-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathm-set.tex.in
executable file
·603 lines (506 loc) · 22.3 KB
/
m-set.tex.in
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
% -*- mode: LaTeX; -*-
\chapter{Set variables and constraints}
\label{chap:m:set}
This chapter gives an overview over set variables and set
constraints in Gecode and serves as a starting
point for using set variables. For the reference documentation,
see \gecoderef[group]{TaskModelSet}.
\paragraph{Overview.}
\mbox{}\autoref{sec:m:set:var} details how set variables can be
used for modeling. The sections \autoref{sec:m:set:post} and
\autoref{sec:m:set:exec} provide an overview of the constraints
that are available for set variables in Gecode.
\begin{important}
Do not forget to add
\begin{code}
#include <gecode/set.hh>
\end{code}
to your program when you want to use set variables. Note that
the same conventions hold as in \autoref{chap:m:int}.
\end{important}
\section{Set variables}
\label{sec:m:set:var}
Set variables in Gecode model sets of integers and are instances
of the class \gecoderef[class]{SetVar}.
\tip{Still do not use views for modeling}{%
Just as for integer variables, you should not feel tempted to
use views of set variables (such as \?SetView?) for modeling.
Views can only be used for implementing propagators and
branchers, see \autoref{part:p} and \autoref{part:b}.
}
\paragraph{Representing set domains as intervals.}
The domain of a set variable is a set of sets of integers (in
contrast to a simple set of integers for an integer variable).
For example, assume that the domain of the set variable $x$ is
the set of subsets of $\{1,2,3\}$:
$$\big\{\;\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\;\big\}$$
Set variable domains can become very large -- the set
of subsets of $\{1,\dots,n\}$ has $2^n$ elements. Gecode (like
most constraint solvers) therefore approximates set variable
domains by a set interval $\range{l}{u}$ of a lower bound $l$ and an
upper bound $u$. The interval $\range{l}{u}$ denotes the set of sets
$\setc{s}{l\subseteq s\subseteq u}$. The lower bound $l$
(commonly referred to as greatest lower bound or \emph{glb})
contains all elements that are \emph{known} to be included in the
set, whereas the upper bound $u$ (commonly referred to as least
upper bound or \emph{lub}) contains the elements that \emph{may
be} included in the set. As only the two interval bounds are
stored, this representation is space-efficient. The domain of $x$
from the above example can be represented as $\range{\{\}}{\{1,2,3\}}$.
Set intervals can only approximate set variable domains. For
example, the domain
$$\big\{\;\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\;\big\}$$
cannot be captured exactly by an interval. The closest interval
would be $\range{\{\}}{\{1,2,3\}}$. In order to get a closer
approximation of set variable domains, Gecode additionally stores
cardinality bounds. We write $\#\range{i}{j}$ to express that the
cardinality is at least $i$ and at most $j$. The set interval
bounds $\range{\{\}}{\{1,2,3\}}$ together with cardinality bounds
$\#\range{1}{2}$ represent the above example domain exactly.
\paragraph{Creating a set variable.}
New set variables are created using a constructor.
A new set variable \?x? is created by
\begin{code}
SetVar x(home, IntSet::empty, IntSet(1, 3), 1, 2);
\end{code}
This declares a variable \?x? of type \?SetVar? in the space
\?home?, creates a new set variable implementation with
domain $\range{\{\}}{\{1,2,3\}},\#\range{1}{2}$, and makes \?x? refer to the newly
created set variable implementation.
There are several overloaded versions of the constructor, you can
for example omit the cardinality bounds if you do not want to
restrict the cardinality. You find the full interface in the
reference documentation of the class \gecoderef[class]{SetVar}.
An attempt to create a set variable with an empty domain throws
an exception of type \gecoderef[class]{Set::VariableEmptyDomain}.
As for integer and Boolean variables, the default and copy constructors do not create new variable implementations. Instead, the
variable does not refer to any variable implementation (default
constructor) or to the same variable implementation (copy
constructor). For example in
\begin{code}
SetVar x(home, IntSet::empty, IntSet(1, 3), 1, 2);
SetVar y(x);
SetVar z;
z=y;
\end{code}
the variables \?x?, \?y?, and \?z? all refer to the same set variable
implementation.
\paragraph{Limits for set elements.}
All set variable bounds are subsets of the \emph{universe}, defined as
$$\range{\mathtt{Set::Limits::min}}{\mathtt{Set::Limits::max}}$$
The universe is symmetric:
$-\mbox{\?Set::Limits::min?}=\mbox{\?Set::Limits::max?}$.
Furthermore, the cardinality of a set is limited to the unsigned integer interval
$$\#\range{0}{\mathtt{Set::Limits::card}}$$
The limits have been chosen
such that an integer variable can hold the cardinality.
This means that the maximal element of a set variable is
$\mathtt{Int::Limits::max} / 2 - 1$. The limits are defined in
the namespace \gecoderef[namespace]{Set::Limits}.
Any attempt to create a set variable with values outside the defined
limits throws an exception of type
\gecoderef[class]{Set::OutOfLimits}.
\tip{Small variable domains are still beautiful}{%
Just like integer variables (see \autoref{tip:m:integer:beautifuldomains}), set
variables do not have a constructor that
creates a variable with the largest possible domain. And again, one has to
worry and the omission is deliberate to make you worry. So think about the
initial domains carefully when modeling.
}
\paragraph{Variable access functions.}
You can access the current domain of a set variable \?x? using member functions such as \?x.cardMax()?, returning the upper bound of the cardinality, or \?x.glbMin()?, returning the smallest element of the lower bound. Furthermore, you can print a set variable's domain using the standard output operator \?<<?.
\paragraph{Iterating variable domain interval bounds.}
For access to the interval bounds of a set variable, Gecode provides three value iterators and corresponding range iterators. For example, the
following loop
\begin{code}
for (SetVarGlbValues i(x); i(); ++i)
std::cout << i.val() << ' ';
\end{code}
uses the value iterator \?i? to print all values of the greatest lower
bound of the domain of \?x? in increasing order. If \?x? is assigned, this of course corresponds to the value of \?x?. Similarly, the following loop
\begin{code}
for (SetVarLubRanges i(x); i(); ++i)
std::cout << i.min() << ".." << i.max() << ' ';
\end{code}
uses the range iterator \?i? to print all ranges of the least upper bound of the domain of \?x?. The third kind of iterator, \gecoderef[class]{SetVarUnknownValues} or \gecoderef[class]{SetVarUnknownRanges}, iterate the values resp.\ ranges that are still unknown to be part or not part of the set, that is $u\setminus l$ for the domain $\range{l}{u}$.
\paragraph{When to inspect a variable.}
The same restrictions hold as for integer variables (see
\autoref{sec:m:integer:inspect}). The important restriction is
that one must not change the domain of a variable (for example,
by posting a constraint on that variable) while an iterator for
that variable is being used.
\paragraph{Updating variables.}
Set variables behave exactly like integer variables during cloning of a space. A set variable is updated by
\begin{code}
x.update(home, y);
\end{code}
where \?y? is the variable from which \?x? is to be
updated. While \?home? is the space \?x? belongs to, \?y? belongs
to the space which is being cloned.
\paragraph{Variable and argument arrays.}
Set variable arrays can be allocated using the class
\gecoderef[class]{SetVarArray}. The constructors of this class
take the same arguments as the set variable constructors,
preceded by
the size of the array. For example,
\begin{code}
SetVarArray x(home, 4, IntSet::empty, IntSet(1, 3));
\end{code}
creates an array of four set variables, each with domain $\range{\{\}}{\{1,2,3\}}$.
To pass temporary data structures as arguments, you can use the
\?SetVarArgs? class (see \gecoderef[group]{TaskModelSetArgs}).
Some set constraints are defined in terms of arrays of sets of
integers. These can be passed using \?IntSetArgs? (see
\gecoderef[group]{TaskModelSetArgs}). Set variable argument arrays
support the same operations introduced in
\autoref{sec:m:integer:args}.
\section{Constraint overview}
\label{sec:m:set:post}
This section introduces the different groups of constraints over
set variables available in Gecode. The section serves only as an
overview. For the details and the full list of available post
functions, the section refers to the relevant reference
documentation.
\paragraph{Reified constraints.}
Several set constraints also exist as a reified variant. Whether a reified
version exists for a given constraint can be found in the
reference documentation. If a reified version does exist, the
reification information combining the Boolean control variable and
an optional reification mode is passed as the last non-optional
argument, see \autoref{sec:m:integer:halfreify}.
\tip{Reification by decomposition}{%
\label{tip:m:set:rbd}%
If your model requires reification of a constraint for which no reified version exists in the library, you can often \emph{decompose} the reification. For example, to reify the constraint $\mbox{\?x?}\cup\mbox{\?y?}=\mbox{\?z?}$ to a control variable \?b?, you can introduce an auxiliary variable $\mbox{\?z0?}$ and post the two constraints
\begin{code}
rel(home, x, SOT_UNION, y, SRT_EQ, z0);
rel(home, z0, SRT_EQ, z, b);
\end{code}
}
\subsection{Domain constraints}
\begin{figure}
\begin{center}
\begin{tabular}{l@{\quad}l@{\qquad}l@{\quad}l}
\?SRT_EQ? & equality ($=$) &
\?SRT_NQ? & disequality ($\neq$) \\
\?SRT_LQ? & lex. less than or equal &
\?SRT_LE? & lex. less than \\
\?SRT_GQ? & lex. greater than or equal &
\?SRT_GR? & lex. greater than\\
\?SRT_SUB? & subset ($\subseteq$) &
\?SRT_SUP? & superset ($\supseteq$) \\
\?SRT_DISJ? & disjointness ($\parallel$) &
\?SRT_CMPL? & complement ($\;\overline{\cdot}\;$)
\end{tabular}
\end{center}
\caption{Set relation types}
\label{fig:m:set:srt}
\end{figure}
\gecoderef[group]{TaskModelSetDom} restrict the domain of a set variable using a
set constant (given as a single integer, an interval of two integers or an
\?IntSet?), depending on set relation types of type \?SetRelType? (see
\gecoderef[group]{TaskModelSet}). \autoref{fig:m:set:srt} lists the available set
relation types and their meaning. The relations \?SRT_LQ?, \?SRT_LE?, \?SRT_GQ?, and \?SRT_GR? establish a total order based on the lexicographic order of the characteristic functions of the two sets.
\begin{samepage}
For example, the constraints
\begin{code}
dom(home, x, SRT_SUB, 1, 10);
dom(home, x, SRT_SUP, 1, 3);
dom(home, y, SRT_DISJ, IntSet(4, 6));
\end{code}
result in the set variable \?x? being a subset of
$\{1,\dots,10\}$ and a superset of $\{1,2,3\}$, while $4$, $5$,
and $6$ are not elements of the set $\mathtt{y}$. The domain constraints
for set variables support reification. Both \?x? and \?y? can
also be arrays of set variables where each array element is
constrained accordingly (but no reification is supported).
\end{samepage}
In addition to the above constraints,
\begin{code}
cardinality(home, x, 3, 5);
\end{code}
restricts the cardinality of the set variable \?x? to be between
$3$ and $5$. \?x?~can also be an array of set variables.
%\CAT[set]{-}{dom}{TaskModelSetDom}
The domain of a set variable \?x? can be
constrained according to the domain of another variable set \?d? by
\begin{code}
dom(home, x, d);
\end{code}
Here, \?x? and \?d? can also be arrays of set
variables.
For examples using domain constraints, see
\gecoderef[example]{crew}, as well as the redundant constraints
in \gecoderef[example]{golf}.
\subsection{Relation constraints}
\gecoderef[group]{TaskModelSetRel} enforce relations between set variables and between set and integer variables, depending on the set relation types introduced above.
For set variables \?x? and \?y?, the following constrains \?x? to
be a subset of \?y?:
\begin{code}
rel(home, x, SRT_SUB, y);
\end{code}
If \?x? is a set variable and \?y? is an integer variable, then
\begin{code}
rel(home, x, SRT_SUP, y);
\end{code}
constrains \?x? to be a superset of the singleton set
$\{\mathtt{y}\}$, which means that \?y? must be an element of \?x?.
\begin{samepage}
The last form of set relation constraint uses an integer relation
type (see \autoref{fig:m:integer:irt}) instead of a set relation
type. This constraint restricts \emph{all} elements of a set
variable to be in the given relation to the value of an integer
variable. For example,
\begin{code}
rel(home, x, IRT_GR, y);
\end{code}
\end{samepage}
constrains all elements of the set variable \?x? to be strictly
greater than the value of the integer variable \?y?
\GCCAT{\CAT[set]{eq_set,in,in_set,not_in}{rel}{TaskModelSetRel}}.
Gecode provides reified versions of all set relation constraints. For an
example, see \gecoderef[example]{golf} and \autoref{chap:c:golf}.
\paragraph{If-then-else constraint.}
An if-then-else constraint can be posted by
\begin{code}
ite(home, b, x, y, z);
\end{code}
where \?b? is a Boolean variable and \?x?, \?y?, and \?z? are
set variables. In case \?b? is one, then
$\mathtt{x}=\mathtt{z}$ must hold, otherwise
$\mathtt{y}=\mathtt{z}$ must hold.
\subsection{Set operations}
\label{m:set:set_operations}
\begin{figure}
\begin{center}
\begin{tabular}{l@{\quad}l@{\qquad}l@{\quad}l}
\?SOT_UNION? & union ($\cup$) &
\?SOT_INTER? & intersection ($\cap$) \\
\?SOT_DUNION? & disjoint union ($\uplus$) &
\?SOT_MINUS? & set minus ($\setminus$)
\end{tabular}
\end{center}
\caption{Set operation types}
\label{fig:m:set:sot}
\end{figure}
\gecoderef[group]{TaskModelSetRelOp} perform set operations
according to the type shown in \autoref{fig:m:set:sot} and relate
the result to a set variable. For example,
\begin{code}
rel(home, x, SOT_UNION, y, SRT_EQ, z);
\end{code}
enforces the relation $\mathtt{x}\cup \mathtt{y}=\mathtt{z}$ for
set variables \?x?, \?y?, and \?z?. For an array of set variables
\?x?,
\begin{code}
rel(home, SOT_UNION, x, y);
\end{code}
enforces the relation
$$\bigcup_{i=0}^{|\mathtt{x}|-1}\mathtt{x}_i=\mathtt{y}$$
Instead of set variables, the relation constraints also accept
\?IntSet? arguments as set constants. There are no reified
versions of the set operation constraints (you can decompose
using reified relation constraints on the result, see
\autoref{tip:m:set:rbd}).
% \CAT[set]{-}{rel}{TaskModelSetRelOp}
Set operation constraints are used in most examples that contain
set variables, such as \gecoderef[example]{crew} or
\gecoderef[example]{hamming}.
\subsection{Element constraints}
\label{m:set:element}
\gecoderef[group]{TaskModelSetElement} generalize array access to
set variables. The simplest version of \?element? for set
variables is stated as
\begin{code}
element(home, x, y, z);
\end{code}
for an array of set variables or constants \?x?, an integer
variable \?y?, and a set variable \?z?. It constrains \?z? to be
the element of array \?x? at index \?y? (where the index starts
at \?0?).
% \CAT[set]{-element}{element}{TaskModelSetElement}
A further generalization uses a \emph{set variable} as the index,
thus selecting several sets at once. The result variable is
constrained to be the union, disjoint union, or intersection of
the selected set variables, depending on the set operation type
argument. For example,
\begin{code}
element(home, SOT_UNION, x, y, z);
\end{code}
for set variables \?y? and \?z? and an array of set variables
\?x? enforces the following relation:
$$\mathtt{z}=\bigcup_{i\in\mathtt{y}}\mathtt{x}_i$$
Note that generalized element constraints follow the usual
semantics of set operations if the index variable is the empty
set: an empty union is the empty set, whereas an empty
intersection is the full universe. Because of this semantics, the
\?element? constraint has an optional set constant argument so
that you can specify the universe (i.e., usually the full set of
elements your problem deals with) explicitly. For an example of a
set element constraint, see \gecoderef[example]{golf} and \autoref{chap:c:golf}.
\subsection{Constraints connecting set and integer variables}
\label{m:set:set_int}
Most models that involve set variables also involve integer variables. In
addition to the set relation constraints that accept integer variables
(interpreting them as singleton sets), \gecoderef[group]{TaskModelSetConnect}
provide the necessary interface for models that use both set variables and
integer or Boolean variables.
The most obvious constraint connecting integer and set variables
is the cardinality constraint:
\begin{code}
cardinality(home, x, y);
\end{code}
It states that the integer variable \?y? is equal to the cardinality
of the set variable \?x?.
Gecode provides constraints for the minimal and maximal elements
of a set. The following code
\begin{code}
min(home, x, y);
\end{code}
constrains the integer variable \?y? to be the minimum of the set \?x?.
% \CAT[set]{-cardinality,-min,-max}{cardinality,min,max}{TaskModelSetConnect}
For an example of constraints connecting integer and set
variables, see \gecoderef[example]{steiner}.
\paragraph{Weighted sets.}
The \?weights? constraint assigns a weight to each possible
element of a set variable \?x?, and then constrains an integer
variable \?y? to be the sum of the weights of the elements of
\?x?. The mapping is given using two integer arrays, \?e? and
\?w?. For example,
\begin{code}
IntArgs e({ 1, 3, 4, 5, 7, 9});
IntArgs w({-1, 4, 1, 1, 3, 3});
weights(home, e, w, x, y);
\end{code}
enforces that \?x? is a subset of $\{1,3,4,5,7,9\}$ (the set of
elements), and that \?y? is the sum of the weights of the
elements in \?x?, where the weight of the element \?1? would be
\?-1?, the weight of \?3? would be \?4? and so on. Assigning \?x?
to the set $\{3,7,9\}$ would therefore result in \?y? being
assigned to $4+3+3=10$
\GCCAT{\CAT[set]{sum_set}{weights}{TaskModelSetConnect}}.
\subsection{Set channeling constraints}
\label{m:set:set_channel}
\gecoderef[group]{TaskModelSetChannel} link arrays of set variables, as well as
set variables with integer and Boolean variables.
For an two arrays of set variables \?x? and \?y?,
\begin{code}
channel(home, x, y);
\end{code}
posts the constraint
$$
j\in\mathtt{x}_i \Leftrightarrow i\in \mathtt{y}_j
\qquad\mbox{for }0\leq i<|\mathtt{x}|
\qquad\mbox{and }0\leq j<|\mathtt{y}|
$$
For an array of integer
variables \?x? and an array of set variables \?y?,
\begin{code}
channel(home, x, y);
\end{code}
posts the constraint
$$
\mathtt{x}_i=j \Leftrightarrow i\in \mathtt{y}_j
\qquad\mbox{for }0\leq i,j<|\mathtt{x}|
$$
The channel between a set variable \?y? and an array of Boolean
variables \?x?,
\begin{code}
channel(home, x, y);
\end{code}
enforces the constraint
$$
\mathtt{x}_i=1 \Leftrightarrow i\in \mathtt{y}
\qquad\mbox{for }0\leq i<|\mathtt{x}|
$$
An array of integer variables \?x? can be channeled to a set
variable \?y? using
\begin{code}
rel(home, SOT_UNION, x, y);
\end{code}
which constrains \?y? to be the set $\{\mathtt{x}_0,\dots,\mathtt{x}_{|\mathtt{x}|-1}\}$. An alias for this constraint is defined in the modeling convenience library, see \autoref{sec:m:minimodel:channel} and \autoref{sec:m:minimodel:setalias}.
A specialized version of the previous constraint is
\begin{code}
channelSorted(home, x, y);
\end{code}
which constrains \?y? to be the set
$\{\mathtt{x}_0,\dots,\mathtt{x}_{|\mathtt{x}|-1}\}$, and the
integer variables in \?x? are sorted in increasing order
($\mathtt{x}_i<\mathtt{x}_{i+1}$ for $0\leq i<|\mathtt{x}|$)
\GCCAT{\CAT[set]{link_set_to_booleans}{channel}{TaskModelSetConnect}}.
%\CAT[set]{-int_set_channel}{channelSorted}{TaskModelSetConnect}
\subsection{Convexity constraints}
\gecoderef[group]{TaskModelSetConvex} enforce that set variables
are convex, which means that the elements form an integer
interval. For example, the set $\{1,2,3,4,5\}$ is convex, while
$\{1,3,4,5\}$ is not, as it contains a hole. The \emph{convex
hull} of a set $s$ is the smallest convex set containing $s$
($\{1,2,3,4,5\}$ is the convex hull of $\{1,3,4,5\}$).
The constraint
\begin{code}
convex(home, x);
\end{code}
states that the set variable \?x? must be convex, and
\begin{code}
convex(home, x, y);
\end{code}
enforces that the set variable \?y? is the convex hull of the set
variable \?x?.
%\CAT[set]{-convex}{convex}{TaskModelSetConvex}
\subsection{Sequence constraints}
\gecoderef[group]{TaskModelSetSequence} enforce an order among an
array of set variables \?x?. Posting the constraint
\begin{code}
sequence(home, x);
\end{code}
results in the sets \?x? being pairwise disjoint, and furthermore
$\max(\mathtt{x}_i)<\min(\mathtt{x}_{i+1})$ for all $0\leq
i<|\mathtt{x}|-1$. Posting
\begin{code}
sequence(home, x, y);
\end{code}
additionally constrains the set variable \?y? to be the union of the \?x?.
%\CAT[set]{-sequence}{sequence}{TaskModelSetSequence}
For an example of sequence constraints, see \gecoderef[example]{steiner}.
\subsection{Value precedence constraints}
\label{sec:m:set:precede}
\gecoderef[group]{TaskModelSetPrecede} enforce that a value
precedes another value in an array of set variables. By
\begin{code}
precede(home, x, s, t);
\end{code}
where \?x? is an array of set variables and both \?s? and
\?t? are integers, the following is enforced: if there exists $j$
($0\leq j<|\mathtt{x}|$) such that $s\notin\mathtt{x}_j$ and
$t\in\mathtt{x}_j$, then there must exist $i$ with $i<j$ such that
$s\in\mathtt{x}_i$ and $t\notin\mathtt{x}_i$.
A generalization is available for precedences between several
integer values. By
\begin{code}
precede(home, x, c);
\end{code}
where \?x? is an array of set variables and \?c? is an array
of integers, it is enforced that $\mathtt{c}_k$ precedes
$\mathtt{c}_{k+1}$ in \?x? for $0\leq k<|\mathtt c|-1$.
The constraint is implemented by the propagator
introduced in~\cite{Precede}
\GCCAT{\CAT[set]{set_value_precede}{precede}{TaskModelSetPrecede}},
the paper also explains how to use
the \?precede? constraint for breaking value symmetries.
For an example, see \gecoderef[example]{golf} and \autoref{chap:c:golf}.
\section{Synchronized execution}
\label{sec:m:set:exec}
Gecode offers support in
\gecoderef[group]{TaskModelSetExec} for executing a function
when set variables become assigned.
The code
\begin{code}
wait(home, x, [] (Space &home) { ...; });
\end{code}
posts a propagator that waits until the set variable \?x? (or, if
\?x? is an array of set variables: all variables in \?x?) is
assigned. If \?x? becomes assigned, the function passed as
argument is executed with the current home space passed as
argument. The type of the function must be
\begin{code}
std::function<void(Space& home)>
\end{code}