-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate_candidates.py
217 lines (172 loc) · 9.31 KB
/
generate_candidates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import os
import random
import time
from datetime import datetime
# import numpy as np
# import torch
from tqdm import tqdm
from torch import nn
from data_retriver import *
from utils import Logger
from retriver import DualEncoder, SimpleEncoder
from transformers import BertTokenizer, BertModel, \
get_linear_schedule_with_warmup, get_constant_schedule
from torch.optim import AdamW
def set_seeds(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def strtime(datetime_checkpoint):
diff = datetime.now() - datetime_checkpoint
return str(diff).rsplit('.')[0] # Ignore below seconds
def load_model(is_init, device, type_loss, tokenizer, args):
if args.use_Dual_encoder:
ctxt_bert = BertModel.from_pretrained(args.pretrained_model)
cand_bert = BertModel.from_pretrained(args.pretrained_model)
if is_init:
model = DualEncoder(ctxt_bert, cand_bert, type_loss)
model.entity_encoder.resize_token_embeddings(tokenizer.vocab_size + 10)
model.mention_encoder.resize_token_embeddings(tokenizer.vocab_size + 10)
else:
state_dict = torch.load(args.model) if device.type == 'cuda' else \
torch.load(args.model, map_location=torch.device('cpu'))
model = DualEncoder(ctxt_bert, cand_bert, type_loss)
model.entity_encoder.resize_token_embeddings(tokenizer.vocab_size + 10)
model.mention_encoder.resize_token_embeddings(tokenizer.vocab_size + 10)
model.load_state_dict(state_dict['sd'])
else:
bert = BertModel.from_pretrained(args.pretrained_model)
if is_init:
model = SimpleEncoder(bert, type_loss)
model.encoder.resize_token_embeddings(tokenizer.vocab_size + 10)
else:
state_dict = torch.load(args.model) if device.type == 'cuda' else \
torch.load(args.model, map_location=torch.device('cpu'))
model = SimpleEncoder(bert, type_loss)
model.encoder.resize_token_embeddings(tokenizer.vocab_size + 10)
model.load_state_dict(state_dict['sd'])
return model
def check_intersection(label, pre):
label = set(label.split("|"))
pre = set(pre.split("|"))
return len(label.intersection(pre)) > 0
def evaluate(scores_k, top_k, labels, entity_map):
nb_samples = len(labels)
entities = list(entity_map.keys())
num_hit = 0
assert len(labels) == top_k.shape[0]
for i in range(len(labels)):
label = labels[i]
pred = top_k[i]
pred = [entities[j].split("_")[0] for j in pred]
num_hit += any([check_intersection(label, p) for p in pred])
return num_hit / nb_samples, 0, 0
def generate(samples_train, samples_val, samples_test, args):
set_seeds(args)
logger = Logger(args.model + '.log', on=True)
logger.log(str(args))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
logger.log(f'Using device: {str(device)}', force=True)
entities = load_entities(args.dataset + args.kb_path)
logger.log('number of entities {:d}'.format(len(entities)))
tokenizer = BertTokenizer.from_pretrained(args.pretrained_model)
special_tokens = ["[E1]", "[/E1]", '[c]', "[NIL]"]
tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})
train_men_loader = get_mention_loader(samples_train, args.max_len, tokenizer, args.mention_bsz)
val_men_loader = get_mention_loader(samples_val, args.max_len, tokenizer, args.mention_bsz)
test_men_loader = get_mention_loader(samples_test, args.max_len, tokenizer, args.mention_bsz)
entity_loader = get_entity_loader(entities, args.entity_bsz)
entity_map = get_entity_map(entities)
train_labels = get_labels(samples_train, entity_map)
val_labels = get_labels(samples_val, entity_map)
test_labels = get_labels(samples_test, entity_map)
model = load_model(False, device, args.type_loss, tokenizer, args)
model.to(device)
save_optimal_result(samples_train, model, entity_loader, train_men_loader, entity_map, device, "train",
train_labels, args)
save_optimal_result(samples_val, model, entity_loader, val_men_loader, entity_map, device, "dev",
val_labels, args)
save_optimal_result(samples_test, model, entity_loader, test_men_loader, entity_map, device, "test",
test_labels, args)
def save_optimal_result(samples, model, entity_loader, mention_loader, entity_map,
device, data_type, labels, args):
logger = Logger(args.model + '.log', on=True)
all_cands_embeds = get_embeddings(entity_loader, model, False, device)
mention_embeds = get_embeddings(mention_loader, model, True, device)
if data_type == "train":
print("save train...")
top_k, scores_k = get_hard_negative(mention_embeds, all_cands_embeds,
args.dev_cand, 0, args.use_gpu_index)
save_candidates(samples, top_k, entity_map, labels,
args.dataset + args.disambiguation_train_output_file, data_type)
elif data_type == "dev":
print("save dev...")
top_k, scores_k = get_hard_negative(mention_embeds, all_cands_embeds,
args.dev_cand, 0, args.use_gpu_index)
eval_result = evaluate(scores_k, top_k, labels, entity_map)
logger.log(f"dev evaluate: recall@{args.dev_cand}={eval_result[0]}")
save_candidates(samples, top_k, entity_map, labels,
args.dataset + args.disambiguation_dev_output_file, data_type)
else:
print("save test...")
top_k, scores_k = get_hard_negative(mention_embeds, all_cands_embeds,
1, 0, args.use_gpu_index)
eval_result = evaluate(scores_k, top_k, labels, entity_map)
logger.log(f"test evaluate: recall@1={eval_result[0]}")
top_k, scores_k = get_hard_negative(mention_embeds, all_cands_embeds,
args.dev_cand, 0, args.use_gpu_index)
eval_result = evaluate(scores_k, top_k, labels, entity_map)
logger.log(f"test evaluate: recall@{args.dev_cand}={eval_result[0]}")
save_candidates(samples, top_k, entity_map, labels,
args.dataset + args.disambiguation_test_output_file, data_type)
def main(args):
train_data = load_data(args.dataset + args.train_data)
dev_data = load_data(args.dataset + args.dev_data)
test_data = load_data(args.dataset + args.test_data)
generate(train_data, dev_data, test_data, args)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dataset",
default="dataset/ncbi-disease/")
parser.add_argument('--model',
default="model_retriever/ncbi_retriever.pt",
help='model path')
parser.add_argument("--pretrained_model",
default="cambridgeltl/SapBERT-from-PubMedBERT-fulltext")
parser.add_argument('--type_loss', type=str,
default="sum_log_nce",
choices=['log_sum', 'sum_log', 'sum_log_nce',
'max_min'],
help='type of multi-label loss ?')
parser.add_argument('--max_len', type=int, default=256,
help='max length of the mention input ')
parser.add_argument("--use_Dual_encoder", default=False)
parser.add_argument("--train_data", default="disambiguation_input/train.json")
parser.add_argument("--dev_data", default="disambiguation_input/dev.json")
parser.add_argument("--test_data", default="disambiguation_input/test.json")
parser.add_argument("--disambiguation_dev_output_file", default="disambiguation_output/dev.json")
parser.add_argument("--disambiguation_test_output_file", default="disambiguation_output/test.json")
parser.add_argument("--disambiguation_train_output_file", default="disambiguation_output/train.json")
parser.add_argument('--kb_path', type=str,
default="tokenized_kb.pkl",
help='the knowledge base directory')
parser.add_argument("--seed", default=42, type=int)
parser.add_argument('--B', type=int, default=2,
help='the batch size per gpu')
parser.add_argument("--dev_cand", default=6, type=int)
parser.add_argument('--gpus', default='3', type=str,
help='GPUs separated by comma [%(default)s]')
parser.add_argument('--mention_bsz', type=int, default=128,
help='the batch size')
parser.add_argument('--entity_bsz', type=int, default=128,
help='the batch size')
parser.add_argument('--use_gpu_index', default=True,
help='use gpu index?')
args = parser.parse_args()
# Set environment variables before all else.
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus # Sets torch.cuda behavior
main(args)