-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharb_mem_periph.v
589 lines (535 loc) · 17.5 KB
/
arb_mem_periph.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
module axi4_mem_periph #(
parameter AXI_TEST = 0,
parameter VERBOSE = 0
) (
/* verilator lint_off MULTIDRIVEN */
input clk,
input mem_axi_awvalid,
output reg mem_axi_awready,
input [31:0] mem_axi_awaddr,
input [ 2:0] mem_axi_awprot,
input mem_axi_wvalid,
output reg mem_axi_wready,
input [31:0] mem_axi_wdata,
input [ 3:0] mem_axi_wstrb,
output reg mem_axi_bvalid,
input mem_axi_bready,
input mem_axi_arvalid,
output reg mem_axi_arready,
input [31:0] mem_axi_araddr,
input [ 2:0] mem_axi_arprot,
output reg mem_axi_rvalid,
input mem_axi_rready,
output reg [31:0] mem_axi_rdata,
output reg tests_passed
);
reg [31:0] memory [0:128*1024/4-1] /* verilator public */;
reg verbose;
initial verbose = $test$plusargs("verbose") || VERBOSE;
initial begin
mem_axi_awready = 0;
mem_axi_wready = 0;
mem_axi_bvalid = 0;
mem_axi_arready = 0;
mem_axi_rvalid = 0;
tests_passed = 0;
end
reg latched_raddr_en = 0;
reg latched_waddr_en = 0;
reg latched_wdata_en = 0;
reg fast_raddr = 0;
reg fast_waddr = 0;
reg fast_wdata = 0;
reg [31:0] latched_raddr;
reg [31:0] latched_waddr;
reg [31:0] latched_wdata;
reg [ 3:0] latched_wstrb;
reg latched_rinsn;
// Registers and Wires added for arbiter
reg r_table_valid_in [(log2_cpu_burst - 1):0], r_table_valid_out [(log2_cpu_burst - 1):0];
//my parameters
localparam log2_cpu_burst = 8;
localparam cpu_burst = 256;
//AES control regs
reg [31:0] latched_custom_inp;
reg [log2_cpu_burst - 1:0] aes_input_size;
reg [31:0] aes_pt_data;
reg aes_pt_valid;
reg in_enable;
reg out_ready;
reg [31:0] aes_out [3:0];
reg pt_valid;
wire ct_rdy;
reg [127:0] pt_encr;
wire [127:0] ct_encr;
reg ct_valid;
wire pt_rdy;
reg [127:0] ct_decr;
wire [127:0] pt_decr;
reg [1:0] key_len;
wire key_mem_status;
wire key_inp_ready;
reg [255:0] short_key;
wire error;
reg [2:0] status;
AES myAES(clk, reset, pt_valid, ct_rdy, pt_encr, ct_encr, ct_valid, pt_rdy, ct_decr, pt_decr, key_len, key_mem_status, key_inp_ready, short_key, error);
//////
task handle_axi_awvalid; begin
mem_axi_awready <= 1;
latched_waddr = mem_axi_awaddr;
latched_waddr_en = 1;
fast_waddr <= 1;
end endtask
task handle_axi_wvalid; begin
mem_axi_wready <= 1;
latched_wdata = mem_axi_wdata;
latched_wstrb = mem_axi_wstrb;
latched_wdata_en = 1;
fast_wdata <= 1;
end endtask
task handle_axi_arvalid; begin
mem_axi_arready <= 1;
latched_raddr = mem_axi_araddr;
latched_rinsn = mem_axi_arprot[2];
latched_raddr_en = 1;
fast_raddr <= 1;
end endtask
task handle_axi_rvalid; begin
if (verbose)
$display("RD: ADDR=%08x DATA=%08x%s", latched_raddr, memory[latched_raddr >> 2], latched_rinsn ? " INSN" : "");
// Arbitration not enabled
if (!arb_en) begin
if (latched_raddr < 128*1024) begin
mem_axi_rdata <= memory[latched_raddr >> 2];
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end
end else
// Arbitration enabled
if (arb_en) begin
// Read Conflicts
if ((latched_raddr >= aes_dest_addr) && (latched_raddr < aes_dest_addr+16)) begin //start with dest_end
if (out_ready) begin
mem_axi_rdata <= aes_out[latched_raddr-aes_dest_addr];
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else begin
mem_axi_rvalid <= 0;
latched_raddr_en = 1;
end
end else
if ((latched_raddr >= aes_dest_addr + 16) && (latched_raddr < aes_dest_addr_end)) begin
temp = (aes_addr_start+{(latched_raddr-aes_dest_addr)[31:4],4'b0}); //will be treated as a wire
if (r_table_valid_out[aes_dest_addr[8:4]]) begin
mem_axi_rdata <= memory[latched_raddr >> 2];
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else if (in_enable) begin
latched_custom_inp = temp;
input_switch <= 1;
r_table_valid_in[temp[8:4]] <= 1; //here i took index as 5 bits!!
mem_axi_rvalid <= 0;
latched_raddr_en = 1;
end else begin
mem_axi_rvalid <= 0;
latched_raddr_en = 1;
end
end else if (latched_raddr < 128*1024) begin
// We have two cases so that we don't send the wrong information to the CPU
if (latched_rarb_send) begin
aes_pt_data <= memory[latched_raddr >> 2];
aes_pt_valid <= 1;
latched_rarb_send = 0;
mem_axi_rvalid <= 0;
end
else begin
mem_axi_rvalid <= 1;
mem_axi_rdata <= memory[latched_raddr >> 2];
end
latched_raddr_en = 0;
end
end
//if (latched_raddr == DONE) /// done /// status/// corresponding to key and decryption
// Yet to add memory-mapped registers
////
//AES outputs
if (latched_raddr == BASE_Addr+20) begin
// pt_rdy
mem_axi_rdata <= {31'd0,pt_rdy};
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+24) begin
// pt_decr-1
mem_axi_rdata <= pt_decr[127:96];
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+28) begin
// pt_decr-2
mem_axi_rdata <= pt_decr[95:64];
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+32) begin
// pt_decr-3
mem_axi_rdata <= pt_decr[63:32];
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+36) begin
// pt_decr-4
mem_axi_rdata <= pt_decr[31:0];
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+40) begin
// key_inp_rdy
mem_axi_rdata <= {31'd0,key_inp_ready};
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+44) begin
// error bit
mem_axi_rdata <= {31'd0,error};
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+48) begin
// key_exp_status
mem_axi_rdata <= {31'd0,key_mem_status};
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end else
if (latched_raddr == BASE_Addr+56) begin
// ct_in_en
mem_axi_rdata <= {31'd0, ct_in_en};
mem_axi_rvalid <= 1;
latched_raddr_en = 0;
end
else begin
$display("OUT-OF-BOUNDS MEMORY READ FROM %08x", latched_raddr);
$finish;
end
end endtask
task handle_axi_bvalid; begin
if (verbose)
$display("WR: ADDR=%08x DATA=%08x STRB=%04b", latched_waddr, latched_wdata, latched_wstrb);
// Arbitration not enabled
if (!arb_en) begin
if (latched_waddr < 128*1024) begin
if (latched_wstrb[0]) memory[latched_waddr >> 2][ 7: 0] <= latched_wdata[ 7: 0];
if (latched_wstrb[1]) memory[latched_waddr >> 2][15: 8] <= latched_wdata[15: 8];
if (latched_wstrb[2]) memory[latched_waddr >> 2][23:16] <= latched_wdata[23:16];
if (latched_wstrb[3]) memory[latched_waddr >> 2][31:24] <= latched_wdata[31:24];
end else
end else
// Arbitration enabled
if (arb_en) begin
if (!latched_warb_send) begin
if ((latched_waddr >= aes_addr_start+16) && (latched_waddr < aes_addr_end)) begin
if (in_enable) begin
temp = aes_addr_start+{(latched_waddr-aes_addr_start)[31:4],4'b0}; //will become a wire
latched_custom_inp = temp;
input_switch = 1;
r_table_valid_in[temp[8:4]] <= 1;
latched_waddr_en = 0;
latched_wdata_en = 0;
mem_axi_bvalid <= 1;
if (latched_waddr < 128*1024) begin
if (latched_wstrb[0]) memory[latched_waddr >> 2][ 7: 0] <= latched_wdata[ 7: 0];
if (latched_wstrb[1]) memory[latched_waddr >> 2][15: 8] <= latched_wdata[15: 8];
if (latched_wstrb[2]) memory[latched_waddr >> 2][23:16] <= latched_wdata[23:16];
if (latched_wstrb[3]) memory[latched_waddr >> 2][31:24] <= latched_wdata[31:24];
end
end
else begin
mem_axi_bvalid <= 0;
latched_waddr_en = 1;
latched_wdata_en = 1;
end
end else
if (latched_waddr < 128*1024) begin
if (latched_wstrb[0]) memory[latched_waddr >> 2][ 7: 0] <= latched_wdata[ 7: 0];
if (latched_wstrb[1]) memory[latched_waddr >> 2][15: 8] <= latched_wdata[15: 8];
if (latched_wstrb[2]) memory[latched_waddr >> 2][23:16] <= latched_wdata[23:16];
if (latched_wstrb[3]) memory[latched_waddr >> 2][31:24] <= latched_wdata[31:24];
end
if ((latched_waddr >= aes_dest_addr) && (latched_waddr < aes_dest_addr_end)) begin//check signs
//w_table needs to store only 10bits of addr if burst = 255 and one bit for validity
w_table_addr[latched_waddr[8:4]] <= latched_waddr[13:9];
w_table_strb[latched_waddr[8:4]] <= latched_wstrb;
end else
end else begin
if ((w_table_addr[latched_waddr[8:4]] == latched_waddr[13:9]) && (|w_table_strb[latched_waddr[8:4]])) begin
if (~w_table_strb[0]) memory[latched_waddr >> 2][ 7: 0] <= latched_wdata[ 7: 0];
if (~w_table_strb[1]) memory[latched_waddr >> 2][15: 8] <= latched_wdata[15: 8];
if (~w_table_strb[2]) memory[latched_waddr >> 2][23:16] <= latched_wdata[23:16];
if (~w_table_strb[3]) memory[latched_waddr >> 2][31:24] <= latched_wdata[31:24];
end
else begin
if (latched_wstrb[0]) memory[latched_waddr >> 2][ 7: 0] <= latched_wdata[ 7: 0];
if (latched_wstrb[1]) memory[latched_waddr >> 2][15: 8] <= latched_wdata[15: 8];
if (latched_wstrb[2]) memory[latched_waddr >> 2][23:16] <= latched_wdata[23:16];
if (latched_wstrb[3]) memory[latched_waddr >> 2][31:24] <= latched_wdata[31:24];
end
latched_warb_send = 0;
latched_waddr_en = 0;
latched_wdata_en = 0;
end
end
if (latched_waddr == 32'h1000_0000) begin
if (verbose) begin
if (32 <= latched_wdata && latched_wdata < 128)
$display("OUT: '%c'", latched_wdata[7:0]);
else
$display("OUT: %3d", latched_wdata);
end else begin
$write("%c", latched_wdata[7:0]);
`ifndef VERILATOR
$fflush();
`endif
end
latched_waddr_en = 0;
latched_wdata_en = 0;
mem_axi_bvalid <= 1;
end else
// address below used by assembly in start.S - we are not using this
if (latched_waddr == 32'h2000_0000) begin
if (latched_wdata == 1)
tests_passed = 1;
latched_waddr_en = 0;
latched_wdata_en = 0;
mem_axi_bvalid <= 1;
end else
// Changed the target address for the 'all pass' so that it can be written from C
if (latched_waddr == 32'h2100_0000) begin
if (latched_wdata == 1)
tests_passed = 1;
latched_waddr_en = 0;
latched_wdata_en = 0;
mem_axi_bvalid <= 1;
end else
//give the starting input addr
if (latched_waddr == BASE_Encrypt) begin
$display("Writing %d to starting address", latched_wdata);
aes_addr_start <= latched_wdata;
status <= 3'b001;
end else
//give the size of the chunk to work on
if (latched_waddr == BASE_Encrypt+4) begin
if (latched_wdata <= cpu_burst) begin
aes_addr_end <= aes_addr_start + (latched_wdata<<2) - 1; //Check if addr more?? If order fixed then use status reg?
aes_input_size <= latched_wdata[log2_cpu_burst - 1 :0];
status <= 3'b011;
end
end else
if (latched_waddr == BASE_Encrypt+8) begin
if (((latched_wdata - aes_addr_start < 0) && (latched_wdata + {22'b0, aes_input_size, 2'b0} - aes_addr_start < 0)) || (latched_wdata - aes_addr_start > {22'b0, aes_input_size, 2'b0})) begin
aes_dest_addr <= latched_wdata;
status <= 3'b111;
arb_en <= 1'b1;
in_enable <= 1'b1;
end
end else begin
///// NEED TO ADD for key and decrytion
////AES key_exp inputs
if (latched_waddr == BASE_Addr) begin
//Keylen
key_len <= latched_wdata[1:0];
end else
if (latched_waddr == BASE_Addr+4) begin
//Key-1
short_key[255:224] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+8) begin
//Key-2
short_key[223:192] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+12) begin
//Key-3
short_key[191:160] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+16) begin
//Key-4
short_key[159:128] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+20) begin
//Key-5
short_key[127:96] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+24) begin
//Key-6
short_key[95:64] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+28) begin
//Key-7
short_key[63:32] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+32) begin
//Key-8
short_key[31:0] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+56) begin
//ct_decr-1
ct_decr[127:96] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+60) begin
//ct_decr-2
ct_decr[95:64] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+64) begin
//ct_decr-3
ct_decr[63:32] <= latched_wdata;
end else
if (latched_waddr == BASE_Addr+68) begin
//ct_decr-4
ct_decr[31:0] <= latched_wdata;
end
latched_waddr_en = 0;
latched_wdata_en = 0;
mem_axi_bvalid <= 1;
end
else begin
$display("OUT-OF-BOUNDS MEMORY WRITE TO %08x", latched_waddr);
$finish;
end
end endtask
//one memory addr -> 32 bits so this is a state machine which puts 128 output bits to each of the 4 consecutive 32 bit memlocs
task my_w_arb; begin
latched_wdata = aes_out[counter];
latched_wstrb = 4'b1111;
latched_waddr = aes_dest_addr+(counter<<2); //move to next aligned word addr
latched_waddr_en = 1;
latched_wdata_en = 1;
latched_warb_send = 1;
r_table_valid_out[aes_dest_addr[8:4]] <= 1;
if (counter == 3) begin
latched_warb_en = 0;
out_ready <= 0;
in_enable <= 1;
aes_addr_start <= aes_addr_start+16;
if (aes_addr_start+16 == aes_addr_end)
status <= 0;
end
counter <= counter + 1;
end endtask
//state machine which reads 4 consecutive 32 bit mem locs for a 128 bit aes input
task my_r_arb; begin
//if the current address has been read already out of order
if ((counter==0) && r_table_valid_in[aes_addr_start[8:4]]) begin
latched_rarb_en = 0; //see where aes_addr_start is changing
end else begin
if (input_switch) latched_raddr = latched_custom_inp;
else latched_raddr = aes_addr_start + (rcounter<<2);
//latched_raddr = aes_addr_start;
latched_raddr_en = 1;
//latched_rinsn = mem_axi_arprot[2]; //maybe/////////////////////
rcounter <= rcounter + 1;
latched_rarb_send = 1;
r_table_valid_in[aes_addr_start[8:4]] <= 1;
latched_rarb_en = 0;
if (rcounter == 3) begin
latched_rarb_en = 0;
end
end
end endtask
task my_arb_en; begin
if (!latched_warb_en) begin
if (out_ready) begin
if (!(mem_axi_awvalid || mem_axi_wvalid)) //here basically checking if other masters related to cpu are active
latched_warb_en = 1;
end
end
if (!latched_rarb_en) begin
if((in_enable) && (status==3'b111)) begin //status tells if given inputs r ok or not
if(!mem_axi_arvalid)
latched_rarb_en = 1;
end
end
end endtask
task aes_wrapper; begin
if (status == 3'b111) begin
if (aes_pt_valid) begin
case (aes_cnt)
2'd0: pt_encr[31:0] <= aes_pt_data;
2'd1: pt_encr[63:32] <= aes_pt_data;
2'd2: pt_encr[95:64] <= aes_pt_data;
2'd3: pt_encr[127:96] <= aes_pt_data;
endcase
aes_cnt <= aes_cnt + 1;
if (aes_cnt == 2'd3) begin
pt_valid <= 1;
end
aes_pt_valid <= 0;
end
else if (pt_valid) pt_valid <= 0; ////see module behaviour\
if ((!out_ready) && ct_rdy) begin
out_ready <= 1;
aes_out[3] <= ct_encr[127:96]; //
aes_out[2] <= ct_encr[95:64];
aes_out[1] <= ct_encr[63:32];
aes_out[0] <= ct_encr[31:0];
end
if ((in_enable) && (!input_switch)) aes_dest_addr_start <= aes_dest_addr_start+16;
end
else begin
arb_en <= 0;
pt_valid <= 0;
for (i=0; i<CPUBURST/4; i=i+1) begin
r_table_valid_in[i] <= 0;
r_table_valid_out[i] <= 0;
w_table_addr[i] <= 0;
w_table_strb[i] <= 0;
end
end
end endtask
always @(negedge clk) begin
if ((!latched_rar_en) && mem_axi_arvalid && !(latched_raddr_en || fast_raddr)) handle_axi_arvalid;
if ((!latched_warb_en) && mem_axi_awvalid && !(latched_waddr_en || fast_waddr)) handle_axi_awvalid;
if ((!latched_warb_en) && mem_axi_wvalid && !(latched_wdata_en || fast_wdata)) handle_axi_wvalid;
if (!mem_axi_rvalid && latched_raddr_en) handle_axi_rvalid;
if (!mem_axi_bvalid && latched_waddr_en && latched_wdata_en) handle_axi_bvalid;
if (arb_en && (out_ready)) my_arb_en;
if ((latched_warb_en) && (!latched_warb_send)) my_w_arb;
if ((latched_rar_en) && (!latched_rarb_send)) my_r_arb;
aes_wrapper;
end
always @(posedge clk) begin
mem_axi_arready <= 0;
mem_axi_awready <= 0;
mem_axi_wready <= 0;
fast_raddr <= 0;
fast_waddr <= 0;
fast_wdata <= 0;
if (mem_axi_rvalid && mem_axi_rready) begin
mem_axi_rvalid <= 0;
end
if (mem_axi_bvalid && mem_axi_bready) begin
mem_axi_bvalid <= 0;
end
if (mem_axi_arvalid && mem_axi_arready && !fast_raddr) begin
latched_raddr = mem_axi_araddr;
latched_rinsn = mem_axi_arprot[2];
latched_raddr_en = 1;
end
if (mem_axi_awvalid && mem_axi_awready && !fast_waddr) begin
latched_waddr = mem_axi_awaddr;
latched_waddr_en = 1;
end
if (mem_axi_wvalid && mem_axi_wready && !fast_wdata) begin
latched_wdata = mem_axi_wdata;
latched_wstrb = mem_axi_wstrb;
latched_wdata_en = 1;
end
if ((!latched_rarb_en) && mem_axi_arvalid && !(latched_raddr_en || fast_raddr)) handle_axi_arvalid;
if ((!latched_warb_en) && mem_axi_awvalid && !(latched_waddr_en || fast_waddr)) handle_axi_awvalid;
if ((!latched_warb_en) && mem_axi_wvalid && !(latched_wdata_en || fast_wdata)) handle_axi_wvalid;
if (!mem_axi_rvalid && latched_raddr_en) handle_axi_rvalid;
if (!mem_axi_bvalid && latched_waddr_en && latched_wdata_en) handle_axi_bvalid;
if (arb_en && (out_ready)) my_arb_en;
aes_wrapper;
if ((latched_warb_en) && (!latched_warb_send)) my_w_arb;
if ((latched_rarb_en) && (!latched_rarb_send)) my_r_arb;
end
endmodule