-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcapture.py
109 lines (76 loc) · 3.4 KB
/
capture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import time
import numpy as np
import os
def nothing(x):
pass
image_x, image_y = 64, 64
def create_folder(folder_name):
if not os.path.exists('./mydata/training_set/' + folder_name):
os.mkdir('./mydata/training_set/' + folder_name)
if not os.path.exists('./mydata/test_set/' + folder_name):
os.mkdir('./mydata/test_set/' + folder_name)
def capture_images(ges_name):
create_folder(str(ges_name))
cam = cv2.VideoCapture(0)
cv2.namedWindow("test")
img_counter = 0
t_counter = 1
training_set_image_name = 1
test_set_image_name = 1
listImage = [1,2,3,4,5]
cv2.namedWindow("Trackbars")
cv2.createTrackbar("L - H", "Trackbars", 0, 179, nothing)
cv2.createTrackbar("L - S", "Trackbars", 0, 255, nothing)
cv2.createTrackbar("L - V", "Trackbars", 0, 255, nothing)
cv2.createTrackbar("U - H", "Trackbars", 179, 179, nothing)
cv2.createTrackbar("U - S", "Trackbars", 255, 255, nothing)
cv2.createTrackbar("U - V", "Trackbars", 255, 255, nothing)
for loop in listImage:
while True:
ret, frame = cam.read()
frame = cv2.flip(frame, 1)
l_h = cv2.getTrackbarPos("L - H", "Trackbars")
l_s = cv2.getTrackbarPos("L - S", "Trackbars")
l_v = cv2.getTrackbarPos("L - V", "Trackbars")
u_h = cv2.getTrackbarPos("U - H", "Trackbars")
u_s = cv2.getTrackbarPos("U - S", "Trackbars")
u_v = cv2.getTrackbarPos("U - V", "Trackbars")
img = cv2.rectangle(frame, (425, 100), (625, 300), (0, 255, 0), thickness=2, lineType=8, shift=0)
lower_blue = np.array([l_h, l_s, l_v])
upper_blue = np.array([u_h, u_s, u_v])
imcrop = img[102:298, 427:623]
hsv = cv2.cvtColor(imcrop, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower_blue, upper_blue)
result = cv2.bitwise_and(imcrop, imcrop, mask=mask)
cv2.putText(frame, str(img_counter), (30, 400), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (127, 127, 255))
cv2.imshow("test", frame)
cv2.imshow("mask", mask)
cv2.imshow("result", result)
if cv2.waitKey(1) == ord('c'):
if t_counter <= 350:
img_name = "./mydata/training_set/" + str(ges_name) + "/{}.png".format(training_set_image_name)
save_img = cv2.resize(mask, (image_x, image_y))
cv2.imwrite(img_name, save_img)
print("{} written!".format(img_name))
training_set_image_name += 1
if t_counter > 350 and t_counter <= 400:
img_name = "./mydata/test_set/" + str(ges_name) + "/{}.png".format(test_set_image_name)
save_img = cv2.resize(mask, (image_x, image_y))
cv2.imwrite(img_name, save_img)
print("{} written!".format(img_name))
test_set_image_name += 1
if test_set_image_name > 250:
break
t_counter += 1
if t_counter == 401:
t_counter = 1
img_counter += 1
elif cv2.waitKey(1) == 27:
break
if test_set_image_name > 250:
break
cam.release()
cv2.destroyAllWindows()
ges_name = input("Enter gesture name: ")
capture_images(ges_name)