats.proportion import proportion_confint
from transformers import AbstractTransformer
EPS = 1e-6
class SemanticSmooth(object):
"""A smoothed classifier g """
# to abstain, Smooth returns this int
ABSTAIN = -1
def __init__(self, base_classifier: torch.nn.Module, num_classes: int, transformer: AbstractTransformer, diff=False):
"""
:param base_classifier: maps from [batch x channel x height x width] to [batch x num_classes]
:param num_classes:
:param sigma: the noise level hyperparameter
"""
self.base_classifier = base_classifier
self.num_classes = num_classes
self.transformer = transformer
self.diff = diff
def certify(self, x: torch.tensor, n0: int, maxn: int, alpha: float, batch_size: int, cAHat=None, margin=None) -> (int, float):
""" Monte Carlo algorithm for certifying that g's prediction around x is constant within some L2 radius.
With probability at least 1 - alpha, the class returned by this method will equal g(x), and g's prediction will
robust within a L2 ball of radius R around x.
:param x: the input [channel x height x width]
:param n0: the number of Monte Carlo samples to use for selection
:param n: the number of Monte Carlo samples to use for estimation
:param alpha: the failure probability
:param batch_size: batch size to use when evaluating the base classifier
:return: (predicted class, certified radius)
in the case of abstention, the class will be ABSTAIN and the radius 0.
"""
self.base_classifier.eval()
if cAHat is None:
# draw samples of f(x+ epsilon)
counts_selection = self._sample_noise(x, n0)
# use these samples to take a guess at the top class
cAHat = counts_selection.argmax().item()
nA, n = 0, 0
pABar = 0.0
while n < maxn:
now_batch = min(batch_size, maxn - n)
# draw more samples of f(x + epsilon)
counts_estimation = self._sample_noise(x, now_batch)
n += now_batch
# use these samples to estimate a lower bound on pA
nA += counts_estimation[cAHat].item()
pABar = self._lower_confidence_bound(nA, n, alpha)
r = self.transformer.calc_radius(pABar)
# early stop if margin_sq is specified
if margin is not None and r >= margin: #sqrt(margin_sq):
return cAHat, r - margin #sqrt(margin_sq)
if margin is None:
if r <= EPS:
return SemanticSmooth.ABSTAIN, 0.0
else:
return cAHat, r
else:
return (SemanticSmooth.ABSTAIN if r <= EPS else cAHat), r - margin #sqrt(margin_sq)
def predict(self, x: torch.tensor, n0: int, alpha: float, batch_size: int) -> int:
""" Monte Carlo algorithm for evaluating the prediction of g at x. With probability at least 1 - alpha, the
class returned by this method will equal g(x).
This function uses the hypothesis test described in https://arxiv.org/abs/1610.03944
for identifying the top category of a multinomial distribution.
:param x: the input [channel x height x width]
:param n: the number of Monte Carlo samples to use
:param alpha: the failure probability
:param batch_size: batch size to use when evaluating the base classifier
:return: the predicted class, or ABSTAIN
"""
self.base_classifier.eval()
n = 0
counts = None
while n < n0:
now_batch = min(batch_size, n0 - n)
# draw more samples of f(x + epsilon)
counts_estimation = self._sample_noise(x, now_batch)
n += now_batch
if counts is None:
counts = counts_estimation
else:
counts += counts_estimation
top2 = counts.argsort()[::-1][:2]
count1 = counts[top2[0]]
count2 = counts[top2[1]]
if binom_test(count1, count1 + count2, p=0.5) > alpha:
return SemanticSmooth.ABSTAIN
else:
return top2[0]
def _sample_noise(self, x: torch.tensor, num: int) -> np.ndarray:
""" Sample the base classifier's prediction under noisy corruptions of the input x.
:param x: the input [channel x width x height]
:param num: number of samples to collect
:param batch_size:
:return: an ndarray[int] of length num_classes containing the per-class counts
"""
with torch.no_grad():
counts = np.zeros(self.num_classes, dtype=int)
if not self.diff:
batch = [x] * num #.repeat((num, 1, 1, 1))
else:
batch = x.repeat((num, 1, 1, 1))
batch_noised = torch.stack([torch.as_tensor(item).cuda() for item in self.transformer.process(batch)])
batch_noised = torch.transpose(batch_noised, 2, 3)
batch_noised = torch.transpose(batch_noised, 1, 2).type(torch.cuda.FloatTensor)
# print(batch_noised.shape)
predictions = self.base_classifier(batch_noised).argmax(1)
counts += self._count_arr(predictions.cpu().numpy(), self.num_classes)
return counts
def _count_arr(self, arr: np.ndarray, length: int) -> np.ndarray:
counts = np.zeros(length, dtype=int)
for idx in arr:
counts[idx] += 1
return counts
def _lower_confidence_bound(self, NA: int, N: int, alpha: float) -> float:
""" Returns a (1 - alpha) lower confidence bound on a bernoulli proportion.
This function uses the Clopper-Pearson method.
:param NA: the number of "successes"
:param N: the number of total draws
:param alpha: the confidence level
:return: a lower bound on the binomial proportion which holds true w.p at least (1 - alpha) over the samples
"""
return proportion_confint(NA, N, alpha=2 * alpha, method="beta")[0]
"""
Plan to gradually deprecate the following class.
"""
class StrictRotationSmooth(object):
"""A smoothed classifier g """
# to abstain, Smooth returns this int
ABSTAIN = -1
def __init__(self, base_classifier: torch.nn.Module, num_classes: int, sigma: float, sigma_b: float):
"""
:param base_classifier: maps from [batch x channel x height x width] to [batch x num_classes]
:param num_classes:
:param sigma: the noise level hyperparameter
"""
self.base_classifier = base_classifier
self.num_classes = num_classes
self.sigma = sigma
self.sigma_b = sigma_b
def guess_top(self, x: torch.tensor, n0: int, batch_size: int) -> int:
self.base_classifier.eval()
counts_selection = self._sample_noise(x, n0, batch_size)
# use these samples to take a guess at the top class
cAHat = counts_selection.argmax().item()
return cAHat
def certify(self, x: torch.tensor, cAHat: int, maxn: int, alpha: float, batch_size: int, b: float, margin: float) -> (int, float):
""" Monte Carlo algorithm for certifying that g's prediction around x is constant within some L2 radius.
With probability at least 1 - alpha, the class returned by this method will equal g(x), and g's prediction will
robust within a L2 ball of radius R around x.
"""
self.base_classifier.eval()
nA, n = 0, 0
pABar = 0.0
while n < maxn:
now_batch = min(batch_size, maxn - n)
# draw more samples of f(x + epsilon)
counts_estimation = self._sample_noise(x, now_batch, batch_size)
n += now_batch
# use these samples to estimate a lower bound on pA
nA += counts_estimation[cAHat].item()
pABar = self._lower_confidence_bound(nA, n, alpha)
if pABar >= 0.5 and norm.ppf(pABar) ** 2 - b ** 2 / max(self.sigma_b, 1e-3) ** 2 >= 0.:
radius = (self.sigma ** 2) * (norm.ppf(pABar) ** 2 - b ** 2 / max(self.sigma_b, 1e-3) ** 2)
# radius = self.sigma * norm.ppf(pABar)
# radius **= 2
if radius >= margin:
return cAHat, radius - margin
if pABar < 0.5 or norm.ppf(pABar) ** 2 - b ** 2 / max(self.sigma_b, 1e-3) ** 2 < 0.:
return SemanticSmooth.ABSTAIN, 0.0
else:
radius = (self.sigma ** 2) * (norm.ppf(pABar) ** 2 - b ** 2 / max(self.sigma_b, 1e-3) ** 2)
# radius = self.sigma * norm.ppf(pABar)
# radius **= 2
return cAHat, radius - margin
def predict(self, x: torch.tensor, n: int, alpha: float, batch_size: int) -> int:
""" Monte Carlo algorithm for evaluating the prediction of g at x. With probability at least 1 - alpha, the
class returned by this method will equal g(x).
This function uses the hypothesis test described in https://arxiv.org/abs/1610.03944
for identifying the top category of a multinomial distribution.
:param x: the input [channel x height x width]
:param n: the number of Monte Carlo samples to use
:param alpha: the failure probability
:param batch_size: batch size to use when evaluating the base classifier
:return: the predicted class, or ABSTAIN
"""
self.base_classifier.eval()
counts = self._sample_noise(x, n, batch_size)
top2 = counts.argsort()[::-1][:2]
count1 = counts[top2[0]]
count2 = counts[top2[1]]
if binom_test(count1, count1 + count2, p=0.5) > alpha:
return SemanticSmooth.ABSTAIN
else:
return top2[0]
def _sample_noise(self, x: torch.tensor, num: int, batch_size) -> np.ndarray:
""" Sample the base classifier's prediction under noisy corruptions of the input x.
:param x: the input [channel x width x height]
:param num: number of samples to collect
:param batch_size:
:return: an ndarray[int] of length num_classes containing the per-class counts
"""
with torch.no_grad():
counts = np.zeros(self.num_classes, dtype=int)
for _ in range(ceil(num / batch_size)):
this_batch_size = min(batch_size, num)
num -= this_batch_size
batch = x.repeat((this_batch_size, 1, 1, 1))
noise = torch.randn_like(batch, device='cuda') * self.sigma
noise_b = torch.randn((this_batch_size), device='cuda') * self.sigma_b
noise_b = noise_b.reshape((this_batch_size, 1, 1, 1))
predictions = self.base_classifier(batch + noise + noise_b).argmax(1)
counts += self._count_arr(predictions.cpu().numpy(), self.num_classes)
return counts
def _count_arr(self, arr: np.ndarray, length: int) -> np.ndarray:
counts = np.zeros(length, dtype=int)
for idx in arr:
counts[idx] += 1
return counts
def _lower_confidence_bound(self, NA: int, N: int, alpha: float) -> float:
""" Returns a (1 - alpha) lower confidence bound on a bernoulli proportion.
This function uses the Clopper-Pearson method.
:param NA: the number of "successes"
:param N: the number of total draws
:param alpha: the confidence level
:return: a lower bound on the binomial proportion which holds true w.p at least (1 - alpha) over the samples
"""
return proportion_confint(NA, N, alpha=2 * alpha, method="beta")[0]