forked from baaivision/See3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmv_diffusion_SR.py
70 lines (55 loc) · 2.39 KB
/
mv_diffusion_SR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import sys
from diffusers import (
UniPCMultistepScheduler,
DDIMScheduler
)
from pipeline_mvd_warp_mix_classifier_SR import MVDreamPipeline
import torch
import cv2
import numpy as np
from PIL import Image
from mv_unet import MultiViewUNetModel
from accelerate.utils import ProjectConfiguration, set_seed
import argparse
import os
import sys
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
class mvdream_diffusion_model:
def __init__(self, base_model_path,mv_unet_path,tokenizer,quantization=False,seed=12345):
generator = torch.Generator("cuda").manual_seed(seed)
unet = MultiViewUNetModel.from_pretrained(
mv_unet_path,
torch_dtype=torch.float16
)
feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained(base_model_path + "/CLIP-ViT-H-14-laion2B-s32B-b79K")
image_encoder: CLIPVisionModelWithProjection = CLIPVisionModelWithProjection.from_pretrained(base_model_path + "/CLIP-ViT-H-14-laion2B-s32B-b79K")
self.pipe = MVDreamPipeline.from_pretrained(
base_model_path, # remote weights
unet=unet,
torch_dtype=torch.float16,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config, timestep_scaling="trailing", rescale_betas_zero_snr=True)
self.pipe.enable_model_cpu_offload()
self.pipe.vae.enable_slicing()
self.pipe.vae.enable_tiling()
def inference_next_frame(self, prompt, batch, num_frames, height, width, gt_num_frames=1, output_type='pil'):
batch['conditioning_pixel_values'] = torch.unsqueeze(batch['conditioning_pixel_values'], 0)
batch['masks'] = torch.unsqueeze(batch['masks'], 0)
image, image_warp = self.pipe(
prompt=prompt,
image=batch['conditioning_pixel_values'],
masks=batch['masks'],
height=height,
width=width,
guidance_scale=1.0,
num_inference_steps=30,
guidance_rescale=0.0,
elevation=0,
num_frames=batch['conditioning_pixel_values'].shape[1],
condition_num_frames=gt_num_frames,
gt_frame=None,
output_type=output_type
)
return image