-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpyrespeeder_cmd.py
140 lines (126 loc) · 4.89 KB
/
pyrespeeder_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import soundfile as sf
import numpy as np
from time import time
import os
from util import fourier, resampling, wow_detection, units
def write_speed(filename, speed_curve, piece=None):
piece_str = ""
if piece is not None:
piece_str = "_"+format(piece, '03d')
#only for testing
speedfilename = filename.rsplit('.', 1)[0]+piece_str+".npy"
np.save(speedfilename, speed_curve, allow_pickle=True, fix_imports=True)
def trace_all(filename, blocksize, overlap, fft_size, fft_overlap, hop, start= 16.7, fL = 900, fU = 1100):
start_time = time()
soundob = sf.SoundFile(filename)
sr = soundob.samplerate
block_start = 0
num_cores = os.cpu_count()
#we read the audio in with overlap
for i, block in enumerate(soundob.blocks( blocksize=blocksize*hop, overlap=overlap*hop)):
# if i not in (0, 1):
# continue
print("Tracing from", units.sec_to_timestamp(block_start), "to",
units.sec_to_timestamp(block_start + len(block) / sr))
imdata = fourier.get_mag(block, fft_size, hop)
#we can't do the start automatically
#note: this is already accorded for in trace_peak
if i == 0:
t0 = start
else:
#we only start at a good FFT, not influenced by cut artifacts
t0 = fft_size/2/sr
times, freqs = wow_detection.trace_peak_static(imdata, fft_size, hop, sr, fL = fL, fU = fU, t0 = t0, t1 = None, tolerance = 1, adaptation_mode="Average")
#now we trim the start and end of each trace to remove end artifacts
half = overlap//2
if i == 0:
speed = np.stack((times[:-half], freqs[:-half]), axis=1)
else:
speed = np.stack((times[half:-half], freqs[half:-half]), axis=1)
speed[:,0]*=sr
speed[:,1]/=1000
write_speed(filename, speed, piece=i)
block_start+= ((blocksize*hop - overlap*hop) / sr)
dur = time() - start_time
print("duration", units.sec_to_timestamp(dur))
def show_all(speedname, hi=1020, lo=948):
dir = os.path.dirname(speedname)
name = os.path.basename(speedname).rsplit('.', 1)[0]
files = [os.path.join(dir,file) for file in os.listdir(dir) if name in file and file.endswith(".npy")]
mins=[]
maxs=[]
speedcurves = []
for file in files:
speedcurve = np.load(file)
speedcurves.append(speedcurve)
ma = np.max(speedcurve[:,1])
mi = np.min(speedcurve[:,1])
mins.append( mi)
maxs.append(ma)
if mi < lo:
print("too low", file)
if ma > hi:
print("too high", file)
import matplotlib.pyplot as plt
plt.figure()
#plt.plot(mins, label="0", alpha=0.5)
#plt.plot(maxs, label="1", alpha=0.5)
#maybe: set dropout freq to mean(freqs)
plt.plot(speedcurves[0][:,0], speedcurves[0][:,1], label="1", alpha=0.5)
plt.xlabel('Speed')
plt.ylabel('Freg Hz')
plt.legend(frameon=True, framealpha=0.75)
plt.show()
def resample_all(speedname, filename, blocksize, overlap, hop, resampling_mode = "Linear"):
dir = os.path.dirname(speedname)
name = os.path.basename(speedname).rsplit('.', 1)[0]
speed_files = [os.path.join(dir,file) for file in os.listdir(dir) if name in file and file.endswith(".npy")]
batch_res(filename, blocksize, overlap, speed_files, resampling_mode)
def batch_res(filename, blocksize, overlap, speed_curve_names, resampling_mode):
print('Resampling ' + filename + '...',resampling_mode)
start_time = time()
#read the file
soundob = sf.SoundFile(filename)
in_len = 0
outfilename = filename.rsplit('.', 1)[0]+'_cloned.w64'
with sf.SoundFile(outfilename, 'w', soundob.samplerate, 1, subtype='FLOAT') as outfile:
for i, in_block in enumerate(soundob.blocks( blocksize=blocksize*hop, overlap=overlap*hop)):
try:
speed_curve = np.load(speed_curve_names[i])
except:
print("Resampling aborted! No more speed curves, can not resample block",i)
break
print("Block",i)
#only update if it changes
if len(in_block) != in_len:
in_len = len(in_block)
samples_in2 = np.arange( in_len )
offsets_speeds = resampling.prepare_linear_or_sinc(speed_curve[:, 0], speed_curve[:, 1])
#these must be called as generators...
if resampling_mode in ("Sinc",):
for i in resampling.sinc_kernel(outfile, offsets_speeds, in_block, samples_in2, NT = 50):
pass
elif resampling_mode in ("Linear",):
for i in resampling.linear_kernel(outfile, offsets_speeds, in_block, samples_in2):
pass
dur = time() - start_time
print("duration", units.sec_to_timestamp(dur))
#settings...
# #at 8kHz
# fft_size=512
#at 44kHz
# fft_size=4096
# fft_overlap=16
fft_size=2048
fft_overlap=16
hop=fft_size//fft_overlap
overlap=10
blocksize=100000
#speedname = "C:/Users/arnfi/Desktop/nasa/A11_T876_HR1L_CH1.wav"
speedname = "C:/Users/arnfi/Desktop/nasa/A11_T869_HR1U_CH1.wav"
filename = "C:/Users/arnfi/Desktop/nasa/A11_T869_HR1U_CH7.wav"
#speedname = "C:/Users/arnfi/Desktop/nasa/test.wav"
#filename = "C:/Users/arnfi/Desktop/nasa/A11_T876_HR1L_CH2.wav"
trace_all(speedname, blocksize, overlap, fft_size, fft_overlap, hop, start=0, fL = 900, fU = 1100)
# show_all(speedname, hi=1020, lo=948)
# resample_all(speedname, filename, blocksize, overlap, hop, resampling_mode = "Linear")