-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_denoising_network.py
144 lines (119 loc) · 4.01 KB
/
train_denoising_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
from network import *
import argparse
import os
import nibabel as nib
# from visdom import Visdom
# viz = Visdom(port=8850)
import sys
from sets import *
from tqdm import tqdm
from torch.utils.data import DataLoader
import random
sys.path.append(".")
import numpy as np
import numpy
import time
import torch as th
import torch.distributed as dist
from diffusion import dist_util, logger
from diffusion.bratsloader import BRATSDataset
from diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
import cv2
import nibabel as nib
############################################################################
def val(model,dataloader):
'''
计算模型在验证集上的准确率等信息
'''
model.eval()
val_losses, dcs = [], []
for ii, data in enumerate(dataloader):
input, label = data
val_input = Variable(input.cuda())
val_label = Variable(label.cuda())
if opt.use_gpu:
val_input = val_input.cuda()
val_label = val_label.cuda()
model = model.cuda()
outputs=model(val_input)
pred = outputs.data.max(1)[1].cpu().numpy().squeeze()
gt = val_label.data.cpu().numpy().squeeze()
for i in range(gt.shape[0]):
#print(i)
dc,val_loss=calc_dice(gt[i,:,:,:],pred[i,:,:,:])
dcs.append(dc)
val_losses.append(val_loss)
model.train()
return np.mean(dcs),np.mean(val_losses)
############################################################################
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
############################################################################
print('train:')
lr = args.lr
batch_size = args.batch_size
model = U_Net()
#if opt.use_gpu:
model.cuda()
train_data=BRATSDataset('userhome/.../training/',False)
criterion = th.nn.CrossEntropyLoss()#weight=weight
criterion = criterion.cuda()
loss_meter=AverageMeter()
previous_loss = 1e+20
train_dataloader = DataLoader(train_data,batch_size = batch_size,shuffle=True,num_workers=opt.num_workers)
optimizer = th.optim.Adam(model.parameters(),lr = lr,weight_decay = opt.weight_decay)
# train
for epoch in range(args.max_epoch):
loss_meter.reset()
for ii,(data,label) in tqdm(enumerate(train_dataloader),total=len(train_data)):
###
noise = th.randn_like(data[:,0:1,:,:])
noise_seg = diffusion.q_sample(label, th.tensor([args.T]* data.shape[0]), noise=noise) #add noise to the segmentation channel
# train model
input = Variable(noise_seg.float())
labell = label.long()
target = Variable(labell.long())
#if opt.use_gpu:
input = input.cuda()
target = target.cuda()
optimizer.zero_grad()
score = model(input)
loss = criterion(score,target[:,0,:,:])
loss.backward()
optimizer.step()
# meters update and visualize
loss_meter.update(loss.item())
def create_argparser():
defaults = dict(
data_dir="./data/testing",
clip_denoised=True,
num_samples=1,
batch_size=1,
max_epoch=1000,
use_ddim=False,
T=250,
model_path="",
num_ensemble=5 #number of samples in the ensemble
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()