-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
67 lines (43 loc) · 1.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
from torch.utils.data import TensorDataset, DataLoader
from torch import optim
from torch.autograd import Variable
from torch import nn
from augmentation import augment_data
import numpy as np
import torchvision
from loss import MulticlassDiceLoss
def oneHotEncoding(labels, num_classes):
N, H, W = labels.size()
output = torch.zeros((N, num_classes, H, W))
output = output.scatter_(1, labels.unsqueeze(1).long(), 1)
return output
def train(model, images, labels, batch_size, epochs, num_classes, lr=0.1, gpu=True):
oneHotLabels = oneHotEncoding(labels, num_classes)
if(gpu):
model.cuda()
images = images.cuda()
oneHotLabels = oneHotLabels.cuda()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=1e-3)
criterion = MulticlassDiceLoss()
mse = nn.MSELoss()
dataset = torch.utils.data.TensorDataset(images, oneHotLabels)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
iters = 0
for epoch in range(epochs):
epoch_loss = 0
for batch, target in dataloader:
if(len(target[:,1:].nonzero()) == 0):
continue
batch_var = Variable(batch)
target_var = Variable(target)
prediction = model(batch_var)
softmax = nn.Softmax2d()
soft_prediction = softmax(prediction)
diceLoss = criterion(soft_prediction, target_var, ignore_indices=[0])
loss = diceLoss
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss
print('loss: {}'.format(epoch_loss))