diff --git a/code/NFplots.ipynb b/code/NFplots.ipynb
new file mode 100644
index 0000000..785ee06
--- /dev/null
+++ b/code/NFplots.ipynb
@@ -0,0 +1,501 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " acc_sum | \n",
+ " block | \n",
+ " block_c | \n",
+ " condition | \n",
+ " correct | \n",
+ " correct_response | \n",
+ " datetime | \n",
+ " endtime | \n",
+ " flanker | \n",
+ " jitter | \n",
+ " ... | \n",
+ " time_test_buffer | \n",
+ " time_test_buffer_response | \n",
+ " time_test_constants | \n",
+ " time_test_flanker | \n",
+ " time_test_jitter | \n",
+ " time_test_logger | \n",
+ " time_test_target | \n",
+ " time_test_target_response | \n",
+ " time_test_variables | \n",
+ " trial | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 16 | \n",
+ " 1 | \n",
+ " test | \n",
+ " 1 | \n",
+ " con | \n",
+ " 1 | \n",
+ " m | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 280861.4 | \n",
+ " gold | \n",
+ " 1000 | \n",
+ " ... | \n",
+ " 278922.0 | \n",
+ " 278922.0 | \n",
+ " 277194.0 | \n",
+ " 278204.0 | \n",
+ " 277194.0 | \n",
+ " 279138.0 | \n",
+ " 278721.0 | \n",
+ " 278721.0 | \n",
+ " 279138.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 2 | \n",
+ " test | \n",
+ " 1 | \n",
+ " con | \n",
+ " 1 | \n",
+ " m | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 282714.5 | \n",
+ " iron | \n",
+ " 900 | \n",
+ " ... | \n",
+ " 280775.0 | \n",
+ " 280775.0 | \n",
+ " 279146.0 | \n",
+ " 280057.0 | \n",
+ " 279147.0 | \n",
+ " 280992.0 | \n",
+ " 280575.0 | \n",
+ " 280575.0 | \n",
+ " 280991.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 3 | \n",
+ " test | \n",
+ " 1 | \n",
+ " inc | \n",
+ " 1 | \n",
+ " m | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 284735.8 | \n",
+ " kiwi | \n",
+ " 1000 | \n",
+ " ... | \n",
+ " 282712.0 | \n",
+ " 282712.0 | \n",
+ " 280999.0 | \n",
+ " 282011.0 | \n",
+ " 280999.0 | \n",
+ " 283013.0 | \n",
+ " 282513.0 | \n",
+ " 282513.0 | \n",
+ " 283013.0 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 4 | \n",
+ " test | \n",
+ " 1 | \n",
+ " con | \n",
+ " 1 | \n",
+ " z | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 286755.9 | \n",
+ " pear | \n",
+ " 900 | \n",
+ " ... | \n",
+ " 284649.0 | \n",
+ " 284649.0 | \n",
+ " 283020.0 | \n",
+ " 283932.0 | \n",
+ " 283020.0 | \n",
+ " 285033.0 | \n",
+ " 284449.0 | \n",
+ " 284449.0 | \n",
+ " 285033.0 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 5 | \n",
+ " test | \n",
+ " 1 | \n",
+ " inc | \n",
+ " 1 | \n",
+ " z | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 288676.8 | \n",
+ " bronze | \n",
+ " 800 | \n",
+ " ... | \n",
+ " 286570.0 | \n",
+ " 286570.0 | \n",
+ " 285044.0 | \n",
+ " 285852.0 | \n",
+ " 285044.0 | \n",
+ " 286954.0 | \n",
+ " 286370.0 | \n",
+ " 286370.0 | \n",
+ " 286954.0 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 139 | \n",
+ " 119 | \n",
+ " test | \n",
+ " 1 | \n",
+ " con | \n",
+ " 1 | \n",
+ " m | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 530180.2 | \n",
+ " cobalt | \n",
+ " 800 | \n",
+ " ... | \n",
+ " 528224.0 | \n",
+ " 528224.0 | \n",
+ " 526693.0 | \n",
+ " 527505.0 | \n",
+ " 526693.0 | \n",
+ " 528457.0 | \n",
+ " 528023.0 | \n",
+ " 528023.0 | \n",
+ " 528457.0 | \n",
+ " 124 | \n",
+ "
\n",
+ " \n",
+ " 140 | \n",
+ " 120 | \n",
+ " test | \n",
+ " 1 | \n",
+ " con | \n",
+ " 1 | \n",
+ " m | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 532417.4 | \n",
+ " zinc | \n",
+ " 1100 | \n",
+ " ... | \n",
+ " 530294.0 | \n",
+ " 530294.0 | \n",
+ " 528465.0 | \n",
+ " 529576.0 | \n",
+ " 528465.0 | \n",
+ " 530695.0 | \n",
+ " 530094.0 | \n",
+ " 530094.0 | \n",
+ " 530694.0 | \n",
+ " 125 | \n",
+ "
\n",
+ " \n",
+ " 141 | \n",
+ " 120 | \n",
+ " test | \n",
+ " 1 | \n",
+ " con | \n",
+ " 0 | \n",
+ " z | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 535740.5 | \n",
+ " raisin | \n",
+ " 800 | \n",
+ " ... | \n",
+ " 532215.0 | \n",
+ " 532215.0 | \n",
+ " 530702.0 | \n",
+ " 531513.0 | \n",
+ " 530702.0 | \n",
+ " 534018.0 | \n",
+ " 532014.0 | \n",
+ " 532014.0 | \n",
+ " 534018.0 | \n",
+ " 126 | \n",
+ "
\n",
+ " \n",
+ " 142 | \n",
+ " 121 | \n",
+ " test | \n",
+ " 1 | \n",
+ " inc | \n",
+ " 1 | \n",
+ " m | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 537827.5 | \n",
+ " kiwi | \n",
+ " 1000 | \n",
+ " ... | \n",
+ " 535755.0 | \n",
+ " 535755.0 | \n",
+ " 534028.0 | \n",
+ " 535037.0 | \n",
+ " 534028.0 | \n",
+ " 536105.0 | \n",
+ " 535554.0 | \n",
+ " 535554.0 | \n",
+ " 536104.0 | \n",
+ " 127 | \n",
+ "
\n",
+ " \n",
+ " 143 | \n",
+ " 122 | \n",
+ " test | \n",
+ " 1 | \n",
+ " inc | \n",
+ " 1 | \n",
+ " z | \n",
+ " Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... | \n",
+ " 540082.5 | \n",
+ " zinc | \n",
+ " 1000 | \n",
+ " ... | \n",
+ " 537843.0 | \n",
+ " 537843.0 | \n",
+ " 536114.0 | \n",
+ " 537124.0 | \n",
+ " 536114.0 | \n",
+ " 538360.0 | \n",
+ " 537641.0 | \n",
+ " 537641.0 | \n",
+ " 538359.0 | \n",
+ " 128 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
128 rows × 35 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " acc_sum block block_c condition correct correct_response \\\n",
+ "16 1 test 1 con 1 m \n",
+ "17 2 test 1 con 1 m \n",
+ "18 3 test 1 inc 1 m \n",
+ "19 4 test 1 con 1 z \n",
+ "20 5 test 1 inc 1 z \n",
+ ".. ... ... ... ... ... ... \n",
+ "139 119 test 1 con 1 m \n",
+ "140 120 test 1 con 1 m \n",
+ "141 120 test 1 con 0 z \n",
+ "142 121 test 1 inc 1 m \n",
+ "143 122 test 1 inc 1 z \n",
+ "\n",
+ " datetime endtime flanker \\\n",
+ "16 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 280861.4 gold \n",
+ "17 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 282714.5 iron \n",
+ "18 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 284735.8 kiwi \n",
+ "19 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 286755.9 pear \n",
+ "20 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 288676.8 bronze \n",
+ ".. ... ... ... \n",
+ "139 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 530180.2 cobalt \n",
+ "140 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 532417.4 zinc \n",
+ "141 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 535740.5 raisin \n",
+ "142 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 537827.5 kiwi \n",
+ "143 Fri Aug 02 2024 12:36:04 GMT-0500 (Central Day... 540082.5 zinc \n",
+ "\n",
+ " jitter ... time_test_buffer time_test_buffer_response \\\n",
+ "16 1000 ... 278922.0 278922.0 \n",
+ "17 900 ... 280775.0 280775.0 \n",
+ "18 1000 ... 282712.0 282712.0 \n",
+ "19 900 ... 284649.0 284649.0 \n",
+ "20 800 ... 286570.0 286570.0 \n",
+ ".. ... ... ... ... \n",
+ "139 800 ... 528224.0 528224.0 \n",
+ "140 1100 ... 530294.0 530294.0 \n",
+ "141 800 ... 532215.0 532215.0 \n",
+ "142 1000 ... 535755.0 535755.0 \n",
+ "143 1000 ... 537843.0 537843.0 \n",
+ "\n",
+ " time_test_constants time_test_flanker time_test_jitter time_test_logger \\\n",
+ "16 277194.0 278204.0 277194.0 279138.0 \n",
+ "17 279146.0 280057.0 279147.0 280992.0 \n",
+ "18 280999.0 282011.0 280999.0 283013.0 \n",
+ "19 283020.0 283932.0 283020.0 285033.0 \n",
+ "20 285044.0 285852.0 285044.0 286954.0 \n",
+ ".. ... ... ... ... \n",
+ "139 526693.0 527505.0 526693.0 528457.0 \n",
+ "140 528465.0 529576.0 528465.0 530695.0 \n",
+ "141 530702.0 531513.0 530702.0 534018.0 \n",
+ "142 534028.0 535037.0 534028.0 536105.0 \n",
+ "143 536114.0 537124.0 536114.0 538360.0 \n",
+ "\n",
+ " time_test_target time_test_target_response time_test_variables trial \n",
+ "16 278721.0 278721.0 279138.0 1 \n",
+ "17 280575.0 280575.0 280991.0 2 \n",
+ "18 282513.0 282513.0 283013.0 3 \n",
+ "19 284449.0 284449.0 285033.0 4 \n",
+ "20 286370.0 286370.0 286954.0 5 \n",
+ ".. ... ... ... ... \n",
+ "139 528023.0 528023.0 528457.0 124 \n",
+ "140 530094.0 530094.0 530694.0 125 \n",
+ "141 532014.0 532014.0 534018.0 126 \n",
+ "142 535554.0 535554.0 536104.0 127 \n",
+ "143 537641.0 537641.0 538359.0 128 \n",
+ "\n",
+ "[128 rows x 35 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('/Users/zakg04/Documents/HBC_lab/BOOST/Main/TaskLogic/data/test/test-7005/processed/NF/7005_NF_A.csv')\n",
+ "test = df[df['block'] == 'test']\n",
+ "test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#group by condition (inc, con)\n",
+ "inc = test[test['condition'] == 'inc']\n",
+ "con = test[test['condition'] == 'con']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVU0lEQVR4nO3df7RlZX3f8feHAYwIFJBRYAYcVkQRVgR1gFI1ISZGMLXEQBUcBUmUjkuq7WoVmtakXcYkFrOaWtHpxAJiMTQi2IkdpataJAYNDJHfSjoZIwzD6B0BFbHBGb794+yhhzPn3jnO3H3vzDzv11pnzd77efbe33PXnfO5+9nnPCdVhSSpXXvNdwGSpPllEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkCaU5LQk6+e7jp9WkiVJKsne3frnk5w/Q/8VSd43dxVqvhkEmjVJbkzySJJnzHctu4MkJydZneTRJA8nuSXJBX2ft6rOqKpPdDW8NclXRtqXV9X7+65Duw6DQLMiyRLglUAB/2iOz733XJ5vNiQ5FfgS8GXg+cCzgXcAZ8xnXWqTQaDZch7wNeBK4GnDDkmOTHJdkqkk30vykaG2tyf5RpIfJrk3yUu77ZXk+UP9rkzyu93yaUnWJ7k4yUbgiiQHJ/lcd45HuuXFQ/sfkuSKJBu69s922+9O8rqhfvsk2ZTkxOmeaJLf6vr8bZJl3baTknxnOJSSnJXk9mkOcynwiar6YFVtqoHbquoNIz+btd3VwqokRwy1VZLlSf5P93wuS5KubUGSD3U1rgN+daT+G5O8LcmLgBXAqUkeS/Lo6M96Z+rQ7sMg0Gw5D7i6e7wmyXNh8KIEfA74NrAEWARc07X9Y+DfdvseyOBK4nsTnu8w4BDgecCFDH6Xr+jWjwJ+DHxkqP8ngf2A44HnAP+h234V8Oahfq8FHqqq22c476Hd8zgfWJnkhVV1a1f7q4f6vrk779Mk2Q84Fbh2uieX5FXA7wNvAA5n8PO7ZqTbPwROAk7o+r2m2/72ru0lwFLg7HHnqKpvAMuBr1bV/lV10CzXod1FVfnwsVMP4BXAT4BDu/VvAv+8Wz4VmAL2HrPfDcC7pzlmAc8fWr8S+N1u+TTgCeBnZqjpROCRbvlw4Eng4DH9jgB+CBzYrV8LvHeaY54GbAaeNbTtT4H3dcsXA1d3y4cAjwOHjznOou75HTtD/f8F+PdD6/t3P+MlQz+fV4zUcUm3/CVg+VDbr3T99+7WbwTe1i2/FfjKyLmHf9Y7XIeP3efhFYFmw/nA/6yqTd36p/j/w0NHAt+uqs1j9jsS+JsdPOdUVf3frStJ9kvyn5N8O8kPgJuAg7orkiOBh6vqkdGDVNUG4C+As5IcxGCM/uoZzvtIVf1oaP3bDMIE4L8Cr0uyP4O/jP+8qh4adwwGwXT4DOc5ojv21jofY3DFsWioz8ah5ccZvEhv3feBkRp31M7Uod3EbneTTbuWJM9k8KK3oBuvB3gGgxfhExi8IB2VZO8xYfAA8LPTHPpxBkM5Wx0GDL91c3Ta3H8BvBA4pao2dmP8XwfSneeQJAdV1aNjzvUJ4G0M/j98taoenO75AgcnedZQGBwF3A1QVQ8m+SrweuAtwMfGHaCqHu/6nQX872nOs4HBMBcASZ7F4IbyTLVt9RCD8NvqqBn6bm/64Z2pQ7sJrwi0s34N2AIcx2A45kTgRcCfMxj7v4XBC9MfJHlWkp9J8vJu348D/zLJyzLw/CRbX3RuB97U3fg8HfiF7dRxAIP7Ao8mOQT4na0N3V/lnwc+2t1U3ifJzw/t+1ngpcC7Gdwz2J5/l2TfJK9kMD7+6aG2q4D3Aj8HXD/DMd4LvDXJe5I8GyDJCUm2jr9/CrggyYkZvB3394C/rKq/naC+PwXelWRxkoOBS2bo+x1gcZJ9p2nfmTq0mzAItLPOB66oqvurauPWB4MbtcsY/EX+OgZvkbyfwV/1bwSoqk8DH2DwYvNDBi/Ih3THfXe336PdcT67nTr+CHgmsInBu5e+MNL+FgZj298Evgv8s60NVfVj4DPA0cB12znPRgZDOxsYDCEtr6pvDrVfz+Av6OtHhpCepqpuBl7VPdYleRhYCazu2r8IvK+r6yEGV07nbKe2rf6Ywf2XO4C/2s5z+hJwD7AxyabRxp2sQ7uJVPnFNFKS3wZeUFVv3m7n7R/rb4B/UlX/a+crk/rnPQI1rxtK+k0GVw07e6yzGIy7f2lnjyXNFYeG1LQkb2dwM/nzVXXTTh7rRgY3iN9ZVU/OQnnSnHBoSJIa5xWBJDVut7tHcOihh9aSJUvmuwxJ2q3cdtttm6pq4bi23S4IlixZwpo1a+a7DEnarSSZ9hPmDg1JUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxvUWBEkuT/LdJHdP054kH+6+C/XOdN9VK0maW31eEVwJnD5D+xnAMd3jQqb5Eg9JbdmyZQsbN25k48aNbNmyZb7LaUJvQdBN4PXwDF3OBK6qga8x+Earmb66T1IDpqamWLZsGcuWLWNqamq+y2nCfN4jWMTTv1d1PU//HtSnJLkwyZoka/zFkKTZNZ9BkDHbxk6FWlUrq2ppVS1duHDsVBmSpB00n0Gwnqd/wfZiBl//J0maQ/M56dwq4KLuy7pPAb7ffcm41KyXveeq+S5h3u31d49xYLf8ut+7jiefsf+81rMruO3S83o9fm9BkORPgNOAQ5OsB34H2AegqlYw+JLu1wJrgceBC/qqRdvasmXLUzfiFi5cyIIFC+a5IknzpbcgqKpzt9NewDv7Or9mtvWdGQBXX301hx122DxXJGm++MliSWqcQSBJjTMIJKlxBoEkNW63+85iSXu2J/fdjx8cf9ZTy+qfQSBp15K9/OzAHHNoSJIaZxBIUuMMAklqnEEgSY1r8maxE3s5sdc4fU/sJe2qvCKQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDWuyS+mETy573784PiznlqW1C6DoFXZy28lkwQ4NCRJzTMIJKlxBoEkNa7XIEhyepL7kqxNcsmY9r+X5M+S3JHkniQX9FmPJGlbvQVBkgXAZcAZwHHAuUmOG+n2TuDeqjoBOA34wyT79lWTJGlbfV4RnAysrap1VfUEcA1w5kifAg5IEmB/4GFgc481SZJG9BkEi4AHhtbXd9uGfQR4EbABuAt4d1U9OXqgJBcmWZNkzdTUVF/1SlKT+gyCjNlWI+uvAW4HjgBOBD6S5MBtdqpaWVVLq2rpwoULZ7tOSWpan0GwHjhyaH0xg7/8h10AXFcDa4FvAcf2WJMkaUSfQXArcEySo7sbwOcAq0b63A/8EkCS5wIvBNb1WJMkaURvU0xU1eYkFwE3AAuAy6vqniTLu/YVwPuBK5PcxWAo6eKq2tRXTZKkbfU611BVrQZWj2xbMbS8AfiVPmuQJM3MTxZLUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGtdrECQ5Pcl9SdYmuWSaPqcluT3JPUm+3Gc9kqRt7d3XgZMsAC4DXg2sB25Nsqqq7h3qcxDwUeD0qro/yXP6qkeSNF6fVwQnA2ural1VPQFcA5w50udNwHVVdT9AVX23x3okSWP0GQSLgAeG1td324a9ADg4yY1JbktyXo/1SJLGmCgIknxwkm2jXcZsq5H1vYGXAb8KvAZ4X5IXjDnXhUnWJFkzNTU1ScmSpAlNekXw6jHbztjOPuuBI4fWFwMbxvT5QlX9qKo2ATcBJ4weqKpWVtXSqlq6cOHCCUuWJE1ixiBI8o4kdwHHJrlz6PEt4K7tHPtW4JgkRyfZFzgHWDXS578Dr0yyd5L9gFOAb+zYU5Ek7YjtvWvoU8Dngd8Hht/++cOqenimHatqc5KLgBuABcDlVXVPkuVd+4qq+kaSLwB3Ak8CH6+qu3fwuUiSdsCMQVBV3we+n+Q/Ag9X1Q8BkhyQ5JSq+svt7L8aWD2ybcXI+qXApTtSvCRp5016j+BjwGND6z/qtkmSdnOTBkGq6ql3/FTVk/T4YTRJ0tyZNAjWJXlXkn26x7uBdX0WJkmaG5MGwXLgHwAPMnjL5ynAhX0VJUmaOxMN73RTP5zTcy2SpHkw6SeLX5Dki0nu7tZfnOTf9FuaJGkuTDo09MfAvwJ+AlBVd+IVgiTtESYNgv2q6paRbZtnuxhJ0tybNAg2JflZuknjkpwNPNRbVZKkOTPpZwHeCaxkMOfQg8C3gGW9VSVJmjPbDYLum8beUVW/nORZwF5bp5qQJO3+thsEVbUlycu65R/1X5IkaS5NOjT09SSrgE8zmGcIgKq6rpeqJElzZtIgOAT4HvCqoW0FGASStJub9B7Bpqp6zxzUI0maY9t9+2hVbQFeOge1SJLmwaRDQ7d7j0CS9kzeI5Ckxk06++gFfRciSZofk84+ujjJ9Um+m+Q7ST6TZHHfxUmS+jfpXENXAKuAI4BFwJ912yRJu7lJg2BhVV1RVZu7x5XAwh7rkiTNkZ9m9tE3J1nQPd7M4OaxJGk3N2kQ/AbwBmAjg+mnzwa8gSxJe4BJ3z76fuD8qnoEIMkhwIcYBIQkaTc26RXBi7eGAEBVPQy8pJ+SJElzadIg2CvJwVtXuiuCSa8mJEm7sElfzP8QuDnJtQw+UfwG4AO9VSVJmjOTfrL4qiRrGEwxEeDXq+reXiuTJM2JiYd3uhd+X/wlaQ8z6T0CSdIeyiCQpMYZBJLUuF6DIMnpSe5LsjbJJTP0OynJliRn91mPJGlbvQVB913HlwFnAMcB5yY5bpp+HwRu6KsWSdL0+rwiOBlYW1XrquoJ4BrgzDH9/inwGeC7PdYiSZpGn0GwCHhgaH19t+0pSRYBrwdWzHSgJBcmWZNkzdTU1KwXKkkt6zMIMmZbjaz/EXBxVW2Z6UBVtbKqllbV0oUL/RoESZpNfc4XtB44cmh9MbBhpM9S4JokAIcCr02yuao+22NdkqQhfQbBrcAxSY4GHgTOAd403KGqjt66nORK4HOGgCTNrd6CoKo2J7mIwbuBFgCXV9U9SZZ37TPeF5AkzY1ep5KuqtXA6pFtYwOgqt7aZy2SpPH8ZLEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcb0GQZLTk9yXZG2SS8a0L0tyZ/e4OckJfdYjSdpWb0GQZAFwGXAGcBxwbpLjRrp9C/iFqnox8H5gZV/1SJLG6/OK4GRgbVWtq6ongGuAM4c7VNXNVfVIt/o1YHGP9UiSxugzCBYBDwytr++2Tec3gc+Pa0hyYZI1SdZMTU3NYomSpD6DIGO21diOyS8yCIKLx7VX1cqqWlpVSxcuXDiLJUqS9u7x2OuBI4fWFwMbRjsleTHwceCMqvpej/VIksbo84rgVuCYJEcn2Rc4B1g13CHJUcB1wFuq6q97rEWSNI3ergiqanOSi4AbgAXA5VV1T5LlXfsK4LeBZwMfTQKwuaqW9lWTJGlbfQ4NUVWrgdUj21YMLb8NeFufNUiSZuYniyWpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXG9BkGS05Pcl2RtkkvGtCfJh7v2O5O8tM96JEnb6i0IkiwALgPOAI4Dzk1y3Ei3M4BjuseFwMf6qkeSNF6fVwQnA2ural1VPQFcA5w50udM4Koa+BpwUJLDe6xJkjRi7x6PvQh4YGh9PXDKBH0WAQ8Nd0pyIYMrBoDHktw3u6U27VBg03wXsSvIh86f7xL0dP5udmbpd/N50zX0GQQZs612oA9VtRJYORtF6emSrKmqpfNdhzTK38250+fQ0HrgyKH1xcCGHegjSepRn0FwK3BMkqOT7AucA6wa6bMKOK9799DfB75fVQ+NHkiS1J/ehoaqanOSi4AbgAXA5VV1T5LlXfsKYDXwWmAt8DhwQV/1aFoOuWlX5e/mHEnVNkPykqSG+MliSWqcQSBJjTMIJM2rJDfPdw2t8x6BJDXOK4I9XJLzugn97kjyySTPS/LFbtsXkxzV9buymwDw5iTrkpw937WrDUke6/49LcmNSa5N8s0kVydJ13ZS97t5R5Jbkhwwv1XvWfr8ZLHmWZLjgX8NvLyqNiU5BPgEg/mdPpHkN4APA7/W7XI48ArgWAaf8bh27qtW414CHM/gg6V/Abw8yS3AfwPeWFW3JjkQ+PE81rjH8Ypgz/Yq4Nqq2gRQVQ8DpwKf6to/yeCFf6vPVtWTVXUv8Nw5rVQauKWq1lfVk8DtwBLghcBDVXUrQFX9oKo2z1+Jex6DYM8WxszdNGK4/e9G9pXm2vDv4BYGoxaT/B5rJxgEe7YvAm9I8myAbmjoZgbTfQAsA74yT7VJk/omcESSkwCSHJDEYe1Z5A9zD9ZN6fEB4MtJtgBfB94FXJ7kPcAUTuuhXVxVPZHkjcB/SvJMBvcHfhl4bH4r23P49lFJapxDQ5LUOINAkhpnEEhS4wwCSWqcQSBJjTMIpFnQzdV0drf88STHdcu/NdLPmTa1y/Hto9IsSHIl8LmqunZk+2NVtf/8VCVNxisCNWlnZ2XNwEeS3JvkfwDPGTr2jUmWJvkD4JlJbk9yddf22ND+lya5O8ld3QemZpyBU+qLnyxWc2ZpVtbXM5gM7ecYTNB3L3D58Hmq6pIkF1XViWPK+HXgROAE4FDg1iQ3dW3bzMCJU4GoR14RqEWzMSvrzwN/UlVbqmoD8KWfsoZXDO3/HeDLwEld27gZOKXeGARq0WzNyrozN9hmGu4ZNwOn1BuDQC2ajVlZbwLOSbIgyeHAL07T7ydJ9plm/zd2+y9kcIVxy0/5PKRZ4V8aas4szcp6PYMhpruAv2YwtDPOSuDOJH9VVctG9j8VuIPBlcV7q2pjkmN39HlJO8q3j0pS4xwakqTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcf8P342TeREu3zMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAGTCAYAAAB3ZVUNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABOBklEQVR4nO3deXyddZn//9eVPW3SfW+6UUpX2kJD2XcVBBRUQMQFBmbqOIzjjL9RZPzN6Hzn6/z8OvN1BnV0po4KKIvAoKAIgqwKFGzZuu9bumVp06TNfnL9/vjch3OSnKRJm/ScJO/n43Eeyf25l3OdpL1z3Z/V3B0RERERyUxZ6Q5ARERERDqnZE1EREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRPJQGb2dTPzpNd+M/u1mS1Md2yZysyWmtnXU5R/3cwq0xBScgz3mNnKdMbQl8xspZndk7Td5vNm8u9GpD9QsiaSuQ4D50avvwZOA541s1HpDCqDLQW+lqL8v4ErTnIsg90/Abcmbet3I3ICctIdgIh0qsXdV0TfrzCzHcBrwJXAA2mLqp9x9zKgLN1xDCbuvrWbx+l3I9INqlkT6T/eib5OSS40sz81s7Vm1mhmO83sy+32zzezp83soJkdNbP1ZnZH0v4XzexRM1tmZjvMrN7MnjSzye2uM8bM7jWzKjOri84rbXfMDjP7VzP7GzMrM7NDZvaQmY1IOiY3OmZXFPNeM/uFmeUlHTM1Ou9g9F6/NbPZnf1gzOxW4LvR9/Gm4xej7TZNbWZ2SbT/cjN7PPqZbDazD5hZtpn9i5lVmtkeM/tiive6wMxeiuKqMrMfmllxZ7G1O/c6M9tgZg1m9gczm5e07xEzeyHFOf9oZgfMLLeL604zswejuOvM7F0zuzlpf6/87qLjFpjZK9FnWG9mH04Rz3vNoD353URlM8zsl2ZWY2a1ZvYrMzu13TFuZl8ws382swozKzez/zCz/M5+RiL9mZI1kf5javR1e7zAzL4E/AD4JXBN9P0/mdlfJp33BBADPgV8mPCHs31ycS7weeCLwO3AwuiayX5JaLL6W+DjhPvHC+3/kAI3ApcDy4A7o7j+OWn/XcAngb8H3k9o4j0MZEefaRTwB2A28OfR9YYCvzOzwhQ/F4Angf+b9FnOBf6ik2Pj/it6n48AO4FHge8RfjY3R9v/18zOiZ9gZucDzwH7geuj2K8CfnKM9wKYBnyb0ER4MzAc+K2ZFUT7/xu42MxmJL2fAZ8BfubuzakuambjCDWuZxF+Nx8CfkTbpP6X9MLvLvr5/xYoij7D/wb+ncS/zVS6/buJkq3ngLnAnxGaUmcAL1nH5v//B5hE+Hf9L8BngS90EYdI/+XueumlV4a9gK8DlYSuCjnATOBZ4C0gPzpmGHAE+Fq7c/8XIZnIBsYADpzexXu9CDQD05LKzo/OuzLavjLavjjpmKFABfBfSWU7gK1ATlLZvwP7k7Z/DfzfLuL5J6AKGJVUNpKQ0N3RxXl/GW5pqX+WSduXRJ/la0ll86Ky55PKsqKf4/9JKvs98EK7618Wnbugi9juiY45L6lsGtAC/HnS++0E/rGH1/7/gKPAxE729+bv7i+ifyslKf6t3NPu8648jt/Nn0c/k1OSykqAJuCupDIHXm53rV8CK/ri/6NeeqX7pZo1kcw1mvCHsRnYApwBfNTdG6P95xL+6D5iZjnxF/A8MJ7wR+4gsBv4TzP7eFQLk8qb7r4zvuHurwDlhI7hRF8r3P2lpGOOEhKvC9pd6wV3b0naXgeMS2rmfBu41cy+bGYLo9qjZO8jJKY1SZ+pFlgFlNJ7nkv6fkv09fl4gbu3AtuAyQBmNoTwM3+43c/7D4Tf0ZJjvF+5u7+adP2dhM+0NOn97gE+k/QzuZWQ9Kzp4rqXAU+7+75O9vfm724psMpDX7P4teL/VnrDUsK/xW1J1y8DXkkR6zPtttcR/s2LDDhK1kQy12FC09Y5hCaePOABM4v/vx0TfV1LIqlrBuL9nqZECcAHCDVEPwb2m9nvzeyMdu+V6o9tOTAx+n4icCDFMQeA9s1T1e22mwCL4ofQdPYfhFqad4DdZpbcfDWG0FTX3O51Ke36652g9+J096YuYo83U44k1FZ+v11cjUBuN2I71s8YQnPqNODSqB/cxwi/t66MBjpL1KB3f3cT6Pxz9IYTjbUAkQFIo0FFMleLu8fnqnrdzOqB+4AbgJ8Tas0g9CtK9QduI4C7bwA+FnVQvxD4P8CTZlYSJXMAqWrcxpFIAvZ1csz4pDi6xd0bgH8A/sHMZhGavv7dzDa6+9PR9Z4gNIe2V9uT9+pl1YTmt68Dv0mxf+8xzu/sZ7w2vuHuO8zsdyT6amUBDx7julW0Tfja67XfHSHpn5OivLMa257aB8xPUX48sYoMGKpZE+k/fkb4w35ntP0aUA9McveVKV5tEht3b3b35wmd3CcCI5J2n2lm73USjzrSjwPeiIpeJzSHXZR0zBDgakIz4HFx982ETu+NhH5jEJon5wNrU3ymjV1crimKq09qV6KmwxXA7E5+3sdM1szsvPhG9PM+k8TPOO5HhBq1vwB+6e7Vx7juc8AVZja+k/29+bv7I7DEzN5rbkz6t9KV7v5uXo+unzzIYjJw3nHEKjJgqGZNpJ9wdzezfwbuN7PL3f05C7PC321m04CXCQ9gpwGXuvtHLKx48K+EmrhthKa8O4F33D25pqIc+HV0vQJC7dubUU0X7v5bM3sF+LmZfYVQm/O3QCFhJF63mdkvCH213iIkm9cT7kUvR4d8mzDC73kz+y6wh1CzcjHwB3fvrKZpQ/T1C2b2PFBzjOTueHwZeM7MWgmjRWsJIyGvBr7q7pu6OLcS+KmZ/T3hc/8vws/9nnbH/ZLQ1HomYeTssfwbYcTo783sG4Q+inOBoe7+rd783RGaaf9fQs3s16Nr/FP02brS3d/NPYR/n0+Z2T8QRjF/Pbr+f/UwVpEBQzVrIv3Lz4HNhKQBd/8WYZqFDwKPE5rMPkkYtQih2eoA8FXgKUISsJ4whUey16J9/06o2VkDXNfumI8QOv7/O/AIoS/TZe6+hZ55Nbr2A1HMS4CPxZt83b2S0E9vAyEReQb4FmGqi3e7uO7vCcnHFwg1NL3+x93d/wBcBIwFfgr8ivC72E3qpuhkO4EvEZKPh4Aa4IqoWTj5PRoJv6vdwO+6EVMFYUTmW4Tfza8J/yZ2JR3WK787d68jTAFyNPoMXyNMobGzq/Po5u8m+uzvI/zufwTcG137knYPFyKDirl7umMQkTSKJiitdPfr0x2LQDTCdCfwY3f/+3THIyLpp2ZQEZEMEE2PsYgw2exo1OwnIhElayIimWESYbBBOfDZ5LnMRGRwUzOoiIiISAbTAAMRERGRDKZkTURERCSDKVkTERERyWBK1kREREQymJI1ERERkQymZE1EREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSDKVkTERERyWBK1kREREQyWE66A+hLY8aM8enTp6c7DBEREZFjWrVqVaW7j21fPqCTtenTp7Ny5cp0hyEiIiJyTGa2M1W5mkFFREREMpiSNREREZEMpmRNREREJIMN6D5rIiIiMng0NzdTVlZGQ0NDukPpUkFBASUlJeTm5nbreCVrIiIiMiCUlZVRXFzM9OnTMbN0h5OSu1NVVUVZWRkzZszo1jlqBhUREZEBoaGhgdGjR2dsogZgZowePbpHtX9K1kRERGTAyORELa6nMSpZExEREelF1dXVfP/73++16ylZExEREUnS0tLS5fax9Ktkzcx+bGblZrYmqWyxma0ws7fNbKWZLU3ad5eZbTGzjWZ2RVL5EjNbHe37jvWHOk7pt9wdd093GCIi0gvuu+8+Fi5cyKJFi/j0pz/Nzp07ufzyy1m4cCGXX345u3btAuDWW2/li1/8Ipdeeil33nlnh+2tW7dy5ZVXsmTJEi688EI2bNgAwIEDB/jIRz7CokWLWLRoEa+++ipf+cpX2Lp1K4sXL+ZLX/rSiX+I+B+mvngBFwFnAmuSyp4BPhh9fxXwYvT9POAdIB+YAWwFsqN9bwDnAgY8FT//WK8lS5a4SE+8ufOgf/+FLf7d5zb5SxvLvbW1Nd0hiYhIN61bt67N9po1a/y0007ziooKd3evqqrya665xu+55x53d//Rj37k1157rbu733LLLX711Vd7S0tLyu3LLrvMN23a5O7uK1as8EsvvdTd3W+88Ub/t3/7N3d3b2lp8erqat++fbvPnz+/R7G6uwMrPUU+06dTd7j7y2Y2vX0xMCz6fjiwN/r+WuAhd28EtpvZFmCpme0Ahrn7awBmdh9wXZS0ifSa8poGXtxY8d72qp2HGDcsnzkThnVxloiIZKrnn3+e66+/njFjxgAwatQoXnvtNR577DEAPv3pT/PlL3/5veNvuOEGsrOzO2wfOXKEV199lRtuuOG9fY2Nje+9x3333QdAdnY2w4cP59ChQ736OdIxz9pfA781s38lNMOeF5VPBlYkHVcWlTVH37cvF+lV+2s6DqPef7hByZqISD/l7scceZm8f+jQoW32xbdbW1sZMWIEb7/9dq/H2B3pGGDwOeBv3H0K8DfAj6LyVD9N76I8JTNbFvWFW1lRUdHZYSIdTB5RSPv/0yUjh6QnGBEROWGXX345Dz/8MFVVVQAcPHiQ8847j4ceegiA+++/nwsuuOCY1xk2bBgzZszgkUceAUIS+M4777z3Hj/4wQ8AiMVi1NTUUFxcTG1tba99jnQka7cAj0XfPwLEBxiUAVOSjishNJGWRd+3L0/J3Ze7e6m7l44dO7bXgpaBb3RRPh+YN4HhhbkMzc/mvJmjOXVcUbrDEhGR4zR//ny++tWvcvHFF7No0SK++MUv8p3vfIef/OQnLFy4kJ/+9Kfcfffd3brW/fffz49+9CMWLVrE/PnzefzxxwG4++67eeGFFzj99NNZsmQJa9euZfTo0Zx//vksWLCgVwYYmPfxqLeoz9qv3X1BtL0e+Jy7v2hmlwPfcvclZjYfeICQvE0CngNmuXvMzP4IfB54HfgN8F13/82x3ru0tNRXrlzZJ59LREREMsv69euZO3duusPollSxmtkqdy9tf2yf9lkzsweBS4AxZlYGfA34M+BuM8sBGoBlAO6+1sweBtYBLcAd7h6LLvU54B6gkDCwQIMLREREZFDo69Ggn+hk15JOjv8G8I0U5SuBBb0YmoiIiEi/oBUMRERERDKYkjURERGRDKZkTURERCSDKVkTERERyWBK1kRERER60dNPP83s2bM59dRT+eY3v3nC11OyJiIiItJLYrEYd9xxB0899RTr1q3jwQcfZN26dSd0zXSsDSoiIiKSdofrmvntuv3sq25g4ogCrpg3geFDck/omm+88Qannnoqp5xyCgA33XQTjz/+OPPmzTvua6pmTURERAal367bz55D9bS6s+dQPb9dt/+Er7lnzx6mTEmsnllSUsKePXtO6JpK1kRERGRQ2lfd0OX28Ui1jKeZndA1layJiIjIoDRxREGX28ejpKSE3bt3v7ddVlbGpEmTTuiaStZERERkULpi3gQmjywky4zJIwu5Yt6EE77mWWedxebNm9m+fTtNTU089NBDfPjDHz6ha2qAgYiIiAxKw4fkcmPplGMf2AM5OTl873vf44orriAWi3Hbbbcxf/78E7tmL8UmIiIiIsBVV13FVVdd1WvXUzOoiIiISAZTsiYiIiKSwZSsiYiIiGQwJWsiIiIiGUzJmoiIiEgGU7ImIiIiksGUrImIiIj0kttuu41x48axYMGCXrumkjURERGRXnLrrbfy9NNP9+o1NSmuiIiIDE71h2DDk3B4DwyfDHOuhsKRJ3TJiy66iB07dvROfBHVrImIiMjgtOFJqN4N3hq+bngy3RGlpGRNREREBqfDe7rezhBK1kRERGRwGj656+0MoWRNREREBqc5V8OIKWBZ4eucq9MdUUoaYCAiIiKDU+FIOONTvXrJT3ziE7z44otUVlZSUlLCP/7jP3L77bef0DWVrImIiIj0kgcffLDXr6lmUBEREZEMpmRNREREJIMpWRMRERHJYErWREREZMBw93SHcEw9jbFPkzUz+7GZlZvZmnblnzezjWa21sy+lVR+l5ltifZdkVS+xMxWR/u+Y2bWl3GLiIhI/1NQUEBVVVVGJ2zuTlVVFQUFBd0+p69Hg94DfA+4L15gZpcC1wIL3b3RzMZF5fOAm4D5wCTgd2Z2mrvHgB8Ay4AVwG+AK4Gn+jh2ERER6UdKSkooKyujoqIi3aF0qaCggJKSkm4f36fJmru/bGbT2xV/DvimuzdGx5RH5dcCD0Xl281sC7DUzHYAw9z9NQAzuw+4DiVrIiIikiQ3N5cZM2akO4xel44+a6cBF5rZ62b2kpmdFZVPBnYnHVcWlU2Ovm9fnpKZLTOzlWa2MtMzaxEREZFjSUeylgOMBM4BvgQ8HPVBS9UPzbsoT8ndl7t7qbuXjh07tjfiFREREUmbdCRrZcBjHrwBtAJjovIpSceVAHuj8pIU5SIiIiIDXjqStV8ClwGY2WlAHlAJPAHcZGb5ZjYDmAW84e77gFozOyeqgfsM8Hga4hYRERE56fp0gIGZPQhcAowxszLga8CPgR9H03k0Abd4GGO71sweBtYBLcAd0UhQCIMS7gEKCQMLNLhAREREBgXL5LlITlRpaamvXLky3WGIiIiIHJOZrXL30vblWsFAREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSDKVkTERERyWBK1kREREQymJI1ERERkQymZE1EREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSDKVkTERERyWBK1kREREQymJI1ERERkQymZE1EREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSDKVkTERERyWBK1kREREQyWJ8ma2b2YzMrN7M1Kfb9rZm5mY1JKrvLzLaY2UYzuyKpfImZrY72fcfMrC/jFhEREckUfV2zdg9wZftCM5sCvB/YlVQ2D7gJmB+d830zy452/wBYBsyKXh2uKSIiIjIQ9Wmy5u4vAwdT7Po34MuAJ5VdCzzk7o3uvh3YAiw1s4nAMHd/zd0duA+4ri/jFhEREckUJ73Pmpl9GNjj7u+02zUZ2J20XRaVTY6+b18uIiIiMuDlnMw3M7MhwFeBD6TanaLMuyjv7D2WEZpMmTp16nFEKSIiIpI5TnbN2kxgBvCOme0ASoA3zWwCocZsStKxJcDeqLwkRXlK7r7c3UvdvXTs2LG9HL6IiIjIyXVSkzV3X+3u49x9urtPJyRiZ7r7fuAJ4CYzyzezGYSBBG+4+z6g1szOiUaBfgZ4/GTGLSIiIpIufT11x4PAa8BsMyszs9s7O9bd1wIPA+uAp4E73D0W7f4c8N+EQQdbgaf6Mm4RERGRTGFhgOXAVFpa6itXrkx3GCIiIiLHZGar3L20fblWMBARERHJYErWRERERDKYkjURERGRDKZkTURERCSDKVkTERERyWBK1kREREQymJI1ERERkQymZE1EREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSDKVkTERERyWBK1kREREQymJI1ERERkQymZE1EREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSD9ShZM7NCM5vdV8GIiIiISFvdTtbM7EPA28DT0fZiM3uij+ISEREREXpWs/Z1YClQDeDubwPTezsgEREREUnoSbLW4u6H+ywSEREREemgJ8naGjO7Gcg2s1lm9l3g1a5OMLMfm1m5ma1JKvsXM9tgZu+a2S/MbETSvrvMbIuZbTSzK5LKl5jZ6mjfd8zMehC3iIiISL/Vk2Tt88B8oBF4EKgB/voY59wDXNmu7FlggbsvBDYBdwGY2Tzgpug9rgS+b2bZ0Tk/AJYBs6JX+2uKiIiIDEjdTtbcvc7dv+ruZ7l7afR9wzHOeRk42K7sGXdviTZXACXR99cCD7l7o7tvB7YAS81sIjDM3V9zdwfuA67rbtwiIiIi/VlOdw80s1Lg7wiDCt47L6ohO163AT+Pvp9MSN7iyqKy5uj79uWdxbmMUAvH1KlTTyA0ERERkfTrdrIG3A98CVgNtJ7oG5vZV4GW6LoAqfqheRflKbn7cmA5QGlpaafHiYiIiPQHPUnWKty9V+ZVM7NbgGuAy6OmTQg1ZlOSDisB9kblJSnKRURERAa8niRrXzOz/waeIwwyAMDdH+vJG5rZlcCdwMXuXpe06wngATP7NjCJMJDgDXePmVmtmZ0DvA58BvhuT95TREREpL/qSbL2J8AcIJdEM6gDnSZrZvYgcAkwxszKgK8RRn/mA89GM3CscPc/d/e1ZvYwsI7QPHqHu8eiS32OMLK0EHgqeomIiIgMeJZohTzGgWar3f30Po6nV5WWlvrKlSvTHYaIiIjIMZnZKncvbV/ek5q1FWY2z93X9WJcIiIiA8++d2HH7yHWBJOXwIyL0h2R9GM9SdYuAG4xs+2EPmsG+AlO3SEiIjKwHK2Ejb+BeMvVjldg6FgYNze9cUm/1ZNkTasGiIiIHMvhskSiFle9W8maHLdjJmtmNszda4DakxCPiIhI/zYsxbztwyad/DhkwOhOzdoDhDnRVtFxkloHTumDuERERPqnorFw2hVRn7VmmHwmjJ+f7qikHztmsubu10RfZ/R9OCIiIgPA5DPDS6QXdHshdzN7rjtlIiIiItJ7utNnrQAYQpjYdiSJZtBhhJUGRERERKSPdKfP2meBvyYkZqtIJGs1wH/0TVgiIiIiAt3rs3Y3cLeZfd7dO12T08ze7+7P9mp0IiIiIoNct/usdZWoRf7PCcYiIiIiIu10O1nrBjv2ISIiIiLSE72ZrHVvRXgRERER6bbeTNZEREREpJf1ZrK2oxevJSIiIiL0bFLcIWb292b2w2h7lpldE9/v7h/tiwBFREREBrOe1Kz9BGgEzo22y4D/3esRiYiIiMh7epKszXT3bwHNAO5ej0aAioiIiPSpniRrTWZWSDTq08xmEmraRERERKSPdGe5qbivAU8DU8zsfuB84Na+CEpEREREgm4na+7+rJm9CZxDaP78grtX9llkIiIiItKj0aDnAw3u/iQwAvg7M5vWV4GJiIiISM/6rP0AqDOzRcCXgJ3AfX0SlYiIiIgAPUvWWtzdgWuB77j73UBx34QlIiIiItCzAQa1ZnYX8CngIjPLBnL7JiwRERERgZ7VrH2cMFXH7e6+H5gM/EufRCUiIiIiQM9Gg+4Hvp20vQv1WRMRERHpUz0ZDfpRM9tsZofNrMbMas2spi+DExERERnsetJn7VvAh9x9fV8FIyIiIiJt9aTP2gElaiIiIiInV09q1laa2c+BX5K0Jqi7P9bbQYmIiIhI0JOatWFAHfAB4EPR65quTjCzH5tZuZmtSSobZWbPRv3fnjWzkUn77jKzLWa20cyuSCpfYmaro33fMTPrQdwiIiIi/VZPRoP+yXFc/x7ge7QdNfoV4Dl3/6aZfSXavtPM5gE3AfOBScDvzOw0d48RVk9YBqwAfgNcCTx1HPGIiIiI9Cs9GQ1aYma/iGrKDpjZ/5hZSVfnuPvLwMF2xdcC90bf3wtcl1T+kLs3uvt2YAuw1MwmAsPc/bVoBYX7ks4RERERGdB60gz6E+AJQq3XZOBXUVlPjXf3fQDR13FR+WRgd9JxZVHZ5Oj79uUiIiIiA15PkrWx7v4Td2+JXvcAY3sxllT90LyL8tQXMVtmZivNbGVFRUWvBSciIiKSDj1J1irN7FNmlh29PgVUHcd7HoiaNom+lkflZcCUpONKgL1ReUmK8pTcfbm7l7p76dixvZlLioiIiJx8PUnWbgNuBPZHr+ujsp56Argl+v4W4PGk8pvMLN/MZgCzgDeiptJaMzsnGgX6maRzRERERAa0nowG3QV8uCcXN7MHgUuAMWZWBnwN+CbwsJndDuwCboiuv9bMHgbWAS3AHdFIUIDPEUaWFhJGgWokqIiIiAwKFgZYduNAs1OAu4FzCH3GXgP+xt239V14J6a0tNRXrlyZ7jBEREREjsnMVrl7afvynjSDPgA8DEwkjAh9BHiwd8ITERERkVR6kqyZu/80aTToz+hiVKaIiIiInLierA36QrTiwEOEJO3jwJNmNgrA3dtPfisiIiIiJ6gnydrHo6+fbVd+GyF5O6VXIhIRERGR9/RkNOiMvgxERERERDrqydqgN5hZcfT9/2tmj5nZGX0XmoiIiIj0ZIDB37t7rZldAFxBWIT9P/smLBERERGBniVr8QlqrwZ+4O6PA3m9H5KIiIiIxPUkWdtjZv9FWHLqN2aW38PzRURERKSHepJs3Qj8FrjS3auBUcCX+iIoEREREQm6nay5ex1QDlwQFbUAm/siKBEREREJejIa9GvAncBdUVEu8LO+CEpEREREgp40g34E+DBwFMDd9wLFfRGUiIiIiAQ9Sdaa3N2J1gM1s6F9E5KIiIiIxHUrWTMzA34djQYdYWZ/BvwO+GFfBiciIiIy2HVruSl3dzO7jtBnrQaYDfyDuz/bh7GJiIiIDHo9Wcj9NaDa3TVdh4iIiMhJ0pNk7VLgs2a2k2iQAYC7L+z1qEREREQE6Fmy9sE+i0JEREREUup2subuO/syEBERERHpSGt7ioiIiGQwJWsiIiIiGUzJmoiIiEgGU7ImIiIiksF6MhpURBpqoOyP0NIA4xfAyGnpjkhERAY4JWsi3RVrgbd+GhI2gP2rYfHNMGJqeuMSEZEBTc2gIt11aEciUQNwDwmbiIhIH1KyJtJduYXdKxMREelFStZEumv4ZBg3N7FdMBwml6YvHhERGRTUZ02kJ+ZfB1OWQnM9jJgG2fovJCIifUt/aUR6atikdEcgIiKDiJI1kb5SsQn2vglZOTD13NCMKiIi0kNp67NmZn9jZmvNbI2ZPWhmBWY2ysyeNbPN0deRScffZWZbzGyjmV2RrrhFuqV6N6x9DA5uh8rN8M4D0Fib7qhERKQfSkuyZmaTgb8CSt19AZAN3AR8BXjO3WcBz0XbmNm8aP984Erg+2aWnY7YRbqlcmOY2iMu1gIHt6UvHhER6bfS2QyaAxSaWTMwBNgL3AVcEu2/F3gRuBO4FnjI3RuB7Wa2BVgKvHaSYx60li9fnu4Q+pWxTbuY2rChTdnG9caRnNfTFBEsW7Ysbe8tIiLHLy3JmrvvMbN/BXYB9cAz7v6MmY13933RMfvMbFx0ymRgRdIlyqKyDsxsGbAMYOpUzSzfWwb6H/rly5f37meMNcPqR8NEumYwcRFLZn+w964vIiKDRlqStagv2rXADKAaeMTMPtXVKSnKPEUZ7r4cWA5QWlqa8hiRPpedC4s/AUerwvQeBcPTHZGIiPRT6Rpg8D5gu7tXuHsz8BhwHnDAzCYCRF/Lo+PLgClJ55cQmk1FMtvQ0UrURETkhKQrWdsFnGNmQ8zMgMuB9cATwC3RMbcAj0ffPwHcZGb5ZjYDmAW8cZJjFhERETnp0tVn7XUzexR4E2gB3iI0XRYBD5vZ7YSE7obo+LVm9jCwLjr+DnePpSN2ERERkZMpbaNB3f1rwNfaFTcSatlSHf8N4Bt9HZeIiAxCFRuhfH3otjBlKeQNTXdEIu/RCgYiIjK4HVgH6x5PbB/cCqW3h5HcIhkgbSsYiIiIZIT9q9tuH6mA2v3piUUkBSVrIiIyuOUNabtt1rFMJI2UrImIyOA29by2fdSmLNWUO5JR1GdNREQGt6Gj4ZzPQfWukKQNHZPuiETaULImIiKSnQujZ6Y7CpGU1AwqIiIiksGUrImIiIhkMCVrIiIiIhlMyZqIiIhIBlOyJiIiIpLBlKzJwOMOB7fDwW3Q2pruaEREuqfxCDTXH/u46t1QuRliLX0fk2QETd0hA0usBd6+H2r2hu2icXDGpyEnL71xiYjEHSmHXSsg1gSTzoCR08PapJWbwLKgpBRmXpb63NWPhkQNwpxwZ34a8otPWuiSHqpZk4GlYkMiUYNwUzywJn3xiMjg1XQUYs3tyurgrZ/BgbUh6Vr9CGx+Bio2hlaB1hjseh0Ol3W8XrxGLa7hMOxZ1befQTKCatZkYGlp6F6ZiGSE5cuXpzuEXpflLZxS/w7DW6qIWTZ78mdRkTcVgFHNe5lR3/YBspVVZOFtynasracqr6RN2fCWck6te7tNWcXqA+wq2NT7H6IHli1bltb3HwyUrMnAMnY2bH8ZWhrDdnYujJub3phEpFMD8g/99pdhx2FgOqtWreIjC4rgnI+HZsvqXfDW/W2PHzsntArEZWWzZOkyKBzR9rhYM7yxHBpqwrZlwRmfhOFtkzoZeJSsSf9WvRsO74biiTBqRui7ceYtsPfN0KQw6QwoHJnuKEVkMDla0XbbHY5WhmRtxFSYcDrsXx32DZsIsz8Ylrraswqy82DauR0TNQgPn2d8OhzX0hCuo0RtUFCyJv3XnlWw6ZnE9vQLYMaFYVHmWe9PX1wiMriNmgkVSU2TOfltk6q518C080ILQPEEMAuDDI6Wh35u7h0u+Z6CYTDz0j4LXTKTkjXpv3ataLu9+/WQsJn1zftVboHydaH2bspSyBvaN+8jIv3bxEVhCo4Da6jJGQULbwwJW7IhoxLft8bCKPb66rBdvh5Ov0ELy8t7lKzJwOLeN8laxUZY81hiu2oLnPWnfZcYikj/ZRaaMqedy+a3nUuP1VRZvSuRqEG4jx1Yo2RN3qOpO6T/mnJOu+2zIauP/knve7ft9tFKqN3XN+8lIoNLqlr6XNXcS4Jq1qT/KlkCRWPDIIPiCV0/hdZXw8GtYbDByBk9rxHLG9J22wxyC8P3ra19lySKyMBXNC40ne57J2wXDIcpZ6U3JskoStakfxsxNby6cmgnvPswtEZLs0xcBHOu6t71K7eEWcWz80Kfk/iUIJOXhATwnZ9DQ3XoUDz3mkQCJyLSE3OuCisXNB2BEdMgKzvdEUkGUbImA9/u1xOJGsD+d8NAhIJhXZ+3713Y8GRie8RUmHpOGGBQOApe+15iHb+qLbDtJZh9Ze/HLyLp0VgL214MU3GMmhnuG32ZRBWNA8b13fWl31KyJgNfa7vFjt3BY8c+b/cKqN4ZRmoVjQ+dgOdcHeY/OlrZccHl2r0pLyMi/dSa/4GaqG9q7YFw3+hszc4TcaQ8PERm54e5IfOLev89pF9TRxsZ+CaXtu2jNmbWsSfKbWmE3W+EBK1mD+x7O0xCmR0tCF84suMN9VjNsSLSfzTWJhK1uOR1OXtL7QFYdS/s/iPs+AO8eV/H9URl0FOyJgPf2NPgjE+FJszZH4R513U4JK+1LjRjbv99WMqlcjMMGQsWNXl4K+QPg+a6UNOWlQ3zPxpmH8/JhwkLYPpFJ/dziUjfyR3SsQ9q4ajUx56I/e+2rf2v3gWbn4VmrWksCWoGlcFheEnny7I0HGbu0RWwM2rW3PsWnHJp6NNWUgoNh8OTbk0ZvPHDMMx+/kdgxBRYcutJ+wgichJlZcNpV8LGJ6GlKdSm90UTaLy2HsJ8jkfLw8Nh5abwkDl0TO+/p/Q7StZkcDhaBUcOhAQrv7jtvgNryfGkJ9umoxBrCsnd4TIYOjasXDD61MT+zc/AWbefvPhFpO/U7g8rosSaQp+xMbNC+bg5YUqghpqw4kBfTII96YywTmjt/pCoFYwI/WKb60NXjO6OXJcBTcmaDDzuoTYsvzg8HZetDM0KELYXfKztnGxZuR2vkZMHiz8Jh7aHGzgOJN2o6w/25ScQkZOlqS4s9dTSFLYPboNFn4CR08J2dm5Yb7ivFAyDpctg5ysQa4SCkbx3r2lRU6gEStZkYDlSHpaFqj8UmivnXAPbX0rsb43B9pfbJmsTFtCQlTTpbdFYGDsnTHQbP658XduFmUfP6tvPISInx8FtiUQNwsNexcZEsnYy5OTBKZeEWI6UhzIzmLS447GHdsCeVZCVAyVLQ79ZGfDSlqyZ2Qjgv4EFhGqL24CNwM+B6cAO4EZ3PxQdfxdwOxAD/srdf3vSg5bMEWsJ86fV7IFhk8LSU9k5oQat/lA4pukobPg1tLQbWdX+aTW3kHVDz+X8eReDZYXmzux2/zVmXw15xaHf2vApMEODCUQGhFTzLRYMP/lxmMHim2HTM7Dr1bDcVNXWthPk1u4PE3F7a9iu3Bxq5bJzw72r/WLxMmCks2btbuBpd7/ezPKAIcDfAc+5+zfN7CvAV4A7zWwecBMwH5gE/M7MTnPvzmRZMiBtfiaxNEvV1rCawNxroK6y7XFNR2HMbKjcmCibuLjD5dyyYfy8zt8vtwBO+8AJhy0iGWbE1LZLPQ0vSV2jVX8Idr0OzUdh/OlhlHlvqdoKNXuheBJU7wj91iB04cgpgBkXhu3yDdEUQrmAhRrBVfeEUeqWFQZE9cUgCEm7tCRrZjYMuAi4FcDdm4AmM7sWuCQ67F7gReBO4FrgIXdvBLab2RZgKfDaSQ1cMkf52nbb60OyNvrUtouuj5gK868NIzyPHICR02H8/JMaKs31cGBdeBoePy/1os0ikj5zroJp54ZR30UpVhCItcDbD4SBBhC6RJx+A4w5teOxlZvDgIG8Iph69rHfe/vLsOOV8H1jLTTWwLDJif3VO4ELQ/Polt+FBM6A8QtCt476Q2Hwg8dCMjnqlHCfkwElXTVrpwAVwE/MbBGwCvgCMN7d9wG4+z4zi/+vmQysSDq/LCqTwSp/GNQldfKPT1B76vvDgIHqnWHVgZmXhSaEktLeff/meqjdF96jq+SruQFW/iQMeADY9RqU3qYZykUyTVcTZR/elUjU4g6s6ZisVW6G1Y8mtqu2YN7FdKbuYcRnXG5hmLIjOVkrmhC+bno63HfqqqClPjx8Trsg9LFNdrRSydoAlK5kLQc4E/i8u79uZncTmjw7k2q8tKc80GwZsAxg6lTNKD9gnfo+WPuL8CScnRO2IXTU7evmyqqtsPax8LSdlQ1zPwTj5qY+tmJDIlGD0Cx7YG33nrhFIg888ABHjhxJdxiDVkHsCIuOvIbRSrPlA8b+vEr2vFLe5rgZ9e8wqvlAm7KiIaUsX74cgOzWJsY37yS/tZ5DOeOpzhnH4iMryU6aOijbm6kvX0OuN3I4eyw7Ng0j9sI2Ftc+x/imneS2tpDlBsTYt2kXrbaX+J9IN2PthgIas9/syx/HoFJUVMTNN9+c7jDSlqyVAWXu/nq0/SghWTtgZhOjWrWJQHnS8VOSzi8BUi7E6O7LgeUApaWlKRM6GQBGz4Rz/zI8XRaN6zjTeFfqq0NTQksDTFzY82Witj4fEjUIzRBbftd5sibSC44cOcKyZcvSHcbgUHcw/B+vqwr3mRmXwKanYO26sP5vXlYYYLTk1o5zNm5+NtSeNx0NzaBZOSxZ+meJqT9W/gRqk1ZBmHMuNJ0eVk+JO+0DMOnMsKpBdjStUNVWWLkTduyDnOHhIbFwJBMmLIRZH4C9b4bRodPOo3SMRqr3pniinW5pSdbcfb+Z7Taz2e6+EbgcWBe9bgG+GX19PDrlCeABM/s2YYDBLOCNjldOLz39Zr4sb2H+0VfIa20EwpPoxiFnQfYIli9fTm5rPSNaKmiyAg7njAmddttZVPsCOZ4YYepmvLk6N+Wx2d7M3KPryG8NqyM0ZeWzfmMxLVnv9NEnHJwy5elX+jn3sHj70WigUt3B8P3B7SFxGzYpzLs4cVHHRA1gyOjQX63paFiq7vTrE4nakYowmjPZgTVhBOiwyWGAwYipMDxqAk1O1N59OCzynlccJs4dOzcRT/EETdA9CKRzNOjngfujkaDbgD8hrFX6sJndDuwCbgBw97Vm9jAhmWsB7sjEkaB6+s1gsZYwN9Het6BiXJtOxKWTFsLsK8OizW//DGJRH7QxY8LNNllTHbzpYXTpkNEhQZuwgNK5H+r8vZtvD/O0ucO4uZybN6TzY+W4ZMrTr/RzDdWJRC2ucnOotYJQg59bGO4Dqex8NYw2b6wJy0jFkuZvyy0I94v4tBsQ1h+FMKdbZ/O67Y8GTGXnwrTzQ1/Z8fPDe+xbDRufCn1gS29X94oBLG3Jmru/DaTq9X15J8d/A/hGX8YkA9j6J8JElw2HQ6IVX04KIJ48lb2RaN6EcJM+UpHowFtfDW/eC43RclRHDsDCG8Mcb13JLYDJZ/b6RxKRXpZXHP6/xhdRbzoaatBaGhM1XWYdp/mp2Qvrfx0GAeQXh+mCcvJDQhWXXwxTzwkJHQ6trTBh4bFjyk0awGQWatNKSmHDb6BifRgF2lANb/00zA83bs6J/AQkQ3UxTEVkgGiuDyOsINzMhoyGI1FzRH5ReAKu3BwGK7SXXIG7963wRG0Wmi2KJ4ZX+wl0RaR/ys4Jq57kDQlTZVRtCnOYtTaH5Gvs7PCAltzP1R3WPRH6uA0dEx4ID24L+8a1mybolItDs2fc6ofD1B1dmbI0JHruYZqOguHhXtVwuO39qaURqrac2OeXjKW/MjLwZeWEVzwZGxfNdTbjotAh+PX/DAu25xWFJ+LCEeG4EVPDDbruYGIeo/ZaM641XkROxJhZMOov4bX/aDvnmrfCvGsTqwlAmJR212tQ9sfwEDh6FuQUhuTulIthSopmycrNgIXruIeatgmndz51SOEIOPvPYeWPwoS8DYdh24tt48BCojh0zIl/fslIStZk4MvODYnZ1ufDzTE7J0y3cXBr6OC7791wc4WQkJ35GRg1M6zBt+I/Q/mYWTD9Qtj7diLpGzI6TEAJULYKdv4hjOCaXBpu1CLSP2VlJ/qpxbmHV7I1/xPuEw01oS/Z2NnhIW/UjFC+/eUwAGDONYlEqqG643Ubarqe563hcHhozEuan3H8/HDN8nUwdFyocTuwNgximHFReMCUAUPJmmSuxtqwBEysCSYsSoyqOh5TlobVDY6Uw4gpoWatYmPoa9Ka1PzZeBSy8sJNsSJpiarKzeFGXHpbuCHm5Ien4eyccHPc/Ezi2J2vhhv02NnHH6+IpFfJWWFanrhJi9t2eag7GBIyCP3EqrbA0aqQKDUdherd4eFt6wthjeJRM2HiGeH+U7k5cZ384kT/2c60tnQsyxsKF385NH/ueiM8LB4pD6+avaE2Lks9nQYKJWuSmVoaYdW9IWED2PMmLPmTRMLW0hhGQVVuDk+Qp11x7BvekFFtnzYnLW67+kB2bni6zS3o+PQLYYDBhNMT6/TFHd7T8djDZSFZa6gJfdxSDfMXkcw15axwvzi0I/RNbT+XYnZe+L/tHkZ1TlgYauDnfwR+/+1wTPWuMBCpdl94ECzfANPPD/eQeNeLaee1bdKMtYSF3A/tDA990y+A4vEhyaveHY6xrMSgpZx8qClrG1vD4dAvd9ikPvnRyMmnZE0yU+XmRKIGoenxwGo45ZKwve2lsB4ohCfJtb+Ac/6iXT+OYyieAO//R3jm78NTcuFImHh6eKKG0C8k3ifNsmBMJws3p0oSiyeFmMo3hBv6hIUw+4Phe5HjoOlJTo6C2BEKW2s5kj2S5qyCqHQr8AfyY0eZ1riOobEaarJH0WK5jGkO87PHLJvNQ7I5+tpyZtZtZkRLBaObyxgSqyHPG6mLBjVVlLey+90K9ubPAmrg94+2ef8pDesZ17T7ve3DOY+yZcgSsryF0c1HyWtt4FDueOo2JWr9pjasY2xTImFrNWP1xiJasvL75GckJ5+SNclM2Xkdy7JyE98f3t12X+ORUPPV06bSiYvgU4+FiSyzskNtWE50g1v48bBun7eGofLF41Nfo3h8mKdtxyuhuaKkNPR9K98Q9ruH5tyxs8NEliLHQXM4ngS734AtzwF5kNUAC65u+3925Y+h9pTE9phZoWas/hCMnM7SeE19Q02o+d/6QqhBizUyIjsXsnKZNGUpi2ZeGs6r2Ru6UNRVhYfBWVfAG/8FjW0Xk7/swlvDUnqdaayFd38ephrKyoGZl3JWb6+HPEhlykOSkjXJTKNnhpm8402MBcNDYhU3vCTUqMXlDU2M4oQwT9LOV8Ixo2ZAydLO+29k58DkMzqWdzVRZXuTzgivuOTlY+LqDipZE8lUsRbY8fvEdmssDBCI/5+NNUNt23U/OVwWmhqTmxtjzYDDoo/D/OvCfGirHw7lo2dGNfiLwjxrax5LtCDsXxNGkhaMCA+fEPrr5g9LzPGWrL469I9trA1NtGf9aZjQN29oz5bfk35ByZpkpqxsWPypMGIz1hwGB+TkhSfH+kNhcsmmI1C5JdFnLbkJdN3jibmODu0Ic63NvPTkxT9mVhjSHx89lpWtRE0kk3lr20mxIfSNjcvODRNkH6lIlLXvE7bvXdjwK3DCw+aC62HBR2Deh8P9KPledrSqbVcPgOqdobvEuw+HFVcaDsPYObD9pUQXEAiJ3jsPhoQNwrXNQp9aGZCUrEnmysoKSQ+EZOv1/wo3w6FjoXA4LLoZFnys43nNDYlELa58/clN1oZNgvkfDfMvWVZYBkZD6UUyV05eqKE6sDZRNmlx22PmfjiM7Kw9EKboOO2KxL6affDCPyeWmqqvhqIJoca96QiMnB6+rv1F6Pw/fEpIAJMn447X0k07LySFYwpCs+bO18IcbvF1Q2v2JBK1uPINStYGMCVrkvlaGkOitvlZwEPTw6TFYah6qmQtOzc0AzTXJ8oKhp2saEO8m34bRoIVjghJYvGEk/f+InJ85lwdVic5ciAkV+2XlSoaF6bvce84WGjjbxLLS8WaoGozeAus/1V4YBs1IyRx8dq0io3hwdNjobVg1MxE7Vl9dVhdJa65PswTOeH0ML9afnFiJGrcybzHyUmnZE0yX+Wm0AGX6MbU2hz6oiUnY8mysmHW+0NfkdaWkLidklSr5h7mRIr3Z+vN4e0Vm2DFf4TRrPnF4Um9/lDPR6qKyMmXlQ1DRkJLfdtpfdpLNao7Fi1JFW86baiBspWJaXsO74b8dmt3NtfB+X8VmjWT+9SOnhmaQSH0XzuwJiR8h8vCwu6n3wgjZ4QWg5z8UGs/9RhrFEu/pmStl2XKyJGBZGTzPk6pX8/o5kPktYYFlmvLG1mzdxxVf1xOdmsTM+vfojhWzcGc8ZQVzKE5q4Ds1kIKvI66rHx83ZPvXW9KwwbGNe0CwA12FCxgf/ZkttblU9uSTXFOjJlDGsnL8pTxdMY8xsIjLzG+aQd5rY3APup37aU6Zzzr3mmiPltzrYlktB2vtF2r89T3hfnWumPMqaF5Mt5HNq8oMVAAQm1brKHtOfEa9/aDn0bPhDlXhfkl6ze0HaVeviE0t+YWhqRx4uKoz64mwB3IlKz1Mg2v7wOxZlh1T1gpoCbMacTZn2X2pMXhifTpO+HAvlCeXwWzR8CSz6S+VksjvHI3tI59r6i0aByP515Jc8XR98qmjB3KtYsn9yzOuoPwejVUDQ2TYEK4YU89myXnfr7rofdyQvSQJCes7hBsehpyCkItFsDuFaGGbfeKUCM/5WyYsCD1+TMuCV+rpoRloPKGwhs/DLVnEBoGZl0RWgbqDsKwiaEFoDMTF4XXxqfCMndx1TtDf7fcwtCsWr4GTr08rLwiA5aSNcl82blw5i1QsT4Mpx87B/KGhH0HtyXmM4PQH6Tsj3Dmp3s0Ae3Oqro22zsq6zo5Etj9R9j3dripz7gw9G2BMCS/cCSMmBaerBuqww157oeVqMkJKSoqUkLahyY0bmNS42YmNu2gFaMqdxIxy6MgVkPByw/TYnkczR5Oqz3FxiFLOZo9ovOLeStDW7eAO7PqsxnRUk9h7AhGKwcO/prq7HHsKpxLc1YTrHrkmLEVxmqZXfc22R4m6C6KVXEkqyFxf/NW3l2bS3P2kF74SUh7RUVFxz7oJFCyJv1DTl7bedbimmrDE2ZTUnNDvHkg5XXyYdKZIaGDcNzUcxi9I4+1ew5zuL6Zofk5LJw8PPX55evbrhe4+pHQHy1vaLjW6deHjsBF48IcbTMvV6ImJ+zmm29OdwgDV9NRePV74KVQPR6qdzBl6EjIK4ajWdAU/ZksHALj51M647ywBFQqjUfg7QegLlr5ZMKnefx3r3DtKY1QMJKS+OLwUxaE2rDuajgcBiTkDYX6w2EqD28N/XlbYywpcThlacfRqzJgKFmT/qv+UKjlaqwJzQr5w8LoyzM+2fV5p14easOOlodOusMmMqZiH3uqG2hojnGkMUb21E76f1RtbbsdawmjPuPrBg4dAwtvDE0mtftCR2UlayKZq6kuJD4Q1t/ML4a8QsiNJpctj6byqD8Y+p0NHdf5tcreiAZDRfavpjkrD4a0G6mZPKF3dxQMhylLE9v5Q0PzaG5hGL3a3BBGoI+aEY6VAUfJmvRfm6JlWiaXhr5sOXlw6d+F+Y+6YhY6A4859b2iPdUNLCoZTkurk5NlHKhpoLElRn5OuxGcQ8fSQfuyxlp4+8EQW1Rz12ZCSxHJHEVjQ014PIEqHBGWjytfH/rLDpscHrzMwlJy8bkfU2k/yS0QI6fjVELdXRmlMxMXwcHtbafu8NbwGZSsDUhK1qT/eq8T/9DEDbR44nFdqjAvm8P1Rm52aD7Ny8kiJyur43xKk8+EmrIwNUdWNky7INSmJdv1euLp2h12rQgLuWtSXJHMtPDjYRBBfXUYeTnhdBgyJjwEjjolJFenXNJ582fcuPlwYF1iO7+ImpwcOP1DoXtEQ02ohZ9y9onHPHJaSCjjsnNCYikDkpI16b9GTA39OOKGTUq9hl43nDdzNE+8vZeWVscMzjtlNNnbXwhD57NyYPqFULIkXH/Bx0LTSVZO6ibOxsNtt93DE7eSNZHMlF8UpulINmIKnHtHmNtsyOiu//+2xsJaxFVbwzxtuUPDQ9yUs/E1j4a1jM/sZIT68Zq4OCR/+1eHAVczLk4MvJIBR8ma9F/xpV6qd4YateSlX3po2uih3H7hDPZW1zOmKJ8RtVtg6+thZ6wZNj8TbrjF40NZVzfFsXPD5LhxBcPCuSLSv+QWdt3sGbf95VCDHlecH9b47K5DO8P5HoPJS0Lt3rGYwSkXh5cMeErWpP/KGwoLPtrz81pjsPNVOLQ99DebcRHkDWVIXg6njosmrt2zt+N5NXsSyVpXxs8L/UcOrA1P7FPP1eoFIv1JS2PowF+5KUzHM+sDXfczq9zcdrt2f6j16s4SUPXVYeH21mgR+epdcMan9IAnbShZk8Fn+0uhXxnA4T2hf9kZn2p7zPCSxPQeEJ5ih0/p/ntMWND55Jkiktm2/z7RH+xoZVh8/dy/DP3CUhkyqu0o0NwCyO1mk+TBrYlEDUK3icrN4R7UXB+SxqqtoVn1tCvD3I0y6Gh9CulfmutDorXtRThScXzXSG6iBKjeHeZaSjZuDpScFfqrVG0O/eGGjE7sP7gN3n0EVj8azheRgaOmrO12c32YuqMzp1waauAg9GM97crOE7v24uelKtv6QuiX29oSauvW/qLtCFAZNFSzJv1Hawze+ll40oUwx9qZn06sr9ddhSPCHG1xuYVhNYL2jhxINEUc3gM7Xg4jwmr3h0QtPjfTwe2w9E9T33RFpP8ZVgI1+xLbuYVQ2MUAg6Gj4ezPRvM9FvdsbsWRM8JktvveCYnYmFkwPqqVP9wuaWw4HF6FI7p/fRkQVLMm/cehHYlEDcLTZvKaed0187JEX5KG6vB142/aXrupLvQdSRZf1qpyUyJRi8fRfrJcEem/ZlwYptjIyg7Nj/M/cuyaMrOQtPV0EmyzMBjhnL+AxTeHRC2+nujwdlNxFAwLk3/LoKOaNek/slL8c+1uU0OyonFw9udgz6qwcHNzPexfExKucz4XlqTKyQ/9TpobEufFJ5tMNemkJqIUGThy8mH+dSf3PQ/tCA+N7iFJnHdtaF5troeqLVGftQ9ClupYBiP91qX/GDG17Yis3MIwzL2nmuuhtTk0cyYngM31YQg9hJvlrA8kksH8olAjB2Hiy9EzE+eNmwujE6shiIj0iDtseyHRH601BtteClMEnX49XPIVOOtPO9a0yaChmrVeVFRUxPLly9MdxsDmrQyPxcjxZqpzhhFb90i3TzVvZXL9Osa27AXLosVyyGttanPMug251GcnmhmyfQj5rXXUZ+Xiax5vc2x+rADMaNxcDq/88MQ+l5yQoqKidIcgktKI5gOw5n/CwvBTz05dC+8epgtJ1lLf8TgZtJSs9aKbb7453SEIhCVi9qwCorX8iidQ19TCH37/PMU7tmDZM5g+eihjCrNC37PKjezesYUp517Pkov+pvM50ZrqwkAENUOISHeUr2dm/TtQEf2pPbgNli7reA/JygpLXCX3wZ2w8KSFKZlPyZoMLHUH4a37E/MWVayHs/6MFTsbOVK1j2KgOeZsqzzKiCnDyWk5CiNnUFVWxxRvhV2vdVz/r7E2DJk/vCdMxDv7qjaLwIuIpHRgbdvt+kNhcu0RKeZsnPUBGDoOaveGOR0nLur8uq2xMA9kzR4YPjV0B9FD5ICm364MLBUb2k4wGWuByk1U1jZRXZC4QcZanYb6OsgugJZGRrYcgL1vhskw29v2YkjUIMzHtuFX4boiIl3JL267bRYe+FLJyg7rD8/9UJjKw6zz6276bTQH2ybY8jvY+lyvhSyZKa3Jmpllm9lbZvbraHuUmT1rZpujryOTjr3LzLaY2UYzO/5FIGVgS3UjzBvKtNFDOFxYwrZRF1GXO5qWoRMoLP1keBqt2EBua2NIxKq2dpyy40h52+3mBmis6bvPICJpFWt1yg7VUdPQfGIXmnI2jVmFie2Ss7peEL473OHAmrZl+1ef2DUl46W7GfQLwHog3qP7K8Bz7v5NM/tKtH2nmc0DbgLmA5OA35nZae4eS0fQkqEaj0D+8LDaQE20tufIaTB2DqVjs2iOOZvLT+fwtDO5YNYYsosLoGId7H0rHFswIow4Pbg9fI0bNaNtwlY4ou0EuLGW8FTc1ZOwiPQLh4428T9vllHb0IIZnDdzDEtnHGeCVTiCtUPP57zFHwy1bCeaqEG4z+QOCd0z4jqrrZMBI23JmpmVAFcD3wC+GBVfC1wSfX8v8CJwZ1T+kLs3AtvNbAuwFHjtJIYsmaxsVWgO8NZEv7KisSFxA7KBC2aN4YJZY9qeV1IKlZvZf8CYNOH0UDZ0bNtjpl8U+ohUbg5LTp16OS2tzoot+4ite5KJTTuYMn4MhXM/AOPn9/1nFZE+8/r2KmobQjcHd3htaxXzJw1jaH4nfy5bY50PSgLcsrpeBP54nHo5rP9V9N45iWmFZMBKZ83avwNfBpIb9ce7+z4Ad99nZuOi8snAiqTjyqKyDsxsGbAMYOrUqakOkYGmpRG2PZ9YVaDpaFjPc1IXHXTjRs2AaecQe+stsCyYuDDMm5YsOwdmvT+8Iq9uqmD/6peYcngjVUBD034W2pMwcrqeckX6sXiiFtfqTl1TrGOydrQK1j8Rlp8rngBzPxxWMDgZxs0NgxCOHAjvrXvOgJeWPmtmdg1Q7u6runtKirKUq9m6+3J3L3X30rFjx6Y6RAaa5rqOHf570qds5mW8U3QpnP+FsOxLN5ozt1cepagpsTzV0aYYjU1NHfu3iUi/MmdC2+WcxhTlMaYoxRJSG58MiRqErxufPAnRJckvCpNzK1EbFNJVs3Y+8GEzuwooAIaZ2c+AA2Y2MapVmwjE//KVAcljnUuAvSc1YslchSPb9lMDGDcv9bGH98DRitAskdTvrNVywvJS3TRqaB41+RMZWR9WPMjNNnLy8qF44nF9BJHBKhMnEj/SmEtlcw4FWa3kFDTxw9Ud6wbOrH0W80S525u8ubKhw3GQmZ+xNy1btizdIQx4aUnW3P0u4C4AM7sE+Ft3/5SZ/QtwC/DN6Gt8yvgngAfM7NuEAQazgDdOctiSyU6/Hna+BnVVYQ60SWd2PGb7y7DjlfB9VjYs+FjbZaN64KJZY3ni6JnsjdUxsWErU6dMIPv0K3uU8IlIP/5D/3ZxWM8zbuR0Shd/Im3hyMCW7tGg7X0TeNjMbgd2ATcAuPtaM3sYWAe0AHdoJKi0kTcUZr2v8/0tTbDr9cR2awx2/OG4k7XhQ3L59HmncLh+CkPzssnJ7qJHwdGqsMZfbmHnx4hI/zLnqjDf2eEyGF4Cp2lGKek7aU/W3P1FwqhP3L0KuLyT475BGDkq0nMeC69krSc4hxIwvDC3851NR+Hdh0N/lqxsmHFxWBtQRPq/guGw8MZ0RyGDRNqTNZET0lgbRnF2p5PtiGltmy1SNZXGla0MS08BTDkbpizteWw7X0t0QG6NhZUQxs2FgmFdniYiIpJMyZr0T62tYdh8+fowenPi4tAMkWok585XQ5NnrDmanmMRjJ3deRNo9W7Y/Gxie8tzUDS+7VxJB9aFPnCxxpD0zbiw43XqD7Xd9lZoqFayJiIiPaK1QaV/Kl8XEjUIM1fufQsObut4XN3BkFS1xkKiBmEm8a76qh3e3XVZ3cGQKNYfgqa6kAgeWNfxnDGz2m7nF0HxpK4/l4iISDuqWZP+qa4qRdnBjklY3cGQzB3r3GTDUiRUyVNyHC7reM3qXTC+3XQhkxaHJLF8bUgQp18YJtgVERHpAf3lkP5p9KmhT1k8acrKTl1b5g61eyE7P1qXzzrWeLU3cjqccjHsWgF46LOWfO1UydywTuZXK1kSXiIiIsdJyZr0T8Mnw7zroOyPIVGbcnbHRZL3rIJNz0Becaj5ysqBhTd0b/3OaeeFl3vHfnBDx8BpH4Dtvw/94CYthgkLe+uTiYiItKFkTfqvcXPCqzO7/xi+5heHBC0rJwxE6InOlp6avCQMLHCHLHX9FBGRvqNkTbqlPy6XMv/IqxS01r233WrZvL3hh7ilTq7642fsiX47U7yIyCCnZE26pV/+od93DmxIWlx5+vmcNeOi9MUjIiJyHJSsycA1cSEMHRv6qxWPDwMHRERE+hklazKwDZvY+UhNERGRfkA9o0VEREQymJI1ERERkQymZE1EREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSDmbunO4Y+Y2YVwM50xyH9whigMt1BiMiAo3uL9MQ0dx/bvnBAJ2si3WVmK929NN1xiMjAonuL9AY1g4qIiIhkMCVrIiIiIhlMyZpIsDzdAYjIgKR7i5ww9VkTERERyWCqWRMRERHJYErWRERETpCZvZruGGTgUjOoiIiISAZTzZoMGmb2GTN718zeMbOfmtk0M3suKnvOzKZGx91jZt8xs1fNbJuZXZ/u2EUks5nZkejrJWb2opk9amYbzOx+M7No31nRfeUdM3vDzIrTG7X0FznpDkDkZDCz+cBXgfPdvdLMRgH3Ave5+71mdhvwHeC66JSJwAXAHOAJ4NGTH7WI9FNnAPOBvcArwPlm9gbwc+Dj7v5HMxsG1KcxRulHVLMmg8VlwKPuXgng7geBc4EHov0/JSRncb9091Z3XweMP6mRikh/94a7l7l7K/A2MB2YDexz9z8CuHuNu7ekL0TpT5SsyWBhwLE6aCbvb2x3rohIdyXfP2KEVqzu3INEUlKyJoPFc8CNZjYaIGoGfRW4Kdr/SeAPaYpNRAa+DcAkMzsLwMyKzUxdkaRb9A9FBgV3X2tm3wBeMrMY8BbwV8CPzexLQAXwJ+mMUUQGLndvMrOPA981s0JCf7X3AUfSG5n0B5q6Q0RERCSDqRlUREREJIMpWRMRERHJYErWRERERDKYkjURERGRDKZkTURERCSDKVkTEemmaN3Y66Pv/9vM5kXf/127415NR3wiMjBp6g4RkW4ys3uAX7v7o+3Kj7h7UXqiEpGBTjVrIjJgmdlnzOxdM3vHzH5qZtPM7Lmo7Dkzmxodd4+ZfcfMXjWzbUm1Z2Zm3zOzdWb2JDAu6dovmlmpmX0TKDSzt83s/mjfkaTz/8XM1pjZ6mhSVMzskuj8R81sg5ndb2Za1kxEUtIKBiIyIJnZfOCrwPnuXhktMXYvcJ+732tmtwHfAa6LTpkIXADMAZ4AHgU+QliA+3RgPLAO+HHy+7j7V8zsL919cYowPgosBhYBY4A/mtnL0b4zgPnAXuAV4Hy05JmIpKCaNREZqC4DHnX3SgB3PwicCzwQ7f8pITmL+6W7t7r7OkJiBnAR8KC7x9x9L/B8D2O4IOn8A8BLwFnRvjfcvczdW4G3gek9vLaIDBJK1kRkoDLgWJ1yk/c3tjs31THHE0Nnkt8vhlo6RKQTStZEZKB6DrjRzEYDRM2grwI3Rfs/ybGbHV8GbjKzbDObCFzayXHNZpbbyfkfj84fS6ipe6OHn0NEBjk9yYnIgOTua83sG8BLZhYD3gL+CvixmX0JqAD+5BiX+QWhOXU1sInQjJnKcuBdM3vT3T/Z7vxzgXcINXRfdvf9ZjbneD+XiAw+mrpDREREJIOpGVREREQkgylZExEREclgStZEREREMpiSNREREZEMpmRNREREJIMpWRMRERHJYErWRERERDKYkjURERGRDPb/AxDiT16Y8pcYAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# plot accuracy as bar chart by condition and plot rt as a scatter plot by condition\n",
+ "\n",
+ "# accuracy\n",
+ "plt.figure()\n",
+ "sns.barplot(x='condition', y='correct', data=test)\n",
+ "plt.title('Accuracy by Condition')\n",
+ "plt.show()\n",
+ "\n",
+ "# rt\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.boxplot(x='condition', y='response_time', data=test, showfliers=False, color='white')\n",
+ "sns.stripplot(x='condition', y='response_time', data=test, alpha=0.5, jitter=True, hue='correct')\n",
+ "plt.title('Response time by condition', fontsize=15, pad=20, color=\"black\")\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "tensorflow",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/code/NFqC.py b/code/NFqC.py
new file mode 100644
index 0000000..7d2629b
--- /dev/null
+++ b/code/NFqC.py
@@ -0,0 +1,98 @@
+# run Quality Check against new sub data
+
+import os
+import sys
+import pandas as pd
+
+def parse_cmd_args():
+ import argparse
+ parser = argparse.ArgumentParser(description='QC for ATS')
+ parser.add_argument('-s', type=str, help='Path to submission')
+ parser.add_argument('-o', type=str, help='Path to output for QC plots and Logs')
+ parser.add_argument('-sub', type=str, help='Subject ID')
+
+ return parser.parse_args()
+
+def df(submission):
+ submission = pd.read_csv(submission)
+ return submission
+
+def qc(submission):
+ # convert submission to DataFrame
+ submission = df(submission)
+ # check if submission is a DataFrame
+ if not isinstance(submission, pd.DataFrame):
+ raise ValueError('Submission is not a DataFrame. Could not run QC')
+ # check if submission is empty
+ if submission.empty:
+ raise ValueError('Submission is empty')
+ # check if submission has correct number of rows (within 5% of expected = 145)
+ if len(submission) < 137 or len(submission) > 153:
+ raise ValueError('Submission has incorrect number of rows')
+
+def plots(submission, output, sub):
+ import pandas as pd
+ import numpy as np
+ import matplotlib.pyplot as plt
+ import seaborn as sns
+ import os
+
+ #load csv
+ df = pd.read_csv(submission)
+
+ #drop practice data
+ test = df[df['block'] == 'test']
+ #group by condition (inc, con)
+ # plot accuracy as bar chart by condition and plot rt as a scatter plot by condition
+
+ # accuracy
+ plt.figure()
+ sns.barplot(x='condition', y='correct', data=test)
+ plt.title('Accuracy by Condition')
+ plt.savefig(os.path.join(output, f'{sub}_NF_acc.png'))
+ plt.close()
+
+ # rt
+ plt.figure(figsize=(10, 6))
+ sns.boxplot(x='condition', y='response_time', data=test, showfliers=False, color='white')
+ sns.stripplot(x='condition', y='response_time', data=test, alpha=0.5, jitter=True, hue='correct')
+ plt.title('Response time by condition', fontsize=15, pad=20, color="black")
+
+ plt.savefig(os.path.join(output, f'{sub}_NF_rt.png'))
+ plt.close()
+
+
+
+
+
+def main():
+
+ #parse command line arguments
+ args = parse_cmd_args()
+ submission = args.s
+ output = args.o
+ sub = args.sub
+
+ # check if submission is a csv
+ if not submission.endswith('.csv'):
+ raise ValueError('Submission is not a csv')
+ # check if submission exists
+ if not os.path.exists(submission):
+ raise ValueError('Submission does not exist')
+ # run QC
+ qc(submission)
+
+ print(f'QC passed for {submission}, generating plots...')
+ # generate plots
+ plots(submission, output, sub)
+ return submission
+
+
+if __name__ == '__main__':
+ main()
+
+
+
+
+
+
diff --git a/data/placeholder.txt b/data/placeholder.txt
new file mode 100644
index 0000000..e69de29