-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_metrics.py
48 lines (40 loc) · 1.3 KB
/
calc_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import cv2
import os
import argparse
from utils.dataprocessor import *
from utils.metrics import *
parser = argparse.ArgumentParser()
parser.add_argument('--gt_path', type=str, default='data/kalantari_dataset/test')
parser.add_argument('--test_path', type=str, default='')
configs = parser.parse_args()
file_path = configs.test_path
gt_path = configs.gt_path
dirs = []
for dir in os.listdir(file_path):
if os.path.isdir(os.path.join(file_path, dir)):
dirs.append(dir)
dirs = sorted(dirs)
psnr = PSNR()
ssim = SSIM()
total_psnr = 0
total_ssim = 0
for dir in dirs:
gt_file = os.path.join(os.path.join(gt_path, dir), 'ref_hdr_aligned.hdr')
my_file = os.path.join(os.path.join(file_path, dir), 'hdr.hdr')
hdr = get_image(my_file)
h, w, _ = hdr.shape
hdr_gt = get_image(gt_file, [h, w], True)
hdr_gt = inverse_transform(hdr_gt)
hdr = inverse_transform(hdr)
print('------------------------------------------')
print('scene ', dir)
cur_psnr = psnr(hdr, hdr_gt)
cur_ssim = ssim(hdr, hdr_gt)
print('PSNR:', cur_psnr)
print('SSIM:', cur_ssim)
total_psnr += cur_psnr
total_ssim += cur_ssim
print('******************************************')
print('Final Report:')
print(' Average PSNR: ', total_psnr / len(dirs))
print(' Average SSIM: ', total_ssim / len(dirs))