-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathinference.py
61 lines (47 loc) · 1.87 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tensorflow as tf
from dec.dataset import *
import os
import configargparse
from dec.model import *
import csv
def export_z(z, filename, metadata=None, metafilename=None):
with open(filename, 'w', encoding='utf-8', newline='') as f:
wz = csv.writer(f, delimiter='\t')
for z_i in z:
wz.writerow([z_i_j for z_i_j in z_i])
if metafilename!=None:
with open(metafilename, 'w', encoding='utf-8', newline='') as f:
wm = csv.writer(f, delimiter='\t')
for label_idx in metadata:
wm.writerow([label_idx])
def inference(dataset, \
dec_ckpt_path, \
encoder_dims=[500, 500, 2000, 10], \
plot_filename='cluster.png'):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
if dataset=='MNIST':
data = MNIST()
else:
assert False, "Undefined dataset."
model = DEC(params={
"encoder_dims": encoder_dims,
"n_clusters": data.num_classes,
"input_dim": data.feature_dim,
"alpha": 1.0
})
saver = tf.train.Saver(var_list=tf.trainable_variables(), max_to_keep=None)
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, dec_ckpt_path)
z=sess.run(model.ae.encoder, feed_dict={model.ae.input_: data.train_x, model.ae.keep_prob: 1.0})
export_z(z, 'z.tsv', data.train_y, 'meta.tsv')
return z
if __name__=="__main__":
parser = configargparse.ArgParser()
parser.add("--gpu-index", dest="gpu_index", help="GPU Index Number", default="0", type=str)
args = vars(parser.parse_args())
os.environ['CUDA_VISIBLE_DEVICES'] = args['gpu_index']
inference(dataset="MNIST",
dec_ckpt_path="./dec_ckpt/model.ckpt", \
plot_filename='cluster.png')