Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

在论文BasicTS+中,Temporal Aspect中将数据集划分成三个类别:稳定模式、分布偏移和不清晰模式;能解释一下是如何划分的吗? #211

Open
2 tasks done
mengna-hu opened this issue Dec 6, 2024 · 1 comment
Labels
bug Something isn't working needs-triaged for issues raised to be triaged

Comments

@mengna-hu
Copy link

Is there an existing issue / discussion for this? | 是否已有关于该错误的issue或讨论?

  • I have searched the existing issues / discussions | 我已经搜索过已有的issues和讨论

Is there an existing answer for this in tutorial? | 该问题是否在教程中有解答?

  • I have searched tutorial | 我已经搜索过tutorial

Current Behavior | 当前行为

No response

Expected Behavior | 期望行为

No response

Environment | 运行环境

No response

BasicTS logs | BasicTS日志

No response

Steps To Reproduce | 复现方法

No response

Anything else? | 备注

在Spatial Aspect中,定义了r1和r2作为指标进行分类;同样对于temporal aspect,好奇选用了什么指标?
额外,是否在整理时序数据集的表中,可以直接标出根据你们的指标,感觉更方便阅读和理解你们提出的Hypothesis;标出这个数据集属于什么类:clear and stable patterns, significant distribution drift or unclear patterns。对于时空数据集,也可以标明一下。
对于时序线性模型,我觉得RLinear的效果也不错,建议可以添加一下

@mengna-hu mengna-hu added bug Something isn't working needs-triaged for issues raised to be triaged labels Dec 6, 2024
@zezhishao
Copy link
Collaborator

感谢您的建议,但正如论文中所说,可预测性本身也是一个悬而未决的研究课题。
我们的划分以肉眼为准,如果想要做一定程度的深度分析,可以参考基于scripts/data_visualization中对数据分布的可视化。

对每一个数据集标注一些指标是一个非常好的提议,感谢!我们有空的时候给加上。

RLinear收到,我们会在后续进行添加!感谢!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working needs-triaged for issues raised to be triaged
Projects
None yet
Development

No branches or pull requests

2 participants