diff --git a/ivy_models/bert/README.rst b/ivy_models/bert/README.rst new file mode 100644 index 00000000..cf38ffc2 --- /dev/null +++ b/ivy_models/bert/README.rst @@ -0,0 +1,77 @@ +.. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/logo.png?raw=true#gh-light-mode-only + :width: 100% + :class: only-light + +.. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/logo_dark.png?raw=true#gh-dark-mode-only + :width: 100% + :class: only-dark + + +.. raw:: html + +
+ + + + + + + + + + + + +
+ +BERT +=========== + +`BERT `_ short for Bidirectional Encoder Representations from Transformers, differentiates itself from +recent language representation models by its focus on pretraining deep bidirectional representations from unannotated text. +This approach involves considering both left and right context in all layers. +Consequently, the pretrained BERT model can be enhanced with just a single additional output layer to excel in various tasks, +such as question answering and language inference. This achievement is possible without extensive modifications to task-specific architecture. + +Getting started +----------------- + +.. code-block:: python + + import ivy + ivy.set_backend("torch") + + # Instantiate Bert + ivy_bert = ivy_models.bert_base_uncased(pretrained=True) + + # Convert the input data to Ivy tensors + ivy_inputs = {k: ivy.asarray(v.numpy()) for k, v in inputs.items()} + + # Compile the Ivy BERT model with the Ivy input tensors + ivy_bert.compile(kwargs=ivy_inputs) + + # Pass the Ivy input tensors through the Ivy BERT model and obtain the pooler output + ivy_output = ivy_bert(**ivy_inputs)['pooler_output'] + + +See `this demo `_ for more usage example. + +Citation +-------- + +:: + + @article{ + title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, + author={Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova}, + journal={arXiv preprint arXiv:1810.04805}, + year={2019} + } + + + @article{lenton2021ivy, + title={Ivy: Templated deep learning for inter-framework portability}, + author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald}, + journal={arXiv preprint arXiv:2102.02886}, + year={2021} + } diff --git a/ivy_models/unet/README.rst b/ivy_models/unet/README.rst new file mode 100644 index 00000000..9cf4d558 --- /dev/null +++ b/ivy_models/unet/README.rst @@ -0,0 +1,93 @@ +.. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/logo.png?raw=true#gh-light-mode-only + :width: 100% + :class: only-light + +.. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/logo_dark.png?raw=true#gh-dark-mode-only + :width: 100% + :class: only-dark + + +.. raw:: html + +
+ + + + + + + + + + + + +
+ +U-Net +=========== + +`Unet `_ The UNET architecture and training approach effectively leverage data augmentation to make the most of +available annotated samples, even with limited data. The design features a contracting path for context capture and a symmetric expanding path +for precise localization. Notably, this UNET network achieves superior performance with minimal images during end-to-end training. +It surpasses previous methods, including a sliding-window convolutional network, in the ISBI challenge for segmenting neuronal structures in +electron microscopic stacks. Additionally, the same UNET model excels in the ISBI cell tracking challenge for transmitted light microscopy images +(phase contrast and DIC), showcasing its versatility. Furthermore, the network demonstrates remarkable speed, capable of segmenting a 512x512 image +in under a second using a modern GPU. + +Getting started +----------------- + +.. code-block:: python + + import ivy + import ivy_models + ivy.set_backend("torch") + + # load the unet model from ivy_models + ivy_unet = ivy_models.unet_carvana(n_channels=3, n_classes=2, pretrained=True) + + # Preprocess image with preprocess function + from PIL import Image + !wget https://raw.githubusercontent.com/unifyai/models/master/images/car.jpg + filename = "car.jpg" + full_img = Image.open(filename) + torch_img = torch.from_numpy(preprocess(None, full_img, 0.5, False)).unsqueeze(0).to("cuda") + + # Convert to ivy + ivy.set_backend("torch") + img = ivy.asarray(torch_img.permute((0, 2, 3, 1)), dtype="float32", device="gpu:0") + img_numpy = img.cpu().numpy() + + # Compile the forward pass + ivy_unet.compile(args=(img,)) + + # Generating the mask + output = ivy_unet(img) + output = ivy.interpolate(output.permute((0, 3, 1, 2)), (full_img.size[1], full_img.size[0]), mode="bilinear") + mask = output.argmax(axis=1) + mask = ivy.squeeze(mask[0], axis=None).to_numpy() + result = mask_to_image(mask, [0,1]) + + +See `this demo `_ for more usage example. + +Citation +-------- + +:: + + @article{ + title={U-Net: Convolutional Networks for Biomedical Image Segmentation}, + author={Olaf Ronneberger, Philipp Fischer and Thomas Brox}, + journal={arXiv preprint arXiv:1505.04597}, + year={2015} + } + + + @article{lenton2021ivy, + title={Ivy: Templated deep learning for inter-framework portability}, + author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald}, + journal={arXiv preprint arXiv:2102.02886}, + year={2021} + }