forked from solvcon/mmnote
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprojection.tex
284 lines (266 loc) · 8.16 KB
/
projection.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
% (C) 2022 Yung-Yu Chen. All rights reserved.
% chktex-file 7
\RequirePackage[2020-02-02]{latexrelease}
\documentclass[11pt,dvips]{article}
%\documentclass[12pt,dvips]{article}
%\documentclass[preprint,dvips,numbers,sort&compress]{elsarticle}
%\documentclass[12pt,review,dvips,numbers,sort&compress]{elsarticle}
% Geometry.
\usepackage{geometry}
\geometry{a4paper,
left=2cm,
right=2cm,
top=2cm,
bottom=2cm,
}
% Global functionalities.
\usepackage[numbers,sort&compress]{natbib}
\usepackage{hyperref}
% encoding.
\usepackage[utf8]{inputenc}
% Mathematics.
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{arydshln}
% Authoring.
%\usepackage{authblk}
\usepackage[printwatermark]{xwatermark}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage{subfigure}
\usepackage{paralist}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{setspace}
%\usepackage{lmodern}
\newwatermark[allpages,color=black!30,angle=45,scale=3,xpos=0,ypos=0]%
{DRAFT}
%\doublespacing
\graphicspath{{turgon_eps/}}
\renewcommand{\figurename}{Fig.}
\newcommand{\topcaption}{%
\setlength{\abovecaptionskip}{0pt}%
\setlength{\belowcaptionskip}{10pt}%
\caption}
\numberwithin{equation}{section}
\newcommand{\defeq}{\ensuremath{\buildrel {\text{def}}\over{=}}}
\title{
%
(Drafting) Projection Method
%
}
\author{
%
Yi-En Chou and Yung-Yu Chen
%
}
\begin{document}
\maketitle
\begin{abstract}
%
%
\end{abstract}
\section{Governing equations for 2D incompressible flow}\label{s:projection}
Flow characteristics of viscous incompressible flow is depicted via the law of
conservation of momentum, for fluid it is the Navier-Stokes equation, and the
law of conservation of mass, or the continuity. Suppose $\rho=1$ for simplicity,
momentum equation in $x_1$-direction:
%
\begin{align}
\frac{\partial v_1}{\partial t}+v_1 \frac{\partial v_1}{\partial x_1}+v_2 \frac{\partial v_1}
{\partial x_2}=-\frac{\partial p}{\partial x_1}+ \nu (\frac{\partial^2 v_1}{\partial x_1^2}
+\frac{\partial^2 v_1}{\partial x_2^2}) \label{e:x_momentum}
\end{align}
%
Momentum equation in $x_2$-direction:
%
\begin{align}
\frac{\partial v_2}{\partial t}+v_1 \frac{\partial v_2}{\partial x_1}+v_2 \frac{\partial v_2}
{\partial x_2}=-\frac{\partial p}{\partial x_2}+ \nu (\frac{\partial^2 v_2}{\partial x_1^2}
+\frac{\partial^2 v_2}{\partial x_2^2}) \label{e:y_momentum}
\end{align}
%
Continuity:
%
\begin{align}
\frac{\partial v_1}{\partial x_1}+\frac{\partial v_2}{\partial x_2}=0 \label{e:continuity}
\end{align}
%
\subsection{Vector form}
Governing equations can be written in vector form, where the momentum equations
in vector form is:
%
\begin{align}
\mathbf{v}_t+\mathbf{v}(\nabla \cdot \mathbf{v})=-\nabla p+\nu \nabla^2 \mathbf{v}
\label{e:momentum_vec}
\end{align}
%
Continuity:
%
\begin{align}
\nabla \cdot \mathbf{v}=0 \label{e:continuity_vec}
\end{align}
%
\section{Projection method}
Velocity at $n^{th}$ time-step is denoted as $\mathbf{v}^n$. Convection term is
denoted as $\mathbf{C}$, and diffusion term is denoted $\mathbf{D}$.
%
\begin{align}
\frac{\mathbf{v}^{n+1}-\mathbf{v}^{n}}{\Delta t}+\mathbf{C}(\mathbf{v}^{n})=
-\nabla p+\mathbf{D}(\mathbf{v}^{{n}}) \label{e:momentum_pj}
\end{align}
%
Projection method\cite{ferziger_cfd_2019} split eq (\ref{e:momentum_pj}) into
%
\begin{gather}
\frac{\mathbf{v}^{*}-\mathbf{v}^{n}}{\Delta t}+\mathbf{C}(\mathbf{v}^{n})=-\nabla
p^{n}+\mathbf{D}(\mathbf{v}^{{n}}) \label{e:projection1}\ \\
\frac{\mathbf{v}^{**}-\mathbf{v}^{*}}{\Delta t}=\nabla p^n \label{e:projection2}\\
\frac{\mathbf{v}^{n+1}-\mathbf{v}^{**}}{\Delta t}=-\nabla p^{n+1} \label{e:projection3}\
\end{gather}
%
having~eq (\ref{e:projection3}) taken divergence, the equation becomes
%
\begin{align}
\frac{\nabla \cdot(\mathbf{v}^{n+1}-\mathbf{v}^{**})}{\Delta t}=-\nabla ^2 p
\label{e:div_momentum_pj_b}
\end{align}
%
A distinguishing feature of projection method is that the velocity field is
forced to satisfy the continuity as a part of the algorithm, where
%
\begin{align}
\nabla \cdot(\mathbf{v}^{n+1})=0 \label{e:continuity_pj}
\end{align}
%
and therefore the equation becomes,
%
\begin{align}
\frac{\nabla \cdot \mathbf{v}^{**}}{\Delta t}=\nabla ^2 p \label{e:projection4}
\end{align}
%
\subsection{The four steps of projection algorithm}
Step 1- Solve $\mathbf{v}^{*}$ with eq (\ref{e:projection1})
%
\begin{align}
\frac{\mathbf{v}^{*}-\mathbf{v}^{n}}{\Delta t}+\mathbf{C}(\mathbf{v}^{n})=
\mathbf{D}(\mathbf{v}^{{n}}) \nonumber
\end{align}
%
Step 2- Solve $\mathbf{v}^{**}$ with eq (\ref{e:projection2})
%
\begin{align}
\frac{\mathbf{v}^{**}-\mathbf{v}^{*}}{\Delta t}=\nabla p^n \nonumber
\end{align}
%
Step 3- Solve $p$ with eq (\ref{e:projection4})
%
\begin{align}
\frac{\nabla \cdot \mathbf{v}^{**}}{\Delta t}=\nabla ^2 p \nonumber
\end{align}
%
Step 4- Solve $\mathbf{v}^{n+1}$ with eq (\ref{e:projection3})
%
\begin{align}
\frac{\mathbf{v}^{n+1}-\mathbf{v}^{**}}{\Delta t}=-\nabla p^{n+1} \nonumber
\end{align}
%
\section{Discretization}
\subsection{Taylor-Series Expansion}
Discretized equations consists of approximating derivatives with truncated Taylor
-Series Expansion\cite{patankar_numerical_1980}, where Talor-series expansion
about position $x$ are
%
\begin{gather}
f(x+h)=f(x)+f'(x)\frac{h}{1!}+f''(x)\frac{h^2}{2!}+f^{(3)}(x)\frac{h^3}{3!}+ \ldots \label{e:FD} \\
f(x-h)=f(x)-f'(x)\frac{h}{1!}+f''(x)\frac{h^2}{2!}-f^{(3)}(x)\frac{h^3}{3!}+ \ldots \label{e:BD}
\end{gather}
%
First derivatives is obtained via eq (\ref{e:FD})-eq (\ref{e:BD}) truncating the
third term in the series, where
%
\begin{gather}
f(x+h)-f(x-h)=2\times f'(x)\frac{h}{1!}+2 \times f^{(3)}(x)\frac{h^3}{3!}+ \ldots \nonumber \\
f(x+h)-f(x-h)=2\times f'(x)\frac{h}{1!}+O(h^3) \nonumber \\
f'(x)=\frac{f(x+h)-f(x-h)}{2h} \label{e:f_1d}
\end{gather}
%
Second derivative via eq (\ref{e:FD})+eq (\ref{e:BD}) truncating the fourth term
in the series, where
%
\begin{gather}
f(x+h)+f(x-h)=2\times f(x)+2 \times f''(x)\frac{h^2}{2!}+4 \times f^{(4)}(x)
\frac{h^4}{4!} \nonumber \\
f(x+h)+f(x-h)=2\times f(x)+2 \times f''(x)\frac{h^2}{2!}+O(h^4) \nonumber \\
f''(x)=\frac{f(x+h)+f(x-h)-2\times f(x)}{h^2} \label{e:f_2d}
\end{gather}
%
\subsection{The discretized three steps of projection algorithm}
Step 1- Solve $\mathbf{v}^{*}$ with eq (\ref{e:projection1})
%
\begin{align}
\frac{\mathbf{v}^{*}-\mathbf{v}^{n}}{\Delta t}+\mathbf{C}(\mathbf{v}^{n})=
\mathbf{D}(\mathbf{v}^{{n}}) \nonumber
\end{align}
%
where
%
\begin{gather}
\mathbf{C}({v_1}^n_{i,j})={v_1}^n_{i,j} \cdot \frac{{v_1}^n_{e}-{v_1}^n_{w}}{\Delta x_1}+{v_2}^n_{p}
\cdot \frac{{v_1}^n_{n}-{v_1}^n_{s}}{\Delta x_2} \\
\mathbf{D}({v_1}^n_{i,j})=\nu (\frac{{v_1}^n_{e}+ {v_1}^n_{w}-2{v_1}^n_{i,j}}{{(\Delta x_1/2)}^2}
+\frac{{v_1}^n_{n}+ {v_1}^n_{s}-2{v_1}^n_{i,j}}{{(\Delta x_2/2)}^2})
\end{gather}
%
Step 2- Solve $\mathbf{v}^{**}$ with eq (\ref{e:projection2})
%
\begin{align}
\frac{\mathbf{v}^{**}-\mathbf{v}^{*}}{\Delta t}=\nabla p^n \nonumber
\end{align}
%
where
%
\begin{gather}
\nabla \cdot \mathbf{v}^{**}=\frac{{v_1}^{**}_{e}-{v_1}^{**}_{w}}{\Delta x_1}
+\frac{{v_2}^{**}_{n}-{v_2}^{**}_{s}}{\Delta x_2} \\
\nabla \cdot \mathbf{v}^{*}=\frac{{v_1}^{*}_{e}-{v_1}^{*}_{w}}{\Delta x_1}
+\frac{{v_2}^{*}_{n}-{v_2}^{*}_{s}}{\Delta x_2} \\
\nabla p^n=\frac{p^n_{i+1,j}-p^n_{i-1,j}}{2\Delta x_1} \cdot \hat{i}+\frac{p^n_{i,j+1}
-p^n_{i,j-1}}{2\Delta x_2} \cdot \hat{j}
\end{gather}
%
Step 3- Solve $p^{n+1}$ with eq (\ref{e:projection4})
%
\begin{align}
\frac{\nabla \cdot \mathbf{v}^{**}}{\Delta t}=\nabla ^2 p^{n+1} \nonumber
\end{align}
%
where
%
\begin{gather}
\nabla ^2 p^{n+1}=\frac{p^{n+1}_{i+1,j}+p^{n+1}_{i-1,j}-2p^{n+1}_{i,j}}{\Delta x_1^2}
+\frac{p^{n+1}_{i,j+1}+p^{n+1}_{i,j-1}-2p^{n+1}_{i,j}}{\Delta x_2^2}
\end{gather}
%
Step 4- Solve $\mathbf{v}^{n+1}$ with eq (\ref{e:projection3})
%
\begin{align}
\frac{\mathbf{v}^{n+1}_{i,j}-\mathbf{v}^{**}_{i,j}}{\Delta t}=-\nabla p \nonumber
\end{align}
%
where
%
\begin{align}
\nabla p^{n+1}=\frac{p^{n+1}_{i+1,j}-p^{n+1}_{i-1,j}}{2\Delta x_1} \cdot
\hat{i}+\frac{p^{n+1}_{i,j+1}
-p_{i,j-1}}{2\Delta x_2} \cdot \hat{j}
\end{align}
\clearpage
\addcontentsline{toc}{chapter}{Bibliography}
%\bibliographystyle{myunsrtnat} % no sort (order in appearance)
\bibliographystyle{myplainnat} % sort by author
\bibliography{turgon_main}
\end{document}
% vim: set ff=unix fenc=utf8 et sw=2 ts=2 tw=79: