-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasetBase.py
56 lines (45 loc) · 1.64 KB
/
datasetBase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
np.random.seed(0)
word_min_counts_threshold = 3
max_caption_len = 50
special_tokens = {'<PAD>': 0, '<BOS>': 1, '<EOS>': 2, '<UNK>': 3}
class DataObject:
def __init__(self, path, myid, caption_list = None, cap_len_list = None):
self.path = path
self.myid = myid
self.caption_list = caption_list # no EOS, e.g. ['I', 'love', 'you']
self.cap_len_list = cap_len_list # EOS added, e.g. 4
class DatasetBase:
def __init__(self, data_dir, batch_size):
self.data_obj_list = []
self.word_min_counts_threshold = word_min_counts_threshold
self.vocab_num = 0
self.word_counts = {}
self.word_index = {}
self.idx_to_word = {}
self.dat_dict = {}
self.data_dir = data_dir
self.batch_max_size = 0
self.batch_size = batch_size
self.batch_index = 0
def sample_one_caption(self, captions, cap_len, is_rand=True):
assert len(captions) == len(cap_len)
if is_rand:
r = np.random.randint(0, len(captions))
else:
r = 0
return captions[r], cap_len[r]
def captions_to_padded_sequences(self, captions, maxlen=max_caption_len):
res = []
for cap in captions:
l = []
for word in cap:
if word in self.word_counts:
l.append(self.word_index[word])
else:
l.append(special_tokens['<UNK>'])
l.append(special_tokens['<EOS>']) # add EOS here!
pad = special_tokens['<PAD>']
l += [ pad ] * (maxlen - len(l))
res.append(l)
return res