-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathkafka_to_bq.py
130 lines (107 loc) · 4.49 KB
/
kafka_to_bq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import os
from pyspark.sql import SparkSession, DataFrame
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
__all__ = ['KafkaToBigQueryTemplate']
class KafkaToBigQueryTemplate(BaseTemplate):
"""
Dataproc template implementing loads from Kafka into Bigquery
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.KAFKA_BQ_CHECKPOINT_LOCATION}',
dest=constants.KAFKA_BQ_CHECKPOINT_LOCATION,
required=True,
help='GCS location of the checkpoint folder'
)
parser.add_argument(
f'--{constants.KAFKA_BOOTSTRAP_SERVERS}',
dest=constants.KAFKA_BOOTSTRAP_SERVERS,
required=True,
help='Kafka topic address from where data is coming'
)
parser.add_argument(
f'--{constants.KAFKA_BQ_TOPIC}',
dest=constants.KAFKA_BQ_TOPIC,
required=True,
help='Kafka Topic Name'
)
parser.add_argument(
f'--{constants.KAFKA_BQ_STARTING_OFFSET}',
dest=constants.KAFKA_BQ_STARTING_OFFSET,
required=True,
help='Offset to start reading from. Accepted values: "earliest", "latest","{json string}"}'
)
parser.add_argument(
f'--{constants.KAFKA_BQ_DATASET}',
dest=constants.KAFKA_BQ_DATASET,
required=True,
help='Bigquery Dataset'
)
parser.add_argument(
f'--{constants.KAFKA_BQ_TABLE_NAME}',
dest=constants.KAFKA_BQ_TABLE_NAME,
required=True,
help="Bigquery Table Name"
)
parser.add_argument(
f'--{constants.KAFKA_BQ_OUTPUT_MODE}',
dest=constants.KAFKA_BQ_OUTPUT_MODE,
required=True,
help="Bigquery Table Output Mode (append , complete, update)"
)
parser.add_argument(
f'--{constants.KAFKA_BQ_TEMP_BUCKET_NAME}',
dest=constants.KAFKA_BQ_TEMP_BUCKET_NAME,
required=True,
help="GCS Temp Bucket Name"
)
parser.add_argument(
f'--{constants.KAFKA_BQ_TERMINATION_TIMEOUT}',
dest=constants.KAFKA_BQ_TERMINATION_TIMEOUT,
required=True,
help="Timeout for termination of kafka subscription"
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
ignore_keys = {constants.KAFKA_BOOTSTRAP_SERVERS}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting Kafka to Bigquery Pyspark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
#arguments
bootstrap_server_list: str = args[constants.KAFKA_BOOTSTRAP_SERVERS]
checkpoint_location: str = args[constants.KAFKA_BQ_CHECKPOINT_LOCATION]
kafka_topics: str= args[constants.KAFKA_BQ_TOPIC]
big_query_dataset: str = args[constants.KAFKA_BQ_DATASET]
big_query_table: str = args[constants.KAFKA_BQ_TABLE_NAME]
bq_temp_bucket: str = args[constants.KAFKA_BQ_TEMP_BUCKET_NAME]
timeout: int = int(args[constants.KAFKA_BQ_TERMINATION_TIMEOUT])
offset:str = args[constants.KAFKA_BQ_STARTING_OFFSET]
output_mode = args[constants.KAFKA_BQ_OUTPUT_MODE]
df = spark.readStream.format(constants.KAFKA_INPUT_FORMAT) \
.option('kafka.bootstrap.servers', bootstrap_server_list) \
.option('subscribe', kafka_topics) \
.option('startingOffsets',offset) \
.load()
df = df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
# Write
output = df \
.writeStream \
.format(constants.FORMAT_BIGQUERY) \
.outputMode(output_mode) \
.option('checkpointLocation',checkpoint_location) \
.option('table',big_query_dataset+'.'+big_query_table) \
.option('temporaryGcsBucket', bq_temp_bucket) \
.start()
output.awaitTermination(timeout)