-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
145 lines (114 loc) · 5.15 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import numpy.linalg as la
import timeit
import sys
from matplotlib import pyplot as plt
from matplotlib import ticker
import scipy as sc
import scipy.linalg as scl
import functools
import time
import ot
import torch
from gradients import gradient_chol, grad_AD_double
def normalize(v):
return v / sum(v)
def create_my_plot(ad_time, gd_time, ad_score, dim1, dim2):
FF = lambda a, b: a/b
ad_time[ad_time == 0] = 9
gd_time[gd_time == 0] = 9
print("ad_time".format(np.mean(ad_time, axis=0)))
print("".format(np.mean(gd_time, axis=0)))
plt.imshow(sc.mean(FF(ad_time, gd_time), axis=0), cmap=plt.cm.get_cmap('RdBu'), vmin=-9, vmax=9)
cb = plt.colorbar()
tick_locator = ticker.MaxNLocator(nbins=9)
cb.locator = tick_locator
cb.update_ticks()
cb.ax.set_yticklabels(['1/8', '1/6', '1/4', '1/2', '1', '2', '4', '6', '8'])
labely = [str((dim1[len(dim1)-1-i])) for i in range(len(dim1))]
labelx = [str(dim1[i]) for i in range(len(dim2))]
plt.xticks(np.arange(len(dim2)+1), labelx)
plt.yticks(np.arange(len(dim1)+1), labely)
plt.title('time ratio')
plt.show()
GG = lambda a, b: sc.log(a / b)
plt.figure()
plt.imshow(sc.mean(sc.log(ad_score), axis=0), cmap=plt.cm.get_cmap('Reds'), vmin=-18, vmax=0)
cb = plt.colorbar()
tick_locator = ticker.MaxNLocator(nbins=5)
cb.locator = tick_locator
cb.update_ticks()
cb.ax.set_yticklabels(['1e-8', '1e-6', '1e-4', '1e-2', '1'])
labely = [str(dim1[i]) for i in range(len(dim1))]
labelx = [str(dim1[i]) for i in range(len(dim2))]
plt.xticks(np.arange(len(dim2)+1), labelx)
plt.yticks(np.arange(len(dim1)+1), labely)
plt.title('accuracy')
plt.show()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Run regime test to produce paper plots.')
parser.add_argument('-n', type=int, nargs='+', default=(200, 1000, 2500, 5000, 10000, 25000, 30000),
help='Dim 1 list of numbers')
parser.add_argument('-m', type=int, nargs='+', default=(200, 500, 1000),
help='Dim 2 list of numbers')
parser.add_argument('-nr_seeds', type=int, default=5,
help='How many seeds')
parser.add_argument('-iter_AD', type=int, default=30,
help='How many interation of Sinkhorn')
parser.add_argument('-reg', type=float, default=0.02,
help='regularization')
args = parser.parse_args()
dim1 = args.n
dim2 = args.m
seeds = list(range(995, 995 + args.nr_seeds))
print(seeds)
# sys.exit()
gd_time = np.zeros((len(seeds), len(dim1), len(dim2)))
ad_time = np.zeros((len(seeds), len(dim1), len(dim2)))
gd_score = np.zeros((len(seeds), len(dim1), len(dim2)))
ad_score = np.zeros((len(seeds), len(dim1), len(dim2)))
for idx_seed in range(len(seeds)):
seed = seeds[idx_seed]
np.random.seed(seed)
reg = args.reg
L_GD = 100
L_AD = args.iter_AD
tresh = 1e-11
for idx_n, n in enumerate(dim1):
for idx_m, m in enumerate(dim2):
M = sc.spatial.distance.cdist(np.reshape(np.linspace(0, 1, n), (n, 1)),
np.reshape(np.linspace(0, 1, m), (m, 1)),
'sqeuclidean')
a = normalize(np.random.rand(n))
b = normalize(np.random.rand(m))
if m > n:
continue
print('n ', n)
print('m ', m)
true_grad = gradient_chol(a, b, M, reg, 1e5, 1e-11)
# compute true gradient
v = gradient_chol(a, b, M, reg, L_GD, tresh)
# accuracy for GD
gd_score[idx_seed, len(dim1) - idx_n - 1, idx_m] = la.norm(true_grad - v, 2)
# compute time for GD with timeit
t = timeit.Timer((functools.partial(gradient_chol, a, b, M, reg, L_GD, tresh)))
time_detected = t.timeit(number=100) / 100
print(time_detected)
gd_time[idx_seed, len(dim1) - idx_n - 1, idx_m] = time_detected
tM = torch.DoubleTensor(M)
tb = torch.DoubleTensor(b)
# tM = torch.from_numpy(M).type(dtype=torch.double)
# tb = torch.from_numpy(b).type(dtype=torch.double)
v = grad_AD_double(a, tb, tM, reg, L_AD, tresh)[2]
# accuracy for AD
v = v.data.numpy()
ad_score[idx_seed, len(dim1) - idx_n - 1, idx_m] = la.norm(true_grad - v, 2)
# compute time for AD with timeit
t = timeit.Timer((functools.partial(grad_AD_double, a, tb, tM, reg, L_AD, tresh)))
time_detected = t.timeit(number=100) / 100
print(time_detected)
ad_time[idx_seed, len(dim1) - idx_n - 1, idx_m] = time_detected
print('done, going to create plots')
create_my_plot(ad_time, gd_time, dim1, dim2)
plt.show()