-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathold_cmd.py
412 lines (329 loc) · 16.7 KB
/
old_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import robin_stocks.robinhood as r
login = r.login('username/email','password')
import pandas as pd
import datetime as dt
import matplotlib.pyplot as plt
def graph_historical_portfolio(show_transfers=False):
bank_transfers = r.get_bank_transfers() # info=amount
historical_transfers = []
for transfer in bank_transfers:
state = transfer['state']
if state != "completed":
continue
amount = float(transfer['amount'])
direction = transfer['direction']
# print(amount, state, direction)
if direction != 'deposit':
amount = -amount
historical_transfers.append(amount)
transfer_datetimes_list = []
for transfer in bank_transfers:
state = transfer['state']
if state != "completed":
continue
transfer_datetime = transfer['updated_at']
transfer_datetimes_list.append(transfer_datetime)
# change the dates into a format that matplotlib can recognize.
# historical_transfer_dates = [dt.datetime.strptime(datetime,'%Y-%m-%dT%H:%M:%S.%f%z') for datetime in transfer_datetimes_list]
# print(transfer_datetimes_list)
# '2021-02-17T14:59:49.452230Z'
transfer_datetimes_list_cleaned = []
for datetime in transfer_datetimes_list:
datetime = datetime.split('T')[0]
transfer_datetimes_list_cleaned.append(datetime)
# print(transfer_datetimes_list_cleaned)
historical_transfer_dates = [dt.datetime.strptime(datetime,'%Y-%m-%d') for datetime in transfer_datetimes_list_cleaned]
import numpy as np
historical_transfers_df = pd.DataFrame(np.array(historical_transfers), columns = list(['historical transfers']), index=historical_transfer_dates)
print()
display(historical_transfers_df)
# input()
plt.plot(historical_transfer_dates, historical_transfers)
# plt.plot(x, openPrices)
plt.ylabel('Transfers')
plt.xlabel('Date')
plt.show()
# input(historical_transfers)
def graph_balance(interval='5minute', span='all', bounds='regular', info=None, historical_transfers_df=historical_transfers_df):
"""
interval_check = ['5minute', '10minute', 'hour', 'day', 'week']
span_check = ['day', 'week', 'month', '3month', 'year', '5year', 'all']
bounds_check = ['extended', 'regular', 'trading']
"""
historical_portfolio = r.get_historical_portfolio(interval=interval, span=span, bounds=bounds, info=info) ###### could change info to close_equity
# display(historical_portfolio)
# input()
historicalData = historical_portfolio['equity_historicals']
dates = []
closingPrices = []
openPrices = []
for data_point in historicalData:
# print(data_point)
dates.append(data_point['begins_at'])
closingPrices.append(float(data_point['close_equity'])) # close_price
openPrices.append(float(data_point['open_equity'])) # open_price
balance_datetimes_list_cleaned = []
for datetime in dates:
datetime = datetime.split('T')[0]
balance_datetimes_list_cleaned.append(datetime)
# print(balance_datetimes_list_cleaned)
portfolio_balance_dates = [dt.datetime.strptime(datetime,'%Y-%m-%d') for datetime in balance_datetimes_list_cleaned]
import numpy as np
# a1, a2 = df1.align(df2, join='outer', axis=1)
# print(portfolio_balance_dates, closingPrices)
# input()
portfolio_balance_dates_df = pd.DataFrame(np.array(closingPrices), columns = list(['portfolio balance']), index=portfolio_balance_dates)
display(portfolio_balance_dates_df.tail(n=60))
display(historical_transfers_df.tail(n=60))
print(len(portfolio_balance_dates_df))
print(len(historical_transfers_df))
# test = portfolio_balance_dates_df.merge(historical_transfers_df, left_index=True, right_index=True)
# test = np.where(portfolio_balance_dates_df.index == historical_transfers_df.index, print('shit'), print('fart'))
# display(test)
# test = test['portfolio balance'] - test['historical transfers']
# plt.plot(test)
# # plt.plot(x, openPrices)
# plt.ylabel('Price')
# plt.xlabel('Date')
# plt.show()
# input(dates)
# change the dates into a format that matplotlib can recognize.
portfolio_balance_dates = [dt.datetime.strptime(d,'%Y-%m-%dT%H:%M:%SZ') for d in dates]
# plot the data.
# plt.plot(x, closingPrices, 'ro')
# plt.plot(x, openPrices, 'bo')
# plt.title("Option price for {} over time".format(symbol_name))
# plt.xlabel("Dates")
# plt.ylabel("Price")
# plt.show()
portfolio_balances_df = pd.DataFrame(np.array(closingPrices), columns = list(['portfolio balances']))
portfolio_balance_dates_df = portfolio_balance_dates_df.merge(historical_transfers_df,
how='outer',
left_index=True,
right_index=True,
).fillna(0)
# for row in portfolio_balance_dates_df[::-1].iterrows():
# row['running balance'] = row['portfolio balance'] - row['historical transfers']
# for i in range(portfolio_balance_dates_df):
# for row in portfolio_balance_dates_df:
# row['running transfers'] = row['historical transfers'] + row['historical transfers'][:-1]
i = len(portfolio_balance_dates_df)-1
portfolio_balance_dates_df['running transfers'] = 0.00
# while i >= 0:
# portfolio_balance_dates_df['running transfers'][i] = portfolio_balance_dates_df['running transfers'][i-1] + portfolio_balance_dates_df['historical transfers'][i]
# i = i - 1
for i in range(len(portfolio_balance_dates_df)):
portfolio_balance_dates_df['running transfers'][i] = portfolio_balance_dates_df['running transfers'][i-1] + portfolio_balance_dates_df['historical transfers'][i]
i = len(portfolio_balance_dates_df)
while i >= 0:
portfolio_balance_dates_df['running balance'] = portfolio_balance_dates_df['portfolio balance'] - portfolio_balance_dates_df['running transfers']
i = i - 1
# portfolio_balance_dates_df['running balance'] = portfolio_balance_dates_df['portfolio balance'][-1] - portfolio_balance_dates_df['historical transfers']
# portfolio_balance_dates_df.loc[portfolio_balance_dates_df['portfolio balance'] > 0, 'running balance'] = portfolio_balance_dates_df['portfolio balance'] - portfolio_balance_dates_df['historical transfers']
#portfolio_balance_dates_df = portfolio_balance_dates_df['portfolio balance'] - portfolio_balance_dates_df['historical transfers']
print('portfolio_balance_dates_df')
display(portfolio_balance_dates_df.tail(n=60))
portfolio_balance_dates_df.loc[portfolio_balance_dates_df['running balance'] < 0, 'running balance'] = 0
plt.plot(portfolio_balance_dates_df['running balance'])
# plt.plot(x, openPrices)
plt.ylabel('Price')
plt.xlabel('Date')
plt.show()
# plt.plot(portfolio_balance_dates, closingPrices)
plt.plot(portfolio_balance_dates_df)
# plt.plot(x, openPrices)
plt.ylabel('Price')
plt.xlabel('Date')
plt.show()
#input()
# for price in closingPrices:
# print(portfolio_balance_dates)
# print(historical_transfer_dates)
# input
# if portfolio_balance_dates == historical_transfer_dates:
# price = closingPrices - historical_transfers
# import numpy as np
# plt.plot(portfolio_balance_dates, closingPrices)
# # plt.plot(x, openPrices)
# plt.ylabel('Price')
# plt.xlabel('Date')
# plt.show()
total_equity = float(r.account.load_phoenix_account()['total_equity']['amount'])
print(f'Portfolio balance: ${total_equity:.2f}')
previous_close = float(r.account.load_phoenix_account()['portfolio_previous_close']['amount'])
print(f"Today's profit: ${total_equity - previous_close:.2f}")
graph_balance(historical_transfers_df=historical_transfers_df)
graph_balance(span='day')
def positions_df():
beta_reference = 'SPY'
positions_data = r.get_open_stock_positions()
# option_positions_data = r.get_all_option_positions()
option_positions_data = r.get_open_option_positions()
# print(option_positions_data)
## Note: This for loop adds the stock ticker to every order, since Robinhood
## does not provide that information in the stock orders.
## This process is very slow since it is making a GET request for each order.
positions_symbol_list = []
positions_qty_list = []
positions_average_price = []
positions_current_price = []
for position in positions_data:
"""
Maybe use r.build_holdings() instead?
"""
# print(position)
symbol = r.get_symbol_by_url(position['instrument'])
position['symbol'] = symbol
positions_symbol_list.append(symbol)
positions_qty_list.append(float(position['quantity']))
positions_average_price.append(float(position['average_buy_price']))
positions_current_price.append(float(r.get_stock_quote_by_symbol(symbol)['last_trade_price']))
# print(position_symbol_list, position_qty_list)
# input()
# df.set_index('position',inplace=False)
# item['symbol']
# display(position)
# input()
# symbol = positions_data['chain_symbol']
# print(symbol)
option_positions_symbol_list = []
option_positions_qty_list = []
fill_prices_list = []
option_positions_option_id_list = []
option_positions_delta_list = []
option_positions_beta_weighted_delta_list = []
option_prices_list = []
strike_prices_list = []
expirations_list = []
open_order_list = []
for option_position in option_positions_data:
# print(option_position)
# print(option_position['chain_symbol'])
# option_position['symbol'] = r.get_symbol_by_url(option_position['instrument'])
symbol = option_position['chain_symbol']
option_positions_symbol_list.append(symbol)
qty = int(float(option_position['quantity']))
option_positions_qty_list.append(qty)
fill_price = float(option_position['average_price'])/100
fill_prices_list.append(fill_price)
option_id = option_position['option_id']
option_positions_option_id_list.append(option_id)
delta = float(r.get_option_market_data_by_id(option_id)[0]['delta'])
option_positions_delta_list.append(delta)
option_price = float(r.get_option_market_data_by_id(option_id)[0]['last_trade_price'])
option_prices_list.append(option_price)
strike_price = float(r.get_option_instrument_data_by_id(option_id)['strike_price'])
strike_prices_list.append(strike_price)
expiration = r.get_option_instrument_data_by_id(option_id)['expiration_date']
expirations_list.append(expiration)
# Getting open positions
open_option_orders = r.get_all_open_option_orders(info=None)
open_order_option_id_list = []
open_order = ''
for open_option_order in open_option_orders:
if symbol in open_option_order['chain_symbol']:
# print(int(float(open_option_order['quantity'])))
# print(open_option_order['legs'])
for leg in open_option_order['legs']:
open_order_option_id = leg['option']
open_order_option_id = open_order_option_id.split('/')
open_order_option_id = open_order_option_id[5]
open_order_option_id_list.append(open_order_option_id)
if open_order_option_id == option_id:
open_order = str(int(float(open_option_order['quantity']))) + ' ' + leg['position_effect'] + ' ' + str(round(float(open_option_order['price']), 2))
open_order_list.append(open_order)
# /end Getting open positions
reference_price = float(r.get_stock_quote_by_symbol(beta_reference)['last_trade_price'])
underlying_price = float(r.get_stock_quote_by_symbol(symbol)['last_trade_price'])
beta = 2.04 ################################################################################## find a way to dynamically get beta of SPY
delta = delta * qty
beta_weighted_delta = (beta * underlying_price * delta) / reference_price
option_positions_beta_weighted_delta_list.append(beta_weighted_delta)
# Create the pandas DataFrame
# df = pd.DataFrame({
# 'symbol': position['symbol'],
# 'quantity': position['quantity']
# }, index=[0])
stocks_df = pd.DataFrame({
'symbol': positions_symbol_list,
'price': positions_current_price,
'average filled price': positions_average_price,
'quantity': positions_qty_list
}, index=[0])
stocks_df['profit'] = (stocks_df['price'] - abs(stocks_df['average filled price'])) * stocks_df['quantity']
print('\t Stocks')
display(stocks_df)
print(f'Total stocks profit: ${stocks_df.profit.sum():.2f}')
print()
options_df = pd.DataFrame({
'symbol': option_positions_symbol_list,
'strike': strike_prices_list,
'quantity': option_positions_qty_list,
'average filled price': fill_prices_list,
'price': option_prices_list,
'expiration': expirations_list,
'beta weighted delta': option_positions_beta_weighted_delta_list,
'open orders': open_order_list
# 'delta': option_positions_delta_list
})
options_df['profit'] = ((abs(options_df['average filled price']) - options_df['price']) * options_df['quantity']) * 100
# portfolio_balance_dates_df.loc[portfolio_balance_dates_df['running balance'] < 0, 'running balance'] = 0
options_df['collateral'] = (options_df['strike'] * 100) * abs(options_df['quantity'])
# Convert 'collateral' column from float to integer
options_df['collateral'] = pd.to_numeric(options_df['collateral'], downcast='integer')
options_df = options_df.sort_values(by='expiration')
# Adjusting collateral for credit spreads
for i in range(len(options_df)):
if (options_df['average filled price'][i] < 0) and (options_df['expiration'][i] == options_df['expiration'][i+1]):
options_df['collateral'][i] = (abs(options_df['strike'][i] - options_df['strike'][i+1]) * 100) * options_df['quantity'][i]
options_df['collateral'][i+1] = 0
options_df['total credit'] = (abs(options_df['average filled price']) * abs(options_df['quantity'])) * 100
options_df['% return left'] = (((options_df['collateral'] + (options_df['total credit'] - options_df['profit'])) - options_df['collateral']) / (options_df['collateral'] + (options_df['total credit'] - options_df['profit']))) * 100
# if options_df['% return left'].item < 25 and (options_df['profit'] == (options_df['total credit'] / 2)):
# options_df['test'] = 'Closing this position for profit is recommended'
# max_shares = stock['balance'].div(stock['close'].values,axis=0)
# import numpy as np
# test = np.where(options_df['% return left'] < 25, 'Closing this position for profit is recommended', '')
# df['Result'] = np.where((df.S == 1) & (df.A == 1), 1, #when... then
# np.where((df.S == 1) & (df.A == 0), 0, #when... then
# np.where((df.S == 2) & (df.A == 1), 0, #when... then
# 1))) #else
# options_df['test'] = test
from datetime import datetime
from datetime import date
# Returns the current local date
today = date.today()
#print("Today date is: ", today)
def days_between(d1, d2):
d1 = datetime.strptime(d1, "%Y-%m-%d")
d2 = datetime.strptime(d2, "%Y-%m-%d")
return abs((d2 - d1).days)
# days_to_expiration = days_between(options_df['expiration'], str(today))
# options_df['DTE'] = days_between(options_df['expiration'], str(today))
DTE_list = []
for expiration in options_df['expiration']:
DTE_list.append(days_between(expiration, str(today)))
options_df['DTE'] = DTE_list
options_df['annual % return left'] = (options_df['% return left'] / options_df['DTE']) * 365
print('\t Options')
display(options_df)
total_beta_weighted_delta = sum(option_positions_beta_weighted_delta_list)
print()
print(f'Total options profit: ${options_df.profit.sum():.2f}')
print(f'Option portfolio beta weighted delta: {total_beta_weighted_delta:.3f}')
print()
cash_balances = r.account.load_phoenix_account()
total_crypto_equity = float(cash_balances['crypto']['equity']['amount'])
total_options_collat = float(cash_balances['cash_held_for_options_collateral']['amount'])
buying_power = cash_balances['account_buying_power']['amount']
cash_in_orders = cash_balances['cash_held_for_equity_orders']['amount']
total_equity = float(cash_balances['total_equity']['amount'])
print(f'Portfolio balance: ${total_equity:.2f}')
print(f'Total crypto equity: ${total_crypto_equity}')
print(f'Total options collateral: ${total_options_collat}')
print(f'Buying power: ${buying_power}')
print(f'Total cash in open orders: ${cash_in_orders}')
print(f'% of portfolio in crypto: {(total_crypto_equity/total_equity)*100:.2f}%')
print(f'% of portfolio in options collateral: {(total_options_collat/total_equity)*100:.2f}%')
graph_historical_portfolio()
positions_df()