From af78241656c6156e86aaee3346bd6188d1bbe66a Mon Sep 17 00:00:00 2001 From: CCAstro35 <71094989+CCAstro35@users.noreply.github.com> Date: Mon, 23 Aug 2021 17:09:18 -0400 Subject: [PATCH 01/74] Create healpix_gaia_query.ipynb --- healpix_gaia_query.ipynb | 1158 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 1158 insertions(+) create mode 100644 healpix_gaia_query.ipynb diff --git a/healpix_gaia_query.ipynb b/healpix_gaia_query.ipynb new file mode 100644 index 00000000..2b4561c7 --- /dev/null +++ b/healpix_gaia_query.ipynb @@ -0,0 +1,1158 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Created TAP+ (v1.2.1) - Connection:\n", + "\tHost: gea.esac.esa.int\n", + "\tUse HTTPS: True\n", + "\tPort: 443\n", + "\tSSL Port: 443\n", + "Created TAP+ (v1.2.1) - Connection:\n", + "\tHost: geadata.esac.esa.int\n", + "\tUse HTTPS: True\n", + "\tPort: 443\n", + "\tSSL Port: 443\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/cal/ccarr/anaconda3/lib/python3.7/site-packages/pandas/compat/_optional.py:138: UserWarning: Pandas requires version '2.7.0' or newer of 'numexpr' (version '2.6.9' currently installed).\n", + " warnings.warn(msg, UserWarning)\n" + ] + } + ], + "source": [ + "import warnings\n", + "import healpy as hp\n", + "from astroquery.gaia import Gaia\n", + "import tqdm\n", + "import pickle\n", + "from astropy import table\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import astropy.coordinates as coord\n", + "import astropy.units as u\n", + "import sklearn\n", + "from sklearn import metrics\n", + "from sklearn.svm import SVR\n", + "from sklearn import linear_model\n", + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.model_selection import learning_curve\n", + "from sklearn.kernel_ridge import KernelRidge\n", + "from sklearn.svm import SVR\n", + "from sklearn.utils import shuffle\n", + "from sklearn.gaussian_process import GaussianProcessRegressor\n", + "from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared\n", + "from sklearn.utils import shuffle\n", + "import scipy.signal as sig\n", + "import seaborn as sns\n", + "import scipy.interpolate as interp\n", + "from scipy.stats import gaussian_kde" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_parallax_prediction(Xtrue, ytrue, kde, ypred1, ypred2, ypred3, fids):\n", + " \"\"\"\"\"\"\n", + " fig = plt.figure(figsize=(10,8))\n", + " ax = fig.add_subplot(\n", + " xlabel=r\"$\\log_{10}$ parallax [mas]\",\n", + " ylabel=r\"$\\log_{10}$ parallax fractional error\",\n", + " )\n", + " # distance label\n", + " secax = ax.secondary_xaxis(\n", + " \"top\",\n", + " functions=(\n", + " lambda logp: np.log10(\n", + " coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc)\n", + " ),\n", + " lambda logd: np.log10(\n", + " coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas)\n", + " ),\n", + " ),\n", + " )\n", + " secax.set_xlabel(r\"$\\log_{10}$ Distance [kpc]\")\n", + " \n", + " Xpred = np.array(\n", + " [\n", + " np.ones(100) * np.median(Xtrue[:, 0]), # ra\n", + " np.ones(100) * np.median(Xtrue[:, 1]), # dec\n", + " np.linspace(Xtrue[:, 2].min(), Xtrue[:, 2].max(), 100), # p\n", + " ]\n", + " ).T\n", + "\n", + " ax.scatter(Xtrue[:, -1], ytrue, s=5, label=\"data\", alpha=0.3, c=kde)\n", + " ax.scatter(Xpred[:, -1], ypred1, s=5, label=\"kernel-ridge\")\n", + " ax.scatter(Xpred[:, -1], ypred2, s=5, label=\"linear model: density-weighting\")\n", + " ax.scatter(Xpred[:, -1], ypred3, s=5, label=\"linear model: no density weight\")\n", + " ax.set_title(str(fids))\n", + " \n", + " ax.set_ylim(-3, 3)\n", + " ax.invert_xaxis()\n", + " ax.legend()\n", + "\n", + " return fig\n", + "\n", + "def kernel_ridge(X, y, train_size):\n", + " \"Kernel-Ridge Regression code\"\n", + " rng = np.random.default_rng()\n", + " kr = GridSearchCV(\n", + " KernelRidge(kernel=\"linear\", gamma=0.1),\n", + " param_grid={\n", + " \"alpha\": [1e0, 0.1, 1e-2, 1e-3],\n", + " \"gamma\": np.logspace(-2, 2, 5),\n", + " },\n", + " )\n", + " \n", + " # randomize the data order\n", + " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", + "\n", + " # Fitting using the Kernel-Ridge Regression\n", + " kr.fit(X[idx], y[idx])\n", + " Xp = np.array(\n", + " [\n", + " np.ones(100) * np.median(X[:, 0]), # ra\n", + " np.ones(100) * np.median(X[:, 1]), # dec\n", + " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", + " ]\n", + " ).T\n", + " ykr = kr.predict(Xp)\n", + " return ykr, kr\n", + "\n", + "def Gauss_process(X,y, train_size):\n", + " \"Gaussian-Process Regression code\"\n", + " rng = np.random.default_rng()\n", + " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", + " gpr = GaussianProcessRegressor(kernel=None)\n", + " gpr.fit(X[idx], y[idx])\n", + " ygp = gpr.predict(Xp)\n", + " return ygp, gpr\n", + "\n", + "def support_vector(X,y, train_size):\n", + " \"support-vector regression code\"\n", + " rng = np.random.default_rng()\n", + " svr = GridSearchCV(SVR(kernel='linear', gamma=0.1),\n", + " param_grid={\"C\": [1e0, 1e1, 1e2, 1e3],\n", + " \"gamma\": np.logspace(-2, 2, 5)})\n", + " \n", + " # randomize the data order\n", + " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", + "\n", + " # Fitting using the Kernel-Ridge Regression\n", + " kr.fit(X[idx], y[idx])\n", + " Xp = np.array(\n", + " [\n", + " np.ones(100) * np.median(X[:, 0]), # ra\n", + " np.ones(100) * np.median(X[:, 1]), # dec\n", + " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", + " ]\n", + " ).T\n", + " svr.fit(X[idx], y[idx])\n", + " ysv = svr.predict(Xp)\n", + " return ysv, svr\n", + "\n", + "def linear(X, y, train_size, weight=True):\n", + " \"linear regression model\"\n", + " reg = linear_model.LinearRegression()\n", + " \n", + " # randomize the data order\n", + " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", + " xy = np.vstack([X[:,2],y])\n", + " kde = gaussian_kde(xy)(xy)\n", + " if weight==True:\n", + " reg.fit(X[idx], y[idx], sample_weight=(1/kde)[idx])\n", + " else:\n", + " reg.fit(X[idx], y[idx])\n", + " Xp = np.array(\n", + " [\n", + " np.ones(100) * np.median(X[:, 0]), # ra\n", + " np.ones(100) * np.median(X[:, 1]), # dec\n", + " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", + " ]\n", + " ).T\n", + " yreg = reg.predict(Xp)\n", + " return yreg, reg " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 0%| | 0/4 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAFFCAYAAADfBPg6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e7xsRXnn/avufa6ccwAFb8ArCCpeYISBAWNEEk3EeM8rqIkRTVCTMePljbmYTzKiExNzcUYzXhL1TdCo8cIMEycqGqN4RQPBICIiLxGDHCZA5HKue+/uVe8f3bVPde1aa1XV89Sle9fPz/64z6ZX9erVq9f69u/31FNCSomqqqqqqqqqqipeDXLvQFVVVVVVVVXVIqpCVlVVVVVVVVVVBFXIqqqqqqqqqqqKoApZVVVVVVVVVVURVCGrqqqqqqqqqiqCKmRVVVVVVVVVVUVQhayqqg0qIcRLhBBf0f4thRAnOWz320KI90Xet71CiIfFfI6qqqqq2KqQVVU1hxJC3CKEWBFCHGX8/Z+msHR8rOeWUv6+lPKiWONPn2OHlPKfYz4HVUKIi4UQq1MgvEcI8TUhxOO1/36uEOKH2r+vEEIcFEIcp/3tKUKIW4xxXyCE+IYQYp8Q4o7p7/9RCCGSvLCqqio2VciqqppffR/AC9U/hBCnANiWb3c2pD4qpdwB4CgAXwDw8Z7H7wPwu23/UQjxawDeDuCPATwIwAMB/DKAJwDYzLHDVVVV6VQhq6pqfvVXAF6s/ftCAB/QHyCEOFwI8QEhxJ1CiB8IIX5HCNH5uRdCnC2E+D9CiKH2t+cKIb41/f1iIcQHjcd/bermXCuEOHf6958QQlynPe5zQoh/0P79FSHEc1r2YS26FEJcIoR4lxDi01PX6KtCiAcJId4mhLhbCPFdIcRp2ra/JYS4WQixRwjxHSHEc7X/NhRCvFUIcZcQ4vtCiF+dPteSdrz+XyHE7UKI24QQv6cfhzZJKUcAPgTgGCHE0R0P/VMAL7TFskKIwwG8CcB/lFJeKqXcIyf6ppTy56WUy337UVVVVZYqZFVVza++DmCXEOJRUxB4PoAPGo/57wAOB/AwAE/CBMpe2jWolPLrmDguP6n9+ecAfNh8rBDiGACfBPB7AO4H4HUA/scUNK4EcJIQ4qgpxDwWwLFCiJ1CiG0A/j2ALzu+1gsA/A4mjtHydOxrpv++FMB/1R57M4AnTl/3GwF8UAjx4Ol/exmApwF4HIDTAZiQ934AIwAnATgNwE8D6I1GhRCbMTm2/wbg7o6H3gbgvQAutvy3xwPYAuBv+p6vqqpqPlQhq6pqvqXcrJ8C8F1MbuIAJq4NJuD1+qkrcguAtwL4BYdx/xrTKFIIsRPAz0z/ZupFAD4lpfyUlLKRUv4dgKsB/IyU8uD093MAnAHgWwC+gkn0dTaAm6SU/+b4Oi+TUv7jdMzLAByUUn5ASjkG8FFMgAgAIKX8uJRy93R/PgrgJgD/YfqfLwDwdinlD6WUdwN4i9pOCPFATADsNVLKfVLKOwD8NwAv6NivC4QQ9wA4gAnAPW/qanXpDwA8UwjxGOPvRwG4S99ecwgPCCHO6Rm3qqqqMFXIqqqab/0VJi7TS2BEhZjctDcD+IH2tx8AOMZh3A8D+FkhxBYAPwvgGinlDyyPeyiA86cgcM8UOH4cgHKOvgjgXExA64sArsDEUXvS9N+u+lft9wOWf+9Q/xBCvHg6AUDtz2MxORYA8BAAt2rb6r8/FMAmALdr2/45gAd07NfHpJRHYFI79W1M3LlOSSnvBPAOTKJBXf8GQLl+6rE/Nh3/31Cv11VVc6f6oa2qmmNNwef7mDhN/9P4z3cBWMUEHpT+L2huV8e438EEyJ6GlqhwqlsB/JWU8gjt5zAppXKITMj6IsIgy0lCiIdiEsf9KoD7TwHl2wDUzLzbARyrbXKc9vutmESRR2mvZZeU0nSc1klKeReAVwC4WIsmu/THAH4Cs1B25fT5n+2wfVVV1RyoQlZV1fzrlwD8pJRyn/7HaZT2MQBvntZBPRTA/4P1dVtt+jCAV2ECSG2z5j6ISfT11GlR+dZp6wIFMl8D8EhM4rp/kFJejwn0nQXgS+4v0VmHAZAA7gQAIcRLMXGylD4G4NVCiGOEEEcA+E31H6SUtwP4LIC3CiF2CSEGQogThRBPcnliKeV3AXwGwG84PPYeTKLb3zD+9kYA7xJCPE8IsWO6D4+bvq6qqqo5U4Wsqqo5l5TyZinl1S3/+T9hUsT+z5jUQ30YwF84Dv3XmLhQn586NbbnvhUT5+W3MQGbWwH8OqbXlin4XQPgeinlynSzKwH8YFrzxKqpA/fW6XP8K4BTAHxVe8h7MQGpbwH4JoBPYVLoPp7+9xdjErF+B5MC9ktxKPp00R8DeLkQoitiVHq79rxq//8IExD+DQB3TF/Dn2MCg1/z2I+qqqoCJKSUufehqqqqKouEEE8D8GdSyof2PriqqqrKU9XJqqqq2jASQmwTQvyMEGJp2n7iDZjMVqyqqqpiV3WyqqqqNoyEENsxKbg/GZNZiZ8E8Gop5X1Zd6yqqmohVSGrqqqqqqqqqiqCalxYVVVVVVVVVRVBFbKqqqqqqqqqqiJoqf8hACZ9Z6qqqqqqqqqqqmYl2v6DK2RVVVVtEP377S9mHe+f8S3W8X75/vxL+N28h3e8j93zp7wDVlVVzaVcC9+rk1VVNefihiebuIHKphiQZRM3eNlUYayqaiHU6mRVyKqqWhClgChTKaDKVCrIMpUCukxVCKuqmgtVyKqqmjeddtgvAAAGsvXzm0w345/WfheZ5stINACAV9zv3LW/DTIdmka7In5/b559sKlCWVVVFlXIqqoqVQqmbMoJWDpYmYoNWgqobNIhy6bY4NV0XA1LAi5dFb6qqqKqQlZVVQnqAipTuQCrC65MccJWF1jp6oMsXZzA1QVXpkqFLV0VvKqq2FQhq6oqpnzgqUupwcoHqNrkC1quMNUmH8hqky98+QBWm+YBvGyqMFZV1asKWVVVnOKCKqV5hCtdfaBFBStdHJClqw+4OABL17zCllKFrqqqdaqQVVVFETdU6UoJWNxwpWSDLE6w0sUNWbpswMUNWUrzDltKFbqqqipkVVV16tTDXohhwt68scGqERI3N1cfej6xKerzpZKUY7zsfk8GAAzzT7pkkX5xvXmPxFBEPjemT5hiZmYjgUvvrRBWtfCqkFVVpevUw1647m8pICsWXDVi9iOqAxYw35Al5Xjm3wqydM0zcJkX15v3zP4lFnSZDl0M6LK5gBW6qhZQFbKqNqZsMGUqNlxRwcoEKJtMqGrdl8JhywQqm2yQZVPp4OV6UTWhyyYqiPVFolQAc4lcK3xVzbEqZFVtDLlAla4S3SsXqNLlClhKJYKWC1wpuUKWUomw5XtBdQEtXb7Q5Vt3FgJdvs9RoatqjlQhq2px5QtWSqU4WL5QpeQLV0olQZYPXCn5QpZSSbAVekH1hS0lV+gKLfJ3ha7Q8StwVRWuCllV869QmLIpJmDZ4CoUpEyFgpVNqWErBKhsCoUsm1KDF+eFNBS4TNkAjGtGZezZmhW+qgpRhayq+RQnWCmlACwuqNLFCVhAOsjigislTshSSgVb3GcFF2jpUtAVo3WFgq4YY1fgqsqoCllV86MYYAWkqb+KIW64UooNWdxwpRQDspRiw1asC2kM2AIA0X7vIGsg4vUgq8BVlVgVsqrKVCygMsUJWI3RZHPAtH6fOe7NY73PVbwFmblgKxZUmbroyFnIitlWigu6Ul1Ab7pv9pm42jKYMMTZVkIaRycW2FXwqoqoCllV5SgVWClRAcuEHyUOuLKNrcPVzPMVDFqpAAtYD1lKsWCLClo5Lp4mbAE8wNXmPFGhywQtpQpcVXOiCllV+ZUaroBwwGoDK6VQwOobtw2w1p43EmiFQlZKuFJqgyxdMYArFLZyXTxtoKUrFLr6Ir4Q4GqDLF0xgKvCVhWTKmRVpVUOoDLlClh94KPLFa58xuwDq3X7EAG0fCArB1jpcoEsXbmBq4SLZx9w6YrRjsEVvFxgS1cFr6pC1HoizmclcFWRKgGslPoAyweCfBRr3JnnkA07aDVytRe0csNVqNT3SE7YGk/H7IOtEgDLVzHWNhxrX+a7gEtAeIGW/lgu4Hre4a9a+70CVxVV1cmqClZJUKVkwhUH9NjcK+q4vu6VTSkcrRLBytfJsimFu1XqRdPH1bIpRu8rG3j5ulqmqstVlVA1LqziU4lwBcwCFqejpCCLa0wOwALiQ1aJgAXwQJYSN2zpoFXyRZMKWkox+l7pwEUFLSVu4KqwVWWoQlYVTaWClS7B1EpBaYABe/zHBVhKMUCL+zhyixOygDiuFmfUFktcoKUUo+8V93Gs7lZVJFXIqvLT8TvPW/t9V3Mky5gKWLhbH5TaZHRVrKz9ftPBL639vmXpCNbn4QCtRmrHU9CPp9TeHy5oW20OAAB+4fBnrv1txxL/pYkDuvTL6pDh5evwwgEey+NDg9xw3+ra74cNh/TBI0h/lzkbxnJB10pz6Hz/xJ53sIxZNVeqkFXlJh2ulCiQZXOCKJBljlcaYOlgpaQDFsAPWQANtHTAAuiQJS3vOQW0FFwp6ZClxA1bVNAyL6sU0LK5Q1TQ0iELmAUtpdKAyzwM3N35KcClQ5ZSha0NpQpZVd2ywRUQDljcDTzbxisBsmxgpWQCllIJbpYJV7pCQMsGV0ohkGXClZINspRKgK2uS2oIbLVFcKGgZQKWkg20lEoArrbDWgps2UALqLC1QVQhq2pWbVBlyhWyXGqXOHtM5YKrLqDS1QZXunKBVhdcKblCVhdY6XKFrDaw0tUFWbpyAZfLJdUVtlxrnFyBqw2wdHXBlq5c4OVySHJEim2QZapC10KqQlbVRK5wBbgBFmcjT5+xUkOWK1wBboClxAlaLpDlAlhKfaDlCliAG2S5ABbgDllAetByu5xO5AJaPoXkfaDlAlhKrqAFpIctn3c0NWy5ghZQYWvBVCFro8oHqnTZACt0pl0bXIWOFxuwfIBKlw9c6UoBWj5wpdQGWT5wpdQGWa5gpcsHsnRxAlcbbPlAllIbbIXO1LPBlg9g6fKBLV2xwSv0nUwRLfqAlq4KXXOt1jOr7LnaVSSFApZNnK0Mmun/QhQTsFbFSnLAiq1GNkGAZZNEEwRYNq02B4IAi6K9I4G9I567rJRhQGXTuJn8cImzjcKjdoWtablvPMa+cbw+a6Hv4lge6tbPIa4+XgDwrJ2/yjZWVTmqTtaCiQOsdBeLCle6i0UdKxZghYKVEhWwYjlZVLjSnSwqXOlOFhWuQp0sXbFcLSp46a4WFZZ0RyvUyVIKdbSUYjlb1HcxVpwY6mbpqs7WXKnGhYssTscKAHY0h7OM04gGA8ljlnIB1rI4yNan6+aDXwKnGcwBWxJjCPDc0CTGGHosHN2lUbPMMg4AvOjwZ7K2lOQCrgYCA6ZLZQOBoaCPtdrw5mPX37eCAcPRbyCxc8jzmea8OXFB13IjWWOiClzFq0LWIoobrgAewGrEtOloQYC1LA4CoDdCVW7czTPuFc/r5IIsAGTQUuNwQBYnYAETyFLiQggO0Gqme0MFLTVOiZAFTEALABm2mulx4oAt7hsUB2wtT63IClsbQrUma9EUA7AoakSz9gOUA1jL4iALYFHqyFy1PLoneFuJ8RoYUaWPM5a0mIgbsExx3VyptVqNdo1tmNBvLAXGMnysGIClq5lW6YVKQdqe8Qh7xiPSvnC/UlW7xVG/1Ux/OFTrtuZP1cmaE6WAKl8XSwGVKS7AAvwgS8GUTb6A1QZUN7fWX+Vxs7rAysfN6hrH182KDVYv6qjJyuVsdYGVj7PVNY6vsxUbspSjZcrX4eoCNR+XK8VNytfhWm4prKvu1sKpOlnzrNIAS3esYsoVsHS3yiafJqjhjhXP8fBxs7icK07FBqw+SfDcbLlmIXLKx9WKDVhdUg6Xq8vVBWU+LleKV+zrbm1paV5W3a2No+pkFayUkaALZLmAVcqYsAuslFwAywWq2h2s9c9Ilaub1QdZLk6WK6j1uVkp4arLyVJKWRjvGg+6OFp9Y7m6WSkhq83R0tXnbrkCmYuzlfJm5eJstblZurjcjupqZVMtfJ8X5aq1aoMsH8cqNmC5QJUuriao7oA1eVYu2WDL171qAy3fcdogK4dz5QJZumJHiL41WG2w5TuODbhyOVguoKWrDbp8a7zaoCvHDasNuFwgS1cFrrlUhazSlbOQ3QZYIXFgLMjyhSvADlghMaAfYB16dg7FgqyQmNEGWbmiQV/IUuLADxtohRS620BrniEL8ActwA5bIcX0JmzlvGHZYMsXtIAKW3OmClklqoQZggqwqDVWHICl4CoEqmb2ZXp5oswGDIOr2b2gSkEWtfZKgRZlHB2yctddhUKWEjdsUWYTKtiizkhUwJUTspRCYEtJQRdl1iJwCLpKuHEp6AoBLaUKXMWrFr6XphIASylFEburSgCsUkRp6WCKq0g+N2BxqKTCeK52D0AZgEWVgitqDy5qSwhOldQGohbJp1d1shLruJ1PYWmu2aAhN9bcLneS9wPgcbGWxcHoCz+76qYDn8egZXFkd/F8f9m8xPMeUTVuVhiOCY+oTpYSB5JIAIeVcVhY1yykSAL4DsHN4lQjJXYt8axawKERw4KXHFeWBsDfVleLUzUuzK3jdj4FAK25pu7OhAKWPsYOSe/uHgpYumOVG67Uunz/34Er1v7GBxShl8RD79PmJZ5ljkI0bg7dLCnHRF/7UAQeEzXGz+169trfODpzU4bQL4w5YWtVszlCj4n+WriOyXX3Tj7nQ5E3NGm0+1wodOljDETYEVrW1jQcBo6hi3JU1Z5U2GJRjQtzSgEWRdT4K0XHcldRI0EuqW4+NjUyZ9xQxvukA1aouo4xxxgcXbm5emvtKySh4oinQodo224sG4yJC5Zz6b4RbRUDYBa4QjWWEmPiOBxH9Bk1Qoyq6mRFlA2ufF0bGxhxdC/ncLEAPyfLBlc5XCzbDVt3sXTxOFo+79f6fcvhZLUBlu/xsB1rHyfLtr3uZOmiulq+m7ddFHM4WquWu63P8bC9Fq7jodwsXTmcLRsY+bhabWDl62rpbpZSDlfLBmjV1QpWjQtTqc+1coGKPseJo8Fmqqiwz7VKAVl9TkobYCmlq89q38+UoNXlYLkci77j7QJZXWO0QZZSqgix66KYErRsgKXkeiy6Xgv1WAB20NKVArr63CcX4OobwwW4bJClKxVw9blgFbi8VOPCFEoRC/YBlkssmAKw+pa6AcoArDTq2wfORTbCNW5WyBEhx/GmjpEzLlPaNyojPnSJU/tea4pv2CmixD4Aum+02hsl9o3RSNkLYlsG3dfOGiMulipkMYkKWBw1U6lqrlwAq0+xAcu1FqjPxSpFK6N7o47PVX9VwhhAGaAFxAetLherJJ1y+Nbex6So23JxmqigBfDVbFHE8dWtghZdNS4kKASsTLjwBSPTyQoBK6qTZUKWbyF7LMDyuUGHwBV/bOj/3nHHhiFwZR4HXzCyxYU+Y/TFhaZixIchF0TuCDEEsMxj4fs6OI5DX3SoK1aM6AtBZpTou70JZn2RoU3UGJF+9akRYodqXMitHIBlKgdgmco9U1A5VmXEgn0qax9LcK9SvHdcMxCpKiE+1BXymlJ/21buVu6ZidQZiWaM2BcZ2sQdIYbc/Kuz5a/qZHmKEgsOsUQCqwEGpO25arEoYMXlYlFuzJSIkMfNCt93LieLAlgDsUQ6/gID0va+TpYpjlmIlAsil6NFiQqHgvYaqMfAx80yxeVuUSK9XUubSNsrZyvE0VLicLYo6FpdrRnV2YVUHbPjJzAQ6xfb9VFoE0YuUSFrFTTngwpYHI4HtQYrd9dzDsiiOlgic2NJKmQBPBEiRRygRa3HGmQ+BhTQUqICF7V2aseQ9kauEp+fYyYiRVJKfHLvO7PuQyGqcSFFVMBq5BiNpK0dlzsOW0b+WJAqjiJ3apNSSYw9llfvJm0/GtPeR+r+U7fnEjU+pC5hs4fYD3OFeBip35o5lvA55fCt5E917hhxb+Y1EqkRopQSjkaLVUIIPH3HK0n7sOiqTlaHjtnxE2u/h0CWDlZD4b+UA8dSJEohLpYOVtR1EgF/J4sTLLlnEXo35TRuBr5ukLn9lk1Hem2vw1WIE6U//2Dg/+1d357qhHE4WbpCXC0dMkIcIX37nZ6XBhOwqE1DfV+/CVhUR+zae/XrDE2+zhbHLEBdIc4W1c3SFeJs6QwgiNtvYFerOlm+0gErRPPsXC3jILtz5QNY81PI7qbS3B/f8Urbf26ldrW4F3KmDpfb1ZsZi7i9b5F86BqEbdo7HmV1tzicLYqqq7VeFbIsogAWNRrMDRgxYkFfwOJWib2wUoIHJSK07WfTuN9ESgcsJR/QsEEFBTSo0aGPSowk/p3RQ6vRfkKVE7SAvDEitZkpNUKsoDWrGhdq6oKrvriwC6xcokKOpUja5BIVdsEVJSp0AayYUBkTsPoiwz7A6IvN+rbviwy74Molsut6/r7IsGvb0uJCU33xWRdQuURnXdv3RYd9tVh9T993IY/92rt0bU8hPOWscYkRuaNDJZcIkTMyNOUSIXZxQF+E2LXtBooPWw9S3qlShWijR4Nd4qjF6tI8x4KNHLWCVm4Hp8+9krLphB3K/vdt2/fcuTWW4bMPG9kNG32O155V/xotTnW99r5973vtVDUIB62xbLIsSg0ccrWoMxFDNZaSNAtRShlUqwUccrU2EGytU7lXujlRimgwVuuHnDMGU8SiJcaErqJATu4ZhBtdOWce5o4cKK/djA2t44cPn72p6bxHiFVh2rBxoY97ZYsKfeDKjAs5liFxlRkV+oIVZ1SY0rVKCVjrlpnxuJCbjo7Ptra40AewKM8NzEaGvttSnKzYcaEp3dnxhQjT2fHZ3uZo+bRuoCyBY7pZPvsdOzaceS7aU61zt2JFhjaZzlbMyNCU6Wz5QJTN1fLZfkFdrTq7UFfOeHCeAItT8xwL+ijlzD2zZxZ3gXsVXZwF8ZTeWL67QZlxyD17svO5kK5Anlums7UpYWPRnK7WRiuM31BOVihcKScrFK6GYlMwZFAhiwJWVBcrB1jliggHYikYVIQYBG+r3KwQwFJuUuhzDwa01xyq1E6W0lCEA4Ryd0K2V45WKGRRlsChvGaA5mr5OFozzxn+lBiKQVI3S9eO4VJSN0tpKEQwOClXK3T7BXK1qpOVuy1DDuUCrAFxbbp5VMxC8S4tr94d7GBJ2VQHK5EaGQ4re1bTuli6qD20cojqbMlMnkKumq3a7iGuNgRkffcZT8ryvBINaTkeiou1IvcHb5tTlAWw3/EYwrQsCmxkBJVGLmd77nET/twUuDvrqPBzm+LKUNcKpGhfwl5apnJFh5dd+IXw5w1/WrIokLaHuK5oqBoAo0wOXq77cyotdFyo3rwnX5GWJZWLE7KUjq4QyNLh6jD4Lb2iy9fJ0uFoKaAziL6973PrcHXe1X/n/dxrkBQSYc0sF5N2irYOWJuGRyR7XolDru6Aeo57HvO3P+yn1n7/xl3bvbblXAon5QLTI40YDkvc3oHrNYcc74uf8+m135/7/vAkIuTqr0Pa0HPhIh2yhOe2K9pna+dgs9e2wGzhfkiTVbX9UuKFp9967rcBACf/7ReTPi+jNl5cmNO9yqEVub8IwPJVM/1fqEjuFVAdrDmSDlhAPkcrpzaiowXQXS1ShOjpMehg5etqbcah5GNPs0Jytii1ZdXV4tPCQpZSKhcr53I4OaNBCiBRRY4HK2B5S3exAKCRGe/6RPnc+M3H5qxVmmfQyhUfUuULWrqoNV5U0AqFrZGUyWDr1654bJLnyaGFigtNCo4NWH1QRYkLXaLCLriK7WR1wVVfXNgHZn3P3wVXTnFhGyC5RFe9S+XEjQzbACtFXGgCli5KbOgSGZouli6X2JCyHEzXtiliw1HLKRc7OuwDotjxoR4XmqLEh0C/u9D1KXeJD7vAqi9CXOn4nLlEiF1Q1Rch9gFZ7BhRxYZKcxQfbry4MLZyzp4zo0FTFMBy0dy6V0A3JBU+067LwVod3xP1ubsAizx25OMeMxqM7Wi1ARaQ19GiKmd8SBXF1QL6nS09MjSVM0IE8sWI86yFgayULpYLYFGL3tuUe9bghq2/4tieoEWvweoCrS4XC+iuzXK5mc9rfRYwv9EhsLHqtEyVGiG6FMvHBC0zNlyEGq25jwvb3gRuyPJ1rrijQh+4ojpZtrjOB45scaHP9ubz+8LVusjQB45s0ZXXMjn8caEPYHHHhj4OVoyZhn2ApcsWG1KXg/HZnjs67HKxTMWIDlO+dvPYd0WFNnHPPvS52tviQx+IssWHXZGhKVuE6ONYmWDl63ZxR4hmZKhUeHRY40KKUgKWTbkL26t7lU8lFbn3iVoEzx0bUp0S3+03ajE8kL9paW5Xa14L44H1UOXb+qFGiN2aWyery0bkcLEoNVdc/bFC4YrLyQqFoyUskcBqgAEJrs67+u9ocCQGpO253KxQwOJwsyg1WByOlo+DZeobd20nLwVD2Z7D0fJxsXRxOVo5X/9A+DtZujiK4kM//crVCgUn5Wr5OFm6lKsVWnulAItSu8XhbLW5WUCxjtZiOVmxc9rcS8L0FbbHFod7RRHZvVoAzZODxS0KYAG0/lkA3QHbyI5WCaIWxed2tagd43O1fFCK7WzNW53W3EFW3wGWkkbRuQHrlvtemvX5F0GXn0G7SUty7EVbg6yRB0jbr45/RNq+Kq8o6xQCk7UOKcoNmW949uW0Aaqwj3oNIz4/FbT67uPzBFpzFRe2HVj9DXnKF/0hixOsQqJCHayO2flu8j6ExIWN0Ja1kf7srW+/JMPisnc9ZkvQdjadd9VnvLfRHRzRMY3aRSGR4SxchX7/OfQ+bBrez3trThcrJDZ8+8POW/tdCNpl58o7/ZbdAQD9ckhNPUJiMx2w6GcAsDPAFOacbRlyDN74nEOQRT0HQqPDRrvlDTyXxjG3XwrYfpX5y/5hAZ9F/chTA8CQCPFPnnT9oedvOQ8Kig7nPy50AayqMAKzff4AACAASURBVOmAlGN7gBewQpQ7IlvvXoUcU9r7kPsY6IAF0D/bjz+aFhtSUw9yiwOGbaiuFlXUY0A9Bzj6aTVEj2FUhkcx12o7D+bB0Uq7om2gYgFWjQbzA1ZuuALywwU1HpyOQto6xjFo5Cq5CD6lbFAlJc3RGktaIXgD+jfhPathjhaXqMdASkFytBRoUQriG8ggR0tpBBnkaHFJxYchjhZwyNUKfQUjhoWn286D7z7jSSU5WutUvJNlApaUYu3HlEtUqNYYzAlYt9z30uyA1YiGBEjU7YH8gCWnZapt/400tmNdVkzAcq3Nyg2ZwHoXSym3mzXZB9r2rm5OWy0Wx5XK1dGK1Zh1LGmuVts130f0gnhJcrVGkNldrX1ylVSvJUGrHVLrIbrUbL3ui49Z//wt9/+SHa2iIcsGWBTldq6AjeFejUQ3YLzrMVuiA9blZz6187+XABb9gOXyPpXnYOly6Z3VBlhKKUArdqufFNFh32NyR4dA/3HQ67Fs4gCtPtjqA6lFiA9zF8YD/MXxpYJWsZBVASuOOOqnqtxEnWXYr/73ssvNSgWaXaDVB1hc6gItl2s9B4R1AYbLjMLYn9x5Xl5o3lRBa6KNAFpFzi5UB8oXrGxxYWq4ss0u9IGrWLMLfeHKnGHou71thmGOeNCcZegLFtRZhsD6mYb+ESF14Y/1Mw1TO3m22ixfwKLONAPsMw59rvMcK4iY9Um+LRvoZ8P6Gq0cgGUehz4Xy6YYsw99nSqzVst3e1utFvfswj7ZarV8j2yMGYj6DEOnfZieDxlqtOZndmEoYJnKXXel5Ote3bbnV9j3IYd7ZUaGueuvgDCw4IaRRS1y7xN1yR0gzkxi3y/SsR0tF6Ws0Yqp3EvxAOvrtKhRYIgWwdUCeHprcTlbJTlaRc0uvOHp54LKw/MIVtzah7txGI5kgat5L24Hyqi/AiiApc8xC3s/Vsc/wqbh/bIeCzXbkBIRUmeaqdjwyju3BwMTdcYhcGjGXWjjUfoZkX/WIXAItH7vuWENSHXwDj0vqLMPFZhRZx8CE1crtYulpINWrlmIAH0mojonbnj6uXjUJ68g7AmPinGyJoBFUwWsQ+Iobq+AxbQPcsTgYFGXsQVWR3cR94EuDkeLQ1RHisPROkC0cuhnxAS0ai3WRLlnHwJluFrAYtRrATxcQVUxkEVVCU1Jc643qFRKTPruk3dg3NDek4bhPf30GU8nj0FVIw/m3gXagtlqCNlAEsd528OexbAf9PPi8UfTY1ue6DD/TbWE6LAZ029F5BITKfC/Xpy/39IIY4yIXw6p68cCwF7i+qkcZ3bTzD+iZI8LKaTJcbFttJN5EFjkXApclaB3n7yDPAYHXHGMoSQxDiqA1+FKyjGEoBfRB0kDo9Hobiwt+S+7xAlXYykwJBYsq89+SESktlWgdeWd2wj7ERYdrmj20VhKDDkq6gOkdkOBFscyPIPAl6JAazAMP9co54WSAq3nfCBvXY8CraXA+5IOWoNAP0WB1g4RlkpwLM2jg9Zg4H9uKMbIFR3OLSZyA1aoTMB64I63kcfkKH7fL+8mj+GrGIAVAkvmNhxulm/saHOvpMwQXTI4WOuGZBhznMl5LsHxtimHo2WLCX1dLY6o8U3P+uzsmAW4WgCyuFqroLd94XCxzDGorhawcZ2trHsc6mLFAiwf6FqR+4twsIAyXKxFdLAWVaORH4DboGoeQSsWYPny0cqCF0FxvLyNDFqmqNEhwBcfznOEmKs+K1ufrJAX3PehecqXuk8kF4jqiwxdwOpf976m9zF9cumX1QdX24V/LOQrF7gaDno6KDtcDAcO9n/fOE+7+pO9Y/SpLzZ0qb9KFhv2gFBfbOgCUkJ0X/BcarCo0eFkP7rHcLnhUmLDQ/vR/d/7ACtVbOgCQn3RocsYfdGh6WKt254QHeriOD9SxId9TpZLdNgHVC7RoQuUhUaIuvqO+n8957ud/z0kPowUG5bVJ8sXsDjWrSpFD9n5Tjxk5zt7H9MFUKUUt3PI1Xnqe1x1sAxFiAlL1qJcH0oohC9JHI4WsDjnR19RvAscNdP/LYKaZuDtbKV2tJI7WT4v0Lvje4uT5RMD2pyskFjQdLNMsNq955XrtjEfIywM7ANXsZyskGjQ5mb5gpHNzfIdI5abFTKDMIqj5QlXNjcrJAo0Ha2QWYRUR8vmVoTcXGM5Wr4xYQxXKyTKszlavuPYHK0+F2vdGAyuFtc5EsvV8qnJsrlaIfBkOlshY1BdrbZ3oM/JMuXjbDE7WmU5WS7iqrvyLW7nKIY3ZXOuzL/1uVsh7lWO4vc2me0c5rn+yiyCL6JFQ6B867NcxNGmIURcbgVHewdT81yHZRbDh7yUUuu0SnK4fIveOVo9ADz1WlRJLG5hfNI9cnWxSpo5mKK4vQ+wStK8F7iX0DcrmgIjQh20OAraQ8VRCK9fO3LeQPWAIBSwFi061A+Dr4u1NkYtiC9SHEXxQFrQShUbJosLXV4Qx8n/k1+id9YbMZwsgH2x6BziiA054CpTKyCrqLGhlMvg+I7CFhkS4Wg4PJxlN95+4nPIY3AUwnOIIzYEgFUiLHHFhlxm2mHE7oq/9+wwwDLFVRRPFUd0yNG6AaAt7cMpjqL4/+YZFdrkEh8yxYblx4Wl2LZcgMUhqhsXEpfa9M5H7iSPwSEpebpslySW3lkc7RTG95LH4AAsLlHd0kYKnHUUPQZeZiAbDkdrjtPKVnEVxVN12Yu+RB6DY0kejsWtOfYD4OmrxZJ4FBAfJtmDLherpJmDiwRYuvbK8DXrOACrkQKNFORldpRyg5ZcO08K+CbNGO9RQIsTsKixobo4c1ykKaClAIsDcEqKDvfxmC7ZJRux9kMVBbSWwbeu0YjpmrRooNUFW7Fjw+hxYdsLiAlWvpFhLLgKiQttcOW73I9tjB3iKK8xbHDl0qtq3b5Y3ue+vlmmbKcoR4ISEhlK67mSKTaMVD/lGx3GdLB8okPbucZ1zn7jrq1eY7Q5WKFLziiFRIexXKyQ2JArKjTlGx3awEp4XpfaxnnuB8/xGsMGWb6xnw2KlgKuS7ZxOCJI3/jwrU+8cf1+MJURtEWIxNiwrLiwFOcKWDz3KmY86PutguNbSMwv8L5F8HbAyqRC+mCVFBHaxHXOckSHHJpnRysWYAFMBfGejlbb47niQ6oW0dWaxwgx6rPZXKyNBFhj6eao9dVOuYJTjPYToYoNWFz3GlfQig1YXrVZkQGLoz6rJHE1vHVVVx1W6ugwdi2WK2jFBCylHKAVU65w0/W4ERpn2OoapxTQ4pINtGLFhtHiQnOHU8NVV2SY2r3qig1dwagrMnQdoysy9Km96rJtXW9UXZGhD0CliA3dAStybJjYveqKDVM7WF2xoes51xc3uI7TFR26FrpTY0OlrvgwZbF7X3SYArJ0dcWHriDVFR/6wFhXfOhaj9UV2bkCUFd86ANRseNDW1TYui8MEaIZHwbGhmnjwtyA1aaRXN7Q8SClAN5FPk4AVxF8bBUTERYSDwJ5IsK2Ynifc67rsT7jcESHXABUSnw4L8XwPnAU29XyKXhfxPiwpMJ4XdyOFrHjSbdKgStg/muvGozXuVkh4+yVd804WiGzBxspZr5BhJ7o40bMOFoh9wsp6W6Wigx1RysMrhpQv7eo2HDG0coEWCo21B2tnDVYYylmHK2Q805tQz1/zzrq4IyjFdKqQW1CdbXGUs44WrnaNSjQ0l2t1A6WkooOdUcrBJrUNrqr5TuOqtHSHa2QGYUN5DoXyRd4FGiFFMX37UuI9splck8t22fae4wpaIUsON2nKE5WSW0ZgPkHLNsYpfS/4qpjKeQLOYCC3CugCAdLwVYJRe7K0eI67yjjKEeLoxcWVaU4WkBZrhbbAtOZ2zwocfWx4nC1SuqpBaRp9xAidshKvcJ1mz5/zqQOqgTAUgXwpTQXBeiAxbluIPX+wHl/oQMWDxRJOS4CsJRKAKwSVVp0WADvAVhM0ALosMUBWgAP4CjQKqEJqgItn3os674w3Zc4OYYVsq4778lkB4vLBVsdLZEBK2RR5rZxSoA9pT9+2P1ZxuE4oUdM3xo4QOtvTuNa2JgDjpp1C1H7Smr/o2rPKr2ygGsK9irDOcO2L2yOGh22GsnjaHGdM7/75K/Q96UZQDK832OG85erRuvSF3yNZRwOrWKMcSGu1l65jAMH/frRWfeF4bPdNANcd96TyfsCRHCyxoQPBFfEuDqafKD+/glHhO8LlyNRQlfwqd594iPx7hMfCQDYv7o5894Acprpj2X+pQ9WxpMaqE+cfn7mPQGK6CSv6Q9O+CUANNDijvc4FpOmSgHW449eybwnsyohOnzLUyeAtbx3O8t4FNBS2zZjpnVCCRpP703/+wVX4X+/4KrMe3NIHKAF0Fytt/2H/wMALKAF0K45nElN/rvbVFzulQIsToWCkrldI/N56AquSpCEWAMs1nEDP98rxsWXB7RCL1qz24W6WRxOBHAIsJS4HC2O7XKClulgcYFWqJtlbhcKWvp5E3oOKcBSCgUtDgfLVDMeFgFbSjlBy3x/uUCLQwcObmVztXKL7SwOtdba4kFf6GqDKx83S66ZnutPNh/Q4ooZuVQaYNnE5Wb53ltMwOJVAz/Ysj/WB7Taop6QCMgErBC1Wfe+ln7bY0twtJQ4QcsHttoe6wNanOeNTb6gZQOskOiw7fEVtOwaTyt/KQqJDpWLZSp3fMgRGWZ1svpAygW0YrlXoSoNrroAK3VkGMO9sj6P4+e7C7DSx4bd5w21PuvQOG4HpwuwONwsH/VdIFODVlcdVurosA/GUkeHpoulyxW0+kCKy+FKDVrjjvvUIsaHHAXxwPy7Wixnq0l7LnVZJbV4cHWeOAAqZ2RoUwm1WUopa7NcHKx0oMVV/xcnIrTJBbRYplQ7jpEKtFwK3XNHh6a4iuH71AVYSilrtGLEjaHqAqwc4rpW9ImrzQOXXK4n5mOobhZ5WZ2uHRhaGnv5wpVoaTDm6149+av3WP/uC07CwqUh8DUQ8T50IfHg9k3xvoH7OlhDwQMdtialIfHgs675OMPeAPbvNL7nn33/fS+aouU98Y0Id25a/6UhBK7aGgn6jNW19A6HfGcSXnknzxeYtmalvhBmW4In5GZrO3dcAMvUlh371++PJxiJluaRvuMMhvHWfQ0BrGd+5MwIezJRyHs+ZPBj2pqXtkWFbdq2lWexdts1p+t6c8rlf981XNplddrEPXvQR2ZtVu66qViOVkn1V0C6iND63MZnKG79VYj8zz9bbBhy0bRtE1KDxRUdttVt+SimmxXSqiGmoxXicpUw61CX6WqFOE/zGh32KVZ0mMrBssnmavkCFlDG7EMfRfUwx80Aw0FDgiu1rRCSrfaKAlcSDQQGRdVeAXS42r+6mdXNosCVig25HC2ABlgqNqQ7WvqyO5RzcAyBIfmCKSHXXAlKkfue1SXs3DSi96aZLtdEGUeBFqerRemF9fijV1gcLX0JHkqMqC/BE3r+qO0ERJCDpWt573Zs2bGfpUWDGDSkcRRocbpalJhQgVZMV8tVeo0W1dXiWJJHgRbV1dKX5IkFXaSj5ZJV5nSvTP39E45gay5a1a6c7pUpKUtzsHxnHNrFWQjPNYuQQyVMueYWZzE8R53WWPLMGORyRbjqtLhUmqu1iGogg1wsUyldrdDarKhxIRdgjQo76RvJc4PjigzfeeLJ5DEaCOxdpS3UyS2OQviV8RLbechTCC/RUeLoOQ5dbznhIpZx9o14PqNcX1+4osMVhjhKSoGzj/JfENg+Fs8YY4YD/YdP/Sp9EEY142FRE6pGK5tYusR/4oKrGfaGD4q5+mlxvVdcoBXr3AkufO+iOnNnbQXwLooFVz/51R8FbWfC1UDw7F9oEbwJV4PAD1FjOE87NoUtARTLwQqNDVfGs8e1bRKFr8JjQ/P5Q46X7TWEnYdcgGXqsKWwLyH6u8z17S80NrTBVej5o18Pv37XpsAx1v/NNrHDd5xh4IGOBVibt4fFP+Y9h+uzHhodjlZm32cxCDx3DEh71sfOCBsnUi1WaHT49jPvmPk31/sVGh/6nD8tBfB5C99DltqJ6V59/gn3897G5l5xOVohsrlXJiy5KGQbm0qKCIH1gJVfMQtO/c/DWIAVKhOjS3O0QmVevEMcrZj16hyOFqdW9pflSnBFhyGOlm0bLleLSyGulglYnApxtWK7n6yQxbW4c2mKDVO+sSFHPAi0A5ZvbBgbsPi6weeKDdvukr53z7Iiwjb5Rodtl+lcoMUREQLt51uu6LDt8b6gVVpM2Hacc4GW6WIpcS0w7QtasWcUcsSHpbED5/4ExYW2qNBlh/piw9S1Vy6xoQtgpYwNXQDLJTZ0cbBcYsOUDlZfbOjqXqWNDV2eq+8Yuu5v/3mY0sFyiQ1dLs8po0MXwHI5f1yuhy7RoStI9UWHLuO4RIepAasvPnQ5zimjwzbA0uUSHboAmUt0mLJlg0t06OJicb1fQH98GHr+WCLDeHFhaQTqo67YsJHj5HFgn6MV28Ey1edolRYRuiqdo5W6J033+Zo6IuxztFy//6ZytFwdLI7lwIB+Ryt1W6s+R6s0B8tVqRwtF8AC0jlaqXti9a176BoTlsYTVMZJ2oy0qzartBmEPkoBYz6A1QVR81yD1RUb5qrBagctnwtc12PnIyL0lS84zUuNlu/FOEV06ANrbaCVC7C6arR8jvU81Wj5QFhpNVpcSjHzMBXMBUNWKN2ZoDUaD7MClulmhTpYsdo6vPPEk4McLBOmGoggwLK5WTkdrLEczMDWyngpCLDiOrAhYGRr7RAyzhimo5UTsPaNhuscrVBgigVaK83Auw6L8/wxQUvKMBfL3CZ0nBKL4XXYCj32XO+ZDbRcXayZ/WnEOqAKcbk+ccHV62ArZ2d3m6MVUuzO9X7ZFphOef54Q9Z15z259r+KtP2hcSagxRUPUqWD1rxGhDE162ZxXdyo40zOxXl3sLi3V+JytPRrIeW6qECLGhFyRYw6aM1rTNgmbtAKAawYUqCVE7BiqMR+Wj6NSb0L37/11KcE7NasRqMlDCMuyOkrOXVGfuKr/0oei6sI/h0POwXDwN4qMdRIgZ2bw/pnmeO0LQbso5XxkG3pFK5CSykFnv3Nj7KMxaG3nPAKlnH0xYCo44T20DLFsT8rzSD6otK+uvLOMm7YAPCHT70yuMdhLEkpgntpmeL43I9XliCG5RwjKQWe9fHTc+/Gmt5+xmRyGccSaZzXaY5Fpk/9zOf0f5axQLSuMdHFknKw9lOSONysdzzsFIY94ZNacmDPCq0jPPeSKTHciJxjcOrNx78CY4ZrEtftQ41TSmd4FQ/m7qOlqwFw1tE8NVpcCulxaIor9uH+jFHHG69MyhTkuKx70CfOv4Y8RjP9X0niOI9yXKe9zg4uF0uJClocigFpFNDSAWvMNAuFohhryVHHjLEWIcci5gDwN6c9n2N3SHrz8YccLApoNS2/l6IS9ylU+mspAbT+8KlXrv1OAS2uOFUXV8NSTpUAWvrxpYCWDlcU0FIuFsDX65Ai/fhwRIeuPJTslY9GSzOAFSqbexXiaNm2+cITHogvPOGB5H0EwkDL5mDlBC0bDIW4WY0U68ay/a1PK+PhOsAaS5HNjWj7ZpUTtHTAUgoBLdulNWRpa9s2tmL4VLIVuec8hwD7Mc0JWjpgKY2bAZurFbKNuZ1ZDE/Zn6AJXCvr72U5Qcv2GkJAywZVIaClA5aSOWkpVDEL4mMoyVnRBVc+blZp0SCX3vGwUzojwhyg1QVAPqAVwwmzieMmmWNKOKdsgKXkA1qpHCIO0PLZV65O7pzq2v8SHC1TPqDF0Yk91efM53lsgLU2TgbQ6tr3T5x/DVt8WJq4zqPYoOV8RoRGhS7uVerYsA/WcrpZJcgFjKj1WT7PBcSJCG3iuqindrO6AEuJo0YLSN9ENNXzpHazXPY7NWjZXKwQcTVs7VPq6LALsJRKiA5D1AdSrnVaNhdLV+ro0OVcCwUtFy5ynl0YAlm+8WDbjENfB0u0zGTwHYdjtiHQPuMwpMA99oxDX+epbcah7zhtMw594Sr2jMOQm0PsGYcugKVr2PISfGGl7dPkO06KGYe+LlbsWYe+x+gbkWcdhsBV28xDn89I14wx389a7FmHLoA1M07kWYch16K2mYe+TtWg5dPWB1imOGYdAnzX65BZh9NZhulnF3LUXwFhEaFtm5BxNpqjxRXthYzD9dwlzThMIV/AAuyOVsiljusWEnvGYWkxYchxKzE6tMn3cxN7cecQcT33vDhaIVGgbRtfwAL4XK3SemnpinIWhAKWGRty1WBRxuECLVOltmnwFVdsaFNoRBgLtEI/yLGiwxDAiq1Q8IoFWqGAVVJrB6VYoBUaEZr1WaGfD67PWczo0NfFUioNtDjqs2wKASylWKAVeh5xgxbrGcAxg1CBFhWw1PalFMur5Xr6itz7NG4EeyE81UVSoBUyY9Dcj0YK6yxCX3GCFsdsFm7QogKWcrNCZgzqaowfirhBi+pgxZh1SD1G3KBFrcFSsw45+hdxfM5izDoMBay1sZhBi3qcVDE8tRcWZy8tbtCinkecMw/LIBBDXFEjV0F9LDeLIi7Q4orpYjpaoSrNjbjstBewjPNfjv9llnFWCzs+AB9oHSzMQQD44lUu0HrLT32DZRwuUb+kxdBoeTPLOFygVWIZA8XF0sUFWk0hxooSS+H76upsUWZo+3vzBBoSCgcbDUIGjMXiocXw7zjxtJl/D5jWl6IUwse6oB22aSVou1GE2hlKAbO5oHboe2aO89xvfiR4n3TAopxD5j6FHifz8iGYTilKMfyKdkMbMJ7ioccoVvkzpRjeBCwRuHyOND6zoculmdcijqW3gPBi+PGKeU9jKtAm3NNiAdYzPv64oO3++xn3MO/JRJRieHNtXRF4jTTH2b71QOtjoxe+m4DFqXEg/TeGy2P+O7VMwALW3+RCFepolfaNMZZC3Szb+8P1noU6WqaDFbo/XK/DJq4FikMdrRXjmtGUtTQhq0IdLS4HywQsgC89KO36xFYfHHhPi+lg/e35/xRt7BCFOlomGHFq/8FtwdtG8dVCu/pyqA2ouECrxOjQV6VdwIA4LpZS3m7e9uf2Ba22iJAN1oM+syxP3Spf0DIBS4kLtEKOUexeYb6g1QZYNmBKpbbrEcd1qi7BE0exXCwlthqtgOsjN6wFx4UuDpZLbOgCV66xYR9IpY4NbQ6WqdSxYUrAcokNY8KVKZe4xxVa+t4313FcokOXGiyX88h1n/qOkytcpYwO2wBLV8roMHV/bJfo0NXB6osOXYHMJTrsux5xxYaAW3RoxoQ2pY4OU9ZhuUSHsQFLl2t06AJGLtGhyzhmdBglLnSNCLlODpfY0MWpyh0b2pQyNkztYO1b5Ska5VJphfBAv6PlWuTedx7FjAjblCo6dAEsYGNHh6UVuQNu16OU1ywXwALSRoclFrqnlIujxeU8uY7jGx1m9S291ovqOCF94ClVbOjiYnGrC7Q2WkTYpi7Q8gGRrsdyAY3vLMIU0WHsiLBNbaDlClhKKaLDXKu8cc067HKqfGLFrvosn+sR17Vr3qLDHIDVV5+V0sVS6gItH8CKWbPVJa+4kFLkrkeHlJPHjA5DoSlWdEiBq1jRYQmApUeHOeDKlBn3UABFf98o45jRYWirBq79Gc58ZoOHARAnOvQFLF2xosPcy+iasSHFwdJjQ0rNlhkbhl6PYkWHrg6WTbGiwxIcLD06zAFXpszokAJNenRIGWf71gN8cSF1FmGM6JDiSm2U6LAEwALKjg5zRGk26dEhpRdWzmL42FKOFgWwgDjRYW7AAmbdrFIiQt3RojYr5hYFsIA40WEJgFWidEcrdUTYJpfoMLmlwHECjccDFkjijg5zRIRtGjflNfYDynCxlLggQkFNrpjQpgaCZX/4OuezDAOADlgxVAJgKXHHhlwzDzmuR4seHZYEWCo6LMHFUhrLAQtgpYwOk16t2BbelAIN1wefAbQe+9pv485L78Tz//Cz9P1hujk24FkSREq+G+Tdy1uxh8HR4uoM3UiBVa7ziOlDu/wnm/Ebv/oXLGNxqJHAKtOXEbZCeCbIaiSPo7XKtNQVx7IyAPCq7/04PnT3WeRxAD7AGo2W0BTUQ2t1dRP23buTYW8mbhaHoyXlAJLjGDVi8kPUzosfji9evw+nvp/eC5Pr3JZSrFszM3isRKDlvLf7C1k2RX+jSgItblFu2vq2pTgR1HXklPQLLFf0wL0WZKh+5uf/59rvJYBWjEiNfh5N3isu0OIU13lEuRm96ns/vvb7cR97FcfukDVzzS4ItADg4IEyHC0d0kigpZ+DhVzX9Pefcm7LmWt2GZ//VYf3ymuRQAVa2zcvh+0RUbY3qGkGGAQuCTE7jvAuhn/sa7+97m/Kzfrob/40fZ8gvIvhbXA2lsJ7SRDbzVD9zaeI2QZXys3a6bn8ju3C2kjhXRBrG2fcCNISRRTpcFWKTMAaTY/ZEkPxsZRhhfArxk1j33iAwwjLlCip1+pbDG+D0JDzyHZdk1IEL0+mS4HWrRf8KXmsEFmv2eMhBoHL78yME/DZt9UWK9Daui1sCR4lBUq+xfA2F0yOhxC+x8gGVepvHufkzosfvu5vys361oXuUXQbUIWc27axxs0AQ4Z7f4hc4EqpDBx0UBcB53C0bICliyM6BPjaCvg4Wqmm6ftEh13fXLmmg5fiaCnlcrO6HKxRJmfUBCylXI5W1zHK5WjpLlYJ6rxmZ3C0Yi4Bp8snOux6rJejxXTO2QBLF0d0CPid212PLcXR6lLQHqaODl3ekI0eHbo8JnV0GCMijP2Y1OpzsUqIDWPJ/Tzqft84a7RSq+/a5noz6gOsUqJDXRs9OnSBMSfQcrlnJb6vuZy3XI9JDVo+6JRetAAAIABJREFULhbg0Sfryz/+HOt/iB0d+n6b44gOJ+O0H5c+F8sUR3QItPfR8q3faosOQxwsW+wTAldt0aHPBbQrOvC9EKeIDn1iwj96xy9G3JOJfCGDIzoEuqPDPsDSxREdKrVFh77HqO088r2udcUrPg5WitjQ+5rNEB0C7Z//EAeLGh0qtUWHvoXyrdGhLzy1nI99DpaprtjQ5/3vOq99z6PY0WEbXD3xK/8L4F5Wp2TFdrR8AYtTMfsf5erkrWSLDn3BKOZCs9zyrcOK7WiFuDixo0MfwALiR4chxyh2dOgbEW40RytVRNgma70VU2+tnIXtbbGhLxh11W0tisjvdszoMPRAlxYdctVn2RQKXqXMOmxTKBiZ24WOE7M+K7TQfSNFh76ApTQP0WHodc3cLrQGKyZo5b45lviFSlcoYLG0dgCsYObrYrWJ67wOHSdmbOgbEeoix4W6OKNDjg8rZ3TI5WBxRoccztZQSBZQEoKvBuuwJXozRRUdcFx0OaNDjpmEnNEhF0xwRoehgKWLMzrk0nAgWa5rQkiWInfO6JDles0UGwLAeOQ1cb5VnLEhh4MlhmO+Ivc3ncQyzrcuXGU7rznG4YwNXeBqLuNCrm9DXI7WY1/9LZZxOOWyOrmLuDqwcwEWl7galnKKq1UDl6OVo9C7TweZnKgS+2hxNXXlmkVYWnTIFRtyiqsYvmmYIlEmeOQU14xDLieqtBmHbHsjpcC+5a3Yt0w7KbntZi7QQtNMfojbP/8PLsfz/+Dy4GH0zrnUY6W2pwLbKleNwVT7Rpuwb0RfK5Ory/CYoaM3dy8sKmhxA9ZICnKN1vL0s8oFx1TQaowf6jgAMCIe91ff9ATaAIaooMX1GVOigtZoZRNGK5sgGwHJBLVU0OK+XjfNkARtuy4+AbsuPgGiGUM0fO4hReozz/XZp4LWymgJK6MlHoeWPALWnzyhoBUrz6eA1qmvvZZxTw6JAlq6uHLwUNDiBixdoaDFlfGbCgWtWM1GS6zRCgWtZeMzmhu0ygsb+QFLKRS0ol2vA0FrRFzsuUuhoMV1LeI61rsuPoFlHFP/7gPhDlusxCEUtFYMt5B67Ml3yLYdoDpa3AoBLStghbhZFAfMQWwQERGYUmkjzFbRFQJapcWEJmAp5QYtUyGfYts2IW5WLMAqVVzRIZebFfTcbJOL4r4GLjcrBLTaVvHIJROwlCjvAbnwve/JD9viVjiY8iboUhDf62ANHC/cDoD10def1/sYl+PjulRB31hDx2UhYrpYplyK4TmPUZ9ciuFTLpfjWgyfErBciuHbAEuX79IpbXIphnc5813OepdxlhwveSkBy6UYPum12qEY3sXBEkyTV1wL4fuOEde1GgAGg/5j5OJgyQEP2F774lHvY1xBiuOz71oI3wZYSm3vGVvh+3SgGbmcAC6OVmqXoc/VcooIXWq0IjtYptg66DrAU0rAAsKjQ1OpzrXU6xG6OFqpHSyuPlqpvtm6flq5PtUujlZqB6u0Yvg+uUaEKeuzUnY751QqRyu1U+USG/YBFmB/P2xcZCr4TulzAnSB1tzHOAwg1VcMn8N27gKt1IDlIq61sFxV2jqHQDdolRYRAm4ulhLHhTnVjEOfK0IXaJUYESb/QjxnMw5TX4eA7pmLqsh9o6sLtFwASynkPQu66oQ8EcfMQ041zWCdo3Xqa68NK3S3gVYAfNlAK6SDrm3GT8h7ZgOtnIBlm3UYOrsp5qzD1C6WLhto5QQs26zD5WbgBVic2jcerIOtkNmDbduEfOWygVZOwLK5WdyzCH3UjIfrYEvNIvRR7BmHHNeh0FnRNtAKgauYblZIW52YrXjUDEJfeS8b5fNgF2usTzpoleBisbZ4sP3uKR20Sjg+JRbDlxYd6qCVE7CUdNAq0cEKVWl9z4BZqKJ42jpoleBg6aBVwnVIF3UWYYxi+BKOkQ5aFPcqBmiV8NnV3awQuDLlykPed9B5mTGRRdReWlNxt3egHmsFWqXFhBznUO72DrH0G7/6F0UBlnKzqA4W94xDrvoqjnFGsgzA0lXSdbq06FC5WVz9r0pq01BK/yylUvpnKXktgu06u1D98qUnPDdgl2alDtgOx5mHfWNRZyA87jVXTX4ZFtRNt2nwkd9+eu69WNPq9OSkLlkgpWCZ4adOco4leAD6rMNnvHDyrUYs0S5OcnqcBcPSELIZ4A/f+RLaGNP/p17i1FI5Q6Z7Nseso2btHCrjhvKa752B4YC+FmwjJ7O7BoJ2PVPj/PCCd5PGUZ9V6mdstDp5PVzLpVFnHCpHbOt2nqV3OHTkGx4IOeRZT5g621AHtWsupO4Nz2deOVgcS++c89XL9H/SZxe2DEzSXmKNFneXWIz7p54m0dQNe8HvfzLzjky0qtE/5ZsA9zc2TlH2SQEWAMgRV38f2jcutf1vvvKS8DFafqdozDQQ9TNfQnyh6zXfOwMAMG5o678qMKJKH+fYj/1K8DglftaVKLGhvu3B/WXUGh/5hgcCAMSYZw3hRXOzOCJCJR8OSp7/mAdq7/LWINgyxwktkFtzsZTGo7ywZcSNL/j9T2aFrVXLzZ7DcqUUrOvbcSzBo4/NMk4AaMlmsA6sQkDLNg4FtGbGhj9srTRi3YLPuUHL3G7faIh9THAcIgVYSuNmOQi2TMBq5CgIurhAra2o21ej1aU1FwuwT1pKKRuc5QStI9/wwDXAUsoJWrblek5/P8vuBH3mbQXuKdc3THqmdh0gqqvl8hzzrFJcLSXfk5SjE3vXY3OBlu5izYzjcdPugimqo6XkC1qxy7lygVZp1wcTsELVBUY+0NT2WF83i+sLiw5XpjhAy9fNytlB3iYTrmKoNEfLR13uVSrQKquS2VF9F0rXC+k6F0tXDkerp2g+NWjZXCxdridp3wW3tEjBdX/aAGttnMTuSB+QuYJWH/+48pHpYJlKDVp9j0vtZvUBFjU69FUfjLmC1tx93h3Bqe9xqd2sPsDicrNc1bfgdE43K6e8C9+VfAvgfQ9MW1G8zzhdhXKdgGUqRUG8x6zEFAXxfYClq6uI0GsWRsf75Xth5iiI79qfPsCaGaejsNrHqeoqhvcZp6sY3pd72t6VPsDSlaIY3ue6kaIQ3sfB6iqG93GpugrhfcbpKoTn+Lx3uVc2pSiE93GwUhTC+zhYKQrhfdwujiJ4oP3z7lt75VsE31KPxVf4nlPZGpnFdrQ82z7EdrR8AAuIPy021zfftuf1ASyg3dHyjQJjR4dcEaEPYAHxHS3fa0BsRytFROjzeN9x2hytkMbJHIpdn+UbEcZ2tHwjwtiOVq44cV4crSSQFXIwuGq0bPJysZRKmXk41TzUaOXqxA6U17A0ZnQYAl8maOVuqRULtEq7EIcAVszYMFaRe6h8XSxO2WBqI9ZgtckGUyGAxRUb2hQygzB2bVZwXAi4RYYcFzkVHVLHGggZBlimOONDhualnPGhr4tl03DQkC+6KkqgjsPdR8vXxVo3zjSKorpSYtCwOFsqOqQyjoC/g2UTZ3TIce3hjA45HKzhYAsZjFRsSB1HxYYcn3UOuOKMDTngijM25IArztiQw73i7J3F0Z7BJTbsaN0w33Hh3uWtLBfM4vppMQAWwOdqca0nx9WJneMbBqejRQUsYOJoccARZ3TIYSJxABaQv72DKa7oMFdE2DYGxzjHfuxXilp1gSs25HKvDuzbxjIOl3u1iP2zGilY+1/FEOms5GxM2qf9K3QKP/3VX2cDm0UVz/IgZVnsXKAFjtclBTBmuBkwxhi/xdRHqyS5GfRpxnnVjY9ji+U4okMpx5CynBvlOGOPMptKAscixXEuyxFOv4Q+zmpCwArlHVJcCHRHhrHqIbZvDrvQnP7qrx/6x4DRxAuNDyMAX2h0aLpYoUfHfEVLAUsh2M4bjiUVQqPDZ9ocrJD9MV/XMPD9NwGLuDyI0lsCl+BZjVS3EhIdmpczEbhr5jg7NoVByatufNzMv0OXujEhLXT5HROuhOABnFvP/7Og7WIBVkh0aIJR6DJA5jjbDjsQNE6M+qvgyNAGVqHLNmljXfOSsDFscMWxXFtXZNgDWfMdF5oKcbVmAAtgW8w5WJGemys6DNk72zZcrhYHsLM5WlwKcbRsQMMEOSGOVizAAvyjQ9v3RS5Ha++qPwyYgAWExX22bUIcrZLcK6AsB8vmPOWcuBOrwD1176wZydE6WAtxs1K6VxwiO1mA3c1KNavHxdVaB1imUrtaieDO1dXqq8VyOTour8jF1eo7bzgcLcDd1bK6WLpc9qfvs+DqaPUBTWJHKyZgKfm4WX2XMhdXq28MV0fLBli6XB2tPihzdbT6AIvD0XJ1s1LBlYub5QJFLg5J3ziublaq2YNOjlbfFwIfJ6tnLBdHqw+uOJwswO5mOUSFcZ0scwdKmzbdq5SuVmE1YS7F7qn22OW84Sto7ne1egEL4KnT4qjRApI6WikAC3B3szgcK5cxXBytPsByFV97hTQO1nEf/+Xex6R0r1Ktb+gCalxF8FxicbRczk+Le1W6zAlX1NrzuYwLde1f2cJSFM+mgvpp9S0uzTWb0FUlRYdAN2g5ARan+kArcb+eLtBKBVhKfaDFFQm6qgu0XAErVSF86oiwC7RKigeB9MXpXaBlW+Q5q5iK2zm0OlpyighLnWzAdpdNOdPQpjbQ6o0KdSlHi+o25Vj3sEMcdVoN7I5W29/b1AZaubr5s9RpSWF3tNr+3qY20PKBmkZkrdGKpTbQ8gEsKdvrtrhmEfqorZWCb4uFNtDyAazYMw5zAVabm+W7MH1bzRbHjb04uPKBI9tjA9yrttos3/orbtDi4Jq5d7J0Fe9qZYwKcxbEmxpJUVSbBxO0gl0s/TWFvj4TtEKBKRJopXaxdJmgFQpGHEBlulm5I0ITtEKBiQO0TDerJAeLC4xKL3B30brIMNR5ihAHurpX8yB2yCqhHkuBlpeLZYoLiApztBRsUaJCLlRUoEU5Z7ijw+QxoU1cNVpMUqCVE7CUFGiV0AdLgRYXYHGphFmECrRKACzlZrEtkUUYR0WGCxkPEsdRblYJcMW51A7r1fycr16WrNiwT/tXtgD37aMNwlUQPx4Bqyv0cZj0gjf8D/IYvjFhmziW8eGKDp/2jM+Qx/COCNs0HtDdKMbokAOwuFyEEcu+xHG0QqTiQWqd1rhZZgEsLkh70IdfSB5DSp77yXhMv3Fznb9HvZo8BJvE6n6++ivqck8rB4oALGDyXnOVQLET0U9+/VLyGBwn84+/4lOTX6igBdBBS21PdbVkM/lh0IVv/DjLOBwaF+B+Ko32lDELSDYCsqBZh7/z8g8y7Mji6XXXH5l7F9Yk5Qjjhme9PCpora7ey7IfAB20uECNQ8f9dlhj0nVqxpMf6hgAxCi/ATBYmRyXx//F3eSxOECYg2OUopx9TTNgcbTYiti4QIvL1aKKCbYWDbS4osNSQAsAH2hR9mF5EqVSQIs7qikBzBVgrRz4YeY9mQBWKeICLA44WjjA4oArNU4hUoBVgrjcSl0szUhNff7s583822eJg7YX6NtobM3J0rXrMK8xWuXbvLQNznyW42mDKuG5L8v2b7rvf8P5fuMwqO29HjI0lfNpWvq85/xt639b2pn2AtC2OK0IXYLHlEfDUgVXpn7vPS/yekquz7RtHI5zJURtDtbmbccm3pN2wBoOtpLH9mlS2gVXt13wMedx2sBICJ/7iH2MwSA9XLTB1fgIz5qsNjAaeETWLWPIpc1++8IkG2Bd+Ys87rDP9cW8tgQ4WWmX1TF3sBhX6759ZcSHSlyulqtaACuHYvc0WTRXa16jw6732XcavU05HK3SIsISVJJ71aWmyV+IrzS851/dH7yA7lUpDhYDYHUqipOlZDpaQLer5XPR7aJUq4tlE4ez1edquQCZi6PlAlNdrpYHYMV2tVzf51SOVpeTpZTC0WpzsUyxuFo9jlabi2Wqz9WiLlvic02I7Wq5wlUKN8sVrjjcLKDb0XIBrD4nyxWu+tws13FiO1o+0WCno+UCRi5OlsM4KdwsV7BK4WbZri0EwMqzQLRth0uZfQggvqvl6nj1NS91dauYiuJLUYo6LRfAAuI7Wq6ABTC5Wh3P5wpYfXIFpFI7NYcqdo2Wj3vFVQjfJlcH65iPXcDyfF0QVVL9FYtcnaeux3nUcMUugC/FuQLYAatTWc5KrviQLUKkal7jwxZtlIJ4V8BSKiU6BMooiAfao0Pfz2bpoFVKRFhKPAj4R4RtoFUL3C1awHiwFKW+1kSNC5VssaGSHh9SXryyBZ2jQpu440MKfKkIkQJNenwYWI/FHR1S3mPO+NAXsHRxR4c+LpYp7ugw1MXSY8PQ91i39nOfJ7pCAYs7NqQAFncRPKUGS0WHoWCkR4YUuOKODEPhaiYupICRig0JY3BHhhS44ogMXa8pDC5WnrhQqesFFNXuYdFcLSVCwTunq1WCW8FREL9wjtYU8igxIUcfLXV+UM8TzmJ4ioPFGRuW4GCp3lkcRe4UOOJyrTiL4CnulVcBfJ+qe7VOfalXrJhQqRiPdeFAiwO2qNHfgvXT4rp5lrD0kxLFxVobgwG0OOqwfuflHyR/BksAcSWOiJADtDgAK3Ztlo+44sFSIsJi+l9VwFqnEq4nSeJCpa7YEACaqeM29OiHouuJL9cWQeb4/FHiQx2yfPtq2cZYClxuYIW3mJESH3Ke8JRI6PznTM4Tn747pvQL/KZdYWDOAVi6KNFhM4Us4dFHq03/5c9/IXw/pv/P8fGlnCOvu27noX8MAj97zQSONh92fPB+cDtYobHh6uo9a78LQV/65Ifnh7sHjfa5GRDPV0pkyNa9farxrqOCthMaXEmfnlktokSGg4N7p78Q9kN7PVdeFHZMFEsMetCF0cXKGxcqub6gMcc3FI7Ujquv1gJp3l0tBVhAWcWyHAp1tBrNxeIGP6/9aPk9VFm7wjeH4Ghl3y1BQ5QQEcbSsR/v/sLdpqaARcoBfsCadw0O7j0EWBQxuHFNO+/MKHZMqFTsXYYNtEroasARHY5Gkx8fMbtYFMWwbTluoiGgZW6zeh/TSgIZ1DC1a9D1u6/4K5Zxcn10Z1wsJoWCVgnSXSwgH/zFAKyimpPed5fX40UznnGxipLvfjEtF+QKWCmVNC5UssWGXQfHNT6ciQttShUhdkGVT3TYNo5rdJgAslziwxS5uEs0pLtYNrnEh31Q5hIdpnCLXKLDPsBKFR127SnXt0CX86MXrlxiw6YbQFyiwxQQ4xIbmnBlKlVs2AVX1Ljw0Dj9N/gU7pVrZNgGVxxxIeAWGfY6VwxNUl3jwi5+sEWGEVysMuJCJd8XOJYDHmerBLkWxXc9JsTVWnCVsGBwSSqljxZVJRjRKbXIEWGI+tyrUuLDVOpzr4p1tiKpgfB2r1LFhEpZnCwl3dHyOVBtzlavk6WLeg/qcrR84sE2Z8tnjDZnK2Fc2OZopZ7d0eZY9LlYutocLZ9osc3RSl3z1OZo+cSEMR0tH4iifmTbzg2veLDNzepxsHS1uVmpAavNzepzsHTFdLN8AIrD0Wpzs1LWX7U5WT7wFLv43bn2qm0/PF5Lm5Plwwu6kxURsMpyspRCX3ARhfElLTZdgKs17wXxuhatIN6Ubx1WLDBM7VKxuJ02mPIALGC+67NSqRSHqoQC91LcKZbi9ox1V6kdLKW5vZsUAVrAetDigCaOMTIUvZcKWj4uVpt8wctWDJ9j5l6psWGuGDAaaBGVIya09c7ycbEAnv02ZxqGAFYMKMsBWL7F7zZxQJm5juG8zRwsSVnjQl2fO5u2fMtQNH5xoU0cESIVkAYD2hgqOsw8s1DFh7mbwQ2FZIEsijbt2pe1NQJwKDakzCbkig2pgMXVQ4s0i1DFhgTgUrFh7jqs4WCrN1yZosaGPzz/UjIocfXMyu1eqciQAktckSEJrgZDMlhdedFRZLB6yteTfPkvMy7U1dc0rE9FFMaXEB8WUhR/4Rs/nh2wAB4Xi6oSWjywdIVnAEWu9g5Ukds0NCMWRys3YAH+7lUMlRAPNs0wO2AB5bRmmOdoUInKFRwqgEwmYslLx8QDytFX6778H1IAwIi6RIOc/BD0kos/StsHBslRAad4IzCiglYzmPwQNN5PXySYClocoMYSNY7zf05X9txE2l42I0gi6I1W7kEzLmfJnZw6/rfuJm0vmgaC+CWZuj2XBgfzN+HmAM1cdVi6iokLlSix4bkXfeLQP4YM34xC7mnmZ2RXhsWEV1Zn/70UYB2bgDUIOJ7aGJdc/Hz/zY1/h7wdz3/mp9Z+F0uZLmAaWCyFLMFjwtXA/3U0y4dmC4khQ81GQDRjAtab3vsi0j6EnA+/ea3xWRhmWuy7OfQZ3bTjBO/NTbgSAUv/jFYOOViDIQ3AQ+NC3cm79Xl/Q9oHICwy1OFKLvnH6SYYyYBl1Mwxxrvu7z3G7D74X/NNsAo5FhzS4eorL39Q8DiJYkKl8uNCJbYDM5Y8zhZVJThbVFcrRAakVVdrIrKjBZAdLTlmqNfwdKRi1KTNraPVrPY/pkNU9wqYBSwOhcSeJUSlpnslRrT3JkQx3CtfF6gU54orJk0MWJ0qzslSCnG0ZpwsU6mcra7PSypXy3SydLm4Wn0xoYur1TGGi6vVd9lxeSt0F8tUMlerAy6cXK0uoHJ0tHQXS1dKR6sNsqhuFuD+TXGdi6WU0s1qASxXN6sLsFzcrC64orpZgJuj1QVXqdysrmjQxcHpAyMXN6trDKqTNdmH/mt9F1ylcrK6wCrEycoEWPPjZCmxHyiqqwUsRr1WDldroyp2Ma+Do9UGWEA6R6vrMf/5ZR8k74OLWgELSOdmdThYq3u/37s5h4PVpVqblU4l1F6V4l5xqiQHS6lYyAIqaEUTR1E84b+/5OKPkuPDvrehy8UC5iQ6dIkFC4gOO8d3gDAqaPWdC52ApRQbtBJEhH2P4Y4IQ9QXER536bOjPv/xv3V3b4F7X2S4CMXtFbDSKf+dpkc+B+6K9z2r/0GqVosCXNRZiPcdyA9bozENtiLOPnQ9tNS3QY4G8WDL0cWKWaPV5WLpooIWR71VLNByAqzYcgSsNjcrZQ0W1c1qgygpR8lqsNraQeSePcgx+5CqwcF9WQFL1V25AJZPVFgqYAFzAFlAxANYYSu+q9WjFK5Wn3K7WotQDG8DrdwNWL0Vw81awCJ3X+UucHdxr/o07+5VKXAVQyUDFjAnkAWUfyDnWplBC6DPPlw40AqBpgJBy0fcblZ2FysDYJnbVMCiwRUw/4C1yJoHLih2dmGbXGYdds4y7BN1FuIAtDs+xwzErtmFLgro88KpvwjoqaVrgP6arC6xzDwkAMfSrn00YBo0zlGhTRyzDinimHH4eipgUWccEgBr044TSA6WGCyR4IqjZxYFrjhmGD7st39EG4BhWRqKOPpkUZwrjpmFFOfKJSosDLDmb3Zhm6If2Ny9tXLHhwug5z/jctL2ZFeL6OhQ40MKYFXll8tMwy5R3StqXVZjWXjaR8d+/Omk7avyF7bHXhaoMMDq1NxBFjAHoCXl5CdU9+6f/ISKWpROLoqnkeYvFtC4NLdGezN1IgfDjEPimpX/+aIPkbZ//TczG+/EmJCi8Yi43twC6GG/dRdtAMr1qxmzrNkXqty1V0AFLFNzFxeaaosPSZGhKd8I0Tymgrj94dv9tj+4Mvtv3yVxdEALWpJHu0gRo8eQ6PCFupMliPUUvtEhc7H30g4/Z7NZDVvexKag2NAELOF56TC2f9P7ft5503VwFbDUzIxCIkNGwFrafpzX47kByzc2NCNCn6V2zG1/eL7/wu4zcBVy3dGvWyFxmQ4XxLjRNy5ctyQO8fl940JOsGqLCguHq8WJC7PI19kyoYriagE0VwvI72oRvhmSXS1JLAbPXRA/T44W0cEib2+KOjPPd7bhBnawche4k9wr4jWqBPeKUzkBaxE1906WkulosTpZplycrbbj6upqtW3v4mqZTpYu4pI4bsvytFywErhaL+yqx0rhakVqW+DiaHG6WKZ6Xa0uQHJ1s1rGcHGzWiNCqpsF9DtaEeHKxc2KBVguTlYXXFGX2HFxs1rhyvVa03atcgGNLrhI4GS1wVUKFysmWJlOVuEOltLiO1nmG+HUmDRULs5WG0xx1GtRRG23UF2tLMrpaJHl4lB1PKavRquzBivyUjS5ldPBorpX1O2zu1cZFavuqgIWvxYGspKLozg+VH2F8Vt7ZpflBC2icoNWTnWBVkwXC4i8/A53TGgqJmhFjghH+29t/W+5I8I+dUFUVsCiKjJgdblYuQvbazTor4WJC02p+DBqbKjLFiG6glSX6+UiW4TYFRmaMiNEHwizxYc+3xAJEaItPuyMC3XFiA4TdTi3RYexIUvJGhu6QpItNvQALFts6DWTkBId2iLDRDVYtsgwFWDZIkMfQLJFhq7b2+JCZ7iyXVd8rks2R8cHMAiRnQ2yXMEqRlSYCqyUizWn7tXix4Vtihob6qIs0TPPEeK8ulpyQHK1Nmp0uM7R8nGhYjtWMWUWwW/QIneKA0Vdv3CR3asu5XKuYi6FY8pnncJ508JCVjYapsSInBFiX2RoSgct35YPG7ROa6OCFkkE0DJrs7L3w8qgeQYsiuaq/orJxcoZDeaKBefUxerUwsaFuj539vnpYkNdQ0Fv3xCqw7f7RYa6BoLmbvlC2sy2tPjQOS40RYgPxVKTLCo0tbTjQLKo0JQYjsOhScjgbd/0vp8PByxqZJjJwVraflw2wBoMtwZDEmWJnR+e/8lwuBoMaGBFmQlNhCzScjiE55ZLm7LA1Vde/qBFgKvWi9mGgCwAGL1vS74nz2V4bMlz8yVBFkC6wB24+vDw56WA1iDfR2SwJVN01QiIpfQX5dVX/hxtgFDQakYAcV2/UInNR2Z5XmCyFmIObf7H92d5XgDZIEtuDj/DPKSwAAAY80lEQVS/SPVYGder3Xrql7M9N6M2bk2W0tJFy+EbN6CtSZhpFrnck+mJG5l1WZ4cosy+kwQXbLy8Cav3ea4IoNSIbA7chpMcTX5CtHIPJGU9Q0pUl7nJaGqJpskGWOIgsbY29Hkp7hUxil0QwOpUJqsjjxRoBbta6lwK+Qyqa1XiI66DltiZ8MkHg1nQ8l2eJ3Bpnm1n3Asg0NFS9Vm+jtZ0Ozkehi1Fg0OgFeqIrd63HZt2BV6kGwEEPq8cTd7XHI5WMlFbQFBAhbLYMxWQptvL8UGIhA5eagdLaNcauUS4RgYAVi6wAhjgiqCNAFdKG8bJ0kVytYC5cbWEUfuezdkCshbHe4tSDO/paFFdLF3BjhZQHa1YYgSspG7WBnGwREbX3ASsZtf9gsfyjQorYKXThqnJ6pKTs9V2Xrncj9u2TWQsyZb69yTOVuuyFcTmlg7uVpL6rBYgc3G0ugDLxdEyIUvJ2dFqe34XV6tr3yO7WklqsrrcKxdXpw1SXBdNbnGwxI4Twp/b9flbtk/hZqVwsdrAiuRiAU5OVptzRQEswB2y2uDKab1CwnJpGwCsak1WNFFdrYxfGLM7W5HrtlR0GKTMneEpDhfJ0QKqq0UV1QXKGRFmVGzAEk1TlHPFJRfAIve8msM62VK0oWqy2sRSq0W5J4+Q7Z1QoJW0XkvXaBzualGLVPskB92OVgeIUeqzONRbo9UHUsQ6raJrtJpRt5tFqcHqgxw56naTKIDFoa6lcBLXZnEqOlx1gE7OuiuAoedVLWwnqcaFFllhy/U8a7vvum4fiXXaIkNTUWDLazkL/mnIpNgQsIOWh9PVBluubpUtOmyLCm2ywparW9UGWq77HgG2yHEhYIcsV7hqAw1XF8kGWR5wZY0MKc/tsz3ixIYxXCwfsIpR8O4KV7GiQle4ao0KXY+f5bq7AeGqxoU+yt7uYdEiRB+3iaNA3rg4kGLDSKLEgb5iL4j32Hc1+7B4+bhX44Pr/5ZrBqGvCowT5xqw2p4/86zB2pahHFXIalHWGYhAdtBihy1f0KKuicgZDxDrsyg9tIAIQOY7HvH5iwet1C0auEGHqVXDIsi37oobsMTB/dkBi6Q6c5BdNS500Oh9W2jQpO7RlDEYrgWukaFNLDEi5QPMMBuRHBsCk+iQAF1iOCZBkxhIr6jQ1KZd+2nQNJCk7TniQ7a4kAJXw600OBFLJAdL7DiB/vyE7bkiQw4Xi1JvxTGjkAJVHFEhBazWokLiEkQVrmpcSNLSRcu0I0WNEIGszhaQeSYiwOJsbTv9bvp+UF0toitEASwg/8zDYlytnA1GAXJESOqZBZD3X9oiU0/lBiwOLURRewWsqKqQ5aili5ax9HJahChzgxYR9uSeEeS9hJ2gzgRUMSIBuKigRYUkanTIodW920jbk49BbtCiAhZ1+9U8Cz3rCl20mUsUwFKRIBWwKC6WOHgAYoVYUkIVGbBo22993FcrYDmotnDwlAKt0XvC2j3ooCUoy/MA3u+e2ArIg6AtDzTADGiJwz13YjDgqZdSoBUQI247/W4cuMZ/wV0FF7IRpAWhFWhlbfGwdxs27TgQvD11GaAsy/HkhisgO2BxwlVoS4dQwOJ0rUIASxzUPi8MrWOCokIdjELWSaSCGSZwVeWu6mQFKsTVMqEqh7Ml9GsiQ4xJcrY4xOBuhSjEzUk5o9BFVEcL4HG1ojtbzagClkW53SwXcblW5P04GP6FxCYyYAU96ez2cmlzywPbVQHLX7XwnUmuzlYbWAW5WqYcv5zJrnIKyjJBUzm5W7Evmo4Ol4uj1QcSLm5O5xI6jo5WsxrPeHZ1tahLAfXJxdlyLnzvAiOXpXX6xlhydHEiwpU47Dinx3UBlXBd6qdrPxwcLVcHKzZQubhYvVBFdLKcIasLrFydrNaldNwgq4KVk2rhe2xx1Gtlr9kC3JytnrPGyd2K2akdcHa3WIrhEygmYAFluFoAY70Wh/M0B+6V3Hdr1PG55AJYKRyrEgDLWRzOFUPdVRVNFbIYRQUtgAm0eu4Nou9Lp0uM6ABavbCV4mKVIEbsg4ve/z4eFlMQn7soHmAArRIAa3VvEfGglKPeWLCE2DBFHNgHWOLggSSA1etiucBRn4tVa6+KUY0LI8oWIfpCVKwYsTMytIm6XBBaYsQctRaWKLEtNvSFBltk5jOGLTqM7WLZ1BYfchwPr+0t8WFrXOgDRpRldZTa4sIMcGWLDX3gKWZkaHOxctRY2SDLq9aK6UuhFbJ8ocgGWZ5j2OLCClbBqnFhDi29nKftQ4wYsdfNMsVUJL/O3UplveuyRIm22JDFlfEcowRHC7DHhzkK951dLQ73ylcjyzeVAtwrwN+d4nCzbL2zTMDKVcRuApaTaxVBUQCLKRasgBVHFbISaF5iRCcxXB+zz0hU6qjbCgUKFjArGLR8JRsRdwYi18zBOai/clXO+K+tSWkJMwSVcsCVVQxwVGPB8lXjwsQavWcLHZjAEyMWUIqxJnH4Up7o0KID3zqqmHYLpezHph0HWPaFYwbi6D/93+Qx2LS0tRi4wvYHswxDjQ7FcCu2XPWXLPtClVxa4oEqrqhwB3Fpr8GQBazk0uYKV7xqvThWyMqk1T8La2aqiwW0DgpgqZC3twHE4cQX1Uxfy4AGBPv/6WjafjCpWV2iNy2VAhDE91hOjufSYfQbFhW0SoEssboPACCXaJ9l0YwgXVtKdI2xw62dQ+9YRMjaes1f03ZAQURIs01N4uD+Q2vzUcQBWE2DZpd/A+QY2nLGVbl3YRFVa7JK06Zf5okQOVwxjMpwSwBA3kt8QQqumkLAkSDWgnfJ8x6P9pXR6iG3FGCRx2GsJRN756OdQ6cYAasYFeLQAxWwcqg6WYWIw9kCwtwtedBy08vpbhnXpCB3ywZZAe5WTkfLBlnerpYNrkJcLcs4uVytnE6WDa5CnCwbXPm6WdYxMrpZQQ6WLfoKACwTqlgcLCDMxbJAVU4Xq4JVErXeXOrahYVIOVtU2FLOlg9sia1yPWgpd6uAKFG5W16wNRDrQSsgStz+uDuLiQ7ZxBEfYuJqUUGLugZiSpXoXsWSlCMv0PIGrLa6Ik/AmgfHKhdgVbgqQ9XJKlgp3S2rm2UqJXA5OOxO0OUSGzpAV0rQco0Je10tl4jQFbZ6xuJwtZT6gCu1k9UHV65Olgtc9blZroDG4Wi5QpYTYFGba07lAlVJXSyHKDAlZFWwyqbqZM2jcrpbVqV0twboBS0nh8vmaJlycLi2P+5OAOUUxLNJwVMXbDnAmqrV4oSt3HJ1rsRouRO05sG5sqnPzWKBK0e5OlbJAKugOiugwlXJqoXvcyCOInmgu1BebPUAp5FIUyzveHbKe5vugnnXeLCRh34yyafYvZR+Wrq4CuNzF8dzRYOc8oE1riL4oJ5bqv+TK2B1uFji4P70gNWlpvECrBQuVgWsslXjwjlVrCjRKTa0KZa7RfzCOONyUeDJALVYjlbojMJ10SFlNqHpahHG4nK29AgxVlxIASvTyaK4V2ZkGDoWVxE8MBsdrnOwKG6VBljU+qpoLlagaxULsCpUFanawmHRlMLd8pJyt7gdLuIZOuNyUXpnJXC4KC0bWBeZ1qGK2PqBw9kC4rd9oDpXYnTo88gVD4pmRBoreksHasfyKWD5uFVtYgcs5VjVWLCKqFqTNcfiqtkCtLot20xDX3HXbjnUZ/Vppn6LAkvTbYuedcjRE4tpBiLAMwsRiAdanNEgB2BxNCfllqrP2nrNX/PUWQ2GbDMDWQGLCaq4XawKV/OrGhcumFiAa/mQfSSYbrQA6NAV6Uul2EnsDv+tB5C2H68cuklQj7fUAGtA7BQvG+08GPAdfCpwjV/9s+R9GCzfu/Y7R7f1tbGI3d9nAIbYkFMXNTrc9o8fIW0vVnicd1NkwNKhitrZXRurOeL+tLFQwWrOVGcXbhTpMWIocIktzRpoqZs2C2xRHS4GR8smuWeyP6Gwtf3UO8igtbYvUrCBbTMekkFLSTYDNtDicrZCpQMWVawzB5lm4nGLAlix4AogApbpWFEAyxiLAlgVrBZPtSZrgcVVtwXMOiRkUWq3Ip6xco9cAy5fbT/1Dr79YDzWzXiIhqlWSzaDGXeLotG+bWz1Wq4aLN/LBljUeqkZUWubIioUsMTKcpmAxV1nxThWBazFVI0LN5h83C09NmxTtjgxcT2qj8vl42rpUaH1eT2Orwuc+ThbfUDFGSEC7jGiT1zoAlU+cWEfWHnFhS5glSky9IGrmDBlkxdg9UGQj4Pl0njUw8WqULVQar34VsjaoHKFLRfQAjLAVqZJP66w5QJafYC19pyOx9bVAXMBLVfHKgdouUKWq2vlClnO3dZdQIuhh1SIXEDLFbBSw5WSE2S5OkxMXd0Bd8CqcLWQqpBV1a026HKFLFOs0AW0g1cBM6y7wKsNtlwBa91ztRzXkIixC7ZCYsFUwNUFWSFxYBdkhUSCnZAVEgsmAq0uuMoFVLpa4So0smsDrNC+WC2QVaFqQ6hCVpWbbLAVClpAAtgqALJ02YDLBK1QwFp7DssxpdRxmbBFrbuKDVs2yKLUWtkgi1pvtQ60mBp2cskELRtglQBWutZBFqUeygZYhPFsgFXhakOpzi6schNn7y1g9uYfZYZipBmHodIL5xVwcc4+BNbPQKQWynPOQgR4ZyIC3esichSym32p2NcapBa1N+MooKWkA1ZpYKU0A1iFFq4rVbiq0lWdrConrbydfyYYu8s1YB6vEexj7r3xWNbxYoj9fQGvuzX8tR9jGyuWojQTZQatbdd9nnU8NA2915QhGREuubTpKf+cexeq8qvGhVV84gYurpv6jGs25Py2Ox2XCbhKBi29q/qA8xiCD7SKhizNtSI3JrWJCTrYAEs5QZxwpblLSRZ9DlAFqypDFbKq+FWiu2VGZyywZVvOhQhcpYKWuXQNN2gBdNgqFrKMWLBUyCIDli1iY+yWrlQiYFW4qmpRhayq+CoJuvrqlILhq2/9vAD4KgW4+tYGLAW4ioKsnnqrUkArCKw4e0x5jFsSXFWoWlyde+65+OIXv4gnPelJuOKKK5y3u/jii/HGN74RAKDxU+vFs3Z8r2LT5lcfWPvhkpRi7cdHfXAmx4O1H1Y1oh/ECpTL4svNeICG+XhxdpFPKscu7WIUoZA8dnd47q7o+phzAFibnvLPaz8bReeeey6EENafSy65JNt+veQlL4EQAscffzz72I9+9KNx1lln4dGPfjT72Lrq7MKqKLKBFtXpsoFWF0wJIZ3gzAZarU6Xcqr6oKTtv1ucrh2P/OHa76W4Wl3SQYvL3Yq1GDWrSlr6xmHGYa97xd1fijBuLrjaSCDlos2bN+O0006b+dvRRx+daW/iaDQaYTgc4l3veleS55vDr5BV8ypulwvod7qC48Y+pyu0Jks5XS2Olw5c86CY7lYxDlepawt27JMVsHQ3KUYDzxgOWCRtNKfKVQ9+8IPx9a9/febn6U9/OgDgsssuwyMe8Qhs3boV55xzDj71qU+tc7suueSStb/dcsstAIBbbrll3eN+8IMf4GlPexqOO+44bNu2Ddu2bcNjH/tYvO1tb1uL4I4//ni8//3vX3u8GkNFe//yL/+CF7/4xXjQgx6ETZs24ZhjjsHLX/5y3HHHoXVkdSfskksuwQknnIDNmzfj3nvvXXPvzj333LXH//qv/zoe85jH4IgjjsCmTZvwkIc8BBdeeCFuv/324GNanayq5NJBi7OOq60nl6uj1TquARFrLperq9UlfdvpeAq0UrlaLlFhn5rxIErNlgKtbO4WA1yJ0XKc2ixgnaO1Dq64oMeEK0aYSuViVagK13XXXYfzzz8f4/EYO3fuxB133IELLrggeLw777wTl19+OY499lg86lGPwm233Ybrr78er33ta7Fp0ya88pWvxGmnnYZ9+/bhrrvumnHYdu3ahTvuuAOPf/zjsXv3bmzZsgWPeMQjcNNNN+G9730vrrjiClxzzTXYsWPH2vPt3r0bv/RLv4STTjoJD3hAe8/CT3/607jttttw3HHHYTQa4cYbb8QHPvAB3HDDDfiHf/iHoNdayFfFqo0qvY6L0+nSHa41wGK6L+gulxwPgmrGrDJcrh0Pvw07Hn4bfdwWyUawAJaScrXm2t1SrhWzeyVGy3HqswCgGWPbtZ/Dtms/x+NWWZ8jzrixAEuvq6qulbt0x0j93HPPPfiTP/kTjMdj7NixA9/5znfw3e9+F695zWuCn+ekk07C97//fdx666245pprcPvtt+Occ84BAHzkI5PmuJdddtmai6Y7bKeffjre+c53Yvfu3RBC4Mtf/jKuv/56fOITnwAA3HTTTfjLv/zLmedbXV3Fu971Ltx44424/fbbcfjhh1v368Mf/jB+9KMf4brrrsMNN9yA97znPQCAq666CjfffHPQa61OVlVxiuV0rX2laIx/M0lKsTa2GPJNyFWgtfemY9jGTCEFWjEcLnaVGAc6aNt1X+AfNEbvK0Mx4KqCFF22mqylpSVcd911AIAf+7Efw7HHThz25z//+Xjzm98c9DybNm3CH/3RH+GTn/wkdu/ejdHo0CoLu3fv7t3+qqsmXfVPOukknHnmmQCA8847D0ceeSTuvvtuXH311TOP37ZtG172spcBAIRo/2J57bXX4qUvfSluvPFG7Nu3b+a/7d69GyeeeKLbC9RUIauqaEUBLrUUj3nv57inTMeWY7NfFx26djz8trkDLaBw2JpTuAIYAStG36sOcQJWBSteKcfIRbb2TzrAjMeTz9a9965f+uo1r3kN3ve+9wEAHv7wh+N+97sfbr75Ztx1111r27moC5h0PeABD8Cg55z+yle+ggsvvBBSStz//vfHox/9aOzduxc33HDDzOvxVYWsqrlRW5QYBF+2NQ/bGMD3fmM6ZlgPXbp8AEyPD0OBizMi9JEtQkwKXgUAlYoMQ2u0gsHKNeKLCFdAOGBVmMqrU045Bd/85jfxta99Dbt378ZDHvIQXHrppesep9c73XzzzTjxxBNx2WWXrXucArmf/umfxmc+8xkcPHgQZ599Nu66666Zx23fvh0AsH//fkgp16DqzDPPxKc//WncdNNNuOqqq3DmmWfi8ssvx9133w0AOOOMM7xf4ze+8Y01cLzuuuvw4Ac/GG95y1vw+te/3nssXRWyquZewW6X6+LSoY6XBbZsCnW95jVG1JXE5SoArqjyhivfuqnIcAX4A1YFq/S6/fbbcfbZZ8/87aKLLsLrXvc6fOhDH8LevXtx8skn45hjjsGtt966bvuzzjoLO3bswN69e/HCF74Qj3nMY/C1r31t3eNOPfVUfPvb38ZnP/tZPPKRj8SPfvQjNJZz9uSTTwYwKZQ/+eSTceSRR+ILX/gCXvnKV+K9730vbr/9djzxiU/ESSedhO9973sAJhHiS1/6Uu/Xfuqpp679fsopp+Doo4+emakYqlr4XrVQ8i6iD/kENMYPs+RYzPz0yac4/v9v745Z2gjjOI7/KkEsFZSADkIHC6JLpi59A4FSEAdnIQTfQnwPWdLR0UlEfBFdKiRzKcXQwSHvIIpw9GyHGmrucsldff733CXfD7jI5ZIp9+V5njyPr1GsWSwWyxd26wVl26Q0VWBZLXh3JE1gsVDdvyAI1Ov1xv4Gg4FqtZqurq60s7OjIAhUrVZ1eXkZe321WtXFxYV2d3d1f3+vMAx1fn4eu67T6ejg4ECrq6saDodqtVra39+PXddsNnV4eKi1tTX1+331ej2FYajNzU11u10dHR1pfX1dNzc32tjY0PHxsa6vr8d+WZhWvV5Xu93W1taWHh4etLe3p9PT08z3ieJYHSykiSNeFs+maDcYPf+io1/R0a2ixlUa0VGuSutD/KKCxlQa0anDWFRZRZOn0SsCaj7c3t5qe3tbknR2dqZGo+H3A/mV+AXLdCEWUnSUy+LcRUnJU42On5vREa+yLpKfJHGH+RKHVZLX377Yj0TlEFfPEVVYZEQWoORF9SPBZ0cRltNMzu/wld68i/8U+u6nUXhN2r/KYAPRx3DJNq4ef8X/t2TzNbny/avJfScyDKvKx/jaHAB/MV0I/Adn0eWJ89iatUmow+BaPnnv7F6SJofVc44jK9e4kpwHFlEFxCROFxJZgANljS4nsZV1F/YXBpeTyJoVVlEOQquscUVUATMRWUARlCHGMoWXy2NuUsZXpsjKGlPTZAit3INqJENYEU+AM0QWUFRFDa+psWV9huCU4JoZWS7DapIpseUtrqSpgUVQAaaILKBsihRfY8FlHVhJnsJrLLKsgyrxs/wLLa9hNfIUWMQU4AWRBcw7H1F213+b+3sun9Ryf09JWvmR7kw3lyqf0m80C8AbIgtYdHlEWB7RlVdk5RFVRBQwF4gsAOm4jjHX4WURWa6DingCFgqRBQAAYODFx+qU9+AzAAAADzz9TAgAAGC+EVkAAAAGiCwAAAADRBYAAIABIgsAAMAAkQUAAGCAyAIAADBAZAEAABj4A5swQVHtJNZ/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU5bn3/8814ZBwEJCDbgWBWuQYDIdoEFCxClhb1AKPZ1EU6qllt9304NNa2uqvWn3cVu3JqmDVirsFFZVtrS0UimIBCSoIKpoIxcr5EJJAkrl+f8xkSpIJzJCZWSH5vl+vvDKzZs1a19wm8cu97nXf5u6IiIiISHBCQRcgIiIi0twpkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiLNhpk9ZWafmtleM3vfzG485LUvmNl6Mys1s0Vm1vOQ19aaWckhX5Vm9mIwn0JEmiIFMhFpTn4K9HL344AJwJ1mNszMugDzgR8AxwMrgWer3+TuA929nbu3A9oDnwB/yHj1ItJktQi6ABGRTHH3tYc+jX6dCgwD1rr7HwDMbBaw3cz6ufv6Woc5G+gGzEt/xSLSXKiHTESaFTP7pZmVAuuBT4GFwEBgTfU+7r4f2BjdXtsU4I/RfUREUkKBTESaFXe/hchlx9FELlMeANoBe2rtuie6X4yZtQEmAXPSXqiINCsKZCLS7Lh7lbv/HegO3AyUAMfV2u04YF+tbV8BdgJ/S3uRItKsKJCJSHPWgsgYsrXA6dUbzaztIdsPNQX4nbt7xioUkWZBgUxEmgUz62Zml5tZOzPLMrNxwBXAX4HngEFmNtHMsoE7gLcPHdBvZt2BMcATQdQvIk2bApmINBdO5PLkZmAXcB/wn+7+grtvAyYCd0VfOxO4vNb7rwHecPeNmStZRJoLU8+7iIiISLDUQyYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEJKXMrCSD56oys0IzW2tma8zsm2YWOuT11w/z3o5mdktmKq1z7l5mVmZmhYc8fzcFx82JtsdBM+vS8EpFJFMUyETkWFbm7nnuPhC4APgi8MPqF939rMO8tyMQSCCL2ujueak8oLuXRY+5JZXHFZH0UyATkbSI9la9G/36z0O2/8DM1pvZn83sGTP7r1Scz923AtOB28zMoucqiX5va2YvR3vR3jWzy4C7gVOjPUr3Rvd73sxWRXvcpke39TKz98zst9Htr5pZTvS1a83s7ehxnzzkM15tZv+IHvs3ZpaV6Ocws8+Z2Wozy4+ee72ZPRE9zx/NrM3hzi0ix6YWQRcgIk2PmQ0DrieyJqQBb5rZ34AsImtGDiHy9+ctYFWqzuvuH0UvWXYDPjvkpfHAFne/KFpfB+BNYFCtXqqp7r4zGrhWmNm86PY+wBXuPs3M/geYaGargf8LjHT37WZ2fPTY/YHLotsrzOyXwFXA745Uv5n1BeYC17t7oZn1AvoCN7j7MjN7HLjFzP433rlF5NilQCYi6TAKeM7d9wOY2XxgNJFe+RfcvSy6/cXqN5jZ54iEjA7uPsnM2gK/BA4Ci9396QTPbXG2vQPcZ2b3AC+5+1Iz6xRnv6+b2aXRxz2IBLF/AR+7e2F0+yqgF9AJ+KO7bwdw953R178ADCMS6ABygK0J1N0VeAGY6O5rD9m+yd2XRR8/BXwdOFDPuUXkGKVLliKSDvFC0eG24+4fufsNh2z6CpHQMQ2YkNBJI6GuiloByN3fJxKS3gF+amZ3xHnvucD5wAh3Px1YDWRHXz5wyK5VRP4xa4DHKwN4Ijq2Lc/d+7r7rATK3wNsAkbW2l77HH6Yc4vIMUqBTETSYQlwiZm1ifZ0XQosBf4OfNnMss2sHXDRYY7RnUhAgUgIOiwz6wr8GnjY3b3WaycBpe7+FHAfMBTYB7Q/ZLcOwC53LzWzfkDBEU75F+D/mFnn6DmOP2T7JDPrVr3dzHoeqX4iPYGXANea2ZWHbD/FzEZEH19BpA3rO7eIHKN0yVJEUs7d3zKzOcA/opsedffVAGa2AFgDFAMrifQMxbOZSCgrpP5/POZEp45oCVQCTwL3x9kvF7jXzMJABXCzu+8ws2XR6Sb+F/g+cJOZvQ1sAJYf4TOuNbO7gL+ZWRWRHrXr3H2dmX0feDU6nq0CuDX6eQ/L3feb2ZeAP5vZfiLt9B4wxcx+A3wA/CoaGuuc+0jHF5HGy2r9Q1JEJK3MrJ27l0TvFlwCTI8GuM7AXUSmr3gUeBB4GCgH/p7EGLJGLzpY/yV3H5SK/eK8rwgYXj3GTEQaP/WQiUimPWJmA4iMz3rC3d8CcPcdwE219r0+08VlSBXQwcwKUzkXWfTu0DeI9BiGU3VcEUk/9ZCJiIiIBEyD+kVEREQC1mQCmZn1MLNF0Rm115rZjMPsm2+RNfAmZbLGTEu0TczsXPv3eoB/y3SdmZRIm5hZBzN7MToD+loza6qXzQCI3vH4j0M+74/i7NPazJ41sw/N7M3o2KYmK8E2+aaZrYvOlv+XBO+kPGYl0iaH7DvJzNzMhmeyxkxKtD3M7P9Ef07WmtnvM11nJiX4e3NK9G/w6ujvzheDqLVRcvcm8QX8BzA0+rg98D4wIM5+WcBfgYXApKDrDrpNiKzntw44Jfq8W9B1N4I2uR24J/q4K7ATaBV07WlsEwPaRR+3JDKDfUGtfW4Bfh19fDnwbNB1N4I2GQO0iT6+WW0S2689kZs1lhO5sSDw2gP8GelD5A7YTtHnTf3vayJt8giRu5wBBgBFQdfdWL6aTA+Zu3/q/x4cvI/IreInx9n1a8A8Eps5+5iWYJtcCcx390+i+zXpdkmwTRxob5Fp1tsRCWSVGS00gzyiJPq0ZfSr9uDSi4Enoo//CHwh2j5NUiJt4u6L3L00+nQ5kSk6mqwEf04AfgL8jMjdsU1Wgu0xDfiFu++Kvqep/31NpE0cOC76uAOwJUPlNXpNJpAdKno5ZQiRdH7o9pOJTFD568xXFaz62gQ4DehkZostsqjytZmuLSiHaZOHgf5E/lC8A8xw9yZ9x5qZZUXn89oK/Nnda7fJyUQnaXX3SiJzh3XObJWZlUCbHOoGInOZNWlHahMzGwL0cPeXAikwwxL4GTkNOC06391yMxuf+SozK4E2mQVcbWabiVyp+lqGS2y0mlwgs8js3/OA/3T3vbVefgD4jrsfcdbvpuQIbdKCyJIyFwHjgB+Y2WkZLjHjjtAm44hMRnoSkAc8bGbH0YS5e5VHpl/oDpxhZrXnvYrXG9akb9FOoE0AMLOrgeHAvZmsLwiHa5PoJLj/DXwrqPoyLYGfkRZELlueS2SVhUfNrGNmq8ysBNrkCmCOu3cHvgg8Gf3ZafaaVCOYWUsi/5N92t3nx9llODA3OmniJOCXZnZJBkvMuATaZDPwirvv98gkkkuA0zNZY6Yl0CbXE7mM6+7+IfAx0C+TNQbF3XcDi4Ha/5LfTGSxbcysBZFLDc1iQevDtAlmdj6RBdEnuPuB2q83VfW0SXtgELA4+je2AFjQlAf2VzvC780L7l7h7h8TWQGiT4bLC8Rh2uQG4H+i+7xBZD7CLhktrpFqMoEsOp7lMeA9d4+3dAru3tvde7l7LyLjYG5x9+czWGZGJdImwAvAaDNrYZGZ088kMq6qSUqwTT4BvhDd/wSgL/BRZirMPDPrWv2vdotMLHo+sL7WbguAKdHHk4C/unuT7SFLpE2il+d+QySMNemxQXDkNnH3Pe7e5ZC/scuJtM3KQApOswR/b54ncvMHZtaFyCXM5v635NC/r/2JBLJtmayzsWpKM/WPBK4B3olev4bI3XKnALh7sxs3RgJt4u7vmdkrwNtEZvZ+1N3fDaTazEjk5+QnwBwze4fIpbrveNNeguY/gCfMLIvIP9L+x91fMrMfAyvdfQGREPukmX1IpGfs8uDKzYhE2uReIjd9/CF6f8Mn7j4hsIrTL5E2aU4SaY8/AWPNbB2R1RlmemRFiqYqkTb5FvBbM/sGkWEP1zXlf9wlQzP1i4iIiASsyVyyFBERETlWKZCJiIiIBEyBTERERCRgCmQiIiIiAWs0gSyZhWtFREREmpJGE8iAA8B57n46kdnRx5tZQaoObmbTU3WspkJtUpPaoy61SV1qk7rUJnWpTWpSexxZowlkSSxce7T0w1CX2qQmtUddapO61CZ1qU3qUpvUpPY4gkYTyCDpxXxFREREmoRGOTFsdOmF54Cv1Z41PtrtOR0gKytrWOvWrRM6ZmVlJS1aNKWFCRpObVKT2qMutUldapO61CZ1qU1qUntElJaWVrh7q3ivNcpABmBmPwT2u/t99e0zfPhwX7mySS6TJiIiIk2Mma1y9+HxXms0lywTXJRUREREpMlpTP2HcRclDbgmERERkbRrNIHM3d8GhgRdh4iIiEimNZpAJiIix76Kigo2b95MeXl50KWIBCY7O5vu3bvTsmXLhN+jQCYiIimzefNm2rdvT69evTCzoMsRyTh3Z8eOHWzevJnevXsn/L5GM6hfRESOfeXl5XTu3FlhTJotM6Nz585J9xIrkImISEopjElzdzS/AwpkIiLSpM2aNYv77qt3Skuef/551q1bl8GKROpSIBMRkWZNgUwaAwUyERFpcu666y769u3L+eefz4YNGwD47W9/S35+PqeffjoTJ06ktLSU119/nQULFjBz5kzy8vLYuHFj3P1E0k2BTEREAuXuHKisStnxVq1axdy5c1m9ejXz589nxYoVAHzlK19hxYoVrFmzhv79+/PYY49x1llnMWHCBO69914KCws59dRT4+4nkm6a9kJERALj7iz/aAcfbC2hT7d2FHyu4XdoLl26lEsvvZQ2bdoAMGHCBADeffddvv/977N7925KSkoYN25c3Pcnup9IKqmHTEREAnOwKswHW0s4sX02H2wt4WBVOCXHjRfqrrvuOh5++GHeeecdfvjDH9Y7LUGi+4mkkgKZiIgEpnWLLPp0a8e/9pXTp1s7WrfIavAxzz77bJ577jnKysrYt28fL774IgD79u3jP/7jP6ioqODpp5+O7d++fXv27dsXe17ffiLppEuWIiISqILPdWZoz04pCWMAQ4cO5bLLLiMvL4+ePXsyevRoAH7yk59w5pln0rNnT3Jzc2Mh7PLLL2fatGk8+OCD/PGPf6x3P5F0MncPuoajNnz4cF+5cmXQZYiISNR7771H//79gy5DJHDxfhfMbJW7D4+3vy5ZioiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiJNSlFREYMGDcrY+WbNmsV9992X0L5f/OIX2b17d4OOIU2TJoYVEREBqqqqyMpKzeS0tbk77s7ChQvTcnw59qmHTEREmqyPPvqIIUOG8OabbzJz5kzy8/MZPHgwv/nNbwBYvHgxY8aM4corryQ3N5eioiL69+/PtGnTGDhwIGPHjqWsrAyAjRs3Mn78eIYNG8bo0aNZv379Yc9dfaxbbrmFoUOHsmnTJnr16sX27dsBuOuuu+jbty/nn38+GzZsiL1vxYoVDB48mBEjRjBz5sxYb19VVVXczyBNgwKZiIgEKhx2tu07QKpXjtmwYQMTJ05k9uzZrFmzhg4dOrBixQpWrFjBb3/7Wz7++GMA/vGPf3DXXXexbt06AD744ANuvfVW1q5dS8eOHZk3bx4A06dP56GHHmLVqlXcd9993HLLLQnVcO2117J69Wp69uwZ275q1Srmzp3L6tWrmT9/PitWrIi9dv311/PrX/+aN954o0aP3WOPPVbvZ5Bjny5ZiohIYMJh54rfLmdV8S6G9ezEM9MKCIWswcfdtm0bF198MfPmzWPgwIHceeedvP322/zxj38EYM+ePXzwwQe0atWKM844g969e8fe27t3b/Ly8gAYNmwYRUVFlJSU8PrrrzN58uTYfgcOHDhiHT179qSgoKDO9qVLl3LppZfSpk0bACZMmADA7t272bdvH2eddRYAV155JS+99BIAr776atzPcGjtcuxSIBMRkcDs2H+QVcW7qAw7q4p3sWP/Qbq2b93g43bo0IEePXqwbNkyBg4ciLvz0EMPMW7cuBr7LV68mLZt29bY1rr1v8+flZVFWVkZ4XCYjh07UlhYWO85N23axJe//GUAbrrpJsaPH1/n2Icyqxs8D9dLWN9nkKZBlyxFRCQwXdq1YljPTrQIGcN6dqJLu1YpOW6rVq14/vnn+d3vfsfvf/97xo0bx69+9SsqKioAeP/999m/f3/CxzvuuOPo3bs3f/jDH4BIOFqzZk2NfXr06EFhYSGFhYXcdNNNhz3e2WefzXPPPUdZWRn79u3jxRdfBKBTp060b9+e5cuXAzB37tzYexr6GaRxUw+ZiIgExsx4ZloBO/YfpEu7VnF7jY5W27Zteemll7jgggv4/ve/z4ABAxg6dCjuTteuXXn++eeTOt7TTz/NzTffzJ133klFRQWXX345p59++lHVNnToUC677DLy8vLo2bMno0ePjr322GOPMW3aNNq2bcu5555Lhw4dALjxxhspKipq0GeQxstSPYgyk4YPH+4rV64MugwREYl677336N+/f9BlHNNKSkpo164dAHfffTeffvopP//5zwOuSpIV73fBzFa5+/B4+6uHTEREpBF5+eWX+elPf0plZSU9e/Zkzpw5QZckGaBAJiIi0ohcdtllXHbZZUGXIRmmQf0iIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIk1K9ZQRW7ZsYdKkSQFXc/QWL17Ml770pQbvU9usWbO47777GlJaHV/84hfZvXs3u3fv5pe//GVKj304CxYs4O677z7sPodrowceeIDS0tLY8+rPEQQFMhERaZJOOumk2LqP6VJZWZnW4x8rFi5cSMeOHTMeyCZMmMB3v/vdo35/7UBW/TmCoEAmIiJNUlFREYMGDQJgzpw5fOUrX2H8+PH06dOHb3/727H9Xn31VUaMGMHQoUOZPHkyJSUlAPz4xz8mPz+fQYMGMX369Ng6k+eeey63334755xzTp0JW2fNmsWUKVMYO3YsvXr1Yv78+Xz7298mNzeX8ePHx5Y9+stf/sKQIUPIzc1l6tSpsYXKX3nlFfr168eoUaOYP39+7Lj79+9n6tSp5OfnM2TIEF544YWk2uKuu+6ib9++nH/++WzYsCG2fePGjYwfP55hw4YxevRo1q9fD8B1113H17/+dc466yw+97nPxYLtp59+ytlnn01eXh6DBg1i6dKlAPTq1Yvt27fz3e9+l40bN5KXl8fMmTO55ppratR61VVXsWDBghq1bd26lWHDhgGwZs0azIxPPvkEgFNPPZXS0lK2bdvGxIkTyc/PJz8/n2XLlsX+u952222xz1JQUEB+fj533HFHrKcUIpPtTpo0iX79+nHVVVfh7jz44INs2bKFMWPGMGbMmBqfo6ioiP79+zNt2jQGDhzI2LFjKSsrA2DFihUMHjyYESNGMHPmzNjPWIO5+zH7NWzYMBcRkcZj3bp1yb+pqsp932fu4XBKamjbtq27u3/88cc+cOBAd3efPXu29+7d23fv3u1lZWV+yimn+CeffOLbtm3z0aNHe0lJibu733333f6jH/3I3d137NgRO+bVV1/tCxYscHf3c845x2+++ea45/7hD3/oI0eO9IMHD3phYaHn5OT4woUL3d39kksu8eeee87Lysq8e/fuvmHDBnd3v+aaa/y///u/Y9vff/99D4fDPnnyZL/ooovc3f173/ueP/nkk+7uvmvXLu/Tp4+XlJT4okWLYvusWLHCb7jhhjo1rVy50gcNGuT79+/3PXv2+Kmnnur33nuvu7ufd955/v7777u7+/Lly33MmDHu7j5lyhSfNGmSV1VV+dq1a/3UU091d/f77rvP77zzTnd3r6ys9L1797q7e8+ePX3btm012tzdffHixX7xxRe7u/vu3bu9V69eXlFRUafGAQMG+J49e/yhhx7y4cOH+1NPPeVFRUVeUFDg7u5XXHGFL1261N3di4uLvV+/frH/rrfeequ7u1900UX++9//3t3df/WrX8V+DhYtWuTHHXecb9q0yauqqrygoCB2rOq6qx36ObKysnz16tXu7j558uRY+w8cONCXLVvm7u7f+c53anzeQ8X7XQBWej2ZRhPDiohIcMJheOJLsOlN6HEmTHkJQum5ePOFL3whti7kgAEDKC4uZvfu3axbt46RI0cCcPDgQUaMGAHAokWL+NnPfkZpaSk7d+5k4MCBfPnLXwY47MStF154IS1btiQ3N5eqqirGjx8PQG5uLkVFRWzYsIHevXtz2mmnATBlyhR+8YtfcO6559K7d2/69OkDwNVXX80jjzwCRHrxFixYEBv7VV5eHutFqjZ8+HAeffTROvUsXbqUSy+9lDZt2gCRy3wQ6TV6/fXXmTx5cmzf6p46gEsuuYRQKMSAAQP47LPPAMjPz2fq1KlUVFRwySWXkJeXd9g2P+ecc7j11lvZunUr8+fPZ+LEibRoUTd6nHXWWSxbtowlS5Zw++2388orr+DusTU+X3vtNdatWxfbf+/evezbt6/GMd54443Y2p5XXnkl//Vf/xV77YwzzqB79+4A5OXlUVRUxKhRow5be+/evWOfb9iwYRQVFbF792727dvHWWedFTvPSy+9dNjjJEqBTEREglO6PRLGwpWR76XboV23tJyqdevWscdZWVlUVlbi7lxwwQU888wzNfYtLy/nlltuYeXKlfTo0YNZs2ZRXl4ee71t27ZHPE8oFKJly5axBdNDoVDsnPWpb3F1d2fevHn07du3xvbqoHQk8Y4bDofp2LEjhYWFh/0c1ecHOPvss1myZAkvv/wy11xzDTNnzuTaa6897LmvueYann76aebOncvjjz8OwPXXX8/q1as56aSTWLhwIaNHj2bp0qUUFxdz8cUXc88992BmscH44XCYN954g5ycnIQ+7+E+S/V/+2TfU1ZWdtj/dg2lMWQiIhKctl0jPWOhFpHvbbtm9PQFBQUsW7aMDz/8EIDS0lLef//9WPjq0qULJSUlKb05oF+/fhQVFcXO+eSTT3LOOefQr18/Pv74YzZu3AhQIySOGzeOhx56KBYIVq9enfD5zj77bJ577jnKysrYt28fL774IgDHHXccvXv35g9/+AMQCV1r1qw57LGKi4vp1q0b06ZN44YbbuCtt96q8Xr79u3r9Fxdd911PPDAAwAMHDgQgNmzZ1NYWMjChQtjNT711FP06dOHUCjE8ccfz8KFC2M9l2PHjuXhhx+OHTNeiCwoKGDevHkAzJ07N6G2iVfv4XTq1In27duzfPnypM6TCAUyEREJjlnkMuU334PrXo48z6CuXbsyZ84crrjiCgYPHkxBQQHr16+nY8eOTJs2jdzcXC655BLy8/NTds7s7Gxmz57N5MmTyc3NJRQKcdNNN5Gdnc0jjzzCRRddxKhRo+jZs2fsPT/4wQ+oqKhg8ODBDBo0iB/84Ad1jrty5UpuvPHGOtuHDh3KZZddRl5eHhMnToxdBgR4+umneeyxxzj99NMZOHDgEW8WWLx4MXl5eQwZMoR58+YxY8aMGq937tyZkSNHMmjQIGbOnAnACSecQP/+/bn++uvrPW6vXr2ASDADGDVqFB07dqRTp04APPjgg6xcuZLBgwczYMAAfv3rX9c5xgMPPMD999/PGWecwaeffhq7PH0406dP58ILL4wN6k/EY489xvTp0xkxYgTuntB5EmHp7H5Lt+HDh/vKlSuDLkNERKLee+89+vfvH3QZ0oiUlpaSm5vLW2+9lbLwUt95cnJyMDPmzp3LM888k/TdqIkoKSmJ3cF599138+mnn9a52xbi/y6Y2Sp3Hx7vuBpDJiIiImnx2muvMXXqVL75zW+mNYwBrFq1ittuuw13p2PHjrHxaqn28ssv89Of/pTKykp69uzJnDlzUnJc9ZCJiEjKqIdMJCLZHjKNIRMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhERaVKqpyTYsmULkyZNCriao7d48eLYTPUN2SfVDl20OxUWLFjA3XffDcDzzz9fY4mkdDr0vPU5XPs+8MADlJaWpqweBTIREWmSTjrppJTOsB9PIkvwyOFNmDCB7373u0BmA9mh5z0aCmQiIiIJKCoqYtCgQQDMmTOHr3zlK4wfP54+ffrw7W9/O7bfq6++yogRIxg6dCiTJ0+mpKQEgB//+Mfk5+czaNAgpk+fHlu26Nxzz+X222/nnHPOqTMh6KxZs5gyZQpjx46lV69ezJ8/n29/+9vk5uYyfvx4KioqAPjLX/7CkCFDyM3NZerUqbFFvV955RX69evHqFGjmD9/fuy4+/fvZ+rUqeTn5zNkyJCkJjwtKiqif//+TJs2jYEDBzJ27FjKysqAyBJEBQUFDB48mEsvvZRdu3bVef/HH3/MiBEjyM/Pr7NCwL333kt+fj6DBw/mhz/84RHP9+CDDzJgwAAGDx7M5ZdfHvtvc9ttt/H666+zYMECZs6cSV5eHhs3bmTo0KGxc33wwQcMGzasxvm3bt0a27ZmzRrMLLbo+qmnnkppaSnbtm1j4sSJ5Ofnk5+fz7Jly2qcF2Djxo0UFBSQn5/PHXfcUaMXsKSkhEmTJtGvXz+uuuoq3J0HH3yQLVu2MGbMmKRm+T8cBTIREQlU2MNsL9ue1oWbIRI+nn32Wd555x2effZZNm3axPbt27nzzjt57bXXeOuttxg+fDj3338/ALfddhsrVqzg3XffpaysjJdeeil2rN27d/O3v/2Nb33rW3XOs3HjRl5++WVeeOEFrr76asaMGcM777xDTk4OL7/8MuXl5Vx33XWxWiorK/nVr35FeXk506ZN48UXX2Tp0qX861//ih3zrrvu4rzzzmPFihUsWrSImTNnsn///hrnrW/pJIiEmVtvvZW1a9fSsWPH2JqP1157Lffccw9vv/02ubm5/OhHP6rz3hkzZnDzzTezYsUKTjzxxNj2V199lQ8++IB//OMfFBYWsmrVKpYsWfJ4684AACAASURBVHLY8919992sXr2at99+u87yR2eddRYTJkzg3nvvpbCwkFNPPZUOHTrE1q2cPXs21113XY33dOvWjfLycvbu3cvSpUsZPnx4bJHybt260aZNG2bMmME3vvENVqxYwbx58+K20YwZM5gxYwYrVqzgpJNOqvHa6tWreeCBB1i3bh0fffQRy5Yt4+tf/zonnXQSixYtYtGiRXHbPFkKZCIiEpiwh5n6p6mc/4fzuf5P1xP2cNrO9YUvfIEOHTqQnZ3NgAEDKC4uZvny5axbt46RI0eSl5fHE088QXFxMQCLFi3izDPPJDc3l7/+9a+sXbs2dqzLLrus3vNceOGFtGzZktzcXKqqqhg/fjwAubm5FBUVsWHDBnr37s1pp50GwJQpU1iyZAnr16+nd+/e9OnTBzPj6quvjh3z1Vdf5e677yYvL49zzz2X8vLyWE9QteHDh/Poo4/Gral3797k5eUBMGzYMIqKitizZw+7d+/mnHPOqVFHbcuWLeOKK64A4JprrqlR06uvvsqQIUMYOnQo69ev54MPPqj3fACDBw/mqquu4qmnnqJFiyMvFnTjjTcye/ZsqqqqePbZZ7nyyivr7HPWWWexbNkylixZwu23386SJUtYunRpbM3O1157jdtuu428vDwmTJjA3r176ywo/sYbbzB58mSAOuc444wz6N69O6FQiLy8vNhnSTUtnSQiIoHZWb6Twq2FVHkVhVsL2Vm+ky45XdJyrtatW8ceZ2VlUVlZibtzwQUX8Mwzz9TYt7y8nFtuuYWVK1fSo0cPZs2aRXl5eez1tm3bHvE8oVCIli1bYtEF00OhUOyc9bF6Fld3d+bNm0ffvn1rbP/ss8/qPVa8miDy2asvISYqXl3uzve+9z2++tWv1theVFRU7/lefvlllixZwoIFC/jJT35SI+TGM3HiRH70ox9x3nnnMWzYMDp37lxnn9GjR8d6xS6++GLuuecezCw2GD8cDvPGG2+Qk5OT1GeuFu/nJh3UQyYiIoHpnN2ZvG55ZFkWed3y6Jxd93+46VRQUMCyZcv48MMPgcgC1e+//34sfHXp0oWSkpKU3hzQr18/ioqKYud88sknOeecc+jXrx8ff/wxGzduBKgREseNG8dDDz0UC3OrV69ucB0dOnSgU6dOLF26tEYdtY0cOZK5c+cC8PTTT9eo6fHHH4+NufvnP//J1q1b6z1fOBxm06ZNjBkzhp/97Gfs3r079t5q7du3r9F7lZ2dzbhx47j55pu5/vrr4x737LPP5qmnnqJPnz6EQiGOP/54Fi5cyMiRIwEYO3YsDz/8cGz/6kughyooKIhdVq3+rEdSu9aGUiATEZHAmBmPj3uc1ya/xuxxs+vtIUqXrl27MmfOHK644goGDx5MQUEB69evp2PHjkybNo3c3FwuueQS8vPzU3bO7OxsZs+ezeTJk8nNzSUUCnHTTTeRnZ3NI488wkUXXcSoUaPo2bNn7D0/+MEPqKioYPDgwQwaNKjO4Ho4/Biy+jzxxBPMnDmTwYMHU1hYyB133FFnn5///Of84he/ID8/nz179sS2jx07liuvvJIRI0aQm5vLpEmTDhtQqqqquPrqq8nNzWXIkCF84xvfoGPHjjX2ufzyy7n33nsZMmRILJheddVVmBljx46Ne9xevXoBkWAGMGrUKDp27EinTp2AyI0EK1euZPDgwQwYMKDO2DWI3DF5//33c8YZZ/Dpp58mtBD69OnTufDCC1M2qF+Li4uISMpocXFJtfvuu489e/bwk5/8JG3nKC0tJScnBzNj7ty5PPPMM0ndyRpPsouLawyZiIiINEqXXnopGzdu5K9//Wtaz7Nq1Spuu+023J2OHTvy+OOPp/V88SiQiYiISKP03HPPZeQ8o0ePZs2aNRk5V300hkxEREQkYApkIiKSUsfy2GSRVDia3wEFMhERSZns7Gx27NihUCbNlruzY8cOsrOzk3qfxpCJiEjKdO/enc2bN7Nt27agSxEJTHZ2Nt27d0/qPY0mkJlZD+B3wIlAGHjE3X9++HeJiEhj0rJlS3r37h10GSLHnEYTyIBK4Fvu/paZtQdWmdmf3X1d0IWJiIiIpFOjGUPm7p+6+1vRx/uA94CTg61KREREJP0aTSA7lJn1AoYAb8Z5bbqZrTSzlRqjICIiIk1BowtkZtYOmAf8p7vvrf26uz/i7sPdfXjXrl0zX6CIiIhIijWqQGZmLYmEsafdfX7Q9YiIiIhkQqMJZGZmwGPAe+5+f9D1iIiIiGRKowlkwEjgGuA8MyuMfn0x6KJERERE0q3RTHvh7n8HLOg6RERERDKtMfWQiYiIiDRLCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgDWqQGZmj5vZVjN7N+haRERERDKlUQUyYA4wPugiRERERDKpUQUyd18C7Ay6DhEREZFMalSBTERERKQ5SiiQWUSPdBeTCDObbmYrzWzltm3bgi5HREREpMESCmTu7sDzaa4lIe7+iLsPd/fhXbt2DbocERERkQZL5pLlcjPLT1slIiIiIs1UMoFsDPCGmW00s7fN7B0zezuVxZjZM8AbQF8z22xmN6Ty+CIiIiKNUYsk9r0wbVVEufsV6T6HiIiISGOTcA+ZuxcDHYEvR786RreJiIiISAMkHMjMbAbwNNAt+vWUmX0tXYWJiIiINBfJXLK8ATjT3fcDmNk9RMZ7PZSOwkRERESai2QG9RtQdcjzqug2EREREWmAZHrIZgNvmtlz0eeXAI+lviQRERGR5iXhQObu95vZYmAUkZ6x6919dboKExEREWkuEgpkZmZAd3d/C3grvSWJiIiINC/H3NJJIiIiIk2Nlk4SERERCVgyg/rHAF81s2JgP5FxZO7ug9NSmYiIiEgzkcwYspsAzcwvIiIikmIJBTJ3dzP7b3cflu6CRERERJobjSETERERCViyY8huMrMiNIZMREREJGWSCWQXpq0KERERkWYsmUuWnwCjgSnuXgw4cEJaqhIRERFpRpIJZL8ERgBXRJ/vA36R8opEREREmplkLlme6e5DzWw1gLvvMrNWaapLREREpNlIpoeswsyyiFyqxMy6AuG0VCUiIiLSjCQTyB4EngO6mdldwN+B/y8tVYmIiIg0IwlfsnT3p81sFfAFIlNeXOLu76WtMhEREZFmIpkxZLj7emB9mmoRERERaZaSuWQpIiIiImmgQCYiIiISMAUyERGRgHk4jIc1cUFzdsQxZGa2j+hUF7VfIrKW5XEpr0pERKSZCJfupfLd1/BwmJaDziPU7vigS5IAHDGQuXv7TBQiIiLSHIV3bcEPlkKoBeFtRQpkzVRSd1maWSegD5Bdvc3dl6S6KBERkeYi1PEEqlq0hnAVoc49gi5HApJwIDOzG4EZQHegECgA3gDOS09pIiIiTYNXlMHBvZDTBQtl1Xgt1LYTrYZfDDjWonUwBUrgkhnUPwPIB4rdfQwwBNiWlqpERESaCK8sJ/z+84Q3PE9487K4+1iLVgpjzVwygazc3csBzKx1dJLYvukpS0REpImo2I8f3AvZHWDfP4OuRhqpZMaQbTazjsDzwJ/NbBewJT1liYiINBHZxxPqlofv3YSdfGbQ1UgjlcxalpdGH84ys0VAB+B/01KViIhIE2FmkSCmMCaHkcyg/tbARKDXIe/LA36c+rJEREREmo9kLlm+AOwBVgEH0lOOiIiISPOTTCDr7u7j01aJiIiISDOVzF2Wr5tZbtoqERERkZRxd6oqPqOyogh3XdiKx8NhKsvKcY+3QmRmJdNDNgq4zsw+JnLJsnoty8FpqUxERESOmof3UnVwXeT/1uEyWrTuH3RJjYq7s/3Ntynb/Blte51M5/xBgdaTTCC7MG1ViIiISIoZ4ODVj+VQ4QMV7N/0KeWdW+JF/6TTkH6EWiS1omRKJTPtRbGZnQ6Mjm5a6u5r0lOWiIiINEQo6ziyWp8OXkaoxQlBlxO4sIfZWb6TztmdMTNolcX3bTbvbt7AoHb9+F3WBYHWl/AYMjObATwNdIt+PWVmX0tXYSIiItIwWS06k9WyO2Ytgy4lo8IeZnvZ9tjYsLCHmfqnqZz/h/O5/k/XE/Ywuw7s4t2y96kizLv7N7CzfGegNSczqP8G4Ex3v8Pd7yCyuPi09JQlIiIicmSJhK+d5Tsp3FpIlVdRuLUw1lOW1y2PLMsir1senbM7B/o5krlYakDVIc+r0EVpERERyZDalx2rw1fh1kLyuuXx+LjHDxu+qverfn/1/rHLmAFKJpDNBt40s+eizy8BHkt9SSIiItLcZSJ8hSxEl5wuAX/SiGQG9d9vZn8DRhLpGbve3VenrTIRERFpFppb+Ionqfs73X0VkaWTRERERJKm8BXfEQOZmf3d3UeZ2T6is5lUv0RkYtjj0ladiIiIHLMUvhJ3xEDm7qOi39unvxwRERE5Fil8NUwy85Ddk8g2ERERabpqTzNRve1op5qoDl+vTX6N2eNm1wlfQd/9mCnJzEMWbwpbLackIiLSRCUyxxeg8JUCiYwhuxm4Bficmb19yEvtgWXpKkxEREQy52gvOXbJ6aLLjimQyF2Wvwf+F/gp8N1Dtu9z92DXGRAREZGkpXK8F6DwlQKJDOrfA+wBrkh/OSIiIpJKmZrdXuGrYRKeh8zMngBmuPvu6PNOwP9z96npKk5EREQSpzsdj13JTAw7uDqMAbj7LjMbkoaaRERE5AgUvpqWZAJZyMw6ufsuADM7Psn3i4iIyFFQ+Gr6kglU/w943cz+GH0+Gbgr9SWJiIg0XwpfzVMyi4v/zsxWAucRWTbpK+6+Lm2ViYhIs+EcBCqBHIzmMxeVwpdUS/aS46fAP4BsoIuZne3uS1JfloiINBfOQZxiIAx0wugWdEkpVzt4VW9T+ApYOAyl26FtVwh4Utpk7rK8EZgBdAcKgQLgDSI9ZiIiIkepkkgYywIOBlxLwyXS6xWykMJXOsULWrW3hcPwxJdg05vQ40yY8hKEklnAKLWSOfMMIB8odvcxwBBgW1qqEhGRZiQH6AxkY3QNupikJLK0ULzgBWhpoVQJh6FkK1SvrVkdtO7vD3MuijyPt610eySMhSsj30u3B/oxkrlkWe7u5WaGmbV29/Vm1jdtlYmISLNgGMax19Oj2e0DkEgvVz1Byze9iYUrI9+jx/DuZ8LmyHutbbD/GEgmkG02s47A88CfzWwXsCU9ZYmIiDQutS9Fanb7NDva8BUnaIXDzvoW/TntwFreb9GffjldwOHKg/+Xj8uL6XWgF884hALsgEwokFnkp+fr0YlhZ5nZIqAD8Eo6ixMREQlCIuPANN4rhRIMX4n0coXjBK0dpRVcXPJdOoT3sruiA2+UVgCw8pM9VIY7sOOT3ezYf5Cu7VsH1gQJBTJ3dzN7HhgWff63dBRjZuOBnxMZ2fmou9+djvOIiIhUO9qpJ7rkdFH4OpKjHVwfJ3yFc7ok1Mu1Y//BOkGrS7tWDO3ZmVXFIYb17ESXdq0AGNazE6uKd9XYFpRkLlkuN7N8d1+RjkLMLAv4BXABsBlYYWYLNNeZiIikSirn/QKFrxoSCVqAz/nSv3u0kghfifZydWnXqk7QMjOemVYQe706PMfbFpRkAtkY4KtmVgzsJzI5rLv74BTVcgbwobt/BGBmc4GLAQUyERFJWiYmXW2W6un1SihohZ3wJ8tpQRWVxcsJlWyDtl0TCl+J9nLVF75CIatzSTLetqAcMZCZ2ZPufg3wCPBcGms5Gdh0yPPNwJlx6pkOTAc45ZRT0liOiIgcKzTjfZrE6fWqE7xCIcIl2xILWvsP8lG4D0Ptfd7yPnyODpBg+Eqml6sxBa1EJdJDNszMegLXA09A2ta0iHdcr7PB/REi4ZDhw4fXeV1ERJq2TIWvyGXJStxbHHWPWFXFvwgffA/L6kpW6wGYBTfx6JGEq6rYuW0LnbudjIVCccNXvOAVOu4EdtAhsaDVvjVfO+l+Pv6kmF6n9GJuNDQlGr4aey9XQyQSyH5N5G7KzwGrqBmcPLo9FTYDPQ553h1NqyEi0mwFvdyQ+1acXRhtge5HFcrCBz+EUA7hqn+RFe4JWe0b1CZHIxz2OsGmdvgKV1Wx/p5zOO3AWt5rPZB+3/kb7N9eJ3zFC15dIamg9fvpZ7Fj//Am2cvVEEcMZO7+IPCgmf3K3W9OYy0rgD5m1hv4J3A5cGUazyciIo1EY1tuyN1xdgM5OPsxKoGWSX8ua3ki4YNFWKgdhHKSfn+y6gStsHPlI6/HgtIz00eAh+uEr53btnDagbW0sDCnHVjLzm1b8DZd64Sv+oJXQ4NWcwtf8SQ8qD/NYQx3rzSz24A/EZn24nF3X5vOc4qISOY1ZJqJTI35MjPMO+Nsx+hAcvfA/VtWy1PJanEyWEvMju4YcPS9XDv2H+QbW77J0Jbv89aW09hRshgr3V4nfHXudjLvtR4YGe/VeiD9u50MZnXCV33BCxS0GurofzrSwN0XAguDrkNERFIj1dNMZHLAfSjUBffjGzTuy8zAkusZqx2+GtLL1aVtKzqFPqAFYYbZB2TZXogTviwUih2j+jkQN3wpZKVHowpkIiJy7MrUNBOZvNsxVYPw4/VwxdseL3ztKCk/6l4uMyPrlAJ885tk9TgTa9cNzOKGr1BWFl1O7FGjboWvzEk4kJnZgNqTtJrZue6+OOVViYhIo6ZpJiLiXkqME7Ku+O3y2FxZz0wrIBRKPHx1sb0N6uWy616qM29YvPAlwUqmh+x/zOxJ4GdAdvT7cGBEOgoTEZHGQeErIpGgBdTZtmP/Qd4q3kHH8F5WFXtszcREw5e169agXi5CIWjXLdPNJUlKJpCdCdwDvA60B54GRqajKBGRxsArD1D1wd8Jl+2lxWmjCbVr3IEhFZpj+DraXq54QQuos61L2xa80O7uWG9Wl7bjAZIKX+rlavqSCWQVQBmQQ6SH7GN3D6elKhGRRsD3fkZ4xyfQqg3hf75LqO+5QZeUUgpfDevlqi9o1d5mpTvoX/keZuHI99Id0K5bUuFLvVxNXzKBbAXwApAPdAZ+Y2aT3H1SWioTEQmY5XSAljlQUY51OCnochqkqYevhvRyrSreRWXYWVW8K6lerrhBC+pua9sV63EmbHoz8r1t10jRCl9yiGQC2Q3uvjL6+F/AxWZ2TRpqEhFpFCynAy2HXAxVByPh7BgQ9Oz2Kf0sSdyZmGgvV+3w1aVdK4af0iE2sL5Lu1bg4cTCVz1Bq842M5gSJ3iBwpfEJDMx7Eoz6wT0IXLJEqA4LVWJiDQS1iqHyEiNxqexzW7foM+SxJ2JifZyJRK+zJ1nWt0F2W9C6zMxfwkSDV/1Ba142xS85AiSmfbiRmAGkTUmC4EC4A3gvPSUJiIi1Y6F2e3j1p3CS4ld27dOvJcLEgxf27HNb0K4Eja9GQtS9YUv3/NPKvfsw7ZuosUJp8QPWgpfchSSuWQ5g8j4seXuPsbM+gE/Sk9ZIiLN17Ewu/3RBi1I/FLisJ6dYvtVh6yEe7kg4fBFNHxxpJ6vUIiDn26hastGMLDssWR1aDw3LMixLZlAVu7u5WaGmbV29/Vm1jdtlYmINAPHwuz2qQxaEP9SYu3wZWY8c+MZ/16rMfpZEu7lggaHr/p7uRzc6nlN5OgkE8g2m1lH4Hngz2a2C9iSnrJERJqexnanY6rvTEy0lyuh8BUOE/rdl+lSHZ6mvBQJSYn2ckGKwldNrfrkUdmuA5bdVr1jklLJDOq/NPpwlpktAjoAr6SlKhGRY1xjD1/puJwYN2hFj3Fo6EsofJVuj4SpQ4NXu27J9XKlYXC9tWxNy1P6HfX7RepzVIuLu/vfUl2IiMixKqjwlUgPV/W2lF9OjBe04mwL4XS1PUDX6qITC1/19Xol08ulwfVyDDliIDOzfYDHewlwdz8u5VWJiDRSGRnz5YZXtq953qPs4QqFLC29XHWCVrxt4TA88aV/h6pkwpfm7pJm5oiBzN3bH2kfEZGmKIjwleoB813bt05LL1edoAWpD18KXtKMHNUlSxGRpiQds9s/esFjbNz5GX06n5hU+Er1gHmg/l6ukNG1fesabXHUvVyg8CXSAMlcsox3j68uWYrIMSUds9vXDl/hsHPVo/8IZsB8nG0QP3wRDtcMRg25xAgKXyINoEuWItJkNXh2+655FG5LPnxlbMB8vB6ueMELUhu+tGSQSMoldckyzlqWuPuSVBclItJQSV1yrBW8ANyh9JNplGzeTGlZD9zBPbHw1eAB88kErTofPFw3FKUjfOmuRpGU0lqWItIk1O4Nixe+OrU6ntaVn2N/aCOtqz5Hp1bHxw1eZrBj/0HeKt5DZbgdbxXvzmgvV/wPWE/QOlKvV3QyVY3vEmnctJaliBxzKquqYpcNQ6FQpDfslamxXq7Hxz0eN3ztLK1gx4dTqbISyr09O0srAOoEr/ruTISAerkacldjspOpKnyJBEJrWYpIoxFvUtPa4auyqoqRT0xmf2gjbcOnsmzKH9hVvotVn60GC7PqX6vZUboTwu3rhK9IyOrMquLQUd+Z2KBervgf+ujGdkF6JlMVkUBoLUsRCUS8iU4v/+3rvLV5M0O792DutBGEPVwnfG3c+Rn7QxsxC7M/tJGNOz+jU+vjqSrrSSinmHBZT7yqHV3b1w1fqbgzMZDw1dC7GiOFK3yJNGIJBTKL/IX6urvvRmtZikg94vVwxdseL3xtKynn3fA9ZJ9azLtlPdlW8iy7D+yqE776dD6RtuFTYyGt+m7HQaHv8NbGyPG6tm+dnkuJyTWG7moUkYQlFMjc3c3seWBY9LnWshRp5hJZyicUSjx8ZbXYT1ZOMViYrJxislrsp0+7uuErFArFesqqnwPMnXZWai8l1v/Bj25wve5qFJHDSOaS5XIzy3f3FWmrRkQCl8iC1fXPML+DKithVbHHBscnGr4653Rm2AlDIgPzT8ijc07kbsl44atFVhZ9u55Uo+7AerlASwaJSIMlE8jGAF81s2JgP/9eXHxwWiprJPbt28f27ds58cQTycnJCbocCcD2zTspfnszJ36+GyefdmLQ5Ry1ow1aUN8M8zXD1/FtW9D584/HerOObzseIKnw9fj4ums9xgtfaWico5+7CxS+RKTBkglkF6atikaqoqKC5557nr1793HCCd2YPHlS0CVJhoXDYd7563paZrfkvb9/SOeTO5HdNsW9MGnQsKAVb4b5I4evXQd2caDFR5iHOdDiI3Yd2BWZ8T6J8BWyEF1yuqS7cVI7dxcofIlIgyUcyNy9ON5M/UBxyqtqJCoqKigtLaV9+3bs2bOHcDgcu2QizUMoFKL98W3Z/a89ZB+XQ4tWSS1ukXINu5yY2FI+Q3t2iI336tKuFWEPJxS+4q3zCDT+8JWKubsUvkSkgTRT/2G0adOG88//Ah9+uJHc3EEKY83U6RcMZM+2vbTr1JYWLbNSfvxk7kw82l6u+iY5rR2+HKfNKb+lXU4hbbrl4RQkHL7MLLY80fGtOoKHwSLt1ajDVyrm7lL4EpEG0kz9R/D5z3+ez3/+80GXIQFq2boFXbofn5JjJXNnYkN6ueLNJv/0jWfUXBTbw3XC187ynRRui7PW42HCV+1er84Wwj/4Pe4Ovb+ERXvKGtBowdzVCApaIpIxmqlfJAVSeSmxa/vWDV6wOl74uvHPN9RdaLuB4Ster5fvLcKryiNP9hYnF8h0V6OINFOaqV8kSZm4lJjMgtUJh6+tqQ9f8Vj7HrDjbcAjj+tvyPQuGaTwJSLHkGQG9V8afaiZ+qVJysSA+URDVn3bMcda7AMivU5Bh694LKcrnHZV5HFWy+rGDWbJIIUvETlGHNUtY5qpX44lqZ9/6+gvJSa1MHWc8DX1T1MbVfiK09hQuh07mvm8dFejiDRjydxlmQ3cAowCHPg78Ct3L09TbSJJS/38W0ffy5Vo+Ap7uE5QOpbCV8rm89JdjSLSjCXTQ/Y7YB/wUPT5FcCTwORUFyVyqER6uKq3pTJoQcN6uRIJX/GCV8hCwYavVN7VmOx8XgpaItJMJRPI+rr76Yc8X2Rma1JdkDRvR9vDFQpZWi4nJnWJsfZnSSB8xQteXXK6BBe+Un1XIyh8iYgkIJlAttrMCtx9OYCZnQksS09Z0tSke8B81/at03I5Md3h67Cz2wcRvtJxV2OkIRW+REQOI5lAdiZwrZl9En1+CvCemb1DM1hkXOJrLAPmof47ExsStOJ+5hSGr/qCFwQUvnRXo4hIIJIJZOPTVoUcExr7gHloWNCK+5kzEL4aPNg+E7PWK3yJiKRVUouLp7MQCU4Q829B6gfMN7gdFL4i59BdjSIiGXdU85BJ49eQOxMhM/NvNWTAfIPbpzGFtseBngAAFENJREFUr3h3NcbbnqnwVYsfKMH3b8fadcNatTnaJhcRkcNQIGsCUn1nImRm/i2Fr8PM3RVQ+KrNqyqofG8hHNiHtTmerEGX1LhELCIiqaFA1ogFdWciNL7LiYk65sJXfXN3NZbFssNVUFEGrdrhB/aDe81ePBERSYmkA5mZXQlMAKoAA15092dSXVhz09juTAzycmIiGt3s9v9/e3cfZFld33n8/enpGWaYAYQZFF0eZi0h6qKLZmJifCCJYy1bZoma5zIlKhuKdXezKSqpxGKTbMW1EiC7SSW6WQma6IrZRCqIkRhEkqyJKyrCAAFUCCiMsoYnMeMgMNPf/eOeGZt+vD1z+/xud79fVVNzz72/Pufb37l959Pn/M45oz6rcUwuppr1G5l49pnUw3cz8fTnkomJZdmOJK11h7KH7Myq+qkDC0neBRjI5jFON6xeypmJ4xy+ml/dvo+5XWN0WYl1W7fD1u29blOS1ppDCWRHJHkNcB9wIrBptCWtDONy/a2VcihxWE2vbj/KWwaNYg+XZzZK0ppxKIHsrcDrgRcAu4F/P9KKxsyoz0yEfibMrwRNr26/3LcMGqM9XJKk8bfkQFZVe4EPHFhO8kvARaMsalzMFbwO98xEWP17uebS9Or2rW4ZZPiSJA3pUCb1/+n0ReAMVmkgmyt4jeLMxNW0l2sYvU6295ZBkqQV6FAOWX6zqv7tgYUkvz/CesbKfMFrpVx/q5WZe8OWJXzNN9/LWwZJklagQwlk75ixfOEoChlH8wUvWJtBay7DHIocefia72Kq3jJIkrRCHcocsntmLD88unLGz1oMWfM5nDMg5wxfBdv2T83YyGFcTNX5XYes9u/jsVtvZN8jD7HpBS9m/bZntC5JktaUoQNZkgvmePpR4PNVtWt0JWkcjPoMyFnha9RnNYLh6zDsf/QbPPm1e5nYvIXHv3SbgUySeraUPWQ7uj9/3i2/BvgccH6SD1XVxaMuTv0Y+RmQr76Mhx+5i63HnTbYG9bXWY1g+DpEE5u3MHHkZqb27mXjadtblyNJa85SAtlW4MVVtQcgya8BVwCvBD4PGMjG3LLcbmiO8DXx/rPZ5lmNK8rEERvZ8rJXMfX4t5nYfFTrciRpzVlKIDsZeGLa8pPAKVX1WJLHR1uWDtey3G5olOHLsxrHTtZvYN36Da3LkKQ1aSmB7IPA9UmuYnD9sR8G/jjJZuD25ShOw1mW2w31Eb48q1GSJGAJgayq3p7kL4CXMwhk51fVDd3Lb1iO4jTbYc33Ov4Mdj0wx+2GWoUvSZIELP2yF/uAKaAYHLLUMhpl+EoV7/1/X+fhr36VrfufSaoOXlbC8CVJUlsTww5M8p+Ay4FtwNOBDyT5j8tV2FozVVM8+NiDVNXB5bdc8xZ2fmgnb77mzQfD2Xzha13WzQpfn7j3q/zh/V8fhK+9DzJx32fZtu8Jct9nv3NW40Lha2Jydvi64A5409Wzw9f0Mx0lSdKSLGUP2bnA91bVtwCSXAR8Gvi9wy0iyY8D/wV4HvCSaYdCV6Vl3/N1IHxN7YMD4Wu+sxrd8yVJUnNLCWQB9k9b3t89Nwp/D7weePeI1jc2xiZ8zReyDF+SJDW3lED2h8BnklzJIIi9FnjvKIqoqjuAp9wrciUa+/A1X8gyfEmS1NRSzrL870n+BngZg0B2zlq+ZdIhh68Nx3LG1Dp2sY8zah1bNxzbb/iSJEljZ9FAluSfGJxVefCpaa9VVR09zIaSfAI4YY6XLqyqq4ZZR7ee84DzAE4++eRhv+yQHdbV7ecKX489xHvv/TIPM8VWJshjDwEYviRJWsMWDWRVNZL7qFTVzhGt51LgUoAdO3bUIsMPy5Kubj9s+Np8PBMnfe93LjPhLYMkSVrzlnodsjVl3qvbH0748pZBkiRphrEIZElex+DyGccDVyfZVVX/qnFZcwYv4PDDl7cMkiRJ04xFIKuqK4ErW9cx05zBa8vTDz98SZIkTTMWgWxszTffy/AlSZJGyEC2kPmCFxi+JEnSyBjIFmPwkiRJy2zom4tLkiRpebiHTFIzex74Jnd/8g42HbuZZ7/8uazb4EeSpLXJPWSSmrn/lnupKh7d/RB7/vGbrcuRpGYMZJKaedpJx/HkY0+w/sgj2HjMptblSFIzHh+Q1Mzxpz2Lo044lskjJpk8Yn3rciSpGQOZpKY2Hu2eMUnykKUkSVJjBjJJkqTGDGSSJEmNGcgkSZIac1K/pIMe/9bj3Hvjl1m/aT0nnXEK6ybXtS5JktYEA5mkg3bfch8P3PMAU/v2c9TxR7P1lG2tS5KkNcFDlpIO2nT0JmrfFJmYYMOmDa3LkaQ1wz1kkg464XnP5Mhjj2RywyRbth3VuhxJWjMMZJIOmpiY4GnPOrZ1GZK05njIUpIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNTYWgSzJJUm+kOSWJFcmeVrrmiRJkvoyFoEMuBY4vapeCHwJeFvjeiRJknozFoGsqj5eVfu6xeuBE1vWI0mS1KexCGQzvAX42HwvJjkvyQ1JbnjggQd6LEuSJGl5TPa1oSSfAE6Y46ULq+qqbsyFwD7g8vnWU1WXApcC7Nixo5ahVEmSpF71FsiqaudCryc5B/hh4FVVZdCSJElrRm+BbCFJzgJ+CTizqva2rkeSJKlP4zKH7J3AUcC1SXYl+Z+tC5IkSerLWOwhq6rntK5BkiSplXHZQyZJkrRmGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmNjEciSvD3JLUl2Jfl4kme1rkmSJKkvYxHIgEuq6oVVdQbwUeBXWxckSZLUl7EIZFX1zWmLm4FqVYskSVLfJlsXcECSdwBvBB4FfrBxOZIkSb1JVT87o5J8AjhhjpcurKqrpo17G7Cxqn5tnvWcB5zXLX4X8MUhS9gGPDh8xWuCPXkq+zGbPZnNnsxmT2azJ09lPwZOqarj53qht0A2rCSnAFdX1ekjXu8NVbVjlOtc6ezJU9mP2ezJbPZkNnsymz15KvuxuLGYQ5bk1GmLZwNfaFWLJElS38ZlDtlvJvkuYAr4CnB+43okSZJ6MxaBrKp+tIfNXNrDNlYae/JU9mM2ezKbPZnNnsxmT57Kfixi7OaQSZIkrTVjMYdMkiRpLVtVgSzJWUm+mOSuJL88z5ifSHJ7ktuSfLDvGvs2TE+6cT+WpJKs+rNgFutJkgu698gtSa7rzvxd1YboyRFJ/qR7/TNJtvdfZRtJjktybZI7u7+PnWPMGUk+3X2u3JLkJ1vU2pdhejJt7NFJvprknX3W2Ldhe5Lk5O4WgXd0nzPb+620P0voycXdz84dSX43SfqudRysmkCWZB3wLuBfA88HfjrJ82eMORV4G/CyqvoXwM/3XmiPhulJN+4o4OeAz/RbYf+G7MlNwI6qeiFwBXBxv1X2a8ienAs8UlXPAX4buKjfKpv6ZeC6qjoVuK5bnmkv8Mbuc+Us4HeSPK3HGvs2TE8OeDvwf3qpqq1he/J+BrcLfB7wEuAfe6qvhUV7kuT7gZcBLwROB74HOLPPIsfFqglkDN7Yd1XV3VX1BPC/gR+ZMeZngXdV1SMAVbWafxBguJ7A4APzYuDbfRbXyKI9qaq/rqq93eL1wIk919i3Yd4nPwK8r3t8BfCqNfRb7PTv/X3Aa2cOqKovVdWd3eOvMfhPds6LP64Si/YEIMl3A88APt5TXS0t2pPuF53JqroWoKr2TPusWY2GeZ8UsBHYABwBrAe+3kt1Y2Y1BbJ/Btw3bXl399x0pwGnJflUkuuTnNVbdW0s2pMkLwJOqqqP9llYQ8O8T6Y7F/jYslbU3jA9OTimqvYxuMXZ1l6qa+8ZVXU/QPf30xcanOQlDP5z+Yceamtl0Z4kmQD+G/CLPdfWyjDvk9OAbyT5syQ3Jbmk20O9Wi3ak6r6NPDXwP3dn2uq6o5eqxwTY3HZixGZ67f1maeQTgKnAj/AYK/H3yY5vaq+scy1tbJgT7oPzN8G3tRXQWNgmPfJYGDyM8AOVv/u82F6MnTfVqKFbu22xPU8E/hfwDlVNTWK2loZQU/eCvxFVd23WnamjqAnk8ArgBcB9wJ/wuDz9z2jqK+Fw+1JkucAz+M7RyKuTfLKqvrkiEpcMVZTINsNnDRt+UTga3OMub6qngTuSfJFBgHtc/2U2LvFenIUg2P2f9N9YJ4AfCTJ2VV1Q29V9muY9wlJdjL4QDmzqh7vqbZWhv3ZOQnYnWQSOAZ4uJ/yll9V7ZzvtSRfT/LMqrq/C1xzTnVIcjRwNfCfq+r6ZSq1NyPoyUuBVyR5K7AF2JBkT1UtNN9srI2gJ7uBm6rq7u5rPgx8Hys4kI2gJ69j8P/ynu5rPsagJ2sukK2mQ5afA05N8s+TbAB+CvjIjDEfBn4QIMk2BruP7+61yn4t2JOqerSqtlXV9qrazmC+1GoOYzDE+6Q7jPtuBr1Y7fMMYbifnY8A53SPfwz4q1o7FzGc/r2fA1w1c0DXtyuB91fVh3qsrZVFe1JVb6iqk7vPll9g0JsVG8aGsGhPGPysHZvkwPzCHwJu76G2Vobpyb3AmUkmk6xncERiTR6yXDWBrJvX8h+Aaxj8Y/5pVd2W5NeTnN0NuwZ4KMntDI5Z/2JVPdSm4uU3ZE/WlCF7cgmD3+g/lGRXkpnhZFUZsifvAbYmuQu4gIXPqlttfhN4dZI7gVd3yyTZkeSybsxPAK8E3tS9Z3YlOaNNub0YpidrzaI9qar9DMLpdUluZTAV4A8a1duHYd4nVzCYb3krcDNwc1X9eYtiW/NK/ZIkSY2tmj1kkiRJK5WBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJM0Ukn2tK5hFKZ/H6P4npJsT/JYkl2Hu64FtrGpuyjtE93dSCStEAYySWtSBvr+DPyHqlq2K/hX1WPd+mfdn1XSeDOQSVoWSS5I8vfdn5+f9vyvJPlCkmuT/HGSXzjE9W/v1vO+JLckuSLJkdNe/3CSzye5Lcl5077mjiT/A7gROGmucYtsd671fk9Xw8Ykm7vXTh+y/su6Hl2eZGeSTyW5M8lL5tte9/zmJFcnubn7+p88lD5KGg/eOknSSHWH984E/gj4Pgb36/sM8DPAOuAy4KXAJINQ9O6q+q1D2M524B7g5VX1qSTvBW4/sK4kx1XVw0k2Mbip85nAUcDdwPdX1fXzjauqh5LsqaotB76naY/nG/9fgY3AJmB3Vf3GHPV+tKpOn7Z8F/Ai4LZuXTcD5wJnA2+uqtcusL0fBc6qqp/t1ndMVT3aPf4ysKOqHlxqXyW14R4yScvh5cCVVfWtqtoD/Bnwiu75q7pDa/8EHLyJcJJnJ3lPkiu65c3d3q8/SPKGebZzX1V9qnv8gW79B/xckpuB64GTgFO7579yIIwtMm4+843/dQY3UN4BXLzIOg64p6puraopBqHsuhr8lnwrsH2R7d0K7ExyUZJXHAhjklYmA5mk5ZAlPk9V3V1V50576vXAFd0eoLPn+7K5lpP8ALATeGlV/UvgJgZ7rwC+dbCYhcfNLn7h8ccBWxjshZt3HTM8Pu3x1LTlKWByoe1V1ZeA72YQzH4jya8OuU1JY8hAJmk5fBJ4bZIjk2wGXgf8LfB3wL/p5lptAV6zwDpOBO7rHu+fZ8zJSV7aPf7pbv0AxwCPVNXeJM9lcOh0LsOOG2b8pcCvAJcDFy2ynmHNu70kzwL2VtUHgN8CXjyibUpqYLJ1AZJWn6q6MckfAZ/tnrqsqm4CSPIRBnOlvgLcAMx3qG03g1C2i/l/ebwDOCfJu4E7gd/vnv9L4PwktwBfZHC4by7DjltwfJI3Avuq6oNJ1gH/N8kPVdVfLbK+xSxU3wuAS5JMAU8C/+4wtyWpISf1S+pVki1Vtac7I/KTwHldgNsKvIPBPKzLgN8F3gl8G/i7qrp8xnq2M22S/Ljrs14n9Usrj3vIJPXt0iTPZzAX6n1VdSNAVT0EnD9j7Jv7Lm4Z7QeOSbJrua5F1p2J+WlgPYN5aJJWCPeQSZIkNeakfkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJj/x9hCnO3Udy76wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAITCAYAAAC+FJAMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU5bn3/8814RDOQQ5tFQxIkWNigESDgIq1gLVFLfAonkVhe2rZ7d7Y1qcH2uqvWv25rdqTVdCqFXcLKiq11hYLRVFOQQsiiiRCtXIMkhOQzPX8McM0kEmYITOZTPJ9v155kVmzZq3rnoThy32vdd/m7oiIiIhI8xdIdQEiIiIiEhsFNxEREZE0oeAmIiIikiYU3ERERETShIKbiIiISJpQcBMRERFJEwpuIiIiImlCwU1EWg0ze8LMPjazT81ss5ldX+u5L5jZJjOrMLOlZpZd67kTzOxpM9sV/nrSzLqmphUi0popuIlIa/IToJ+7dwUmA7eb2Sgz6wksAr4HnACsBp6u9brbge7AKcAA4DPA3CasW0QEgDapLkBEpKm4+4baD8NfA4BRwAZ3/z2Amc0FdpnZYHffBPQHnnX3T8PPP0Mo+ImINCn1uIlIq2JmvzCzCmAT8DGwBBgGrD+8j7uXA1vC2wF+DnzZzLqbWXdgCvDHJi1cRAQFNxFpZdz9JqALMI7Q8OgBoDOw76hd94X3A1gLtAN2h79qgF80Rb0iIrUpuIlIq+PuNe7+d6APcCNQBhx9s0FXYH/4+98DmwkFua6EeuOeaJpqRUT+TcFNRFqzNoSucdsAnHZ4o5l1qrWd8HO/dvdydy8DfgV8qYlrFRFRcBOR1sHMepvZpWbW2cwyzGwiMB34K/AMMNzMpphZJvB94K3wjQkAq4DrzayDmXUAZlHrmjgRkaai4CYirYUTGhbdDuwF7gH+092fc/edhG44uCP83BnApbVeOwPoF37tPwlNC3JNUxUuInKYuXuqaxARERGRGKjHTURERCRNKLiJiIiIpAkFNxEREZE0oeAmIiIikiYU3ERERETShIKbiIiISJpQcBMRERFJEwpuIpJQZlbWhOeqMbMiM9tgZuvN7JtmFqj1/GsNvDbLzG5qmkrrnLufmVWaWVGtx/9IwHE7hN+Pg2bWs/GVikhzo+AmIums0t3z3H0Y8EVC64f+4PCT7n5mA6/NAlIS3MK2uHteIg/o7pXhY36UyOOKSPOh4CYiSRHu/fpH+Os/a23/npltMrM/m9lTZvbfiTifu+8gtIboLWZm4XOVhf/sZGYvhnvl/mFmlwB3AgPCPVR3h/d71szWhHvwZoW39TOzd8zsN+HtL4fXK8XMrjKzt8LHfbxWG68wszfDx/61mWXE2g4zO8XM1plZQfjcm8zssfB5/mBmHRs6t4i0bG1SXYCItDxmNgq4ltCanwa8YWZ/AzIIrQk6gtDnz1pgTaLO6+4fhIdKewOf1HpqEvCRu18Qrq8b8AYw/KherxnuvicczFaZ2cLw9oHAdHefaWb/C0wxs3XA/wXGuPsuMzshfOwhwCXh7YfM7BfA5cBvj1W/mQ0CFgDXunuRmfUDBgHXufsKM5sH3GRmf4x2bhFp+RTcRCQZxgLPuHs5gJktAsYR6uV/zt0rw9ufP/wCMzuFUBjp5u5TzawT8AvgIPCquz8Z47ktyra3gXvM7C7gBXdfbmbdo+z3dTO7OPx9X0KB7V/AVncvCm9fQ2jB+e7AH9x9F4C77wk//wVgFKHgB9AB2BFD3b2A54Ap7r6h1vZt7r4i/P0TwNeBA/WcW0RaOA2VikgyRAtPDW3H3T9w9+tqbfoqoXAyE5gc00lD4a+Go4KSu28mFKbeBn5iZt+P8tpzgPOA0e5+GrAOyAw/faDWrjWE/tNrgEcrA3gsfO1dnrsPcve5MZS/D9gGjDlq+9Hn8AbOLSItnIKbiCTDMuAiM+sY7jm7GFgO/B34ipllmlln4IIGjtGHUJCBUFhqkJn1An4FPOjuftRzJwIV7v4EcA8wEtgPdKm1Wzdgr7tXmNlgoPAYp/wL8H/MrEf4HCfU2j7VzHof3m5m2ceqn1DP4kXAVWZ2Wa3tJ5vZ6PD30wm9h/WdW0RaOA2VikjCuftaM3sUeDO86WF3XwdgZouB9UAJsJpQT1M02wmFtyLq/09mh/CUGm2BauBx4N4o++UAd5tZEDgE3Ojuu81sRXgajj8C3wVuMLO3gHeBlcdo4wYzuwP4m5nVEOqhu8bdN5rZd4GXw9fbHQJuDre3Qe5ebmZfBv5sZuWE3qd3gKvN7NfAe8Avw+GyzrmPdXwRSX921H9MRUSSysw6u3tZ+O7IZcCscNDrAdxBaFqPh4H7gQeBKuDvcVzj1uyFbzp4wd2HJ2K/KK8rBvIPXwMnIi2HetxEpKk9ZGZDCV0/9pi7rwVw993ADUfte21TF9dEaoBuZlaUyLncwnfDvk6oBzKYqOOKSPOhHjcRERGRNKGbE0RERETShIJbM2Jmfc1saXiW9g1mNruBfQsstE7j1KasMRlibbeZnWP/Xpfyb01dZ6LF0m4z62Zmz4dnx99gZmk/dBi+o/TNWm36YZR92pvZ02b2vpm9Eb7WK+3F2PZvmtnG8KoIf4nxjtRmLZZ219p3qpm5meU3ZY3JEGu7zez/hH/mG8zsd01dZ6LF+Ht+cvjzb134d/1Lqag1GcwsI9yuF6I81/jPNnfXVzP5Aj4HjAx/3wXYDAyNsl8G8FdgCTA11XU3RbsJrSu5ETg5/Lh3qutuonbfBtwV/r4XsAdol+raG9luAzqHv29LaAWDwqP2uQn4Vfj7S4GnU113E7Z9PNAx/P2NLaHtsbQ7/FwXQjesrCR0c0XKa2+Cn/dAQncFdw8/bgmfbbG0+yFCd3cDDAWKU113Atv/TeB3hG4sOvq5Rn+2qcetGXH3j/3fF2rvJzQNwElRdv0asJDYZmNv9mJs92XAInf/MLxf2rc9xnY70MXMDOhMKLhVN2mhCeYhZeGHbcNfR19seyHwWPj7PwBfCL8HaS2Wtrv7UnevCD9cSWhKlLQW488c4MfATwndSZz2Ymz3TODn7r43/JqW8NkWS7sd6Br+vhvwUROVl1Rm1ofQ/JQP17NLoz/bFNyaqXD36QhC/1Opvf0kQpOZ/qrpq0q++toNnAp0N7NXLbQI+FVNXVsyNdDuB4EhhD7U3gZmu3va3y0YHkooIvSfjz+7+9HtPonw5LvuXk1orrceTVtlcsTQ9tquIzTHXNo7VrvNbATQ193rDC+lsxh+3qcCp4bnFFxpZpOavsrEi6Hdc4ErzGw7odGjrzVxiclyH3Ar9d/V3ejPNgW3ZshCM8ovBP7T3T896un7gG+5+zFnkk83x2h3G0JLFl0ATAS+Z2anNnGJSXGMdk8kNAHtiUAe8KCZdSXNuXuNh6bB6AOcbmZHz1MW7X+gLeIW+BjaDoCZXQHkA3c3ZX3J0lC7LTRR8f8A/5Wq+pIlhp93G0LDpecQWhnjYTPLatoqEy+Gdk8HHnX3PsCXgMfDvwdpy0KTZ+9w9zUN7RZlW1yfbWn9JrVEZtaW0D/iT7r7oii75AMLLDTB5lTgF2Z2UROWmBQxtHs78JK7l3toUtFlwGlNWWMyxNDuawkNEbu7vw9sBQY3ZY3J5O6lwKvA0b0M2wkt8o6ZtSE0lNKiFlJvoO2Y2XnA/wUmu/uBo59PZ/W0uwswHHg1/NlWCCxuCTcoHHaM3/Xn3P2Qu28ltGrHwCYuL2kaaPd1wP+G93md0LyOPZu0uMQbA0wO/w4vAM41syeO2qfRn20Kbs1IeJz7EeAdd4+2bA/u3t/d+7l7P0Lj4ze5+7NNWGbCxdJu4DlgnJm1sdCM+2cQuiYsbcXY7g+BL4T3/wwwCPigaSpMDjPrdbhHwUITxp4HbDpqt8XA1eHvpwJ/9fDVvOkslraHhwx/TSi0pf31TnDsdrv7PnfvWeuzbSWh9q9OScEJEuPv+rOEbkjBzHoSGjptDX/Ha3+2DSEU3HY2ZZ2J5u7fcfc+4d/hSwl9bl1x1G6N/mzTygnNyxjgSuDt8LUBELqr8GQAd2+R17URQ7vd/R0zewl4i9C1Aw+7+z9SUm3ixPLz/jHwqJm9TaiL/Vue/ssYfQ54zMwyCP3n8X/d/QUz+xGw2t0XEwq0j5vZ+4T+N3pp6spNqFjafjehG1F+H75m+UN3n5yyihMjlna3RLG0+0/ABDPbSGhFjTkeWkUkncXS7v8CfmNm3yA0VHhNS/jPWTSJ/mzTygkiIiIiaUJDpSIiIiJpQsFNREREJE0ouImIiIikCQU3ERERkTTRbIJbLIvSioiIiLRmzSa4AQeAc939NEIzxE8ys8IU19RsmNmsVNeQCmp369Na2652ty5qd+uSyHY3m+AWxyLErVWr/GVH7W6NWmvb1e7WRe1uXVpecIO4F18WERERaVWa5QS84aUyngG+dvTs+OHuxlkAGRkZo9q3b5+CCptedXU1bdq0voUu1O7Wp7W2Xe1uXdTu1uVwuysqKg65e7vGHKtZBjcAM/sBUO7u99S3T35+vq9endZL2YmIiEgrYWZr3D2/McdoNkOlMS5KKyIiItJqNaf+yqiL0qa4JhEREZFmo9kEN3d/CxiR6jpEREREmqtmE9xERCT9HTp0iO3bt1NVVZXqUkRSJjMzkz59+tC2bduEH1vBTUREEmb79u106dKFfv36YWapLkekybk7u3fvZvv27fTv3z/hx282NyeIiEj6q6qqokePHgpt0mqZGT169Ehar7OCm4iIJJRCm7R2yfw7oOAmIiIt2ty5c7nnnnqnBOXZZ59l48aNTViRyPFTcBMRkVZNwU3SiYKbiIi0OHfccQeDBg3ivPPO49133wXgN7/5DQUFBZx22mlMmTKFiooKXnvtNRYvXsycOXPIy8tjy5YtUfcTaS4U3EREJKXcnQPVNQk73po1a1iwYAHr1q1j0aJFrFq1CoCvfvWrrFq1ivXr1zNkyBAeeeQRzjzzTCZPnszdd99NUVERAwYMiLqfSHOh6UBERCRl3J2VH+zmvR1lDOzdmcJTGn9H6vLly7n44ovp2LEjAJMnTwbgH//4B9/97ncpLS2lrKyMiRMnRn19rPuJpIJ63EREJGUO1gR5b0cZn+2SyXs7yjhYE0zIcaOFv2uuuYYHH3yQt99+mx/84Af1TtcQ634iqaDgJiIiKdO+TQYDe3fmX/urGNi7M+3bZDT6mGeddRbPPPMMlZWV7N+/n+effx6A/fv387nPfY5Dhw7x5JNPRvbv0qUL+/fvjzyubz+R5kBDpSIiklKFp/RgZHb3hIQ2gJEjR3LJJZeQl5dHdnY248aNA+DHP/4xZ5xxBtnZ2eTk5ETC2qWXXsrMmTO5//77+cMf/lDvfiLNgbl7qms4bvn5+b569epUlyEiImHvvPMOQ4YMSXUZIikX7e+Cma1x9/zGHFdDpSIiIiJpQsFNREREJE0ouImIiIikCQU3ERERkTSh4CYiIiKSJhTcRERERNKEgpuIiLQoxcXFDB8+vMnON3fuXO65556Y9v3Sl75EaWlpo44hrZsm4BUREQFqamrIyEjMJMBHc3fcnSVLliTl+NJ6qMdNRERarA8++IARI0bwxhtvMGfOHAoKCsjNzeXXv/41AK+++irjx4/nsssuIycnh+LiYoYMGcLMmTMZNmwYEyZMoLKyEoAtW7YwadIkRo0axbhx49i0aVOD5z58rJtuuomRI0eybds2+vXrx65duwC44447GDRoEOeddx7vvvtu5HWrVq0iNzeX0aNHM2fOnEjvYU1NTdQ2SOui4CYiIikVDDo79x8g0Sv5vPvuu0yZMoX58+ezfv16unXrxqpVq1i1ahW/+c1v2Lp1KwBvvvkmd9xxBxs3bgTgvffe4+abb2bDhg1kZWWxcOFCAGbNmsUDDzzAmjVruOeee7jppptiquGqq65i3bp1ZGdnR7avWbOGBQsWsG7dOhYtWsSqVasiz1177bX86le/4vXXXz+iB/CRRx6ptw3SemioVEREUiYYdKb/ZiVrSvYyKrs7T80sJBCwRh93586dXHjhhSxcuJBhw4Zx++2389Zbb/GHP/wBgH379vHee+/Rrl07Tj/9dPr37x95bf/+/cnLywNg1KhRFBcXU1ZWxmuvvca0adMi+x04cOCYdWRnZ1NYWFhn+/Lly7n44ovp2LEjAJMnTwagtLSU/fv3c+aZZwJw2WWX8cILLwDw8ssvR21D7dql5VNwExGRlNldfpA1JXupDjprSvayu/wgvbq0b/Rxu3XrRt++fVmxYgXDhg3D3XnggQeYOHHiEfu9+uqrdOrU6Yht7dv/+/wZGRlUVlYSDAbJysqiqKio3nNu27aNr3zlKwDccMMNTJo0qc6xazOrG1Ab6nWsrw3SumioVEREUqZn53aMyu5Om4AxKrs7PTu3S8hx27Vrx7PPPstvf/tbfve73zFx4kR++ctfcujQIQA2b95MeXl5zMfr2rUr/fv35/e//z0QClHr168/Yp++fftSVFREUVERN9xwQ4PHO+uss3jmmWeorKxk//79PP/88wB0796dLl26sHLlSgAWLFgQeU1j2yAtg3rcREQkZcyMp2YWsrv8ID07t4vaC3W8OnXqxAsvvMAXv/hFvvvd7zJ06FBGjhyJu9OrVy+effbZuI735JNPcuONN3L77bdz6NAhLr30Uk477bTjqm3kyJFccskl5OXlkZ2dzbhx4yLPPfLII8ycOZNOnTpxzjnn0K1bNwCuv/56iouLG9UGSX+W6ItBm1J+fr6vXr061WWIiEjYO++8w5AhQ1JdRlorKyujc+fOANx55518/PHH/OxnP0txVRKvaH8XzGyNu+c35rjqcRMREWlGXnzxRX7yk59QXV1NdnY2jz76aKpLkmZEwU1ERKQZueSSS7jkkktSXYY0U7o5QURERCRNKLiJiIiIpAkFNxEREZE0oeAmIiIikiYU3EREpEU5PJXGRx99xNSpU1NczfF79dVX+fKXv9zofY42d+5c7rnnnsaUVseXvvQlSktLKS0t5Re/+EVCj92QxYsXc+eddza4T0Pv0X333UdFRUXk8eF2NGcKbiIi0iKdeOKJkXU9k6W6ujqpx08XS5YsISsrq8mD2+TJk/n2t7993K8/OrgdbkdzpuAmIiItUnFxMcOHDwfg0Ucf5atf/SqTJk1i4MCB3HrrrZH9Xn75ZUaPHs3IkSOZNm0aZWVlAPzoRz+ioKCA4cOHM2vWrMg6oueccw633XYbZ599dp2JcefOncvVV1/NhAkT6NevH4sWLeLWW28lJyeHSZMmRZar+stf/sKIESPIyclhxowZkQXrX3rpJQYPHszYsWNZtGhR5Ljl5eXMmDGDgoICRowYwXPPPRfXe3HHHXcwaNAgzjvvPN59993I9i1btjBp0iRGjRrFuHHj2LRpEwDXXHMNX//61znzzDM55ZRTIgH4448/5qyzziIvL4/hw4ezfPlyAPr168euXbv49re/zZYtW8jLy2POnDlceeWVR9R6+eWXs3jx4iNq27FjB6NGjQJg/fr1mBkffvghAAMGDKCiooKdO3cyZcoUCgoKKCgoYMWKFZGf6y233BJpS2FhIQUFBXz/+9+P9LxCaFLjqVOnMnjwYC6//HLcnfvvv5+PPvqI8ePHM378+CPaUVxczJAhQ5g5cybDhg1jwoQJVFZWArBq1Spyc3MZPXo0c+bMifyONRl3T9uvUaNGuYiINB8bN26M/0U1Ne77P3EPBhNSQ6dOndzdfevWrT5s2DB3d58/f77379/fS0tLvbKy0k8++WT/8MMPfefOnT5u3DgvKytzd/c777zTf/jDH7q7++7duyPHvOKKK3zx4sXu7n722Wf7jTfeGPXcP/jBD3zMmDF+8OBBLyoq8g4dOviSJUvc3f2iiy7yZ555xisrK71Pnz7+7rvvurv7lVde6f/zP/8T2b5582YPBoM+bdo0v+CCC9zd/Tvf+Y4//vjj7u6+d+9eHzhwoJeVlfnSpUsj+6xatcqvu+66OjWtXr3ahw8f7uXl5b5v3z4fMGCA33333e7ufu655/rmzZvd3X3lypU+fvx4d3e/+uqrferUqV5TU+MbNmzwAQMGuLv7Pffc47fffru7u1dXV/unn37q7u7Z2dm+c+fOI95zd/dXX33VL7zwQnd3Ly0t9X79+vmhQ4fq1Dh06FDft2+fP/DAA56fn+9PPPGEFxcXe2Fhobu7T58+3ZcvX+7u7iUlJT548ODIz/Xmm292d/cLLrjAf/e737m7+y9/+cvI78HSpUu9a9euvm3bNq+pqfHCwsLIsQ7XfVjtdmRkZPi6devc3X3atGmR93/YsGG+YsUKd3f/1re+dUR7a4v2dwFY7Y3MPpqAV0REUicYhMe+DNvegL5nwNUvQCA5g0Ff+MIXIut+Dh06lJKSEkpLS9m4cSNjxowB4ODBg4wePRqApUuX8tOf/pSKigr27NnDsGHD+MpXvgLQ4AS5559/Pm3btiUnJ4eamhomTZoEQE5ODsXFxbz77rv079+fU089FYCrr76an//855xzzjn079+fgQMHAnDFFVfw0EMPAaFewcWLF0euTauqqor0Sh2Wn5/Pww8/XKee5cuXc/HFF9OxY0cgNLwIoV6o1157jWnTpkX2PdzzB3DRRRcRCAQYOnQon3zyCQAFBQXMmDGDQ4cOcdFFF5GXl9fge3722Wdz8803s2PHDhYtWsSUKVNo06Zu9DjzzDNZsWIFy5Yt47bbbuOll17C3SNruL7yyits3Lgxsv+nn37K/v37jzjG66+/Hlm79bLLLuO///u/I8+dfvrp9OnTB4C8vDyKi4sZO3Zsg7X3798/0r5Ro0ZRXFxMaWkp+/fv58wzz4yc54UXXmjwOImm4CYiIqlTsSsU2oLVoT8rdkHn3kk5Vfv27SPfZ2RkUF1djbvzxS9+kaeeeuqIfauqqrjppptYvXo1ffv2Ze7cuVRVVUWe79Sp0zHPEwgEaNu2LWYWeXz4nPU5vO/R3J2FCxcyaNCgI7YfDlTHEu24wWCQrKwsioqKGmzH4fMDnHXWWSxbtowXX3yRK6+8kjlz5nDVVVc1eO4rr7ySJ598kgULFjBv3jwArr32WtatW8eJJ57IkiVLGDduHMuXL6ekpIQLL7yQu+66CzOL3FQQDAZ5/fXX6dChQ0ztbagth3/28b6msrKywZ9dU9E1biIikjqdeoV62gJtQn926tWkpy8sLGTFihW8//77AFRUVLB58+ZISOvZsydlZWUJvclh8ODBFBcXR875+OOPc/bZZzN48GC2bt3Kli1bAI4IkxMnTuSBBx6IBId169bFfL6zzjqLZ555hsrKSvbv38/zzz8PQNeuXenfvz+///3vgVA4W79+fYPHKikpoXfv3sycOZPrrruOtWvXHvF8ly5d6vSEXXPNNdx3330ADBs2DID58+dTVFTEkiVLIjU+8cQTDBw4kEAgwAknnMCSJUsiPaETJkzgwQcfjBwzWtgsLCxk4cKFACxYsCCm9yZavQ3p3r07Xbp0YeXKlXGdJ5EU3EREJHXMQsOj33wHrnkx9LgJ9erVi0cffZTp06eTm5tLYWEhmzZtIisri5kzZ5KTk8NFF11EQUFBws6ZmZnJ/PnzmTZtGjk5OQQCAW644QYyMzN56KGHuOCCCxg7dizZ2dmR13zve9/j0KFD5ObmMnz4cL73ve/VOe7q1au5/vrr62wfOXIkl1xyCXl5eUyZMiUy/Ajw5JNP8sgjj3DaaacxbNiwY9708Oqrr5KXl8eIESNYuHAhs2fPPuL5Hj16MGbMGIYPH86cOXMA+MxnPsOQIUO49tpr6z1uv379gFCAAxg7dixZWVl0794dgPvvv5/Vq1eTm5vL0KFD+dWvflXnGPfddx/33nsvp59+Oh9//HFkWLwhs2bN4vzzz4/cnBCLRx55hFmzZjF69GjcPabzJJI1h26/45Wfn++rV69OdRkiIhL2zjvvMGTIkFSXIc1IRUUFOTk5rF27Nqkhp6Kigg4dOmBmLFiwgKeeeiruu29jUVZWFrlj9c477+Tjjz+uc3cxRP+7YGZr3D2/MefXNW4iIiKSFK+88gozZszgm9/8ZtJ7ptasWcMtt9yCu5OVlRW5ni7RXnzxRX7yk59QXV1NdnY2jz76aFLOUx/1uImISMKox00kJFk9brrGTURERCRNKLiJiIiIpAkFNxEREZE0oeAmIiIikiYU3EREpEU5PFXDRx99xNSpU1NczfF79dVXIysHNGafRKu9eHsiLF68mDvvvBOAZ5999oilrZKp9nnr09D7e99991FRUZGM0hqk4CYiIi3SiSeemNAVD6KJZekkadjkyZP59re/DTRtcKt93uOh4CYiIpJAxcXFDB8+HIBHH32Ur371q0yaNImBAwdy6623RvZ7+eWXGT16NCNHjmTatGmUlZUB8KMf/YiCggKGDx/OrFmzIstNnXPOOdx2222cffbZdSZenTt3LldffTUTJkygX79+LFq0iFtvvZWcnBwmTZrEoUOHAPjLX/7CiBEjyMnJYcaMGZHF3V966SUGDx7M2LFjWbRoUeS45eXlzJgxg4KCAkaMGBHXxLLFxcUMGTKEmTNnMmzYMCZMmEBlZSUQWjqqsLCQ3NxcLr74Yvbu3Vvn9Vu3bmX06NEUFBTUWbHh7rvvpqCggNzcXH7wgx8c83z3338/Q4cOJTc3l0svvTTys7nlllt47bXXWLx4MXPmzCEvL48tW7YwcuTIyLnee+89Ro0adcT5d+zYEdm2fv16zIwPP/wQgAEDBlBRUcHOnTuZMmUKBQUFFBQUsGLFiiPOC7BlyxYKCwspKCjg+9///hG9imVlZUydOpXBgwdz+eWX4+7cf//9fPTRR4wfPz6uVRcSQcFNRERSKuhBdlXuSvoC3kVFRTz99NO8/fbbPP3002zbto1du3Zx++2388orr7B27Vry8/O59957AbjllltYtWoV//jHP6isrOSFF16IHKu0tJS//e1v/Nd//Ved82zZsoUXX3yR5557jiuuuILx48fz9ttv06FDB1588UWqqqq45pprIoJ/2wYAACAASURBVLVUV1fzy1/+kqqqKmbOnMnzzz/P8uXL+de//hU55h133MG5557LqlWrWLp0KXPmzKG8vPyI89a35BWEQs/NN9/Mhg0byMrKiqzpedVVV3HXXXfx1ltvkZOTww9/+MM6r509ezY33ngjq1at4rOf/Wxk+8svv8x7773Hm2++SVFREWvWrGHZsmUNnu/OO+9k3bp1vPXWW3WWrTrzzDOZPHkyd999N0VFRQwYMIBu3bpF1iWdP38+11xzzRGv6d27N1VVVXz66acsX76c/Pz8yGL1vXv3pmPHjsyePZtvfOMbrFq1ioULF0Z9j2bPns3s2bNZtWoVJ5544hHPrVu3jvvuu4+NGzfywQcfsGLFCr7+9a9z4oknsnTpUpYuXRr1PU8WBTcREUmZoAeZ8acZnPf787j2T9cS9GDSzvWFL3yBbt26kZmZydChQykpKWHlypVs3LiRMWPGkJeXx2OPPUZJSQkAS5cu5YwzziAnJ4e//vWvbNiwIXKsSy65pN7znH/++bRt25acnBxqamqYNGkSADk5ORQXF/Puu+/Sv39/Tj31VACuvvpqli1bxqZNm+jfvz8DBw7EzLjiiisix3z55Ze58847ycvL45xzzqGqqirSs3RYfn4+Dz/8cNSa+vfvT15eHgCjRo2iuLiYffv2UVpaytlnn31EHUdbsWIF06dPB+DKK688oqaXX36ZESNGMHLkSDZt2sR7771X7/kAcnNzufzyy3niiSdo0+bYizddf/31zJ8/n5qaGp5++mkuu+yyOvuceeaZrFixgmXLlnHbbbexbNkyli9fHlmT9ZVXXuGWW24hLy+PyZMn8+mnn9ZZWP71119n2rRpAHXOcfrpp9OnTx8CgQB5eXmRtqSKlrwSEZGU2VO1h6IdRdR4DUU7ithTtYeeHXom5Vzt27ePfJ+RkUF1dTXuzhe/+EWeeuqpI/atqqripptuYvXq1fTt25e5c+dSVVUVeb5Tp07HPE8gEKBt27aYWeTx4XPW5/C+R3N3Fi5cyKBBg47Y/sknn9R7rGg1Qajth4cuYxWtLnfnO9/5Dv/xH/9xxPbi4uJ6z/fiiy+ybNkyFi9ezI9//OMjwnA0U6ZM4Yc//CHnnnsuo0aNokePHnX2GTduXKSX7cILL+Suu+7CzCI3FQSDQV5//XU6dOgQV5sPi/Z7k0rqcRMRkZTpkdmDvN55ZFgGeb3z6JFZ9x/mZCosLGTFihW8//77QGih8s2bN0dCWs+ePSkrK0voTQ6DBw+muLg4cs7HH3+cs88+m8GDB7N161a2bNkCcESYnDhxIg888EAk9K1bt67RdXTr1o3u3buzfPnyI+o42pgxY1iwYAEATz755BE1zZs3L3JN4D//+U927NhR7/mCwSDbtm1j/Pjx/PSnP6W0tDTy2sO6dOlyRG9YZmYmEydO5MYbb+Taa6+NetyzzjqLJ554goEDBxIIBDjhhBNYsmQJY8aMAWDChAk8+OCDkf0PD73WVlhYGBnOPdzWYzm61qai4CYiIiljZsybOI9Xpr3C/Inz6+1xSpZevXrx6KOPMn36dHJzcyksLGTTpk1kZWUxc+ZMcnJyuOiiiygoKEjYOTMzM5k/fz7Tpk0jJyeHQCDADTfcQGZmJg899BAXXHABY8eOJTs7O/Ka733vexw6dIjc3FyGDx9e5yYBaPgat/o89thjzJkzh9zcXIqKivj+979fZ5+f/exn/PznP6egoIB9+/ZFtk+YMIHLLruM0aNHk5OTw9SpUxsMMjU1NVxxxRXk5OQwYsQIvvGNb5CVlXXEPpdeeil33303I0aMiATYyy+/HDNjwoQJUY/br18/IBTgAMaOHUtWVhbdu3cHQjdErF69mtzcXIYOHVrn2joI3SF67733cvrpp/Pxxx/TrVu3Bt61kFmzZnH++ec3+c0JWmReREQSRovMS6Ldc8897Nu3jx//+MdJO0dFRQUdOnTAzFiwYAFPPfVUXHfuRpOsReZ1jZuIiIg0SxdffDFbtmzhr3/9a1LPs2bNGm655RbcnaysLObNm5fU8zWGgpuIiIg0S88880yTnGfcuHGsX7++Sc7VWLrGTURERCRNKLiJiEhCpfO10yKJkMy/AwpuIiKSMJmZmezevVvhTVotd2f37t1kZmYm5fi6xk1ERBKmT58+bN++nZ07d6a6FJGUyczMpE+fPkk5drMJbmbWF/gt8FkgCDzk7j9r+FUiItKctG3blv79+6e6DJEWq9kEN6Aa+C93X2tmXYA1ZvZnd9+Y6sJEREREmoNmc42bu3/s7mvD3+8H3gFOSm1VIiIiIs1HswlutZlZP2AE8EaU52aZ2WozW61rKERERKQ1aXbBzcw6AwuB/3T3T49+3t0fcvd8d8/v1atX0xcoIiIikiLNKriZWVtCoe1Jd1+U6npEREREmpNmE9zMzIBHgHfc/d5U1yMiIiLS3DSb4AaMAa4EzjWzovDXl1JdlIiIiEhz0WymA3H3vwOW6jpEREREmqvm1OMmIiIiIg1QcBMRERFJEwpuIiIiImlCwU1EREQkTSi4iYiIiKQJBTcRERGRNKHgJiIiIpImFNxERERE0oSCm4iIiEiaUHATERERSRMKbiIiIiJpQsFNREREJE0ouImIiIikCQU3ERERkTSh4CYiIiKSJhTcRERERNKEgpuIiIhImlBwExEREUkTCm4iIiIiaULBTURERCRNKLiJiIiIpAkFNxEREZE0oeAmIiIikiYU3ERERETShIKbiIiISJpQcBMRERFJEwpuIiIiImlCwU1EREQkTSi4iYiIiKQJBTcRERGRNKHgJiIiIpImFNxERERE0oSCm4iIiEiaUHATERERSRMKbiIiIiJpQsFNREREJE0ouImIiIikCQU3ERERkTSh4CYiIiKSJhTcRERERNKEgpuIiIhImlBwExEREUkTCm4iIiIiaULBTURERCRNKLiJiIiIpAkFNxEREZE0oeAmIiIikiYU3ERERETShIKbiIiISJpQcBMRERFJEwpuIiIiImlCwU1EREQkTSi4iYiIiKQJBTcRERGRNKHgJiIiIpImFNxERERE0oSCm4iIiEiaUHATERERSRMKbiIiIiJpQsFNREREJE0ouImIiIikCQU3ERERkTSh4CYiIiKSJppVcDOzeWa2w8z+kepaRERERJqbZhXcgEeBSakuQkRERKQ5albBzd2XAXtSXYeIiIhIc9SsgpuIiIiI1C+m4GYhfZNdTCzMbJaZrTaz1Tt37kx1OSIiIiJNJqbg5u4OPJvkWmLi7g+5e7675/fq1SvV5YiIiIg0mXiGSleaWUHSKhERERGRBsUT3MYDr5vZFjN7y8zeNrO3ElmMmT0FvA4MMrPtZnZdIo8vIiIiks7axLHv+UmrIszdpyf7HCIiIiLpKuYeN3cvAbKAr4S/ssLbRERERKQJxBzczGw28CTQO/z1hJl9LVmFiYiIiMiR4hkqvQ44w93LAczsLkLXoz2QjMJERERE5Ejx3JxgQE2txzXhbSIiIiLSBOLpcZsPvGFmz4QfXwQ8kviSRERERCSamIObu99rZq8CYwn1tF3r7uuSVZiIiIiIHCmm4GZmBvRx97XA2uSWJCIiIiLRpN2SVyIiIiKtlZa8EhERkZi4O7vXv8eHL/6dsu2fpLqcVqlZLXklIiIizdehT8sp3VSMBQLsXvtuqstpleK5xu0GQCsliIiItFIZHdrTrmsnDu4rp+uAk1JdTqsUU3Bzdzez/3H3UckuSERERJqnjHZtOfELBVSXVdIuq3Oqy2mVdI2biIiIxCyjXVvan9AVC8QTISRR4pmAdzxwg5kVA+WE5nJzd89NRmEiIiIicqR4gtv5SatCRERERI4pnn7OD4FxwNXuXgI48JmkVCUiIiIidcQT3H4BjAamhx/vB36e8IpEREREJKp4hkrPcPeRZrYOwN33mlm7JNUlIiIiIkeJp8ftkJllEBoixcx6AcGkVCUiIiIidcQT3O4HngF6m9kdwN+B/y8pVYmIiIhIHTEPlbr7k2a2BvgCoalALnL3d5JWmYiIiIgcIZ5r3HD3TcCmJNUiIiIiIg3QtMciIiIiaULBTURERCRNKLiJiIiIpIljXuNmZvsJTwFy9FOE1irtmvCqRERERKSOYwY3d+/SFIWIiIiISMPiuqvUzLoDA4HMw9vcfVmiixIRERGRumIObmZ2PTAb6AMUAYXA68C5ySlNRERERGqL5+aE2UABUOLu44ERwM6kVCUiIpJAfqCCQx+8RfW/tqa6FJFGiWeotMrdq8wMM2vv7pvMbFDSKhMREUmQg++vJbhjG3iQQIfOBLr1SnVJIsclnuC23cyygGeBP5vZXuCj5JQlIiKSOJbRFrwGCEAgI9XliBy3eNYqvTj87VwzWwp0A/6YlKpEREQSqO2AEQS69sAyOxPockKqyxE5bvHcnNAemAL0q/W6POBHiS9LREQkcaxtO9qc+PlUlyHSaPEMlT4H7APWAAeSU46IiIiI1Cee4NbH3SclrRIRERERaVA804G8ZmY5SatERERERBoUT4/bWOAaM9tKaKj08FqluUmpTERERESOEE9wOz9pVYiIiIjIMcU8VOruJUAW8JXwV1Z4m4iIiIg0gZiDm5nNBp4Eeoe/njCzryWrMBERERE5UjxDpdcBZ7h7OYCZ3UVokfkHklGYiIiIiBwpnrtKDaip9bgmvE1EREREmkA8PW7zgTfM7Jnw44uARxJfkoiIiIhEE89apfea2d+AMYR62q5193VJq0xEREREjhBPjxvuvobQklciIiIi0sSOGdzM7O/uPtbM9gNe+ylCE/B2TVp1IiIiIhJxzODm7mPDf3ZJfjkiIiIiUp945nG7K5ZtIiIiIpIc8UwH8sUo27QMloiIiKSloAfZVbkLdz/2zs3EMYObmd1oZm8Dg8zsrVpfW4G3kl+iiIiISOMcHdKCHmTGn2Zw3u/P49o/XUvQgymuMDax3FX6O+CPwE+Ab9favt/d9ySlKhEREZHjFPQge6r20COzB2YWCWlFO4rI653HvInz2FO1h6IdRdR4DUU7ithTtYeeHXqmuvRjOmaPm7vvc/did5/u7iW1vhTaREREJKVi6UmLFtJ6ZPYgr3ceGZZBXu88emT2SHFLYhPPzQmPmVlWrcfdzWxecsoSERFpXoIVn1KzeztefTDVpbRaiQxpZsa8ifN4ZdorzJ84H7P0WMUzngl4c9299PADd99rZiOSUJOIiEiz4gcqOLT+T/jBSjJ696ftkHGpLqnFO97hzsMh7fB+tUNa7eMB4IZXp9dsZ/EEt4CZdXf3vQBmdkKcrxcREUlLXn0Qrz6IteuIl5ce+wUSl1SEtGDQmf6blawp2cuo7O48NbOQQKD597rFE7z+f+A1M/tD+PE04I7ElyQiItK8BDpl0WZAPsHSf9Gm7/BUl9OipCqk7S4/yJqSvVQHnTUle9ldfpBeXdqn6F2IXTyLzP/WzFYD5xJa7uqr7r4xaZWJiIg0I21OHAQnDkp1GWnv6N61VIW0np3bMSq7e2S/np3bpegdiU+8Q50fA28CmUBPMzvL3ZclviwRERFJd7EMgaYqpJkZT11/Ont2fkSP3ie1vJsTzOx6YDbQBygCCoHXCfXAiYiISCvWmLnTEh3S8k/uxtYPS+h3cr/6Q1owSOC3X6Hntjeg7xlw9QsQiGdBqdSIp8LZQAFQ4u7jgRHAzqRUJSIiIs1StGWi4pqWo1eUudPqCWmjf/IXLn1oJcGgNxjSPhPYx6iTs0IhzZ2n2t3BysyvsaD97Zj7v0PaQ3nYY1+GYBAqdsG2NyBYHfqzYldTv5XHJZ6h0ip3rzIzzKy9u28yMw32i4iItFCx9KIFLNBgSCva+e8hUHeo+HAmZdu3U1HZF3dwb0RPWjikkfkGtD8D8xegYhe2PUogOzqkdeoV6mk73OPWqVdq3+wYxRPctocn4H0W+LOZ7QU+Sk5ZIiIi0pQaM9QZa0jbXX6QtSX7qA52Zm1JKbvLQ5MZry3ZTVbwU9aUeONDWn2B7OhtZqHh0cOvaUnXuFlowPnr4Ql455rZUqAb8FIyixMREZHEa9S8aUcFNCDmkBYtkOFBnut8J6ce2MDm9sPo2WlS40JafYEs2rZAADr3TtFP4fjEFNzc3c3sWWBU+PHfklGMmU0CfgZkAA+7+53JOI+IiEhrkciQFi2gmcUe0qIHst0MqX4Hs2Doz4rdAI0LadECWRqGtGjiGSpdaWYF7r4qGYWYWQbwc+CLwHZglZkt1lxxIiIisUl2SIsW0Hp1ad/ooU0LBzI7nqHNFhLIYhVPcBsP/IeZlQDlhCbhdXfPTVAtpwPvu/sHAGa2ALgQUHATERE5hmSEtHUle8kK1rC2gRsEAA1tNqFjBjcze9zdrwQeAp5JYi0nAdtqPd4OnBGlnlnALICTTz45ieWIiIg0XzGvQHC8Ia1Tm9iuPTNrfEhrwUObiRZLj9soM8sGrgUeI9TTlgzRjut1Nrg/RChEkp+fX+d5ERGRlibmFQgSGdJivfasc+/GhzSJWSzB7VeE7h49BVjDkQHLw9sTYTvQt9bjPmi6ERERaWWihrSXZkQCWX1DoCe075HYkBbrtWegkNaEjhnc3P1+4H4z+6W735jEWlYBA82sP/BP4FLgsiSeT0REJKViCWm7K/aw5pN1YEHW/Gsduyv2cELmCbSvPoWKwBba15xC93YnJD6kxXPtGaRlSHvjjdW8tf4fjMofwciRp6W6nJjEfHNCkkMb7l5tZrcAfyI0Hcg8d9+QzHOKiIg0haMD2uFtsYQ0r+lMTWU2GR1KqKnMxms6s6f8APcVb6d/m+0UV7dnT/kBenZul/iQ1oKvPausrGTt2vV89jOf4c0315CbO4w2beK5ZzM1mlWF7r4EWJLqOkRERI5XLL1oAQvEHNJ6dW7L/+7dTa+d29nVJvSY8l10D7xPm2ANPQPvk2GfYhWW+JDWgrVv356T+/bhww+38fnPn0JGRkaqS4pJswpuIiIi6eR4hzp7deoZc0izit0Mq96EBavpXb0pFMg69ybj5EJ8+xtk9D0DCwcuhbTYBQIBJp1/HmVl5XTp0jnSE9rcxRzczGzo0ZPhmtk57v5qwqsSERFpZo43pHl1R06tgi2ZzoAq8OqOALGHtHp6zewazX3WWBkZGXTr1jXVZcQlnh63/zWzx4GfApnhP/OB0ckoTEREpLloTEjrFdjPU//axqcBp1vQaBPYD3SMK6S1tuvPpH7xBLczgLuA14AuwJPAmGQUJdJSeLAGcCygqxJE0kl1TQ1b9nzCwB6fJRCo53q0GEOade5N25ML6bH9Dcj+97Cmrj+T4xHPvyaHgEqgA6Eet63uHkxKVSItgFd9SvDdP+LBQ2QMnPDvD2sRaVaqqw/xwT/f4fN9hhHIyKC6poYxj02jIrCFjsEBrLj6940LafUNayqkyXGIJ7itAp4DCoAewK/NbKq7T01KZSJJFKwoI1hRTkb3HlhGcnrDgvs/wg/uhzbtCe75gAx9EIs0qWDQI+trHr7wvE5Iqz7EZfMK2NyumlMPtuF3M1axZc8nVAXeA4OqwHts2f0xp3Zo27iQVl8YU0iTOMXzL9Z17r46/P2/gAvN7Mok1CSSVMGqCspf/yt+6ABt+/anw7D8pJwn0Pmz1LTrBDWHCJzQPynnEJGQo0NaMOhMf+jvbP3nJvqdNJQFs84kGKyuE9I++Oc7bG5XTY0Zm9tV88E/32Fg997kVR1gfWY7Tqs6yMDMNokJaSIJEM8EvKvNrDswkNBQKUBJUqoSSSI/eACqD2LtMwl+ui9p57EOWWTkTAN3LKNt0s4j0trEEtJ27q+gmls4OKCGmqoMdu5/jX2lW+qEtM/3GcapB9tEwtzn+wwjEAgwr90A9m5fzQkn5RPo8hmFNGk24pkO5HpgNqE1RIuAQuB14NzklCaSHIEuWbT7/DBq9u6i/anDk3ou3ZQgcvyCNTXs2fkRPXqfhAUCoW0xhrSMg9vYkllDjRlbMmvIOLgtekjLyIj0vB1+DJBxzYv0VEiTZiief1VmE7q+baW7jzezwcAPk1OWSPKYGe0HDEl1GSJSy9EhLVhTw8a7zqJX9SY2thnMkG8tI5CREXNI69HjVPJoT5EfII/29OhxKhYIRA1pbdq05dTs3CMLUkiTZiqe4Fbl7lVmhpm1d/dNZjYoaZWJiEiLFEtI27VjO3efsJP1mZ/jtKqd3L1jO70/lx1XSJt35Rvs2fs+PU44NdJjFzWkiaSReILbdjPLAp4F/mxme4GPklOWiIi0BMcb0gJdO7I+sz01Busz2xPoGlptIJ6QFshoQ8+eg1PZfJGEi+fmhIvD3841s6VAN+ClpFQlIiLNWzBY50L9aCFt011nc+qBDbzTfhiDv/W3mENaj449yfvMqMhKBT069gRQSJNW77iunHb3vyW6EBERaaaODmnBIP7ol2H7G9D3DOzqFwi61wlpe3Z+xOcPbKA0AwYe2MCenR/FHNLMjHmT5h2xNuhhCmnSmh0zuJnZfsCjPQW4u6fX6qwiIlKvOndyRgtpZTsJfriSNtRQXbKSQNlO9lQcrBPSuvf6HNNPyo7cxflUr88RCGTEHNICFqBnh54pfkdEmpdjBjd379IUhYiISBId59Am5bvqhLTddOP94Ofp32YLxdUDGEA3TujVpk5I23uwlM2ZUOPG5kzYe7CUnh16KqSJNIImmRIRaUmiBLR4hjZPPbCBNhbk1HCvmXfsVTekdW7Lf/brQ0XgAB2DfXitc1v2HthbJ6T1yOxBXu88inaEe9cyewAKaSKNEc9QqUV5WkOlIiKpEsO1ZwQC9Q5tHh3SevQ+iQ3th9KrehO72gxmaO+TCOJRQ9qBNh+ABznQ5gP2HtgbNaSZGfMmRr9OTUSOj4ZKRUTSQSw3CEQJaIGun2E33fggOJCRtpm1PpBT6EbP3u3qhDQ3uGfEQIp2lpPXayDzDPZWNS6kqXdNJLHiGiqNslYp7r4s0UWJSNNzr4HgASyjY6pLaV3qGdo8npAWLaD1Anp2ac8tJ94TWSbq6S7tcbxOSNtTtYeinUXUeA1FO4siIUwhTaT50FqlIoIHD+E7X4EDO/GuuQSy8lJdUssUJZDx2JdhWyiQcfULAMcd0qIFNADH6ZD9CAc7FtGxdx7OaIU0kTSltUpFBKrLQqGtfQ+s4n1QcGu8WEJaxS582xtYsDr0Z8UugkE/7pAWLaAZdmRI26GQJpLOtFapiEDbrtDhZKxqO2QVpLqa9HO8Ia1DTza1GcKpBzawuc0QBnfoye7yg1FD2tdOvJetH5bQ7+R+LKgnpEULaD079FRIE2lBtFapiGCWgfU6B/cgZoFUl9N8HOf1ZzGHtIpDXFj2bboFP6X0UDderzgUNaSZGU/MLGTLnv4M7PFZzIzdlbtj6kUDFNJEWpCYgpuF/pZ/3d1L0VqlIi1Wqw1t9QW047z+jE69YgtpndsxMrsHa0oCjMruTs/O7aKGtKAHuf7P10UC2byJ8+KefkMhTaRliCm4ubub2bPAqPBjrVUqIukplmHNQKBR158RR0h78vrT2bLnkwZD2p6qPRTtqDsEql40kdYnnqHSlWZW4O6rklaNiEgiHee1Z3Tu3ajrz4CEhjStQCAih8UT3MYD/2FmJUA5/15kPjcplYmI1CfGa8+O9waBAMR1/dnvZp3J7vL8SEADEhrStAKBiBwWT3A7P2lViIjUJ8a5z477Ls4oAa1Xl/b1Dm1GC2mYY232A6GesGSENPWuiQjEEdzcvSTayglAScKrEpHWKcZeM7a9AcHq0J8VuwCO/y7OKAENQndiPjWzkN3lB48Z0mb8aYZCmog0Ca2cICLJ14ihzTohrVMvvM8Z/76zs1MvgkFv1F2cUQMaKKSJSLOjlRNEJHHimFYjppsEooU0h8sO/l+2VpXQ70A/nvJ6rkeLJ6QdFdBAIU1EmietnCAixyeOaTWOd2iTaCGt/CCrP9xHdbAbuz8sjYSwWENaIGD0Ct/5CdEDWsACCmki0ixp5QQRObbjHdbs3LtRQ5tA1JA2Krs7a0r2xh3SIBTUaoes+uZIU0gTkeYonpsTLg5/q5UTRFqKJF97BjRqaBNIaEiL1rumZaJEJJ3E0+MWoZUTRNJQI6bViOkGgSgBLWCNH9pMZEiLZwUCUEgTkeYnnrtKM4GbgLGAA38HfunuVUmqTUSOVyOm1TjekBYtoB2eD60xvWaJDGlagUBE0l08PW6/BfYDD4QfTwceB6YluigRiUMjhjbpe8a/9wsPbR5vSIsW0KD++dCiBbKozUtgSNMKBCKS7uIJboPc/bRaj5ea2fpEFyQiYQm+/qxOSDMjeNXz7Nn5ET16nxQKRUE/7pDW0HxozSmkqXdNRNJZPMFtnZkVuvtKADM7A1iRnLJEWpFGzn3WmJA2/eE3w+FreyR0JfouznqbrZAmIhK3eILbGcBVZvZh+PHJwDtm9jZabF4kNo2c+yymOznjCGlrSvZSHXTWlOxVSIuT4zg7CF1B0osA3Zrs3CLSesUT3CYlrQqRdJfIYc3w3GfHe/0ZnrqQdnRAO7wt3UNadAfh/7V370GSnWUdx7/P7GQT2FzITQImYQMJmBgxkGUlAq7AWgbQyMULCkWESCpilVqUllDxViKlSRAtDCIhINEAKpGQACIEFBFkI4Es4bKEQCIkgmYDIbi57G0e/zhnYjPpmT4z033Oeae/n6qp7dN95pzn7d7u/s17znlfvg0cCNwBBjdJLVjWJPOTLEQqxpiH1RgW0FZz/hnQWk/adz0tUzcDwSxVaNsNHN5xLZKmxYrGcZOmxpiH1Why7lm125WffwarG7S28VMz5TMQBOuozhjZC6zvuBpJ08LgJs0b87AaK71AYGYmVn1oc9IhzRkIKsEMVa+bJLXD4Ka1r4VhNe5ff2Af9+XxxQAAFGVJREFUK71AYFKD1jZ+upyBQJJ6a9nBLSJ+ATgL2A8E8J7MfMe4C5NWZNLnny0W0gi+mYdxFNWbYjVXccLqB61t/HQ5A4EkFWUlPW5bMvP58wsR8XrA4KZ2NR37bJXnnzUOaW/adn/4GsdVnNDvkOYMBJLUjZUEtwMj4lnArcCxwIPGW5K0wGrGPlvG+WddhbRxBzRYm+OmSZJWFtxeBjwX+AHgNuBXxlqRpkcbY581PP8MDGmGNEnqv2UHt8y8B7h8fjkifgu4YJxFaQ1qaeyzlZ5/BhjSxhzSMpP9e28h99/OzOwJrDvgoavepiRNu5VcnPD3g4vAaRjcNKiFsc+GBTRYea8ZdDNo7ZJPY0Ehbai8l7m9/0nEBvbvudHgJkljsJJDpd/JzF+aX4iIN4yxHpWmhbHPmvSiVaWs/NAmtDNobeOntbSQNkysJ2YezNzcLtatO6a9/UrSGraS4PbqBcvnj6MQ9UxHY5+t9AKBPg5a2/ipHjK/Z3EhbYiIWWYPOp2cu5eYObjTWiRprVjJOW63LFj+1vjKUSc6GvuMmZnqooLBUlZ4qLPrQWsbP9UNDn/OxExxIW0xEQcQ6w7ougxJWjMaB7eIePmQu+8CPpWZ28dXkiamw7HPhoa0ufyuQLXaQ51dHtocZjUzEJQY0iRJk7ecHrdN9c976uVnAZ8EzouId2bmheMuTg2t9LDmhMY+m3RIa3PQ2qbGPQMBGNIkSQ+0nOB2JPD4zNwFEBG/B1wB/AjwKcDg1oZxHtZc5thnfQppXQU0cAYCSVJ3lhPcjgf2DCzvBR6RmfdGxO7xliVg8sNqwKrOP6tKNKSthQsJJEllWE5wezuwLSKuovre/gngHRGxAfjCJIqbKh0NqwGsuNcMyhi0tilDmiSp7xoHt8x8VUT8I/BkquB2XmZeVz/8gkkUtyb0aFiNYQGtKmdlvWbQv0FrmzKkSZJKtNzhQPYBc0BSHSrVoB4Nq9GkF23+vrUyaO1iDGmSpLViOcOB/BrwUuAfqHrcLo+ISzLzzydVXK91Na3TIr1mDyxvdC9ayYPWNmVIkyStJcvpcTsH+KHMvBsgIi4APgGsOrhFxM8Avw+cDGweOATbvdWMfTaBYTWGl7iyQ52lDFq7HAt71wxpkqS1ZDnBLYD9A8v7+f+LC1frc8BzgTeOaXvjsdqxz8Zw/tkDS1rbg9Y2NWyaqGG9a4Y0SdJaspzg9lfAtRFxJVVgezbwlnEUkZk7gP6NYTWOsc8ann82zFoftLapptNELTYLgSFNbct9d5Pf2QHrH8LMwSd2XY6kNWQ5V5W+NiI+AjyJKridveanuhrD2GdNrfXx0JpazTRRi81CYEhT2/Jb18I9X4WcI2cPJQ5a2eeCJC00MrhFxP9SXUV6/10Dj2VmHtpkRxHxIeCYIQ+dn5lXNdlGvZ1zgXMBjj/++Ka/tjLLHPtsmMWu5DSkjX+aKGchUG/MrIe5/RDrqh9JGpORwS0zDxnHjjJz65i2cwlwCcCmTZtyxOqrt4xetGkctLaptqaJsndNfRCHP4E88Ghi9lDiwCNH/4IkNbTccdxUm8ZBa5ty3DRNu1h3IHHIY7ouQ9Ia1IvgFhHPoRpW5GjgfRGxPTN/vOOygOkdtLYpQ5okSe3pRXDLzCuBK7uuY6FpHbR2MYY0SZK61Yvg1lfTMmhtE4Y0SZK6Z3BbwlobtHY5nIFAkqT+MbgtoeRBa5ejySFQQ5okSd0zuI2wlgPa/H1NB7g1pEmS1K2ZrgvQZMzlHHfceweZef/ySz7wEra+cysv/sCLmcs5gCUPga6LdUNnIHBgW0mSumGP2xow7mminIFAkqR+MrgVpq1pojwEKklS/xjcesxpoiRJ0iCDW084uK0kSRrF4NYBQ5okSVoJg1vLDGmSJGmlDG4T5gwEkiRpXAxuY+QMBJIkaZIMbiu0mrHTDGmSJGklnDlhhIUzEMzft3AWAmcgkCRJk2aP2xKG9aLNxMxYxk6TVLb9u/ey797drD9sg+9tSa0xuC1hHNNEeQhUWnv23beHr33wOvbsupcjTtnI95z2qK5LkjQlDG5LcJooScPsvfs+9t59Hwcc+mDu/vodYHCT1BKD2xKcJkrSMAc+5GAOe9TDuOe/7+To00/suhxJU8TgNoIBTdJCM+tmOGbzyV2XIWkKeVWpJElSIQxukiRJhTC4SZIkFcLgJkmSVAiDmyRJUiEMbpIkSYUwuEmSJBXC4CZJklQIg5skSVIhDG6SJEmFMLhJkiQVwuAmSZJUCIObJElSIQxukiRJhTC4SZIkFcLgNsKePXvYuXMn+/bt67oUSZI05Wa7LqDP9u3bx1VXXc3tt9/OCSecwDOf+YyuS5IkSVPMHrcl7N69m507d3LUUUdz6623Mjc313VJkiRpihnclrBhwwY2b97M3r172LJlCzMzPl2SJKk7HiodYdOm09m06fSuy5AkSbLHTZIkqRQGN0mSpEIY3CRJkgphcJMkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCmFwkyRJKoTBTZIkqRAGN0mSpEIY3CRJkgphcJMkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCmFwkyRJKkQvgltEXBQRX4yIGyLiyoh4SNc1SZIk9U0vghtwDXBqZj4W+BLwyo7rkSRJ6p1eBLfM/GBm7qsXtwHHdlmPJElSH/UiuC3wEuD9iz0YEedGxHURcd3OnTtbLEuSJKlbs23tKCI+BBwz5KHzM/Oqep3zgX3A2xbbTmZeAlwCsGnTppxAqZIkSb3UWnDLzK1LPR4RZwM/ATw9Mw1kkiRJC7QW3JYSEWcCvwVsycx7uq5HkiSpj/pyjtvFwCHANRGxPSL+suuCJEmS+qYXPW6ZeWLXNUiSJPVdX3rcJEmSNILBTZIkqRAGN0mSpEIY3CRJkgphcJMkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCmFwkyRJKoTBTZIkqRAGN0mSpEIY3CRJkgphcJMkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCmFwkyRJKoTBTZIkqRAGN0mSpEIY3CRJkgphcJMkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCmFwkyRJKoTBTZIkqRAGN0mSpEIY3CRJkgphcJMkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCmFwkyRJKoTBTZIkqRAGN0mSpEIY3CRJkgphcJMkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCmFwkyRJKoTBTZIkqRAGN0mSpEL0IrhFxKsi4oaI2B4RH4yIh3ddkyRJUt/0IrgBF2XmYzPzNOC9wO92XZAkSVLf9CK4ZeZ3BhY3ANlVLZIkSX0123UB8yLi1cCLgLuAp3ZcjiRJUu9EZjudWxHxIeCYIQ+dn5lXDaz3SuCgzPy9RbZzLnBuvfgY4MZx19pTRwF3dF1EB2z39JnWttvu6WK7p8t8ux+RmUevZkOtBbemIuIRwPsy89Sua+mTiLguMzd1XUfbbPf0mda22+7pYrunyzjb3Ytz3CLipIHFs4AvdlWLJElSX/XlHLc/jojHAHPAV4HzOq5HkiSpd3oR3DLzeV3XUIBLui6gI7Z7+kxr2233dLHd02Vs7e7dOW6SJEkarhfnuEmSJGk0g1vPRMSZEXFjRHw5Il6xyDo/GxFfiIjPR8Tb265xEpq0u17vpyMiI2JNXJU0qt0R8fL6tb4hIj5cX3VdvAbtPjAi/q5+/NqI2Nh+lZMVEUdExDURcVP97+FD1jktIj5Rv9dviIif66LWcWrS7oF1D42I/4qIi9uscRKatjsijq+nftxRv/c3tlvpeC2j3RfW/893RMTrIiLarnWcIuJn6vbMLfV91fS7b5DBrUciYh3weuAZwCnAz0fEKQvWOQl4JfCkzPx+4NdbL3TMmrS7Xu8Q4FeBa9utcDIatvt6YFNmPha4Ariw3SrHr2G7zwHuzMwTgT8FLmi3yla8AvhwZp4EfLheXuge4EX1e/1M4M8i4iEt1jgJTdo971XAv7ZS1eQ1bfdfU00DeTKwGbi9pfomZWS7I+KHgScBjwVOBZ4AbGmzyAn4HPBc4KOLrdD0u28hg1u/bAa+nJk3Z+Ye4G+Bn1qwzkuB12fmnQCZWfqbGpq1G6oP8QuB+9osboJGtjsz/yUz76kXtwHHtlzjJDR5vX8KuKy+fQXw9NL/Ah9isI2XAc9euEJmfikzb6pvf53qS3xVg3f2wMh2A0TE6cBDgQ+2VNekjWx3/aU9m5nXAGTmroH3f6mavN4JHASsBw4EDgD+p5XqJiQzd2TmqAkCmn73fReDW798L3DrwPJt9X2DHg08OiI+HhHbIuLM1qqbnJHtjojHAcdl5nvbLGzCmrzeg84B3j/RitrRpN33r5OZ+6imwjuylera89DM/AZA/e/3LLVyRGym+mL7Sgu1TdLIdkfEDPAnwG+2XNskNXm9Hw18OyLeFRHXR8RFda9MyUa2OzM/AfwL8I365wOZuaPVKrux3O8AoCfDgeh+w3oUFl72OwucBPwoVe/Lv0XEqZn57QnXNklLtrv+EP9T4BfbKqglTV7vasWIFwKbKP/wATRrd+Pnps+Wmupvmdt5GPA3wNmZOTeO2iZpDO1+GfCPmXlrSR2tY2j3LPAU4HHA14C/o/rce/M46puU1bY7Ik4ETub/jyhcExE/kpmLHmbsg6XaPTiV51KbGHLfyM85g1u/3AYcN7B8LPD1Ietsy8y9wC0RcSNVkPtkOyVOxKh2H0J13sNH6g/xY4CrI+KszLyutSrHr8nrTURspfoA3JKZu1uqbZKa/j8/DrgtImaBw4BvtVPe+GTm1sUei4j/iYiHZeY36mA29LSHiDgUeB/w25m5bUKljtUY2n0G8JSIeBlwMLA+InZlZqOTt7syhnbfBlyfmTfXv/Nu4In0PLiNod3Pofpe21X/zvup2t3r4LZUuxtq9B2wkIdK++WTwEkRcUJErAeeD1y9YJ13A08FiIijqLrWb261yvFbst2ZeVdmHpWZGzNzI9W5XqWHNmjweteHiN9I1d61cD4jNPt/fjVwdn37p4F/zrU36ORgG88GHvAXev38XAn8dWa+s8XaJmlkuzPzBZl5fP1+/w2q9vc6tDUwst1U743DI2L+PManAV9oobZJatLurwFbImI2Ig6gOrIwDYdKm3wWPlBm+tOjH+CZwJeozmM5v77vD6i+uKHqWn0t1Zv5s8Dzu665jXYvWPcjVFdadl53C6/3h6hO0t1e/1zddc0ttfsg4J3Al4H/AB7Zdc0TeA6OpLrK7qb63yPq+zcBl9a3XwjsHXj9twOndV37pNu9YP1fBC7uuu622g38GHBD/fn+VmB917VPut3AOqo/UHfU322v7bruMbT7OVQ9arvrz/AP1Pc/nOo0gPn1HvBZOOrHmRMkSZIK4aFSSZKkQhjcJEmSCmFwkyRJKoTBTZIkqRAGN0mSpEIY3CRJkgphcJMkSSqEwU3SWEXErq5rGIfBdoyjTRGxMSLujYjtq93WEvt4UERsj4g99cwqktYYg5ukqRSVtj8Dv5KZp01q45l5b739kfMdSiqTwU3SRETEyyPic/XPrw/c/zsR8cWIuCYi3hERv7HC7W+st3NZRNwQEVdExIMHHn93RHwqIj4fEecO/M6OiPgL4NPAccPWG7HfYdt9Ql3DQRGxoX7s1Ib1X1o/R2+LiK0R8fGIuCkiNi+2v/r+DRHxvoj4TP37P7eS51FSWZzyStJY1YcVt1DNs/hEqvl1r6Wad3MdcClwBjBLFZ7emJmvWcF+NgK3AE/OzI9HxFuAL8xvKyKOyMxvRcSDqCZz3gIcAtwM/HBmbltsvcz8ZkTsysyD59s0cHux9f+Qao7VBwG3ZeYfDan3vZl56sDyl4HHAZ+vt/UZ4BzgLODFmfnsJfb3PODMzHxpvb3DMvOu+vZ/Us3ne8dyn1dJ/WaPm6RJeDJwZWbenZm7gHcBT6nvv6o+pPe/wHvmfyEiHhkRb46IK+rlDXVv2psi4gWL7OfWzPx4ffvyevvzfjUiPgNsA44DTqrv/+p8aBux3mIWW/8PqCYI3wRcOGIb827JzM9m5hxVePtwVn9NfxbYOGJ/nwW2RsQFEfGU+dAmaW0zuEmahFjm/WTmzZl5zsBdzwWuqHuUzlrs14YtR8SPAluBMzLzB4HrqXrDAO6+v5il13tg8UuvfwRwMFWv3qLbWGD3wO25geU5YHap/WXml4DTqQLcH0XE7zbcp6SCGdwkTcJHgWdHxIMjYgPwHODfgI8BP1mfC3Yw8KwltnEscGt9e/8i6xwfEWfUt3++3j7AYcCdmXlPRHwf1SHbYZqu12T9S4DfAd4GXDBiO00tur+IeDhwT2ZeDrwGePyY9impx2a7LkDS2pOZn46ItwL/Ud91aWZeDxARV1Ody/VV4DpgsUN8t1GFt+0s/kfmDuDsiHgjcBPwhvr+fwLOi4gbgBupDjMO03S9JdePiBcB+zLz7RGxDvj3iHhaZv7ziO2NslR9PwBcFBFzwF7gl1e5L0kF8OIESa2KiIMzc1d9BehHgXProHck8Gqq88QuBV4HXAzcB3wsM9+2YDsbGTjZv+/arNeLE6S1yx43SW27JCJOoTpX67LM/DRAZn4TOG/Bui9uu7gJ2g8cFhHbJzWWW33l6SeAA6jOk5O0xtjjJkmSVAgvTpAkSSqEwU2SJKkQBjdJkqRCGNwkSZIKYXCTJEkqhMFNkiSpEAY3SZKkQhjcJEmSCvF/CyDAwdOyp4sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU5b3v8c9vwiUISJCL1oKAHuSaGCDRIKBiFbC2qEWO9xsK9day227c3Z5asdVTrB63VVtbq4JVK92tqKhsa22hUBQFJGhF1CJBKFrulxCCIfM7f8xkDMkkzCQzWZPk+3698iKzZs1av7VM5MvzPOt5zN0RERERkeCEgi5AREREpLVTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERaDTN7ysw+NbM9ZvahmV1X7b2vmNlaMyszs4Vm1qfae182sxfMbIeZbTKz64O5AhFpqRTIRKQ1+QnQ192PBCYCd5rZCDPrDswDbgOOAlYAv6v2uaeA9cDRwLnA/zWzsU1auYi0aKaZ+kWkNTKzAcAiYDqQA1zt7qdG3+sIbAOGAZuAvUBPd98aff8RoIO7XxFA6SLSAqmFTERaFTP7hZmVAWuBT4EFwBBgddU+7r4PWBfdblUfrX4YYGiTFCwirYICmYi0Ku5+I9AZGEOkm/IA0AnYXWPX3UBnd98LLAVuM7NsMxsOTAKOaLqqRaSlUyATkVbH3Svd/W9AL+AGoBQ4ssZuRxLpqgS4DOgHbAQeBp4m0pUpIpISCmQi0pq1AU4A3gNOqtoYHUNWtR133+DuX3P3Hu5+CtANeCuAekWkhVIgE5FWwcx6mtnFZtbJzLLMbDxwCfAX4DlgqJlNMrNs4IfAO+6+NvrZQWbW2czamdnlwDjgvqCuRURaHgUyEWktnEj35CZgJ3Av8G/u/kL06clJwF3R904BLq722fHAx9H3rgcmVD1xKSKSCpr2QkRERCRgaiETERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIpJSZlbahOeqNLNiM3vPzFab2XfNLFTt/dfr+WyOmd3YNJXWOndfM9tvZsXVXv89BcftEL0fn5tZ98ZXKiJNRYFMRJqz/e6e7+5DgLOBrwK3V73p7qfW89kcIJBAFrXO3fNTeUB33x895uZUHldE0k+BTETSItpa9ffo179V236bma01sz+Z2TNm9u+pOJ+7bwGmATebmUXPVRr9s6OZvRxtRfu7mV0EzAJOiLYo3RPd73kzWxltcZsW3dbXzN43s19Ht79qZh2i711pZu9Ej/tktWu83Mzeih77V2aWleh1mNnxZrbKzAqj515rZk9Ez/MHMzuivnOLSPPUJugCRKTlMbMRwDVE1oQ04E0z+yuQRWTNyGFE/v/zNrAyVed194+jXZY9gX9Ve2sCsNndz43W1wV4Exhao5VqirvviAau5Wb2bHR7f+ASd59qZv8NTDKzVcD/AUa5+zYzOyp67EHARdHtFWb2C+Ay4DeHq9/MBgBzgWvcvdjM+gIDgGvdfamZPQ7caGb/E+/cItJ8KZCJSDqMBp5z930AZjYPGEOkVf4Fd98f3f5i1QfM7HgiIaOLu19oZh2BXwCfA4vc/ekEz21xtr0L3GtmdwMvufsSM+saZ79vm9kF0e97EwlinwHr3b04un0l0BfoCvzB3bcBuPuO6PtfAUYQCXQAHYAtCdTdA3gBmOTu71XbvtHdl0a/fwr4NnCgjnOLSDOlLksRSYd4oai+7bj7x+5+bbVN3yASOqYCExM6aSTUVVIjALn7h0RC0rvAT8zsh3E+ewZwFjDS3U8CVgHZ0bcPVNu1ksg/Zg3weGUAT0THtuW7+wB3n5lA+buBjcCoGttrnsPrObeINFMKZCKSDouB883siGhL1wXAEuBvwNfNLNvMOgHn1nOMXkQCCkRCUL3MrAfwS+Ahd/ca7x0LlLn7U8C9wHBgL9C52m5dgJ3uXmZmA4Giw5zyz8D/NrNu0XMcVW37hWbWs2q7mfU5XP1EWgLPB640s0urbT/OzEZGv7+EyD2s69wi0kypy1JEUs7d3zazOcBb0U2PuvsqADObD6wGNgAriLQMxbOJSCgrpu5/PHaITh3RFjgIPAncF2e/XOAeMwsDFcAN7r7dzJZGp5v4H+AHwPVm9g7wAbDsMNf4npndBfzVzCqJtKhd7e5rzOwHwKvR8WwVwE3R662Xu+8zs68BfzKzfUTu0/vAVWb2K+Aj4OFoaKx17sMdX0Qyl9X4h6SISFqZWSd3L40+LbgYmBYNcN2Au4hMX/Eo8ADwEFAO/C2JMWQZLzpY/yV3H5qK/eJ8rgQoqBpjJiKZTy1kItLUHjGzwUTGZz3h7m8DuPt24Poa+17T1MU1kUqgi5kVp3IusujToW8QaTEMp+q4IpJ+aiETERERCZgG9YuIiIgETIGsGTGz3ma2MDpr+HtmNr2O/c6wL9b3+2tT15mJErl3ZtbFzF6Mznz+npm11O6ypESfiHyr2n25I84+7c3sd2b2DzN7Mzr2qdVL8N5918zWRGfd/3OCT2S2eIncu2r7XmhmbmYFTVljpkr03pnZ/47+7L1nZr9t6jozVYK/t8dF/05ZFf3d/WqjT+zu+momX8CXgOHR7zsDHwKDa+yTA6wBjou+7hl03ZnwleC9uxW4O/p9D2AH0C7o2oP+IjLnVafo922JzHBfVGOfG4FfRr+/GPhd0HVnwleC924scET0+xt07xK/d9H3OhN5OGQZkQcZAq896K8Ef+76E3k6t2v0tf6uSO7+PULkaW2AwUBJY8+rFrJmxN0/9S8GQO8l8jj8l2vsdikwz90/ie6XyAzhLV6C986BzhaZXr0TkUB2sEkLzUAeURp92Tb6VXPw6XnAE9Hv/wB8JXofW7VE7p27L3T3sujLZUSm+mj1Evy5A/gx8FMiT+MKCd+7qcDP3X1n9DP6uyIqwfvnwJHR77sAmxt7XgWyZiraJTSMSHKv7kSgq5ktssgiyVc2dW2Zrp579xAwiMgv1rvAdHfXk2qAmWVF5/vaAvzJ3Wveuy8TncTV3Q8SmVusW9NWmZkSuHfVXUtkTjTh8PfOzIYBvd39pUAKzGAJ/NydCJwYnYtvmZlNaPoqM1cC928mcLmZbQIWAN9q7DkVyJohi8xw/izwb+6+p8bbbYgsEXMuMB64zcxObOISM9Zh7t14IpOQHgvkAw+Z2ZEI7l7pkekZegEnm1nNebHitYbpEW4SuncAmNnlQAFwT1PWl8nqu3fRSXf/C/heUPVlsgR+7toQ6bY8g8gKEI+aWU7TVpm5Erh/lwBz3L0X8FXgyejPZIMpkDUzZtaWSKB42t3nxdllE/CKu+/zyKSQi4GTmrLGTJXAvbuGSHevu/s/gPXAwKasMdO5+y5gEVDzX9ObiCzGjZm1IdKErwWvq6nn3mFmZxFZWH2iux+o+X5rV8e96wwMBRZFJ8ItAuZrYP+hDvM7+4K7V7j7eiKrU/Rv4vIyXj3371rgv6P7vEFkXsXujTmXAlkzEh2T8xjwvrvHWx4G4AVgjJm1ic6EfgqR8VKtWoL37hPgK9H9jwYGAB83TYWZy8x6VP3LOTrx6FnA2hq7zQeuin5/IfAXj452bc0SuXfRbrdfEQljGscTdbh75+673b27u/d1975Ext9NdPcVgRScQRL8nX2eyAMlmFl3Il2Yrf7/d5Dw/av+98UgIoFsa2POq5n6m5dRwBXAu9G+bYg8GXgcgLv/0t3fN7NXgHeIzNT9qLv/PZBqM8th7x2RwcFzzOxdIl1w/+FaegYiT6g+YWZZRP4R99/u/pKZ/QhY4e7ziYTdJ83sH0Raxi4OrtyMksi9u4fIQyS/jz4H8Ym7Twys4syRyL2T+BK5d38ExpnZGiIrR8zwyGoZktj9+x7wazP7DpHhGVc39h+hmqlfREREJGDqshQREREJmAKZiIiISMAUyEREREQCpkAmIiIiErCMCWTJLCQrIiIi0pJkTCADDgBnuvtJRGZJn2BmRQHX1KyY2bSga2iudO8aTveu4XTvGk73ruF07xounfcuYwJZEgvJSt30S9ZwuncNp3vXcLp3Dad713C6dw3X8gMZJL0Ir4iIiEiLkJETw0aXLHgO+FbNWeajzYXTALKyska0b98+gAoz08GDB2nTRosvNITuXcPp3jWc7l3D6d41nO5dwzX23pWVlVW4e7t472VkIAMws9uBfe5+b137FBQU+IoVrX7ZMhEREWkGzGyluxfEey9juiwTXMxTREREpMXJpDbLuIt5BlyTiIiISNplTCBz93eAYUHXISIiItLUMiaQiYhI81dRUcGmTZsoLy8PuhSRwGRnZ9OrVy/atm2b8GcUyEREJGU2bdpE586d6du3L2YWdDkiTc7d2b59O5s2baJfv34Jfy5jBvWLiEjzV15eTrdu3RTGpNUyM7p165Z0K7ECmYiIpJTCmLR2DfkdUCATEZEWbebMmdx7b51TWvL888+zZs2aJqxIpDYFMhERadUUyCQTKJCJiEiLc9dddzFgwADOOussPvjgAwB+/etfU1hYyEknncSkSZMoKyvj9ddfZ/78+cyYMYP8/HzWrVsXdz+RdFMgExGRQLk7Bw5Wpux4K1euZO7cuaxatYp58+axfPlyAL7xjW+wfPlyVq9ezaBBg3jsscc49dRTmThxIvfccw/FxcWccMIJcfcTSTdNeyEiIoFxd5Z9vJ2PtpTSv2cnio5v/BOaS5Ys4YILLuCII44AYOLEiQD8/e9/5wc/+AG7du2itLSU8ePHx/18ovuJpJJayEREJDCfV4b5aEspx3TO5qMtpXxeGU7JceOFuquvvpqHHnqId999l9tvv73OaQkS3U8klRTIREQkMO3bZNG/Zyc+21tO/56daN8mq9HHPO2003juuefYv38/e/fu5cUXXwRg7969fOlLX6KiooKnn346tn/nzp3Zu3dv7HVd+4mkk7osRUQkUEXHd2N4n64pCWMAw4cP56KLLiI/P58+ffowZswYAH784x9zyimn0KdPH3Jzc2Mh7OKLL2bq1Kk88MAD/OEPf6hzP5F0MncPuoYGKygo8BUrVgRdhoiIRL3//vsMGjQo6DJEAhfvd8HMVrp7Qbz91WUpIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiLQoJSUlDB06tMnON3PmTO69996E9v3qV7/Krl27GnUMaZk0MayIiAhQWVlJVlZqJqetyd1xdxYsWJCW40vzpxYyERFpsT7++GOGDRvGm2++yYwZMygsLCQvL49f/epXACxatIixY8dy6aWXkpubS0lJCYMGDWLq1KkMGTKEcePGsX//fgDWrVvHhAkTGDFiBGPGjGHt2rX1nrvqWDfeeCPDhw9n48aN9O3bl23btgFw1113MWDAAM466yw++OCD2OeWL19OXl4eI0eOZMaMGbHWvsrKyrjXIC2DApmIiAQqHHa27j1AqleO+eCDD5g0aRKzZ89m9erVdOnSheXLl7N8+XJ+/etfs379egDeeust7rrrLtasWQPARx99xE033cR7771HTk4Ozz77LADTpk3jwQcfZOXKldx7773ceOONCdVw5ZVXsmrVKvr06RPbvnLlSubOncuqVauYN28ey5cvj713zTXX8Mtf/pI33njjkBa7xx57rM5rkOZPXZYiIhKYcNi55NfLWLlhJyP6dOWZqUWEQtbo427dupXzzjuPZ599liFDhnDnnXfyzjvv8Ic//AGA3bt389FHH9GuXTtOPvlk+vXrF/tsv379yM/PB2DEiBGUlJRQWlrK66+/zuTJk2P7HThw4LB19OnTh6KiolrblyxZwgUXXMARRxwBwMSJEwHYtWsXe/fu5dRTTwXg0ksv5aWXXgLg1VdfjXsN1WuX5kuBTEREArN93+es3LCTg2Fn5YadbN/3OT06t2/0cbt06ULv3r1ZunQpQ4YMwd158MEHGT9+/CH7LVq0iI4dOx6yrX37L86flZXF/v37CYfD5OTkUFxcXOc5N27cyNe//nUArr/+eiZMmFDr2NWZ1Q6e9bUS1nUN0jKoy1JERALTvVM7RvTpSpuQMaJPV7p3apeS47Zr147nn3+e3/zmN/z2t79l/PjxPPzww1RUVADw4Ycfsm/fvoSPd+SRR9KvXz9+//vfA5FwtHr16kP26d27N8XFxRQXF3P99dfXe7zTTjuN5557jv3797N3715efPFFALp27Urnzp1ZtmwZAHPnzo19prHXIJlNLWQiIhIYM+OZqUVs3/c53Tu1i9tq1FAdO3bkpZde4uyzz+YHP/gBgwcPZvjw4bg7PXr04Pnnn0/qeE8//TQ33HADd955JxUVFVx88cWcdNJJDapt+PDhXHTRReTn59OnTx/GjBkTe++xxx5j6tSpdOzYkTPOOIMuXboAcN1111FSUtKoa5DMZakeRNmUCgoKfMWKFUGXISIiUe+//z6DBg0KuoxmrbS0lE6dOgEwa9YsPv30U372s58FXJUkK97vgpmtdPeCePurhUxERCSDvPzyy/zkJz/h4MGD9OnThzlz5gRdkjQBBTIREZEMctFFF3HRRRcFXYY0MQ3qFxEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERFpUaqmjNi8eTMXXnhhwNU03KJFi/ja177W6H1qmjlzJvfee29jSqvlq1/9Krt27WLXrl384he/SOmx6zN//nxmzZpV7z713aP777+fsrKy2Ouq6wiCApmIiLRIxx57bGzdx3Q5ePBgWo/fXCxYsICcnJwmD2QTJ07k+9//foM/XzOQVV1HEBTIRESkRSopKWHo0KEAzJkzh2984xtMmDCB/v37c8stt8T2e/XVVxk5ciTDhw9n8uTJlJaWAvCjH/2IwsJChg4dyrRp02LrTJ5xxhnceuutnH766bUmbJ05cyZXXXUV48aNo2/fvsybN49bbrmF3NxcJkyYEFv26M9//jPDhg0jNzeXKVOmxBYqf+WVVxg4cCCjR49m3rx5sePu27ePKVOmUFhYyLBhw3jhhReSuhd33XUXAwYM4KyzzuKDDz6IbV+3bh0TJkxgxIgRjBkzhrVr1wJw9dVX8+1vf5tTTz2V448/PhZsP/30U0477TTy8/MZOnQoS5YsAaBv375s27aN73//+6xbt478/HxmzJjBFVdccUitl112GfPnzz+kti1btjBixAgAVq9ejZnxySefAHDCCSdQVlbG1q1bmTRpEoWFhRQWFrJ06dLYf9ebb745di1FRUUUFhbywx/+MNZSCpHJdi+88EIGDhzIZZddhrvzwAMPsHnzZsaOHcvYsWMPuY6SkhIGDRrE1KlTGTJkCOPGjWP//v0ALF++nLy8PEaOHMmMGTNiP2ON5u7N9mvEiBEuIiKZY82aNcl/qLLSfe+/3MPhlNTQsWNHd3dfv369DxkyxN3dZ8+e7f369fNdu3b5/v37/bjjjvNPPvnEt27d6mPGjPHS0lJ3d581a5bfcccd7u6+ffv22DEvv/xynz9/vru7n3766X7DDTfEPfftt9/uo0aN8s8//9yLi4u9Q4cOvmDBAnd3P//88/25557z/fv3e69evfyDDz5wd/crrrjC/+u//iu2/cMPP/RwOOyTJ0/2c889193d//M//9OffPJJd3ffuXOn9+/f30tLS33hwoWxfZYvX+7XXnttrZpWrFjhQ4cO9X379vnu3bv9hBNO8Hvuucfd3c8880z/8MMP3d192bJlPnbsWHd3v+qqq/zCCy/0yspKf++99/yEE05wd/d7773X77zzTnd3P3jwoO/Zs8fd3fv06eNbt2495J67uy9atMjPO+88d3fftWuX9+3b1ysqKmrVOHjwYN+9e7c/+OCDXlBQ4E899ZSXlJR4UVGRu7tfcsklvmTJEnd337Bhgw8cODD23/Wmm25yd/dzzz3Xf/vb37q7+8MPPxz7OVi4cKEfeeSRvnHjRq+srPSioqLYsarqrlL9OrKysnzVqlXu7j558uTY/R8yZIgvXbrU3d3/4z/+45DrrS7e7wKwwuvINJoYVkREghMOwxNfg41vQu9T4KqXIJSezpuvfOUrsXUhBw8ezIYNG9i1axdr1qxh1KhRAHz++eeMHDkSgIULF/LTn/6UsrIyduzYwZAhQ/j6178OUO/Ereeccw5t27YlNzeXyspKJkyYAEBubi4lJSV88MEH9OvXjxNPPBGAq666ip///OecccYZ9OvXj/79+wNw+eWX88gjjwCRVrz58+fHxn6Vl5fHWpGqFBQU8Oijj9aqZ8mSJVxwwQUcccQRQKSbDyKtRq+//jqTJ0+O7VvVUgdw/vnnEwqFGDx4MP/6178AKCwsZMqUKVRUVHD++eeTn59f7z0//fTTuemmm9iyZQvz5s1j0qRJtGlTO3qceuqpLF26lMWLF3Prrbfyyiuv4O6xNT5fe+011qxZE9t/z5497N2795BjvPHGG7G1PS+99FL+/d//PfbeySefTK9evQDIz8+npKSE0aNH11t7v379Ytc3YsQISkpK2LVrF3v37uXUU0+Nneell16q9ziJUiATEZHglG2LhLHwwcifZdugU8+0nKp9+/ax77Oysjh48CDuztlnn80zzzxzyL7l5eXceOONrFixgt69ezNz5kzKy8tj73fs2PGw5wmFQrRt2za2YHooFIqdsy51La7u7jz77LMMGDDgkO1VQelw4h03HA6Tk5NDcXFxvddRdX6A0047jcWLF/Pyyy9zxRVXMGPGDK688sp6z33FFVfw9NNPM3fuXB5//HEArrnmGlatWsWxxx7LggULGDNmDEuWLGHDhg2cd9553H333ZhZbDB+OBzmjTfeoEOHDgldb33XUvXfPtnP7N+/v97/do2lMWQiIhKcjj0iLWOhNpE/O/Zo0tMXFRWxdOlS/vGPfwBQVlbGhx9+GAtf3bt3p7S0NKUPBwwcOJCSkpLYOZ988klOP/10Bg4cyPr161m3bh3AISFx/PjxPPjgg7FAsGrVqoTPd9ppp/Hcc8+xf/9+9u7dy4svvgjAkUceSb9+/fj9738PRELX6tWr6z3Whg0b6NmzJ1OnTuXaa6/l7bffPuT9zp0712q5uvrqq7n//vsBGDJkCACzZ8+muLiYBQsWxGp86qmn6N+/P6FQiKOOOooFCxbEWi7HjRvHQw89FDtmvBBZVFTEs88+C8DcuXMTujfx6q1P165d6dy5M8uWLUvqPIlQIBMRkeCYRbopv/s+XP1y5HUT6tGjB3PmzOGSSy4hLy+PoqIi1q5dS05ODlOnTiU3N5fzzz+fwsLClJ0zOzub2bNnM3nyZHJzcwmFQlx//fVkZ2fzyCOPcO655zJ69Gj69OkT+8xtt91GRUUFeXl5DB06lNtuu63WcVesWMF1111Xa/vw4cO56KKLyM/PZ9KkSbFuQICnn36axx57jJNOOokhQ4Yc9mGBRYsWkZ+fz7Bhw3j22WeZPn36Ie9369aNUaNGMXToUGbMmAHA0UcfzaBBg7jmmmvqPG7fvn2BSDADGD16NDk5OXTt2hWABx54gBUrVpCXl8fgwYP55S9/WesY999/P/fddx8nn3wyn376aax7uj7Tpk3jnHPOiQ3qT8Rjjz3GtGnTGDlyJO6e0HkSYelsfku3goICX7FiRdBliIhI1Pvvv8+gQYOCLkMySFlZGbm5ubz99tspCy91nadDhw6YGXPnzuWZZ55J+mnURJSWlsae4Jw1axaffvppradtIf7vgpmtdPeCeMfVGDIRERFJi9dee40pU6bw3e9+N61hDGDlypXcfPPNuDs5OTmx8Wqp9vLLL/OTn/yEgwcP0qdPH+bMmZOS46qFTEREUkYtZCIRybaQaQyZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiEiLUjUlwebNm7nwwgsDrqbhFi1aFJupvjH7pFr1RbtTYf78+cyaNQuA559//pAlktKp+nnrUt/9vf/++ykrK0tZPQpkIiLSIh177LEpnWE/nkSW4JH6TZw4ke9///tA0way6udtCAUyERGRBJSUlDB06FAA5syZwze+8Q0mTJhA//79ueWWW2L7vfrqq4wcOZLhw4czefJkSktLAfjRj35EYWEhQ4cOZdq0abFli8444wxuvfVWTj/99FoTgs6cOZOrrrqKcePG0bdvX+bNm8ctt9xCbm4uEyZMoKKiAoA///nPDBs2jNzcXKZMmRJb1PuVV15h4MCBjB49mnnz5sWOu2/fPqZMmUJhYSHDhg1LasLTkpISBg0axNSpUxkyZAjjxo1j//79QGQJoqKiIvLy8rjgggvYuXNnrc+vX7+ekSNHUlhYWGuFgHvuuYfCwkLy8vK4/fbbD3u+Bx54gMGDB5OXl8fFF18c+29z88038/rrrzN//nxmzJhBfn4+69atY/jw4bFzffTRR4wYMeKQ82/ZsiW2bfXq1ZhZbNH1E044gbKyMrZu3cqkSZMoLCyksLCQpUuXHnJegHXr1lFUVERhYSE//OEPD2kFLC0t5cILL2TgwIFcdtlluDsPPPAAmzdvZuzYsUnN8l8fBTIREQlU2MNs278trQs3QyR8/O53v+Pdd9/ld7/7HRs3bmTbtm3ceeedvPbaa7z99tsUFBRw3333AXDzzTezfPly/v73v7N//35eeuml2LF27drFX//6V773ve/VOs+6det4+eWXeeGFF7j88ssZO3Ys7777Lh06dODll1+mvLycq6++OlbLwYMHefjhhykvL2fq1Km8+OKLLFmyhM8++yx2zLvuuoszzzyT5cuXs3DhQmbMmMG+ffsOOW9dSydBJMzcdNNNvPfee+Tk5MTWfLzyyiu5++67eeedd8jNzeWOO+6o9dnp06dzww03sHz5co455pjY9ldffZWPPvqIt956i+LiYlauXMnixYvrPd+sWbNYtWoV77zzTq3lj0499VQmTpzIPffcQ3FxMSeccAJdunSJrVs5e/Zsrr766kM+07NnT8rLy9mzZw9LliyhoKAgtkh5z6tbYnoAACAASURBVJ49OeKII5g+fTrf+c53WL58Oc8++2zcezR9+nSmT5/O8uXLOfbYYw95b9WqVdx///2sWbOGjz/+mKVLl/Ltb3+bY489loULF7Jw4cK49zxZCmQiIhKYsIeZ8scpnPX7s7jmj9cQ9nDazvWVr3yFLl26kJ2dzeDBg9mwYQPLli1jzZo1jBo1ivz8fJ544gk2bNgAwMKFCznllFPIzc3lL3/5C++9917sWBdddFGd5znnnHNo27Ytubm5VFZWMmHCBAByc3MpKSnhgw8+oF+/fpx44okAXHXVVSxevJi1a9fSr18/+vfvj5lx+eWXx4756quvMmvWLPLz8znjjDMoLy+PtQRVKSgo4NFHH41bU79+/cjPzwdgxIgRlJSUsHv3bnbt2sXpp59+SB01LV26lEsuuQSAK6644pCaXn31VYYNG8bw4cNZu3YtH330UZ3nA8jLy+Oyyy7jqaeeok2bwy8WdN111zF79mwqKyv53e9+x6WXXlprn1NPPZWlS5eyePFibr31VhYvXsySJUtia3a+9tpr3HzzzeTn5zNx4kT27NlTa0HxN954g8mTJwPUOsfJJ59Mr169CIVC5Ofnx64l1bR0koiIBGZH+Q6KtxRT6ZUUbylmR/kOunfonpZztW/fPvZ9VlYWBw8exN05++yzeeaZZw7Zt7y8nBtvvJEVK1bQu3dvZs6cSXl5eez9jh07HvY8oVCItm3bYtEF00OhUOycdbE6Fld3d5599lkGDBhwyPZ//etfdR4rXk0QufaqLsRExavL3fnP//xPvvnNbx6yvaSkpM7zvfzyyyxevJj58+fz4x//+JCQG8+kSZO44447OPPMMxkxYgTdunWrtc+YMWNirWLnnXced999N2YWG4wfDod544036NChQ1LXXCXez006qIVMREQC0y27G/k988myLPJ75tMtu/ZfuOlUVFTE0qVL+cc//gFEFqj+8MMPY+Gre/fulJaWpvThgIEDB1JSUhI755NPPsnpp5/OwIEDWb9+PevWrQM4JCSOHz+eBx98MBbmVq1a1eg6unTpQteuXVmyZMkhddQ0atQo5s6dC8DTTz99SE2PP/54bMzdP//5T7Zs2VLn+cLhMBs3bmTs2LH89Kc/ZdeuXbHPVuncufMhrVfZ2dmMHz+eG264gWuuuSbucU877TSeeuop+vfvTygU4qijjmLBggWMGjUKgHHjxvHQQw/F9q/qAq2uqKgo1q1ada2HU7PWxlIgExGRwJgZj49/nNcmv8bs8bPrbCFKlx49ejBnzhwuueQS8vLyKCoqYu3ateTk5DB16lRyc3M5//zzKSwsTNk5s7OzmT17NpMnTyY3N5dQKMT1119PdnY2jzzyCOeeey6jR4+mT58+sc/cdtttVFRUkJeXx9ChQ2sNrof6x5DV5YknnmDGjBnk5eVRXFzMD3/4w1r7/OxnP+PnP/85hYWF7N69O7Z93LhxXHrppYwcOZLc3FwuvPDCegNKZWUll19+Obm5uQwbNozvfOc75OTkHLLPxRdfzD333MOwYcNiwfSyyy7DzBg3blzc4/bt2xeIBDOA0aNHk5OTQ9euXYHIgwQrVqwgLy+PwYMH1xq7BpEnJu+77z5OPvlkPv3004QWQp82bRrnnHNOygb1a3FxERFJGS0uLql27733snv3bn784x+n7RxlZWV06NABM2Pu3Lk888wzST3JGk+yi4trDJmIiIhkpAsuuIB169bxl7/8Ja3nWblyJTfffDPuTk5ODo8//nhazxePApmIiIhkpOeee65JzjNmzBhWr17dJOeqi8aQiYiIiARMgUxERFKqOY9NFkmFhvwOKJCJiEjKZGdns337doUyabXcne3bt5OdnZ3U5zSGTEREUqZXr15s2rSJrVu3Bl2KSGCys7Pp1atXUp/JmEBmZr2B3wDHAGHgEXf/Wf2fEhGRTNK2bVv69esXdBkizU7GBDLgIPA9d3/bzDoDK83sT+6+JujCRERERNIpY8aQufun7v529Pu9wPvAl4OtSkRERCT9MiaQVWdmfYFhwJtx3ptmZivMbIXGKIiIiEhLkHGBzMw6Ac8C/+bue2q+7+6PuHuBuxf06NGj6QsUERERSbGMCmRm1pZIGHva3ecFXY+IiIhIU8iYQGZmBjwGvO/u9wVdj4iIiEhTyZhABowCrgDONLPi6NdXgy5KREREJN0yZtoLd/8bYEHXISIiItLUMqmFTERERKRVUiATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBCyjApmZPW5mW8zs70HXIiIiItJUMiqQAXOACUEXISIiItKUMiqQuftiYEfQdYiIiIg0pYwKZCIiIiKtUUKBzCJ6p7uYRJjZNDNbYWYrtm7dGnQ5IiIiIo2WUCBzdweeT3MtCXH3R9y9wN0LevToEXQ5IiIiIo2WTJflMjMrTFslIiIiIq1UMoFsLPCGma0zs3fM7F0zeyeVxZjZM8AbwAAz22Rm16by+CIiIiKZqE0S+56Ttiqi3P2SdJ9DREREJNMk3ELm7huAHODr0a+c6DYRERERaYSEA5mZTQeeBnpGv54ys2+lqzARERGR1iKZLstrgVPcfR+Amd1NZLzXg+koTERERKS1SGZQvwGV1V5XRreJiIiISCMk00I2G3jTzJ6Lvj4feCz1JYmIiIi0LgkHMne/z8wWAaOJtIxd4+6r0lWYiIiISGuRUCAzMwN6ufvbwNvpLUlERESkdWl2SyeJiIiItDRaOklEREQkYMkM6h8LfNPMNgD7iIwjc3fPS0tlIiIiIq1EMmPIrgc0M7+IiIhIiiUUyNzdzey/3H1EugsSERERaW00hkxEREQkYMmOIbvezErQGDIRERGRlEkmkJ2TtipEREREWrFkuiw/AcYAV7n7BsCBo9NSlYiIiEgrkkwg+wUwErgk+nov8POUVyQiIiLSyiTTZXmKuw83s1UA7r7TzNqlqS4RERGRViOZFrIKM8si0lWJmfUAwmmpSkRERKQVSSaQPQA8B/Q0s7uAvwH/Ny1ViYiIiLQiCXdZuvvTZrYS+AqRKS/Od/f301aZiIiISCuRzBgy3H0tsDZNtYiIiIi0Ssl0WYqIiIhIGiTVQiYiItLcVByo4MMVJYTDMKCwL+2y2wZdkkgtCmQiItKi/fOjLax/dzNm0LFLB47P6xV0SSK1HDaQmdleolNd1HyLyFqWR6a8KhERkRTJ7tgeCwEY2R01faZkpsMGMnfv3BSFiIiIpMMx/bozcmI+OHQ9Rm0IkpmS6rI0s65AfyC7apu7L051USIiIql01DFdgi5BpF4JBzIzuw6YDvQCioEi4A3gzPSUJiIiItI6JDPtxXSgENjg7mOBYcDWtFQlIiIi0ookE8jK3b0cwMzaRyeJHZCeskRERERaj2TGkG0ysxzgeeBPZrYT2JyeskRERERaj2TWsrwg+u1MM1sIdAH+Jy1ViYiIiLQiyQzqbw9MAvpW+1w+8KPUlyUiIiLSeiTTZfkCsBtYCRxITzkiIiIirU8ygayXu09IWyUiIiIirVQyT1m+bma5aatEREREpJVKpoVsNHC1ma0n0mVZtZZlXloqExEREUmncJiK3Z/RNudLYBZoKckEsnPSVoWIiIhIOoXDULYNOvYAMzxcyZ4HxtJ517vs6ZrHkd9aCKFkOg5TK+Ezu/sGIAf4evQrJ7pNREREJHOEw1C6Bdy/eP3E1+C+QTDnXAiHKd+xmc673iVEmE4736Fi92eBlpxwIDOz6cDTQM/o11Nm9q10FSYiIiJyWAmEL8q2wcY3IXww8mfZNrKP+jJ7jhxKmBB7c3Ij3ZYBSqbL8lrgFHffB2BmdxNZXPzBdBQmIiIicoga3Y6x8LXxTeh9Clz1UtzwRccekfer9uvYAzOjy78tonzHZo486svNagyZAZXVXldGt4mIiIikVyPCF2Zf7F/1GrBQFh269w74wiKSCWSzgTfN7Lno6/OBx1JfkoiIiLR6NVvDGhm+CIWgU89gr6keyaxleZ+Z/RUYRaRl7Bp3X5W2ykRERKR1SKQrsgWFr3iSaSHD3VcSWTpJREREJHkNHQfWqWeLCV/xHPYpSzP7W/TPvWa2p9rXXjPbk/4SRUREpFlq4BOQsdawUJsvWsPgi/AV8AD8dDhsC5m7j47+2Tn95YiIiEizlMInIOvsimzBkpmH7O5EtomIiEgLVrPVq2pbQ1u+qsLXd9+Hq1+u3RXZCsIYJLe4+Nlxtmk5JRERkZYqkS5HUPhKgcN2WZrZDcCNwPFm9k61tzoDS9NVmIi0DF6xnXDpO9C2O6GOQzALbq04EalHYwbbt/AnIJtCIk9Z/hb4H+AnwPerbd/r7jvSUpWItBjh0mK8cj9UbIP2x0LbbkGXJCI1NWa8Fyh8pUAig/p3A7uBS9Jfjoi0OG26QcVHWCgbQh2CrkZEIPWTroLCVyMlPA+ZmT0BTHf3XdHXXYH/5+5T0lWciDR/oU65kN0LQh2wrCOCLkek9dGkq3UKh53t+z6ne6d2WDNayzKvKowBuPtOMxuWhppEpAUxy4K23YMuQ6R10KSrQPygVXNbOOxc8utlrNywkxF9uvLM1CJCoeBCWTKja0PRVjEAzOwokpzpX0RERFKkFU66Gg47W/cewKtNuVFzW1XQGvmTP3PxI8sIhz3utu37Pmflhp0cDDsrN+xk+77Pg7osILlA9f+A183sD9HXk4G7Ul+SiIiIHKIVTrqaSIsWUGtbXUGr5rbundoxok/X2Ge7d2oX5OUmtbj4b8xsBXAmkcXFv+Hua9JWmYiISGvUFOErwK7IhnYnNjZo1dxmZrHjNrcxZACfAm8B2UB3MzvN3RenviwREZFWoAWFr4YGLUislauxQStu+DLH2uwFgp+OJ5mnLK8DpgO9gGKgCHiDSIuZiIiI1KVm8KraluHhK5GQVbUt3d2JyQStUMjo0bn9oRdTI3yFPcyUP06heEsx+T3zeXz844QCnLg6mRay6UAhsMzdx5rZQOCO9JQlIiLSQsQLXqFQxoevRENWKGRN1p2YSNCCSNjaUb6DbtndItcSJ3ztKN9B8ZZiKr2S4i3F7CjfQfcOwT0RnkwgK3f3cjPDzNq7+1ozG5C2ykRERJqjRCZdbcLlhtI9ZqtH5/Zp6U6MF74SCVpAQuGrW3Y38nvmx/brlh1st2UygWyTmeUAzwN/MrOdwOb0lCUiItIMNHTSVWh0+MqUMVuRS0ltdyI0vJULSCh8mVnsGFWvg5RQILNIld+OTgw708wWAl2AV9JZnIiISMZI9aSrEDd8pTtoQerHbEUupXbQCqqVK9HwFbJQoN2U1SUUyNzdzex5YET09V/TUYyZTQB+BmQBj7r7rHScR0REpF6pfPoR6mz1CmqurcaM2YrbwkXtoBVvW1O1cmV6+IonmS7LZWZW6O7L01GImWUBPwfOBjYBy81svuY6ExGRtErx1BPhK19kx9bNdOv55aSfTGyqoJVwV2K821VH8MqkVq5MD1/xJBPIxgLfNLMNwD4ik8O6u+elqJaTgX+4+8cAZjYXOA9QIBMRkdRoRPjyXqfApsh+Vkf4CoedSx59KxqKNiX9ZGJTBa1EuhLjbatrqgi1cjXeYQOZmT3p7lcAjwDPpbGWLwMbq73eBJwSp55pwDSA4447Lo3lSEvjOEZmLhEiImmQwvAVdrj08//D+vIN9D3Ql2cc8Nrhq7FPJqYjaMW9NSkcx9W9Q3e1cqVAIi1kI8ysD3AN8ASk7W+0eMf1WhvcHyESDikoKKj1vkg8YXYDW3A6YByLEdzkfyKSBgmGL9/4JhY+GPkzifC1fd/nrPhkNwfDXdj+ya5GdyVC3U8mpjJoxduW6nFcVdeiVq7GSSSQ/ZLI05THAys5NDh5dHsqbAJ6V3vdC02rISmzA2hLpLf9ANAh2HJEpOHihC+f87UvQlUd4SvcoTtr2wzixAPv8WGbQQzs0B0SDF9pWbaH9ActaJpxXKBWrsY6bCBz9weAB8zsYXe/IY21LAf6m1k/4J/AxcClaTyftCpHAtuILMPaLuBaRCQR8QbCxwtf4dKthD9ZRhsqObhhGaHSrdCxR63wtb2sgvNKv0+X8B52VXThjbIKgITCV1N1JUJqgxZoHFdzkfCg/jSHMdz9oJndDPyRyLQXj7v7e+k8p7QeIbrhdAFC6q5sYcJl/8D3vIN16IcdmR/45I7SMPGmf7j0kddZ/8kG+h7Xl2emjSQUsrjhaztd+Djcn+H2IW97f46nC8QJX907tWN4n26s3BBK+xQQta4vTgtXvO3p6E7UOK7mIZmnLNPO3RcAC4KuQ1omy6wfd0kBd8d3r4A2Ofi+97GOJ0KbjkGXJdUkOslpzfC1vbSc72z+LsPbfsjbm09ke+kiehzZIW746t65Pd869r7Y5+dGA1LN8JWOKSDiXnOCTyYmGr4aG7TUytU86G8oEWm2zAzLPg7fvx7adoeshv0FKslrzGzyiYSv7raHrqGPaEOYEfYRWbYH6BA3fJkZv512Ktv3FTTpk4nxtiWziHWi4auxQUvhq3lIOJCZ2eCak7Sa2RnuvijlVYmIJMhyirBOgyGrI2b6N2Y6NGY2+bc3bCcnvIeVGyLHwMMJhS/r1JOs44rwTW+S1fsULDrLfV3hq7HjtmpdcxMMmE8mfClotXzJ/N/rv83sSeCnREZG/xQoAEamozARkUSYhaBtTtBlNEsNbeWqa66tmuGre8c2vNBpVmRgffshdO84AfZtSyx8mWFXx1//MZVBK962plrepzmsryhNJ5lAdgpwN/A60Bl4GhiVjqJERKRh4j6ZGGd7Y9ZM7N6pHQXHdYl1G3bv1A48XCt8Wdl2Bh18H7Nw5M+y7ZBM+Kpj/ceE70UGTQtRV8hS+JIqyQSyCmA/kQmcsoH17h5OS1UiInKIhrZmhULJtXIlEr7MnWfa3QXZb0L7UzB/CeKFr449sOhaj1ZtrcfGhq9MauVSC5ekSjKBbDnwAlAIdAN+ZWYXuvuFaalMRKSVSmVrVo/O7ZNaMzGx8LUN21R7uaF44Su2PFEDwpcWsZbWJJlAdq27r4h+/xlwnpldkYaaRERapFSP2Uo0ZCU80Wk4nHD4Ihq+aED40iLWIrUlMzHsCjPrCvQn0mUJsCEtVYmINCONmQIi0TFbjVm2p86JTnF62G6gR+RCmiB8aRFrkfiSmfbiOmA6kTUmi4Ei4A3gzPSUJiKSeVIZtCCxVq5UTGhaK3zFW3w7ifAVNtiRFaIbXyxwrEWsRRoumS7L6UTGjy1z97FmNhC4Iz1liYg0ncY8mdjY7sSUL9tTc+Htqm01w1fZtsjr6q1hnXoSvnI+O3b+g25HnfhFa1+N8KVFrEVSL5lAVu7u5WaGmbV397VmNiBtlUmL4uzH+Qxoj3GM1pOUJtEUTyY2Nmg1atmemuErXvAKheKHr449CPc+mR3/XEG3LxdgHXtEgtafrtMi1iIBSCaQbTKzHOB54E9mthPYnJ6ypKVxtgNhYC/QBdB6g9Jw6R6zlcyTiY0NWikNX2XbCG98kx2E6bbxTSza6hU3fOFMOeZoirO+TH7Po3kc1yLWIgFKZlD/BdFvZ5rZQiJ/q76SlqqkBeoIlBH5kWsXcC3SnAQxZguSeDKR1C/b09DwFT6iG1OO60sxB8inPY8f0Y0Q1B2+tmoRa5FM0aCF39z9r6kuRFq2EF1xjgCyMK1pLwQ3BUSjn0xsTNCKfyNqha/wE+d+0Zp11csJh68dB3ZSHKqk0o1iq2THgZ1fLGKdQPjSItYiwTns34xmthfweG8B7u5HprwqaZGMFP4lJhmpqZbtaaoxW0GEr/C+LUz5fB3FvY4m/8A6Ht+3BTr2SCh8aRHrzBEOh9n8wWdUlB+k1+Bjadte/xCV+h32J8TdOzdFISLSvDTVsj2Bjdlq7P2pOflpguFrR1Ybitu3p9KguH17dmS1gQTDlxaxzhw7Nu1k7ZKPsJBRWXGQ/3Xy8UGXJBlOkV1EDpHKrsRkl+0JbMxWI8Wdf+uVKRRvrfa0YoLhq1uHbuQfPSLy2aPz6dZBi1g3R6GsUKRrKexktdVftXJ4yXRZWpy31WUp0kwENZt8uiY6bQoJL/FTI3ztKNtO8b9WRoLWZyvZUbYdEgxfZsbjEzRgvrnremwO+eOHUPH5QY7u1yPocqQZUJelSDOX7qAFjetKbA6tXEktYp1A+OoWDpN/4ADF7duRf+BzuoXD0KlnwuFL47iaPzOjRx/995LEJdWOGmctS9x9caqLEpH4gpoCojFdifVtT7eUL2Id9oTCl3XqyePtTmDHpuh4sU49IYnwJSKtj9ayFAlYc1i2J9O6EuNJ+SLW7bqSH86imIPkexbd2nWFsm0Jh6/QVS/TvcYSRgpfIlIXrWUpkiYtadmeZjGOq6HL+8QLXoDt387jn5RE5v4ihO3fDkmEL0KhyCz5IiIJ0FqWIinQ4pftSYOGBi1IYhHrHvmx8V7dsrtBOFwrfNUVvOjYg1DvU+heNTt+NGwpfIlIOmgtS5F6BDWbfKDL9qRBKoMW1LG2Yo3wZe48/tm/2PHPf9Kt8kuYO8QLX/GCF0TCVnSJIoUvEUm3hAKZRf7P/21334XWspQWIKgpIDJu2Z5GSKSFq2pbo4JWvLUVEwlfZdsIbXyL7uGDsPGtWLCK1+oVN3iBwpeINJmEApm7u5k9D4yIvtZalpKRMn0KiObwZGI8DW3hqutpxUYtYh0OJxy+6H3KFwty1xe+FLxEJGDJdFkuM7NCd1+etmpEElRX8Mr0KSAyKWRB+gfMd+/QvfGLWDt0rwx/UbTCl4i0QMkEsrHAN81sA7CPLxYXz0tLZdLsuDvh8g/xg1sJZQ8g1Db52akb82SipoCoX8oHzCfQwgXJraNYK3yFw/DE174IWle9pPAlIi1SMoHsnLRVIS1DeC/h8g8h1JHKsncJdfliirp0dyX26Ny+VUwBEU/ap4VoZAsX1DH/Vjh8aICKF77KtkVehw9G/izbFglYCl8i0sIkHMjcfUO8mfqBDSmvSpqN6qEKaw+hDoQr97Hr4LH0dG/S2eRbWtCKJ4hWrqRauOqa+LSh4SteaxgofIlIi6OZ+iVhCXUddhzFZY8uZ+Un/6Kgz7ImHbMFzTNoxWvhirc9yFauhGeYrxm8qrY1NHzV9wSkiEgLopn6JcVzbYV4+5NSKjVmK65E11FMNHw1aStXrYtJoNUrFGp8+FJrmIi0Apqpv4VKJGRVbQtqrq2W3JUYb1uiIat7h+4Jh6+0tHLFvcBGjPdS+BIROSzN1N8CNHRwfGOfTGwNQSuephjHlUz4alQrV9wLTPF4L4UvEZHDSmZQ/wXRbzVTfxNJ97I9qXgysSUHrXjbmmocVzLhK7U3IU3jvRS+RETqlUwLWYxm6m+cTFm2Bxr/ZGJzlelPK9a3PbU3okZrmMZ7iYgEIpmnLLOBG4HRgAN/Ax529/I01dbsNMdle0CtXBn5tGJabk4CXZEKXyIigUimhew3wF7gwejrS4AngcmpLqo5CCJogboSk13EGjJwTq6moElXRUSalWQC2QB3P6na64VmtjrVBWWaRJ9M1LI9qZHqRayhhbVyxaNJV0VEmr1kAtkqMyty92UAZnYKsDQ9ZWWGZNZM1BQQ9QtqEWtoxq1c8aQyfGnSVRGRjJFMIDsFuNLMPom+Pg5438zepYUuMp7MmomtNWjFk2mLWDeLVq54miJ8qTVMRCQjJBPIJqStigyV7JqJrS1oxduWiYtYZ3z4aqrlhhS+REQyVlKLi6ezkEyU7JqJLUmmTwuR8SGrLlpuSERE4mjQPGStSUsKXi1qEevmSMsNiYhIHRTIWqgWtYh1c9XQSVdB4UtEpJVRIGtmWvwi1s1VqiddBYUvEZFWJOlAZmaXAhOBSsCAF939mVQXJq1gEevmSpOuiohIijWkhex0d7+46oWZ/RxQIEtCJj2tGNgi1s1FQJOu7v/kE8o3fEKH448n+8vHpvkiRUQkaA0JZO3N7FxgI9AL6JDaklqWTH9asb7trU6GTLoaPnCA0uJ3CB1xBHvfLqb9MUdjWVlpvHAREQlaQwLZjcA3gFxgE3BTSitqJjKplUstXA2QwZOuWps2hDp1onLPHtp2OypyHGlWwhUHAQi11TBdEUlM0v+3cPcy4Kmq12b2H8DdqSwqk2gR6xYgg8NXPJaVRddRIzm4Zy9tuhx5yBQlkvnKt+3is8WrsKwQXzpjBO26dAq6JBFpBhoyqP+/q78E8mmhgayuqSLUypXBmln4qkuofXva9WgZ89+1Nvv+uQWA8IEKyrfsVCATkYQ0pD19j7tfV/XCzB5OYT0Zpa6pItTKlaGaafiSlqXTccdQWvIpWe3a0uGYo4IuR0SadhLd4wAAET5JREFUCXP35D5g1s/d11d7fZS770h5ZQkoKCjwFStWpO347s41f7wmFrJmj59d53ixurZJmsRb/7F0C9w3KBK+Qm3gu+9H3p9z7hfh6+qXv2g5a8CAe5FEeGUYDEzj/0SkGjNb6e4Fcd9LNpBlknQHMlDIygiJrv/orvAlIiIZq75AlnCXpZl9N87m3cBKdy9uaHGZTl2JTawxk66q21FERJqpZNrTC4DrgS9Hv6YBZwC/NrNbUl+atHjhcKSbsaqVtip83Tco0tJVFc7qGgMWanPopKvwRfhSS5iIiDQjyQzq7wYMd/dSADO7HfgDcBqwkv/f3v0He1bXdRx/vmRBdEH8LRgsW0GKIWmuKAKhiEWTIf4oc3REY2TIaaxxbNIhrZEcBSwbsx+saGKimSRioCmiRRpLkSwgID/ElEXGBBVYF8HdfffH9yze1vvjey/3ez7n3vt8zOzs93y/n3vOe99797uv+znn+zlw+uKXp2VjIIuuSpI0RPMJZGuA+6Zs/wjYv6ruSXLv4palJW2ZLD0hSVJf5hPIPgxsSHI+o/XHng98JMlq4NpJFKclwPAlSdIDNnYgq6pTk3wKOIJRIDu5qnZ8xPHlkyhOA2P4kiRpIua7MOxWYDtQjE5ZarkyfEmS1Jv5LHvxe8BrgH9iNEP2oSTrq+ovJ1WcGjF8SZLUq/nMkJ0IPKOqfgCQ5DTgUuABB7IkvwH8CXAQcOiUU6Hqw86zYYYvSZJ6NZ9AFmDblO1t3XOL4SvAi4AzF2l/ms50K9ZPNxtm+JIkqVfzCWR/B1yW5DxGQex44P2LUURVXQd4a6LFNO7thmZa9d7wJUlSb8Zeqb+q/hx4NXBH9+uEqnrXpArTPCx0xXuYedV7V7yXJKk3c86QJbmb0acq739qymtVVQ8b50BJPgfsPc1Lp1TV+ePso9vPSYxu28SaNWvG/bLlYzE//Qiuei9J0gDMGciqas/FOFBVHbNI+1kPrAdYt25dzTF8aevrdkOeipQkqan5rkOmSXHdL0mSVqxBBLIkL2S0fMZjgAuTbKyqX2lc1uQYviRJ0hSDCGRVdR5wXus6emH4kiRJOxlEIFvWXHRVkiTNwUC2mMY5FWn4kiRJOzGQLdRCrwNz0VVJkrSTsReGXbF2XnR1x3PjLLzqoquSJGkMzpDNZj63G5rv2l+SJEkdA9lsZjrl6HVgkiRpERnIZjPf2w0ZviRJ0gIYyGbj7YYkSVIPDGRzMXhJkqQJ81OWkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJM0cVvu/iF33rG5dRmSNFjeXFzSRH3/9ru55Pwr2Lp1G0979hPZ/wn7tC5JkgbHGTJJE7X5znv40X1b2XXXXbjjtjtblyNJg+QMmaSJeuy+j2Dfn30sWzbfywGH7Ne6HEkaJAOZpIna7cG78oxfPrh1GZI0aJ6ylCRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFsDtu2beOuu+5i+/btrUuRJEnL1KrWBQzZ9u3bueCCC9m0aRMHHXQQRx/9nNYlSZKkZcgZslls2bKFW2+9lX322Yfrr7/BWTJJkjQRBrJZrF69mkMOeTK33347hx32DB70INslSZIWn6csZ5GEI444gsMPP5wkrcuRJEnLlFM+YzCMSZKkSTKQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNDSKQJTkjyVeTXJXkvCQPb12TJElSXwYRyICLgIOr6hDgBuBNjeuRJEnqzSACWVV9tqq2dpsbgH1b1iNJktSnQQSynfw28OmZXkxyUpLLk1z+ne98p8eyJEmSJmNVXwdK8jlg72leOqWqzu/GnAJsBc6ZaT9VtR5YD7Bu3bqaQKmSJEm96i2QVdUxs72e5ATg+cBzq8qgJUmSVozeAtlskhwL/CFwVFVtaV2PJElSn4ZyDdl7gD2Bi5JsTPK3rQuSJEnqyyBmyKrqgNY1SJIktTKUGTJJkqQVy0AmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhobRCBLcmqSq5JsTPLZJI9vXZMkSVJfBhHIgDOq6pCqegpwAfCW1gVJkiT1ZRCBrKrumrK5GqhWtUiSJPVtVesCdkjyNuCVwJ3AcxqXI0mS1JtU9TMZleRzwN7TvHRKVZ0/ZdybgN2r6o9n2M9JwEnd5hOA6xe71iXs0cDtrYtYouzdwtm7hbN3C2fvFs7eLdwD7d3+VfWY6V7oLZCNK8n+wIVVdXDrWpaaJJdX1brWdSxF9m7h7N3C2buFs3cLZ+8WbpK9G8Q1ZEkOnLJ5HPDVVrVIkiT1bSjXkL0jyROA7cA3gJMb1yNJktSbQQSyqnpx6xqWifWtC1jC7N3C2buFs3cLZ+8Wzt4t3MR6N7hryCRJklaaQVxDJkmStJIZyJaYJMcmuT7JTUneOMu4lySpJH6SpjNX75K8Psm13W28Lu4+8SvG6t2Dk3y0e/2yJGv7r3L4kjwyyUVJbux+f8Q0Y56S5NIk13Tfiy9tUevQjNO7KWMfluTWJO/ps8ahGrd3SdZ0ty+8rnsvXNtvpcMzj96d3v2bvS7Ju5NkvscykC0hSXYB/gr4VeBJwMuSPGmacXsCrwMu67fC4Rqzd1cA66rqEOBc4PR+qxymMXt3IvC9qjoAeBdwWr9VLhlvBC6uqgOBi7vtnW0BXllVPw8cC/xFkof3WONQjdO7HU4F/q2XqpaGcXv3QUa3MjwIOBT4357qG7I5e5fkWcDhwCHAwcDTgaPmeyAD2dJyKHBTVd1cVfcB/wC8YJpxpzIKEz/ss7iBm7N3VfWFqtrSbW4A9u25xqEa5/vuBcDZ3eNzgecu5CfEFWBqn84Gjt95QFXdUFU3do+/xeg/xWkXklxh5uwdQJKnAY8DPttTXUvBnL3rfshaVVUXAVTV5invhyvZON93BewO7AY8GNgV+PZ8D2QgW1p+Crhlyvam7rn7JXkqsF9VXdBnYUvAnL3byYnApyda0dIxTu/uH1NVWxndAu1RvVS3tDyuqm4D6H5/7GyDkxzK6E3+az3UNnRz9i7Jg4A/A/6g59qGbpzvu58Dvp/k40muSHJGNzu+0s3Zu6q6FPgCcFv36zNVdd18DzSIZS80tulmHO7/mGz3ZvQu4FV9FbSEzNq7/zcweQWwjgVMOS9T4/Ru7P4ud7PdJm6e+9kH+HvghKravhi1Dd0i9O61wKeq6paVNkG7CL1bBRwJPBX4JvBRRv+XvG8x6huyB9q7JAcAB/HjsyoXJfmlqrpkPnUYyJaWTcB+U7b3Bb41ZXtPRuev/7V7M9ob+GSS46rq8t6qHKa5egdAkmMY/SM8qqru7am2oRundzvGbEqyCtgL+G4/5Q1LVR0z02tJvp1kn6q6rQtc016jk+RhwIXAH1XVhgmVOjiL0LvDgCOTvBbYA9gtyeaqmu16s2VhEXq3Cbiiqm7uvuYTwDNZAYFsEXr3QmBDVW3uvubTjHo3r0DmKcul5b+AA5P8dJLdgN8CPrnjxaq6s6oeXVVrq2oto+ugDGMjs/YO7j/deyajnnkx64/N2btu+4Tu8UuAz5eLHE5nap9OAM7feUDX4/OAD1bVx3qsbejm7F1Vvbyq1nTvf29g1MNlH8bGMGfvGP07f0SSHdcrHg1c20NtQzdO774JHJVkVZJdGZ1dmfcpSwPZEtJdm/O7wGcY/WX/Y1Vdk+StSY5rW92wjdm7Mxj9VP2xJBuT7Bw6VqQxe/c+4FFJbgJez+yfgFvJ3gE8L8mNwPO6bZKsS3JWN+Y3gV8CXtV9H25M8pQ25Q7KOL3T9ObsXVVtYxRiL05yNaPLEN7bqN4hGef77lxG13leDVwJXFlV/zzfA7lSvyRJUmPOkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkLaokm1vXsBim/jkW48+UZG2Se5JsfKD7muUYD+kWkr0vyaMndRxJi89AJmlFykjf74Ffq6qJrbpfVfd0+/+J+7RKGjYDmaSJSPL6JF/pfv3+lOffnOSrSS5K8pEkb1jg/td2+zk7yVVJzk3y0CmvfyLJfye5JslJU77muiR/DXwZ2G+6cXMcd7r9Pr2rYfckq7vXDh6z/rO6Hp2T5JgkX0pyY5JDZzpe9/zqJBcmubL7+pcupI+ShsFbJ0laVN3pvaOADwDPZHRPvMuAVwC7AGcBhwGrGIWiM6vqnQs4zlrg68ARVfWlJO8Hrt2xrySPrKrvJnkIoxsnHwXsCdwMPKuqNsw0rqruSLK5qvbY8Wea8nim8X8K7A48BNhUVW+fpt4LqurgKds3AU8Frun2dSVwInAc8OqqOn6W470YOLaqXtPtb6+qurN7/D/Auqq6fb59ldSGM2SSJuEI4Lyq+kFVbQY+DhzZPX9+d2rtbuD+G/Am+Zkk70tybre9upv9em+Sl89wnFuq6kvd4w91+9/hdUmuBDYA+wEHds9/Y0cYm2PcTGYa/1ZGNx9eB5w+xz52+HpVXV1V2xmFsotr9FPy1cDaOY53NXBMktOSHLkjjElamgxkkiYh83yeqrq5qk6c8tSLgHO7GaDjZvqy6baTPBs4Bjisqn4BuILR7BXAD+4vZvZxP1n87OMfCezBaBZuxn3s5N4pj7dP2d4OrJrteFV1A/A0RsHs7UneMuYxJQ2QgUzSJFwCHJ/koUlWAy8E/h34IvDr3bVWewC/Nss+9gVu6R5vm2HMmiSHdY9f1u0fYC/ge1W1JckTGZ06nc6448YZvx54M3AOcNoc+xnXjMdL8nhgS1V9CHgn8IuLdExJDaxqXYCk5aeqvpzkA8B/dk+dVVVXACT5JKNrpb4BXA7MdKptE6NQtpGZf3i8DjghyZnAjcDfdM//C3BykquA6xmd7pvOuONmHZ/klcDWqvpwkl2A/0hydFV9fo79zWW2+p4MnJFkO/Aj4Hce4LEkNeRF/ZJ6lWSPqtrcfSLyEuCkLsA9Cngbo+uwzgLeDbwH+CHwxao6Z6f9rGXKRfJD12e9XtQvLT3OkEnq2/okT2J0LdTZVfVlgKq6Azh5p7Gv7ru4CdoG7JVk46TWIus+iXkpsCuj69AkLRHOkEmSJDXmRf2SJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxv4Pcsoor3WfvboAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXiU9b3//+d7AiTsgQBahQbkIGtiWKIgoGIVsbaoVX7uVVE4bqd+zznFVn9dtNXraPV4rHY7LqBVK34raFE51tpqobixBRdEEQ3KcWEJICGJJJn394+ZjCSZhBkyWzKvx3VxQe65Z+7P3Azknc/rs5i7IyIiIiLpE0h3A0RERESynQoyERERkTRTQSYiIiKSZirIRERERNJMBZmIiIhImqkgExEREUkzFWQiIiIiaaaCTESyhpk9YmafmtkXZvaemV0ePt7FzJ4ws3IzczM7ocnzzMxuM7Md4V+/MDNLy5sQkQ5JBZmIZJP/AAa7ey9gJnCzmY0PP/YP4ELgsyjPmwucARwFFAPfAv45+c0VkWyhgkxEsoa7v+3uXzZ8Gf411N33uftd7v4PoD7KUy8G/tPdt7j7/wL/CVySkkaLSFZQQSYiWcXMfmNmVcAG4FNgaQxPGw2s2+/rdeFjIiIJoYJMRLKKu18F9ASmAouBL1t/BgA9gN37fb0b6KFxZCKSKCrIRCTruHt9OJ4cCFwZw1MqgV77fd0LqHR3T0b7RCT7qCATkWzWCRgaw3lvExrQ3+Co8DERkYRQQSYiWcHMBpjZuWbWw8xyzOwU4Dzgb+HHc80sL3x6FzPL2y+S/D3wb2Z2uJkdBvw78GCq34OIdFymHncRyQZm1h94glDvVgDYDNzt7veFHy8HCps8bYi7l4cLs9uAy8PH7wd+oMhSRBJFBZmIiIhImimyFBEREUkzFWQiIiIiaaaCTERERCTNVJCJiIiIpJkKMhEREZE0U0EmIiIikmYqyERERETSTAWZiCSUmVWm8Fr1ZlZmZm+b2Toz+zczC+z3+MutPDffzK5KTUubXXuwmVWbWdl+X7+VgNftGr4f+8ysX9tbKiKpooJMRNqzancvcffRwMnAN4GfNjzo7se28tx8IC0FWdgmdy9J5Au6e3X4NT9J5OuKSPKpIBORpAj3Vr0V/vV/9jv+YzPbYGZ/MbPHzOz7ibieu28F5gLXNOxB2dBbZ2bdzezZcC/aW2Z2DnArMDTco3R7+LynzGx1uMdtbvjYYDN7x8zuCx9/3sy6hh/7rpm9EX7dh/d7jxea2evh1/5vM8uJ9X2Y2RFmttbMSsPX3mBmD4Wv84SZdWvt2iLSPnVKdwNEpOMxs/HApcAxgAGvmdnfgRzgLGAsof9/1gCrE3Vdd/8gHFkOAD7f76EZwCfuflq4fb2B14AxTXqpZrt7RbjgWmlmi8LHhwHnufscM/u/wFlmthb4/4HJ7r7dzPqGX3skcE74eK2Z/Qa4gNAG5a0ys+HAQuBSdy8zs8HAcOAyd19hZvOBq8zsf6JdW0TaLxVkIpIMU4An3X0vgJktBqYS6pX/k7tXh48/3fAEMzuCUJHR293PNrPuwG+AfcBL7v5ojNe2KMfeBO4ws9uAZ9x9uZn1iXLe98zszPCfBxEqxD4DPnT3svDx1cBgoA/whLtvB3D3ivDj3wDGEyroALoCW2Nod3/gT8BZ7v72fsc/dvcV4T8/AnwP+LKFa4tIO6XIUkSSIVpR1Npx3P0Dd79sv0PfIVR0zAFmxnTRUFFXT5MCyN3fI1QkvQn8h5n9JMpzTwBOAia5+1HAWiAv/PCX+51aT+iHWQM8WjOAh8Jj20rcfbi73xhD83cDHwOTmxxveg1v5doi0k6pIBORZFgGnGFm3cI9XWcCy4F/AN82szwz6wGc1sprDCRUoECoCGqVmfUHfgf8yt29yWOHAVXu/ghwBzAO2AP03O+03sBOd68ysxHAxANc8q/A/2dmBeFr9N3v+NlmNqDhuJkVHqj9hHoCzwC+a2bn73f862Y2Kfzn8wjdw5auLSLtlCJLEUk4d19jZg8Cr4cP3e/uawHMbAmwDtgMrCLUMxTNFkJFWRkt//DYNbx0RGegDngYuDPKeUXA7WYWBGqBK919h5mtCC838T/Aj4ArzOwN4F3g1QO8x7fN7Bbg72ZWT6hH7RJ3X29mPwKeD49nqwWuDr/fVrn7XjP7FvAXM9tL6D69A1xsZv8NbAR+Gy4am137QK8vIpnLmvwgKSKSVGbWw90rw7MFlwFzwwVcAXALoeUr7gfuBn4F1AD/iGMMWcYLD9Z/xt3HJOK8KM8rByY0jDETkcynHjIRSbV7zWwUofFZD7n7GgB33wFc0eTcS1PduBSpB3qbWVki1yILzw59hVCPYTBRrysiyaceMhEREZE006B+ERERkTRTQZZCZjbIzF4Mr/r9tpldG+WcE8xsd3iF77Jo0/M7kvBsu9fDq42/bWY3RTkn18weN7P3zey18LiaDivGe3KJmW3b73NyeTrammpmlhNexf6ZKI9l1eekwQHuSdZ9Tsys3MzeDL/fVVEeNzO7O/w5ecPMxqWjnakUwz3Jqu87ENnL9gkL7YTxzn4zmRseT/nnRGPIUqsO+PfwAOaewGoz+4u7r29y3nJ3/1Ya2pcOXwInhgd5dwb+YWb/4+77z3C7jNByBP9kZucCtxFaCb2jiuWeADzu7tekoX3pdC2hWYe9ojyWbZ+TBq3dE8jOz8m0ViY0nEpowd9hhHaS+G34946utXsC2fV9B+CXwHPhRai7AN2aPJ7yz4l6yFLI3T/dbwDzHkL/iR6e3lall4dUhr/sHP7VdGDj6cBD4T8/AXzDzFpcYLS9i/GeZB0zG0ho3bL7Wzglqz4nENM9keZOB34f/nf2KpBvZl9Ld6MkdcysF3Ac8ACAu+9z911NTkv550QFWZqE45SxhPbTa2pSOK76HzMbndKGpUE4cikjtLr6X9y96T05nPACoe5eR2jdqoLUtjK1YrgnENpPsWHD6UEpbmI63AVcR8uzB7Puc8KB7wlk3+fECa0Bt9rCG8Q3EfmchG2h4/9gfKB7Atn1fecIYBuwIBz332+hBaz3l/LPiQqyNLDQCuWLgP/j7l80eXgNUBjeuuUe4KlUty/V3L0+PPV/IHC0mTVdcylaL0eH7jGK4Z48DQx292LgBb7qGeqQLLRY6lZ3b20j8qz6nMR4T7LqcxI22d3HEYqcrjaz45o8nlWfk7AD3ZNs+77TidBuHb9197HAXuCHTc5J+edEBVmKhccELQIedffFTR939y8a4ip3Xwp0NrN+KW5mWoS7jF8CZjR5aAuhjZ4xs06EtrjJis2UW7on7r7D3Rv2V7yP0D6NHdlkYKaFFjxdCJxoZo80OSfbPicHvCdZ+DnB3T8J/74VeBI4uskpkc9J2EDgk9S0Lj0OdE+y8PvOFmDLfsnDE4QKtKbnpPRzooIshcLjWR4A3nH3aNu7YGaHNox7MbOjCf0d7UhdK1PLzPqbWX74z10Jbe68oclpS4CLw38+G/hb070KO5JY7kmTsQwzCY1H7LDc/Xp3H+jug4FzCX0GLmxyWlZ9TmK5J9n2OTGz7uEJU4QjqOnAW01OW0Jov1Azs4nAbnf/NMVNTZlY7km2fd9x98+Aj81sePjQN4Cmk+tS/jnRLMvUmgxcBLwZHh8EcAPwdQB3/x2hbyRXmlkdUA2c25G/qQBfAx4ysxxC/wn8X3d/xsx+Bqxy9yWEitiHzex9Qj0e56avuSkRyz35npnNJDRzt4Is3ccwyz8nUWX55+QQ4MlwbdEJ+IO7P2dmV0Dk/9ilwDeB94EqOu5uEA1iuSfZ9n0H4F+AR8MzLD8ALk3350Qr9YuIiIikmSJLERERkTRTQSYiIiKSZirIRERERNJMBZmIiIhImmVMQWYxbKgsIiIi0hFlTEHGVxsqHwWUADPCa39khVa2s8hauifN6Z40p3vSnO5JdLovzemeNJeue5IxBZk2VEb/KJrTPWlO96Q53ZPmdE+i031pTvekuewuyCDmDZVFREREOpSMXBg2vG3Mk8C/uHvTLR7mEq5ec3Jyxufm5qahhYlXV1dHp07aOGF/uifN6Z40p3vSnO5JdLovzemeNJfMe1JVVVXr7l2iPZaRBRmAmf0U2Ovud7R0zoQJE3zVqlUpbJWIiIjIwTGz1e4+IdpjGRNZxrjJtIiIiEhiBINQuRUyoHMqk/opo26onOY2iYiISEcUDMJD34KPX4NBx8DFz0Agff1UGVOQufsbwNh0t0NERESyQNX2UDEWrAv9XrUdegxIW3MypiBLlNraWrZs2UJNTU26myKSNnl5eQwcOJDOnTunuykiIpkhGAwVXd37g1no90HHfNVD1r1/WpvX4QqyLVu20LNnTwYPHoyZpbs5Iinn7uzYsYMtW7YwZMiQdDdHRCT9WoonL36mcZGWRhkzqD9RampqKCgoUDEmWcvMKCgoUC+xiEiDaPEkhIqyHgPSXoxBByzIABVjkvX0b0BEslrT2ZMN8WSgU0bEk9F0uMgy09x444306NGD73//+1Eff+qppzjyyCMZNWpUilsmIiLSAbWDeDKaDtlD1p489dRTrF+/Pt3NEBER6RjaQTwZjQqyJLjlllsYPnw4J510Eu+++y4A9913H6WlpRx11FGcddZZVFVV8fLLL7NkyRLmzZtHSUkJmzZtinqeiIiItKAdxpPRqCAjNCvty7r6hLzW6tWrWbhwIWvXrmXx4sWsXLkSgO985zusXLmSdevWMXLkSB544AGOPfZYZs6cye23305ZWRlDhw6Nep6IiIhE0RBP3jkSHjwt9LVZKJ78t3fgkmcztkesqawfQ+buvPrBDjZurWTYgB5MPKJtMzSXL1/OmWeeSbdu3QCYOXMmAG+99RY/+tGP2LVrF5WVlZxyyilRnx/reSIiIlmvpcVdG+LJdiTre8j21QfZuLWSQ3vmsXFrJfvqg21+zWgF3SWXXMKvfvUr3nzzTX7605+2uCRBrOeJiIhknQ4ST0aT9QVZbqcchg3owWd7ahg2oAe5nXLa9HrHHXccTz75JNXV1ezZs4enn34agD179vC1r32N2tpaHn300cj5PXv2ZM+ePZGvWzpPREQkq3WgeDKarI8sASYeUcC4wj5tLsYAxo0bxznnnENJSQmFhYVMnToVgJ///Occc8wxFBYWUlRUFCnCzj33XObMmcPdd9/NE0880eJ5IiIiWa0DxZPRmDd0+7VDEyZM8FWrVjU69s477zBy5Mg0tUgkc+jfgoi0a033nnQP9Yw1rC+WgB6xoAepqKmgIC81O/yY2Wp3nxDtMfWQiYiISGZJweKuQQ8y+8+zKdtaRsmAEuafMp+ApW8kV9aPIRMREZEMk4TFXYMeZHv1dhqSwYqaCsq2llHv9ZRtLaOipiKR7yBuKshEREQkvZI8e7KhN+ykP57EpX++lKAHKcgroKR/CTmWQ8mAEgryChLwRg6eIksRERFJnxTEk9F6w/rmFlD10Rwqt2yhqnoQ7umdpKkeMhEREUmfFMSTBXkFlAxo3Bu2Y+8+1mzeTV1tD9Zs3sWOvfsS+a7iph4yERERSZ+GeLKhhyxB8WTTwfr3n/wAmyo+Z1jBoZgZ/Xp0YXxhH1Zv3sn4wj7069ElQW/o4KggS4Ly8nK+9a1v8dZbb6XkejfeeCM9evTg+9///gHP/eY3v8kf/vAH8vPzD/o1REREDlrT5SwaFndNcjx5wf2vR4qvx+ZMJBAwHpszkR1799GvR5eULHvRGkWWGaS+PjEbnEfj7gSDQZYuXdqsGBMREUmJaKvtQ0riydWbd1IXdFZv3hmJJwMBo3/P3LQXY6CCLOk++OADxo4dy2uvvca8efMoLS2luLiY//7v/wbgpZdeYtq0aZx//vkUFRVRXl7OyJEjmTNnDqNHj2b69OlUV1cDsGnTJmbMmMH48eOZOnUqGzZsaPXaDa911VVXMW7cOD7++GMGDx7M9u2hfP6WW25h+PDhnHTSSbz77ruR561cuZLi4mImTZrEvHnzGDNmDBAqGKO9BxERkZi0NF7sIEWbPWlm3H/yAzx+6lLmT5/fKJ7sFLCMiCejUUEGBIPOtj1fkuhdC959913OOussFixYwLp16+jduzcrV65k5cqV3HfffXz44YcAvP7669xyyy2sX78egI0bN3L11Vfz9ttvk5+fz6JFiwCYO3cu99xzD6tXr+aOO+7gqquuiqkN3/3ud1m7di2FhYWR46tXr2bhwoWsXbuWxYsXs3Llyshjl156Kb/73e945ZVXyMn5ajupBx54oMX3ICIi0kySl7OIFk8Gg84F97/Oaf9Vxnn3vUYw6JiF4slXrv8GC+dOzIgesaayfgxZMOicd9+rzXLlttq2bRunn346ixYtYvTo0dx888288cYbPPHEEwDs3r2bjRs30qVLF44++miGDBkSee6QIUMoKSkBYPz48ZSXl1NZWcnLL7/MrFmzIud9+eWXB2xHYWEhEydObHZ8+fLlnHnmmXTr1g2AmTNnArBr1y727NnDscceC8D555/PM888A8Dzzz8f9T3s33YREREgKctZNN3qqCGebBjAX5BXwPbK5vFk/565kXgyU2V9QRYtV07EX1jv3r0ZNGgQK1asYPTo0bg799xzD6ecckqj81566SW6d+/e6Fhu7lfXz8nJobq6mmAwSH5+PmVlZS1e8+OPP+bb3/42AFdccQUzZsxo9tr7i/YTQmu9hC29BxERkWYSvBl4e509GausjyyTlSt36dKFp556it///vf84Q9/4JRTTuG3v/0ttbW1ALz33nvs3bs35tfr1asXQ4YM4Y9//CMQKo7WrVvX6JxBgwZRVlZGWVkZV1xxRauvd9xxx/Hkk09SXV3Nnj17ePrppwHo06cPPXv25NVXXwVg4cKFkee09T2IiEgHpniyTbK+h6zhLy4Z0167d+/OM888w8knn8yPfvQjRo0axbhx43B3+vfvz1NPPRXX6z366KNceeWV3HzzzdTW1nLuuedy1FFHHVTbxo0bxznnnENJSQmFhYVMnTo18tgDDzzAnDlz6N69OyeccAK9e/cG4PLLL6e8vLxN70FERDogxZNtZokeyJ5KEyZM8FWrVjU69s477zBy5Mg0tahjqKyspEePHgDceuutfPrpp/zyl79Mc6skXvq3ICIpU7k1tJRFsC7UI/Zv7xxULNmgpXiyrr4+Ek8GAgHcnXPv/WoceKb3iJnZanefEO2xrO8hk+aeffZZ/uM//oO6ujoKCwt58MEH090kERHJFE0XdoWEr7bfXhd3bQsVZNLMOeecwznnnJPuZoiISKZpKZps42r72RZPRqOCTERERGLT0sxJ0OzJNlJBJiIiItE1jScTHE1CdsaT0aggExERkeaSMHMSWogn+5dQti174sloVJCJiIhIcwle2BWix5O4UfXRHCq3bKGqehDudPh4MpqsXxg2GRqWjPjkk084++yz09yag/fSSy/xrW99q83nNHXjjTdyxx13tKVpzXzzm99k165d7Nq1i9/85jcJfe3WLFmyhFtvvbXVc1q7R3fddRdVVVWRrxveh4hIyiV5YVeIHk/u2LuPNZt3U1fbgzWbd7Fj7752u7hrW6ggS6LDDjsssu9jstTV1SX19duLpUuXkp+fn/KCbObMmfzwhz886Oc3Lcga3oeISEo1xJN3joQHTwt93TBz8t/egUuePeh4cnv19si2fA3xZI7lROLJlnbMaYgns6EYAxVkSVVeXs6YMWMAePDBB/nOd77DjBkzGDZsGNddd13kvOeff55JkyYxbtw4Zs2aRWVlJQA/+9nPKC0tZcyYMcydOzfygT7hhBO44YYbOP7445st2HrjjTdy8cUXM336dAYPHszixYu57rrrKCoqYsaMGZFtj/76178yduxYioqKmD17dmSj8ueee44RI0YwZcoUFi9eHHndvXv3Mnv2bEpLSxk7dix/+tOf4roXt9xyC8OHD+ekk07i3XffjRzftGkTM2bMYPz48UydOpUNGzYAcMkll/C9732PY489liOOOCJS2H766accd9xxlJSUMGbMGJYvXw7A4MGD2b59Oz/84Q/ZtGkTJSUlzJs3j4suuqhRWy+44AKWLFnSqG1bt25l/PjxAKxbtw4z46OPPgJg6NChVFVVsW3bNs466yxKS0spLS1lxYoVkb/Xa665JvJeJk6cSGlpKT/5yU8iPaUQWmz37LPPZsSIEVxwwQW4O3fffTeffPIJ06ZNY9q0aY3eR3l5OSNHjmTOnDmMHj2a6dOnU11dDcDKlSspLi5m0qRJzJs3L/IZExE5aNHiSfgqnjzIYmz2n2dz0h9P4tI/X0rQg7gTiic3Xk/V5rm4k5W9YVG5e7v9NX78eG9q/fr1zY4dUH29+57P3YPB+J8bRffu3d3d/cMPP/TRo0e7u/uCBQt8yJAhvmvXLq+urvavf/3r/tFHH/m2bdt86tSpXllZ6e7ut956q990003u7r5jx47Ia1544YW+ZMkSd3c//vjj/corr4x67Z/+9Kc+efJk37dvn5eVlXnXrl196dKl7u5+xhln+JNPPunV1dU+cOBAf/fdd93d/aKLLvL/+q//ihx/7733PBgM+qxZs/y0005zd/frr7/eH374YXd337lzpw8bNswrKyv9xRdfjJyzcuVKv+yyy5q1adWqVT5mzBjfu3ev796924cOHeq33367u7ufeOKJ/t5777m7+6uvvurTpk1zd/eLL77Yzz77bK+vr/e3337bhw4d6u7ud9xxh998883u7l5XV+dffPGFu7sXFhb6tm3bGt1zd/eXXnrJTz/9dHd337Vrlw8ePNhra2ubtXHUqFG+e/duv+eee3zChAn+yCOPeHl5uU+cONHd3c877zxfvny5u7tv3rzZR4wYEfl7vfrqq93d/bTTTvM//OEP7u7+29/+NvI5ePHFF71Xr17+8ccfe319vU+cODHyWg3tbrD/+8jJyfG1a9e6u/usWbMi93/06NG+YsUKd3f/wQ9+0Oj97u+g/i2ISHZo+n0vGHSff6r7TX1Dvyfg++G2qm1+1ENH+ZgHx/hRDx3l26q2+dYvanzo9c964Q+e8aHXP+tbv6hp83XaE2CVt1DTaFB/S7NIkuAb3/hGZF/IUaNGsXnzZnbt2sX69euZPHkyAPv27WPSpEkAvPjii/ziF7+gqqqKiooKRo8ezbe//W2AVhduPfXUU+ncuTNFRUXU19czY8YMAIqKiigvL+fdd99lyJAhHHnkkQBcfPHF/PrXv+aEE05gyJAhDBs2DIALL7yQe++9Fwj14i1ZsiQy9qumpibSi9RgwoQJ3H///c3as3z5cs4880y6desGhGI+CPUavfzyy8yaNStybkNPHcAZZ5xBIBBg1KhRfP755wCUlpYye/ZsamtrOeOMMygpKWn1nh9//PFcffXVbN26lcWLF3PWWWfRqVPzj/2xxx7LihUrWLZsGTfccAPPPfcc7h7Z4/OFF15g/fr1kfO/+OIL9uzZ0+g1Xnnllcjenueffz7f//73I48dffTRDBw4EICSkhLKy8uZMmVKq20fMmRI5P2NHz+e8vJydu3axZ49ezj22GMj13nmmWdafR0RkUbSOHsSyLrB+rFSQdbaIncJlpv71VTdnJwc6urqcHdOPvlkHnvssUbn1tTUcNVVV7Fq1SoGDRrEjTfeSE1NTeTx7t27H/A6gUCAzp07R7p/A4FA5Jotaamr2N1ZtGgRw4cPb3S8oVA6kGivGwwGyc/Pp6ysrNX30XB9gOOOO45ly5bx7LPPctFFFzFv3jy++93vtnrtiy66iEcffZSFCxcyf/58AC699FLWrl3LYYcdxtKlS5k6dSrLly9n8+bNnH766dx2222YWWQwfjAY5JVXXqFr164xvd/W3kvD3328z6murm71705EJCZpnD3Z0dcSawuNIUvCLJJ4TJw4kRUrVvD+++8DUFVVxXvvvRcpvvr160dlZWVCJweMGDGC8vLyyDUffvhhjj/+eEaMGMGHH37Ipk2bABoViaeccgr33HNPpCBYu3ZtzNc77rjjePLJJ6murmbPnj08/fTTAPTq1YshQ4bwxz/+EQgVXevWrWv1tTZv3syAAQOYM2cOl112GWvWrGn0eM+ePZv1XF1yySXcddddAIwePRqABQsWUFZWxtKlSyNtfOSRRxg2bBiBQIC+ffuydOnSSM/l9OnT+dWvfhV5zWhF5MSJE1m0aBEACxcujOneRGtva/r06UPPnj159dVX47qOiGSxDJo9Cdk3WD9WKsgSMIukLfr378+DDz7IeeedR3FxMRMnTmTDhg3k5+czZ84cioqKOOOMMygtLU3YNfPy8liwYAGzZs2iqKiIQCDAFVdcQV5eHvfeey+nnXYaU6ZMobCwMPKcH//4x9TW1lJcXMyYMWP48Y9/3Ox1V61axeWXX97s+Lhx4zjnnHMoKSnhrLPOisSAAI8++igPPPAARx11FKNHjz7gZIGXXnqJkpISxo4dy6JFi7j22msbPV5QUMDkyZMZM2YM8+bNA+CQQw5h5MiRXHrppS2+7uDBg4FQYQYwZcoU8vPz6dOnDwB33303q1atori4mFGjRvG73/2u2Wvcdddd3HnnnRx99NF8+umnkXi6NXPnzuXUU0+NDOqPxQMPPMDcuXOZNGkS7h7TdUQkSyVh9mTTmZMQ3+xJic7acwQyYcIEX7VqVaNj77zzDiNHjkxTiyQTVVVVUVRUxJo1a5JavFRVVdG1a1fMjIULF/LYY4/FPRs1FpWVlZEZnLfeeiuffvpps9m2oH8LIkKoZ+zOkaF4MtApVIS1YVhOS/tOBoPOufe9zJotWxg3cBAL50wiEDCCQVc8uR8zW+3uE6I9ph4y6dBeeOEFRowYwb/8y78kvSdp9erVlJSUUFxczG9+8xv+8z//MynXefbZZxst+/GjH/0oKdcRkQ4gwfFktGgSUDyZABrULx3aSSed1Gw2aLJMnTr1gGPgEuGcc85pdZatiGSxppuBN8STBzl7MtaZk9m41VGiqSATERHpCFpazuIgZ0/GOnMyVPdp9mRbKbIUERHpCFpabf8gxV8o9HYAACAASURBVDNzEhRPtpUKMhERkfYowctZtGXfSWk7RZYiIiLtTYJX29fCrumnHrIkaFiS4JNPPuHss89Oc2sO3ksvvRRZqb4t5yTa/pt2J8KSJUu49dZbAXjqqacabZGUTPtftyWt3d+77rqLqqqqZDRNRDJdgjcD18Ku6aeCLIkOO+ywhK6wH00sW/BI62bOnMkPf/hDILUF2f7XPRgqyESyiOLJDk8FWRKVl5czZswYAB588EG+853vMGPGDIYNG8Z1110XOe/5559n0qRJjBs3jlmzZlFZWQnAz372M0pLSxkzZgxz586N/MM54YQTuOGGGzj++OObLQh64403cvHFFzN9+nQGDx7M4sWLue666ygqKmLGjBnU1tYC8Ne//pWxY8dSVFTE7NmzI5t6P/fcc4wYMYIpU6awePHiyOvu3buX2bNnU1paytixY+Na8LS8vJyRI0cyZ84cRo8ezfTp06murgZCWxBNnDiR4uJizjzzTHbu3Nns+R9++CGTJk2itLS02Q4Bt99+O6WlpRQXF/PTn/70gNe7++67GTVqFMXFxZx77rmRv5trrrmGl19+mSVLljBv3jxKSkrYtGkT48aNi1xr48aNjB8/vtH1t27dGjm2bt06zCyyzMbQoUOpqqpi27ZtnHXWWZSWllJaWsqKFSsaXRdg06ZNTJw4kdLSUn7yk5806gWsrKzk7LPPZsSIEVxwwQW4O3fffTeffPIJ06ZNi2uVfxFphxK82n5DPHnSH0/i0j9fStCDuBOKJzdeT9XmueHZk6F48pXrv8HCuRPVI5ZkKsiIvg1EMpSVlfH444/z5ptv8vjjj/Pxxx+zfft2br75Zl544QXWrFnDhAkTuPPOOwG45pprWLlyJW+99RbV1dU888wzkdfatWsXf//73/n3f//3ZtfZtGkTzz77LH/605+48MILmTZtGm+++SZdu3bl2WefpaamhksuuSTSlrq6On77299SU1PDnDlzePrpp1m+fDmfffZZ5DVvueUWTjzxRFauXMmLL77IvHnz2Lt3b6PrtrR1EoSKmauvvpq3336b/Pz8yJ6P3/3ud7ntttt44403KCoq4qabbmr23GuvvZYrr7ySlStXcuihh0aOP//882zcuJHXX3+dsrIyVq9ezbJly1q93q233sratWt54403mm1/dOyxxzJz5kxuv/12ysrKGDp0KL17947sW7lgwQIuueSSRs8ZMGAANTU1fPHFFyxfvpwJEyZENikfMGAA3bp149prr+Vf//VfWblyJYsWLYp6j6699lquvfZaVq5cyWGHHdbosbVr13LXXXexfv16PvjgA1asWMH3vvc9DjvsMF588UVefPHFqPdcRDqINsaTTb/HKZ7MTFlfkEX7SSFZvvGNb9C7d2/y8vIYNWoUmzdv5tVXX2X9+vVMnjyZkpISHnroITZv3gzAiy++yDHHHENRURF/+9vfePvttyOv1drCoKeeeiqdO3emqKiI+vp6ZsyYAUBRURHl5eW8++67DBkyhCOPPBKAiy++mGXLlrFhwwaGDBnCsGHDMDMuvPDCyGs+//zz3HrrrZSUlHDCCSdQU1PTbMHVCRMmcP/990dt05AhQygpKQFg/PjxlJeXs3v3bnbt2sXxxx/fqB1NrVixgvPOOw+Aiy66qFGbnn/+ecaOHcu4cePYsGEDGzdubPF6AMXFxVxwwQU88sgjdOp04Dktl19+OQsWLKC+vp7HH3+c888/v9k5xx57LCtWrGDZsmXccMMNLFu2jOXLl0f27HzhhRe45pprKCkpYebMmXzxxRfNNhR/5ZVXmDVrFkCzaxx99NEMHDiQQCBASUlJ5L2ISAeVwHgy2vc4xZOZKetnWUb7SaFf135JuVZubm7kzzk5OdTV1eHunHzyyTz22GONzq2pqeGqq65i1apVDBo0iBtvvJGamprI4927dz/gdQKBAJ07d478ZBMIBCLXbElLPwW5O4sWLWL48OGNjn/++ectvla0NkHovTdEiLGK1i535/rrr+ef//mfGx0vLy9v8XrPPvssy5YtY8mSJfz85z9vVORGc9ZZZ3HTTTdx4oknMn78eAoKCpqdM3Xq1Eiv2Omnn85tt92GmUUG4weDQV555RW6du0a13tuEO1zIyIdVIJnT0b7Htc3t0CzJzNQ1veQFeQVUDKg8U8KqTRx4kRWrFjB+++/D4Q2qH7vvfcixVe/fv2orKxM6OSAESNGUF5eHrnmww8/zPHHH8+IESP48MMP2bRpE0CjIvGUU07hnnvuiRRza9eubXM7evfuTZ8+fVi+fHmjdjQ1efJkFi5cCMCjjz7aqE3z58+PjLn73//9X7Zu3dri9YLBIB9//DHTpk3jF7/4Bbt27Yo8t0HPnj0b9V7l5eVxyimncOWVV3LppZdGfd3jjjuORx55hGHDhhEIBOjbty9Lly5l8uTJAEyfPp1f/epXkfMbItD9TZw4MRKrNrzXA2naVhHpABIcT0b7Hqd4MjNlfUFmZsw/ZT4vzHqBBacsSPkHsX///jz44IOcd955FBcXM3HiRDZs2EB+fj5z5syhqKiIM844g9LS0oRdMy8vjwULFjBr1iyKiooIBAJcccUV5OXlce+993LaaacxZcoUCgsLI8/58Y9/TG1tLcXFxYwZM6bZ4HpofQxZSx566CHmzZtHcXExZWVl/OQnP2l2zi9/+Ut+/etfU1payu7duyPHp0+fzvnnn8+kSZMoKiri7LPPbrVAqa+v58ILL6SoqIixY8fyr//6r+Tn5zc659xzz+X2229n7NixkcL0ggsuwMyYPn161NcdPHgwECrMAKZMmUJ+fj59+vQBQhMJVq1aRXFxMaNGjWo2dg1CMybvvPNOjj76aD799NOYNkKfO3cup556qgb1i7RnSY4nzYz7T36Ax09dyvzp8zEzxZMZypI9kD2ZJkyY4KtWrWp07J133mHkyJFpapF0RHfccQe7d+/m5z//edKuUVVVRdeuXTEzFi5cyGOPPRbXTNZo9G9BJMO1FE823SA8Rturt3PSH0+i3uvJsRxemPUCfXMLOO++VyObfj82ZyKBgBEMuuLJNDCz1e4+IdpjWT+GTKQ1Z555Jps2beJvf/tbUq+zevVqrrnmGtyd/Px85s+fn9TriUgGiBZP9hgQ82bgQQ9SUVNBQV4BZhaJJxtW2y/IK2B75T5Wb95JXdBZvXknO/buo3/P3Eg8KZlDBZlIK5588smUXGfq1KmsW7cuJdcSkTSI1uvVEE829JAdRDy5/1ZHAQtw/8kPsKnic4YVHNoonmzoIVM8mblUkImIiCRTS9Fkw+KuCZw9ecH9rzeLJzV7sn3okIP62/O4OJFE0L8BkQzS0sxJaNvsyf7NZ082jSdDl9DsyfagwxVkeXl57NixQ9+QJGu5Ozt27CAvLy/dTRHJTknYdzKWrY40e7J963CR5cCBA9myZQvbtm1Ld1NE0iYvL4+BAwemuxki2SfBC7tC9HjS63qG1hILfrWWWP+euYon27GMKcjMbBDwe+BQIAjc6+6/bP1ZzXXu3JkhQ4YkunkiIiIH1saZk9DC7Mn+JZRtK2u0gHm0wfqaPdl+ZUxBBtQB/+7ua8ysJ7DazP7i7uvT3TAREclctbW1bNiwkU6dchg+PLRjRso0nT3ZhpmTEH32JG7a6igLZExB5u6fAp+G/7zHzN4BDgdUkImISIvefnsD//jHa+DQqVNnhg07IjUXTnM8qd6wjiUjB/Wb2WBgLPBalMfmmtkqM1ulcWIiIrJ/71BKe4rauO8kxDZ7UoP1s0PG9JA1MLMewCLg/7j7F00fd/d7gXshtHVSipsnIiIZZvToEXTu3JlOOTkccUThgZ+QKIonJYEyqiAzs86EirFH3X1xutsjIiKZr1OnTowaNTz5F2o6XqwNC7uC4klpLGMiSwuV/A8A77j7neluj4iISETDeLE7R8KDp4W+hoNe2BUUT0pjmdRDNhm4CHjTzMrCx25w96VpbJOIiEjLy1nEoKV9JyOLuyqeFDKoIHP3fwD65ImISPolcDmLaNFkv6792LF3n+JJiciYgkxERCQjtHE5i1gXdm2IJ5su7irZSQWZiIjI/tqw2n6sMydDcwIUT8pXMmZQv4iISFokcDPwaPFkJJqs/SqabNAQT6oYE/WQiYhI9kpRPKloUg5EBZmIiGSvFMSTmjkpsVBkKSIi2SNN8aSiSTkQ9ZCJiEh2UDwpGUwFmYiIZAfFk5LBFFmKiEjHpHhS2hH1kImISMejeFLaGRVkIiLS8SielHZGkaWIiLR/iielnVMPmYiItG+KJ6UDUEEmIiLtm+JJ6QAUWYqISPuieFI6IPWQiYhI+6F4UjooFWQiItJ+KJ6UDkqRpYiIZKam0STEFU8GPcj26u14+PmKJyWTqYdMREQyT0vRpFlM8WS03rA+XfqSW3cEewObyK0/gj5d+hLIM8WTkhFUkImISOZpKZqEmOLJaL1hXteTHe/Ppt4qqfGeVFTV0r9nruJJyQiKLEVEJP3aOHOyaTzZMFg/x3Iig/X79ejC+MICcrwX4wv7RnrDFE9KJlAPmYiIpFcCZk5qsL60d+ohExGR9IoWT8JX0eQBCicN1peOQAWZiIikV9LiyT50CpgG60u7oMhSRERSKxhsHEXGOHMSFE9Kx6UeMhERSZ2G8WJ3joQHTwt9DYonJeupIBMRkdRpabxYFE2jSVA8KR2XIksREUmepvFkw3ixhhmVLYwXixZNBiyAO4onpUNSQSYiIsnRhuUsokWT/br2+yqeDH4VT/bvmRuJJ0XaK0WWIiKSHHEsZxHLzElA8aR0WOohExGRxEhgPBlt5mRoQqbiSemYVJCJiEjbJTie9LqeUaNJQPGkdEiKLEVEpO0SHE8qmpRsox4yERGJX5LjSc2clGyjgkxEROKTonhS0aRkE0WWIiISH8WTIgmnHjIREWmd4kmRpFNBJiIiLVM8KZISiixFRKRliidFUkI9ZCIi8hXFkyJpoYJMRERCFE+KpI0iSxERCVE8KZI26iETEclWiidFMoYKMhGRbKR4UiSjKLIUEclGbYgn+3TpS27dEbgHyK07gj5d+iqeFGkj9ZCJiGSDBMaTFVW17Hh/NvVWSY33pKKqlv49cxVPirSBCjIRkY4uwfFkvx4FjC8sYPXmQKPeMMWTIgdPBZmISEcXLZ7sMeCreHI/QQ9SUVNBQV4BZhaJJ/cGNpFbH4onzTRYXyTRVJCJiHR0SYgn1RsmklgqyEREOpKmY8Ug9HuC40kRSSwVZCIiHUVLY8VA8aRIhlNBJiLSUbQ0ViwKxZMimUXrkImItFfBIFRuhfD6YJGxYoFOrY4Vg5biyS6MLywgx3sxvrCv4kmRFFIPmYhIexTnUhaKJ0UymwoyEZH2KM6lLBRPimQ2RZYiIu3A559t4+lHFvLXP7/Mvn21LcaTTbc5AsWTIu2BeshERDJdMEjnR8/gtD3r+fyjf2LryD8x8OuHNYsno/WEBSygeFKkHVBBJiKS6aq206fyHYwgh+x7n6rO+0LHm8STUXvCuvZTPCnSDiiyFBHJNFFmT9rXJ+LWCR90DD0OLQyd1iSeLMgroKR/CTmWQ8mAEgryCgAUT4q0A+ohExHJJK3MnrSq7eS0Ek/iRtVHc6jcsoWq6kG4hyZaKp4UyXzqIRMRySTRZk/CV/FkuJiKFk/u2LuPNZt3U1fbgzWbd7Fj777IyzbEkyrGRDKTCjIRkXSKcXHXWOLJUDTZh04B076TIu2MIksRkXSJcXHXWOPJQEDRpEh7lVE9ZGY238y2mtlb6W6LiEjSJSGeVDQp0j5lVEEGPAjMSHcjRESSQvGkiLQgoyJLd19mZoPT3Q4RkYRTPCkirci0HjIRkY5J8aSItCKmgsxCBiW7MbEws7lmtsrMVm3bti3dzRERiU7xpIjEIabI0t3dzJ4Cxie5PbG05V7gXoAJEyb4AU4XEUk9xZMiEqd4IstXzaw0aS0REekoFE+KSJziKcimAa+Y2SYze8PM3jSzNxLZGDN7DHgFGG5mW8zsskS+vohIUiieFJE2imeW5alJa0WYu5+X7GuIiCSU4kkRSYCYe8jcfTOQD3w7/Cs/fExEJHspnhSRBIi5IDOza4FHgQHhX4+Y2b8kq2EiIu1CjPFkny59ya07AvcAuXVH0KdLX8WTIhIRT2R5GXCMu+8FMLPbCI33uicZDRMRyUjBYKMoErOY4smKqlp2vD+bequkxntSUVVL/565iidFBIhvUL8B9ft9XR8+JiKSHRrGi905Eh48LfQ1xBRPhnrDCsjxXowv7BvpDVM8KSIQXw/ZAuA1M3sy/PUZwAOJb5KISIaKNl6sxwCCHqSipoKCvALMLBJP7g1sIrc+FE+aabC+iLQs5oLM3e80s5eAKYR6xi5197XJapiISNo1jScbxos1zKjs3j+ueLKhN0xEpKmYCjIL/Sg30N3XAGuS2yQRkQwQ43IWFdU7osSTBYwvLGD15oAG64tITNrd1kkiIinRUjxpUJEToIBQVKB4UkQSIZ4xZK+aWam7r0xaa0RE0qFpNAmKJ0UkpeIpyKYB/2xmm4G9hH44dHcvTkrLRERSoaVoMspyFoonRSRZ4hlDdgWglflFpGNpIZoEFE+KSMrEM4bsv9xdY8hEpH2LYeYkoHhSRFJKY8hEJC41u6sI1tXTraBnupsSvxhnTkJLi7sqnhSR5Ih3DNkVZlaOxpCJZKXKrbvZ+Pw6gu4MmTKCvkMOSXeT4hPjzElQPCkiqRVPQXZq0lohIu1Cze69BOuDBDrlUL1rb7qbc2AHubBrwAKKJ0UkpeIpyD4CLgCOcPefmdnXgUPRQH+RrJH/9f7s+Ww39ftq6TfssHQ3p3VtWdi1a7/I3pOKJ0UkFeIpyH4DBIETgZ8Be4BFQGkS2iUiGahTbmeGTB2Z7mbEpg0LuwKKJ0UkpeIpyI5x93FmthbA3XeamX5kFJHMkOB9JwHFkyKSMvEUZLVmlgM4gJn1J9RjJiKSXtp3UkTauXgKsruBJ4EBZnYLcDbwo6S0SkQkHtp3UkTauZgLMnd/1MxWA98g9H/bGe7+TtJaJiLSkgTHk4omRSTd4ukhw903ABuS1BYRkQNrIZ4MfncJFTvfp6DvkZjiSRFpZ+IqyERE0i5KPBns3o/Zf7m8UW+Y4kkRaU9UkIlIZoshnqyoad4b5nU9FU+KSLuhgkxEMleM8WRBXgEl/Uso2xbqISvIKwBQPCki7cYBCzIz20N4qYumDxHay7JXwlslIgIxx5O4UfXRHCq3bKGqehDuoTXEFE+KSHtxwILM3XumoiEiIs3EEU+u2bybumAP1mzexY69+xRPiki7EldkaWZ9gGFAXsMxd1+W6EaJSJZqOl7MrFk8GW2wfiDPGF/Yh9WbdyqeFJF2KeaCzMwuB64FBgJlwETgFUJ7W4qItE2U8WJBo1k82dJaYoonRaQ9C8Rx7rWENhLf7O7TgLHAtqS0SkSyT5TxYhU1FVHWEuvC+MICcrwX4wv7RnrDGuJJFWMi0h7FE1nWuHuNmWFmue6+wcyGJ61lItKxRVnOIjjoaCr+dxUFh0/AuvenT9C1lpiIZIV4CrItZpYPPAX8xcx2Ap8kp1ki0qG1FE8eeghlOYdTMuAQ5uPa6khEskY8e1meGf7jjWb2ItAb+J+ktEpEOrZo8WROgLJt2upIRLJTPIP6c4GzgMH7Pa8E+FnimyUiHYriSRGRVsUTWf4J2A2sBr5MTnNEpMNRPCkickDxFGQD3X1G0loiIh2T4kkRkQOKpyB72cyK3P3NpLVGJEW8vp7gl18S6NpVMVgiNY0mQfGkiEgM4inIpgCXmNmHhCLLhr0si5PSMpEk8bo6dq54lbpdu+j2T0fQY/SodDepY2hpI3Bc8aSIyAHEU5CdmrRWiKRQfVU1dTsr6JTfh5qPPlZBlihRokl6DAgt7qp4UkSkVfEse7HZzI4CpoYPLXf3dclplkjy5PToTt6ggXz5yaf0KC5Kd3ParxhmTgJR955UPCki0lg8y15cC8wBFocPPWJm97r7PUlpmUiSWCBAr/Hj8HGuQuBgxThzMoApnhQRiUE8keVlwDHuvhfAzG4jtLm4CjJpl1SMtUGsMye79ovsPal4UkSkZfEUZAbU7/d1ffiYiHR0B7mwK6B4UkQkBvEUZAuA18zsyfDXZwAPJL5JIpJR2riwK6B4UkTkAOIZ1H+nmf0dmEyoZ+xSd1+btJaJSGbQwq4iIkkXTw8Z7r6a0NZJItJRad9JEZGUO2BBZmb/cPcpZrYH8P0fIrQwbK+ktU5EUkv7ToqIpMUBCzJ3nxL+vWfymyMiaaV4UkQkLeJZh+w2d//BgY6JANRV7mVfxS66FPShU/du6W5Oynj15/i2ldBtIFZwVObHdoonRUQyQjxjyE4GmhZfp0Y5JlnO6+rZsfw16qtq6NS9K/2nH48FAuluVkr4Z3+HuhrYuwV6DIS8fuluUssUT4qIZIwDfpc0syvN7E1guJm9sd+vD4E3kt9EaW8cJ1hbRyC3M8HaOgj6gZ/UUeT1h7q90Kkr5HRNd2taFy2ejLrvZGhh1xzvxfjCvoonRUSSIJYesj8A/wP8B/DD/Y7vcfeKpLRK2rVAp070PXYC1Vs+odugw7FOOeluUsrYIVOh1zDo3Avr3D3dzWmd4kkRkYwRy6D+3cBu4LzkN0c6itx+fcnt1zfdzUg5C3SC7gPT3YzomowXC+KKJ0VEMkTMA3vM7CEzy9/v6z5mNj85zRKRhGoYL3bnSHjwNAgGFU+KiGSQeAb1F7v7roYv3H2nmY1NQptEJNGqthP8+DUqCFLw8WtY1Xb6dO2neFJEJEPEU5AFzKyPu+8EMLO+cT5fRFKlaTzZrYDZXx9MGV9SQi7zuxVQsVfxpIhIpoinoPpP4GUzeyL89SzglsQ3SUTaJBgk+NBpXw3Wv/hZdlTvZDV1YMZqr2NH9U4t7ioikkHi2Vz892a2CjiR0LZJ33H39UlrmYgclODerczet4mygYdQ8uUm5u/dins+9dWFBLpuJlhdiNf3UDwpIpJB4o0cPwVeB/KAfmZ2nLsvS3yzRCSa4Nb1+Gdrod8Icg4bHz7YOJ6syOlEWW4u9QZlublU5HSif9dcxgR+wJpNWxg3cFAkklQ8KSKSGeLZOuly4FpgIFAGTAReIdRjJiJJ5sF6gltega4F8NlavP9ILCevWTzZJ7cvucFhVAU2kRscSp/c0GD9hXOOVW+YiEiGiqeH7FqgFHjV3aeZ2QjgpuQ0SxLhy4rdVG/dSffDB9C5Z/bsJ9lRWSAH6z0I370Z634I5ORGjScr6BMZrF+twfoiIu1CPAVZjbvXmBlmluvuG8xseNJaJm1S/+U+Pn1pDV5fz54P/peBpx6rXpEOIDB4Guz8APKHYIEcdkSJJ/t17aLB+iIi7Uw8BdmW8MKwTwF/MbOdwCfJaZa0mQPuoSLMs2gvyY4sGMR/PzMST9JKPKnB+iIi7UtMBZmF/kf/Xnhh2BvN7EWgN/BcMhsnBy8nrwuHHj+O6s930H3Qofqm3AEonhQR6bhi2jrJ3Z1Qz1jD13939yXuvi+RjTGzGWb2rpm9b2Y/PPAzpDV5/fLpM3ooXXpl+CbXEl0wCJVbIz2cX82etK/iSW11JCLSIcQTWb5qZqXuvjIZDTGzHODXwMnAFmClmS3RWmeSlaIs7qp4UkSk44qnIJsG/LOZbQb2Eloc1t29OEFtORp4390/ADCzhcDpgAoyyTqpjic9GGTXG+9Ss7WC/KNG0PWQggS9ExERicUBI0szezj8x3uBoYTWHfs28K3w74lyOPDxfl9vCR9r2p65ZrbKzFZt27YtgZcXSZMm0SSkPp7ct2sPezZuJlhXz6517ybsdUVEJDax9JCNN7NC4FLgIUI9Y8kQ7XWbTQ9093sJFYdMmDBB0welfYsSTRIIpDye7NQtj5yuXanfW0W3Iwcn7HVFRCQ2sRRkvyM0m/IIYDWNCycPH0+ELcCg/b4eiJbVkP241+N738OD1QS6j8Ryuqa7SW0WLZoM9DyUiqralM6ezMnL5dCTJlJXVUOX/J4Jf30REWndASNLd7/b3UcC8939CHcfst+vRBVjACuBYWY2xMy6AOcCSxL4+tLeffkZvmctVG0kWNlOhxbGMHMSSMvsyZy8XHL79sYCMU2+FhGRBIp5UL+7X5nMhrh7nZldA/wZyCFUAL6dzGtKOxPoghPAqMdy8tLdmvjFOHMS0OxJEZEsE88sy6Rz96XA0nS3QzKTdelPTsGJEKyF3EPT3Zy4xTNzEtDiriIiWUTZhLQr1mUAlnc4oWXrMpwWdhURkRjF3ENmZqOaLtJqZie4+0sJb1UHt+vDz6navpuC4QPJ7dUt3c2RZNDCriIiEod4Isv/G16T7BdAXvj3CcCkZDSso6rZtZctr7xDICdAzc5Kjpg+Lt1N6tCCwT04ewhYX8xSN+5M+06KiEg84oksjyG0LMXLhGZEfgJMTkajOrJApwCBnAD1tXV0yu2c7uZ0aMHgXuqD7xEMVlAX3JzSayueFBGReMTTQ1YLVANdCfWQfejuwaS0qgPr0qMrQ04ey5dfVNHja33T3ZwOy72G+uAm6n07Rk9yrH9Srxesr6Ni5/sU9D0SS8PCriIi0r7FU5CtBP4ElAIFwH+b2dnufnZSWtaBde3bk659tfhmMjn7wIwcDgE6kxMoTNq1gvV1zH74GMr4khJymX/Ra1RU1SueFBGRmMUTWV7m7j9x91p3/8zdTydUoIlkHKM7AeuDWS865QwltNZwclTsfJ8yvgzFk3xJxc73FU+KiEhc4lkYdpWZ9QGGEYosAVI7MEckRmY55NjApLx2s3gyfxhH7uvEe13qOHJfJ/rkD1M8KSIicYln2YvLgWsJ7TFZBkwEXgFOTE7TRDJP1Hiyup615T+jgoCujwAAHDZJREFUl33OGv8aFdV19O+Zo3hSRERiFk9keS2h8WOb3X0aMBbYlpRWiWSoluLJcYX92e2HM76wQPGkiIjELZ5B/TXuXmNmmFmuu28ws+FJa5lIBlA8KSIiqRBPQbbFzPKBp4C/mNlOQmuRiXRIiidFRCRV4hnUf2b4jzea2YtAb+C5pLRKJAPs2LFfPOlfsmPH+/TrP5xxhf1ZvbkT4wv7KJ4UEZGEiKeHLMLd/57ohoikW9N40nMLGVqTw6a8eobW5OC5hYonRUQkKQ5YkJnZHsCjPQS4u/dKeKtEUixaPNm/Vx6d+BVdNm0g5/BR9O8VWu1F8aSIiCTaAQsyd9eS8tLhRYsn+w8YwWNzp7Bj79HqDRMRkaSKZ9kLkQ4jWF/H9u0b8GBoO9aGeDLHPRJPwle9YSrGREQkmeKJLKN9R1JkKe1OPPGkiIhIKiiybCfqvvgCgE69VP8COEGcHcA+jH4YsY/pUjwpIiKZJq5ZllH2ssTdlyW6UdLYl59/zp7XXgMzeh59NLmHHJLuJmWAGqACCOBsxzi8xTNjmT0JGqwvIiLpo70s24Hgnj2hP7hT/8UXoIIMyCE0BDIIrfSOKZ4UEZH2IJ4esoa9LF9192lmNgK4KTnNkv3lDhzIvooKCAbJHTgw3c3JCKGI8utAPdA1cjzoQSpqKijIK8DMFE+KiEi7oL0s24FAXh69jz463c3IOE3HjQU9yOznZlO2rYySASXMP2V+1saT7s6e9Rup+eQzeo4ZTtevqVdVRCSTaS9L6TAqqnZQ9vlq6g3KPltNRdUO+vfql5XxZN2eSvZs2EROj27sLluf0QVZMBjEHXL+X3v3HiVpXd95/P2t7p7umelhrj1cZxhQUUHxNga8a0QlqzFe1kTjHhE0LOsad0+SXTeHE3OOWY+3nOw5m5w14mVjFtSN7hKMJkGMUaMuRJABRIbLACMDhLk0DDA9PUxXffePqoamp7q7eqiqX3fX+3VOn66n6umnvv2bp3s+/Xyf5/n1eRceSb2rpUAW9Z7OhzLzIZzLUgvA9NYkwNqJKs8bP8QNQ8t43vhjrJ2o1qc66sH2ZN/QEH3DK6g+OsaKk2e+4KG0sUfH+ae/vZ6xA4d42RvOZOMJ60qXJElFtBTIMjMj4q+BFzWWnctSxTRrTVaiwmis4aL71nBK/w7unngao7GGEZZ+e7KZyrIBRl59NtUDBxlYvXDvXLPvgf08PHqAoZWD3H3r/QYyST1rPi3LqyPixZn5k45VI7WgWWtyw8oRNqwa5LdP+G/c9YudbNm8ha/2WAibrm9wkL7BhT0Ga0eOYeUxyxk/+Bibn75w26qS1GnzCWSvAf5tROwEDvDE5OJndqQyqWF6e7JZaxIgIvjyhS9l34GtPdWeXMyGj1nO63/9bGrVGssGB0qXI0nFzCeQ/UrHqpBmUMsaF1x5Adt2P9GenKk1Cb3Znlzs+vv7oL+vdBmSVFTLgSwzdza7Uz+ws+1VSQ2j46Ns272NalbZtnsbo+OjbFi13takJGlJ8U79c9hz6708dPduNp6+idWbNpQuZ8k7oj05sIbTxuG2Zclph2DtwBpbk5KkJWc+N/6ZvFP/zsx8DfACYE9HqlogDo8d4r5rd1AdP8wvfrydrNVKl7SkTbYnz/naOZx/5fnUssaDe+/n0nt38p1f3Mtl9+7kwb33A0+0Jg1jkqSlYD6BbDwzx4HH79QPLOk79VcG+hlctZzxR8ZYvm6YqHjjyk5q1p5cv/FE7hg8gzVVuH3wDNZvXLj31JIk6Wh5p/5Z9A308fTXP4/xh+qBTO3VUnuyUuFZH/4+o3vu49kbTzQUS5KWpPmc1P/WxsOeulN//9Ayho9bVrqMJafZ1ZOT7cmH+2B1FR7cez8bjttEpa+PDcdtKl2yJEkdc1SHGzLz+5n5jcx8rN0FaenIrFIdv53q2E1kbfxJr9melCTpCfO5ynII+ADwciCBHwKfmTyvTJouJ/ZSG78VCGpZY3/lxJbbk88aORY4DHhLC0nS0jefc8j+EngE+NPG8ruA/wW8o91FaWmIWEbmYaqHR7noh1/ghtE7W2pPrt+4gcPjP4E8RN+y0+kbOK70tyJJUkfNJ5A9MzOfN2X5HyPihnYXpKUj+tdSqaxjz+G9/HTvDoga1/3L9ewbG2XDxhO5ZfAMTjt0M7cNnsGzp7Qns3YAcpyIIbK6GwxkkqQlbj6B7PqIODszrwaIiLOAH3WmLC1mU6+epH8VUR3htHHYMZQ8bRxyYsWsV09G32qispqsjVHpP6ngdyJJUnfMJ5CdBbwnIn7RWN4M3BIRN+Ek42qoZY0L/v4Ctu2pXz35hdd9ho0rJvjKv9zDw5VkdS3orzwCrJjx6smIAQaWbyUzvfGrJKknzCeQnduxKrRk7Bsb5boHrn+8PTk6foCR9S8mN5/N+l3XwMlnEcMbW9qWYUyS1CvmNbl4JwvR4jT95q45seKI9iQRxHu/CWN7YeUIGLQkSXqS+Rwhk55kenvyi2/4IiOVR5q2J6lUoMUjY5Ik9RrnodFRm2xPVrP6+NWTMbyRgc1ns54K/Sef3XJ7UpKkXuYRMrXM9qQkSZ0x70AWEb8JvBmoAgH8TWZ+pd2FaWGxPSlJUuccTcvyVZn5zsx8d2b+JvWplLTE2Z6UJKlzjqZlORgRbwTuAU4Clre3JC0EticlSeqeowlkHwDeBjwX2AX8+7ZWpOJsT0qS1F3zbllm5lhmXpqZn8jMS4EPdaAuFWR7UpKk7jqak/r/auoi8Hzgk22rSF1ne1KSpLKOpmX5cGa+f3IhIj7TxnrUZbYnJUkq72iusvzYtOWL21GIyrA9KUlSefM+QpaZd01bHm1fOeqk6a1JgKwOUz14Mn3Ld1I9eDJZHbY9KUlSl7UcyCLid5o8vR+4LjO3ta8kdUKz1mQlKowMD/BXD+5jZM8u9vYPMzI8UP8C25OSJHXNfFqWW4GLgBMbHxcCrwY+FxH/uf2lqZ2atSYBYmwfZ0xs59jaBKdPbCfG9nXk/fPwI9QeuIra3h+TtcMdeQ9Jkhar+QSy9cALM/N3M/N3qQe0EeCVwHs7UJueglrW2HtwL5kJPNGaJCtPtCYBVo4Qm86CSn/988qRjtST+2+Cg/fBwz+Hg/d25D0kSVqs5nMO2WbgsSnLh4GTM/NgRBxqb1l6KppeOTlTazICzuvC+WIDayAnoDIA/Ss78x6SJC1S8wlkXwaujogrqN9/7E3AVyJiJfDzThSn1kw/WX+yPUnUHm9PjmSNMya2E7UJNk62JifPEevC+WJxzLNhcANUBohlazv6XpIkLTYttywz84+A3wIeanxclJkfzcwDmfnuThWo2dWyxgVXXsA5XzuH8688n1rWmrcnu9SanElEEEMbDWOSJDUx39teTAA1IKm3LFXY6Pgo23Zvo5pVtu3exuj4KCPDa49sT3arNSlJkuat5SNkEfEfgMuADcBG4NKI+O1OFabmpp+sv3bZOgYnTiWzwuDEqaxdtm7mKycnW5NLIIzlxEFq915J7RffIB97uHQ5kiQ9JfO5yvJ9wFmZ+YeZ+RHgbOotzKcsIt4RETdHRC0itrZjm0tRs/bk6NhhRu94L4O3f5B9d1zA6Njh4u3JbshHd8Ijd8L4A+RDN5cuR5Kkp2Q+LcsAqlOWq43n2uFnwNuAz7Zpe0tSs/bkhpVruWL4U5x26GZuGzyDDSt/pSfakzG4hqz0Q9ZgyBvYSpIWt/kEsv8JXBMRl1MPYm8BvtiOIjLzFuDx6XxUN/3qycn25IHKDgark+3JvTx74hYiavXPk1dPLvE77cfy42DLr0NWicF1c66fBx+itns7DB9L3/pTulChJEmtazmQZeafRMT3gJdRD2TnOWVS5zS7l9hke/KYeIB9eTyjY4cZGW60J++5Zsm2J2cSy1a3vG51x/dhfD888HNyxTpieetfK0lSp80ZyCLiEepXVT7+1JTXMjOPaeWNIuI7wHFNXro4M69oZRuN7VxIfdomNm/e3OqXLTrN7iXWq+3Jdoj+IWrV3UTfMqj0lS5HkqQnmTOQZeaqdrxRZp7Tpu1cAlwCsHXr1pxj9UVjenty8l5ileU7qTXuJRZj+3qyPdkOlae9Eh7aRWXFWmJwuHQ5kiQ9yXzvQ6YOaDrV0apBnhv/ibt2bGfLiaczsmoQ6N325NHIiUNU77oWahP0nfJi+kaeUbokSZKaWhCBLCLeCvwp9cnKvxUR2zLzDYXL6pqmUx0tX8dXl30cBq6BwbOI/Gb9SJjtyZbV9u6k9sBt9XEbWkX/yS8sXZIkSU3N5z5kHZOZl2fmSZk5mJnHLvUwNv3mrpPtyZw61dHYXmLXNURtgrjnmnoIgyV1c9dOi6FV9fHK9CR+SdKCtiCOkPWS+bQnabQnsT15VCprjqf/zDdBrUqscvwkSQuXgazLbE92V2V4fekSJEma04JoWS5lticlSdJcPELWQbYnJUlSKwxkHWR7UpIktcKWZRvZnpQkSUfDI2RtMlN78jmVD/PTHbt44UmbbE8uUBMHD3F4/6MsW3cMfcsGSpcjSepBBrI2adqeXLmBr77/bEb33Mf6jScSk0e/bE8uGLWJKvd/71oOP3yAoZG1HP+arU/8O0mS1CW2LI9SS+3JWo3KX/4qGy55PvGlN0GtVv9i25MLRk5UmXj0IAPDK3jsoUcgl8z0qJKkRcQjZEeh5fbkgT311mRtov55bK+TgC8wfUPL2LD1dB65+z7WveA0ouLfKJKk7jOQHYWW25MrPV9sMVh1ygmsOuWE0mVIknqYgWwOtawxOj7K+qH1j59bNNmerCzfSW16e3IyfJ3n7SwkSVJrDGSzaNaarERlfu3JyfPFJEmSZmAgm8VMrcmIsD0pSZLaxkA2i6atSbA9KUmS2spANovmN3alHrpsT0qSpDYxkM2iaWsSbE9KkqS2MpDNZqbWZITtSUmS1DbeBXM2zVqTk7zbviRJahMD2WwmW5OVfluTkiSpY2xZzsbWpCRJ6gID2Vy8clKSJHWYLUtJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMTBwYY/ze+6keHC9diiRJPcn7kPW42sQED/7waqpjY/SvPob1r3nFE5OoS5KkrvAIWa+r1qgdGqcyNEht7CDUaqUrkiSp53iErMdVBpex+sUvYnzXfSzfsono6ytdkiRJPcdAJoaOP5ah448tXYYkST3LlqUkSVJhBrJFJjNLlyBJktrMluUiMXHwEPf+4EYOHxjnxFeeyfINq0uXJEmS2sQjZIvEwb37ObhvP1EJHrptV+lyJElSGxnIFonBNcMMrBiieugww5tGSpcjSZLayJblIrFs1Qq2vPFs8nCV/hWDpcuRJEltZCBbRPoG+mHAfzJJkpYaW5aSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCFkQgi4hPR8T2iLgxIi6PiDWla5IkSeqWBRHIgKuA52TmmcBtwO8XrkeSJKlrFkQgy8xvZ+ZEY/Fq4KSS9UiSJHXTgghk01wA/N1ML0bEhRFxbURcu2fPni6WJUmS1Bn93XqjiPgOcFyTly7OzCsa61wMTACXzbSdzLwEuARg69at2YFSJUmSuqprgSwzz5nt9Yg4D3gT8NrMNGhJkqSe0bVANpuIOBf4MPCqzBwrXY8kSVI3LZRzyP4MWAVcFRHbIuLPSxckSZLULQviCFlmPr10DZIkSaUslCNkkiRJPctAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKWxCBLCL+KCJujIhtEfHtiDihdE2SJEndsiACGfDpzDwzM58PfBP4SOmCJEmSumVBBLLMfHjK4kogS9UiSZLUbf2lC5gUER8D3gPsB15TuBxJkqSuiczuHIyKiO8AxzV56eLMvGLKer8PDGXmH86wnQuBCxuLzwRubXethWwA9pYuYoFxTI7kmBzJMTmSY9Kc43Ikx+RInRyTkzNzpNkLXQtkrYqIk4FvZeZzStfSTRFxbWZuLV3HQuKYHMkxOZJjciTHpDnH5UiOyZFKjcmCOIcsIp4xZfHNwPZStUiSJHXbQjmH7BMR8UygBuwELipcjyRJUtcsiECWmW8vXcMCcEnpAhYgx+RIjsmRHJMjOSbNOS5HckyOVGRMFtw5ZJIkSb1mQZxDJkmS1MsMZF0WEedGxK0RcUdE/Jcmr783IvY0ppHaFhHvL1FnN7UwJoMR8b8br18TEVu6X2UZEbEuIq6KiNsbn9fOsF51yj7zjW7X2U0R8Y6IuDkiahEx45VQc+1XS8k8xuTuiLipsZ9c280auy0iPh0R2xvT8l0eEWtmWK+X9pNWx6Rn9hNoffrGiDiv8bv49og4r+112LLsnojoA24DXgfsAn4CvCszfz5lnfcCWzPzg0WK7LIWx+QDwJmZeVFEvBN4a2b+RpGCuywiPgWMZuYnGv9ZrM3MDzdZ79HMHO5+hd0XEc+mfgHQZ4Hfy8wj/sNoZb9aSloZk8Z6d1P//bLk7zsVEa8HvpuZExHxSYDpPzs9uJ/MOSaN9e6mR/YTgIg4ZnLGoIj4EHB6Zl40bZ11wLXAVuqzCV0HvCgzH2xXHR4h665fAu7IzDsz8zHgq8CvFa6ptFbG5NeALzUefx14bUREF2ssaer3/iXgLQVrWRAy85bMnOuG0D31s9bimPSUzPx2Zk40Fq8GTmqyWq/tJ62MSc9pcfrGNwBXZeZoI4RdBZzbzjoMZN11InDPlOVdjeeme3vj8OnXI2JTd0orppUxeXydxi+T/cD6rlRX3rGZeT9A4/PGGdYbiohrI+LqiOj50EbrP2u9JoFvR8R1jVlPesUFwN81eb6X95OZxgR6cD+JiI9FxD3Au4GPNFml4/vKgrjtRQ9pdlRnehL/G+ArmXkoIi6iflTklzteWTmtjEkr6yxas00rNo/NbM7M+yLiVOC7EXFTZu5oT4Xd1+pUa7Ntoslzi3qfacOYALyssZ9sBK6KiO2Z+YP2VdldrYxJRFwMTACXNdtEk+eW/H4yx5jAEttPYO5xycyLgYujPn3jB4Hp0zd2fF8xkHXXLmDqEa+TgPumrpCZ+6Ysfg74ZBfqKmnOMZmyzq6I6AdWA6PdKa/zMvOcmV6LiAci4vjMvD8ijgd2z7CN+xqf74yI7wEvABZtIJttTFrUyn61qLRhTKbuJ7sj4nLqLbtF+x/tXGPSOPH6TcBrs/kJ0z23n7QwJktuP4F5/fx8GfgWRwayXcCrpyyfBHzvKRc2hS3L7voJ8IyIOCUilgHvBJ50RVzjP91JbwZu6WJ9Jcw5Jo3lySta/jX1k1IX9V+x8zD1ez8POOJISESsjYjBxuMNwMuAJXlS8jy0sl/1lIhYGRGrJh8Drwd+VraqzomIc4EPA2/OzLEZVuup/aSVMem1/QRanr7xSuD1jd+3a6mPy5VtLSQz/ejiB/CvqF/Vs4P6oVKAj1L/AQH4OHAzcAPwj8CzSte8AMZkCPgacAfwz8CppWvu4tisB/4BuL3xeV3j+a3A5xuPXwrc1NhnbgLeV7ruDo/JW6n/tXoIeAC4svH8CcDfzrZfLdWPVsYEOLWxj9zQ+B2z1MfkDurn/GxrfPy5+8ncY9Jr+0nje/4/1EPnjdRPGzqx8fzjv2cbyxc0xvAO4Px21+FtLyRJkgqzZSlJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCT1FYR8WjpGtph6vfRju8pIrZExMGI2PZUtzXLeyyPiG0R8Vhj1gZJi4SBTFJPirpu/w7ckZnP79TGM/NgY/uLej5GqRcZyCR1RET8TkT8rPHxH6c8/wcRsT0iroqIr0TE7x3l9rc0tvOliLgxIr4eESumvP7XEXFdRNwcERdO+ZpbIuJ/AD8FNjVbb473bbbdFzdqGGrMBXhzRDynxfo/3xijyyLinIj4UUTcHhG/NNP7NZ5fGRHfiogbGl//G0czjpIWBqdOktRWjfbeq4C/AM4GArgG+DdAH/B54CVAP/VQ9NnM/OOjeJ8twF3AyzPzRxHxReDnk9uKiHWZORoRy6lPIv0qYBVwJ/DSzLx6pvUyc19EPJqZw5Pf05THM63/X6nPu7oc2JWZH29S7zcz8zlTlu8AXkB9zsCfUJ8/8H3UJzg+PzPfMsv7vR04NzN/q7G91Zm5v/H4bmBrZu6d77hKKsMjZJI64eXA5Zl5IDMfBf4v8IrG81c0WmuPUJ/IF4CIODUivhARX28sr2wc/fpcRLx7hve5JzN/1Hh8aWP7kz4UETcAVwObgGc0nt85GcbmWG8mM63/UeB11Cck/tQc25h0V2belJk16qHsH7L+V/JNwJY53u8m4JyI+GREvGIyjElanAxkkjoh5vk8mXlnZr5vylNvA77eOAL05pm+rNlyRLwaOAd4SWY+D7ie+tErgAOPFzP7ekcWP/v664Bh6kfhZtzGNIemPK5NWa4B/bO9X2beBryIejD7eER8pMX3lLQAGcgkdcIPgLdExIqIWAm8Ffgn4IfArzbOtRoG3jjLNk4C7mk8rs6wzuaIeEnj8bsa2wdYDTyYmWMR8SzqrdNmWl2vlfUvAf4AuAz45BzbadWM7xcRJwBjmXkp8MfAC9v0npIK6C9dgKSlJzN/GhF/Afxz46nPZ+b1ABHxDernSu0ErgVmarXtoh7KtjHzH4+3AOdFxGeB24HPNJ7/e+CiiLgRuJV6u6+ZVtebdf2IeA8wkZlfjog+4McR8cuZ+d05tjeX2ep7LvDpiKgBh4F/9xTfS1JBntQvqasiYjgzH21cEfkD4MJGgFsPfIz6eVifB/478GfAOPDDzLxs2na2MOUk+YWum/V6Ur+0+HiETFK3XRIRp1M/F+pLmflTgMzcB1w0bd3zu11cB1WB1RGxrVP3Imtcifn/gAHq56FJWiQ8QiZJklSYJ/VLkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCvv/CU5okglUzn8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXyU5b3//9dnwhI2CSbQ1oIBeSBrMCzRIKBiFbC2qAW+7gso1O2U055D2+O3C636q1a/Hqu2tlZB64angorKsdYWCkVRQOIC4oImQlHZl5AESObz+2MmYwiTMAMzubO8n4/HPMjcc899f+ZOAm+u67qvy9wdEREREQlOKOgCRERERFo6BTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyESkxTCzx8zsMzPbbWYfmNk10e1tzOxpMys2MzezM2q9b4yZLTKzXWZWHETtItK8KZCJSEvyK6Cnux8DTABuMbNh0df+CVwGfB7nfXuB2cDMBqlSRFqcVkEXICLSUNx9Tc2n0Udvd18F3A1gZlVx3vcG8IaZndUghYpIi6MWMhFpUczsd2ZWBqwDPgMWBlySiIgCmYi0LO5+PdAJGA3MB/YFW5GIiAKZiLRA7l7l7v8EugPXBV2PiIgCmYi0ZK2A3kEXISKiQCYiLYKZdTOzi8yso5llmNk44GLg79HX25pZZnT3NmaWaWYWfS0Ufa115KllmlmbQD6IiDRL5u5B1yAiknZm1hV4GjiJyH9GS4B73P2P0deLgdxab+vl7sXReckW1XrtH+5+RjprFpGWQ4FMREREJGDqshQREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiklJmVtqA56oysyIzW2Nmb5nZD8wsVOP1V+t5b5aZXd8wlR5y7p5mVm5mRTWev5uC47aLXo/9ZpZz9JWKSENRIBORpqzc3fPdfSBwNvBN4OfVL7r7qfW8NwsIJJBFrXf3/FQe0N3Lo8fclMrjikj6KZCJSFpEW6vejT7+vcb2n5rZOjP7q5k9aWb/mYrzuftmYDpwY401KEujf3YwsxejrWjvmtmFwG1A72iL0h3R/Z41s1XRFrfp0W09zew9M/tjdPvLZtYu+toVZvZ29LiP1viMl5nZG9Fj/8HMMhL9HGZ2gpmtNrOC6LnXmdkj0fM8bWbt6zu3iDRNrYIuQESaHzMbBkwBTgEMeN3M/gFkABOBIUT+/nkTWJWq87r7x9Euy27AFzVeGg9scvdzo/V1Bl4HBtVqpZrq7tujgWuFmc2Lbu8DXOzu08zsf4CJZrYa+L/ASHffambHRo/dH7gwuv2Amf0OuBT40+HqN7O+wFxgirsXmVlPoC9wtbsvM7PZwPVm9r/xzi0iTZcCmYikwyjgGXffC2Bm84HRRFrln3P38uj256vfYGYnEAkZnd19kpl1AH4H7AcWu/vjCZ7b4mx7B7jTzG4HXnD3pWbWJc5+3zOzC6Jf9yASxD4HPnH3ouj2VUBPoAvwtLtvBXD37dHXvwEMIxLoANoBmxOouyvwHDDR3dfU2L7B3ZdFv34M+B6wr45zi0gTpS5LEUmHeKGovu24+8fufnWNTd8hEjqmARMSOmkk1FVRKwC5+wdEQtI7wK/M7Gdx3nsGcBYwwt1PAlYDmdGX99XYtYrIf2YN8HhlAI9Ex7blu3tfd5+VQPm7gA3AyFrba5/D6zm3iDRRCmQikg5LgPPNrH20pesCYCnwT+DbZpZpZh2Bc+s5RnciAQUiIaheZtYV+D1wn7t7rdeOA8rc/THgTmAosAfoVGO3zsAOdy8zs35A4WFO+Tfg/5hZdvQcx9bYPsnMulVvN7Pcw9VPpCXwfOAKM7ukxvbjzWxE9OuLiVzDus4tIk2UuixFJOXc/U0zexh4I7rpQXdfDWBmC4C3gBJgJZGWoXg2EgllRdT9n8d20akjWgOVwKPAXXH2ywPuMLMwcAC4zt23mdmy6HQT/wv8BLjWzN4G3geWH+YzrjGzW4F/mFkVkRa1q9x9rZn9BHg5Op7tAHBD9PPWy933mtm3gL+a2V4i1+k94Eoz+wPwIXB/NDQecu7DHV9EGi+r9R9JEZG0MrOO7l4avVtwCTA9GuCygVuJTF/xIHAPcB9QAfwziTFkjV50sP4L7j4oFfvFeV8xMLx6jJmINH5qIRORhvaAmQ0gMj7rEXd/E8DdtwHX1tp3SkMX10CqgM5mVpTKuciid4e+RqTFMJyq44pI+qmFTERERCRgGtQvIiIiEjAFssMwsx5mtig6U/caM5tRz74FFllbb1JD1thUJHotzewM+3J9wn80dJ1NQSLX0sw6m9nz0Znc15hZc+3+O2rRuz7fqHGtfhFnn7Zm9pSZfWRmr0fHd0ktCV7LH5jZ2uhKA39L8C7UFieRa1lj30lm5mY2vCFrbCoSvZZm9n+iP5trzOyJBi3S3fWo5wF8DRga/boT8AEwIM5+GcDfgYXApKDrboyPRK4lkfUF1wLHR593C7ruxvhI8FreBNwe/borsB1oE3TtjfFBZF6vjtGvWxOZxb+w1j7XA7+Pfn0R8FTQdTfGR4LXcgzQPvr1dbqWR34to691InKDzHIiN3MEXntjeyT4c9mHyB3LXaLPG/TfH7WQHYa7f+ZfDjreQ+QW9K/H2fXfgHkkNiN3i5TgtbwEmO/un0b30/WMI8Fr6UAni0wX35FIIKts0EKbCI8ojT5tHX3UHmB7HvBI9OungW9Er63UkMi1dPdF7l4WfbqcyPQmUkuCP5cANwO/JnJHssSR4LWcBvzW3XdE39Og//4okCUh2kUxhEiyrrn960Qmvvx9w1fVNNV1LYETgS5mttgiizxf0dC1NTX1XMv7gP7AJiIz1M9wd915Vwczy4jOabYZ+Ku7176eXyc6Ua27VxKZPy27YatsGhK4ljVdTWQeOInjcNfSzIYAPdz9hUAKbEIS+Lk8ETgxOj/hcjMb35D1KZAlKDqr+Dzg3919d62X7wZ+5O6HnU1cDnstWxFZ4uZcYBzwUzM7sYFLbDIOcy3HEZlU9TggH7jPzI5p4BKbDHev8sgUFN2Bk82s9txf8VrDdJt6HAlcSwDM7DJgOHBHQ9bXlNR3LaMTD/838B9B1deUJPBz2YpIt+UZRFbFeNDMshqqPgWyBJhZayL/6D3u7vPj7DIcmBudjHES8DszO78BS2wyEriWG4GX3H2vRya1XAKc1JA1NhUJXMspRLp/3d0/Aj4B+jVkjU2Ru+8EFgO1/3e8kciC45hZKyJLLWlR73rUcy0xs7OILCY/wd331X5dDlbHtewEDAIWR//9KQQWaGB//Q7zO/6cux9w90+IrNjRp6HqUiA7jOgYkYeA99w93pIsuHsvd+/p7j2JjC253t2fbcAym4REriXwHDDazFpFZ3I/hcj4KKkhwWv5KfCN6P5fAfoCHzdMhU2LmXWt/p9wdHLVs4B1tXZbAFwZ/XoS8HePjvyVLyVyLaPdbH8gEsY0TrQOh7uW7r7L3XNq/PuznMg1XRlIwY1Ygr/jzxK54QQzyyHShdlgf2dqpv7DGwlcDrwT7XuGyN1rxwO4u8aNJe6w19Ld3zOzl4C3icw0/qC7vxtItY1bIj+XNwMPm9k7RLrbfuRaSqcuXwMeMbMMIv9R/R93f8HMfgmsdPcFRALwo2b2EZGWsYuCK7dRS+Ra3kHkRpM/R++L+NTdJwRWceOVyLWUxCRyLf8CjDWztURW05jpkRVEGoRm6hcREREJmLosRURERAKmQCYiIiISMAUyERERkYApkImIiIgErNEEsmQWURURERFpThpNIAP2AWe6+0lEZhUfb2aFAddULzObHnQNzYWuZeroWqaWrmfq6Fqmjq5l6jSWa9loAlkSi6g2Jo3im9hM6Fqmjq5laul6po6uZeroWqZOo7iWjSaQQdIL0oqIiIg0C41yYtjo8gbPAP9We5b2aNPidICMjIxhbdu2DaDCiMrKSlq10mIHqaBrmTq6lqml65k6upapo2uZOg15LcvKyg64e5t4rzXKQAZgZj8H9rr7nXXtM3z4cF+5Ukt2iYiISONnZqvcPe7i742myzLBhT9FREREmp3G1N4Zd+HPgGsSERERSbtGE8jc/W1gSNB1iIiIiDS0RhPIRESk6Ttw4AAbN26koqIi6FJEApOZmUn37t1p3bp1wu9RIBMRkZTZuHEjnTp1omfPnphZ0OWINDh3Z9u2bWzcuJFevXol/L5GM6hfRESavoqKCrKzsxXGpMUyM7Kzs5NuJVYgExGRlFIYk5buSH4HFMhERKRZmzVrFnfeWeeUljz77LOsXbu2ASsSOZQCmYiItGgKZNIYKJCJiEizc+utt9K3b1/OOuss3n//fQD++Mc/UlBQwEknncTEiRMpKyvj1VdfZcGCBcycOZP8/HzWr18fdz+RdFMgExGRQLk7+yqrUna8VatWMXfuXFavXs38+fNZsWIFAN/5zndYsWIFb731Fv379+ehhx7i1FNPZcKECdxxxx0UFRXRu3fvuPuJpJumvRARkcC4O8s/3saHm0vp060jhScc/R2aS5cu5YILLqB9+/YATJgwAYB3332Xn/zkJ+zcuZPS0lLGjRsX9/2J7ieSSmohExGRwOyvCvPh5lK+2imTDzeXsr8qnJLjxgt1V111Fffddx/vvPMOP//5z+ucliDR/URSSYFMREQC07ZVBn26deTzPRX06daRtq0yjvqYp512Gs888wzl5eXs2bOH559/HoA9e/bwta99jQMHDvD444/H9u/UqRN79uyJPa9rP5F0UpeliIgEqvCEbIbmdklJGAMYOnQoF154Ifn5+eTm5jJ69GgAbr75Zk455RRyc3PJy8uLhbCLLrqIadOmcc899/D000/XuZ9IOpm7B13DERs+fLivXLky6DJERCTqvffeo3///kGXIRK4eL8LZrbK3YfH219dliIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYhIs1JcXMygQYMa7HyzZs3izjvvTGjfb37zm+zcufOojiHNkyaGFRERAaqqqsjISM3ktLW5O+7OwoUL03J8afrUQiYiIs3Wxx9/zJAhQ3j99deZOXMmBQUFDB48mD/84Q8ALF68mDFjxnDJJZeQl5dHcXEx/fv3Z9q0aQwcOJCxY8dSXl4OwPr16xk/fjzDhg1j9OjRrFu3rt5zVx/r+uuvZ+jQoWzYsIGePXuydetWAG699Vb69u3LWWedxfvvvx9734oVKxg8eDAjRoxg5syZsda+qqqquJ9BmgcFMhERCVQ47GzZs49Urxzz/vvvM3HiRObMmcNbb71F586dWbFiBStWrOCPf/wjn3zyCQBvvPEGt956K2vXrgXgww8/5IYbbmDNmjVkZWUxb948AKZPn869997LqlWruPPOO7n++usTquGKK65g9erV5ObmxravWrWKuXPnsnr1aubPn8+KFStir02ZMoXf//73vPbaawe12D300EN1fgZp+tRlKSIigQmHnYv/uJxVJTsYltuFJ6cVEgrZUR93y5YtnHfeecybN4+BAwdyyy238Pbbb/P0008DsGvXLj788EPatGnDySefTK9evWLv7dWrF/n5+QAMGzaM4uJiSktLefXVV5k8eXJsv3379h22jtzcXAoLCw/ZvnTpUi644ALat28PwIQJEwDYuXMne/bs4dRTTwXgkksu4YUXXgDg5ZdfjvsZatYuTZcCmYiIBGbb3v2sKtlBZdhZVbKDbXv307VT26M+bufOnenRowfLli1j4MCBuDv33nsv48aNO2i/xYsX06FDh4O2tW375fkzMjIoLy8nHA6TlZVFUVFRnefcsGED3/72twG49tprGT9+/CHHrsns0OBZXythXZ9Bmgd1WYqISGByOrZhWG4XWoWMYbldyOnYJiXHbdOmDc8++yx/+tOfeOKJJxg3bhz3338/Bw4cAOCDDz5g7969CR/vmGOOoVevXvz5z38GIuHorbfeOmifHj16UFRURFFREddee229xzvttNN45plnKC8vZ8+ePTz//PMAdOnShU6dOrF8+XIA5s6dG3vP0X4GadzUQiYiIoExM56cVsi2vfvJ6dgmbqvRkerQoQMvvPACZ599Nj/5yU8YMGAAQ4cOxd3p2rUrzz77bFLHe/zxx7nuuuu45ZZbOHDgABdddBEnnXTSEdU2dOhQLrzwQvLz88nNzWX06NGx1x566CGmTZtGhw4dOOOMM+jcuTMA11xzDcXFxUf1GaTxslQPomxIw4cP95UrVwZdhoiIRL333nv0798/6DKatNLSUjp27AjAbbfdxmeffcZvfvObgKuSZMX7XTCzVe4+PN7+aiETERFpRF588UV+9atfUVlZSW5uLg8//HDQJUkDUCATERFpRC688EIuvPDCoMuQBqZB/SIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIizUr1lBGbNm1i0qRJAVdz5BYvXsy3vvWto96ntlmzZnHnnXceTWmH+OY3v8nOnTvZuXMnv/vd71J67PosWLCA2267rd596rtGd999N2VlZbHn1Z8jCApkIiLSLB133HGxdR/TpbKyMq3HbyoWLlxIVlZWgweyCRMm8OMf//iI3187kFV/jiAokImISLNUXFzMoEGDAHj44Yf5zne+w/jx4+nTpw8//OEPY/u9/PLLjBgxgqFDhzJ58mRKS0sB+OUvf0lBQQGDBg1i+vTpsXUmzzjjDG666SZOP/30QyZsnTVrFldeeSVjx46lZ8+ezJ8/nx/+8Ifk5eUxfvz42LJHf/vb3xgyZAh5eXlMnTo1tlD5Sy+9RL9+/Rg1ahTz58+PHXfv3r1MnTqVgoIChgwZwnPPPZfUtbj11lvp27cvZ511Fu+//35s+/r16xk/fjzDhg1j9OjRrFu3DoCrrrqK733ve5x66qmccMIJsWD72Wefcdppp5Gfn8+gQYNYunQpAD179mTr1q38+Mc/Zv369eTn5zNz5kwuv/zyg2q99NJLWbBgwUG1bd68mWHDhgHw1ltvYWZ8+umnAPTu3ZuysjK2bNnCxIkTKSgooKCggGXLlsW+rzfeeGPssxQWFlJQUMDPfvazWEspRCbbnTRpEv369ePSSy/F3bnnnnvYtGkTY8aMYcyYMQd9juLiYvr378+0adMYOHAgY8eOpby8HIAVK1YwePBgRowYwcyZM2M/Y0fN3ZvsY9iwYS4iIo3H2rVrk39TVZX7ni/cw+GU1NChQwd3d//kk0984MCB7u4+Z84c79Wrl+/cudPLy8v9+OOP908//dS3bNnio0eP9tLSUnd3v+222/wXv/iFu7tv27YtdszLLrvMFyxY4O7up59+ul933XVxz/3zn//cR44c6fv37/eioiJv166dL1y40N3dzz//fH/mmWe8vLzcu3fv7u+//767u19++eX+3//937HtH3zwgYfDYZ88ebKfe+657u7+X//1X/7oo4+6u/uOHTu8T58+Xlpa6osWLYrts2LFCr/66qsPqWnlypU+aNAg37t3r+/atct79+7td9xxh7u7n3nmmf7BBx+4u/vy5ct9zJgx7u5+5ZVX+qRJk7yqqsrXrFnjvXv3dnf3O++802+55RZ3d6+srPTdu3e7u3tubq5v2bLloGvu7r548WI/77zz3N19586d3rNnTz9w4MAhNQ4YMMB37drl9957rw8fPtwfe+wxLy4u9sLCQnd3v/jii33p0qXu7l5SUuL9+vWLfV9vuOEGd3c/99xz/YknnnB39/vvvz/2c7Bo0SI/5phjfMOGDV5VVeWFhYWxY1XXXa3m58jIyPDVq1e7u/vkyZNj13/gwIG+bNkyd3f/0Y9+dNDnrSne7wKw0uvINJoYVkREghMOwyPfgg2vQ49T4MoXIJSezptvfOMbsXUhBwwYQElJCTt37mTt2rWMHDkSgP379zNixAgAFi1axK9//WvKysrYvn07AwcO5Nvf/jZAvRO3nnPOObRu3Zq8vDyqqqoYP348AHl5eRQXF/P+++/Tq1cvTjzxRACuvPJKfvvb33LGGWfQq1cv+vTpA8Bll13GAw88AERa8RYsWBAb+1VRURFrRao2fPhwHnzwwUPqWbp0KRdccAHt27cHIt18EGk1evXVV5k8eXJs3+qWOoDzzz+fUCjEgAED+OKLLwAoKChg6tSpHDhwgPPPP5/8/Px6r/npp5/ODTfcwObNm5k/fz4TJ06kVatDo8epp57KsmXLWLJkCTfddBMvvfQS7h5b4/OVV15h7dq1sf13797Nnj17DjrGa6+9Flvb85JLLuE///M/Y6+dfPLJdO/eHYD8/HyKi4sZNWpUvbX36tUr9vmGDRtGcXExO3fuZM+ePZx66qmx87zwwgv1HidRCmQiIhKcsq2RMBaujPxZthU6dkvLqdq2bRv7OiMjg8rKStyds88+myeffPKgfSsqKrj++utZuXIlPXr0YNasWVRUVMRe79Chw2HPEwqFaN26dWzB9FAoFDtnXepaXN3dmTdvHn379j1oe3VQOpx4xw2Hw2RlZVFUVFTv56g+P8Bpp53GkiVLePHFF7n88suZOXMmV1xxRb3nvvzyy3n88ceZO3cus2fPBmDKlCmsXr2a4447joULFzJ69GiWLl1KSUkJ5513HrfffjtmFhuMHw6Hee2112jXrl1Cn7e+z1L9vU/2PeXl5fV+746WxpCJiEhwOnSNtIyFWkX+7NC1QU9fWFjIsmXL+OijjwAoKyvjgw8+iIWvnJwcSktLU3pzQL9+/SguLo6d89FHH+X000+nX79+fPLJJ6xfvx7goJA4btw47r333lggWL16dcLnO+2003jmmWcoLy9nz549PP/88wAcc8wx9OrViz//+c9AJHS99dZb9R6rpKSEbt26MW3aNK6++mrefPPNg17v1KnTIS1XV111FXfffTcAAwcOBGDOnDkUFRWxcOHCWI2PPfYYffr0IRQKceyxx7Jw4cJYy+XYsWO57777YseMFyILCwuZN28eAHPnzk3o2sSrtz5dunShU6dOLF++PKnzJEKBTEREgmMW6ab8wXtw1YuR5w2oa9euPPzww1x88cUMHjyYwsJC1q1bR1ZWFtOmTSMvL4/zzz+fgoKClJ0zMzOTOXPmMHnyZPLy8giFQlx77bVkZmbywAMPcO655zJq1Chyc3Nj7/npT3/KgQMHGDx4MIMGDeKnP/3pIcdduXIl11xzzSHbhw4dyoUXXkh+fj4TJ06MdQMCPP744zz00EOcdNJJDBw48LA3CyxevJj8/HyGDBnCvHnzmDFjxkGvZ2dnM3LkSAYNGsTMmTMB+MpXvkL//v2ZMmVKncft2bMnEAlmAKNGjSIrK4suXboAcM8997By5UoGDx7MgAED+P3vf3/IMe6++27uuusuTj75ZD777LNY93R9pk+fzjnnnBMb1J+Ihx56iOnTpzNixAjcPaHzJMLS2fyWbsOHD/eVK1cGXYaIiES999579O/fP+gypBEpKysjLy+PN998M2Xhpa7ztGvXDjNj7ty5PPnkk0nfjZqI0tLS2B2ct912G5999tkhd9tC/N8FM1vl7sPjHVdjyERERCQtXnnlFaZOncoPfvCDtIYxgFWrVnHjjTfi7mRlZcXGq6Xaiy++yK9+9SsqKyvJzc3l4YcfTslx1UImIiIpoxYykYhkW8g0hkxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREpFmpnpJg06ZNTJo0KeBqjtzixYtjM9UfzT6pVnPR7lRYsGABt912GwDPPvvsQUskpVPN89alvut79913U1ZWlrJ6FMhERKRZOu6441I6w348iSzBI/WbMGECP/7xj4GGDWQ1z3skFMhEREQSUFxczKBBgwB4+OGH+c53vsP48ePp06cPP/zhD2P7vfzyy4wYMYKhQ4cyefJkSktLAfjlL39JQUEBgwYNYvr06bFli8444wxuuukmTj/99EMmBJ01axZXXnklY8eOpWfPnsyfP58f/vCH5OXlMX78eA4cOADA3/72N4YMGUJeXh5Tp06NLer90ksv0a9fP0aNGsX8+fNjx927dy9Tp06loKCAIUOGJDXhaXFxMf3792fatGkMHDiQsWPHUl5eDkSWICosLGTw4MFccMEF7Nix45D3f/LJJ4wYMYKCgoJDVgi44447KCgoYPDgwfz85z8/7PnuueceBgwYwODBg7noooti35sbb7yRV199lQULFjBz5kzy8/NZv349Q4cOjZ3rww8/ZNiwYQedf/PmzbFtb731FmYWW3S9d+/elJWVsWXLFiZOnEhBQQEFBQUsW7bsoPMCrF+/nsLCQgoKCvjZz352UCtgaWkpkyZNol+/flx66aW4O/fccw+bNm1izJgxSc3yXx8FMhERCVTYw2wt35rWhZshEj6eeuop3nnnHZ566ik2bNjA1q1bueWWW3jllVd48803GT58OHfddRcAN954IytWrODdd9+lvLycF154IXasnTt38o9//IP/+I//OOQ869ev58UXX+S5557jsssuY8yYMbzzzju0a9eOF198kYqKCq666qpYLZWVldx///1UVFQwbdo0nn/+eZYuXcrnn38eO+att97KmWeeyYoVK1i0aBEzZ85k7969B523rqWTIBJmbrjhBtasWUNWVlZszccrrriC22+/nbfffpu8vDx+8YtfHPLeGTNmcN1117FixQq++tWvxra//PLLfPjhh7zxxhsUFRWxatUqlixZUu/5brvtNlavXs3bb799yPJHp556KhMmTOCOO+6gqKiI3r1707lz59i6lXPmzOGqq6466D3dunWjoqKC3bt3s3TpUoYPHx5bpLxbt260b9+eGTNm8P3vf58VK1Ywb968uNdoxowZzJgxgxUrVnDccccd9Nrq1au5++67Wbt2LR9//DHLli3je9/7HscddxyLFi1i0aJFca95shTIREQkMGEPM/UvUznrz2cx5S9TCHs4bef6xje+QefOncnMzGTAgAGUlJSwfPly1q5dy8iRI8nPz+eRRzgdjmwAACAASURBVB6hpKQEgEWLFnHKKaeQl5fH3//+d9asWRM71oUXXljnec455xxat25NXl4eVVVVjB8/HoC8vDyKi4t5//336dWrFyeeeCIAV155JUuWLGHdunX06tWLPn36YGZcdtllsWO+/PLL3HbbbeTn53PGGWdQUVERawmqNnz4cB588MG4NfXq1Yv8/HwAhg0bRnFxMbt27WLnzp2cfvrpB9VR27Jly7j44osBuPzyyw+q6eWXX2bIkCEMHTqUdevW8eGHH9Z5PoDBgwdz6aWX8thjj9Gq1eEXC7rmmmuYM2cOVVVVPPXUU1xyySWH7HPqqaeybNkylixZwk033cSSJUtYunRpbM3OV155hRtvvJH8/HwmTJjA7t27D1lQ/LXXXmPy5MkAh5zj5JNPpnv37oRCIfLz82OfJdW0dJKIiARme8V2ijYXUeVVFG0uYnvFdnLa5aTlXG3bto19nZGRQWVlJe7O2WefzZNPPnnQvhUVFVx//fWsXLmSHj16MGvWLCoqKmKvd+jQ4bDnCYVCtG7dGosumB4KhWLnrIvVsbi6uzNv3jz69u170PYvvviizmPFqwkin726CzFR8epyd/7rv/6L7373uwdtLy4urvN8L774IkuWLGHBggXcfPPNB4XceCZOnMgvfvELzjzzTIYNG0Z2dvYh+4wePTrWKnbeeedx++23Y2axwfjhcJjXXnuNdu3aJfWZq8X7uUkHtZCJiEhgsjOzye+WT4ZlkN8tn+zMQ//BTafCwkKWLVvGRx99BEQWqP7ggw9i4SsnJ4fS0tKU3hzQr18/iouLY+d89NFHOf300+nXrx+ffPIJ69evBzgoJI4bN4577703FuZWr1591HV07tyZLl26sHTp0oPqqG3kyJHMnTsXgMcff/ygmmbPnh0bc/evf/2LzZs313m+cDjMhg0bGDNmDL/+9a/ZuXNn7L3VOnXqdFDrVWZmJuPGjeO6665jypQpcY972mmn8dhjj9GnTx9CoRDHHnssCxcuZOTIkQCMHTuW++67L7Z/dRdoTYWFhbFu1erPeji1az1aCmQiIhIYM2P2uNm8MvkV5oybU2cLUbp07dqVhx9+mIsvvpjBgwdTWFjIunXryMrKYtq0aeTl5XH++edTUFCQsnNmZmYyZ84cJk+eTF5eHqFQiGuvvZbMzEweeOABzj33XEaNGkVubm7sPT/96U85cOAAgwcPZtCgQYcMrof6x5DV5ZFHHmHmzJkMHjyYoqIifvaznx2yz29+8xt++9vfUlBQwK5du2Lbx44dyyWXXMKIESPIy8tj0qRJ9QaUqqoqLrvsMvLy8hgyZAjf//73ycrKOmifiy66iDvuuIMhQ4bEgumll16KmTF27Ni4x+3ZsycQCWYAo0aNIisriy5dugCRGwlWrlzJ4MGDGTBgwCFj1yByx+Rdd93FySefzGeffZbQQujTp0/nnHPOSdmgfi0uLiIiKaPFxSXV7rzzTnbt2sXNN9+ctnOUlZXRrl07zIy5c+fy5JNPJnUnazzJLi6uMWQiIiLSKF1wwQWsX7+ev//972k9z6pVq7jxxhtxd7Kyspg9e3ZazxePApmIiIg0Ss8880yDnGf06NG89dZbDXKuumgMmYiIiEjAFMhERCSlmvLYZJFUOJLfAQUyERFJmczMTLZt26ZQJi2Wu7Nt2zYyMzOTep/GkImISMp0796djRs3smXLlqBLEQlMZmYm3bt3T+o9jSaQmVkP4E/AV4Ew8IC7/6b+d4mISGPSunVrevXqFXQZIk1OowlkQCXwH+7+ppl1AlaZ2V/dfW3QhYmIiIikU6MZQ+bun7n7m9Gv9wDvAV8PtioRERGR9Gs0gawmM+sJDAFej/PadDNbaWYrNUZBREREmoNGF8jMrCMwD/h3d99d+3V3f8Ddh7v78K5duzZ8gSIiIiIp1qgCmZm1JhLGHnf3+UHXIyIiItIQGk0gMzMDHgLec/e7gq5HREREpKE0mkAGjAQuB840s6Lo45tBFyUiIiKSbo1m2gt3/ydgQdchIiIi0tAaUwuZiIiISIukQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJWKMKZGY228w2m9m7QdciIiIi0lAaVSADHgbGB12EiIiISENqVIHM3ZcA24OuQ0RERKQhNapAJiIiItISJRTILKJHuotJhJlNN7OVZrZyy5YtQZcjIiIictQSCmTu7sCzaa4lIe7+gLsPd/fhXbt2DbocERERkaOWTJflcjMrSFslIiIiIi1UMoFsDPCama03s7fN7B0zezuVxZjZk8BrQF8z22hmV6fy+CIiIiKNUask9j0nbVVEufvF6T6HiIiISGOTcAuZu5cAWcC3o4+s6DYREREROQoJBzIzmwE8DnSLPh4zs39LV2EiIiIiLUUyXZZXA6e4+14AM7udyHive9NRmIiIiEhLkcygfgOqajyvim4TERERkaOQTAvZHOB1M3sm+vx84KHUlyQiIiLSsiQcyNz9LjNbDIwi0jI2xd1Xp6swERERkZYioUBmZgZ0d/c3gTfTW5KIiIhIy9Lklk4SERERaW60dJKIiIhIwJIZ1D8G+K6ZlQB7iYwjc3cfnJbKRERERFqIZMaQXQtoZn4RERGRFEsokLm7m9l/u/uwdBckIiIi0tJoDJmIiIhIwJIdQ3atmRWjMWQiIiIiKZNMIDsnbVWIiIiItGDJdFl+CowGrnT3EsCBr6SlKhEREZEWJJlA9jtgBHBx9Pke4Lcpr0hERESkhUmmy/IUdx9qZqsB3H2HmbVJU10iIiIiLUYyLWQHzCyDSFclZtYVCKelKhEREZEWJJlAdg/wDNDNzG4F/gn8f2mpSkRERKQFSbjL0t0fN7NVwDeITHlxvru/l7bKRERERFqIZMaQ4e7rgHVpqkVERESkRUqmy1JERERE0kCBTERERCRgCmQiIiIiATvsGDIz20N0qovaLxFZy/KYlFclIiIi0oIcNpC5e6eGKERERESkpUrqLksz6wL0ATKrt7n7klQXJSIiItKSJBzIzOwaYAbQHSgCCoHXgDPTU5qIiIhIy5DMoP4ZQAFQ4u5jgCHAlrRUJSIiItKCJBPIKty9AsDM2kYnie2bnrJEREREWo5kxpBtNLMs4Fngr2a2A9iUnrJEREREWo5k1rK8IPrlLDNbBHQG/jctVYmIiIi0IMkM6m8LTAR61nhfPvDL1JclIiIi0nIk02X5HLALWAXsS085IiIiIi1PMoGsu7uPT1slIiIiIi1UMndZvmpmeWmrRERERKSFSqaFbBRwlZl9QqTLsnoty8FpqUxERESkhUgmkJ2TtipEREREWrCEuyzdvQTIAr4dfWRFt4mIiIjIUUg4kJnZDOBxoFv08ZiZ/Vu6ChMRERFpKZLpsrwaOMXd9wKY2e1EFhe/Nx2FiYiIiLQUydxlaUBVjedV0W0iIiIichSSaSGbA7xuZs9En58PPJT6kkRERERalmTWsrzLzP4BjCTSMjbF3VenrTIRERGRNAp7mO0V28nOzMYs2E6/ZFrIcPdVRJZOEhEREWmywh5m6l+mUrS5iPxu+cweN5uQJTOSK7UOe2Yz+2f0zz1mtrvGY4+Z7U5/iSIiIiJHJ+xhtpZvxd0B2F6xnaLNRVR5FUWbi9hesT3Q+g4byNx9VPTPTu5+TI1HJ3c/Jv0lioiIiCSudviqbg07689nMeUvUwh7mOzMbPK75ZNhGeR3yyc7MzvQmhPusjSz2939R4fbJiIiIhKUeF2R8VrDctrlxF5rDGPIkuksPTvONi2nJCIiIoFJpCuyrtawkIXIaZcTeBiDBFrIzOw64HrgBDN7u8ZLnYBl6SpMREREpKbad0XGaw2rDl/V26r3bUytYfEk0mX5BPC/wK+AH9fYvsfdgx0BJyIiIi3C0XZFVreGNVaHDWTuvgvYBVyc/nJERKQpOFBxgI9XfIyHnRMKTqBN+zZBlyTNTO3WsPq6Imu2hkHjD1/xJDOo/xFghrvvjD7vAvw/d5+aruJERKRx2vLJFr748AswaNe5Pbn5xwddkjQjyXZFbt2zlfb7MglXhslonRF0+UckmYlhB1eHMQB332FmQ9JQk4iINHJtO2ZiZjhOu86ZQZcjTVwirWF1dUWaw7ZlmyjespvOX8vixLPyGuUYscNJJpCFzKyLu+8AMLNjk3y/iIg0E9k9jiX/2/l42Dmmm6aklMQd6cB8iN8VWbW/itJte2h/bAd2f7ELrwpjrZpeK1kyger/Aa+a2dPR55OBW1NfkoiINAWdcjoFXYI0MemYI6xVZmt6DD2Bze9vIvfk3oSaYBiD5BYX/5OZrQTOJLK4+HfcfW3aKhMREZEmraEG5n91wNf56oCvp/OjpF2yXY6fAW8AmUCOmZ3m7ktSX5aIiIg0Jc15jrCGkMxdltcAM4DuQBFQCLxGpMVMREREWqjmPkdYQ0hm6aQZQAFQ4u5jgCHAlrRUJSIiIo1S7aWKoOkuV9SYJNNlWeHuFWaGmbV193Vm1jdtlYmIiEijEq8lLGQhdUWmQDKBbKOZZQHPAn81sx3ApvSUJSIiIkFLdH6wusKXuiITl1CXpUWu7Pfcfae7zwJ+CjwEnJ/G2kRERKSB1O6KrG4NO+vPZzHlL1MIe7jObkhQV+TRSqiFzN3dzJ4FhkWf/yMdxZjZeOA3QAbwoLvflo7ziIiIyJfSMT+YJCeZQf3LzawgXYWYWQbwW+AcYABwsZkNSNf5REREWqrarWEalB+8ZMaQjQG+a2YlwF4ik8O6uw9OUS0nAx+5+8cAZjYXOA/Q5LMiIiJHSPODNQ2HDWRm9qi7Xw48ADyTxlq+Dmyo8XwjcEqceqYD0wGOP/74NJYjIiLStGl+sKYjkS7LYWaWC0wBdgN7aj1SJV709kM2uD/g7sPdfXjXrl1TeHoREZGmTV2RTVciXZa/B14CTgBWcXBw8uj2VNgI9KjxvDuaVkNERCQh6ops2g4byNz9HuAeM7vf3a9LYy0rgD5m1gv4F3ARcEkazyciKRAOh9n86XZCGSG6du+iv9xFGkiic4SpK7JpSPguyzSHMdy9ErgR+AvwHvA/7r4mnecUkaO3Yd3nvPG/7/D6C2/zefHWoMsRaZaOZo4wdUU2DcncZZl27r4QWBh0HSKSuAP7KwlZCPcwB/ZXBl2OSLOjOcJahkYVyESk6cnt/zUO7K8kIyPE13t3C7ockSYvka7IeGPDQF2RTVnCgczMBrj72lrbznD3xSmvSkSajNZtW9P/5FTd2yPSsmiOMKmWTAvZ/5jZo8Cvgczon8OBEekoTEREpDnTHGFSUzJLJ51CZFqKV4ncEbkJGJmOokRERJqT2oPyQXOEycGSaSE7AJQD7Yi0kH3i7uG0VCUiItJMxGsJC1lIXZENLRyGsq3QoStEr2tlxT4qPt9Au6/lktG2daDlJRPIVgDPAQVANvAHM5vk7pPSUpmIiEgTlOj8YHWFL3VFpkDt8BUOwyPfgg2vQ49T4MoXCIfD7LvvLDqUrqGs0yDaf38RFsoIrORkuiyvdvefufsBd//c3c8jEtBERERapKOZHwzUFZkS4TCUbobq7uDq8HVXf3j43C/D2YbXIVwZ+bNsK+HdX9C+dA1GFe33vIvv3hzox0i4hczdV5pZF6APkS5LgJK0VCUiItLIaX6wACTQ8hUvfNGha+T16v06dKVVB9jfdQitt6ym8itDad35q4F+tGSmvbgGmEFkjckioBB4DTgzPaWJiIg0HpofrIGlMHxh9uX+NcaQtbnur1C2ldY1tgUlmTFkM4iMH1vu7mPMrB/wi/SUJSIiEhzND9bAGiB8EQpBx1qTV8fbFpBkAlmFu1eYGWbW1t3XmVnftFUmIiISAM0PlmZBha9GLplAttHMsoBngb+a2Q4ic5GJiIg0WeqKTJE400oofCUumUH9F0S/nGVmi4DOwEtpqUpERKQBqCvyCNQVvGoHLVD4SsIRLS7u7v9IdSEiIiLplugcYeqKjEqkhSsUih+0QOErCYcNZGa2B/B4LwHu7sekvCoREZGjdKQD80HhK6nuxY7d4gctUPhKwmEDmbt3aohCREREUkVzhB1GKsd2Qd1BS+ErYUfUZSkiItKYaGB+PRpiYD00+mklGrtkuizj/bdBXZYiItKgNEdYPXRXY5OlLksREWkyWuwcYZpSotlLqssyzlqWuPuSVBclIiJSuyUMaBldkYkELVD4ama0lqWIiDQ68VrCQhZqfl2RR9rKBQpfzYzWshQRkcAlOj9YXeGr0beGJTqZajJ3Nip8NStay1JERBrU0cwPBk0wfCUzmWoyrVwKX82K1rIUEZEG0+zmB0v1ZKrJtHIpfDUrCQUyi/wmfM/dd6K1LEVEJEHNan6whppMVUGrRUookLm7m9mzwLDoc61lKSIiB2lW84MFOZmqtEjJdFkuN7MCd1+RtmpERKRJajLzg2k+L2mkkglkY4DvmlkJsJcvFxcfnJbKRESk0WoSXZGaz0uakGQC2Tlpq0JERJqMRtkVqfm8pIlLOJC5e0m8mfqBkpRXJSIijUaic4Q1WFdkqgfXK3xJI6CZ+kVEJOZo5ghLefhK9WSqms9LGjHN1C8iIkDAc4Q11GSqms9LGqlQEvtWuHsFEJupH9BM/SIiTVTYw2wt34q7A/Uv3J1hGXFbw44ojIXDULoZoueNha+7+sPD534ZzuKN96oOX6FWh4avH7wHV714aPhqDNNoiByGZuoXEWkBGmSOsHRPKQEa3yXNVjKD+i+IfqmZ+kVEAuReRVXVBuAAGRnHY9a23v3TMkdYUFNKgMKXNEvJtJDFaKZ+EZHguO8kHP6cyKiTNrRqlRt7rXZLGNTfFZnQwHxNKSGSdsncZZkJXA+MAhz4J3B/9bgyERFpKG2AEO5hIn81R8RrCQtZKLmuSE0pIRKIZFrI/gTsAe6NPr8YeBSYnOqiRESkbqFQJ1q1GkjYK9mx7wDZ7bze+cHqCl8hh5yq8JcH1pQSIoFJJpD1dfeTajxfZGZvpbogERE51CFdkdaOa15ObH4waKDwpSklRI5YMoFstZkVuvtyADM7BViWnrJERKRaUoPyz36Q7Ts+IvvYEw/uhtR6jSKNWjKB7BTgCjP7NPr8eOA9M3sHLTIuIpIyCS/c3TWfoi01WsPCYUJ/mkBOQ0ymKiIplUwgG5+2KkREWqi484O9NDUWtGaPm012my7khzMoopJ8zyC7TRfMndmff8H2f/2L7KqvYe7xg1fHbgpfIk1AUouLp7MQEZGWJl742l62jaIvVlFlUPT5KraXbSPHndmfFrOdMNmEsPJtAIQ2vEFOuBI2vKHJVEWOQDjsbNu7n5yObVKzBNhRSGbpJBEROQrhqkq2bl2HhyOD62Phy6ti4Ss7HCZ/3z4y3Mnft4/scBg6dCXU4xRyCGHVQSuZJYRAywhJkxMOO1v27Ist7ZXqbeGwc/EflzPiV3/jogeWEw5/uW8QjmhiWBEROYxa83mFqyqZ+ugpFLGPfNoy+/LXY+GrqG0b8vftJzscxjp2Y3ab3mzfuJLsrw/HqkOUppSQRqKuVqV42490W3VYWlWyg2G5XXhyWiFASrdt27ufVSU7qAw7q0p2sG3vfrp2qn/Vi3RSIBORJskry6CqDNoci1nAjf1xJlMNP3Iu2/8VDVVXvsj2HR9RxD6qzCjyfWzf8RE52X3jhq/QlS+Soykl5AikMhTF2xYvKIVCqQ9Q8cISkNJtOR3bMCy3S+y8OR3bpP37U5+kA5mZXQJMAKoAA5539ydTXZiISF28ci++aQFUlkFWPnbssIY7eQLhK7x3M1P3r6eo+1fI37ee2Xs3k33sieTTliKPtJBlH3ticuFLmqXm0qqU6gBVV1hK5TYzi32mxjCG7EhayE5394uqn5jZbwEFMhFpOJV7ImGsVUco3wQcZSCrHbLq2h5nPq944Wt7RiuK2raNDMxv25btGa3ICYWYffnrX84RFoq26il8NUrpbmmq3tZcWpVSHaDqCkup3hYKWaDdlDUdSSBra2bnAhuA7kC71JYkInIYbbvCMf2gYjMcW5DcexNZqzEUqnMy1fCG1yN3O254HSvbGjd8ZbfLJv8rwyJ3T34ln+x20YW7M1qRk9MvDRekZQmiWw5S29IUClmzalVKR4CKF5ZSva0xOZJAdj3wHSAP2AjckNKKREQOwywDyxl5+B2PdKHsjt3ihq9w+2ymHt/zy4H57bPJttAh4cvMmD0+zsLdzVxTbFWKt60hWpq6dmrb7FqVmnNYaghJBzJ3LwMeq35uZj8Cbk9lUSIiSTvS8FXH3F3xwtf2fTsoClVR5UaRVbF9347IckVxwlfIQuS0ywnyihwknWEJg3C4ikv+uKLJtSrF29YQLU2gViU52JEM6v+fmk+BfBTIRKQhpTJ8mRG+YsEh6z/GC191Ld59NOGrqbcqDc3twhPTctm2dwcrS7ZTFaZJtSrF29ZQLU2gsCRfOpIuy93ufk31EzO7P4X1iIgcLM3hK+xhpv71moMW7g5ZKO5akWbGg2c/xPrtX9An+6stdqzSods6k9OxE8NyM1lVsq/JtSqppUkagyMJZLfWev5/U1GIiMjRhC/vfgpsjOxnsfD1PNu3bCK729e/DF8vX3PwUkVxFu7OaZeDO5R9Oo3SjRspK++BO7g7lz74Rosfq1Rz29DcLuR07ILZbp6YNogde7OaXKuSwpI0BkcyhuyTWs+3p64cEWmO4rYWVVV9GZaidzX6w9/6MlRFw5dveB0LV0b+rCN8hR0u2f9/+aSihJ77evKkA+5c9OBy3ty4kaHdezB32gi2lW9n1RerwcKs+nw128q2c2zmsbStPIG9ofW0rTqBLm2OBWDb3v28WbKLynBH3izZqbFKh9nmdKNVKIOunQ7+3isoiSQm4UBmZj+Is3kXsMrdi1JXkog0lJSPVaodsqL7XfLAq3zyaQk9j+/Jk9NHgIdZd/vpnLhvDe+1HUi/H/0D9m4l/OlyWlFFZclyQqVboENX1rXqz4n71vBBq/70a5cDccLXtr37WfnpLirDndn2aSQ8hT3Mu+HbyexdwrvluWwpfQqjI1XluYTalRAuz8WrOrK97ADbPppKlZVS4Z3YXnZAY5WOYJuRcdifNxGpWzItZMOjj+ejz88FVgDXmtmf3f3XqS5OpCVr7HMtJRKyQhkZbCut4PubfsDQ1h/w5qYT2Va6GCvbyon71tDKwpy4bw3bt2zC23fl43AfhtoHvOl9OIHOUHaA80p/TOfwbnYe6MxrZQcADglfOR3bMDS3c6w1LKdjG7aVbyOjXQlYmIx2JWS02kt2u2wGhX7Em+sj+1UHimG52awqCWmskogEJplAlg0MdfdSADP7OfA0cBqwClAgkxahqd8VdyTjl94s2UZWeDerSiK14uGEQlbOV3uQY7vpEvqQVoQZZh+SYbuh29d5r+3ASMtX24H07/Z1MOPfjrsrFvLmRkPF0DhhqXb4cpz2x/+Rju2KaN8tH6eQ7HbZDPvKkEPmB5s77dRG06okIlItmUB2PLC/xvMDQK67l5vZvtSWJXJkGnurUuO5K67u8UvDj+8cC0U5HduAh3mu422x8JTTYTzs3ZpYyAKsYzcyji/EN75ORo9TYgto9/vRP9i+ZRP9a3RvPjH9VLbtHV5vWAp7+JDwtb1iO0VbDh2YH3d+MAUlEWmEkglkTwDLzew5IvOPfQt40sw6AGvTUZw0Hy2xVamx3hV30Pila04+6C5EwmGebHMrZL4ObU/B/AUo20b/yvcwC0f+LNsGSYQszLCrXjhkrchQRgY5X+1x0M9J3GBkjrXaQ6SRnrjhKx3zg4mINKSEA5m732xmC4FRRALZte6+MvrypekoToKjVqVmeFdcnPAV+tO3yak1pYRtPHRKCYvO52U15vNKNGRFXkhsAe2whw9q0Qp7mKl/mXrQHGHxwpeZxaawaElLFYlI85HstBeVQBhwIl2W0sBS3aoUb3uqA1Sza1VqCnfF4XS1XUDX6m9y3PCV6GSqsf1rhK9EQ1ai4oWvuuYIixe+1BomIk1ZMtNezACmAfOItJA9ZmYPuPu96SquqWlq45dCofjHTHWAatKtSo3trrjaE6fG23aUM9k3RPiCQ1vD4oUvdUWKSEuRTAvZ1cAp7r4XwMxuB14DjjqQmdlkYBbQHzi5Rldo4IJqVYq3LdVBqWuntnGP+f+3d/exktX1Hcff39lVwQUBFxUtD6sRrJZaV7cUqhbRNcFiER/qQzQiEjfWNMYQTTVUm2iND9jaNNqWFS1YsVqICBUtAmpVKtRVEATkQSyylSC7PiK4snu//WPOhdvLPJy998z5zZn7fiVkZ86ce+Z7f9yd/dzv7ze/aTpAdaarNG2Ld15gRwAAEqVJREFUvesELehE+HrAt+ZUpCT9P7sTyALYteD+rupYE74LvAg4vaHrNWJQyGqrqzTo2CQ6TYOuOYkANVNBqWnDul51ghZMffiCet0wpyIlrWS7E8j+GbgiIs6jH8ROAD7WRBGZeT0wdb/9DgpZbXWVBh2bRFAadk3D0oTU6Xr1evW7XDBV4Wtx8Jo/VqcbBoYvSStXZGb9kyOeCjydfiD7atMfmRQRXwHeXHfKcsOGDblly+RmNzOTl2++vxP2qU1HEhFDj7extYM6pO7arr99Yj949VbDKdf3Q1MmnHnc/ee+5sL7rzFuDVmpb3dA8OpFj233bGPjORvZlbtYFau45E8vYf899x8Y3iRplkXEtzJzw6DHxnbIIuKX9N9Ved+hBY9lZj6sZhGXAAcMeOjUzDy/zjWq62wCNgEcfPDBdb9sSYZ1j9rqKtlp6pAmF9bD7nW5Wpp2XKzuNKTdMEkab2wgy8y9m3iizNzY0HU2A5uh3yFr4pqjDAtFhqUVrI13NUKxoDXIUvcHA1yYL0k17O4+ZNLsmqEtJZq03P3BwG6YJI3TK10AQES8MCK2AkcBF0bERaVr0oybm4O7ftxfqzV//6zn99dznXlc//6gY6PCV2/1A8PXKdffv/4L7g9fU9wlmss5tt2zjfn1paP2B1sVqwZOQ9oFk6TdMxUdssw8DzivdB2aUUvtcsFMd74GcX8wSSpjKgKZ1JimF9fPcPgC9weTpGlhIFM3LWcz1d3pcs1w+HJ/MEmaHgYyTb+mN1PtwJYSTWtiYb4kaXKmYlG/dJ86i+2HrfeascX1y+HCfEnqFjtkasekt5SAmVvfVddSpyJdmC9J08NApubVCVow85uptmG5U5GuDZOk6eCU5Rg7duzgjjvuYOfOnaVLmU5LnWJcAft5TYJTkZI0m+yQjbBz507OP/8Ctm3bxiGHHMJxx/1x6ZLKckuJopyKlKTZZSAbYceOHWzfvp21a9eydetW5ubm6PVWSFOxjY8MMnyN5B5hkrRyrJB0sTRr1qzhyCP/gJ07d3LMMc+a3TC21GnH5U4xrtBpx8UWT0POH3vtRa9l4zkbOemik5jLOaciJWmG2SEbY/369axfv750Gc1oazNVu1y1DZqG7EXPPcIkaYWZ0ZbPCrO4wzXo2KCuF7i4vmV1FuUDdsMkaYWxQ9Y1TW4psdcj7XxN0HI+qsiF+dpd+cvbyXt+Quz3WOJBDy1djqTdZCCbZktdWA9uplpYEx9V5MJ81ZW//hm7bvo85C7iFz9k1eOfV7okSbvJKctp0eTC+t2ZcgSnHRvg/mAqK4E5oAdzu0oXI2kJ7JCV4JYSM8X9wVRa7LEfvcc9l7x7O721h5UuR9ISGMgmrY3wNShoGb4mxv3BNI16+66DfdeVLkPSEjll2aRS+3lpYhZPRbo/mCRpEuyQLVWpzpda08TCfEmS6rBDNs6wPb7sfM0cF+YvT5Ik95DcW7oUSeocO2SjDOp69Xp2vmbAUvcIc2H+cMl2YDuwCjiE4EGFK5Kk7jCQjeJmqjNpuVORLswf5h76YWwXcC8YyCSpNgPZKG6mOhPqvCty2I75hq/6gkeQ3Ak8BNijdDmS1CkGslGGBS8wfHWEU5HtCfYgOKh0GZLUSQaycQxeneIeYZKkLvJdluqkxe+InD/mHmGSpC6yQ6bOGTQN2Yuee4RJkjrLDpmmXp39wQC7YZKkzrJDpqmy1P3BABfmS5I6y0CmqdHERxW5MF+S1EVOWaoYP6pIkqQ+O2Qqwv3BJEm6n4FMrXB/MEmShnPKUo1bPBXp/mCSJI1mh0yNamJhviRJK40dMi2LC/MlSVo+O2Sqbal7hLkwX5Kk0QxkqmW5U5EuzF+e3HUvu26/EXqrWHXAoURvVemSJEkNcspSAzkVOV12/egGdt6yhZ03foNdd95auhxJUsPskOkBnIqcQr1VkAkRdsckaQYZyOQeYR2w6tGHweqHQK9Hb+1BpcuRJDXMKcsVZPE05Pwx9wibftFbxepHPY7Vj1hH9PxrK0mzxg7ZCjFoGrIXPfcIkyRpCvir9oyqsygfsBsmSdIUsEM2A5a6PxjgwnxJkqaAgazjmvioIhfmS5JUllOWHeP+YJIkzR47ZB3i/mCSJM0mA9kUc38wSZJWBqcsp8TiqUj3B5MkaeWwQzYFmliYL0mSussOWQEuzJckSQvZIZuwpe4R5sJ8SZJWDgPZBC13KtKF+ZIkrQxOWTbIqUhJkrQUdsga4lSkJElaKgPZErlHmCRJaopTlmMsnoacP+YeYZIkqSl2yEYYNA3Zi557hEmSpEbZIRthUPAC7IZJkqRG2SEbYdCifMCF+ZIkqVEGshFGBS8X5kuSpKYYyMYweEmSpElzDZkkSVJhUxHIIuK0iPheRFwdEedFxL6la5IkSWrLVAQy4GLg8Mx8MnAj8LbC9UiSJLVmKgJZZn4xM3dWdy8HDixZjyRJUpumIpAt8lrgC8MejIhNEbElIrbceeedLZYlSZI0Ga29yzIiLgEOGPDQqZl5fnXOqcBO4Oxh18nMzcBmgA0bNuSw8yRJkrqitUCWmRtHPR4RJwLPB56TCz84UpIkacZNxT5kEXEs8BfA0Zl5d+l6JEmS2jQta8g+BOwNXBwRV0XEP5UuSJIkqS1T0SHLzMeXrkGSJKmUaemQSZIkrVgGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJU2FQEsoh4V0RcHRFXRcQXI+IxpWuSJElqy1QEMuC0zHxyZj4F+BzwjtIFSZIktWUqAllm/mLB3TVAlqpFkiSpbatLFzAvIt4NvBr4OXBM4XIkSZJaE5ntNKMi4hLggAEPnZqZ5y84723AHpn5V0OuswnYVN19AnBD07Xuhv2BbQWff5Y4ls1xLJvleDbHsWyOY9mcNsfykMx8xKAHWgtkdUXEIcCFmXl46VrGiYgtmbmhdB2zwLFsjmPZLMezOY5lcxzL5kzLWE7FGrKIOHTB3eOB75WqRZIkqW3TsobsvRHxBGAOuBV4feF6JEmSWjMVgSwzX1y6hiXaXLqAGeJYNsexbJbj2RzHsjmOZXOmYiynbg2ZJEnSSjMVa8gkSZJWMgNZDRFxbETcEBE3R8Rbh5zz0oi4LiKujYhPtl1jV9QZy+q8l0RERkTxd75Mq3FjGRGnVD+TV0fEpdU7mDVAjbF8SER8unr8iohY136V3RMRD4+IiyPipurP/Qac85SI+Eb12nl1RLysRK3Trs5YLjj3YRHxvxHxoTZr7Iq6YxkRB1cf53h99Vq6bpJ1GcjGiIhVwIeB5wFPAl4REU9adM6hwNuAp2fm7wBvar3QDqgzltV5ewNvBK5ot8LuqDmWVwIbMvPJwLnA+9utshtqjuXJwE8z8/HAB4H3tVtlZ70VuDQzDwUure4vdjfw6uq181jg7yJi3xZr7Io6YznvXcB/tlJVN9Udy4/T/2jHJwJHAD+eZFEGsvGOAG7OzFsy8zfAp4AXLDrndcCHM/OnAJk50f9pHVZnLKH/YvJ+4NdtFtcxY8cyM7+cmXdXdy8HDmy5xq6o83P5AuCs6va5wHMiIlqssasWjttZwAmLT8jMGzPzpur2j+j/ozdw48wVbuxYAkTE04BHAV9sqa4uGjuW1S9lqzPzYoDMvGvB6+lEGMjG+y3gtgX3t1bHFjoMOCwiLouIyyPi2Naq65axYxkR64GDMvNzbRbWQXV+Lhc6GfjCRCvqrjpjed85mbmT/ke8rW2lum57VGbeDlD9+chRJ0fEEcCDge+3UFvXjB3LiOgBfwO8peXauqbOz+VhwM8i4jMRcWVEnFZ10ydmKra9mHKDfgte/NbU1cChwLPodyG+FhGHZ+bPJlxb14wcy+rF5IPAa9oqqMPq/Fz2T4x4FbABOHqiFXVXnbGsPd4rzaiPxdvN6zwa+BfgxMyca6K2rmlgLN8AfD4zb1vpDdwGxnI18ExgPfBD4NP0/236aBP1DXtCjbYVOGjB/QOBHw045/LMvBf4QUTcQD+gfbOdEjtj3FjuDRwOfKV6MTkAuCAijs/MLa1V2Q11fi6JiI30X4COzswdLdXWNXX/jh8EbI2I1cA+wE/aKW+6ZebGYY9FxB0R8ejMvL0KXAOXc0TEw4ALgb/MzMsnVOrUa2AsjwKeGRFvAPYCHhwRd2XmqPVmM6mBsdwKXJmZt1Rf81ngSCYYyJyyHO+bwKER8diIeDDwcuCCRed8FjgGICL2p9/qvKXVKrth5Fhm5s8zc//MXJeZ6+ivezKMDTb257Ka/j2d/hi6rnG4On/HLwBOrG6/BPhSuoljHQvH7UTg/MUnVGN+HvDxzDynxdq6ZuxYZuYrM/Pg6vXzzfTHdMWFsRrGjiX914X9ImJ+PeOzgesmWZSBbIxqvcifAxcB1wP/lpnXRsQ7I+L46rSLgO0RcR3wZeAtmbm9TMXTq+ZYqoaaY3ka/d+Sz4mIqyJiccgQtcfyo8DaiLgZOIXR73DT/d4LPDcibgKeW90nIjZExBnVOS8F/gh4TfVzelVEPKVMuVOtzliqnrFjmZm76IfaSyPiGvrLFj4yyaLcqV+SJKkwO2SSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySY2KiLtK19CEhd9HE99TRKyLiHsi4qrlXmvEc+xZbaz6m+pTQyR1hIFM0ooUfW2/Bn4/Mye2C31m3lNd/wGfayppuhnIJE1ERJwSEd+t/nvTguNvj4jvRcTFEfGvEfHmJV5/XXWdsyLi6og4NyIeuuDxz0bEtyLi2ojYtOBrro+IfwC+DRw06Lwxzzvour9f1bBHRKypHju8Zv1nVGN0dkRsjIjLIuKmiDhi2PNVx9dExIUR8Z3q61+2lHGUNB386CRJjaqm944GzgSOpP8ZcFcArwJWAWcARwGr6Yei0zPzA0t4nnXAD4BnZOZlEfEx4Lr5a0XEwzPzJxGxJ/0PCj4a2Bu4BfjDzLx82HmZuT0i7srMvea/pwW3h53/18AewJ7A1sx8z4B6P5eZhy+4fzOwHri2utZ3gJOB44GTMvOEEc/3YuDYzHxddb19MvPn1e3/ATZk5rbdHVdJZdghkzQJzwDOy8xfZeZdwGeAZ1bHz6+m1n4J/Pv8F0TE4yLioxFxbnV/TdX9+khEvHLI89yWmZdVtz9RXX/eGyPiO8DlwEHAodXxW+fD2Jjzhhl2/jvpf1DxBuD9Y64x7weZeU1mztEPZZdm/7fka4B1Y57vGmBjRLwvIp45H8YkdZOBTNIkxG4eJzNvycyTFxx6EXBu1QE6ftiXDbofEc8CNgJHZebvAVfS714B/Oq+Ykaf98DiR5//cGAv+l24oddYZMeC23ML7s8Bq0c9X2beCDyNfjB7T0S8o+ZzSppCBjJJk/BV4ISIeGhErAFeCHwN+DrwJ9Vaq72A40Zc40Dgtur2riHnHBwRR1W3X1FdH2Af4KeZeXdE/Db9qdNB6p5X5/zNwNuBs4H3jblOXUOfLyIeA9ydmZ8APgA8taHnlFTA6tIFSJo9mfntiDgT+O/q0BmZeSVARFxAf63UrcAWYNhU21b6oewqhv/yeD1wYkScDtwE/GN1/D+A10fE1cAN9Kf7Bql73sjzI+LVwM7M/GRErAL+KyKenZlfGnO9cUbV97vAaRExB9wL/Nkyn0tSQS7ql9SqiNgrM++q3hH5VWBTFeDWAu+mvw7rDODvgQ8Bvwa+nplnL7rOOhYskp92bdbron6pe+yQSWrb5oh4Ev21UGdl5rcBMnM78PpF557UdnETtAvYJyKumtReZNU7Mb8BPIj+OjRJHWGHTJIkqTAX9UuSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIK+z/6fgOI7ZfQIAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXyU5b3//9dnwpIISDCAVkGIHJQtMSzBIKBiFbC2qEV+7hsKdTvltOfgaf11oa1+q9Wvx2pXraBVK54WVFTaWlssFEUBCS4IKhIKBWVfsgHJfL5/zGQMZAIzZCZ3lvfz8eBB5p577vszN8Pw5rqu+7rM3RERERGR4ISCLkBERESktVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMRFoNM3vKzDab2R4z+9DMbopub2dmfzCzEjNzMzvnkNdNN7P3zGyvma0zs+mBvAERabEUyESkNfkx0NvdjwUmAHeZ2dDoc/8ArgY+jfM6A64FugDjgdvN7PJGqFdEWgkFMhFpNdz9fXffV/Mw+quPu+939wfd/R9AdZzX/cTd33b3KndfA7wAjGy8ykWkpVMgE5FWxcx+YWblwGpgMzA/ydcbMBp4Pw3liUgrpUAmIq2Ku98KdCISquYC+w7/ijpmEPnunJXaykSkNVMgE5FWx92ro92TPYBbEn2dmd1OZCzZhbW6PkVEGqxN0AWIiASoDdAnkR3NbDLwLeAsd9+Y1qpEpNVRC5mItApm1t3MLjezjmaWYWbjgCuAv0Wfb29mmdHd25lZZnS8GGZ2FfB/gPPd/ZNA3oCItGjm7kHXICKSdmbWDfgDcDqR/4yuBx5y90ejz5cAvQ55Wa67l5jZOiLdm7W7KZ9y95vTXriItAoKZCIiIiIBU5eliIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgE5GUMrPSRjxXtZkVm9n7ZrbSzL5pZqFaz79+mNdmm9mtjVNpnXP3NrMKMyuu9fi9FBw3K3o99ptZ14ZXKiKNRYFMRJqzCncvcPeBwPnAl4Dv1zzp7mce5rXZQCCBLGqtuxek8oDuXhE95qZUHldE0k+BTETSItpa9V7013/U2v5dM1ttZn8xs2fM7L9ScT533wJMBW6vtQZlafT3Dmb2crQV7T0zuwy4B+gTbVG6L7rf82a2PNriNjW6rbeZfWBmj0a3v2JmWdHnrjWzd6LHfbLWe7zazN6KHvvXZpaR6Psws1PMbIWZFUbPvdrMnoie5w9mdszhzi0izVOboAsQkZbHzIYCNwBnAAa8aWZ/BzKAicBgIt8/bwPLU3Ved/8k2mXZHfis1lPjgU3ufmG0vs7Am8CgQ1qpJrv7jmjgWmpmc6Lb+wJXuPsUM/tfYKKZrQD+f2Cku28zs+Oix+4PXBbdfsDMfgFcBfz2SPWb2WnAbOAGdy82s97AacCN7r7YzGYCt5rZH+OdW0SaLwUyEUmHUcBz7l4GYGZzgdFEWuVfcPeK6PYXa15gZqcQCRmd3f1SM+sA/ALYD7zm7k8neG6Ls+1d4H4zuxd4yd0XmVmXOPt93cwuif7ck0gQ+xRY5+7F0e3Lgd5AF+AP7r4NwN13RJ//IjCUSKADyAK2JFB3N+AFYKK7v19r+wZ3Xxz9+Sng60QWOY93bhFpptRlKSLpEC8UHW477v6Ju99Ya9NXiYSOKcCEhE4aCXXVHBKA3P1DIiHpXeDHZva9OK89BzgPGOHupwMrgMzo0/tq7VpN5D+zBni8MoAnomPbCtz9NHefkUD5u4ENwMhDth96Dj/MuUWkmVIgE5F0WAhcbGbHRFu6LgEWAf8AvmJmmWbWEbjwMMfoQSSgQCQEHZaZdQN+BfzM3f2Q504Eyt39KeB+YAiwF+hUa7fOwE53LzezfkDREU75V+D/M7Oc6DmOq7X9UjPrXrPdzHodqX4iLYEXA9ea2ZW1tp9sZiOiP19B5BrWd24RaabUZSkiKefub5vZ48Bb0U2/cfcVAGY2D1gJrAeWEWkZimcjkVBWTP3/ecyKTh3RFqgCngQeiLNfHnCfmYWBA8At7r7dzBZHp5v4I/Ad4GYzewdYAyw5wnt838zuBv5uZtVEWtSud/dVZvYd4JXoeLYDwG3R93tY7l5mZl8G/mJmZUSu0wfAdWb2a+Aj4JfR0Fjn3Ec6vog0XXbIfyRFRNLKzDq6e2n0bsGFwNRogMsB7iYyfcVvgIeAnwGVwD+SGEPW5EUH67/k7oNSsV+c15UAw2rGmIlI06cWMhFpbI+Y2QAi47OecPe3Adx9O3DzIfve0NjFNZJqoLOZFadyLrLo3aFvEGkxDKfquCKSfmohExEREQmYBvWLiIiIBKxZBDIz62lmC6KzZb9vZtPi7HNVdNbqd8zsdTM7vdZzJWb2bnTW7GWNW316JXhtzjGz3dH3X1z7ln8zG29ma8zsYzP7VuNWnz4JXpfpta7JexZZF7Fmcs8W+ZmJ3t34VnR29/fN7Adx9mlvZs9GPxNvRscx1Tz37ej2NWY2rjFrT6cEr8s3zWxV9Dvmr7XvnLTP19Qsjt600GIkeG2uN7Otta7BTbWeu87MPor+uq5xq0+fBK/L/9S6Jh+a2a5az7XYzwyAmWVYZMWJl+I81+q+YxLi7k3+F/AFYEj0507Ah8CAQ/Y5E+gS/fkC4M1az5UAXYN+HwFem3OIDAw+9LUZwFrgFKAdkTu6BqS75qZyXQ7Z/yvA31r6Z4bI/FUdoz+3JTJbfdEh+9wK/Cr68+XAs9GfB0Q/I+2B3OhnJyPo99SI12UMcEz051tqrkv0cWnQ7yHga3M9kelGDn3tccAn0d+7RH/uEvR7aqzrcsj+/w7MbA2fmej7+ybwu3r+7Wl13zGJ/GoWLWTuvtk/H/i7l8ht4Ccdss/r7r4z+nAJkdvlW7xErs1hDAc+9siEnPuJLNlyUXoqbVxHcV2uAJ5pjNqC5BGl0Ydto78OHUh6EfBE9Oc/AF80M4tun+3u+9x9HfAxkc9Qs5fIdXH3Be5eHn3Ymr5jEvnM1Gcc8Bd33xH9fv4LkWWsmr2juC6t4jsGwMx6EJlj8Df17NLqvmMS0SwCWW3Rps3BRP43Up8bicwrVMOJzAm03KILBrdER7g2I6JN6380s4HRbSfx+cSbEJn3KdEw12wc6TNjkekXxgNzam1usZ+ZaFdCMZHZ7P/i7odel9jnwt2riMwTlkML/7wkcF1qO/Q7JtPMlpnZEjO7OK2FBiDBazPRPl8AvWd0mz4zkf16EWnx+VutzS35M/MgcAf13+nbKr9jjqRZBTKLzOw9B/gPd99Tzz5jiHxZ/netzSPdfQiRrszbzOystBfbyI5wbd4GenlkOZiHgedrXhbnUC3qtttEPjNEuisX+8HrAbbYz4y7V3tkqoUewHAzO3SOq/o+Fy3685LAdQHAzK4GhgH31dp8srsPA64EHjSzPmkvuBElcG1eBHq7ez7wKp+3fugzE3E5kWXAaq840SI/MxaZ2HiLuy8/3G5xtrX475gjaTaBzMzaEvmH9Wl3n1vPPvlEmkgv8sicRgC4+6bo71uA52hhTaBHujbuvqemad3d5wNtzawrkf999Ky1aw9gUyOU3CgS+cxEXc4hXQkt/TMD4O67gNeo24UU+1yYWRsiSwrtoIV/Xmoc5rpgZucRWQB9grvvq/Wams/LJ9HXDm6MWhtbfdfG3bfXuh6PElk3FPSZqXG475iW9pkZCUywyOTEs4FzzeypQ/Zp1d8x9WkWgSzat/wY8IG7x1sWBTM7GZgLXOORhYRrtncws041PwNjgffSX3XjSPDanBDdDzMbTuTPfTuwFOhrZrlm1o7Il0aLuNsnkesS3a8zcDbwQq1tLfYzY2bdzCw7+nMWkcW0Vx+y2zyg5m64S4nc7ODR7ZdH75DKBfry+dJIzVoi18XMBgO/JhLGttTa3sXM2kd/7krkH6RVjVV7uiV4bb5Q6+EEImM2Af4MjI1eoy5E/i79Of1Vp1+Cf5cws9OI3NDwRq1tLfYz4+7fdvce7t6byL8pf3P3qw/ZrdV9xySiuczUPxK4Bng32l8PcCdwMoC7/wr4HpE+6F9Es0dVtDn4eOC56LY2wO/c/U+NW35aJXJtLgVuMbMqoAK4PPrhrzKz24l8QWYQuQPo/cZ+A2mSyHWByKLXr7h7Wa3XtuTPzBeAJ8wsg0gw/193f8nMfggsc/d5RILsk2b2MZH/tV4OsbUb/5fIPxxVwG2HdME0Z4lcl/uAjsDvo5+Nf7r7BKA/8GuLrJMZAu5x9xbxj2tUItfm62Y2gcjnYgfRdTXdfYeZ/YjIf/4AfnjI0IDmLJHrApHB/LOj37k1Wvpnpg59xxyZZuoXERERCViz6LIUERERackUyEREREQCpkAmIiIiEjAFMhEREZGANZlAZgks1CoiIiLSEjWZQAbsA86NziZfAIw3s6JkD9LSlrlJFV2X+HRd4tN1qZ+uTXy6LvHputRP1+ZgTSaQNXAB29r0Bxyfrkt8ui7x6brUT9cmPl2X+HRd6qdrU0uTCWSQ9OK+IiIiIi1Ck5wYNrocxXPAv7v7e4c8N5Voqs7IyBjavn37g15bVVVFmzbNZQGCxqPrEp+uS3y6LvXTtYlP1yU+XZf6tcZrU15efsDd28V7rkkGMgAz+z5Q5u7317fPsGHDfNmyZY1YlYiIiMjRMbPl0WUd62gyXZaJLtQqIiIi0tI0pbbCuAu1BlyTiIiISNo1mUDm7u8Ag4OuQ0RERKSxNZlAJiIizd+BAwfYuHEjlZWVQZciEpjMzEx69OhB27ZtE36NApmIiKTMxo0b6dSpE71798bMgi5HpNG5O9u3b2fjxo3k5uYm/LomM6hfRESav8rKSnJychTGpNUyM3JycpJuJVYgExGRlFIYk9buaP4OKJCJiEiLNmPGDO6/v94pLXn++edZtWpVI1YkUpcCmYiItGoKZNIUKJCJiEiLc/fdd3Paaadx3nnnsWbNGgAeffRRCgsLOf3005k4cSLl5eW8/vrrzJs3j+nTp1NQUMDatWvj7ieSbgpkIiISKHdnX1V1yo63fPlyZs+ezYoVK5g7dy5Lly4F4Ktf/SpLly5l5cqV9O/fn8cee4wzzzyTCRMmcN9991FcXEyfPn3i7ieSbpr2QkREAuPuLPlkOx9tKaVv944UndLwOzQXLVrEJZdcwjHHHAPAhAkTAHjvvff4zne+w65duygtLWXcuHFxX5/ofiKppBYyEREJzP7qMB9tKeWETpl8tKWU/dXhlBw3Xqi7/vrr+dnPfsa7777L97///XqnJUh0P5FUUiATEZHAtG+TQd/uHfl0byV9u3ekfZuMBh/zrLPO4rnnnqOiooK9e/fy4osvArB3716+8IUvcODAAZ5++unY/p06dWLv3r2xx/XtJ5JO6rIUEZFAFZ2Sw5BeXVISxgCGDBnCZZddRkFBAb169WL06NEA/OhHP+KMM86gV69e5OXlxULY5ZdfzpQpU3jooYf4wx/+UO9+Iulk7h50DUdt2LBhvmzZsqDLEBGRqA8++ID+/fsHXYZI4OL9XTCz5e4+LN7+6rIUERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxERFqUkpISBg0a1GjnmzFjBvfff39C+37pS19i165dDTqGtEyaGFZERASorq4mIyM1k9Meyt1xd+bPn5+W40vzpxYyERFpsT755BMGDx7Mm2++yfTp0yksLCQ/P59f//rXALz22muMGTOGK6+8kry8PEpKSujfvz9Tpkxh4MCBjB07loqKCgDWrl3L+PHjGTp0KKNHj2b16tWHPXfNsW699VaGDBnChg0b6N27N9u2bQPg7rvv5rTTTuO8885jzZo1sdctXbqU/Px8RowYwfTp02OtfdXV1XHfg7QMCmQiIhKocNjZuncfqV45Zs2aNUycOJFZs2axcuVKOnfuzNKlS1m6dCmPPvoo69atA+Ctt97i7rvvZtWqVQB89NFH3Hbbbbz//vtkZ2czZ84cAKZOncrDDz/M8uXLuf/++7n11lsTquHaa69lxYoV9OrVK7Z9+fLlzJ49mxUrVjB37lyWLl0ae+6GG27gV7/6FW+88cZBLXaPPfZYve9Bmj91WYqISGDCYeeKR5ewfP1OhvbqwjNTigiFrMHH3bp1KxdddBFz5sxh4MCB3HXXXbzzzjv84Q9/AGD37t189NFHtGvXjuHDh5Obmxt7bW5uLgUFBQAMHTqUkpISSktLef3115k0aVJsv3379h2xjl69elFUVFRn+6JFi7jkkks45phjAJgwYQIAu3btYu/evZx55pkAXHnllbz00ksAvPLKK3HfQ+3apflSIBMRkcBsL9vP8vU7qQo7y9fvZHvZfrp1at/g43bu3JmePXuyePFiBg4ciLvz8MMPM27cuIP2e+211+jQocNB29q3//z8GRkZVFRUEA6Hyc7Opri4uN5zbtiwga985SsA3HzzzYwfP77OsWszqxs8D9dKWN97kJZBXZYiIhKYrh3bMbRXF9qEjKG9utC1Y7uUHLddu3Y8//zz/Pa3v+V3v/sd48aN45e//CUHDhwA4MMPP6SsrCzh4x177LHk5uby+9//HoiEo5UrVx60T8+ePSkuLqa4uJibb775sMc766yzeO6556ioqGDv3r28+OKLAHTp0oVOnTqxZMkSAGbPnh17TUPfgzRtaiETEZHAmBnPTClie9l+unZsF7fV6Gh16NCBl156ifPPP5/vfOc7DBgwgCFDhuDudOvWjeeffz6p4z399NPccsst3HXXXRw4cIDLL7+c008//ahqGzJkCJdddhkFBQX06tWL0aNHx5577LHHmDJlCh06dOCcc86hc+fOANx0002UlJQ06D1I02WpHkTZmIYNG+bLli0LugwREYn64IMP6N+/f9BlNGulpaV07NgRgHvuuYfNmzfz05/+NOCqJFnx/i6Y2XJ3HxZvf7WQiYiINCEvv/wyP/7xj6mqqqJXr148/vjjQZckjUCBTEREpAm57LLLuOyyy4IuQxqZBvWLiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiLQoNVNGbNq0iUsvvTTgao7ea6+9xpe//OUG73OoGTNmcP/99zektDq+9KUvsWvXLnbt2sUvfvGLlB77cObNm8c999xz2H0Od40efPBBysvLY49r3kcQFMhERKRFOvHEE2PrPqZLVVVVWo/fXMyfP5/s7OxGD2QTJkzgW9/61lG//tBAVvM+gqBAJiIiLVJJSQmDBg0C4PHHH+erX/0q48ePp2/fvtxxxx2x/V555RVGjBjBkCFDmDRpEqWlpQD88Ic/pLCwkEGDBjF16tTYOpPnnHMOd955J2effXadCVtnzJjBddddx9ixY+nduzdz587ljjvuIC8vj/Hjx8eWPfrrX//K4MGDycvLY/LkybGFyv/0pz/Rr18/Ro0axdy5c2PHLSsrY/LkyRQWFjJ48GBeeOGFpK7F3XffzWmnncZ5553HmjVrYtvXrl3L+PHjGTp0KKNHj2b16tUAXH/99Xz961/nzDPP5JRTTokF282bN3PWWWdRUFDAoEGDWLRoEQC9e/dm27ZtfOtb32Lt2rUUFBQwffp0rrnmmoNqveqqq5g3b95BtW3ZsoWhQ4cCsHLlSsyMf/7znwD06dOH8vJytm7dysSJEyksLKSwsJDFixfH/lxvv/322HspKiqisLCQ733ve7GWUohMtnvppZfSr18/rrrqKtydhx56iE2bNjFmzBjGjBlz0PsoKSmhf//+TJkyhYEDBzJ27FgqKioAWLp0Kfn5+YwYMYLp06fHPmMN5u7N9tfQoUNdRESajlWrViX/oupq972fuYfDKamhQ4cO7u6+bt06HzhwoLu7z5o1y3Nzc33Xrl1eUVHhJ598sv/zn//0rVu3+ujRo720tNTd3e+55x7/wQ9+4O7u27dvjx3z6quv9nnz5rm7+9lnn+233HJL3HN///vf95EjR/r+/fu9uLjYs7KyfP78+e7ufvHFF/tzzz3nFRUV3qNHD1+zZo27u19zzTX+P//zP7HtH374oYfDYZ80aZJfeOGF7u7+7W9/25988kl3d9+5c6f37dvXS0tLfcGCBbF9li5d6jfeeGOdmpYtW+aDBg3ysrIy3717t/fp08fvu+8+d3c/99xz/cMPP3R39yVLlviYMWPc3f26667zSy+91Kurq/3999/3Pn36uLv7/fff73fddZe7u1dVVfmePXvc3b1Xr16+devWg665u/trr73mF110kbu779q1y3v37u0HDhyoU+OAAQN89+7d/vDDD/uwYcP8qaee8pKSEi8qKnJ39yuuuMIXLVrk7u7r16/3fv36xf5cb7vtNnd3v/DCC/13v/udu7v/8pe/jH0OFixY4Mcee6xv2LDBq6urvaioKHasmrpr1H4fGRkZvmLFCnd3nzRpUuz6Dxw40BcvXuzu7v/93/990PutLd7fBWCZ15NpNDGsiIgEJxyGJ74MG96EnmfAdS9BKD2dN1/84hdj60IOGDCA9evXs2vXLlatWsXIkSMB2L9/PyNGjABgwYIF/OQnP6G8vJwdO3YwcOBAvvKVrwAcduLWCy64gLZt25KXl0d1dTXjx48HIC8vj5KSEtasWUNubi6nnnoqANdddx0///nPOeecc8jNzaVv374AXH311TzyyCNApBVv3rx5sbFflZWVsVakGsOGDeM3v/lNnXoWLVrEJZdcwjHHHANEuvkg0mr0+uuvM2nSpNi+NS11ABdffDGhUIgBAwbw2WefAVBYWMjkyZM5cOAAF198MQUFBYe95meffTa33XYbW7ZsYe7cuUycOJE2bepGjzPPPJPFixezcOFC7rzzTv70pz/h7rE1Pl999VVWrVoV23/Pnj3s3bv3oGO88cYbsbU9r7zySv7rv/4r9tzw4cPp0aMHAAUFBZSUlDBq1KjD1p6bmxt7f0OHDqWkpIRdu3axd+9ezjzzzNh5XnrppcMeJ1EKZCIiEpzybZEwFq6K/F6+DTp2T8up2rdvH/s5IyODqqoq3J3zzz+fZ5555qB9KysrufXWW1m2bBk9e/ZkxowZVFZWxp7v0KHDEc8TCoVo27ZtbMH0UCgUO2d96ltc3d2ZM2cOp5122kHba4LSkcQ7bjgcJjs7m+Li4sO+j5rzA5x11lksXLiQl19+mWuuuYbp06dz7bXXHvbc11xzDU8//TSzZ89m5syZANxwww2sWLGCE088kfnz5zN69GgWLVrE+vXrueiii7j33nsxs9hg/HA4zBtvvEFWVlZC7/dw76Xmzz7Z11RUVBz2z66hNIZMRESC06FbpGUs1Cbye4dujXr6oqIiFi9ezMcffwxAeXk5H374YSx8de3aldLS0pTeHNCvXz9KSkpi53zyySc5++yz6devH+vWrWPt2rUAB4XEcePG8fDDD8cCwYoVKxI+31lnncVzzz1HRUUFe/fu5cUXXwTg2GOPJTc3l9///vdAJHStXLnysMdav3493bt3Z8qUKdx44428/fbbBz3fqVOnOi1X119/PQ8++CAAAwcOBGDWrFkUFxczf/78WI1PPfUUffv2JRQKcdxxxzF//vxYy+XYsWP52c9+FjtmvBBZVFTEnDlzAJg9e3ZC1yZevYfTpUsXOnXqxJIlS5I6TyIUyEREJDhmkW7Kb34A178cedyIunXrxuOPP84VV1xBfn4+RUVFrF69muzsbKZMmUJeXh4XX3wxhYWFKTtnZmYms2bNYtKkSeTl5REKhbj55pvJzMzkkUce4cILL2TUqFH06tUr9prvfve7HDhwgPz8fAYNGsR3v/vdOsddtmwZN910U53tQ4YM4bLLLqOgoICJEyfGugEBnn76aR577DFOP/10Bg4ceMSbBV577TUKCgoYPHgwc+bMYdq0aQc9n5OTw8iRIxk0aBDTp08H4Pjjj6d///7ccMMN9R63d+/eQCSYAYwaNYrs7Gy6dOkCwEMPPcSyZcvIz89nwIAB/OpXv6pzjAcffJAHHniA4cOHs3nz5lj39OFMnTqVCy64IDaoPxGPPfYYU6dOZcSIEbh7QudJhKWz+S3dhg0b5suWLQu6DBERifrggw/o379/0GVIE1JeXk5eXh5vv/12ysJLfefJysrCzJg9ezbPPPNM0nejJqK0tDR2B+c999zD5s2b69xtC/H/LpjZcncfFu+4GkMmIiIiafHqq68yefJkvvnNb6Y1jAEsX76c22+/HXcnOzs7Nl4t1V5++WV+/OMfU1VVRa9evXj88cdTcly1kImISMqohUwkItkWMo0hExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERFpUWqmJNi0aROXXnppwNUcvddeey02U31D9km12ot2p8K8efO45557AHj++ecPWiIpnWqftz6Hu74PPvgg5eXlKatHgUxERFqkE088MaUz7MeTyBI8cngTJkzgW9/6FtC4gaz2eY+GApmIiEgCSkpKGDRoEACPP/44X/3qVxk/fjx9+/bljjvuiO33yiuvMGLECIYMGcKkSZMoLS0F4Ic//CGFhYUMGjSIqVOnxpYtOuecc7jzzjs5++yz60wIOmPGDK677jrGjh1L7969mTt3LnfccQd5eXmMHz+eAwcOAPDXv/6VwYMHk5eXx+TJk2OLev/pT3+iX79+jBo1irlz58aOW1ZWxuTJkyksLGTw4MFJTXhaUlJC//79mTJlCgMHDmTs2LFUVFQAkSWIioqKyM/P55JLLmHnzp11Xr9u3TpGjBhBYWFhnRUC7rvvPgoLC8nPz+f73//+Ec/30EMPMWDAAPLz87n88stjfza33347r7/+OvPmzWP69OkUFBSwdu1ahgwZEjvXRx99xNChQw86/5YtW2LbVq5ciZnFFl3v06cP5eXlbN26lYkTJ1JYWEhhYSGLFy8+6LwAa9eupaioiMLCQr73ve8d1ApYWlrKpZdeSr9+/bjqqqtwdx566CE2bdrEmDFjkprl/3AUyEREJFBhD7OtYltaF26GSHUt0CEAACAASURBVPh49tlneffdd3n22WfZsGED27Zt46677uLVV1/l7bffZtiwYTzwwAMA3H777SxdupT33nuPiooKXnrppdixdu3axd///nf+8z//s8551q5dy8svv8wLL7zA1VdfzZgxY3j33XfJysri5ZdfprKykuuvvz5WS1VVFb/85S+prKxkypQpvPjiiyxatIhPP/00dsy7776bc889l6VLl7JgwQKmT59OWVnZQeetb+kkiISZ2267jffff5/s7OzYmo/XXnst9957L++88w55eXn84Ac/qPPaadOmccstt7B06VJOOOGE2PZXXnmFjz76iLfeeovi4mKWL1/OwoULD3u+e+65hxUrVvDOO+/UWf7ozDPPZMKECdx3330UFxfTp08fOnfuHFu3ctasWVx//fUHvaZ79+5UVlayZ88eFi1axLBhw2KLlHfv3p1jjjmGadOm8Y1vfIOlS5cyZ86cuNdo2rRpTJs2jaVLl3LiiSce9NyKFSt48MEHWbVqFZ988gmLFy/m61//OieeeCILFixgwYIFca95shTIREQkMGEPM/nPkznv9+dxw59vIOzhtJ3ri1/8Ip07dyYzM5MBAwawfv16lixZwqpVqxg5ciQFBQU88cQTrF+/HoAFCxZwxhlnkJeXx9/+9jfef//92LEuu+yyes9zwQUX0LZtW/Ly8qiurmb8+PEA5OXlUVJSwpo1a8jNzeXUU08F4LrrrmPhwoWsXr2a3Nxc+vbti5lx9dVXx475yiuvcM8991BQUMA555xDZWVlrCWoxrBhw/jNb34Tt6bc3FwKCgoAGDp0KCUlJezevZtdu3Zx9tlnH1THoRYvXswVV1wBwDXXXHNQTa+88gqDBw9myJAhrF69mo8++qje8wHk5+dz1VVX8dRTT9GmzZEXC7rpppuYNWsW1dXVPPvss1x55ZV19jnzzDNZvHgxCxcu5M4772ThwoUsWrQotmbnq6++yu23305BQQETJkxgz549dRYUf+ONN5g0aRJAnXMMHz6cHj16EAqFKCgoiL2XVNPSSSIiEpgdlTso3lJMtVdTvKWYHZU76JrVNS3nat++feznjIwMqqqqcHfOP/98nnnmmYP2rays5NZbb2XZsmX07NmTGTNmUFlZGXu+Q4cORzxPKBSibdu2WHTB9FAoFDtnfayexdXdnTlz5nDaaacdtP2zzz6r91jxaoLIe6/pQkxUvLrcnW9/+9t87WtfO2h7SUlJved7+eWXWbhwIfPmzeNHP/rRQSE3nokTJ/KDH/yAc889l6FDh5KTk1Nnn9GjR8daxS666CLuvfdezCw2GD8cDvPGG2+QlZWV1HuuEe9zkw5qIRMRkcDkZOZQ0L2ADMugoHsBOZl1/8FNp6KiIhYvXszHH38MRBao/vDDD2Phq2vXrpSWlqb05oB+/fpRUlISO+eTTz7J2WefTb9+/Vi3bh1r164FOCgkjhs3jocffjgW5lasWNHgOjp37kyXLl1YtGjRQXUcauTIkcyePRuAp59++qCaZs6cGRtz969//YstW7bUe75wOMyGDRsYM2YMP/nJT9i1a1fstTU6dep0UOtVZmYm48aN45ZbbuGGG26Ie9yzzjqLp556ir59+xIKhTjuuOOYP38+I0eOBGDs2LH87Gc/i+1f0wVaW1FRUaxbtea9HsmhtTaUApmIiATGzJg5biavTnqVWeNm1dtClC7dunXj8ccf54orriA/P5+ioiJWr15NdnY2U6ZMIS8vj4svvpjCwsKUnTMzM5NZs2YxadIk8vLyCIVC3HzzzWRmZvLII49w4YUXMmrUKHr16hV7zXe/+10OHDhAfn4+gwYNqjO4Hg4/hqw+TzzxBNOnTyc/P5/i4mK+973v1dnnpz/9KT//+c8pLCxk9+7dse1jx47lyiuvZMSIEeTl5XHppZceNqBUV1dz9dVXk5eXx+DBg/nGN75Bdnb2Qftcfvnl3HfffQwePDgWTK+66irMjLFjx8Y9bu/evYFIMAMYNWoU2dnZdOnSBYjcSLBs2TLy8/MZMGBAnbFrELlj8oEHHmD48OFs3rw5oYXQp06dygUXXJCyQf1aXFxERFJGi4tLqt1///3s3r2bH/3oR2k7R3l5OVlZWZgZs2fP5plnnknqTtZ4kl1cXGPIREREpEm65JJLWLt2LX/729/Sep7ly5dz++234+5kZ2czc+bMtJ4vHgUyERERaZKee+65RjnP6NGjWblyZaOcqz4aQyYiIiISMAUyERFJqeY8NlkkFY7m74ACmYiIpExmZibbt29XKJNWy93Zvn07mZmZSb1OY8hERCRlevTowcaNG9m6dWvQpYgEJjMzkx49eiT1miYTyMysJ/Bb4AQgDDzi7j89/KtERKQpadu2Lbm5uUGXIdLsNJlABlQB/+nub5tZJ2C5mf3F3VcFXZiIiIhIOjWZMWTuvtnd347+vBf4ADgp2KpERERE0q/JBLLazKw3MBh4M85zU81smZkt0xgFERERaQmaXCAzs47AHOA/3H3Poc+7+yPuPszdh3Xr1q3xCxQRERFJsSYVyMysLZEw9rS7zw26HhEREZHG0GQCmZkZ8Bjwgbs/EHQ9IiIiIo2lyQQyYCRwDXCumRVHf30p6KJERERE0q3JTHvh7v8ALOg6RERERBpbU2ohExEREWmVFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAWtSgczMZprZFjN7L+haRERERBpLkwpkwOPA+KCLEBEREWlMTSqQuftCYEfQdYiIiIg0piYVyERERERao4QCmUX0THcxiTCzqWa2zMyWbd26NehyRERERBosoUDm7g48n+ZaEuLuj7j7MHcf1q1bt6DLEREREWmwZLosl5hZYdoqEREREWmlkglkY4A3zGytmb1jZu+a2TupLMbMngHeAE4zs41mdmMqjy8iIiLSFLVJYt8L0lZFlLtfke5ziIiIiDQ1CbeQuft6IBv4SvRXdnSbiIiIiDRAwoHMzKYBTwPdo7+eMrN/T1dhIiIiIq1FMl2WNwJnuHsZgJndS2S818PpKExERESktUhmUL8B1bUeV0e3iYiIiEgDJNNCNgt408yeiz6+GHgs9SWJiIiItC4JBzJ3f8DMXgNGEWkZu8HdV6SrMBEREZHWIqFAZmYG9HD3t4G301uSiIiISOvS7JZOEhEREWlptHSSiIiISMCSGdQ/Bviama0HyoiMI3N3z09LZSIiIiKtRDJjyG4GNDO/iIiISIolFMjc3c3sf9x9aLoLEhEREWltNIZMREREJGDJjiG72cxK0BgyERERkZRJJpBdkLYqRERERFqxZLos/wmMBq5z9/WAA8enpSoRERGRViSZQPYLYARwRfTxXuDnKa9IREREpJVJpsvyDHcfYmYrANx9p5m1S1NdIiIiIq1GMi1kB8wsg0hXJWbWDQinpSoRERGRViSZQPYQ8BzQ3czuBv4B/J+0VCUiIiLSiiTcZenuT5vZcuCLRKa8uNjdP0hbZSIiIiKtRDJjyHD31cDqNNUiIiIi0iol02UpIiIiImmgQCYiIiISMAUyERERkYAdcQyZme0lOtXFoU8RWcvy2JRXJSIiItKKHDGQuXunxihEREREpLVK6i5LM+sC9AUya7a5+8JUFyUiIiLSmiQcyMzsJmAa0AMoBoqAN4Bz01OaiIiISPpUV4cpL62kQ6dMQqFgh9Unc/ZpQCGw3t3HAIOBrWmpSkRERCSNwuEwi/+8kj8++zpv/u39oMtJKpBVunslgJm1j04Se1p6yhIREZEan5Zs491FH7Fne2nQpbQY+/dV8emGbeQc35mN67ZQVVUdaD3JBLKNZpYNPA/8xcxeADalpywREREBqCjdx4pXP2Dzuq0se2VV0OW0GJlZ7eg3uDe7tu1l0LBTaNMmI9B6klnL8pLojzPMbAHQGfhjWqoSERERAEIZRkbbDPZXHKDDsVlBl9Oi5A/vS/7wvkGXASQ3qL89MBHoXet1BcAPU1+WiIiIALTPakfRl09n744yck7sHHQ5kibJTHvxArAbWA7sS085IiIicqhjczpwbE6HoMuQNEomkPVw9/Fpq0RERESklUpmUP/rZpaXtkpEREREWqlkWshGAdeb2ToiXZY1a1nmp6UyERERkVYimUB2QdqqEBEREWnFEu6ydPf1QDbwleiv7Og2EREREWmAhAOZmU0Dnga6R389ZWb/nq7CRERERFqLZLosbwTOcPcyADO7l8ji4g+nozARERGR1iKZuywNqL3QU3V0m4iIiIg0QDItZLOAN83suejji4HHUl+SiIiISOuSzFqWD5jZ34GRRFrGbnD3FWmrTERERKSVSKaFDHdfTmTpJBERERFJkSMGMjP7h7uPMrO9gNd+isjEsMemrToRERGRVuCIgczdR0V/75T+ckRERERan2TmIbs3kW0iIiIikpxkpr04P842LackIiKSYh4OU7XvQNBlSCNKZAzZLcCtwClm9k6tpzoBi9NVmIiISGtUvb+Kj//6LuXb93LSsD5073dS0CVJI0jkLsvfAX8Efgx8q9b2ve6+Iy1ViYiItFKVe8op376HzOyObFuzSYGslUhkUP9uYDdwRfrLERERad0yO3eg4/HZlG3ZQ4/h/xZ0OdJIEp6HzMyeAKa5+67o4y7A/3X3yekqTkREpLXJaJvBv52XT7gqTEbbjKDLkUaSzKD+/JowBuDuO4HBqS9JRESkdTOzlIWxfWX7qK6qPvKOEqhkZuoPmVmXaBDDzI5L8vUiIiLSiDa9t4GNb68jK7sD/cfl06Z926BLknokE6j+L/C6mf0h+ngScHfqSxIREZFU2Lb2MzKzO1C2s4zKPRV07KZA1lQl3GXp7r8FJgKfAVuAr7r7k+kqTERERBrmxPyT2be3kuN65pDVpUPQ5chhJNvluBl4C8gEuprZWe6+MPVliYiISEN1ze1OTu9umFnQpcgRJHOX5U3ANKAHUAwUAW8A56anNBERaWncHQ87oYxk7imThlAYax6S+RsxDSgE1rv7GCJ3WG5NS1UiItLi7Cvfz7LnV/CPZ5awY9POoMuRViYcdrbu3Ye7H3ZbUJIJZJXuXglgZu3dfTVwWnrKEhGRlmbPlj3s3VFGm7Zt2PTB5qDLkRbs0KAVDjtXPLqEET/+K5c/soRw2AmHncsffZ0RP3meyx55g3A42FCWzBiyjWaWDTwP/MXMdgKb0lOWiIi0NJ26diSrU3v2VRyge5/uQZcjzVA47Gwv20/Xju1iXbGHbqsJX8vX72Rory48M6WI7WX7Wb5+O9VWyvL1kf3DHua98L1k9lnPexW92Fr6LMcfmxXYe0sokFnkXX89OjHsDDNbAHQG/pTO4kQkvuo9uwiX7aVN1+Oxtu2CLkckIZkdMym8ZCheHaZtpqZfkMNLJGgBXP7o67y9cSNDevRk9pQRccPXcR3akPNvMykLraVDuA/HdRjPzsqdZGStBwuTkbWejDZlQBMPZO7uZvY8MDT6+O/pKMbMxgM/BTKA37j7Pek4j0hzFq4oo+zN1/AD+2n7hZ4cM3hE0CWJJKxN2wzQckByiFS2cnXt2K5u+Nq3k31tPsE8zL42n7Bz305ysnIYevxgircWU3B8ATlZOYFeg2S6LJeYWaG7L01HIWaWAfwcOB/YCCw1s3nuviod5xNprryqCqqrCbVrT7iiIuhyRETqlcouxkRbuXbuK6sbvjJzKOheQPGWYgq6F5CTmYOZMXP8THZU7og9DlIygWwM8DUzWw+UAUak8Sw/RbUMBz52908AzGw2cBGgQCZSS0anzmQOGkL1zh206/1vQZcjIgI0QhdjEq1cccPXuLrhK2QhumZ1Deya1XbEQGZmT7r7NcAjwHNprOUkYEOtxxuBM+LUMxWYCnDyySensRyRpqtdj1zokRt0GSLSCtXX6pX2LsYkWrkSDl/hMJRvgw7doBm0kA01s17ADcATRFrG0iHecevcg+rujxAJhwwbNiz4iUNERERagKPtXgyFrPG6GBMMWgmFr3AYnvgybHgTep4B170EoeAmLE4kkP2KyN2UpwDLOTg4eXR7KmwEetZ63ANNqyEiIpJyiXYvJtLq1a1T+2C7GOO1ciUSvsq3RR6HqyK/l2+DjsFNx3LEQObuDwEPmdkv3f2WNNayFOhrZrnAv4DLgSvTeD6RVi1c+hHs24EdOwBr2ynockQkBVI5iB5IqNULCK6LMV7QgsTCV4dukedr9uvQrRH+hOqX8KD+NIcx3L3KzG4H/kxk2ouZ7v5+Os8p0lr5vm2w7R9gGXjVbuz4sUGXJCJJSmUrV31BK5FWr65ZXRvexejQtTp86Bs8ulYuSCx8mX1+jGYyhqzRuPt8YH7QdYi0eKE2QAjC+yGUGXQ1InIEibdy7aQq7CxfvzOpVq54QQtIqNULaFgXYzpauRINX6FQoN2UtTWpQCYijcPaZsMJF0DVXsjqEXQ5Iq1Ww7oYDw5fXTu2Y0ivzrEpJbp2bEfYw0d9ByMkPrYLmlgrVxMPX/EkHMjMbMChk7Sa2Tnu/lrKqxKRtLPM7kDT/XISaUkSnSoCEutijBe+HOeYkx+lY1Yxx3QvwClKbmxXnKA18/zfsGPnx+Qcd+rnrV71Ba+m1MrVxMNXPMm0kP2vmT0J/ATIjP4+DNC6LSIi0io1fKqIo+tijBe+dlTuoHhrMdVeTfGW4li4Snhs16FBKxwm9NsJdD1SyAqF1MqVAskEsjOAe4HXgU7A08DIdBQlIiLS1DRsEP3Bwatbp/YN6mIEEg9fibRyNaQrsWN3tXKlQDKB7ABQQWQp9ExgnbuHD/8SEYknXPo+XrEO6ziAUFaqpvJrHJG/9hb4um8i6dSwQfRHHtsFNKiLEeoZ33Vo+Eq0lashXYmgVq4USCaQLQVeAAqBHODXZnapu1+alsqaAHfn9dffYNWqVZxxxhnk5+cFXZK0AF5dQbjsfaxNF3zPCjyzN2bBzQ6djOoDmwlXvodldCEjqwAz3RckzUu6B9EDCY3tMiy5LsY4rVwJha/G6koEtXI1UDLfpje6+7Loz58CF5nZNWmoqckoKyujuLiYE044gcWLX2fQoIGEAlxWQVqIUDus7XGwfwdkntRswhhAeP86sA541TY8XIplZAddkki9UtnFmOggeiChsV2HnbsrwVauhMKXuhKbjWQmhl1mZl2AvkS6LAHWp6WqJiIrK4uTTjqJTZs2ceqpfRXGJCXMMghlnw3VpdDm2KDLSUqo7UmE962BjM5YqEPQ5UgrlcpWLkisizHRQfRQz9iubgWR5YIOnburKbVyKWgFKplpL24CphFZY7IYKALeAM5NT2nBy8jI4MtfvpDS0lKOPbZ5/cMpTZuF2kKoS9BlJC2jXS9CbU4Aa9usWvakeWr4VBGp62JMtHsRqBO+zJ2Zn37Gjn/9i5zqL2DusTm51MolNZLpspxGZPzYEncfY2b9gB+kp6ymo02bNmRnq1tGpIaF2gddgrRADZ8qIr1djPFauepr4aoTvsq3EdrwFl3DVbDhrc/vTEw0fKmVq1VIJpBVunulmWFm7d19tZmdlrbKRESk2Utl92LNVBFDe3WJ7dvQVi5IrIsxbiuXe9wWrjrhq74Wrg7dCJ9UiG1cCj3PwNTK1aolE8g2mlk28DzwFzPbCWxKT1kiItLcpHoQfbzgZWY8fdNw1u74jL45J0TO4+GjbuWCBLsY4wUtaFALV2XFAf7e/ruEu2+l98B8+quVq1VLZlD/JdEfZ5jZAqAz8Ke0VCUijcbdCfs2oJKQdcNMi43LkaV7EH284AUQ9jA3/eXG2Litmhnnj7qVCxILX2kYx1W+p4Lysv10yD6BTzfuoP/w5jUnoaTWUU0i5O5/T3UhIhKUCpwt4CHChMmwXkEXJAFK9TxdR9u96O51glfIQpHwteUow1c9rVwJha80jOPq3K0Tvft9ge2f7mbgGX1S/4cpzcoRA5mZ7QU83lOAu7tuPxRp1jKAEFANtAu4FmlM6e5ibEj3IlAneHXN6kpOuy4UhDMopooCzyCnXZfEw1cTu1sxIyPE4LP7HdVrpeU5YiBz906NUYiIpJdTDYQwDl7yyKw9GeSCVQHHBFKbpE68Fq542xvaxZho+Dra7kXC4TrBC8AqtjPznyXsIEwOIaxiOxBcK5dIqmjdE5FWIMwuYAuROZ1Pwsg46HmNG2ueEp0qItVdjEmFr0O7FxNt4YoXvKKLWId6nvH5nY2ak0taiGS6LOOtJKwuS5FmYReR7shKYD+QFWw5krSGTBWR6i5Gd+emV26MtWglFb6SaOGKG7zUyiUtlLosRVqFLsBnRIKYJnZtShpjEH2quxgJO8WfLafaoPjT5ewo305O5nGJha+GtnCBWrmkRUqqyzLOWpa4+8JUFyWSSl69H9+zGqwN1rlfq1zyJ0RnnE6A1RlDJo0niEH0UP/cXUfbykX5Ngr27aO4fTsK9u0nJxxOPHyphUskLq1lKc2Cl++ieuM70LErGV/of9Bg5SO+dtd7sP0tcMcz2mOdWuft5UbrC6KNpTEWuz7aFq6QheKHr/LtR9/K1bE7M9v1YcfGZeScNAyLhqaEw5dauETq0FqW0iwcWLsEL9sBW9cR6tQd69Q18ReH2lAzc4tZxuH3FTmCxpiNPuHwlUALV9esrvHDVzjcoFau0HUv01WtXCIpo7UspVkIZXaievdmyGiLtU1uDJR1HoBnZIK1gQ6a9FQS1xitXDXHqN26llD4SrCFC4gfvtTKJdKkaC1LaRYyThlO6LiekNkJy0zuPhMLtcGOPTVNlUlzk0j3Ys22dLdyAeDV2L510OFUSCZ8JdrC1bF7/PClVi6RJiWhQGaRb46vu/sutJalBMAy2mI5JwddhjQzR9u9GApZUgPpj7aVi3CYyU+eQTH7KKA9M695kx2VOxMLX4m2cEH94UutXCJNRkKBzN3dzJ4HhkYfay1LEWlSUtm92K1T+6TC19G2clGxnWL2UW1Gse9jx86PyWnfJbHwlUwLFyhoiTRxyXRZLjGzQndfmrZqRFopD5dRfWAtWAcy2uY2y6k5PHwA37YQ9m2BnNGEjumRkuM2xjxd8baZGc/cNJwdWzeR0/2k+sNXddVRt3Jx3KkU0J5ij7w257hTMbPEw5dauERajGQC2Rjga2a2Hijj88XF89NSmUgrUn3gE8LVu3G2Eco4DsvoEnRJydu/Dco3QJuOsHslHEUga4x5uuJ2L944jE/+9QH/1mPg58ErHIbffhn+tQxOGgbXvUzY43Qx7vy4Qa1cNcfIOe5ULBQJ4gmHLxFpMZIJZBekrQqR1s464GzFaINZu6CrOTptOkObDlC9Fzr1P+ipoObpSrSF66anig4KWaGMNoTLtjB5/1qKexxPwb61zCzbwo59u+qGrwa2coUy2tC1a7+Dr6XCl0irk3Agc/f18WbqB9anvCqRViajbW9CGV0wa4eFOgRdzlGxNscQPmEC2/eW0u3Y42LbG2uerjrhqwEtXF279mNHRhuK27ePdDu2b8+OjDbxw1copFYuEWkwzdQv0gSYhZpdN2W8Fq4rH3s7obsVoWGtXAmFrwa0cAHkZOVQcPzQyMD84wvIycqJtHzFC19q5RKRBtJM/SJykFR2L9Z3tyIcfSsXkFj4amALl5kxc3xk9vuczJzYtYgbvkREGkgz9Yu0Yo2xDFCqW7mAxMJXQ1u4gJCF6JqVxDJdIiJHSTP1i7RATWoQfThM6Ldf+Xyy0uteimw/ylYuIPHwpRYuEWkmkhnUf0n0R83UL9KENEYr17CTO7Pun+vpfXLv5LoXQyEo30Z4w5uR5Xw2vImVb4sMrj/KVi4g8fClFi4RaSaSaSGL0Uz9IsEIpJUrHOaZdndD5pvQ/gzMXwL3hFq4Qp1OIHxMDpNP7v35nY3H5EQmTm1AK5fCl4i0NMncZZkJ3AqMAhz4B/BLd69MU20irUK87sV42xs6G32irVx1uhfLt+EbP2/hIokWrq7Ajn07KQ5VU+1GsVWzY9/O5LoY4wQthS8RaWmSaSH7LbAXeDj6+ArgSWBSqosSaakSCVmhUMPCVzKtXPHCV53uxQa0cAHkZOZQ0L2A4i2RdR1rwpZauUREPpdMIDvN3U+v9XiBma1MdUEizVGqp4qoL3ylspULSCx8NbCFy8wii2srfImI1CuZQLbCzIrcfQmAmZ0BLE5PWSJNV2MMoo8bvtxT2soFJBa+UtDCpfAlInJ4yQSyM4Brzeyf0ccnAx+Y2btokXFpoVI9iD6hFi6IH77Kt2Eb34RwFaSglQtIPHyphatVcHcqNm+DcJisE7vF5mkTkfRLJpCNT1sVIo0slV2MCQ+iT7SFKzpVRJ3w1eH/tXfnQXLW953H39+eGd1IVjtHFAAAGMhJREFUSNwgThthMBDhCGxsE2KHGLLEBNtkTRKXIeBQOKm9XFtlu9gc5azLxnYlVbveja0Qx87ikMRkCWDiJWBMeX1wW9yHOIIF4hASAnRLM9/9o5/RNlK31DPT07+enverakr9HP30t38803zm9/v18xzAyOGnse756obVcw+oT64fZy8XYPjSm2x6/iXW/GgFZLLo1BOZ/9bDS5ckTRtjurn4ZBYiTZZODzG2O49rvD1czDuwefgiueTgg1gxcBhLDzyIb5BjG2JsErQmM3zl8HaIIGrjurqOCsgdwyRJrVYjd+woXY40rfhJqb4y6UOMY5jHNd4erho0D19b1rFizQqGc5gVL6/YGaQm0ss1WT1fufElRp76HtQGqb31XGLW1Lpx+nQ1Z/HBLFq6jRweYZ+32DsmdZOBTD2vneHF0XXj7eWCNocYW/RysaqN8NVmD9f+s/eflPDVTbn+aSBhxyZywwswvJ2Rf70VZsyjdtSvEkOzi9Wm1mqDAyx429Gly5CmJQOZesp4hxdrtWh/iLFZ0IL2wtfcA+q9YKO9YXMPqNfdTvhqM2TBHq7d1YPhq5lY+BZy7eMwNJeYdwgjL94HOQwbXoCNL8C+x5QuUZJ6ypgDWUT8NnAeMAwEcGNmXtPpwtRfOn2z6/ueXcu+I69z77O589pdbYevFr1c7QwxEsHIx29g3atPst+iJfW6c6Tjw4tTKXw1E3MOpHbix4AgagPE/CMYWf8MMTgbZi0qXZ4k9Zzx9JCdmZkXji5ExP8ADGTaabIn0ZMjXD/viyzZ+jBPzHw7+8+tfwG47fA1gV4uMrnklk/sDFWjoWkyhhenSvhqpXEyf23RscS8g6E2RAzOKljV1De8cQM71rzE4KL9GZi/oHQ5kjpkPIFsZkScC6wCFgNOBpnGOtnL1X4P11qO3/EoESP1fzetrX8zsd3wNYFeLoAVL0/duV0lxYx9Spcw5eXICBvv/jHDmzZRmzGD+Wd+gBgaKl2WpA4YTyD7feDDwEnAc8AfdLQi9YROX6ernV6usfRwRRWyoqGHa0xDjOPs5QKv3aWycscwMTgIw/VLVMTenyJpChhzIMvMTcDVo8sR8Wngyk4Wpe6ayBBjR3u5aD6Pq50eLmh+qYiWQ4wT6OUyfKmUqNWYe+rpbH/heYYOPJja0IzSJUnqkPFM6v+HxkVgKQaynjPRS0XsGrSgyRDj3MHO93K1O7y4S8iqRa1rQ4yGL5U0uGAhgwu8rpvUb8YzZPl6Zn5idCEi/qKD9WgcJnqpiHaCFrB7+JpgL9foBVR3LkP7w4u7hKz9Z+/vEGMhuWktufFlYv5iYqbzxCRpPMYTyD6/y/IVnShE7Wl3Hlc7PVwH7DOzeS9Xi6C127oJ9HIBjASsG6ixH/Wu1nbDV6vg5RBj9+WOLQyvvAl2bCVmL2TghAtKlyRJU9J45pA9s8vyus6VM31NZBL9eHu4gObhq0XQ2m3dBHq5AC65+ZKOzu0Chxi7LkfqvaEDM2B4O5n5pv8ekqT2tB3IIuJTTVa/BtybmSs6V1L/a3eI8beX/2Tn5PhrLju97fDVdg9XdRPrdoNW0/A1zl4u8PIR/SCG5lB7y9nk66uo7bfEMCZJ4zSWHrJl1c+N1fK5wN3A5RHxncz8UqeL6wfjHmLMEf7T6k/xjqEnuG/1EtZuuJ39581oL3y128MFrcNXrVYPbI3vpVn4GmcvFzi3q1/U5h8G8w8rXYYkTWljCWT7Ae/IzA0AEfHHwLXALwH3AtMqkLU7xDjeXi42vsLC2koGGeEXYyUD8TqxKdoLX2Po4YLdgxbUw1ZjMJpI+HJul9S+zGTzYw+zffUqZh33dmYuPqJ0SZK6YCyB7AhgW8PyduDIzNwcEVs7W1bvaPdSEdBkiHHDlqa9XP809wss2fYID8cSXlv9dg44bE7T4cSBI95FPncnA4e/k6h6q9oOX230cEHzXi7o/Pwu53ZJ7RnZtJFtT6+kNn8Bmx+530AmTRNjCWR/C9wREddT///5rwPXRMRc4JHJKK60Zj1crS4V0XSIMV5v2st1wo7HiBjhZFZy40/u4K0Xf7Rp0IqL2+zlaha+2ujh2nntLud3ST2jNnMWtQULGH7tNcOYNI20Hcgy808j4p+B91IPZJdn5j3V5t+ZjOJKa9bDdcD82e0PMbbo5crDTyN/ficvzziWQ5ac0JFervEML3rtLqn3xOAg+7zzDEY2b6I2z+u6SdPFWC97sQMYAZL6kGVfa9bDBbObT6RvFr5a9HLVLr6J7a+9yGz24dR959VfbJy9XDD+4UXw2l1SL4qhIQaGFpQuQ1IXjeWyF/8B+D3gH6l3zlwdEcsz879PVnGlterhajWRvukQY5OgRa3G0MJDafy4HW8vF0xseBGc3yVJUmlj6SG7FHhnZm4EiIgrgZ8CEw5kEfGbwJ8AxwOnNQyFltUqZI1hiLGZTn6DERxelCRpqhtLIAtguGF5mP8/jWmiHgI+DHy9Q8frnFYhq40hxmbrvHyEJEna1VgC2V8Dd0bEddSD2PnANzpRRGY+Ckypq3xP9vwuLx8hSdL0MZZvWf5ZRNwOvId6ILtoOtwyqVWvVzfmdxm0JEmaHvYayCLiDerfqty5qmFbZub8dl4oIm4FDm6y6YrMvL6dY1THuQy4DOCIIyb3Gj1juXaX87skSdJ47TWQZWZHLoSTmWd16DjLgeUAy5Yty73sPiFjuXaX87skSdJ4jfU6ZNPKWK/d5fwuSZI0Hj0RyCLiQ9Qvn3EAcFNErMjMswuXNeZrd0mSJI1HTwSyzLwOuK50Hc0YvCRJ0mSrlS5AkiRpujOQadrJTLa8vokdW/v+dqySpCmiJ4YspW564YFnefHBnzNz3iyWnLOUoVkzSpckSZrm7CHTtPPaqrXMmj+bLW9sZusbm0uXI0mSgUzTz6FLj2R42w4WHXUgcxZ15DJ7kiRNiEOWmnYWLN6fky7wm7OSpN5hD5mknje8eTO5Y0fpMiRp0thDJqmjcmSEqHXub70tzzzDxoceoDZ3Lgve/V5qs2Z17NiS1CvsIZPUETk8zIZ77+S1m7/L1p8/07Hjblv9PLU5cxnZsJHhN96or3tlHevv/hlbVr/YsdeRpJIMZJI6YmTjBra/uJraPvuwZeVjHTvurGOPJbdvY+jAAxnYd19yZIRX77yXrWvWsv6unzG8dWvHXkuSSnHIUlJH1ObMZWDfhQyvf5VZxx7XsePOOPAgFp79azvvJZuZDMyaxfbXXmdg9ixiYKBjryVJpRjIJHVEDA6yz7vOILdtpTZ7TmePXYWx0ccL330q29auY2jhvtQG/RiTNPX5SSapY2JggOhwGGtmYPYsZi8+dNJfR5K6xTlkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUw9KzPZtmU7mVm6FEmSJtVg6QKkZjKT+3/4BKsef4nDjzuIX/ilJURE6bIkSZoU9pCpJ23ftoNVj7/IfocuYNXjL7F9247SJUmSNGkMZOpJM2YOceTxh7D2+fUcefzBzJg5VLokSZImjUOW6lknn7GE4995DEMzPE0lSf3NHjL1NMOYJGk6MJBJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxk6orh4WE2b95cugxJknrSYOkC1P+2bdvGDTd8lzVrXuE97zmdk08+qXRJkiT1lJ7oIYuIL0fEYxHxQERcFxH7lq5JnfPqq6/y8ssvs2jRQh566OHS5UiS1HN6IpABtwAnZubJwBPAZwvXow5atGgRixcvZv369ZxyytLS5UiS1HN6YsgyM/+lYfEO4IJStajzhoaG+OAHz2V4eJjBwZ445SRJ6im90kPW6BLge602RsRlEXFPRNyzZs2aLpaliYgIw5gkSS107f+QEXErcHCTTVdk5vXVPlcAO4BvtzpOZi4HlgMsW7YsJ6FUSZKkrupaIMvMs/a0PSIuAn4d+JXMNGhJkqRpoyfGkCLiHODTwJmZual0PZIkSd3UK3PIvgrsA9wSESsi4mulC5IkSeqWnughy8y3lq5BkiSplF7pIZMkSZq2DGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqbCeCGQR8acR8UBErIiIf4mIQ0vXJEmS1C09EciAL2fmyZm5FPgu8EelC5IkSeqWnghkmfl6w+JcIEvVIkmS1G2DpQsYFRGfBz4OvAa8r3A5kiRJXROZ3emMiohbgYObbLoiM69v2O+zwKzM/OMWx7kMuKxaPA54fJdd9gdemXjFfcd2ac52ac52ac22ac52ac52aW06ts2RmXlAsw1dC2TtiogjgZsy88RxPv+ezFzW4bKmPNulOdulOdulNdumOdulOdulNdvmzXpiDllEHNuweB7wWKlaJEmSuq1X5pB9MSKOA0aAZ4HLC9cjSZLUNT0RyDLzIx083PIOHquf2C7N2S7N2S6t2TbN2S7N2S6t2TYNem4OmSRJ0nTTE3PIJEmSprMpE8gi4pyIeDwinoyIzzTZ/ufVrZdWRMQTEbG+Ydtww7Ybulv55GujbS6OiDUNbfCJhm0XRcTK6uei7lY+udpol09FxCPVbbu+X33Dd3Rb354zbbTLzIj4+2r7nRFxVMO2z1brH4+Is7tZdzdFxKKIuKX6vbglIhY22WdpRPw0Ih6uzqGPNmz7ZkQ803AOLe3uO5gc7bRLtV/T35+IOLo6p1ZW59iM7lU/edo8X97X0CYrImJLRJxfbevX8+U3q9+PkYho+W3KVp9J/Xq+tJSZPf8DDABPAccAM4D7gRP2sP+/A77RsLyh9Hso2TbAxcBXmzx3EfB09e/C6vHC0u+pi+3yPmBO9fiTwN/3+znTZrv8PvC16vGFo+0CnFDtPxM4ujrOQOn3NEnt9CXgM9XjzwBXNtlnCXBs9fhQ4AVg32r5m8AFpd9HiXaptjX9/QH+Abiwevw14JOl31M326Vh/0XAuobPn349X46nfr3Q24FlLfZp+ZnUr+dLq5+p0kN2GvBkZj6dmduAvwN+Yw/7/xZwTVcqK2+sbdPobOCWzFyXma8CtwDnTFKd3bbXdsnMH2TmpmrxDmBxl2ssoZ3z5TeAb1WPrwV+JSKiWv93mbk1M58BnqyO148a2+BbwPm77pCZT2TmyurxauBloOkFH/vIXtulleocej/1c2rMz+9xY22XC4DvNXz+9KXMfDQzd714+66afib1+fnS1FQJZIcBqxqWn6vW7aYadjoauK1h9ayIuCci7hjtIu4j7bbNR6phlWsj4vAxPncqGut7uxT4XsNyv54z7bTLzn0ycwf125nt1+Zz+8VBmfkCQPXvgXvaOSJOo/7X/VMNqz9f/c79eUTMnLxSu6rddmn2+7MfsL46p6C/zp8xnS/Ue5537TTox/OlHa0+V/r5fGmqJy570YZosq7V10MvBK7NzOGGdUdk5uqIOAa4LSIezMynWjx/qmmnbW4ErsnMrRFxOfW/NN7f5nOnqrbfW0R8DFgGnNmwul/PmXbapdU+fXW+xB5u5zbG4xwC/C/goswcqVZ/FniRekhbDnwa+Nz4q+2eDrXLbr8/wOtN9psy50+Hz5eTgJsbVvfl+ZINt0Xc0yGarOu7z5t2TJVA9hxweMPyYmB1i30vBP6gcUU1nEBmPh0RtwOn8Oa/ZKeyvbZNZq5tWPxL4MqG5/7yLs+9veMVltHWORMRZ1H/QD0zM7eOru/jc6addhnd57mIGAQWUJ/vMpbfw56XmWe12hYRL0XEIZn5QvU/0Jdb7DcfuAn4L5l5R8OxX6gebo2Ivwb+cwdLn1SdaJcWvz//COwbEYNVr8eUOn860S6Vfwtcl5nbG47dl+dLm1p9rrzCFD5fxmOqDFneDRxbfeNiBvXQtds336J+tf+FwE8b1i0c7f6NiP2B9wCPdKXq7thr21QfEKPOAx6tHt8MfKBqo4XAB3jzX21TWTvtcgrwdeC8zHy5YX0/nzPt/C7dAIx+4/YC4Lasz6q9Abgw6t/CPBo4FrirS3V3W2MbXATs9pd+1X7XAX+Tmd/ZZdsh1b9Bfd7LQ5Nabfe00y5Nf3+qc+gH1M+pls+fovbaLg12m+Pcx+dLO5p+JvX5+dJc6W8VtPsD/BvgCeq9FFdU6z5H/X+mo/v8CfDFXZ73buBB6t/ceBC4tPR76XbbAF8AHq7a4AfA2xqeewn1ydlPAr9b+r10uV1uBV4CVlQ/N0yHc6aNdpkFfKc6J+4Cjml47hXV8x4Hfq30e5nENtoP+D6wsvp3UbV+GXBV9fhjwPaG82cFsLTadlt17jwEXA3MK/2eutguLX9/qH+T7q7q3PoOMLP0e+pWu1TLRwHPA7Vdnt+v58uHqPeAba0+a2+u1h8K/HPDfrt9JvXz+dLqxyv1S5IkFTZVhiwlSZL6loFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgk9RREbGhdA2d0Pg+OvGeIuKoiNgcESsmeqw9vMbsiFgREduqq+RLmiIMZJKmpajr9mfgU5m5dLIOnpmbq+P39T3/pH5kIJM0KSLiUxHxUPXzHxvW/2FEPBYRt0TENRExrhspVz1Oj0XEtyLigYi4NiLmNGz/p4i4NyIejojLGp7zaET8T+A+4PBm++3ldZsd99SqhlkRMbfadmKb9V9VtdG3I+KsiPhxRKyMiNNavV61fm5E3BQR91fP/+h42lFSb/DWSZI6qhreOxP4JvAuIIA7qd/7cQC4CjgdGKQeir6emV8Zx+scBTwDvDczfxwR36B+E+uvVNsXZea6iJhN/QbGZwL7AE8D787MO1rtl5lrI2JDZs4bfU8Nj1vt/1+p3wd0NvBcZn6hSb3fzcwTG5afBE6hfq/Zu6nf//FS4Dzq95Y9fw+v9xHgnMz8vep4CzLzterxvwLLMvOVsbarpDLsIZM0Gd4LXJeZGzNzA/C/gTOq9ddXQ2tvADeOPiEijomIv4qIa6vluVXv119GxO+0eJ1Vmfnj6vHV1fFH/fuIuB+4AzgcOLZa/+xoGNvLfq202v9zwK9Sv6H0l/ZyjFHPZOaDmTlCPZR9P+t/JT9I/UbUe3q9B4GzIuLKiDhjNIxJmpoMZJImQ4xxPZn5dGZe2rDqw8C1VQ/Qea2e1mw5In4ZOAs4PTN/AfgZ9d4rgI07i9nzfrsXv+f9FwHzqPfCtTzGLrY2PB5pWB4BBvf0epn5BPCL1IPZFyLij9p8TUk9yEAmaTL8EDg/IuZExFzgQ8D/BX4EfLCaazUPOHcPx1gMrKoeD7fY54iIOL16/FvV8QEWAK9m5qaIeBv1odNm2t2vnf2XA38IfBu4ci/HaVfL14uIQ4FNmXk18BXgHR16TUkFDJYuQFL/ycz7IuKbwF3Vqqsy82cAEXED9blSzwL3AK2G2p6jHspW0PqPx0eBiyLi68BK4C+q9f8HuDwiHgAepz7c10y7++1x/4j4OLAjM/82IgaAn0TE+zPztr0cb2/2VN9JwJcjYgTYDnxygq8lqSAn9UvqqoiYl5kbqm9E/hC4rApw+wGfpz4P6yrgvwFfBbYAP8rMb+9ynKNomCTf67pZr5P6panHHjJJ3bY8Ik6gPhfqW5l5H0BmrgUu32Xf3+12cZNoGFgQESsm61pk1TcxfwoMUZ+HJmmKsIdMkiSpMCf1S5IkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgr7f/gjmJtjGC9uAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAFFCAYAAADfBPg6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e7xsRXnn/avuvc+Ncw53b8AbEFS8wAgDAWNEEk3EeE8ENTGiBk0mZry80STmk4zoxMRcdDSjJlHfiMY7zDBxoqIxildECAYRFXmJGm4TQLmc6967e9X80V371K5da62qep66dO/6+dkf99n0ql69evVa3/79nnpKSClRVVVVVVVVVVXFq0HuHaiqqqqqqqqqmkdVyKqqqqqqqqqqiqAKWVVVVVVVVVVVEVQhq6qqqqqqqqoqgipkVVVVVVVVVVVFUIWsqqqqqqqqqqoIqpBVVbVBJYR4oRDiy9q/pRDiBIftfl8I8Z7I+7ZbCPHgmM9RVVVVFVsVsqqqZlBCiB8IIZaFEEcYf/+XKSwdG+u5pZR/LKW8INb40+fYLqX815jPQZUQ4kIhxMoUCO8RQnxVCPEY7b+fLYS4Rfv35UKI/UKIY7S/PVEI8QNj3OcKIa4UQuwRQtwx/f03hRAiyQurqqpiU4WsqqrZ1fcBPE/9QwhxEoCt+XZnQ+qjUsrtAI4A8HkAF/c8fg+AP2z7j0KI3wbwNgB/DuABAO4P4DcAPBbAJo4drqqqSqcKWVVVs6u/A/AC7d/nA3i//gAhxMFCiPcLIe4UQvxQCPEHQojOz70Q4kwhxP8RQgy1vz1LCPHN6e8XCiE+YDz+q1M351ohxNnTv/+MEOI67XGfFUJ8Xfv3l4UQz2zZh9XoUghxkRDinUKIT01do68IIR4ghHirEOJuIcR3hRCnaNv+nhDiJiHELiHEt4UQz9L+21AI8WYhxF1CiO8LIX5r+lwL2vH6/4QQtwshbhVC/JF+HNokpRwB+CCAo4QQR3Y89C8BPM8WywohDgbwBgC/KaW8REq5S070DSnlr0gpl/r2o6qqqixVyKqqml19DcBOIcTDpyDwHAAfMB7z3wEcDODBAB6PCZS9qGtQKeXXMHFcflb78y8D+JD5WCHEUQA+AeCPABwG4NUA/scUNK4AcIIQ4ogpxDwKwNFCiB1CiK0A/iOALzm+1vMA/AEmjtHSdOxrpv++BMBbtMfeBOBx09f9egAfEEI8cPrfXgLgyQAeDeBUACbkvQ/ACMAJAE4B8PMAeqNRIcQmTI7tjwDc3fHQWwG8G8CFlv/2GACbAfx93/NVVVXNhipkVVXNtpSb9XMAvovJTRzAxLXBBLxeO3VFfgDgzQB+1WHcD2MaRQohdgD4henfTD0fwCellJ+UUjZSyn8EcDWAX5BS7p/+fhaA0wB8E8CXMYm+zgRwo5TyR46v81Ip5T9Px7wUwH4p5fullGMAH8UEiAAAUsqLpZS3TffnowBuBPCT0/98HoC3SSlvkVLeDeBNajshxP0xAbBXSin3SCnvAPDfADy3Y7/OE0LcA2AfJgD37Kmr1aU/AfA0IcQjjb8fAeAufXvNIdwnhDirZ9yqqqrCVCGrqmq29XeYuEwvhBEVYnLT3gTgh9rffgjgKIdxPwTgF4UQmwH8IoBrpJQ/tDzuJwCcOwWBe6bA8dMAlHP0BQBnYwJaXwBwOSaO2uOn/3bVv2u/77P8e7v6hxDiBdMJAGp/HoXJsQCABwG4WdtW//0nACwCuF3b9m8A3K9jvz4mpTwEk9qpb2HiznVKSnkngLdjEg3q+hEA5fqpx/7UdPwfoV6vq6pmTvVDW1U1w5qCz/cxcZr+p/Gf7wKwggk8KP0/0NyujnG/jQmQPRktUeFUNwP4OynlIdrPQVJK5RCZkPUFhEGWk4QQP4FJHPdbAA6fAsq3AKiZebcDOFrb5Bjt95sxiSKP0F7LTiml6Titk5TyLgC/DuBCLZrs0p8D+BmshbIrps//DIftq6qqZkAVsqqqZl+/BuBnpZR79D9Oo7SPAXjjtA7qJwD8v1hft9WmDwF4OSaA1DZr7gOYRF9PmhaVb5m2LlAg81UAD8Mkrvu6lPJ6TKDvDABfdH+JzjoIgARwJwAIIV6EiZOl9DEArxBCHCWEOATA76r/IKW8HcBnALxZCLFTCDEQQhwvhHi8yxNLKb8L4NMAfsfhsfdgEt3+jvG31wN4pxDi2UKI7dN9ePT0dVVVVc2YKmRVVc24pJQ3SSmvbvnP/xmTIvZ/xaQe6kMA/tZx6A9j4kJ9burU2J77Zkycl9/HBGxuBvAaTK8tU/C7BsD1Usrl6WZXAPjhtOaJVVMH7s3T5/h3ACcB+Ir2kHdjAlLfBPANAJ/EpNB9PP3vL8AkYv02JgXsl+BA9OmiPwfwUiFEV8So9DbtedX+/xkmIPw7AO6Yvoa/wQQGv+qxH1VVVQVISClz70NVVVVVFgkhngzgr6WUP9H74KqqqipPVSerqqpqw0gIsVUI8QtCiIVp+4nXYTJbsaqqqopd1cmqqqraMBJCbMOk4P5ETGYlfgLAK6SU92XdsaqqqrlUhayqqqqqqqqqqgiqcWFVVVVVVVVVVQRVyKqqqqqqqqqqiqCF/ocAmPSdqaqqqqqqqqqqWivR9h9cIauqqmqD6D9uewHreP+Kb7KO9xuH8y/hd9Mu3vE+ds9f8g5YVVU1k3ItfK9OVlXVjIsbnmziBiqbYkCWTdzgZVOFsaqquVCrk1Uhq6pqTpQCokylgCpTqSDLVAroMlUhrKpqJlQhq6pq1nTKQb8KABjI1s9vMt2Ef1n9XWSaLyPRAAB+/bCzV/82yHRoGu2K+P3defbBpgplVVVZVCGrqqpUKZiyKSdg6WBlKjZoKaCySYcsm2KDV9NxNSwJuHRV+KqqiqoKWVVVJagLqEzlAqwuuDLFCVtdYKWrD7J0cQJXF1yZKhW2dFXwqqpiU4WsqqqY8oGnLqUGKx+gapMvaLnCVJt8IKtNvvDlA1htmgXwsqnCWFVVrypkVVVxiguqlGYRrnT1gRYVrHRxQJauPuDiACxdswpbShW6qqrWqUJWVRVF3FClKyVgccOVkg2yOMFKFzdk6bIBFzdkKc06bClV6KqqqpBVVdWpkw96HoYJe/PGBqtGSNzUXH3g+cRi1OdLJSnHeMlhTwAADPNPumSRfnG9aZfEUEQ+N6ZPmGJmZiOBS+6tEFY196qQVVWl6+SDnrfubykgKxZcNWLtR1QHLGC2IUvK8Zp/K8jSNcvAZV5cb9q19i+xoMt06GJAl80FrNBVNYeqkFW1MWWDKVOx4YoKViZA2WRCVeu+FA5bJlDZZIMsm0oHL9eLqgldNlFBrC8SpQKYS+Ra4atqhlUhq2pjyAWqdJXoXrlAlS5XwFIqEbRc4ErJFbKUSoQt3wuqC2jp8oUu37qzEOjyfY4KXVUzpApZVfMrX7BSKsXB8oUqJV+4UioJsnzgSskXspRKgq3QC6ovbCm5Qldokb8rdIWOX4GrqnBVyKqafYXClE0xAcsGV6EgZSoUrGxKDVshQGVTKGTZlBq8OC+kocBlygZgXDMqY8/WrPBVVYgqZFXNpjjBSikFYHFBlS5OwALSQRYXXClxQpZSKtjiPiu4QEuXgq4YrSsUdMUYuwJXVUZVyKqaHcUAKyBN/VUMccOVUmzI4oYrpRiQpRQbtmJdSGPAFgCI9nsHWQMRrwdZBa6qxKqQVVWmYgGVKU7AaowmmwOm9fvMcW8a632u4i3IzAVbsaDK1AWHroWsmG2luKAr1QX0xvvWPhNXWwYThjjbSkjj6MQCuwpeVRFVIauqHKUCKyUqYJnwo8QBV7axdbha83wFg1YqwALWQ5ZSLNiiglaOi6cJWwAPcLU5T1ToMkFLqQJX1YyoQlZVfqWGKyAcsNrASikUsPrGbQOs1eeNBFqhkJUSrpTaIEtXDOAKha1cF08baOkKha6+iC8EuNogS1cM4KqwVcWkCllVaZUDqEy5AlYf+OhyhSufMfvAat0+RAAtH8jKAVa6XCBLV27gKuHi2QdcumK0Y3AFLxfY0lXBq6oQtZ6Is1kJXFWkSgArpT7A8oEgH8Uad81zyIYdtBq50gtaueEqVOp7JCdsjadj9sFWCYDlqxhrG461L/NdwCUgvEBLfywXcD374Jev/l6Bq4qq6mRVBaskqFIy4YoDemzuFXVcX/fKphSOVolg5etk2ZTC3Sr1ounjatkUo/eVDbx8XS1T1eWqSqgaF1bxqUS4AtYCFqejpCCLa0wOwALiQ1aJgAXwQJYSN2zpoFXyRZMKWkox+l7pwEUFLSVu4KqwVWWoQlYVTaWClS7B1EpBaYABe/zHBVhKMUCL+zhyixOygDiuFmfUFktcoKUUo+8V93Gs7lZVJFXIqvLTsTvOWf19Z3Moy5gKWLhbH5TaZHRFLK/+fuP+L67+vnnhENbn4QCtRmrHU9CPp9TeHy5oW2n2AQB+9eCnrf5t+wL/pYkDuvTL6pDh5evwwgEeS+MDg3znvpXV3w8aDumDR5D+LnM2jOWCruXmwPn+8V1vZxmzaqZUIavKTTpcKVEgy+YEUSDLHK80wNLBSkkHLIAfsgAaaOmABdAhS1recwpoKbhS0iFLiRu2qKBlXlYpoGVzh6igpUMWsBa0lEoDLvMwcHfnpwCXDllKFbY2lCpkVXXLBldAOGBxN/BsG68EyLKBlZIJWEoluFkmXOkKAS0bXCmFQJYJV0o2yFIqAba6LqkhsNUWwYWClglYSjbQUioBuNoOaymwZQMtoMLWBlGFrKq1aoMqU66Q5VK7xNljKhdcdQGVrja40pULtLrgSskVsrrASpcrZLWBla4uyNKVC7hcLqmusOVa4+QKXG2ApasLtnTlAi+XQ5IjUmyDLFMVuuZSFbKqJnKFK8ANsDgbefqMlRqyXOEKcAMsJU7QcoEsF8BS6gMtV8AC3CDLBbAAd8gC0oOW2+V0IhfQ8ikk7wMtF8BScgUtID1s+byjqWHLFbSACltzpgpZG1U+UKXLBlihM+3a4Cp0vNiA5QNUunzgSlcK0PKBK6U2yPKBK6U2yHIFK10+kKWLE7jaYMsHspTaYCt0pp4NtnwAS5cPbOmKDV6h72SKaNEHtHRV6JpptZ5ZZc/VriIpFLBs4mxl0Ez/F6KYgLUilpMDVmw1sgkCLJskmiDAsmml2RcEWBTtHgnsHvHcZaUMAyqbxs3kh0ucbRQevjNsTcs94zH2jOP1WQt9F8fyQLd+DnH18QKAp+/4LbaxqspRdbLmTBxgpbtYVLjSXSzqWLEAKxSslKiAFcvJosKV7mRR4Up3sqhwFepk6YrlalHBS3e1qLCkO1qhTpZSqKOlFMvZor6LseLEUDdLV3W2Zko1LpxncTpWALC9OZhlnEY0GEges5QLsJbEfrY+XTft/yI4zWAO2JIYQ4DnhiYxxtBj4egujZollnEA4PkHP421pSQXcDUQGDBdKhsIDAV9rJWGNx+7/r5lDBiOfgOJHUOezzTnzYkLupYayRoTVeAqXhWy5lHccAXwAFYjpk1HCwKsJbEfAL0RqnLjblrjXvG8Ti7IAkAGLTUOB2RxAhYwgSwlLoTgAK1mujdU0FLjlAhZwAS0AJBhq5keJw7Y4r5BccDW0tSKrLC1IVRrsuZNMQCLokY0qz9AOYC1JPazABaljsxVS6N7greVGK+CEVX6OGNJi4m4AcsU182VWqvVaNfYhgn9xlJgLMPHigFYuppplV6oFKTtGo+wazwi7Qv3K1W1Wxz1W830h0O1bmv2VJ2sGVEKqPJ1sRRQmeICLMAPshRM2eQLWG1AdVNr/VUeN6sLrHzcrK5xfN2s2GD1/I6arFzOVhdY+ThbXeP4OluxIUs5WqZ8Ha4uUPNxuVLcpHwdrqWWwrrqbs2dqpM1yyoNsHTHKqZcAUt3q2zyaYIa7ljxHA8fN4vLueJUbMDqkwTPzZZrFiKnfFyt2IDVJeVwubpcXVDm43KleMW+7tbmluZl1d3aOKpOVsFKGQm6QJYLWKWMCbvASskFsFygqt3BWv+MVLm6WX2Q5eJkuYJan5uVEq66nCyllIXxrvGgi6PVN5arm5USstocLV197pYrkLk4WylvVi7OVpubpYvL7aiuVjbVwvdZUa5aqzbI8nGsYgOWC1Tp4mqC6g5Yk2flkg22fN2rNtDyHacNsnI4Vy6QpSt2hOhbg9UGW77j2IArl4PlAlq62qDLt8arDbpy3LDagMsFsnRV4JpJVcgqXTkL2W2AFRIHxoIsX7gC7IAVEgP6AdaBZ+dQLMgKiRltkJUrGvSFLCUO/LCBVkihuw20ZhmyAH/QAuywFVJMb8JWzhuWDbZ8QQuosDVjqpBVokqYIagAi1pjxQFYCq5CoGrNvkwvT5TZgGFwtXYvqFKQRa29UqBFGUeHrNx1V6GQpcQNW5TZhAq2qDMSFXDlhCylENhSUtBFmbUIHICuEm5cCrpCQEupAlfxqoXvpakEwFJKUcTuqhIAqxRRWjqY4iqSzw1YHCqpMJ6r3QNQBmBRpeCK2oOL2hKCUyW1gahF8ulVnazEOmbHE1maazZoyI01t8kd5P0AeFysJbE/+sLPrrpx3+cwaFkc2V083182LfC8R1SNm2WGY8IjqpOlxIEkEsBBZRwW1jULKZIAvk1wszjVSImdCzyrFnBoxLDgJceVpQHwD9XV4lSNC3PrmB1PBEBrrqm7M6GApY+xXdK7u4cClu5Y5YYrtS7f/7/v8tW/8QFF6CXxwPu0aYFnmaMQjZsDN0vKMdHXPhSBx0SN8cs7n7H6N47O3JQh9AtjTtha0WyO0GOivxauY3LdvZPP+VDkDU0a7T4XCl36GAMRdoSWtDUNh4Fj6KIcVbUnFbZYVOPCnFKARRE1/krRsdxV1EiQS6qbj02NzBk3lPE+6YAVqq5jzDEGR1durt5aewpJqDjiqdAh2rYbywZj4oLlXLpvRFvFAFgLXKEaS4kxcRyOI/rUGiFGVXWyIsoGV76ujQ2MOLqXc7hYgJ+TZYOrHC6W7Yatu1i6eBwtn/dr/b7lcLLaAMv3eNiOtY+TZdted7J0UV0t383bLoo5HK0Vy93W53jYXgvX8VBulq4czpYNjHxcrTaw8nW1dDdLKYerZQO06moFq8aFqdTnWrlARZ/jxNFgM1VU2OdapYCsPielDbCU0tVnte9nStDqcrBcjkXf8XaBrK4x2iBLKVWE2HVRTAlaNsBScj0WXa+FeiwAO2jpSgFdfe6TC3D1jeECXDbI0pUKuPpcsApcXqpxYQqliAX7AMslFkwBWH1L3QBlAFYa9e0D5yIb4Ro3y+SIkON4U8fIGZcp7RmVER+6xKl9rzXFN+wUUWIfAN03WumNEvvGaKTsBbHNg+5rZ40R50sVsphEBSyOmqlUNVcugNWn2IDlWgvU52KVouXRvVHH56q/KmEMoAzQAuKDVpeLVZJOOnhL72NS1G25OE1U0AL4arYo4vjqVkGLrhoXEhQCViZc+IKR6WSFgBXVyTIhy7eQPRZg+dygQ+CKPzb0f++4Y8MQuDKPgy8Y2eJCnzH64kJTMeLDkAsid4QYAljmsfB9HRzHoS861BUrRvSFIDNK9N3eBLO+yNAmaoxIv/rUCLFDNS7kVg7AMpUDsEzlnimoHKsyYsE+lbWPJbhXKd47rhmIVJUQH+oKeU2pv20rdyv3zETqjEQzRuyLDG3ijhBDbv7V2fJXdbI8RYkFh1gggdUAA9L2XLVYFLDicrEoN2ZKRMjjZoXvO5eTRQGsgVggHX+BAWl7XyfLFMcsRMoFkcvRokSFQ0F7DdRj4ONmmeJytyiR3s6FRdL2ytkKcbSUOJwtCrpWV2uN6uxCqo7a/jMYiPWL7footAkjl6iQtQKa80EFLA7Hg1qDlbvrOQdkUR0skbmxJBWyAJ4IkSIO0KLWYw0yHwMKaClRgYtaO7V9SHsjV4jPzzETkSIpJT6x+x1Z96EQ1biQIipgNXKMRtLWjssdhy0hfyxIFUeRO7VJqSTGHksrd5O2H41p7yN1/6nbc4kaH1KXsNlF7Ie5TDyM1G/NHEv4nHTwFvKnOneMuDvzGonUCFFKCUejxSohBJ6y/WWkfZh3VSerQ0dt/5nV30MgSwerofBfyoFjKRKlEBdLByvqOomAv5PFCZbcswi9m3IaNwNfN8jcfvPioV7b63AV4kTpzz8Y+H9717enOmEcTpauEFdLh4wQR0jffofnpcEELGrTUN/XbwIW1RG79l79OkOTr7PFMQtQV4izRXWzdIU4WzoDCOL2G9jVqk6Wr3TACtEsO1dL2M/uXPkA1uwUsrupNPfHd7zS9p9bqV0t7oWcqcPldvXWjEXc3rdIPnQNwjbtHo+yulsczhZF1dVarwpZFlEAixoN5gaMGLGgL2Bxq8ReWCnBgxIR2vazadxvIqUDlpIPaNigggIa1OjQRyVGEv/B6KHVaD+hyglaQN4YkdrMlBohVtBaqxoXauqCq764sAusXKJCjqVI2uQSFXbBFSUqdAGsmFAZE7D6IsM+wOiLzfq274sMu+DKJbLrev6+yLBr29LiQlN98VkXULlEZ13b90WHfbVYfU/fdyGP/dq7dG1PITzlrHGJEbmjQyWXCJEzMjTlEiF2cUBfhNi17QaKD1sPUt6pUoVoo0eDXeKoxerSLMeCjRy1glZuB6fPvZKy6YQdyv73bdv33Lk1luGzDxvZDRt9jteuFf8aLU51vfa+fe977VQ1CAetsWyyLEoNHHC1qDMRQzWWkjQLUUoZVKsFHHC1NhBsrVO5V7oZUYpoMFbrh5wzBlPEoiXGhK6iQE7uGYQbXTlnHuaOHCiv3YwNreOHD5+9qemsR4hVYdqwcaGPe2WLCn3gyowLOZYhcZUZFfqCFWdUmNK1SglY65aZ8biQm46Oz7a2uNAHsCjPDayNDH23pThZseNCU7qz4wsRprPjs73N0fJp3UBZAsd0s3z2O3ZsuOa5aE+1zt2KFRnaZDpbMSNDU6az5QNRNlfLZ/s5dbXq7EJdOePBWQIsTs1yLOijlDP3zJ5Z3AXuVXRxFsRTemP57gZlxiH37MnO50K6Anlumc7WYsLGojldrY1WGL+hnKxQuFJOVihcDcViMGRQIYsCVlQXKwdY5YoIB2IhGFSEGARvq9ysEMBSblLocw8GtNccqtROltJQhAOEcndCtleOVihkUZbAobxmgOZq+Thaa54z/CkxFIOkbpau7cOFpG6W0lCIYHBSrlbo9nPkalUnK3dbhhzKBVgD4tp0s6iYheJdWlq5O9jBkrKpDlYiNTIcVnatpHWxdFF7aOUQ1dmSmTyFXDVbtd1DXG0IyPruUx+f5XklGtJyPBQXa1nuDd42pygLYL/9kYRpWRTYyAgqjVzK9tzjJvy5KXB3xhHh5zbFlaGuFUjRnoS9tEzlig4vPf/z4c8b/rRkUSBtF3Fd0VA1AEaZHLxc9+dUmuu4UL15T7g8LUsqFydkKR1dIZClw9VB8Ft6RZevk6XD0UJAZxB9e9/n1uHqnKv/0fu5VyEpJMJas1xM2inaOmAtDg9J9rwSB1zdAfUc9zzmb3vwz63+fuVd27y25VwKJ+UC0yONGA5K3N6B6zWHHO8Ln/mp1d+f9b7wJCLk6q9D2tBz4SIdsoTntsvaZ2vHYJPXtsDawv2QJqtq+4XEC0+/+exvAQBO/IcvJH1eRm28uDCne5VDy3JvEYDlq2b6v1CR3CugOlgzJB2wgHyOVk5tREcLoLtapAjR02PQwcrX1dqEA8nHrmaZ5GxRasuqq8WnuYUspVQuVs7lcHJGgxRAooocD1bA8pbuYgFAIzPe9YnyufGbj81ZqzTLoJUrPqTKF7R0UWu8qKAVClsjKZPB1m9f/qgkz5NDcxUXmhQcG7D6oIoSF7pEhV1wFdvJ6oKrvriwD8z6nr8LrpziwjZAcomuepfKiRsZtgFWirjQBCxdlNjQJTI0XSxdLrEhZTmYrm1TxIajllMudnTYB0Sx40M9LjRFiQ+Bfneh61PuEh92gVVfhLjc8TlziRC7oKovQuwDstgxoooNlWYoPtx4cWFs5Zw9Z0aDpiiA5aKZda+AbkgqfKZdl4O1Mr4n6nN3ARZ57MjHPWY0GNvRagMsIK+jRVXO+JAqiqsF9DtbemRoKmeECOSLEWdZcwNZKV0sF8CiFr23KfeswQ1bf8WxPUHzXoPVBVpdLhbQXZvlcjOf1fosYHajQ2Bj1WmZKjVCdCmWjwlaZmw4DzVaMx8Xtr0J3JDl61xxR4U+cEV1smxxnQ8c2eJCn+3N5/eFq3WRoQ8c2aIrr2Vy+ONCH8Dijg19HKwYMw37AEuXLTakLgfjsz13dNjlYpmKER2mfO3mse+KCm3inn3oc7W3xYc+EGWLD7siQ1O2CNHHsTLBytft4o4QzchQqfDosMaFFKUELJtyF7ZX9yqfSipy7xO1CJ47NqQ6Jb7bb9RieCB/09LcrtasFsYD66HKt/VDjRC7NbNOVpeNyOFiUWquuPpjhcIVl5MVCkcLWCCB1QADElydc/U/0uBIDEjbc7lZoYDF4WZRarA4HC0fB8vUlXdtIy8FQ9mew9HycbF0cTlaOV//QPg7Wbo4iuJDP/3K1QoFJ+Vq+ThZupSrFVp7pQCLUrvF4Wy1uVlAsY7WfDlZsXPa3EvC9BW2xxaHe0UR2b2aA82Sg8UtCmABtP5ZAN0B28iOVgmiFsXndrWoHeNztXxQiu1szVqd1sxBVt8BlpJG0SUAVhVNl51Gu0lLcuxFW4OskftI26+Mf0zaviqvKOsUApO1DinKDZmve8ZltAGqsId6DSM+PxW0+u7jswRaMxUXth1Y/Q154hf8IYsTrEKiQh2sKOsVKoXEhY3QlrWR/vugb78gw+Kydz5yc9B2Np1z1ae9t9EdHNExjdpFIZHhWrgKPQ8OvA+Lw8O8t+Z0sUJiw7c9+JzV34WgXXauuNNv2R0A0C+H1NQjJDbTAYt+BgA7AkxhztmWIcfg9c88AFnUcyA0Omy0W97Ac2kcc/uFgO1XmL/sHxTwWdSPPDUADIkQ/+Lx1x94/pbzoKDocPbjQhfAqgqTDkg5tgd4AStEuZfbjPoAACAASURBVCOy9e5VyDGlvQ+5j4EOWAD9s/2YI2muMDX1ILc4YNiG6mpRRT0G1HOAo59WQ/QYRmV4FDOttvNgFhytmYCsWICVcykcIH/tFZAfsN75yM0VsIjx4HQU0tYxjsGsLbljg6pZBC1TFbQ+z1CnNdugtUeukCJECVqcxbFEz6yCVvGQZR5AKcXqjymXqFCBVYWrhgRI1O2BMtyrNrigQodrXVZMwHKtzcoNmcB6F0spt5s12Qfa9q6Q0VaLlRK0YjVmHUsabLVd833EAVoU2BpBVtiawpYLcL36C49c//wt9/+SQatoyLIBFkW5i9qBMgrbY7tXI9ENGCncq8tOf1Lnfy8BLPoBy+V9Ks/B0uXiZrUBllIK0Ird6ieFo9X3mNyOFtB/HPR6LJtSuFp9IDXrrhaQvzAe4C+OLxW0ioWsClhxxFE/VeUm6izDfvW/l11uVirQ7AKtPsDiUhdouVzrOSCsCzBcZhTG/uTO8vJCs6YKWhNtBNAqcnahOlC+YGWLC1PDlW12oQ9cxZpd6AtX5gxD3+1tMwxzxIPmLENfsKDOMgTWzzT0jwipC3+sn2mY2smzzTT0BSzqTDPAPuPQ5zrPsYKIOePOt2UD/WxYP+swB2CZx6HPxbIpxuxDX6fKnH3ou71t9iH37MI+2WYf+h7ZGDMQ9RmGTvswPR8yzDqcndmFoYBlKnfdlZKvexVjn3O4V2ZkmLv+CggDC24Ymdci9z5xFMHHmEns+0U6tqPlonkohgfyL8UDrK/TokaBIZoHVwvg6a3F5WyV5GgV5WR95ylnk7Z/4hdEdrAaikVyLMjlZlHgSjlZlDEW5EJ2uDrnqk+ToYKrZxYNsNQ5Ef5+LA4Py16LNhCL5IiQy9GiXM+5HC1K41H6GXHA0codFf7Rs+gNSDlcLQpkKUeLMsYCRHIXy6aDxCLpps/xdWhBCG8ny9TDP3E5w544qXwniwpYQK270sVR3D7rsweBMgrcpRwxOFjUZWyBldFdxH2gq5S2DlRHisPR2ke0cuhnxMTRyg1YpSj37EOgDFcLmI96LYCHK6gqBrKoKqEpaQmAVUpM+lcnbse4ob0nDcN7+qnTnkIeg6pG7s+9C7QFs9UQsoEkjvPWBz+dYT/o58VjjqTHtjzRYf6bagnRYTOm34rIJSZS4H+9IH8H8RHGGBG/HFLXjwWA3cT1UznO7KaZfUQJW/+EURTS5LjYNtrJPAiMhUqBqxL0VyduJ4/BAVccYyhJjIMiQx2upBxDCHoRfZA0MBqN7sbCgv+yS5xwNZYCQ2K0oz77IRGR2laB1hV3biXsR1h0uKzZR2MpMeTIHwOkdkOBFscyPIPAl6JAazAMP9co54WSAq1nvj9vXY8CrYXA+5IOWoNAP0WB1nYRlkpwLM2jg9Zg4H9uKMZIGB2u0cxiIjdghcoErDFLASEdmPbKu8lj+CoGYIXAkrkNh5vlGzva3CspM0SXDA7WuiEZxhxncp5LcLxtyuFo2WJCX1eLI2p8w9M/s3bMAlwtAFlcrRXQ275wuFjmGFRXC9i4zlbWPQ51sWIBlg90ldC1XakEF2seHax51WjkB+A2qJpF0IoFWL58tDznRVAcL28jg5YpanQI8MWHsxwh5qrPyja7MOQF931onvjF7hPJBaL6IkMXsLL1yvKVywzDPrjaJvxjIV+5wNVw0NNB2eFiOHCw//vGefLVn+gdo099saFL/VWy2LAHhPpiQxeQEqL7PHWpwaJGh5P96B7D5YZLiQ0P7Ef3f+8DrFSxoQsI9UWHLmP0RYemi7Vue0J0qIvj/EgRH/Y5WS7RYR9QuUSHLlAWGiHq6jvqbznru53/PSQ+jBQbljW70BewONatmjV1AVQpxe0ccnWe+h5XHSxDEWLCkjUv14cSCuFLEoejBczP+dFXFO8CR830f/Ogphl4O1upHa3kTpbPC/Tu+N7iZPnEgDYnKyQWjOVm+cBVLCcrJBq0uVm+YGRzs3zHiOVmhcwgjOJoecKVzc0KiQJNRytkFiHV0bK5FSE311iOlm9MGMPVConybI6W7zg2R6vPxVo3BoOrxXWOxHK1fGqybK5WCDyZzlbIGFRXq+0d6HOyTPk4W8yOVllOlou46q58i9s5iuFjKMS9ylH83iazncMs11+ZRfBFtGgIlG99los42jSEiMut4GjvYGqW67DMYviQl1JqnVZJDpdv0TtHqweAp16LKon5LYxPukeuLlZJMwdLKW4vRbNe4F5C36xoCowIddDiKGgPFUchvH7tyHkD1QOCUMCat+hQPwy+LtbqGLUgvkhxFMUDaUErVWyYLC50eUEcJ//PfpHeQmHEcLIAPJEhhzhiQw64ytQKyCpqbCjlEji+o7BFhkQ4Gg4PZtmNtx3/TPIYHIXwHOKIDQFghQhLXLEhh5v0vh/9JH7z/l8njfFHzwgDLFNcRfFUcUSHHK0bgPWLVecSR1H8f/OMCm1yiQ+ZYsPy48JSbFsuwOIQ1Y0LiUttesfDdpDH4JCUPF22SxJL7yyOdgrje8ljcAAWl6huaSMFzjiCHgMvMZANh6P13rt+Eu/70U+SxylJXEXxVF36/C+Sx+BYkodjcWuO/QB4+mqxJB4FxIdJ9qDLxSpp5uA8AZau3TJ8zToOwGqkQCMFeZkdpdygJVfPkwK+STPGexTQ4gQsamyoLs4cF2kKaCnA4nCQSogOFaS989/nA9ZkI1Z/qKKA1hL41jUaMV2T5g20umArdmwYPS5sewExwco3MowFVyFxoQ2ufJf7sY2xXRzhNYYNrlx6Va3bF8v73Nc3y5TtFOVIUEIiQ2k9VzLFhpHqp3yjw5gOlk90aDvXuM7ZK+/a4jVGm4MVuuSMUkh0+N671kPR+Yf7RX42FywkNuSKCk35Roc2sBKe16W2cZ71gbO8xrBBlm/sZ4OihYDrkm0cjgjSNz588+NuWL8fTGUEbREiMTYsKy4sxbkC5s+9ihkP+n6r4PgWEvMLvG8RvB2wMqmQPlglRYQ2cZ2zHNEhh7gcLY7o0NfRigVYAFNBvKej1fZ4rviQqnl0tWYxQoz6bDYXayMBlus6hn21U67gVFL7idiAxQVfrqAVG7C8arMiAxZHfVZJ4mp466quOqzU0aHNxeKUK2jFBCylHKAVU65w0/W4ERpn2OoapxTQ4pINtGLFhtHiQnOHU8NVV2SY2r3qig1dwagrMnQdoysy9Km96rJtXW9UXZGhD0CliA3dAStybJjYveqKDVM7WF2xoes51xc3uI7TFR26FrpTY0Olrviwkd2OlUtk6Op49UWHKSBLV1d86ApSXfGhD4x1xYeu9VhdkZ0rAHXFhz4QFTs+tEWFrfvCECGa8WFgbJg2LswNWG0ayaUNHQ9SCuBd5OMEcBXBx1YxEWEh8SCQJyJsK4b3Oee6HuszDkd0yNWbtM/VOv/wr3vXX4VoVorhfeAotqvlU/A+j/FhSYXxurgdrShOltrJnHBlOlk54cp0skLhynSzQsfRHa3Q2YP6NwjKia47WqERIFf/Ld3RCocrnu8taxytzIClO1q5a7CGTOcdx/mrO1qUVg0crpbuaLXtiu5KcbpYpnRXK7WDZUp3tCjQpLtaoePojlbojELTRQoFHtPVChmHqyeX6Wr5OFm6OF2tADcrrZNVUlsGYD6L20vpf8VVx1LADPVVFeNeAdkBCzhQo5UbsIADjhbXeUcZRzlaHL2wqHKp00rhaAFluVpsC0xnbvOgxNXHisPVKqmnFpCm3UOI2CEr9QrXbfrcWRP3qATAUgXwpTQXBeiAxbluIBWwOAGNDlg8UCTluAjAUioBsEpUadGhy1gxXSyleQQtgA5bHKAF8ACOAq0SmqAq0Ap1sVb3hem+xMkxrJB13TlPIDtYXC7YymiBDFghizK3jVMC7Cn9+YMPZxmH44QeMX1r4ACtvz+Fa2FjDjhq1i1E7Sup/Y+qXSsL5DG4pmCvMJwzbPvC5qjRYauRbjVafZKQeMHhV9J2BsAfPuHL5DFkM4BkeL/HDOcvV43WJc/9Kss4HFrBGONCXK3dcgn79vv1o7PuC8Nnu2kGuO6cJ5D3BYjgZI0JHwiuiHFlNPlA/dNjDwnfFy5HooSu4FP91fEPw18d/zAAwN6VTZn3BpDTGHss8y99sDye1EB9/NRzM+8JUEQneU1/ctyvAaCBFne8x7GYNFUKsB5z5HLmPVmrErrD3/7LbwEALO3exjIeBbTUts2YaZ1QgsbTe9P/fu5V+N/PvSrz3hwQB2gBNFfrrT/5fwCABbQA2jWHM6nJf3ebisu9UoDFqVBQMrdrJM8ioCFScFWCJMQqYLGOG/j5XjYuvjygFXrRWrtdqJvF4V4BBwBLicvR4tguJ2iZDhYXaIW6WeZ2oaClnzehbpYCLKVQ0OJwsEw142ERsKWUE7TMawQXaHFo3/4tbK5WbrGdxaHWWls86AtdbXDl42bJVdNz/cnmA1pcMSOXSgMsm7jcLN97iwlYvGrgB1v2x/qAVls8GBIbmoAVojbr3tfSb3tsCY6WEido+cBW22N9QKvt/HjB4VeyRIe+oGUDrJDosO3xFbTsGk8rfykKiQ6Vi2Uqd3zIERlmdbL6QMoFtGK5V6EqDa66ACt1ZBjDvbI+j+Pnuwuw0seG3ecNtT7rwDhuB6cLsDjcLB/1XSBTg1ZXHVbq6LAPxlJHh6aLpcsVtPpAisvhSg1a44771DzGhxwF8cDsu1osZ6tJey51WSW1eHB1njgAKmdkaFMJtVlKKWuzXBysdKDFVf8XJyK0yQW0WKZUO46RCrRcCt1zR4emOEDLxc3qAiyllDVaMeLGUHUBVg5xXSv6xNXmgUsu1xPzMVQ3i9yMtGsHhpbVrn3hSrQ0GPN1r57wlXusf/cFJ2Hh0hD4Goh4H7qQeHDbYrxv4L4O1lDwQIetSWlIPPj0ay5m2BvA/p3G9/yz77/vRVO0vCe+EeGOxfVfGkLgqq2RoM9YXUvvcMh3JuEVd/J8gWlrVuoLYbYleEJutu//0Rnr/uYCWKY2b9+7fn88wUhY7jEh4wyG8dZ9DQGsp33k9Ah7MlHIez5k8GPampe2RYVt2rqFZ7F22zWn63pz0mX/1DVc2makbeKePegjszYrd91ULEerpPorIF1EaH1u4zMUt/4qRP7nny02DLlo2rYJqcHiig7b6rZ8FNPNCmnVENPRCnG5Sph1qMt0tUKcp1mNDvsUKzpM5WDZZHO1fAELKGP2oY+iOlnAxM3igCshJLn2SrlZVLgSGLAAGqebxQFXnG4WB1xxOFrqyzsHYPE4WuqmQD0HhywXTOVoUYvcdyyOWC5aAyFZxuF0tai9sLgcLWDialFjROVoUc+f9//ojCAHy9Tm7XtZYEkMGpZxOF0tjpiQ09XiuGZwulohkKWL09Xqu+5kcbJcssqc7pWpf3rsIWzNRavaldO9MiVlaQ6W74xDuzgL4blmEXKohCnX3OIshueo0xpLnga1HLMOAb46LS6V5mrNoxpIMmABaV2t0NqsqHEhF2CNCjvpG8lzg+OKDN9x/InkMRoI7F7Z3P/AhOIohF8eL7CdhzyF8BKe6613jEPXm467gGWcPSOezyjX1xeu6HCZwRmRUuDMI8IWBF4/Fs8YY4YD/adP+gp9EEY142FRE6pGy4ssXeI/ft7VDHvDFxVy9dPieq+4QCvWuRMcF3ZRnbmztgJ4F8WCq5/9yo+DtjPhaiB49i80NjThahD4IWoM52n7YtgSQLEcrNDYcHm89ri2TaLwVXhsaD5/yPGyvYaw85ALsEwdtBD2JUR/l7m+/YXGhja4Cj1/9Ovh1+5aDBxj/d9sEzt8xxkGHuhYgLVpW1j8Y95zuD7rodHhaHnt+ywGgeeOAWlP/9hpYeNEqsUKjQ7fdvoda/7N9X6Fxoc+509LbJi38D1kqZ2Y7tXnHnuY9zY294rL0QqRzb0yYclFIdvYVFJECKwHrPyKWXDqfx7GAqxQmRhdmqMVKvPiHeJoxaxX53C0OLW8tyxXgis6DHG0bNtwuVpcCnG1TMDiVIirFdv9ZIUsrsWdS1NsmPKNDTniQaAdsHxjw9iAxdcNPlds2HaX9L17lhURtsk3Omy7TOcCLY6IEGg/33JFh22P9wWt0mLCtuOcC7RMF0uJa4FpX9CKPaOQIz4sjR049ycoLrRFhS471Bcbpq69cokNXQArZWzoAlgusaGLg+USG6Z0sPpiQ1f3Km1s6PJcfcfQdX/7z8OUDpZLbOhyeU4ZHboAlsv543I9dIkOXUGqLzp0GcclOkwNWH3xoctxThkdtgGWLpfo0AXIXKLDlC0bXKJDFxeL6/0C+uPD0PPHEhnGiwtLI1AfdcWGjRwnjwP7HK3YDpapPkertIjQVekcrdQ9abrP19QRYZ+j5fr9N5Wj5epgcSwHBvQ7WqnbWvU5WqU5WK5K5Wi5ABaQztFK3ROrb91D15iwNJ6gMk7SZqRdtVmlzSD0UQoY8wGsLoia5RqsrtgwVw1WO2j5XOC6HjsbEaGvfMFpVmq0fC/GKaJDH1hrA61cgNVVo+VzrGepRssHwkqr0eJSipmHqWAuGLJC6c4ErdF4mBWwTDcr1MGK1dbhHcefGORgmTDVQAQBls3NyulgjeVgDWwtjxeCACuuAxsCRrbWDiHjjGE6WjkBa89ouM7RCgWmWKC13Ay867A4zx8TtKQMc7HMbULHKbEYXoet0GPP9Z7ZQMvVxVqzP41YB1QhLtfHz7t6HWzl7Oxuc7RCit253i/bAtMpzx9vyLrunCfU/leRtj8wzgS0uOJBqnTQmtWIMKbWullcFzfqOJNzcdYdLO7tlbgcLf1aSLkuKtCiRoRcEaMOWrMaE7aJG7RCACuGFGjlBKwYKrGflk9jUu/C928+6YkBu7VWo9EChhEX5PSVnDojP/OVfyePxVUE//YHn4RhYG+VGGqkwI5NYf2zzHHaFgP20fJ4yLZ0ClehpZQCz/jGR1nG4tCbjvt1lnEa8NQVNAjvoWWKY3+Wm0H0RaV9dcWdZdywAeBPn3RFcI/DWJJSBPfSMsXxuR8vL0AMyzlGUgo8/eJTc+/Gqt522mRyGc8SaXzXaY7leE7+9Gf1f5axQLSuMdHFknKw+lOSONystz/4JIY94ZNacmDXMq0jPPeSKTHciJxjcOqNx/46xgzXJK7bhxqnlM7wKh7M3UdLVwPgjCN5arS4FNLj0BRX7MP9GaOON16elCnIcVn3oI+few15jGb6v5LEcR7luE57nR1cLpYSFbQ4FAPSKKClA9aYaRYKRTHWkqOOGWMtQsqHT9/27095DsfukPTGYw84WBTQalp+L0Ul7lOo9NdSAmj96ZOuWP2dAlpccaouroalnCoBtPTjSwEtHa4ooKVcLICv1yFF+vHhiA5deSjZKx+NFtYAVqhs7lWIo2Xb5vOPvT8+/9j7k/cRCAMtm4OVE7RsMBTiZjVSrBvL9rc+LY+H6wBrLEU2N6Ltm1VO0NIBSykEtGyX1pClrW3b2IrhU8lW5J7zHALsxzQnaOmApTRuBmyuVsg25nZmMTxlf4ImcC2vv5flBC3bawgBLRtUhYCWDlhK5qSlUMUsiI+hJGdFF1z5uFmlRYNcevuDT+qMCHOAVhcA+YBWDCfMJo6bZI4p4ZyyAZaSD2ilcog4QMtnX7k6uXOqa/9LcLRM+YAWRyf2VJ8zn+exAdbqOBlAq2vfP37uNWzxYWniOo9ig5bzGREaFbq4V6ljwz5Yy+lmlSAXMKLWZ/k8FxAnIrSJ66Ke2s3qAiwljhotIH0T0VTPk9rNctnv1KBlc7FCxNWwtU+po8MuwFIqIToMUR9IudZp2VwsXamjQ5dzLRS0XLjIeXZhCGT5xoNtMw59HSzRMpPBdxyO2YZA+4zDkAL32DMOfZ2nthmHvuO0zTj0havYMw5Dbg6xZxy6AJauYctL8IWVtk+T7zgpZhz6ulixZx36HqMrI886DIGrtpmHPp+Rrhljvp+12LMOXQBrzTiRZx2GXIvaZh76OlWDlk9bH2CZ4ph1CPBdr0NmHU5nGaafXchRfwWERYS2bULG2WiOFle0FzIO13OXNOMwhXwBC7A7WiGXOq5bSOwZh6XFhCHHrcTo0Cbfz03sxZ1DxPXcs+JohUSBtm18AQvgc7VK66WlK8pZEApYZmzIVYNFGYcLtEyV2qbBV1yxoU2hEWEs0Ar9IMeKDkMAK7ZCwSsWaIUCVkmtHZRigVZoRGjWZ4V+Prg+ZzGjQ18XS6k00OKoz7IpBLCUYoFW6HnEDVqsZwDHDEIFWlTAUtuXUiyvluvpK3Lv07gR7IXwVBdJgVbIjEFzPxoprLMIfcUJWhyzWbhBiwpYys0KmTGoqzF+KOIGLaqDFWPWIfUYcYMWtQZLzTrk6F/E8TmLMeswFLBWx2IGLepxUsXw1F5YnL20uEGLeh5xzjwsg0AMcUWNXAX1sdwsirhAiyumi+lohao0N+LSU57LMs5/PfY3WMZZKez4AHygtb8wBwHgi1e5QOtNP3clyzhcon5Ji6HR0iaWcbhAq8QyBoqLpYsLtJpCjBUllsL3lZW1RZmh7e/NE2hIKBxsNAgZMBaLhxbDv/34U9b8e8C0vhSlED7WBe2gxeWg7UYRamcoBczmgtqh75k5zrO+8ZHgfdIBi3IOmfsUepzMy4dgOqUoxfDL2g1twHiKhx6jWOXPlGJ4E7BE4PI50vjMhi6XZl6LOJbeAsKL4cfL5j2NqUCbcE+LBVhPvfjRQdv999PuYd6TiSjF8ObauiLwGmmOs23LvtbHRi98NwGLU+NA+m8Ml8f8d2qZgAWsv8mFKtTRKu0bYyyFulm294frPQt1tEwHK3R/uF6HTVwLFIc6WsvGNaMpa2lCVoU6WlwOlglYAF96UNr1ia0+OPCeFtPB+odz/yXa2CEKdbRMMOLU3v1bg7eN4quFdvXlUBtQcYFWidGhr0q7gAFxXCylvN287c/tC1ptESEbrAd9ZlmeulW+oGUClhIXaIUco9i9wnxBqw2wbMCUSm3XI47rVF2CJ45iuVhKbDVaAddHblgLjgtdHCyX2NAFrlxjwz6QSh0b2hwsU6ljw5SA5RIbxoQrUy5xjyu09L1vruO4RIcuNVgu55HrPvUdJ1e4ShkdtgGWrpTRYer+2C7RoauD1RcdugKZS3TYdz3iig0Bt+jQjAltSh0dpqzDcokOYwOWLtfo0AWMXKJDl3HM6DBKXOgaEXKdHC6xoYtTlTs2tCllbJjawdqzwlM0yqXSCuGBfkfLtci97zyKGRG2KVV06AJYwMaODksrcgfcrkcpr1kugAWkjQ5LLHRPKRdHi8t5ch3HNzrM6lt6rRfVcUL6wFOq2NDFxeJWF2httIiwTV2g5QMiXY/lAhrfWYQposPYEWGb2kDLFbCUUkSHuVZ545p12OVU+cSKXfVZPtcjrmvXrEWHOQCrrz4rpYul1AVaPoAVs2arS15xIaXIXY8OKSePGR2GQlOs6JACV7GiwxIAS48Oc8CVKTPuoQCK/r5RxjGjw9BWDVz7M1zzmQ0eBkCc6NAXsHTFig5zL6NrxoYUB0uPDSk1W2ZsGHo9ihUdujpYNsWKDktwsPToMAdcmTKjQwo06dEhZZxtW/bxxYXUWYQxokOKK7VRosMSAAsoOzrMEaXZpEeHlF5YOYvhY0s5WhTAAuJEh7kBC1jrZpUSEeqOFrVZMbcogAXEiQ5LAKwSpTtaqSPCNrlEh8ktBY4TaDwesEASd3SYIyJs07gpr7EfUIaLpcQFEQpqcsWENjUQLPvD1zmfZRgAdMCKoRIAS4k7NuSaechxPZr36LAkwFLRYQkultJYDlgAK2V0mPRqxbbwphRouD74DKD1qFd9C3deciee86efoe8P082xAc+SIFLy3SDvXtqCXQyOFldn6EYKrHCdR0wf2qW/2ITf+a2/ZRmLQ40EVpi+jLAVwjNBViN5HK0VpqWuOJaVAYCXf++n8cG7zyCPA/AB1mi0gKagHlorK4vYc+8Ohr2ZuFkcjpaUA0iOY9SIyQ9ROy58CL5w/R6c/D56L0yuc1tKsW7NzOCxEoGW897uLWTZFP2NKgm0uEW5aevbluJEUNeRU9IvsFzRA/dakKH6hV/5n6u/lwBaMSI1+nk0ea+4QItTXOcR5Wb08u/99Orvx3zs5Ry7Q9aaa3ZBoAUA+/eV4WjpkEYCLf0cLOS6pr//lHNbrrlml/H5X3F4r7wWCVSgtW3TUtgeEWV7g5pmgEHgkhBrxxHexfCPetW31v1NuVkf/d2fp+8ThHcxvA3OxlJ4Lwliuxmqv/kUMdvgSrlZOzyX37FdWBspvAtibeOMG0FaoogiHa5KkQlYo+kxW2AoPpYyrBB+2bhp7BkPcBBhmRIl9Vp9i+FtEBpyHtmua1KK4OXJdCnQuvm8vySPFSLrNXs8xCBw+Z014wR89m21xQq0tmwNW4JHSYGSbzG8zQWT4yGE7zGyQZX6m8c5uePCh6z7m3Kzvnm+exTdBlQh57ZtrHEzwJDh3h8iF7hSKgMHHdRFwDkcLRtg6eKIDgG+tgI+jlaqafo+0WHXN1eu6eClOFpKudysLgdrlMkZNQFLKZej1XWMcjlauotVgjqv2RkcrZhLwOnyiQ67HuvlaDGdczbA0sURHQJ+53bXY0txtLoUtIepo0OXN2SjR4cuj0kdHcaICGM/JrX6XKwSYsNYcj+Put83zhqt1Oq7trnejPoAq5ToUNdGjw5dYMwJtFzuWYnvay7nLddjUoOWj4sFePTJ+tJPP9P6H2JHh77f5jiiw8k47celz8UyxREdAu19tHzrt9qiwxAHyxb7hMBVW3TocwHtig58L8QpokOfmPDP3v7iiHsykS9kcESHQHd02AdYujiiQ6W26ND3GLWdR77Xta54xcfBShEbel+zGaJDoP3zH+JgUaNDpbbo0LdQl9sG2gAAIABJREFUvjU69IWnlvOxz8Ey1RUb+rz/Xee173kUOzpsg6vHffl/AdzL6pSs2I6WL2BxKmb/o1ydvJVs0aEvGMVcaJZbvnVYsR2tEBcndnToA1hA/Ogw5BjFjg59I8KN5miligjbZK23YuqtlbOwvS029AWjrrqteRH53Y4ZHYYe6NKiQ676LJtCwauUWYdtCgUjc7vQcWLWZ4UWum+k6NAXsJRmIToMva6Z24XWYMUErdw3xxK/UOkKBSyW1g6AFcx8Xaw2cZ3XoePEjA19I0Jd5LhQF2d0yPFh5YwOuRwszuiQw9kaCskCSkLw1WAdtEBvpqiiA46LLmd0yDGTkDM65IIJzugwFLB0cUaHXBoOJMt1TQjJUuTOGR2yXK+ZYkMAGI+8Js63ijM25HCwxHDMV+T+hhNYxvnm+Sts5zXHOJyxoQtczWRcyPVtiMvRetQrvskyDqdcVid3EVcHdi7A4hJXw1JOcbVq4HK0chR692k/kxNVYh8trqauXLMIS4sOuWJDTnEVwzcNUyTKBI+c4ppxyOVElTbjkG1vpBTYs7QFe5ZoJyW33cwFWmiayQ9x++f8yWV4zp9cFjyM3jmXeqzU9lRgW+GqMZhqz2gRe0b0tTK5ugyPGTp6c/fCooIWN2CNpCDXaC1NP6tccEwFrcb4oY4DACPicX/FjY+lDWCIClpcnzElKmiNlhcxWl6EbAQkE9RSQYv7et00QxK07bzwOOy88DiIZgzR8LmHFKnPPNdnnwpay6MFLI8WeBxa8ghYf/KEglasPJ8CWie/6lrGPTkgCmjp4srBQ0GLG7B0hYIWV8ZvKhS0YjUbLbFGKxS0lozPaG7QKi9s5AcspVDQina9DgStEXGx5y6FghbXtYjrWO+88DiWcUz9h/eHO2yxEodQ0Fo23ELqsSffIdt2gOpocSsEtKyAFeJmURwwB7FBRERgSqWNMFtFVwholRYTmoCllBu0TIV8im3bhLhZsQCrVHFFh1xuVtBzs00uivsauNysENBqW8Ujl0zAUqK8B+TC974nP2izW+FgypugS0F8r4M1cLxwOwDWR197Tu9jXI6P61IFfWMNHZeFiOlimXIphuc8Rn1yKYZPuVyOazF8SsByKYZvAyxdvkuntMmlGN7lzHc5613GWXC85KUELJdi+KTXaodieBcHSzBNXnEthO87RlzXagAYDPqPkYuDJQc8YHvtC0a9j3EFKY7PvmshfBtgKbW9Z2yF79OB1sjlBHBxtFK7DH2ullNE6FKjFdnBMsXWQdcBnlICFhAeHZpKda6lXo/QxdFK7WBx9dFK9c3W9dPK9al2cbRSO1ilFcP3yTUiTFmflbLbOadSOVqpnSqX2LAPsAD7+2HjIlPBd0qfE6ALtGY+xmEAqb5i+By2cxdopQYsF3GtheWq0tY5BLpBq7SIEHBzsZQ4LsypZhz6XBG6QKvEiDD5F+IZm3GY+joEdM9cVEXuG11doOUCWEoh71nQVSfkiThmHnKqaQbrHK2TX3VtWKG7DbQC4MsGWiEddG0zfkLeMxto5QQs26zD0NlNMWcdpnaxdNlAKydg2WYdLjUDL8Di1J7xYB1shcwebNsm5CuXDbRyApbNzeKeReijZjxcB1tqFqGPYs845LgOhc6KtoFWCFzFdLNC2urEbMWjZhD6ynvZKJ8Hu1hjfdJBqwQXi7XFg+13T+mgVcLxKbEYvrToUAetnIClpINWiQ5WqErrewashSqKp62DVgkOlg5aJVyHdFFnEcYohi/hGOmgRXGvYoBWCZ9d3c0KgStTrjzkfQedlRkTWUTtpTUVd3sH6rFWoFVaTMhxDuVu7xBLv/Nbf1sUYCk3i+pgcc845Kqv4hhnJMsALF0lXadLiw6Vm8XV/6qkNg2l9M9SKqV/lpLXItiuswvVL1987LMCdmmt1AHb7jjzsG8s6gyER7/yqskvw4K66TYNPvL7T8m9F6tamZ6c1CULpBQsM/zUSc6xBA9An3X41OdNvtWIBdrFSU6Ps2BYGkI2A/zpO15IG2P6/9RLnFoqZ8h0z+aYddSsnkNl3FBe+b3TMBzQ14Jt5GR210DQrmdqnFvO+yvSOOqzSv2MjVYmr4druTTqjEPliG3ZxrP0DocOfd39IYc86wlTZxvqoHbN+dS94fnMKweLY+mds75yqf5P+uzCloFJ2k2s0eLuEotx/9TTJJq6Yc/9409k3pGJVjT6p3wT4P7GxinKPinAAgA54urvQ/vGpbb/3ZddFD5Gy+8UjZkGon7mS4gvdL3ye6cBAMYNbf1XBUZU6eMc/bH/FDxOiZ91JUpsqG+7f28ZtcaHvu7+AAAx5llDeN7cLI6IUMmHg5LnP+aB2r20JQi2zHFCC+RWXSyl8SgvbBlx43P/+BNZYWvFcrPnsFwpBev6dhxL8Ohjs4wTAFqyGawDqxDQso1DAa01Y8MftpYbsW7B59ygZW63ZzTEHiY4DpECLKVxsxQEWyZgNXIUBF1coNZW1O2r0crCqosF2CctpZQNznKC1qGvu/8qYCnlBC3bcj2nvo9ld4I+87YC95TrGyY9U7sOENXVcnmOWVYprpaS70nK0Ym967G5QEt3sdaM43HT7oIpqqOl5Atascu5coFWadcHE7BC1QVGPtDU9lhfN4vrC4sOV6Y4QMvXzcrZQd4mE65iqDRHy0dd7lUq0CqrktlRfRdK1wvpOhdLVw5Hq6doPjVo2VwsXa4nad8Ft7RIwXV/2gBrdZzE7kgfkLmCVh//uPKR6WCZSg1afY9L7Wb1ARY1OvRVH4y5gtbMfd4dwanvcandrD7A4nKzXNW34HRONyunvAvflXwL4H0PTFtRvM84XYVynYBlKkVBvMesxBQF8X2ApauriNBrFkbH++V7YeYoiO/anz7AWjNOR2G1j1PVVQzvM05XMbwv97S9K32ApStFMbzPdSNFIbyPg9VVDO/jUnUVwvuM01UIz/F573KvbEpRCO/jYKUohPdxsFIUwvu4XRxF8ED759239sq3CL6lHouv8D2nsjUyi+1oebZ9iO1o+QAWEH9abK5vvm3P6wNYQLuj5RsFxo4OuSJCH8AC4jtavteA2I5WiojQ5/G+47Q5WiGNkzkUuz7LNyKM7Wj5RoSxHa1cceKsOFpJICvkYHDVaNnk5WIplTLzcKpZqNHK1YkdKK9haczoMAS+TNDK3VIrFmiVdiEOAayYsWGsIvdQ+bpYnLLB1EaswWqTDaZCAIsrNrQpZAZh7Nqs4LgQcIsMOS5yKjqkjjUQMgywTHHGhwzNSznjQ18Xy6bhoCFfdFWUQB2Hu4+Wr4u1bpxpFEV1pcSgYXG2VHRIZRwBfwfLJs7okOPawxkdcjhYw8FmMhip2JA6jooNOT7rHHDFGRtywBVnbMgBV5yxIYd7xdk7i6M9g0ts2NG6Ybbjwt1LW1gumMX102IALIDP1eJaT46rEzvHNwxOR4sKWMDE0eKAI87okMNE4gAsIH97B1Nc0WGuiLBtDI5xjv7Yfypq1QWu2JDLvdq3ZyvLOFzu1Tz2z2qkYO1/FUOks5KzMWmf9i7TKfzUV3yNDWzmVTzLg5RlsXOBFjhelxTAmOFmwBhj/B5TH62S5GbQpxnn5Tc8mi2W44gOpRxDynJulOOMPcpsKgkcixTHuSxHOPUi+jgrCQErlHdIcSHQHRnGqofYtinsQnPqK7524B8DRhMvND6MAHyh0aHpYoUeHfMVLQQshWA7bziWVAiNDp9mc7BC9sd8XcPA998ELOLyIEpvClyCZyVS3UpIdGhezkTgrpnjbF8Mg5KX3/DoNf8OXerGhLTQ5XdMuBKCB3BuPvevg7aLBVgh0aEJRqHLAJnjbD1oX9A4MeqvgiNDG1iFLtukjXXNC8PGsMEVx3JtXZFhD2TNdlxoKsTVWgNYANtizsGK9Nxc0WHI3tm24XK1OICdzdHiUoijZQMaJsgJcbRiARbgHx3avi9yOVq7V/xhwAQsICzus20T4miV5F4BZTlYNucp58SdWAXuqXtnrZEcrYO1EDcrpXvFIbKTBdjdrFSzelxcrXWAZSq1q5UI7lxdrb5aLJej4/KKXFytvvOGw9EC3F0tq4uly2V/+j4Lro5WH9AkdrRiApaSj5vVdylzcbX6xnB1tGyApcvV0eqDMldHqw+wOBwtVzcrFVy5uFkuUOTikPSN4+pmpZo96ORo9X0h8HGyesZycbT64IrDyQLsbpZDVBjXyTJ3oLRp071K6WoVVhPmUuyeao9dzhu+guZ+V6sXsACeOi2OGi0gqaOVArAAdzeLw7FyGcPF0eoDLFfxtVdI42Adc/Fv9D4mpXuVan1DF1DjKoLnEouj5XJ+Wtyr0mVOuKLWns9kXKhr7/JmlqJ4NhXUT6tvcWmu2YSuKik6BLpBywmwONUHWon79XSBVirAUuoDLa5I0FVdoOUKWKkK4VNHhF2gVVI8CKQvTu8CLdsiz1nFVNzOoZXRglNEWOpkA7a7bMqZhja1gVZvVKhLOVpUtynHuocd4qjTamB3tNr+3qY20MrVzZ+lTksKu6PV9vc2tYGWD9Q0ImuNViy1gZYPYEnZXrfFNYvQR22tFHxbLLSBlg9gxZ5xmAuw2tws34Xp22q2OG7sxcGVDxzZHhvgXrXVZvnWX3GDFgfXzLyTpat4VytjVJizIN7USIqi2jyYoBXsYumvKfT1maAVCkyRQCu1i6XLBK1QMOIAKtPNyh0RmqAVCkwcoGW6WSU5WFxgVHqBu4vWRYahzlOEONDVvZoFsUNWCfVYCrS8XCxTXEBUmKOlYIsSFXKhogItyjnDHR0mjwlt4qrRYpICrZyApaRAq4Q+WAq0uACLSyXMIlSgVQJgKTeLbYkswjgqMpzLeJA4jnKzSoArzqV2WK/mZ33l0mTFhn3au7wZuG8PbRCugvjxCFhZpo/DpOe+7n+Qx/CNCdvEsYwPV3T45Kd+mjyGd0TYpvGA7kYxRoccgMXlIoxY9iWOoxUiFQ9S67TGzRILYHFB2gM+9DzyGFLy3E/GY/qNm+v8PeIV5CHYJFb28tVfUZd7Wt5XBGABk/eaqwSKnYh+9muXkMfgOJl/+tc/OfmFCloAHbTU9lRXSzaTHwad//qLWcbh0LgA91NptKuMWUCyEZAFzTr8g5d+gGFH5k+vvv7Q3LuwKilHGDc86+VRQWtl5V6W/QDooMUFahw65vfDGpOuUzOe/FDHACBG+Q2AwfLkuDzmb+8mj8UBwhwcoxTl7GuaAYujxVbExgVaXK4WVUywNW+gxRUdlgJaAPhAi7IPS5MolQJa3FFNCWCuAGt53y2Z92QCWKWIC7A44GjuAIsDrtQ4hUgBVgnicit1sTQjNfW5M5+95t8+Sxy0vUDfRmOrTpaunQd5jdEq3+albXDmsxxPG1QJz31Zsn/Tfd/rzvUbh0Ft7/WQoamcT9PSZz/zH1r/28KOtBeAtsVpRegSPKY8GpYquDL1R+96vtdTcn2mbeNwnCshanOwNm09OvGetAPWcLCFPLZPk9IuuLr1vI85j9MGRkL43EfsYwwG6eGiDa7Gh3jWZLWB0cAjsm4ZQy5s8tsXJtkA64oX87jDPtcX89oS4GSlXVbH3MFiXK379pQRHypxuVquagGsHIrd02TeXK1ZjQ673mffafQ25XC0SosIS1BJ7lWXmiZ/Ib7S8J5/d3/wHLpXpThYDIDVqShOlpLpaAHdrpbPRbeLUq0ulk0czlafq+UCZC6OlgtMdblaHoAV29VyfZ9TOVpdTpZSCkerzcUyxeJq9ThabS6WqT5Xi7psic81Ibar5QpXKdwsV7jicLOAbkfLBbD6nCxXuOpzs1zHie1o+USDnY6WCxi5OFkO46Rws1zBKoWbZbu2EAArzwLRth0uZfYhgPiulqvj1de81NWtYiqKL0Up6rRcAAuI72i5AhbA5Gp1PJ8rYPXJFZBK7dQcqtg1Wj7uFVchfJtcHayjPnYey/N1QVRJ9VcscnWeuh7nUcMVuwC+FOcKYAesTmU5K7niQ7YIkapZjQ9btFEK4l0BS6mU6BAooyAeaI8OfT+bpYNWKRFhKfEg4B8RtoFWLXC3aA7jwVKU+loTNS5UssWGSnp8SHnxyhZ0jgpt4o4PKfClIkQKNOnxYWA9Fnd0SHmPOeNDX8DSxR0d+rhYprijw1AXS48NQ99j3drPfZ7oCgUs7tiQAljcRfCUGiwVHYaCkR4ZUuCKOzIMhas1cSEFjFRsSBiDOzKkwBVHZOh6TWFwsfLEhUpdL6Codg/z5mopEQreOV2tEtwKjoL4uXO0ppBHiQk5+mip84N6nnAWw1McLM7YsAQHS/XO4ihyp8ARl2vFWQRPca+8CuD7VN2rdepLvWLFhErFeKxzB1ocsEWN/uasnxbXzbOEpZ+UKC7W6hgMoMVRh/UHL/0A+TNYAogrcUSEHKDFAVixa7N8xBUPlhIRFtP/qgLWOpVwPUkSFyp1xYYA0Ewdt6FHPxRdj3uptggyx+ePEh/qkOXbV8s2xkLgcgPLvMWMlPiQ84SnRELnPnNynvj03TGlX+AXd4aBOQdg6aJEh80UsoRHH602/de/+dXw/Zj+P8fHl3KOvPq6HQf+MQj87DUTONp00LHB+8HtYIXGhisr96z+LgR96ZNbzg13DxrtczMgnq+UyJCte/tU451HBG0nNLiSPj2zWkSJDAf7d09/IeyH9nquuCDsmCiWGPSgC6OLlTcuVHJ9QWOObygcqR1XX6050qy7WgqwgLKKZTkU6mg1movFDX5e+9Hye6iydoVvDsDR8p4fBA1RQkQYS0df3P2Fu01NAYuUA/yANesa7N99ALAoYnDjmnbeWaPYMaFSsXcZNtAqoasBR3Q4Gk1+fMTsYlEUw7bluImGgJa5zcp9TCsJZFDD1K5B1x/++t+xjJPro7vGxWJSKGiVIN3FAvLBXwzAKqo56X13eT1eNOM1LlZR8t0vpuWCXAErpZLGhUq22LDr4LjGh2viQptSRYhdUOUTHbaN4xodJoAsl/gwRS7uEg3pLpZNLvFhH5S5RIcp3CKX6LAPsFJFh117yvUt0OX86IUrl9iw6QYQl+gwBcS4xIYmXJlKFRt2wRU1LjwwTv8NPoV75RoZtsEVR1wIuEWGvc4VQ5NU17iwix9skWEEF6uMuFDJ9wWO5YDH2SpBrkXxXY8JcbXmXCUsGFySSumjRVUJRnRKzXNEGKI+96qU+DCV+tyrYp2tSGogvN2rVDGhUhYnS0l3tHwOVJuz1etk6aLeg7ocLZ94sM3Z8hmjzdlKGBe2OVqpZ3e0ORZ9LpauNkfLJ1psc7RS1zy1OVo+MWFMR8sHoqgf2bZzwysebHOzehwsXW1uVmrAanOz+hwsXTHdLB+A4nC02tyslPVXbU6WDzzFLn53rr1q2w+P19LmZPnwgu5kRQSsspwspdAXXERhfEmLTRfgas16QbyueSuIN+VbhxULDFO7VCxupw2mPAALmO36rFQqxaEqocC9FHeKpbg9Y91VagdLaWbvJkWAFrAetDigiWOMDEXvpYKWj4vVJl/wshXD55i5V2psmCsGjAZaROWICW29s3xcLIBnv82ZhiGAFQPKcgCWb/G7TRxQZq5jOGszB0tS1rhQ12fPpC3fMhSNX1xoE0eESAWkwYA2hooOM88sVPFh7mZwQyFZIIuixZ17srZGAA7EhpTZhFyxIRWwuHpokWYRqtiQAFwqNsxdhzUcbPGGK1PU2PCWcy8hgxJXz6zc7pWKDCmwxBUZkuBqMCSD1RUXHEEGqyd+LcmX/zLjQl19TcP6VERhfAnxYSFF8ee//uLsgAXwuFhUldDigaUrPAMocrV3oIrcpqEZsThauQEL8HevYqiEeLBphtkBCyinNcMsR4NKVK7gUAFkMhFLXjomHlCOvlr35f+QAgBG1CUa5OSHoBde+FHaPjBIjgo4xRuBERW0msHkh6DxXvoiwVTQ4gA1lqhxnP9zurzrRtL2shlBEkFvtHwPmnE5S+7k1LG/dzdpe9E0EMQvydTtuTTYn78JNwdo5qrD0lVMXKhEiQ3PvuDjB/4xZPhmFHJPMz8jOzMsJry8svbfCwHWsQlYg4DjqY1x0YXP8d/c+HfI2/Gcp31y9XexkOkCpoHFQsgSPCZcDfxfR7N0YLaQGDLUbAREMyZgveHdzyftQ8j58LvXGp+FYabFvpsDn9HF7cd5b27ClQhY+me0fMDBGgxpAB4aF+pO3s3P/nvSPgBhkaEOV3LBP043wUgGLKNmjjHeebj3GGv3wf+ab4JVyLHgkA5XX37pA4LHSRQTKpUfFyqxHZix5HG2qCrB2aK6WiEyIK26WhORHS2A7GjJMUO9hqcjFaMmbWYdrWal/zEdorpXwFrA4lBI7FlCVGq6V2JEe29CFMO98nWBSnGuuGLSxIDVqeKcLKUQR2uNk2UqlbPV9XlJ5WqZTpYuF1erLyZ0cbU6xnBxtfouOy5vhe5imUrmanXAhZOr1QVUjo6W7mLpSulotUEW1c0C3L8prnOxlFK6WS2A5epmdQGWi5vVBVdUNwtwc7S64CqVm9UVDbo4OH1g5OJmdY1BdbIm+9B/re+Cq1ROVhdYhThZmQBrdpwsJfYDRXW1gPmo18rham1UxS7mdXC02gALSOdodT3mv7zkA+R9cFErYAHp3KwOB2tl9/d7N+dwsLpUa7PSqYTaq1LcK06V5GApFQtZQAWtaOIoiif89xde+FFyfNj3NnS5WMCMRIcusWAB0WHn+A4QRgWtvnOhE7CUYoNWgoiw7zHcEWGI+iLCYy55RtTnP/b37u4tcO+LDOehuL0CVjrlv9P0yOfAXf6ep/c/SNVqUYCLOgvxvn35YWs0psFWxNmHroeW+jbI0SAebDm6WDFrtLpcLF1U0OKot4oFWk6AFVuOgNXmZqWswaK6WW0QJeUoWQ1WWzuI3LMHOWYfUjXYvycrYKm6KxfA8okKSwUsYAYgC4h4ACtsxXe1epTC1epTbldrHorhbaCVuwGrt2K4WXNY5O6r3AXuLu5Vn2bdvSoFrmKoZMACZgSygPIP5EwrM2gB9NmHcwdaIdBUIGj5iNvNyu5iZQAsc5sKWDS4AmYfsOZZs8AFxc4ubJPLrMPOWYZ9os5CHIB2x+eYgdg1u9BFAX1eOPW3AT21dA3QX5PVJZaZhwTgWNi5hwZMg8Y5KrSJY9YhRRwzDl9LBSzqjEMCYC1uP47kYInBAgmuOHpmUeCKY4bhg3//x7QBGJaloYijTxbFueKYWUhxrlyiwsIAa/ZmF7Yp+oHN3Vsrd3w4B3rOUy8jbU92tYiODjU+pABWVX65zDTsEtW9otZlNZaFp3109MVPIW1flb+wPfayQIUBVqdmDrKAGQAtKSc/obp37+QnVNSidHJRPI00X1xA49LcGu3O1IkcDDMOiWtW/pcLPkja/rXfyGy8E2NCisYj4npzc6AH/95dtAEo169mzLJmX6hy114BFbBMzVxcaKotPiRFhqZ8I0TzmAri9gdv89t+//Laf/suiaMDWtCSPNpFihg9hkSHz9OdLEGsp/CNDpmLvRe2+zmbzUrY8iY2BcWGJmAJz0uHsf0b3vMrzpuug6uApWbWKCQyZASshW3HeD2eG7B8Y0MzIvRZasfc9pZz/Rd2XwNXIdcd/boVEpfpcEGMG33jwnVL4hCf3zcu5ASrtqiwcLian7gwi3ydLROqKK4WQHO1gPyuFuGbIdnVksRi8NwF8bPkaBEdLPL2pqgz83xnG25gByt3gTvJvSJeo0pwrziVE7DmUTPvZCmZjhark2XKxdlqO66urlbb9i6ululk6SIuieO2LE/LBSuBq/W8rnqsFK5WpLYFLo4Wp4tlqtfV6gIkVzerZQwXN6s1IqS6WUC/oxURrlzcrFiA5eJkdcEVdYkdFzerFa5crzVt1yoX0OiCiwROVhtcpXCxYoKV6WQV7mApzb+TZb4RTo1JQ+XibLXBFEe9FkXUdgvV1cqinI4WWS4OVcdj+mq0OmuwIi9Fk1s5HSyqe0XdPrt7lVGx6q4qYPFrbiAruTiK40PVVxi/pWd2WU7QIio3aOVUF2jFdLGAyMvvcMeEpmKCVuSIcLT35tb/ljsi7FMXRGUFLKoiA1aXi5W7sL1Gg/6am7jQlIoPo8aGumwRoitIdbleLrJFiF2RoSkzQvSBMFt86PMNkRAh2uLDzrhQV4zoMFGHc1t0GBuylKyxoSsk2WJDD8CyxYZeMwkp0aEtMkxUg2WLDFMBli0y9AEkW2Tour0tLnSGK9t1xee6ZHN0fACDENnZIMsVrGJEhanASrlYM+pezX9c2KaosaEuyhI9sxwhzqqrJQckV2ujRofrHC0fFyq2YxVTZhH8Bi1ypzhQ1PUL59m96lIu5yrmUjimfNYpnDXNLWRlo2FKjMgZIfZFhqZ00PJt+bBB67Q2KmiRRAAtszYrez+sDJplwKJopuqvmFysnNFgrlhwRl2sTs1tXKjrs2eemy421DUU9PYNoTp4m19kqGsgaO6WL6St2ZYWHzrHhaYI8aFYaJJFhaYWtu9LFhWaEsNxODQJGbztG97zK+GARY0MMzlYC9uOyQZYg+GWYEiiLLFzy7mfCIerwYAGVpSZ0ETIIi2HQ3huubCYBa6+/NIHzANctV7MNgRkAcDoPZvzPXkuw2NznpsvCbIA0gVu39UHhz8vBbQG+T4ig82ZoqtGQCykvyivvOyXaQOEglYzAojr+oVKbDo0y/MCk7UQc2jTP78vy/MCyAZZclP4+UWqx8q4Xu2Wk7+U7bkZtXFrspQWLlgK37gBbU3CTLPI5a5MT9zIrMvy5BBl9p0kuGDjpUWs3Oe5IoBSI7I5cBtOcjT5CdHyPZCU9QwpUV3mJqOpJZomG2CJ/cTa2tDnpbhXxCh2TgCrU5msjjxSoBXsaqlzKeQzqK5ViY+4DlpiR8I5xm/uAAAYeElEQVQnHwzWgpbv8jyBS/NsPe1eAIGOlqrP8nW0ptvJ8TBsKRocAK1QR2zlvm1Y3Bl4kW4EEPi8cjR5X3M4WslEbQFBARXKYs9UQJpuL8f7IRI6eKkdLKFda+QC4RoZAFi5wApggCuCNgJcKW0YJ0sXydUCZsbVEkbtezZnC8haHO8tSjG8p6NFdbF0BTtaQHW0YokRsJK6WRvEwRIZXXMTsJqdhwWP5RsVVsBKpw1Tk9UlJ2er7bxyuR+3bZvIWJIt9e9JnK3WZSuIzS0d3K0k9VktQObiaHUBloujZUKWkrOj1fb8Lq5W175HdrWS1GR1uVcurk4bpLgumtziYIntx4U/t+vzt2yfws1K4WK1gRXJxQKcnKw254oCWIA7ZLXBldN6hYTl0jYAWNWarGiiuloZvzBmd7Yi122p6DBImTvDUxwukqMFVFeLKqoLlDMizKjYgCWapijniksugEXueTWDdbKlaEPVZLWJpVaLck8eIds7oUArab2WrtE43NWiFqn2SQ66Ha0OEKPUZ3Got0arD6SIdVpF12g1o243i1KD1Qc5ctTtJlEAi0NdS+Ekrs3iVHS46gCdnHVXAEPPq1rYTlKNCy2ywpbredZ233XdPhLrtEWGpqLAltdyFvzTkEmxIWAHLQ+nqw22XN0qW3TYFhXaZIUtV7eqDbRc9z0CbJHjQsAOWa5w1QYari6SDbI84MoaGVKe22d7xIkNY7hYPmAVo+DdFa5iRYWucNUaFboeP8t1dwPCVY0LfZS93cO8RYg+bhNHgbxxcSDFhpFEiQN9xV4Q77HvavZh8fJxr8b71/8t1wxCXxUYJ840YLU9f+ZZg7UtQzmqkNWirDMQgeygxQ5bvqBFXRORMx4g1mdRemgBEYDMdzzi8xcPWqlbNHCDDlOrhnmQb90VN2CJ/XuzAxZJdeYgu2pc6KDRezbToEndoyljMFwLXCNDm1hiRMoHmGE2Ijk2BCbRIQG6xHBMgiYxkF5RoanFnXtp0DSQpO054kO2uJACV8MtNDgRCyQHS2w/jv78hO25IkMOF4tSb8Uxo5ACVRxRIQWsVqNC4hJEFa5qXEjSwgVLtCNFjRCBrM4WkHkmIsDibG099W76flBdLaIrRAEsIP/Mw2JcrZwNRgFyREjqmQWQ91/aIlNP5QYsDs1FUXsFrKiqkOWohQuWsPBSWoQoc4MWEfbkrhHkvYSdoM4EVDEiAbiooEWFJGp0yKGV3VtJ25OPQW7QogIWdfuVPAs96wpdtJlLFMBSkSAVsCgulti/D2KZWFJCFRmwaNtvefRXKmA5qLZw8JQCrdG7wto96KAlKMvzAN7vntgCyP2gLQ80wBrQEgd77sRgwFMvpUArIEbceurd2HeN/4K7Ci5kI0gLQivQytriYfdWLG7fF7w9dRmgLMvx5IYrIDtgccJVaEuHUMDidK1CAEvs1z4vDK1jgqJCHYxC1kmkghkmcFXlrupkBSrE1TKhKoezJfRrIkOMSXK2OMTgboUoxM1JOaPQRVRHC+BxtaI7W82oApZFud0sF3G5VuT92B/+hcQmMmAFPena7eXCppYHtqsClr9q4TuTXJ2tNrAKcrVMOX45k13lFJRlgqZycrdiXzQdHS4XR6sPJFzcnM4ldBwdrWYlnvHs6mpRlwLqk4uz5Vz43gVGLkvr9I2x4OjiRIQrcdAxTo/rAirhutRP1344OFquDlZsoHJxsXqhiuhkOUNWF1i5OlmtS+m4QVYFKyfVwvfY4qjXyl6zBbg5Wz1njZO7FbNTO+DsbrEUwydQTMACynC1AMZ6LQ7naQbcK7nn5qjjc8kFsFI4ViUAlrM4nCuGuqsqmipkMYoKWgATaPXcG0Tfl06XGNEBtHphK8XFKkGM2AcXvf99PCymID53UTzAAFolANbK7iLiQSlHvbFgCbFhijiwD7DE/n1JAKvXxXKBoz4Xq9ZeFaMaF0aULUL0hahYMWJnZGgTdbkgtMSIOWotLFFiW2zoCw22yMxnDFt0GNvFsqktPuQ4Hl7bW+LD1rjQB4woy+ootcWFGeDKFhv6wFPMyNDmYuWosbJBlletFdOXQitk+UKRDbI8x7DFhRWsglXjwhxaeClP24cYMWKvm2WKqUh+nbuVynrXZYkSbbEhiyvjOUYJjhZgjw9zFO47u1oc7pWvRpZvKgW4V4C/O8XhZtl6Z5mAlauI3QQsJ9cqgqIAFlMsWAErjipkJdCsxIhOYrg+Zp+RqNRRtxUKFCxgVjBo+Uo2Iu4MRK6ZgzNQf+WqnPFfW5PSEmYIKuWAK6sY4KjGguWrxoWJNXrXZjowgSdGLKAUY1Xi4IU80aFF+755RDHtFkrZj8Xt+1j2hWMG4ug//xJ5DDYtbCkGrrDtgSzDUKNDMdyCzVe9l2VfqJILCzxQxRUVbicu7TUYsoCVXNhU4YpXrRfHClmZtPLXYc1MdbGA1n4BLBTy9jaAOJj4oprpaxnQgGDvvxxJ2w8mNSsL9KalUgCC+B7LyfFcOIh+w6KCVimQJVb2AADkAu2zLJoRpGtLia4xtru1c+gdiwhZW675MG0HFESENNvUJPbvPbA2H0UcgNU0aHb6N0COoc2nXZV7F+ZRtSarNC3+Bk+EyOGKYVSGWwIA8l7iC1Jw1RQCjgSxFrxLnvd4tKeMVg+5pQCLPA5jLZnYPRvtHDrFCFjFqBCHHqiAlUPVySpEHM4WEOZuyf2Wm15Od8u4JgW5WzbICnC3cjpaNsjydrVscBXialnGyeVq5XSybHAV4mTZ4MrXzbKOkdHNCnKwbNFXAGCZUMXiYAFhLpYFqnK6WBWskqj15lLXLixEytmiwpZytnxgS2yR60FLuVsFRInK3fKCrYFYD1oBUeK2R99ZTHTIJo74EBNXiwpa1DUQU6pE9yqWpBx5gZY3YLXVFXkC1iw4VrkAq8JVGapOVsFK6W5Z3SxTKYHLwWF3gi6X2NABulKClmtM2OtquUSErrDVMxaHq6XUB1ypnaw+uHJ1slzgqs/NcgU0DkfLFbKcAIvaXHMqF6hK6mI5RIEpIauCVTZVJ2sWldPdsiqluzVAL2g5OVw2R8uUg8O17dF3AiinIJ5NCp66YMsB1lStFids5ZarcyVGS52gNQvOlU19bhYLXDnK1bFKBlgF1VkBFa5KVi18nwFxFMkD3YXyYosHOI1EmmJ5x7NT3tt0F8y7xoONPPCTST7F7qX009LFVRifuzieKxrklA+scRXBB/XcUv2fXAGrw8US+/emB6wuNY0XYKVwsSpgla0aF86oYkWJTrGhTbHcLeIXxjUuFwWeDFCL5WiFzihcFx1SZhOarhZhLC5nS48QY8WFFLAynSyKe2VGhqFjcRXBA2ujw3UOFsWt0gCLWl8VzcUKdK1iAVaFqiJVWzjMm1K4W15S7ha3w0U8Q9e4XJTeWQkcLkrLBtZFpnWoIrZ+4HC2gPhtH6jOlRgd+DxyxYOiGZHGit7SgdqxfApYPm5Vm9gBSzlWNRasIqrWZM2wuGq2AK1uyzbT0FfctVsO9Vl9WlO/RYGl6bZFzzrk6InFNAMR4JmFCMQDLc5okAOwOJqTckvVZ2255sM8dVaDIdvMQFbAYoIqbherwtXsqsaFcyYW4Fo6YB8JphstADp0RfpSKXYQu8N/836k7cfLB24S1OMtNcAaEDvFy0Y7DwZ8B58KXONX/CJ5HwZL967+ztFtfXUsYvf3NQBDbMipixodbv3nj5C2F8s8zrspMmDpUEXt7K6N1RxyOG0sVLCaMdXZhRtFeowYClxic7MKWuqmzQJbVIeLwdGySe6a7E8obG07+Q4yaK3uixRsYNuMh2TQUpLNgA20uJytUOmARRXrzEGmmXjcogBWLLgCiIBlOlYUwDLGogBWBav5U63JmmNx1W0Bax0Ssii1WxHPWLlLrgKXr7adfAfffjAe62Y8RMNUqyWbwRp3i6LRnq1s9VquGizdywZY1HqpNaLWNkVUKGCJ5aUyAYu7zopxrApY86kaF24w+bhbemzYpmxxYuJ6VB+Xy8fV0qNC6/N6HF8XOPNxtvqAijNCBNxjRJ+40AWqfOLCPrDyigtdwCpTZOgDVzFhyiYvwOqDIB8Hy6XxqIeLVaFqrtR68a2QtUHlClsuoAVkgK1Mk35cYcsFtPoAa/U5HY+tqwPmAlqujlUO0HKFLFfXyhWynLutu4AWQw+pELmAlitgpYYrJSfIcnWYmLq6A+6AVeFqLlUhq6pbbdDlClmmWKELaAevAmZYd4FXG2y5Ata652o5riERYxdshcSCqYCrC7JC4sAuyAqJBDshKyQWTARaXXCVC6h0tcJVaGTXBlihfbFaIKtC1YZQhawqN9lgKxS0gASwVQBk6bIBlwlaoYC1+hyWY0qp4zJhi1p3FRu2bJBFqbWyQRa13modaDE17OSSCVo2wCoBrHStgyxKPZQNsAjj2QCrwtWGUp1dWOUmzt5bwNqbf5QZipFmHIZKL5xXwMU5+xBYPwORWijPOQsR4J2JCHSvi8hRyG72pWJfa5Ba1N6Mo4CWkg5YpYGV0hrAKrRwXanCVZWu6mRVOWn5bfwzwdhdrgHzeI1gH3P3DUezjhdD7O8LeN2t4W//FNtYsRSlmSgzaG297nOs46Fp6L2mDMmIcMmlxSf+a+5dqMqvGhdW8YkbuLhu6mtcsyHnt93puEzAVTJo6V3VB5zHEHygVTRkaa4VuTGpTUzQwQZYygnihCvNXUqy6HOAKlhVGaqQVcWvEt0tMzpjgS3bci5E4CoVtMyla7hBC6DDVrGQZcSCpUIWGbBsERtjt3SlEgGrwlVViypkVcVXSdDVV6cUDF996+cFwFcpwNW3NmApwFUUZPXUW5UCWkFgxdljymPckuCqQtX86uyzz8YXvvAFPP7xj8fll1/uvN2FF16I17/+9QAAjZ9aL56143sVmza9Yt/qD5ekFKs/PuqDMzkerP6wqhH9IFagXBZfbsYDNMzHi7OLfFI5dmkXowiF5LG7w3N3RdfHnAHAWnziv67+bBSdffbZEEJYfy666KJs+/XCF74QQggce+yx7GM/4hGPwBlnnIFHPOIR7GPrqrMLq6LIBlpUp8sGWl0wJYR0gjMbaLU6Xcqp6oOStv9ucbq2P+yW1d9LcbW6pIMWl7sVazFqVpW09I3DjMNe94q7vxRh3FxwtZFAykWbNm3CKaecsuZvRx55ZKa9iaPRaIThcIh3vvOdSZ5vBr9CVs2quF0uoN/pCo4b+5yu0Jos5XS1OF46cM2CYrpbxThcpa4t2LFPVsDS3aQYDTxjOGCRtNGcKlc98IEPxNe+9rU1P095ylMAAJdeeike+tCHYsuWLTjrrLPwyU9+cp3bddFFF63+7Qc/+AEA4Ac/+MG6x/3whz/Ek5/8ZBxzzDHYunUrtm7dikc96lF461vfuhrBHXvssXjf+963+ng1hor2/u3f/g0veMEL8IAHPACLi4s46qij8NKXvhR33HFgHVndCbvoootw3HHHYdOmTbj33ntX3buzzz579fGvec1r8MhHPhKHHHIIFhcX8aAHPQjnn38+br/99uBjWp2squTSQYuzjqutJ5ero9U6rgERqy6Xq6vVJX3b6XgKtFK5Wi5RYZ+a8SBKzZYCrWzuFgNcidFSnNosYJ2jtQ6uuKDHhCtGmErlYlWoCtd1112Hc889F+PxGDt27MAdd9yB8847L3i8O++8E5dddhmOPvpoPPzhD8ett96K66+/Hq961auwuLiIl73sZTjllFOwZ88e3HXXXWsctp07d+KOO+7AYx7zGNx2223YvHkzHvrQh+LGG2/Eu9/9blx++eW45pprsH379tXnu+222/Brv/ZrOOGEE3C/+7X3LPzUpz6FW2+9FccccwxGoxFuuOEGvP/978d3vvMdfP3rXw96rYV8VazaqNLruDidLt3hWgUspvuC7nLJ8SCoZswqw+Xa/pBbsf0ht9LHbZFsBAtgKSlXa6bdLeVaMbtXYrQUpz4LAJoxtl77WWy99rM8bpX1OeKMGwuw9Lqq6lq5S3eM1M8999yDv/iLv8B4PMb27dvx7W9/G9/97nfxyle+Mvh5TjjhBHz/+9/HzTffjGuuuQa33347zjrrLADARz4yaY576aWXrrpousN26qmn4h3veAduu+02CCHwpS99Cddffz0+/vGPAwBuvPFGvPe9713zfCsrK3jnO9+JG264AbfffjsOPvhg63596EMfwo9//GNcd911+M53voN3vetdAICrrroKN910U9BrrU5WVXGK5XStfqVojH8zSUqxOrYY8k3IVaC1+8aj2MZMIQVaMRwudpUYBzpo63Wf5x80Ru8rQzHgqoIUXbaarIWFBVx33XUAgJ/6qZ/C0UdPHPbnPOc5eOMb3xj0PIuLi/izP/szfOITn8Btt92G0ejAKgu33XZb7/ZXXTXpqn/CCSfg9NNPBwCcc845OPTQQ3H33Xfj6quvXvP4rVu34iUveQkAQIj2L5bXXnstXvSiF+GGG27Anj171vy32267Dccff7zbC9RUIauqaEUBLrUUj3nv57inTMeWY7NfFx26tj/k1pkDLaBw2JpRuAIYAStG36sOcQJWBSteKcfIRbb2TzrAjMeTz9a9965f+uqVr3wl3vOe9wAAHvKQh+Cwww7DTTfdhLvuumt1Oxd1AZOu+93vfhj0nNNf/vKXcf7550NKicMPPxyPeMQjsHv3bnznO99Z83p8VSGrambUFiUGwZdtzcM2BvC935iOGdZDly4fANPjw1Dg4owIfWSLEJOCVwFApSLD0BqtYLByjfgiwhUQDlgVpvLqpJNOwje+8Q189atfxW233YYHPehBuOSSS9Y9Tq93uummm3D88cfj0ksvXfc4BXI///M/j09/+tPYv38/zjzzTNx1111rHrdt2zYAwN69eyGlXIWq008/HZ/61Kdw44034qqrrsLpp5+Oyy67DHfffTcA4LTTTvN+jVdeeeUqOF533XV44AMfiDe96U147Wtf6z2WrgpZVTOvYLfLdXHpUMfLAls2hbpesxoj6krichUAV1R5w5Vv3VRkuAL8AauCVXrdfvvtOPPMM9f87YILLsCrX/1qfPCDH8Tu3btx4okn4qijjsLNN9+8bvszzjgD27dvx+7du/G85z0Pj3zkI/HVr3513eNOPvlkfOtb38JnPvMZPOxhD8OPf/xjNJZz9sQTTwQwKZQ/8cQTceihh+Lzn/88Xvayl+Hd7343br/9djzucY/DCSecgO9973sAJhHii170Iu/XfvLJJ6/+ftJJJ+HII49cM1MxVLXwvWqu5F1EH/IJaIwfZsmxWPPTJ5/i+FwuVp9iFMsX23oBfk1KnQArVsE7k1wAqxaq59fy8jKuvPLKNT+33HILTjrpJFx88cV4yEMeguXlZRx22GH46Ec/um77ww47DB/+8IfxsIc9DHv27MF4PMYHP/jBdY97y1vegmc84xnYvn07du3ahde85jV42tOetu5xL37xi/FLv/RL/7e9++dNG4jjMP5thKJUHWCBAakDnVg6dekbQIryHpAYeAvNe2DqyMhL6VIkmKuqAmXgRURCiuq0Q4Ma/A87ud+djZ/PiJDtyX50Z9+p3W5ru91qvV4riiL1ej2tViuNx2N1Oh1tNht1u11Np1Mtl8ujLwuLGo1Gms1m6vf72u/3Gg6Hms/npY8Tx7Y6aKTUES+LZ1O8G4yef/HRr/joVlXjqoj4KFfry+fknyoaU0XEpw4TUWUVTYFGrwio87Db7TQYDCRJi8VCk8kk7AWFlXmDZboQjRQf5bLYd1FS9lSj4+dmfMSrri/Jp8lcYb7GYZXl7Y9v9iNRHuLqOaIKTUZkAcp+qf7g4aujCPM0k/MneqN3H5KfQt/fGYVX2vpVBguIPkYXtnH1+Dv524XNbfLq53eT46YyDKvWdfLdHAD/MF0IvICz6ArEeWydWiTUYXBd3n5ydixJ6WH1nOPI8hpXkvPAIqqAhMzpQiILcKCu0eUktsquwv7K4HISWafCKs5BaNU1rogq4CQiC6iCOsRYqfByuc1NwfgqFVllYypPidDyHlQHJcKKeAKcIbKAqqpqeOXGlvUegjnBdTKyXIZVmpzYChZXUm5gEVSAKSILqJsqxddRcFkHVpan8DqKLOugyryW/6EVNKwOngKLmAKCILKAcxciyu63772f8/L2o/dzStLVr2J7urnUuim+0CyAYIgsoOl8RJiP6PIVWT6iiogCzgKRBaAY1zHmOrwsIst1UBFPQKMQWQAAAAZeva1OfTc+AwAACCDQZ0IAAADnjcgCAAAwQGQBAAAYILIAAAAMEFkAAAAGiCwAAAADRBYAAIABIgsAAMDAX2AWB6hQnsWXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXzU5b33/9c1WScLSQibGAyRImtCIETDJmCVpVZEgdt9beG43fXuOQfv1l8Xu3gXjz48Vj1tj62CVSseCyoKtdZWCsWlYQnKjpEgCJKQkJAVkpnr98dMRhImyYRkMpPk/Xw88kjy3a7PfDMhHz7X9b0uY61FRERERELHEeoARERERHo7JWQiIiIiIaaETERERCTElJCJiIiIhJgSMhEREZEQU0ImIiIiEmJKyERERERCTAmZiPQaxpihxph1xpgTxpgvjTFPG2MivfuyjTFbjDE13s/ZZ5z3J2NM1Rkfp40xn4TulYhIT6OETER6k18BxcB5QDYwHbjHGBMNvAG8CKQAzwNveLdjrZ1rrU1o/ADeB14NxQsQkZ5JCZmI9CYZwP9Ya+ustV8CbwNjgBlAJPCEtfaUtfZJwACXNb+AMWYoMA14oYtiFpFeQAmZiPQmvwSuN8bEGWPOB+byVVL2sW26ltzH3u3N3QpstNYeCHq0ItJrKCETkd7k73iSrJPAYWAz8DqQAFQ0O7YCSPRzjVuBFcELUUR6IyVkItIrGGMcwJ+B1UA80A/PeLFHgCqgT7NT+gCVza4xFRgE/DHY8YpI76KETER6i77AEOBp7zixUmA58A1gJ5BljDFnHJ/l3X6m24DV1tqqrghYRHoPJWQi0itYa48DB4C7jTGRxphkPAnWdmA94AK+Y4yJMcbc5z3tb43nG2OcwCLUXSkiQaCETER6k2uBOUAJ8CnQAHzXWnsamI9nfFg5cCcw37u90Xw848re69KIRaRXME0fKhIRERGRrqYKmYiIiEiIKSETERERCTElZCIiIiIhpoRMREREJMSUkImIiIiEmBIyERERkRBTQiYiIiISYkrIRKRTGWO6bFkhY4zLGFNgjNlpjNlujPlX75qVjfvfb+XcZGPMPV0T6VltDzXG1BpjCs74fkcnXNfpvR+njTH9Oh6piHQVJWQi0p3VWmuzrbVjgCvwrEv548ad1trJrZybDIQkIfMqtNZmd+YFrbW13mse6czrikjwKSETkaDwVqt2eD/+zxnbf2iM2WOM+Ysx5mVjzL93RnvW2mJgCXBf4yLhjdU6Y0y8MWatt4q2wxhzHbAMGOatKD3qPe51Y8wWb8VtiXfbUGPMbmPMb73b3/Gua4kx5lZjzMfe675wxmu82RjzT++1/9sYExHo6zDGXGiM2WaMyfW2vccY87y3nT8aY+Jaa1tEuqfIUAcgIj2PMSYHuAO4BDDAR8aYvwMRwAJgPJ5/f7YCWzqrXWvtZ94uywHAsTN2zQGOWGuv9MaXBHwEjG1WpbrTWlvmTbjyjTGrvNuHAzdYaxcbY/4HWGCM2Qb8f8AUa+1xY0xf77VHAdd5t9cbY34F3AT8vq34jTEjgJXAHdbaAmPMUGAE8C1r7SZjzHPAPcaYP/lrW0S6LyVkIhIMU4HXrLXVAMaY1cA0PFX5N6y1td7tbzaeYIy5EE+SkWStXWiMiQd+BZwG1ltrXwqwbeNn2yfAY8aYR4C3rLUbjTEpfo77jjHmGu/XQ/AkYl8CB6y1Bd7tW4ChQArwR2vtcQBrbZl3/9eBHDwJHYATKA4g7v7AG8ACa+3OM7YfstZu8n79IvAd4FQLbYtIN6UuSxEJBn9JUWvbsdZ+Zq391hmbrsWTdCwG5gXUqCepc9EsAbLW7sOTJH0C/MIY8yM/584ALgcmWWvHAduAWO/uU2cc6sLzn1kDWH9hAM97x7ZlW2tHWGsfCiD8CuAQMKXZ9uZt2FbaFpFuSgmZiATDBmC+MSbOW+m6BtgI/AO4yhgTa4xJAK5s5RppeBIU8CRBrTLG9Ad+AzxtrbXN9g0Gaqy1LwKPAROASiDxjMOSgBPW2hpjzEggr40m/wr8L2NMqreNvmdsX2iMGdC43RiT3lb8eCqB84FbjTE3nrH9AmPMJO/XN+C5hy21LSLdlLosRaTTWWu3GmNWAP/0bvqdtXYbgDFmDbAdOAhsxlMZ8ucwnqSsgJb/8+j0Th0RBTQALwCP+zkuE3jUGOMG6oG7rbWlxphN3ukm/gT8ALjLGPMxsBf4sI3XuNMY8zDwd2OMC09F7XZr7S5jzA+Ad7zj2eqBe72vt1XW2mpjzDeBvxhjqvHcp93AbcaY/wb2A7/2Jo1ntd3W9UUkfJlm/5EUEQkqY0yCtbbK+7TgBmCJN4FLBR7GM33F74AngaeBOuAf7RhDFva8g/XfstaO7Yzj/JxXBExsHGMmIuFPFTIR6WrPGGNG4xmf9by1diuAtbYUuKvZsXd0dXBdxAUkGWMKOnMuMu/ToR/gqRi6O+u6IhJ8qpCJiIiIhJgG9YuIiIiEWI9KyIwxQ4wx73ln1d5pjLnfzzHGGPOkMeZT7yzXE0IRazgK8P7NMMZUeGcgL/A3fUBv5n168J/e2dN3GmN+4ueYGGPMK9734EfecULiFeA9vN0YU3LG+/DboYg13BljIryz/r/lZ5/ehwFo4x7qfdgGY0yRMeYT7/3Z7Ge//iZ79bQxZA3Av3kHCCcCW4wxf7HW7jrjmLl4JnscjmcW8V97P0tg9w9go7X2myGIrzs4BVzmHbQeBfzDGPMna+2ZT+x9C8/0Cl8zxlwPPIJnZnfxCOQeArxirb0vBPF1J/fjeUqzj599eh8GprV7CHofBmJmKw+Y6G+yV4+qkFlrj54xQLgSzy/R+c0Ouxr4vfX4EEg2xpzXxaGGpQDvn7TC+76q8n4b5f1oPlDzauB579d/BL5ujGlxwtTeJsB7KG0wxqThmeftdy0covdhGwK4h9Jx+pvs1aMSsjN5y+/j8axXd6bz+WqySfDMdaSko5lW7h/AJG930p+MMWO6NLBuwNvFUYBntvi/WGtbfA9aaxvwzMOV2rVRhrcA7iF41pNsXHB7SBeH2B08ATxAy09b6n3YtrbuIeh92BaLZ06+LcaYJX7262+yV49MyIxnBvBVwP+x1p5svtvPKfrf9xnauH9bgXTv0jJPAa93dXzhzlrr8k5lkAZcbIxpPoeU3oNtCOAevgkMtdZmAe/yVaVHAO/kssXW2tYWbtf7sBUB3kO9D9s2xVo7AU/X5L3GmEub7df70KvHJWTeMSergJestav9HHIYz6LBjdKAI10RW3fQ1v2z1p5s7E6y1q4Doowx/bo4zG7BWlsOrAfmNNvlew8aYyLxLNmjxaH9aOkeWmtLrbWN60v+Fs86lfKVKcA87wSxK4HLjDEvNjtG78PWtXkP9T5sm7X2iPdzMfAacHGzQ/Q32atHJWTe8Q/PAruttf6WTwFYg2etOGOMyQMqrLVHuyzIMBbI/TPGDGocZ2KMuRjPe6i066IMb8aY/saYZO/XTjyLVe9pdtga4Dbv1wuBvzVfe7E3C+QeNhtjMg/PeEfxstZ+31qbZq0dClyP5z12c7PD9D5sRSD3UO/D1hlj4r0PiGE8a9rOAnY0O0x/k7162lOWU4BbgE+8408AHgQuALDW/gZYB3wD+BSooefOBH4uArl/C4G7jTENQC1wvf4Rb+I84HljTASeZPV/rLVvGWN+Cmy21q7Bk/S+YIz5FE9F4vrQhRuWArmH3zHGzMPzZHAZWscxIHofdpzeh+0yEHjN+3/4SOAP1tq3jTF3gf4mN6eZ+kVERERCrEd1WYqIiIh0R0rIREREREJMCZmIiIhIiCkhExEREQmxsEnITAALCouIiIj0RGGTkPHVgsLjgGxgjndOkk7RwpIN0g66hx2ne9hxuocdo/vXcbqHHad7eLawSci6YEFh/fA7Tvew43QPO073sGN0/zpO97DjdA+bCZuEDAJeUFhERESkRwnLiWG9y6a8Bvxva+2OZvuW4M2sIyIicmJiYgK6ZkNDA5GRPW1hgq6le9hxuocdp3vYMbp/Had72HG99R7W1NTUW2uj/e0Ly4QMwBjzY6DaWvtYS8dMnDjRbt68uQujEhERETk3xpgt1tqJ/vaFTZdlgIsyi4iIiPQ44VQv9LugcIhjEhEREQm6sEnIrLUfA+NDHYeIiIhIVwubhKyz1NfXc/jwYerq6kIdikjIxMbGkpaWRlRUVKhDERGRAPS4hOzw4cMkJiYydOhQjDGhDkeky1lrKS0t5fDhw2RkZIQ6HBERCUDYDOrvLHV1daSmpioZk17LGENqaqqqxCIi3UiPS8gAJWPS6+l3QESke+mRCVk4eeihh3jssRanUuP1119n165dXRiRiIiIhBslZCGmhExERESUkAXBww8/zIgRI7j88svZu3cvAL/97W/Jzc1l3LhxLFiwgJqaGt5//33WrFnD0qVLyc7OprCw0O9xIiIi0rMpIcPzVNqpBlenXGvLli2sXLmSbdu2sXr1avLz8wG49tpryc/PZ/v27YwaNYpnn32WyZMnM2/ePB599FEKCgoYNmyY3+NERESkZ+tx0160l7WWDz8rZX9xFcMHJJB3Ycee0Ny4cSPXXHMNcXFxAMybNw+AHTt28IMf/IDy8nKqqqqYPXu23/MDPU5ERER6jl5fITvtcrO/uIpBibHsL67itMvd4Wv6S+huv/12nn76aT755BN+/OMftzglQaDHiYiISM/R6xOymMgIhg9I4MvKOoYPSCAmMqJD17v00kt57bXXqK2tpbKykjfffBOAyspKzjvvPOrr63nppZd8xycmJlJZWen7vqXjREREpOfq9V2WAHkXpjIhPaXDyRjAhAkTuO6668jOziY9PZ1p06YB8LOf/YxLLrmE9PR0MjMzfUnY9ddfz+LFi3nyySf54x//2OJxIiIi0nMZa22oYzhnEydOtJs3b26ybffu3YwaNSpEEYmED/0uiIiEF2PMFmvtRH/7en2XpYiIiEioKSETERERCTElZCIiIiIhpoRMREREJMSUkImIiIiEmBIyERERkRBTQhYERUVFjB07tsvae+ihh3jssccCOvYb3/gG5eXlHbqGiIiIdC5NDBtGXC4XEREdn5zWH2st1lrWrVsXlOuLiIjIuVOFLMg+++wzxo8fz0cffcTSpUvJzc0lKyuL//7v/wZg/fr1zJw5kxtvvJHMzEyKiooYNWoUixcvZsyYMcyaNYva2loACgsLmTNnDjk5OUybNo09e/a02nbjte655x4mTJjAoUOHGDp0KMePHwfg4YcfZsSIEVx++eXs3bvXd15+fj5ZWVlMmjSJpUuX+qp9LpfL72sQERGRjlFCBrjdlpLKU3T2qgV79+5lwYIFLF++nO3bt5OUlER+fj75+fn89re/5cCBAwD885//5OGHH2bXrl0A7N+/n3vvvZedO3eSnJzMqlWrAFiyZAlPPfUUW7Zs4bHHHuOee+4JKIZbb72Vbdu2kZ6e7tu+ZcsWVq5cybZt21i9ejX5+fm+fXfccQe/+c1v+OCDD5pU7J599tkWX4OIiIicu17fZel2W2747YdsOXiCnPQUXl6ch8NhOnzdkpISrr76alatWsWYMWP4+c9/zscff8wf//hHACoqKti/fz/R0dFcfPHFZGRk+M7NyMggOzsbgJycHIqKiqiqquL9999n0aJFvuNOnTrVZhzp6enk5eWdtX3jxo1cc801xMXFATBv3jwAysvLqaysZPLkyQDceOONvPXWWwC88847fl/DmbGLiIhI+/X6hKy0+jRbDp6gwW3ZcvAEpdWn6Z8Y0+HrJiUlMWTIEDZt2sSYMWOw1vLUU08xe/bsJsetX7+e+Pj4JttiYr5qPyIigtraWtxuN8nJyRQUFLTY5qFDh7jqqqsAuOuuu5gzZ85Z1z6TMWcnnq1VCVt6DSIiItIxvb7Lsl9CNDnpKUQ6DDnpKfRLiO6U60ZHR/P666/z+9//nj/84Q/Mnj2bX//619TX1wOwb98+qqurA75enz59yMjI4NVXXwU8ydH27dubHDNkyBAKCgooKCjgrrvuavV6l156Ka+99hq1tbVUVlby5ptvApCSkkJiYiIffvghACtXrvSd09HXICIiIv71+gqZMYaXF+dRWn2afgnRfqtG5yo+Pp633nqLK664gh/84AeMHj2aCRMmYK2lf//+vP766+263ksvvcTdd9/Nz3/+c+rr67n++usZN27cOcU2YcIErrvuOrKzs0lPT2fatGm+fc8++yyLFy8mPj6eGTNmkJSUBMC3v/1tioqKOvQaRERE5Gymsweyd6WJEyfazZs3N9m2e/duRo0aFaKIeoaqqioSEhIAWLZsGUePHuWXv/xliKOS9tLvgohIeDHGbLHWTvS3r9dXyORsa9eu5Re/+AUNDQ2kp6ezYsWKUIckIiLSoykhk7Ncd911XHfddaEOQ0REpNfo9YP6RUREREJNCZmIiIhIiCkhExEREQkxJWQiIiIiIaaELAgap4w4cuQICxcuDHE05279+vV885vf7PAxzT300EM89thjHQntLN/4xjcoLy+nvLycX/3qV5167dasWbOGZcuWtXpMa/foiSeeoKamxvd94+sQEZHeRQlZEA0ePNi37mOwNDQ0BPX63cW6detITk7u8oRs3rx5fO973zvn85snZI2vQ0REehclZEFUVFTE2LFjAVixYgXXXnstc+bMYfjw4TzwwAO+49555x0mTZrEhAkTWLRoEVVVVQD89Kc/JTc3l7Fjx7JkyRLfOpMzZszgwQcfZPr06WdN2PrQQw9x2223MWvWLIYOHcrq1at54IEHyMzMZM6cOb5lj/76178yfvx4MjMzufPOO30Llb/99tuMHDmSqVOnsnr1at91q6urufPOO8nNzWX8+PG88cYb7boXDz/8MCNGjODyyy9n7969vu2FhYXMmTOHnJwcpk2bxp49ewC4/fbb+c53vsPkyZO58MILfYnt0aNHufTSS8nOzmbs2LFs3LgRgKFDh3L8+HG+973vUVhYSHZ2NkuXLuWWW25pEutNN93EmjVrmsRWXFxMTk4OANu3b8cYw+effw7AsGHDqKmpoaSkhAULFpCbm0tubi6bNm3y/Vzvu+8+32vJy8sjNzeXH/3oR75KKXgm2124cCEjR47kpptuwlrLk08+yZEjR5g5cyYzZ85s8jqKiooYNWoUixcvZsyYMcyaNYva2loA8vPzycrKYtKkSSxdutT3HhMRkW7MWtttP3Jycmxzu3btOmtbm1wuayuPWet2t/9cP+Lj46211h44cMCOGTPGWmvt8uXLbUZGhi0vL7e1tbX2ggsusJ9//rktKSmx06ZNs1VVVdZaa5ctW2Z/8pOfWGutLS0t9V3z5ptvtmvWrLHWWjt9+nR79913+237xz/+sZ0yZYo9ffq0LSgosE6n065bt85aa+38+fPta6+9Zmtra21aWprdu3evtdbaW265xf7nf/6nb/u+ffus2+22ixYtsldeeaW11trvf//79oUXXrDWWnvixAk7fPhwW1VVZd977z3fMfn5+fZb3/rWWTFt3rzZjh071lZXV9uKigo7bNgw++ijj1prrb3sssvsvn37rLXWfvjhh3bmzJnWWmtvu+02u3DhQutyuezOnTvtsGHDrLXWPvbYY/bnP/+5tdbahoYGe/LkSWuttenp6bakpKTJPbfW2vXr19urr77aWmtteXm5HTp0qK2vrz8rxtGjR9uKigr71FNP2YkTJ9oXX3zRFhUV2by8PGuttTfccIPduHGjtdbagwcP2pEjR/p+rvfee6+11torr7zS/uEPf7DWWvvrX//a9z547733bJ8+feyhQ4esy+WyeXl5vms1xt3ozNcRERFht23bZq21dtGiRb77P2bMGLtp0yZrrbX/9//+3yav90zn9LsgIiJBA2y2LeQ0mhjW7YbnvwmHPoIhl8Btb4EjOIXDr3/96751IUePHs3BgwcpLy9n165dTJkyBYDTp08zadIkAN577z3+4z/+g5qaGsrKyhgzZgxXXXUVQKsTt86dO5eoqCgyMzNxuVzMmTMHgMzMTIqKiti7dy8ZGRlcdNFFANx2223813/9FzNmzCAjI4Phw4cDcPPNN/PMM88AniremjVrfGO/6urqfFWkRhMnTuR3v/vdWfFs3LiRa665hri4OMDTzQeeqtH777/PokWLfMc2VuoA5s+fj8PhYPTo0Rw7dgyA3Nxc7rzzTurr65k/fz7Z2dmt3vPp06dz7733UlxczOrVq1mwYAGRkWe/7SdPnsymTZvYsGEDDz74IG+//TbWWt8an++++y67du3yHX/y5EkqKyubXOODDz7wre1544038u///u++fRdffDFpaWkAZGdnU1RUxNSpU1uNPSMjw/f6cnJyKCoqory8nMrKSiZPnuxr56233mr1OiIiEv6UkNUc9yRj7gbP55rjkDAgKE3FxMT4vo6IiKChoQFrLVdccQUvv/xyk2Pr6uq455572Lx5M0OGDOGhhx6irq7Otz8+Pr7NdhwOB1FRUb4F0x0Oh6/NlrS0uLq1llWrVjFixIgm2xsTpbb4u67b7SY5OZmCgoJWX0dj+wCXXnopGzZsYO3atdxyyy0sXbqUW2+9tdW2b7nlFl566SVWrlzJc889B8Add9zBtm3bGDx4MOvWrWPatGls3LiRgwcPcvXVV/PII49gjPENxne73XzwwQc4nc6AXm9rr6XxZ9/ec2pra1v92YmISPelMWTx/T2VMUek53N8/y5tPi8vj02bNvHpp58CUFNTw759+3zJV79+/aiqqurUhwNGjhxJUVGRr80XXniB6dOnM3LkSA4cOEBhYSFAkyRx9uzZPPXUU76EYNu2bQG3d+mll/Laa69RW1tLZWUlb775JgB9+vQhIyODV199FfAkXdu3b2/1WgcPHmTAgAEsXryYb33rW2zdurXJ/sTExLMqV7fffjtPPPEEAGPGjAFg+fLlFBQUsG7dOl+ML774IsOHD8fhcNC3b1/WrVvnq1zOmjWLp59+2ndNf0lkXl4eq1atAmDlypUB3Rt/8bYmJSWFxMREPvzww3a1IyIi4U0JmTGebsp/3Q23r/V834X69+/PihUruOGGG8jKyiIvL489e/aQnJzM4sWLyczMZP78+eTm5nZam7GxsSxfvpxFixaRmZmJw+HgrrvuIjY2lmeeeYYrr7ySqVOnkp6e7jvnhz/8IfX19WRlZTF27Fh++MMfnnXdzZs38+1vf/us7RMmTOC6664jOzubBQsW+LoBAV566SWeffZZxo0bx5gxY9p8WGD9+vVkZ2czfvx4Vq1axf33399kf2pqKlOmTGHs2LEsXboUgIEDBzJq1CjuuOOOFq87dOhQwJOYAUydOpXk5GRSUlIAePLJJ9m8eTNZWVmMHj2a3/zmN2dd44knnuDxxx/n4osv5ujRo77u6dYsWbKEuXPn+gb1B+LZZ59lyZIlTJo0CWttQO2IiEh4M925C2TixIl28+bNTbbt3r2bUaNGhSgiCUc1NTVkZmaydevWoCYvNTU1OJ1OjDGsXLmSl19+ud1PowaiqqrK9wTnsmXLOHr06FlP24J+F0REwo0xZou1dqK/fRpDJj3au+++y5133sm//uu/Br2StGXLFu677z6stSQnJ/vGq3W2tWvX8otf/IKGhgbS09NZsWJFUNoREZGuowqZSA+l3wURkfDSWoVMY8hEREREQkwJmYiIiEiIKSETERERCTElZCIiIiIhpoQsCBqnJDhy5AgLFy4McTTnbv369b6Z6jtyTGc7c9HuzrBmzRqWLVsGwOuvv95kiaRgOrPdlrR2f5944glqamqCEZqIiHQxJWRBNHjw4E6dYd+fQJbgkdbNmzeP733ve0DXJmRntnsulJCJiHRMTU0Nhw4darI0YagoIQuioqIixo4dC8CKFSu49tprmTNnDsOHD+eBBx7wHffOO+8wadIkJkyYwKJFi6iqqgLgpz/9Kbm5uYwdO5YlS5b4li2aMWMGDz74INOnTz9rQtCHHnqI2267jVmzZjF06FBWr17NAw88QGZmJnPmzKG+vh6Av/71r4wfP57MzEzuvPNO36Leb7/9NiNHjmTq1KmsXr3ad93q6mruvPNOcnNzGT9+fLsmPC0qKmLUqFEsXryYMWPGMGvWLGprawHPEkR5eXlkZWVxzTXXcOLEibPOP3DgAJMmTSI3N/esFQIeffRRcnNzycrK4sc//nGb7T355JOMHj2arKwsrr/+et/P5r777uP9999nzZo1LF26lOzsbAoLC5kwYYKvrf3795OTk9Ok/eLiYt+27du3Y4zxLbo+bNgwampqKCkpYcGCBeTm5pKbm8umTZuatAtQWFhIXl4eubm5/OhHP2pSBayqqmLhwoWMHDmSm266CWstTz75JEeOHGHmzJntmuVfREQ8XC4Xb7yxhjVr3uLNN98K+VrBSsgAt3VzvPZ40H8YBQUFvPLKK3zyySe88sorHDp0iOPHj/Pzn/+cd999l61btzJx4kQef/xxAO677z7y8/PZsWMHtbW1vPXWW75rlZeX8/e//51/+7d/O6udwsJC1q5dyxtvvMHNN9/MzJkz+eSTT3A6naxdu5a6ujpuv/12XywNDQ38+te/pq6ujsWLF/Pmm2+yceNGvvzyS981H374YS677DLy8/N57733WLp0KdXV1U3abWnpJPAkM/feey87d+4kOTnZt+bjrbfeyiOPPMLHH39MZmYmP/nJT8469/777+fuu+8mPz+fQYMG+ba/88477N+/n3/+858UFBSwZcsWNmzY0Gp7y5YtY9u2bXz88cdnLX80efJk5s2bx6OPPkpBQQHDhg0jKSnJt27l8uXLuf3225ucM2DAAOrq6jh58iQbN25k4sSJvkXKBwwYQFxcHPfffz/f/e53yc/PZ9WqVX7v0f3338/9999Pfn4+gwcPbrJv27ZtPPHEE+zatYvPPvuMTZs28Z3vfIfBgwfz3nvv8d577/m95yIi0rL6+npOnjxJcnISZWVluFyukMbT6xMyt3Vz55/v5PJXL+eOP9+B27qD1tbXv/51krh64nsAACAASURBVJKSiI2NZfTo0Rw8eJAPP/yQXbt2MWXKFLKzs3n++ec5ePAgAO+99x6XXHIJmZmZ/O1vf2Pnzp2+a1133XUttjN37lyioqLIzMzE5XIxZ84cADIzMykqKmLv3r1kZGRw0UUXAXDbbbexYcMG9uzZQ0ZGBsOHD8cYw8033+y75jvvvMOyZcvIzs5mxowZ1NXV+SpBjSZOnMjvfvc7vzFlZGSQnZ0NQE5ODkVFRVRUVFBeXs706dObxNHcpk2buOGGGwC45ZZbmsT0zjvvMH78eCZMmMCePXvYv39/i+0BZGVlcdNNN/Hiiy8SGdn2QhXf/va3Wb58OS6Xi1deeYUbb7zxrGMmT57Mpk2b2LBhAw8++CAbNmxg48aNvjU73333Xe677z6ys7OZN28eJ0+ePGtB8Q8++IBFixYBnNXGxRdfTFpaGg6Hg+zsbN9rERGRcxcbG8vMmTOIj4/niisuD+hvQjD1+qWTyurKKCguwGVdFBQXUFZXRj9nv6C0FRMT4/s6IiKChoYGrLVcccUVvPzyy02Oraur45577mHz5s0MGTKEhx56qEkfd3x8fJvtOBwOoqKiMN4F0x0Oh6/NlpgWFle31rJq1SpGjBjRZPuxY8davJa/mMDz2hu7EAPlLy5rLd///vf5l3/5lybbi4qKWmxv7dq1bNiwgTVr1vCzn/2sSZLrz4IFC/jJT37CZZddRk5ODqmpqWcdM23aNF9V7Oqrr+aRRx7BGOMbjO92u/nggw9wOp3tes2N/L1vRESk4y666CJfcSLUen2FLDU2lewB2USYCLIHZJMae/Yf3GDKy8tj06ZNfPrpp4BngOG+fft8yVe/fv2oqqrq1IcDRo4cSVFRka/NF154genTpzNy5EgOHDhAYWEhQJMkcfbs2Tz11FO+ZG7btm0djiMpKYmUlBQ2btzYJI7mpkyZwsqVKwF46aWXmsT03HPP+cbcffHFFxQXF7fYntvt5tChQ8ycOZP/+I//oLy83Hduo8TExCbVq9jYWGbPns3dd9/NHXfc4fe6l156KS+++CLDhw/H4XDQt29f1q1bx5QpUwCYNWsWTz/9tO/4xi7QM+Xl5fm6VRtfa1uaxyoiIt1Xr0/IjDE8N/s53l30LstnL2+xQhQs/fv3Z8WKFdxwww1kZWWRl5fHnj17SE5OZvHixWRmZjJ//nxyc3M7rc3Y2FiWL1/OokWLyMzMxOFwcNdddxEbG8szzzzDlVdeydSpU0lPT/ed88Mf/pD6+nqysrIYO3bsWYProfUxZC15/vnnWbp0KVlZWRQUFPCjH/3orGN++ctf8l//9V/k5uZSUVHh2z5r1ixuvPFGJk2aRGZmJgsXLmw1QXG5XNx8881kZmYyfvx4vvvd75KcnNzkmOuvv55HH32U8ePH+xLTm266CWMMs2bN8nvdoUOHAp7EDGDq1KkkJyeTkpICeB4k2Lx5M1lZWYwePfqssWvgeWLy8ccf5+KLL+bo0aMBLYS+ZMkS5s6dq0H9IiI9gBYXF2nDY489RkVFBT/72c+C1kZNTQ1OpxNjDCtXruTll19u15Os/uh3QUQkvLS2uHivH0Mm0pprrrmGwsJC/va3vwW1nS1btnDfffdhrSU5OZnnnnsuqO2JiEh4UUIm0orXXnutS9qZNm0a27dv75K2REQk/PT6MWQiIiIiodYjE7LuPC5OpDPod0BEpHvpcQlZbGwspaWl+oMkvZa1ltLSUmJjY0MdioiIBKjHjSFLS0vj8OHDlJSUhDoUkZCJjY0lLS0t1GGIiEiAwiYhM8YMAX4PDALcwDPW2l+2ftbZoqKiyMjI6OzwRERERIImbBIyoAH4N2vtVmNMIrDFGPMXa+2uUAcmIiIiEkxhM4bMWnvUWrvV+3UlsBs4P7RRiYiIiARf2CRkZzLGDAXGAx/52bfEGLPZGLNZ48RERESkJwi7hMwYkwCsAv6PtfZk8/3W2mestROttRP79+/f9QGKiIiIdLKwSsiMMVF4krGXrLWrQx2PiIiISFcIm4TMGGOAZ4Hd1trHQx2PiIiISFcJm4QMmALcAlxmjCnwfnwj1EGJiIiIBFvYTHthrf0HYEIdh4iIiEhXC6cKmYiIiEivpIRMREREJMSUkImIiIiEmBIyERERkRBTQiYiIiISYkrIREREpHdyu6GqGKwNdSRKyERERKQXcrvh+W/C46NgxZWe70NICZmIiIj0PjXH4dBH4G7wfK45HtJwlJCJiIhIz9e8ezK+Pwy5BByRns/x/UMaXtjM1C8iIiISFI3dk4c+8iRft70FDofnc81xTzJmQrtYkCpkIiIi0rO11D3pcEDCgJAnY6CETERERHqaMO+e9EddliIiItJzdIPuSX9UIRMREZHuq3k1rBt0T/qjhExERES6J39ziXWD7kl/1GUpIiISZsrKymhocDFgQPdIJkLGXzUsYUDYd0/6owqZiIhIGDl69EteeWUVr776Onv37g91OOEl0MH6Yd496Y8qZCIiImGkouIkDQ1uoqKiKCsrC3U44aObDtYPlBIyERGRMDJ06AWMGnURp06dYuzY0aEOJ3Tc7qaJVkvdk43VsG5OCZmIiEgYiY2N5fLLZ4Y6jNDyVw1r7J5s3NZNBusHSgmZiIhIAE6fPs2JE+X07ZtCVFRUqMPp2XrQYP1AaVC/iIhIG9xuN2+++SdWrVrDunXvYBsHlUvn6MGD9QOlCpmIiEgbTp8+TXFxCampKXx59BgNDQ2qknWWHj5YP1CqkImIiLQhNjaWqVMn4Xa7ufTSKUrGOqKHzKzf2VQhExERCUBm5hgyM8eEOozurRcO1g+UEjIRERHpGr1wsH6g1GUpIiIiwaHB+gFThUxEREQ6nwbrt4sqZCIiItL5NFi/XZSQiYiISMcF2j0pfqnLUkRERDpG3ZMdpgqZiIiIBK55JQzUPdkJlJCJiIhIYBorYY+PghVXer4HdU92AnVZioiI+FFXV8euXftITEzga1/LwKjK0/I8Ysaoe7KDlJCJiIj48dFHW9m5czdYQ3x8HIMHDwp1SF3P7W6aZLU2q35j96ScEyVkIiIifjgcBmvBQO+sjmmgfpdSQiYiIuLHxRdPICUlmfj4eM47b2Cowwm+5tWwlronVQkLCiVkIiIifsTExDB27KhQh9E1tOh3yCkhExER6e206HfIadoLERGR3kaLfocdVchERER6Ew3WD0uqkImIiARZWdkJduzYTXl5Rdc33rwapln1w5ISMhERkSCqr6/nzTf/zD/+8RFvvvln3I2z23cFfzPra1b9sKQuSxERkSBraGggKioKV4MLe+YakMGmwfqtanC5KCw7xvDUQTgcoa1RKSETEREJoqioKK68chYHDhzka1/LICIiIniNBTqzvuYSo8HlYsrzi6h2FBLvHsam214lMpg/mzYoIRMREQmyQYMGMGhQkBMgDdZvVfNqWGHZMaodhRjjptpRSGHZMUb0Hxyy+JSQiYiI9ASaWb9F/qphw1MHEe8e5ts2PDW0a5UqIRMRkR6hrq6Ozz47SFJSH84//7xQh9Mmt9vNli0FFB87ziV5OfTrl9reCwS+8HcvE2g1bNNtr2oMmYiISGfa9I+P2LNnH46ICP7X/5pPamrfUIfUquLi42zOLyDWGcumTR9x9dXfCPzkNronD5WdZtubb/O1r13I6NEjgvciwoDbbSmtPk2/hGiMMe2qhkVGRIS0m/JMSshERKRHOF1fT0REJG7rxuVyhTqcNsXFOYmOiaa2tpZ+qRe2fnA7Fv628f35y//8gZiYGDZs+IALLkgjISG+a15UF3O7Ldf/9n22Hj7MhLQhrFw8qVtUw/xRQiYiIj3CtGl5pKamkJKSwoAB4d9d16dPIgsXzqOqqrr1Af/tXPjbGEP//v04fPgIiYkJREdHdcGr6RrNq2ElVXXscD9C7LCD7KhNp6TqlW5RDfNHCZmIiPQICQkJXHxxTqjDaJekpD4kJfVp/aBzmEts9uyZHDtWQt++yURHRwfxFXQdf9WwiMhqIpwHwbiJcB4kIrIah8MZ9tUwf7pHlCIiIr1FJyz8HR0dzZAh5xMf3327KhtcLvaWHPGtbPBVNez/scO9jJKqOlKdqeQMHE+EiSBn0HhSnZ4HIxqrYd0lGQNVyERERMJHJ88lVl9fT01NLX36JGK60Rxk/gbm+6uGGePkuTnPUVZXRmpsard6jc11n9RRRESkpwniwt+nT5/m9df/xMt/+CMffrg5CMF3nubVMH8D81uqhjmMg37Oft06GQNVyEREREKjnYP126uysorS46Wk9ktl//7PmDQptxOD7zyBTlNhjOkx1TB/lJCJiIiEQpAX/k5JSeaiEV/jwIHPmTbtkk4MvGM6MmlrYzWsJ1JCJiIiEmzN5xGDoC/87XA4uOyyaR2+TmfqrpO2dgUlZCIiIsHU0kB9Y3r8wt/dcQmjUFFCJiIi0pkCnVUfevTC36qGtY8SMhERkc4S5IH67VFfX8+WLdtwuy05OdnExMQEtT1VwzpGCZmIiEhnCfJA/fbYt6+QzfnbMA6D0xnL+PHjgtaWqmEdp4RMRETkXDXvngzyQP32cDpjsQAWnE5np123eSUM/M8bpmpY+4RVQmaMeQ74JlBsrR0b6nhERERa1Mmz6ne2jIx0rrnmm7jdboYMSeuUa/qrhEVGRKga1gnCKiEDVgBPA78PcRwiIiKta6l7MkwG6htjSEs7v0PXCHRcmMPhUDWsg8LqjllrNwBloY5DRKQ9jh49ytq1f2LXrt2hDkWCKdBFv3uIxmrYgrVzmbRiIQ0ul68SZq2jSSUMuueC3uEk3CpkIiLdzjvvvAsYDh78nLS08+nTp0+oQ2qV2+3WH832CvPuyc6gpyRDK6A7aTyGBDuYQBhjlhhjNhtjNpeUlIQ6HBER+vbtS2VlJXFxcURHR4c6nBZZa9nw9w959ncrKSjYGepwwlsQF/0OR+2phqkSFhwBVcistdYY8zqQE+R4AonlGeAZgIkTJ9oQhyMiwqxZl/Pll1+SkpJCbGxsqMNpUVVVNXt2f8qgQf3ZnL+dceNG97gFmjtFGM0lFiyqhoWf9nRZfmiMybXW5gctGhGRbigmJob09PRQh9Gm+Pg40oacx+FDRxk1evhZyZj1VoN6fZIWRnOJdQa321JafZp+CdEYYzRnWJhqT0I2E/gXY8xBoBoweIpnWZ0VjDHmZWAG0M8Ycxj4sbX22c66vohIb+ZwOJgzdyY1NbXEx8c12VdWWs5f/vwPIiMjuWLOVPr0SQhRlCEQxnOJdZTbbbn+t++z9fBhJqQNYeXiSaqGhan2JGRzgxaFl7X2hmC3ISLSmzkcDhIS4s/avn9fEadO1VNZWcORw8foM7qXJGQ9bLB+82pYSVUdO9yPEDvsIDtq0ympekXVsDAVcEJmrT1ojBkHTPNu2mit3R6csEREpCsNueA8du8sJDY2mv4D+oY6nOAJdOHvHlINi4isJsJ5EIybCOdBIiKrcTicqoaFoYB/CsaY+4GXgAHejxeNMf87WIGJiEjXGXz+QK676UoWXjeX1H4poQ6nQ0pKSikuPn72jsZq2OOjYMWVnu+78VxibrelpPKUb+zfV9Ww/8cO9zJKqupIdaaSM3A8ESaCnEHjSXWmAnpSMhy1p8vyW8Al1tpqAGPMI8AHwFPBCExERLqW0xm+T4gG6mDRYf789nqstcyaM52MjAu+2tmDBusHWg0zxslzc56jrK6M1NhUPbARxtqTGhvAdcb3Lu82ERGRsFBx8iQWizGGivLywGbW7wZziXWkGuYwDvo5+ykZC3PtqZAtBz4yxrzm/X4+oCcgRUQkbAwffiHHS8qwbjeZWx+AN/O7/WB9VcN6h/YM6n/cGLMemIqnMnaHtXZbsAITERFpL6czlsu+PtVTGfsgv1sO1m8+aau/JyUHJHqqYQUlBWQPzD6rGibdT0AJmfGk2WnW2q3A1uCGJCIi0k6BziUW5vxN2qpqWO8Q0Bgy6+m0fj3IsYiISBdxu90cOnCMI5+X+MYldVv+np40xtM9+a+74fa1Yds92eBysbfkCG63G8DvpK0aG9Y7aOkkEZFeqHDPF3y0fgfGwKVzJjAkY2CoQwLgZEUVbrclOSWx5YN6yFxigS5hZIxRNawXCKulk0REpGvUn27A4TC43Zb60w2hDgeAL48e5511m3Bby+Wz8ki7YNDZB3XThb+bjwsD/9WwlpYw0tiwnq89Y8juAg4GNxwREekKw0cPoaG+gcioSC4Y5ifxCYGy0nJcDS4cEQ5Kisv8J2TdcC4xf5WwyIgILWEkTQSUkFlrrTHmP621OcEOSEREgi8qOpKs3OGhDqOJoRnnc+jgMazbzfARQ8/umoRusfB382pYS5Uwh8OhJYzER2PIREQkLMTFO5l95RTPNy0t+t04WL8bVcNaqoSBqmHylfaOIbvLGFOExpCJiEhnCnSgPnTLapgqYdKW9iRkc4MWhYhIN+Zyudi+eR+V5TVMyBtJYlJ8qEPqXrrxQP1Aq2GqhElb2pOQfQ7cBFxorf2pMeYCYBAa6C8ivdyXX5SyY1shUdGRRGyJYOpl2X6PO360nJMnqhk8tB+xcTFdHGXH1J9uoLykksSUeGLjojv34t1koL6qYRJM7UnIfgW4gcuAnwKVwCogNwhxiYh0G864WCKjImmod9EnOcHvMVUVNWx8qwCXy8XRg/2YMndcF0fZMf/8y06KD5WRmBLHjGsnEhkVce4XC3RW/TDrmlQ1TIKpPQnZJdbaCcaYbQDW2hPGmE7+b5KISPfTt18f5s6fzKlT9QwYlOL3GJfLjdvtxjgcNNS7uiSu41+cYPeHn9FvcDIjLsk452qNtZYTJZUkJMdRXVFH/an6c0/IWhqsr2qY9HLtScjqjTERgAUwxvTHUzETEen1UlL7tLo/qW8CebPGcuJ4FRkjzuuSmHa9X4jL5ebAJ18wePgAkvq1Mvt9K4wx5MwcyacFhxiWmYYzITbwk7vhrPqqhkkotCchexJ4DRhgjHkYWAj8IChRiYj0QOdnDOD8jK5LOlIHJ3Nw5xFiE2KIjW/fmLXCjw9RfLCU4RPS6Xd+Cuel9+O89HbOFN9NBuurGibhIOCEzFr7kjFmC/B1PFNezLfW7g5aZCIi0iGjJl3I+RcNxBkfQ4wz8BEmVeU17PnoAM74GLav38fXb7rk3AIIg8H6DQ0NOBwOXwLldltKq0/TLyEaY4yqYRI22lMhw1q7B9gTpFhERKQTORwOkvu33U1Zf6oBR4QhItIzLiw6NorY+Bhqquo4LyPwClZtVS11x4+QNGQojoiIkA/WP3ToC/789rskJMZz1VVzcTrjuP6377P18GEmpA1h5eJJqoZJ2GhXQiYiIj1L6RcnKPjLbqJiIpn4jUzikpxEx0YxeV421RU1JA9ofWxco+qT1dT+ahZ963ZT23cc8ff9NeSD9Xfu2sNpRwxlpRUcO1ZCfL+B7HA/Quywg+yoTaek6hVVwyRsKCETEenFvvzsOI5IB3VVp6goqSQuyQmAMyEGZ0Lg485qi7+gb91uHLhwlm0P+WB9t9vyqz2wo9gyJKYfN/dP5XRENRHOg2DcRDgPEhFZjcPhVDVMwoLeeSIincDV4MLtDu6D59ZaasprqK+r77Rrnn/RQKzbEpfkJHlgYNUwwDNgv6oYrAUgZegwqpOzcBOB67yJXT5Y3+22lFSewnrjKamq49PoXxI3fBkl/Z+l1kaS6kwlZ+B4IkwEOYPGk+pMBb6qhikZk1Bqs0JmjKnEO9VF81141rJsx2+wiEj3U1d9CofDEN3CwPiKYyfZ/pedRMVEkj0nE2diO6aFaIfD2w9xsOAgMfExjLsym+hzmDHf7XZjjMF4uw+TB/Zhxk2XgCHwhMTP05MRkREkfudvUHMcRxd3T7rd9qyxYRGRZ1fDjHHy3JznKKsrIzU21XcPRMJBmwmZtfbcJq4REekBPGOsdnnm4vpGJkl+BskfLSzGGENtZS3lX5bjTBwUlFjKDpcSmxBLXWUtdZW17U7IThw5wc6/7cHZJ5bMK8b4EkxHRBuJWJjNJdb8ScmSqrqzxoYNSPRUwwpKCsgemO2rhjmMg37Odk7fIdIF2jWGzBiTAgwHfP/9s9Zu6OygRERCreTgcYq2H+JUbQPGGFwNLsqPnfSbkA3M6MexwmJi4mJJCnAQ/Lm4YPxQPn1/P/0vHEB8qv8lmlrzxe6jREZFcPJ4JSeLK+mXntr2Sd5qmD30EbUp4/h03K8YPj4dZ4jmElM1THqqgBMyY8y3gfuBNKAAyAM+wLO2pYhIj2GtZef6fcTGR1NZfBJnchyxKXH0v8B/ApNyXjJTrr8EY/BNHREMKeenkLvo4nM+f8CF/Sg9VIYzIZaE1PjATvJWw4y7gdjSAo7u3ovbGrK74OnJ5pUwQNUw6bHaUyG7H89C4h9aa2caY0YCPwlOWCIioWOMIXlQH8oOnyBlcBIT541vc+3GDi223Q7W7abs81LKDhSTfH4K/S8KfGqGARkDSB6UTERkBBEtxdvCwt/2848oixpBTX0isXHRQe+e9FcJcziMqmHSY7UnIauz1tZ5B4PGWGv3GGNGBC0yEZEQGnvZKCqPVxGf7OyyZCsQh7ccoODVD3BERtJ/+CASBiThTA6w2gUtPpgAtLrwt6k5jqMymrxTDQwY0rcTXklTzZcv8lcJG9jH6XtSUtUw6Wnak5AdNsYkA68DfzHGnACOBCcsEZHQioyKIOW8JAAaTtVT9OF+6mtPkzH5ImL7xIUsrhOflxCXmsiJz0uwQER0B6aTbOdg/b7tH7YWEH/LF/mrhIETY4yqYdIjBTzpirX2GmttubX2IeCHwLPA1cEKTETkTLVVpzhx7GTQ5/ryp+LICcoOlFBbVs2xXV90eftnSptwIX0vSGXk7Gwyr84hOq59i4b7NFbDHh8FK670fN+41JEj0jdYv3Fer87U4HKxt+SI72fpb/miluYMg6+qYUrGpCdpz6D+GGABMPSM87KBn3Z+WCIiX6mtOsX7r22lrvY0F2amMWrSsC5tP7aPk4joCNwuN/H9Qzv1Yt+MAfTN6ISxW20s/O12prJ9/V6OflbCmMnDSB/VOcsIBbqYtyph0tu0p9b9BlABbAFOBSccEZGznao5RV1tPbHxMZR9WdHl7cenJjL2qhxcDW7iUgIfr9WZKo+WUVt6kuShA4lOcLb/Ai0M1m9p4e/qEzV8sb+Y5P4J7MkvOueErPnYsPYs5q1xYdKbtCchS7PWzglaJCIiLejTL4ELx6Vx4suTjMq7MCQxxCSeQxLUSU5X1fL5+o8BqPyijGGzJ7TvAq0M1m9p6gpnQgzJAxIpL6nkwszzzynuQKthoMW8RdqTkL1vjMm01n4StGhERPxwOByMuiQ0iVh4MJ6EyW3bnvKreSUMzmlm/cioCCZ9M4tTtfUBLzLekWqYSG/XnoRsKnC7MeYAni7LxrUss4ISmYhImLFuNw01dUQ6YzFtLTfUiaITYhk6cxw1pZUkXdDKrPgtVcJa6p5sQ0RkBHGJgU35oWqYSMe0JyGbG7QoRES6gdL8nVQdPErswFQGThuP6cLqTvzAZOIHJrd+UEuVMGNa7Z48F6qGiXSu9kx7cRBIBq7yfiR7t4mI9HjW5ab60JfE9EuirrgU16nToQ7JUxGrKobGqSn8TFvh09g92UnJ2JTnF7Fg7VwmrVhIg8vlq4ZZ6/BbDVMyJtK69kx7cT+wGFjt3fSiMeYZa+1TQYlMpIex1nKyopq4+FiiojowmWc3Vn60nJqKWvqlp7Y+Y3yI1Z+s4tSx48QMSCUqKZH6yioqCnYREWE5VVpBn+FDiYg9x/m/Oss5DNQ/V6qGiQRfe/4qfAu4xFpbDWCMeQTP4uJKyEQCkP/BDvbsPEBKahJzrprS65Ky6hPVfPLnHVi3m/KjJxg9c3SoQ/LLulyUbsrHVXcKR3QUqVNzOfLKGk59WYLzgjQGXj4VZ9p5oQ7znAbqB6L5gt4aGybSNdrzF8EArjO+d3m3iUgAigq/IKVvH04cr6C6sobkvqGdYLSrWbcFa3FEOHA3dP1s+62p/qyI08dKiB/xNaKS+mBdbozDgXW5qS890fgEE/UnK4mIC9H0F4HOI9ahJs5e0FvVMJGu0Z6EbDnwkTHmNe/38/EsnyQiARg7bjj/+Os2RowdSp/kIC0KGMYSUhMYOXMk1WXVnDciDCpMXg2VVVRu34kjJoaKLdvpf8UMUqdMpO7IMWIHD8ARGUls2iAiE+NJvmQC0X3bGFgfDEHqnmxeDfO3oLeqYSJdI+CEzFr7uDHm78AUPJWxO6y124IWmUgP4na7+Xx/MX3i+1B94jRBWB4wYLUn6zhdd5o+/RO7fDmalPOSqfj0CJ++fZShl44mvn9Sl7bvj4mKxBETjbuujpi+nmQjOiWJ6JSvYus/a4anuhcV1eb1rMtFVcFW6ouLic8aR8z5ae0Pqp2Lfp8Lf9Uwfwt6OxxO/nHr//BpyRFGDExTNUwkSNo1iMVauwXP0kki0g4ul5vK8mriEmKpOlmD2+UmogvnsWpUXVHDP9/YTsPper42MYOM7CFd235xBZVHTxAVF0PxrsOkT46n6mgpkc4Y4vonY91urNviiAxs7qtAuU+fpv74cSIS4ons0zQJjIiNpe+lk3FVVROVmuL3fEdk4P9UuiorqT9yBEd8PFXbthLVvz+OaP8PALgbGjj1xVFMdDQxgwZ4EmR/1bBO6J4MpBo2INGzoHdBSQHZA7NJdabSUN/Apj99TOmxCqKnRjBs1LnN2i8irWvzXxljzD+stVONMZXAmf+vb5wYtncNhBE5B1FRkUz6ehaFuw8zftL5REW3b0D/yeOVOCIcJHRwHcXayjrqT9UT7YymoqTSt72+rp4TR07g7BNHYr/gdafGJscT5YzBVVdPn7RUSrZ/CCFK+gAAIABJREFURtnez3E4HJw/PYuy7ftpqKlj0NQs4gamnnW+u6GBhopKIhPiccQE/pRmdcE2Tn15BEdUDEkzZhLhbDoOLDIhnsiElu+t62Q59Z/vJ6LfeUT0Sab2448Ag3PcJZiYWMD45iRzxMVBTBTV2z4iIiGRqg83kjhpOsZPda1mfyHVu/cADlKmTSK6f782F/0+l+7JQKthxjjPWtC7oqya40dPkNQ3gf0fH1JCJhIkbf5VsNZO9X5ODH44Ij1X2tABpA1tf/fSkcJiPnlvD2C4+JtZpAw6926+lEFJDBl1HlXlNQybcIFv+96Neyk9VEpkVBQTr80hJj44UzrEJDoZedVE3PUuohNiObLpOI6ICNwuN3Ul5dSfrCbSGUNl4Rd+E7Lyf26j7ssSIvsk0G/G5IArV67aGhxRMdj6emxDPbYhEhwRAU/sWlvwAdZVT/2Rz4kckoGrohwM1O3biav0y/+fvTeNjvO87jx/93mX2qtQAAr7RgAkQZEUN8mUrM3y7tiJkzje0pM4nclyuk+fpKdnzpnu+dT9YXo6k5M5k56TWTK2J05PPPEk051OYmexY1uybO0SKe4LSILY9632qvd55kNBBEEARBUIiJT0/s7REVD1Lk+9KNZ763/v/V/Esgk/+jQqHEWUwlYeysujJIS3tIgu5LE2CMhMuYwxoErzGG+lZ2qLod9bcacSBlSthsH6gd7xZISG5gRzU0sc+eDeqq6Xj49P7dTiQ/Y7xpj/dqvHfHx8dpblmTSIoD1NeiF7TwGZZVsceHL9TbWUL2G7Drrk4ZW8DfbcOeyAA4FKcJI61o8VcHETYSKt9WRGJvFyBaLd64v+jTEUZ+ZwYhHKyxlMsQRVBmTRY8fJDw5iNzRi0vNkXvouKhondOJpZJN04u2oQBBvfhkcF6uukfLwjcqaClnAoPMZynPTuOEoRnvgebg9fZTHRwj07UNFNlYdQ90duN/+Cm5+EL14An797++pWH8jJUwpqVoN2wjHtXnmZ45TLnm4ga1r6Hx8fLZHLXmTjwF3Bl+f2uAxH58HhmKxyI9feJVsNseTT50kkXhwhd7poRkK2RItfSns21KaXQ+1kZ7PYjsWzT2NdznC9tn35D7GL44Tb4oTrguzMDxDemqRxv5WgonwrpwTwAkHaX5k363fOz/xGEZrLHf9jV9ESJx4mPTFq8QO7q/JfsKOJ4geOw5A9uXvI6Ew3vICXnoRu35r1Sl49HG8uSlULIEVTWDXVdQkk8+RfeMFVCCEnaz8bZQbIHDgYYrPfZtgVyd2LLIa7GhNefIaEm/BikTxZkZw84MIGjXxRs3F+tXUhTXHQzSEqlPDNkMphRvwi/l9fHaTamrI/gnwT4FeEXnrtqdiwI93a2E+PjvB8PAYFy9exXUc3jp9nqeePnm/l7Qh8+OLnP7ueYwxZBdz7Hus99ZzoViQE588tKvnjyQj9D/eD0BhOcf1588jSrE8vsCBz5zY1XPfTqWYf/OC/lB7K6H2e7PMcLr6KJx9DStWhxWtTm1UgSCqdTXFq0Ir9WahCNFnPgMCYq1+nFrBIG6qGQmGKc9M4Hb0VoKxP3gGa/YsJacT/RvfxW7ZQzk+gL10Ed18DKuGYv1q68IghIjw9U9+nWtDN5h+fY7LLw6y97HeNR2Ty/NZ0gtZGtoSvhLm43MfqEYh+ybwN8D/APzL2x5fNsbM7cqqfHx2iGg0iuM4lMsejY0bd9A9CBhjKlYYIhh9f01TxVKgBK9UxnLurdtRr8x73KoA3xhD4fo1ijPThPftx65LorOZyr7he2tkuBOntRs71VZTDdndkA3SplayETvVgk4vE+jZX3kwO4M1exZB45Rukhu+SPj4M6jfeh6zNIGV7LhrenK7XZJvo0Qxd2oRr6wZPj9GS38TiaZKT1Y+W+THf/kmhWyJ5p4GHvvU4Xu+Lj4+PrVRTVH/IrAIfHn3l+Pjs7M0NzfyuV/4NKVSiVRqfZH4g0KyNcGhD+0nnynQPnB/TVPdcIB9HztKbn6ZWMv2g9ji3AKzL7wCCA1PPYqb3NxQ1VteInPuDCoQIH3qTSKHDpF9vSLAh088gdO4/VFAGyH27ipA4riEjz25UgdWX3kwkkI3HkbNnKEU6Caw9/ittUj93e1H7qVL8naSbQmGzowSjAQI3ta4US6WKRY8AhGXzFJuZy+Gj49PVdRS1P8N4LeNMQsrvyeB3zPG/OpuLc7HZydIJu+/+ehWiAite5vv9zJuEWmMkR2ZZOg7F6nrayd1Yl/NJrKFyZmVcUmawtTsXQMy5bqIG0DnC7gNKfTSPGIqSqFenIMdDsh2nU2c9a1/+kP03DBOXdtdg8J7UcPuVhfW90gPzXtSBCIBAuFV1TJaF+boM3uZHl6g78jmRrblsoe9wx5xPj4+FWop6n/47WAMwBgzLyLHdmFNPj7vK7ySR3YuTTAewglV7621m+hSmfmLNwml6li4OkL9oT3YwdrWFmxvIXNjBBEItbXcdVsVDJF48im8TAanvgFTKlCeGgfAads581qTnkIvjqHqe5DQDo5Auouzvhl+GW/oLSTZgVXXiGrs3uJQO6OGbYRSinhq48aWrv2tdG0y0soYw0vPv8Xg5REOHenj6AcGtr4mPj4+NVFLQKZEJGmMmQcQkfoa9/fx8dmA6y9cZHZohvxihq5je2g/0Yu7Sz5g1ZCfWcDL5oh2pkgPTxPrbMZaKfIuzS/i5fMEUo3IFkqJE4/S/MlnAKoKFqxIFDFF9OIkKtlC5LEP3fNruR1TylO++PegPfT0Zewjn99yXd7sDfTQy6hkJ6r7sY1rzrZw1tcNB8ldvIDYVwmd/AhWfG0auOx5DM5N0l/fTGFohPGZhR1Rw3aSXLbA1UvDNLc2cu70NQ6f2Itl+UqZj89OUktA9XvAT0Tkz1d+/zzw3+/8knx83lsYY8gtZHGCzoYK2PL0EmjNzOUxQpEgYgk9T9wfBaK4sMzkD19FlzWx/g56f+YJrFAlbVZaXGLmuRcxZY/Ivl4SDx/Y8ni1pDl1ZoHiG38HXgmr6xBO3/F7eSlbray6NQ29DHYAPXUJ1TwA4fr1G23hrF+6ehWZHqv4k5VLa3Ytex5PfOPzZNQgYa+XP4//CgXJ7YgatpMEQy7de1oZuj7BvgNdfjDm47ML1DJc/I9F5DXgw1Q+zX7eGHN+11bm4/MeYfzMTYZfGwQDD//8SUJ3jD/a88R+rr1wkfruFMqxcCPBd3yNxtPMvXGO9OAwhaUsgfoEuljCDq8qdbpYwngeYlt4mezOL6KUx3hlxA5gcstbbw8Yrwi6jDjhSsBTXAI3jqj1AYM4QeyBT6ykLLurS/HVd6MnLkC4DtyVv9ud6clICtN2HEZfh44PIHc467v7IxAIosIxdLyeq9Nj7G1oQSnF4NwkGTWIiCZrXWPYy9FjhTkS3c/Z7OX7ooZteB2U4smPHOPRfJFg6P6ptz4+72VqTTmOA68AQaBRRJ42xjy/88vy8XnvsDAyx9y1SXILWYKxIEe+8ME1z9e113P8ix8kM71EqVAi3vrO23MUF5bI3BjFSUTxCiWifR0k9vWs2cZtSBI7PEB5KU1soL+q4+r0PGBQ0Q2UpTuQeBNO7zF0dhG75+EttzeFRfSVv8SUC0j3szB3AbM8iiR6UD0f3zDgkmgKK1q915fq+gCqaT+4EcR2N0xPmvwyxYFfhp6fxuo5iX3HeVUoQmDgGNnLZ3j2//p5ss4QEd3Hj7/yZ+xtaCGi+8ioQSK6j+PPfgRTLPJHLZ9kobx0X9SwzVBKEQq/818WfHzeL9TSZflrwG8DHcAp4DHgRSqKmY+PzyY0P9TO4A/OkuxOoYtljNYb1iJFUvH7sLoKdiSMEwtTTueoP/EQdYfWj1cSpYjt66v6mOXZUcpnfwgG7EPPYDdWuvf04jhmaQzV0IuEV4NPUQq7e3MDXJObRo88jwQbkPYVS4lSBnEimLnLkB5Dwk2wNFRJH1r3bm0hSkE4iV4cRi+NoUJJ5I70pPFMJVALp9CF9OrrX6kN29vQAvksly6+QdYZQkSTUYMMzk2yP9XGc5/7Om899wN6nAhOKIjdXAkYG537o4b5+PjcH2pRyH4beBR4yRjzrIgMAP9md5bl4/PeoaGnicd+7SPMXZug+WDnjpiRboaXL6Jcu+ZzWEGX5g8/jpcrYMd3xojVZBcrZrcrP0MHppjFu/T3IAo9ew3n6OerP97Eq1DKYLKTSF0fRFshnIJSBqvlGGYphZk5i7SeRLYIxkxxCYxGAlt0WmqNWbiJvvYPoCy0HcK6Y/C3GIO15wQmu4DdWVH2bq8Ni+g+/uHkv2SPUYSLXWTdm0R0XyVQA7ypGXoIQNkjPzZONP7gjvfy8fHZPWoJyPLGmLyIICIBY8xFEdm/ayvz8XkH0VqvGSOz06T2t5Ha37ZrxwdYujDI4rmruI11pJ48gapy8PbbKNdBbTBDcrvYzXswS7NgDHbznsqDIiBWpe5Lbb4+4xUhMwxODAmteJBFWmH5JtjhSp2YE8ba/zmMMWDKiGgkdQCx7x5Qmuw45sZfAxrT8XFUfM/GG96WnlTJbvRjvwnBunWDv0UE2g5wbW6SvcEoAmtqwzJqkCuD5+h3XX74sd/lZjjCvlT7rfebm0qRvTII2hBoqj6d6uPj896ilk/sERGpA/4C+K6IzANju7MsH593jhunhrn+5hBt+1vY93jfA1OzUyvpwWHcZJzCzALlTA63ikHqulBAHGdXVDtxQ7gHn1r7mBPCfuiT6KVJVLJrkz3BTL4ACxdBObDnF5BAEkkdRWIdYIUQN7p6TBH02PchcwOcGHR9DrE2Lzw3uVmMLoGykdw0xPesL9SHW92TosswfwNpOohqPbpm8LcxhtLiGE/9x39GRl3bsDYsXOqm13IQxyHQ0MzAHbYXTl2Cho9WKj92MiD28fF5d1FVQCaVO9RvrRjD/msR+QGQAP52Nxfn47PbaK25fmqIeFOc0Yvj9BzpJHCfPMCMMehiCWuLuY+bERvYw8LpS4RaGnGiW6cd84NXyF08h1VXR+wDTyDO9oIBU8ygx9+CQAzV/BAidw/uJNKIFdmiPqqcBcsFXar8x4qFRmgTBSk/CXYcSsvg5WElIDNeATP3OiBI/QnEcpH4Hli+UVHVkgObuurf7iUmnSexup4AkTW1YWbyElfOfp+MurauNuyFf/RNLrzwl/QUi6hwnNDDj6/zIHsbPxDz8fGpKiAzxhgR+QvgxMrvz+3GYkTkk8DvAxbwVWPMv9uN8/j4vI1Sipa+JsavTFLfnsQJvbM3xsXzg2RvjhF/qI/8xAzZm2NE+7tIHn2o5mPF+ruJ9HQglqpK5SvcvIEVj+PNz+Fl0th12+vu1KOvY2auYnQZCdUhic1H71SLtDyFmTsNgUYIVpHGa/kwzL0OdQcRd3VUllm8CPNnwBiMHUeSBxEngvR8ZnXf9NTGPmIi6F/+K+amx2hoakdWgrHba8Oee+a/oS8cI1zqJOsMr6kNs7wSfcagkil0PoOVXH0dxakpdLFIoKVlw+HkPj4+7z9q+SR4SUQeNca8uhsLEREL+APgY8AI8KqI/KXvdeaz2ww8uZeeY10Ewu6u1pHdSTmTY+n8VZx4lNmX3gIxBFMNpAdvkji0H7WNmYG17BPs6yd79i2cpmas2PYLyY0dQs9dwuRnUW0PwU4EZG4CaXm66u1VpAMiG5zXDoPRlTSkHao8toGPGHcU6lc2M3zpqy+tGWF0Z23YjVAT/Q15nn/2X3Ej1sm+VMet95CEojg9ByhP3sQdOHFrSaXZWRZffBG0xhsYIHJga4NdHx+f9z61BGTPAr8pIkNAhoo5rDHGbG0YVB0fAK4aY64BiMifAp8F/IDMZ1cREULRd95fSQUc7HiE4lKaUEczyrHIDo0R29uzrWCsVgJde3DbO0FZ91Q3pxp7IV4Hbfth8RJ0PrmDq7w3JNZfCcoQCLVump68UwkD1g30nlr6E3rTV4iUu8jYlU7JfS29SMserGKW/YHomusoIrj9D+P2r/2INJ4HxiCWhS6tde7PTs2RH58l2tOKm4jyfmdiYoILFy7S19dHV9fOzTT18XkQ2TIgE5H/YIz5JeAPgf+0i2tpB4Zv+30EOLnBen4D+A2Arq7Ni4J93p8UskWK+RLRZPiBKc7PDY+SvnKDcE8Hkd7VwdLKtmn+0ElKyxmcRAyxFMmjB1DbrOXaDmLVli4zRkN2Epwo4lZUNQkkkKYDkJlAkrWnWo0xUJ4HcRH77kGIMRqQqv+2YgxoZ1UNy0xj3i7UX0lP6nBqnRKmlKwf6F24DrOXee74F7hhQuw79vOI0ZTOfQ+WplAt+7H7131krcNpbCR69Cg6lyPU23vrcS9fZPL5UyCwPDxJ16efeGDew/cDrTXf+c7fAsLly1f5ylf+C4JB35jW571LNfmZEyLSDfxjYAlYvuO/nWKjTx6z7gFj/tAY84gx5pFUym8R91klt5znpf/0Ji/+xzcYemvkfi8HqKghC2+cxZTLLJ0+j1corHleuQ6BhjqUXVGp3slgbDuYyZcx1/8CM/jnmGLln78oG7XnM6j9X4aWRzClxdqOmb2KN/tdvNm/xZQWNt+uNI+e/iv07Hcw5So+et5Ww/6nA/BHn654ilkak+rBiMK0n4BI6jYl7N9yVv87ptN5ABpClYHellicaDlGQ7wLsQPYOs/etn5EBLM0gZkfg1iK4sUfkXv+W5Suvl4JMjdBlCLU00N4YAAvX0QXV1QyAZTClD1UlXWAu8Hc7AI/+N6LnD979a6vY7cREcLhMNlslmAw6M/P9HnPU83X4/+dSjdlL1BpV1rFrDy+E4wAt2vSHfi2Gj41kF3KU8gWCURcZkcX6DmyeYqjmMljB5x7Sg2mr91k+cJVwj2dJA6ud7YHQCmcugTF2TmcRLxmb7AHjuwkxg4j5SyU0vC2SqZsjBKY/CuMLmLqTqJi+6o6pCnNIuKAzoOXxtgxdGEEERtx224FJiY3BKYM5TymMIHYW9S9bTD028tc4RcL/4rrpTl68r18y7BeCbMzQAgRWTfQWw78HJTzEG7EGz6FN3wanZ1BiWC0QkWTlEcuYXcegED4rstbPHOJ9JXr2NEoqQ+dxAq4tH3oOPmZBcJt9+/L5gvPv8byUpprg8M0tzTS0LiFee4uISJ85jM/xfj4BE1NKZwH/MuKj8+9suXdwRjz74F/LyL/mzHmn+ziWl4F9orIHmAU+BLwi7t4Pp/3GImmGK39TSzNpuk70b3pdpPnbjL+5nWCdRH6P3YEO1D7B73RmsXTF3ASUdKXBon2dmKF1qdTRIT6D56gtLiME4sid/mWX5wYJ/PWKZxUisjDx+667XYwxuDdfAM9dQ2r6yhW8yZB5F2Q1g/C+E8gsQ/CzWufLC9ivDxYYaQwClUGZCp6AK0zoNrAbUbnBvGWngdvAavu41iRSg2WBNsxuUFQLuJuELBsNPS74ySMVOrFJJJiOpPhrPu7qP4hzuW6mU4/QVOsooSdmj61Zpg3rB/obfJpvOs/QqJN6MU5VDgBItiHPgWjg+jJ66i6ZnC2Tq3lxyaxozHKy8t42RxWwCVQHydQf/9GaAEkEjGmpuYIuC6Bbfzb2Emi0Sh791Y3N9XH591O1V/XdzkYwxhTFpF/BvwdFduLrxtjzu3mOX3eW9iOxeFntx4eMX9tEmUrxl69TCQZoeODAzWnh0Qpgq0pciOTBBqTd/WRUo5DoHF1uLYuFsDzUKG1Ckru0gXEdSiMjBDs6cWKxtD5LCoS2xnj1kIGPXIWiTbgXXsF1dRf++sONSG9P7vxk4EmJNQJ5QUktvlMyrfROo+XOw96CRU7hFJhMFmMzmOKYyA25ewZVPgQIgpxU6jUZwBBlHvnwdYV62uELxf/FddLF+kpPMSfGnBiMazwWjVMJLROCdt0zaNvgAEzO4hqOYKeGsRq7EVFG3D3N2J6DiGB8K2/lymXSZ96g/LcPJGjR3GbVoPYxMMDzL95nvCeDpwqTHzfKT741An29HUSi0WIxnZmjJaPj8/WPFD5E2PMd4Dv3O91+Ly3aT7czRtf+3ucoMPi9VEaD3QQqq/9hlj/6BHKB7JYkYqdgjFmw5u5LhTwlhexEnWYQoHlnzyPKZWJHH8Ut3V1nJLT0kb+6iWsaBQJBMm88jze8gJuexehw49WvS5jDN7oecgtYHUcRkIriosTRKINmPQsKrVnx2uURAWQ1IerW6POUk4/h5e/gHL2YLKv4old6T4MDCChPowuoNxObq+SELVi2nunGpaduVWsb4ZfRrIzTOsYZ8zvola6JKfT39pUDbtTCdv0NdZ1YoZfAzeC1TKA3f3I2udDa99H5cUFimNjqEiU3MWLawKyUFszobY7VMYHAMex6ere3TFfPj4+63mgAjIfn3eCZE8T+3/qOIvXJrACzrZSlgBiWTiJGLlrg2TPn8dpaiZ24sSaVKPxPNIv/5jy0iJ2sp5AT29lXFEgSGl6Yk1AFtq3n0B7ByoQwBQL6OUFrGic0uQYocPVr8ssTeHdeA0sG1Mq4jz07Mp6bexDn4B8GkKJLY5SxXm8pYqLvp3c0p1/3b46DcZDJIwpTyGB/WByIApFAdXwOYy3hFh16wPHjdSwUCPn7QFS5YvM2AMcCDViFebW1YbVooZthGo9jKrrrAS3Tmj96yqVKE2MoEJh7MZmrEgUFY6gsxkCB2rvQPXx8Xn/UHVAJiIP3WnSKiIfMsb8cMdX5eOzy7Q9so+67mbcWAgncm+t9LkrV7ASCUoT43iZDHZ8tQbIeGW89DIqEsVbWsROJrHrG9C5HIHutf0wIoIVXbF9sG2cnr2Ux4cJHjha03rEDkAxUylmT62tvxHLgcj2HPmNtwxGI3YC4y3hLf0IY8qo8ENYwerr0Ywp4+lFjBJUoBc7eADsFLpwCUwZ5XYjKoio4G37FCsBnAptqoZ9IdmAFerAyzXwg0zhntWwjRARCG9+/fKXz1K8cRWUEH38w1h19SSefgZTKmJFfF8xHx+fzalFIft/ReQ/AP8jEFz5/yPA47uxMJ/3NtnlPAuzyzQ0JwiEtje78V5Qjk20rWHrDasg2NND9tJlnMZGrMjamhvlBgg/fIzizRsEBg5ihaPEn3hmy2OKCKGBh2Ggdt9lLzsNVhEoIXX1m25nvALoIuJsna41pVm8pR8DGhV9BJSDMeVKd2R5qbb1edNobwLsOMrpRdntAKjQkU3WmaY8+z1MKIIVPISEmt8RNWxbeGVECcYYjPYqr8t1KRXLLLx6BiceI7av+33tL+bj47MxtQRkJ4HfAX4CxIA/AZ7YjUX5vLcpl8o8/1dvklnKUd8U50M/d+Idu0HpUhnl7GymPrx/gGDPHsRxNiy+D3R0Eeh4Z0yM9dR5zLn/D7KzSP0BpJTfcDtTWsaMfxvKWUzjE6j43ZshvMIIXv4CqAiUelHhfiTQhZgiKrR1I8XtyK2PHXPbz5u9II35o5/FHnkD0z6A/kd/wEypbo0a9v3lBZoTO6+GbYfA/sNIMIQKR7GSq+ddOH2RwtQsmdIobn2cYGo1UM4tZBg/dZ1QMkrL4a6daeDw8fF511HLnakE5IAQFYXsuqnYZvv41IRX1uQzBcLRIOnF7KbF8DvN/PlrLJwbJNLRTOrkoS1vfF4uR/bSJVQwSHjv3rvaUKhAYKeXWzPGGLwrf40xGQSNSnagUpukEksLUM6AHYHcTdgiIDNmCex60DlQNuXC66CkUpAvK6OAqvwbKqsRRypdmKI29rgypoznTWKW5jHDb7CkDImRC0g+ghVY6xtm8t+D2KfuqoYZYzDLl8BbRmIHEfvuHmHbRQWCBPet7zC1w0FypTJiWVjuWkV47PVrZGYWWbw5Q6yljmjz/fH98vHxub/UEpC9Cvxn4FGgAfg/ROQXjDG/sCsr83nPEgi5PPLhAwxfnaLvUPs7MtDbGMPihesEGupYvjZCsD5KqK0Z5y5t/dlLlygMD2M8DyeZxKmvB8t6cBWM/BziZTHZWSTUgLX345WasY0INEGoHUoLSGLrjgHltmH0MiIBjGWBZ9A6jccZlKrDtvuwrOrMTEUEsTauw9Kex9z0GIlkCa1HmSoV+ectnQwGPfryFv+r6qApFFpRw97kSEMPDW4Ao7MoK3ZLDdO5YUz6LBLag4oOQGEC5l7EiICXRxqfqmqtO0Xi8H6CzY1YoSDOHTMqg4kwS6OzWK6FfR/S9z4+Pg8GtQRk/6Ux5rWVnyeAz4rIL+3CmnzeB3T0NdPRV33L/8yNKTIzaZr3tRKMr+9uuxteocjcmxfR2RzZXJ7y3DxLpy+QuXKd5k88vem4IhUMYjwPUYri5DiZ11/Eqqsn9oEPIrc57hduXKV4c5DAnn24nXtqWtuOYoeQ+j5UpBFpGNg8GAPECiCtn6z60MrtRdlNIC6gKZsloIwSBxEwprDhfrWon9rzOP87T5MqX+SStY/+f/5vUU6Wy0FAhMtBsJwsIuGKGpa5SUIPo+wYYq/WAxpjMIsvgxXGpE9hQl0gdsUew2hQu69mGl1JHrwdvCvbItTWRH4hw/CPzxNqiNOwvzLIvPXYHuJtSexwgGB8d5Q7Hx+fB59ajGFfE5EksJdKyhJgaFdW5eNzG9mFDFefv4QoIT29zMFPbVz8ven+I5NkhsawQgHiPe0UxwKgBFMq37pxvo0uFMhevIhYFsH+fpxkEnFdsqdfx4rF8OZn8ZaXsJOVGiBdLJC/eAYVjZE7fwqntXNNsAaVm7NOL6GCIcTdvWBAnDBq389CYQkiWwe7xnjo3GXQaVToAGJF73g+T6l4BRGF7ewFZeHpaZRK4gQfxTZlPG8U0FjW+vNpvYRhDEwYJR3rrDHK5RLXRi/Q33EQZVnMTI3wu/XTnA62ciQ/y+/Mx2huPrh5bVi0B+hZfx1EwG3EZK+A0wghNoa6AAAgAElEQVTiIIEUNH8CylkkvLv1fMWFJWZeeB1RQuNTj65RYcdfvUxuPs3ijUkiqTihhjjKUsTaNm++8PHxeX9Qi+3FrwG/TWXG5CngMeBFoDonSB+fbaIshVKKcsnDcmsfJ+TEIhWlQhtCzfXEe9vIXB8m2NaMdUftV/7GdfJDQ2A8rHiMYFdlBFOwt4/s2dNYyQas2KqthdgOVqIOb2EOuyEFloXOZ8mfeQW0Jnj4AxSHr1IauoIKhQmf/OjuBmVu7NZ8ya0w5Rl0/iIiLhrBiq41OfXK4xizjNEensxgmEabIp53Gcvai6Xase3NR1QZZgEHSAN5YFX9KZdL/OLXH+WyW2Zf0eabv/oqKh7mdDCAJ3A6GMBOdmM7qe11SlpxRBvw8pUZmcpBgq1UW6lotIZCGgIRRNX2nsuOTFDOF0nfnKCY13T81JNYwUoq0o2FyEzMo1z7rtMdfHx83n/UkrL8bSr1Yy8ZY54VkQHg3+zOsnx8VgnGQjz0icNkF7MkO+6uJBhjWLhwnfTQGMnDe4l2NBNsqqf1Y49jjCGQrARTbv3GhdMqGALtVQxKg6up0UDXHtzWjnU1ZKIUkUeexMssY0XjiAilyRG8uWmMKEpjQ3gzE6hQBJ1Lo/NZrF0MyGpBJIhgY3QRUes9skSiCAYjFqLCGK0wLAMFtJlGEUfY2GDWUARsDEsIQcqexbX5MfY2tKCU4troBS67ZTwRLrtlro1eYG/XYY42n6ioYU1HaQhX6sE26pQ0xqBLEyu+ZW2IrA2apLSAcRsqAZmXha0Gkd+Bd+VHeJNXkHAS++hnaxoKH2ptYvrF0+Rnl3HqMyxfG6XuoUoqu+XEXuIdjTiRIIFYbal3Hx+f9za1BGR5Y0xeRBCRgDHmoojU1u/u47NNoqk40dTWQ5fL6RzjP3iVwswC82eucuhf/BLKtnDrqrshB7q6Kl5iIjgNq3VJulgg+9YbmHyO8JFH1qpkjoN9m9+XFa8HpRADKtGAW1dP8dIpnM5+VPTeHfLvhtElEKsq53yxE6jYB0HnEHf9qBzLTlXmS6IQFUKpIKbsgiwjOAgbKzwGD8MwospgQmivkyf/+Itk1SBh3cePv/Jn9HccZF/RvqWQ9XccRESqUsO80hRe9iV0cQLltAIFrMAdBriJY5jF15BQN7i12V4Yr4w3eRVvehizfAqJNqMGnqx6/0BDHS0ffwL1k7cQpbCjqwa3lmMR63jnbDh8fHzePdQSkI2ISB3wF8B3RWQeGNudZfm8nylmCxSW84Qbolh2bekiK+hSWkwDIMZQWs7cUsWqQURwGtffMMsz05QmxhDHJX/9KpGHj2++hmQjkSc+AYAKV5Qnp7G1lpexLXR2FGZ+AHYUmj6+pbWD0TnKpYtACatsYTlr12iMWRkjWQnuRII49j4MGQQLkfUKT9nzuDo3Sn9DCaUqBf/X5ibJqysgkFdXuDozykBzF9/81VfX1JBBdb5hunilsia9CCYJxqzbRpwkVuPH7nqczRDLRrXsp3z9NKqpF29xCjU/g4rXIVZ1H5mx7jacSBiMIdDo21j4+PhsTS1F/T+38uO/FpEfAAngb3dlVT7vW0r5Eue/c4pipkBDbxN9Tw3UtL9ybDp/+mlmXztPpKMZJ7YzXWtWNIY4DpTL2PVrAwady5K/dBZxAwT3HURs+1YgthGmVAARxK7N4sAYXRldpDb5Z5u+hFGBipVFcQbsuxevG5MBUwAJoL0xlJ1CZPXY2sygzQSCwlK9iIQqlhVUXpvWhtlMkcaoi4hQ9jye+MbnV5SwXn70lf8Fx2pkb3CBo/kCp4MuR/JF+gKjGNOCUnn6OtsQWR9Q3Q1lpSh7y4jbjwo+hAr01LT/htciO4/JziHxVsQNY/d/ELGCeLMjFOezlF75PnZzJ6Gj1Q8mCfqBmI+PTw1sy7LcGPPcTi/ExweglC9SzBYIxIMsT9U2kudt6g/vJbGvG+XYO+YZZsUTxJ/+KMbzsKJr05+F65cpTYyCV8ZONuC0dmx6nPLcBKUzz4NlEzj6YVS0upu2KWUxQ9+G4iKm46OoeM/6jaJ7YfomRmfROsdW2qKoBGLVU/ZuIiaKKZ3HcQ7eVo+VR1AYNIYSwqoiprXhS//nT3hjZITjHZ386a8/zuDs+G1K2FWuz8L+piASa+brbh/zI6+SbDsIsTq0masU/RvQFLCkvarrAGAkgqXqUeF+lH3v3YmmlKd8/m8xpTwq0oj98E9XUo19j6BaByi+8DeocAxvbvKez+Xj4+OzGVsGZCKyDGz0FVYAY4ypPh/k80BQLJawLIV1F+f5+0UoEab9SDcLI3N0HO/Z9nGswM4bbKrQxmqbCkfB8yp1Y4G7Dyo3s6MgClPM4y3NVh2QkZvC5GfAicH0a+jSPBJuRUItt62jEy++D3LXYfkNjFuPuJubtYo4OMGjmGIJCABZKgM53k4fNqHxEFyMjjCdLdAYdUE8JtNTnNW/Q7BviLO5bqbT32Jv0F6rhAUzaKYQqcf6lW/TkBlGhwsgCiG04YfKmmtlShhTQCR8qybOeGl0/jQiNl7+HCq6AwavRoNXQpwgprx2coQKRwn0H6Y8OYx76AP3fi4fHx+fTdgyIDPG1Nae5PNAMzI0yY++9ybhaJCPfvokkeiD1eklIrQf6ab9yOZ2CrWiy2XKyxnsWGRdt1xueITMuYsE2luJHnqo5hFO5fk5VKKeyGPPILaNlUhSnp3CW17Aaelc06kJYLXsoTx1E3HjWMnqjXEJpRA3CaVljFmA+SXM/Cno+eKaWjFRDlRR0L9mTVYPnjeMUq1UArOKR5lIAEt6KmrYV1fVsG/+ejeWPbxumLcKva2EvUZ9+zGIGWAeg0ZUCxLrRq1MWxNRoAUjRZSsD0qNKVEqvIkxeSy7A8vuwXjzlZSt2BhTRMnGbv+1Im4YtfdZzMIwVtO+de8Bt3cAt7e21Pn9IJvNce7cZeKxKPv29/oDzH183mXs7JRlnweea5dHCAQdFhfSzE4vPnAB2U5jtGb2hdcozi7gpuppfOrRNTeq5TPnsIIhsoM3CO3pxo5uXvt1J8XxUTKvvwxA5NHHcRtSeJllsq/+CIymPDNF5JG13XkqVk/w8c9WashquGGKE4H+z4Mpw8hfQnEJNkjHSuxhsOOgwndVx27HslJrxh6VSqPMZCZojDZiW11Mp/N3qGG/T1MkzgkUp4zHUWwaAkkQwfqVb9OYncFEYhgZpiKuq0qDAAAe2iyjCKLU5uK6MXmMySMqhPbmEA26cBkjCjt4sHL9rIZN968Vq74T6jt37Hj3g1dfOcXlS9fxPI9YLEpbew0Bv4+Pz32nlpTlRncPP2V5H1mYX2JudoHm1hSRSHWBVf9AJ2PD09TVx2hsevcXHeuyh1coYoeDtwIcozVGG5RtYcoehdkFnESU4swcplyuFOevEGxtITc0jB2PoYJ3TzeuO3c2w0rmfuVn4G3nf2VVUmEbsN26topBqQWtH8dkbiDBlnWdlKICSGT7bjSe5/Hlr53lzdF5jrXP8q1fb8Wy1w7ztu0QkivytZs3mUfTgEJysxBtqgSJ0aaVeoZGjJlA6zQis5U5mEZjyGGMwlJ7Edk4tSwSwbLb0N4clt2LKY2B2AglUC7Kri7YfD9h2zaeV0ZEYVkP6LxVHx+fTfFTlu9SCoUi3/mr58hl8zQ2Jfnsz390w+3Ghqd56fkztLQ3cvKpg7R1NvG5X/oo1or7/YOC0brmQEWXyoz+8E0Kc0skD3TT8HA/5Wyeyedfx8sVSD1xlFBTPXVHBkhfHSJx5MC6uZWxI4cJ9+5BhUM1mX8CuB3dlJeXEAS3vaKuWLEEoeOPo5cWcNrv4mJvDN74RcgsYHUcREI1WHO4CcStbXzUZtzZKTmTKXLe/AGhviHO57qZTj9JczTJCWxOmQJHsWkMpBDVDJ0naRx+GTpPQmR9gGTMAsZYGEYRkhiTQxuDUMagAIMxekPPtEpQ0YqYEEqFINCHRxmRyI4qY9tBe5qp1y+Rm5qn6ZEBIi0PxtijRz9whMbGeiKRMM0tfsDq4/Nuo6Y70AazLDHGPL/Ti/LZGs/TFIslQuEg2Wx+0yHOp169jLKEwUvD7D3QSao5ieM8WJnq6asTDL10lURbHX1PH0BV6T1WyuYpzC0SqIuzeG2Mhof7KczMU1pKYwUDpG+MEWqqJ9rfQ7S/Z8NjiFLYie2JvCoQIHr0kXWPO01t0LTeaNVojTc5hNFlVCiCN/gqKBtdzOEeXD+BzGgPM/Ei5CaR1ieR8PoUlPEKmNwNjDiIToMVRkJ9VaVDN+qUXKeGOVkkl+brN28wd5sapiNhzC9/A5UtIdHWyuDudYSoNApEMBiUBMAYPD0LRMCMYcw0SrVi22vThcZ4lHOvY3QBXQpih5/ADh3b8jXVitEe3sx4ZQRWfXUpvsL8MkuDYzjREDOnrxJpeTCK/V3XZf9A3/1eho+PzzbxZ1m+SwmHgzz70ZMMD02w/8CeTW/A7V0pzrxxlVg8THSHPLl2mvG3bhKsCzE/MkduMUukoTpR1o2FiXa1kB6eInWikqZz6xPYkRBeoUSkq2WLI2yMMQbjeTUrZlvhzYxQPPcCImB1VIZ1G6+Ius2PzBQzYLmI5UBuEmbfwjgRmHgJ6f3s+rUuvorJXMMUhjHBFsQKIVYMAuuDC88rMbM0QSoWR9mJDWrDvkVTrGF1mHfTbcO8b1PDTDhK2btcOX84ib3Je09JM0gcC4eKuaxCcx5LpdAmg9ajKFWP1uMYc+f4I1OplxMbXRzH836CCu5DuU3bvv4bURq6ROnKm6AUweMfrioocyJB7EiQUiZHfXfPjq7Hx8fn/Ys/y/JdTHdPO909d/dvevjEXrp7WwmFAwSCa+t1hq5McP3iGP2HOujYs7M3umpZGJ1jcXKBwmKetoc7CdYw30+UouXxQ5jHVtVBJxqm7RNPgDGobSiBRmvmXn2L3MgEsYE+Egf31nyMapBgDPvhT1C++hP09GXKtgWxJAz/GHGjqP2fqVhc2GGklIW6AUwpjZn+CVghpPEkYrmVOjWpBDuVmjWBO+Y6GqPRXpEv/eFzvDE+x7GWGN/6zQ9h2fk1apiy5vGKS3x17AYL46M0eK2IMZW6sK/8NWRnVlKTubdfRSUNqRcQia2fJykKiKx5TEkH2owiJoFhAa0XgAjl/JuIlcRy9iCiELGxQsfxCkPgTYHk8DKvIc6n1nz5MMZgMkOgCxDugtnT4GWQ1EnE2bpBwxRzlXo/7WG8UlV/OzsUoOvjj+Lli7iJyNY7+Pj4+FSBP8vyPY6IUFe/XnEqFkq8+sNzhKNBXv7+OVq+UpkduNvFwNrTzI/MoWxFXVuSwR9dItaSxHLT9HxwP5ZbexB1pzpYbcpzI7xcnuzIOMGGetKXrxF/qH/H7AOsxg7cg09iykXs1t5KP0BuHlXXjp64jMrXYZSDWRxGsjOoum5M21OY4e9BaQkz9yaSuQm6BOFWiPUjdY+Ak4DkY4hYFYXMbbxVG9YQUZjlnzA5P8M5+cZttWGP0JxoXqOGJawFvMVLuKNv0ag9GH6lEoRFmzBkMUGDUEIkjKW6MXoRz5vA6AWUasG2e7a+BlYdyoQplt9YGWoeQXQBpIxXurkyLaCSQlZWHRKK4BWnMF4WcdbOtzS6iMmNwcR3QcC4KWR5FJSDUQ7S8vSW63F7Hqp0bLohVH1L1bWMdtDFDu68152Pj8/7F3+W5fsUy7aI1UVYnEuTbIxz/cIoZ166RktXAyc/enDXArPxi+Nce+kqCBz6xGFiTXHmR2aJJKO44fU3uHKhxPLYHG40SCRV/WBuYwwYU3OjgBUKEmptJj8+SXTv5qng7SBKYbfuWfOYat5XCcZSvVDfgnnx9zHKRqYvoOq6Ye482CFYvAr1B8B4oOzKvEpArDASX1vgf3tt2LH2Vv7kc3OogLXWN8yxKsO8P/5V5uYukwgu4+XOgOth2vbD2CVkpVjfmCKlwikwZcRK4ASOoSRKWQ+j9TRKNWFMvoYroQGv0hGKRtlJvNIIIgFEAmuvmThY8Scx3hJirfqOmcIMZuLvMMU50CXEjoNyK+qgKYNbXQexBEIE9h1Hl0osvfgKpYUFYseOEmxfXwPo4+Pjs5tUFZBJ5a70W8aYBfxZlu8JLEvxzGeOszC7TLIxxvf+7BXqGiKM3ZgmvZAl0VC9H1ctlAullQJwg1fS9D01QGYuTTAewt5AHRt55Qpz1yexbJv9nz5BMLF1HVw5V2D4h6cpZwu0P32YcKp6ew9RiobHj6GLpV1x+78Tq/cxrK5jYAcgv4hpOYoKRJHcPKaYRi9PwPI1pH4/0nAcSR4AZSGB1Xmad3ZK3l4bdi7XzWzxX9DoznM8dYDTsxc52nyUxnAjaI3645+hYfhlTOtezJd+D7wZ+JVvI/lyJT0psmLloUFsjCkD4HnTeOU5MAJSxrbXdpQancOYIqJit7oovdIEXmkQZaewrH3AAspqRSSMsporAdodARmAqBCi1qayTW60EnjZMXDrIdKNiu2H+iXQRQjXFlB5i0sUZ2awY1FyV6/6AZmPj887TlUBmTHGiMhfACdWfvdnWb4HCIZcWjoqRdt7DrRz8Y0bNLbUEYnX5sdVC20PtWMM2K5FfWc9ylLEmzdXvrxCGcu20J5Gl701z5XzRcbfHASg9Xg/dqBiaZGdXqQwn8YOucxfHt0wIEuPzZCfWyaxpwXnDg83EXlHgrG3z4VTud4mmEB1PgoLQ0jbCfTk66ANOPVI00lUIA7EK15exSWwIxjUqhrW0cmf/spBlMqt7ZSsO4gdTvK1Dx1mfvwF6lufqZw3Mw3DLyO6DOOXkfQIqv7RynzI2+JxUUEs5wBGL2DZrZXHcFdqvWLY9l5EVq+h0VlK+dcwpoTl7MF2ewHwipcRFUCXRnBCHYhatWYQq7pOV+NlAYWEuzDLlxBAUk9VphgAhLb33pVgEK9QxMtOU/f4g9E16ePj8/6ilpTlSyLyqDHm1V1bjc89sTif5pUfnyMaC/PIBw/UZG/x0CN76H2oDTfo7Ko/mRN06DnRU/X2HSf3MnNplGAySviO7su5a5PMX5sEYwjWRUkdqFgnBOtj2OEAXqFEvGu9H1NxKcvo82cwGLKT83R95Pg9vaadQkSwWo5ASyUFqXNTGK9YsWW2K8XjWhumrz1HY/ESEmljKvHhNWrY1KXP0lTfyInmo5yaPn2bGlbA+r+/ROPEILT0Y37tBSSSqniIDb+MdJ7Ebv4cojZ+z1h2Ckjd9nsjoo6srHttMGVMAaNLiHIx3uKtx5WdQpfHERWBTQxh74bOjsL0P1QMYls+iXT8wsr57/39unzpKlq5gMGuezB8xXx8fN5f1BKQPQv8pogMAbcsyo0xD+/Kynxq5uybV5mbWWR8dIaO7iY6e2obnRIMB8im80zcnCWZipNM3X9P4EAsRPsj/Rs/F634WgG4t42AcqMhej99Eu3pjQuvhUoht966xkyXysy8fpHCQpqmDxwgUF99Hdu9Ik1HYPIMpljEjL6GF2nlS197hTeGJzieauP/+eg4Vt3M2tqwSBApzvC1D//PzGuPhmClEN5k52FiEDEaMzEI2XmItazpnqy1Xk6pja+FqASW24nxlrHcVV8sy92P5XSCBBHZhqVIbqRSI6YLmMIMyt3BwKlURtlORX00W4099/Hx8dl5avlU/NSurcJnS9LLWX74vVfwPI8PffQDJOrWB0v1qQTXr4zhOjbRGuwjbuelvzvL/MwSrmvzsS+eJBheX9PzoJDoaqL/k5UUVbhxrUqjHBvlbLRXxb+s89kj5OfSxLrubveRn1lg+cY4Vshl7uw1Wp/eeXPSzdDaMJPRNMS7Mfk5ZhaXOKd/h1D/EOey3Uy7/xXNsa7VTsmGfTRIEWL7UE6MxuzcrWMZpZGmHszUDeg4gURXgvWVUUc7hTEeYLDdfeueE1Eg269NlFg/JncDrAgSasN4RczI9yA7DR0fQcU6tn3s+JGD2LEoVjSCW//uHynm4+Pz7qPqgMwYM7SRUz8wtOOr8lnH0I0xZmcWECVcuzrMsUceWrfNwKEemlqSuK5DbJv+SOVSuTITr6x5NwgFdwZiVe/XlCTclNxyOycaxgq6ePkioabqFBmjNZkLFylNTRM+9BCBVO1jbLQ2fPmrL/H6SJDjSZtv/uKj2CGzqoaFh3DaD6OU4uuf/Dpz+blbahhawzc+A2+PNfrKX0P2OuZT/zVkppGun97EWb+K11aaBwzi1GN0EZ0bRJSDBHsx5SXKc3+NiIWd/Dji3H3EUaUeTCPW5kGaKS1gsiNIqA1xG6D9C6szS9PDmKUhcGPI7Cm4h4DMCgWJHfRdfHx8fO4fvlP/u4RUUxJlVeb/Nbc2briNiNBQQ0fhRjz28cPcvDJBqj1JKPLgqmPvFE4sTMcnTuIVSriJ6tSd8tISuatXscJhMm+dIfCRD6OLRcS2N0yR3tklCdzqlAyt1IZNz/13tCTcVTWs+TYXfQON3m2DzLMzlWBMlyv/z85U1KXMdYh3QnB7Ewx0fhyz8BwYkLonMN4iJnsBYwyWCuFl3sLkr2DEwcuex048temxTGkOb+E5QKPij6EC6w2OjdGYye9hvAwsnYX2zyG3y56BZMX8tZSGxqPbek0+d6dUKjExMUEikSAe396XHx8fn+rwnfrfJTQ1N/C5L34MYwyR6O6NQIrXRzh00p+Hdzt2KIhdQ/eeFQqhQiG8TJbgnj1kLl4gd/kKblMTsUcfRaxV49qN5kkqJetmSjJzCk8vVKeG3Vas//bgbxGBri+DqO0XwXtLlZo9EfCWQWwqdhgACrGiiAqA8VDu3YM+U16oeKqJhSnNwgYBWWVDb2XygKbS3bCKOFHY+wXwCmAsTHoaIo335B1ntKacK2KHAzvqQfdu5fvf/wFXrlwlGonwxS99gVBoe6UQPj4+W+M79b+LCEf8D8N3AyoQIPn0U3i5HHYiwdzf/A1OfZLi1BTFTJobhQx7G1pQSm04T7I5HqIhtDpT8kiwlQYVQCwbJYrG0G0K6QZqGNGmtaOOVgKLzTooq0WC3ejMICyfBasRqX8SUUEMCl1KI1YjUvcZxI4gwd67HyvQhhSGwZRQwZ6NtxEFzR/DZG5UxhotXIDEAGKtKrdiBTClIuWz/xnKeVT7UazO7XXNGq25+dwZlsfnSfa10n7S/3ibmZkhGo2Sy2bJ5XJ+QObjs4v4Tv0+PruACgZRwYqqFtq7l9yli1gtTTz95/+YjBokovv48Vf+bJ0SZtkZIFRx0V9Rw5JFD3KLqIZO0BqzMIKXXoZgDDvVuU4NqyxgZ4v1AcQKov7/9u48SM77vu/8+/v0MX3MfWJw3yBAXCQgkiApnjookyIp2ypZ8caMo6xK6911XK6tclyqJFvJem3ZKacqcdYJrciSI1lrhSvqoGiJ1GEzpAmSIAmCIEHcBHEfc2Kunu5+fvtH9xCDQc9Mz0xPP90zn1cViv10P/08337YGHzn+/s+vx8hXHwdDJ/B0r1YfDX+4BFc/6sAhBrvwouvmeZI+bnNGu+dfr9oM156CHfmh4DhMgNY+13X7eNGByAzAtEE7uqFWX02gMzwKFfP9ZBor6f3xAWWfmTDjFd6WGgefPABXnttH6tu2Ulzs6YDEZlPM2nq/0z+oWbqFylCJpvlePdFNqxfT3ztWg53X2Tw3eOY+Qx6xznefZGNrZ0F+8KAa9WwONDQcW148oO9WP0a0rf8c7xbfwmvQDVs3sSWYX1vQKg2N0s+5Bc1h4lDii47hN/7MrgMXuOe3PJGs/HhEKs/7vG4l2vb8To24wavEFr5kdmdAwgnamjesJSe4+dp37Z60SdjAEuWLOHTn34k6DBEFoVZjWFopn6R601szM9ks9z1jc9eVw3b2NpJ0l/34XMbWpZcVwn7sC/s2kGvT7Tyw5Pmsnj9J3LN7DDrapjLjOCfeRlweMvuwCLT9yZa3c0QXw5eDAvlKoCWXJ9PlDwsvvLa8VPnIH0JCONffRsL10GkHW+mNxXEO2HpQ5AZxupvnJPOvBChNXtmdswCzIylt22kc/d6JWMiUnYzucsyBvwWcDe5X4VfBP7czWxVYZEFp1Bj/vHuiwx616ph771/nK3rNvLSE/89VzXL95ABN/SFpbu7SV+6QOzF38E79/oNzfru9Cu49m2Edz6CV1/4jtui4u4+ius+Ahh+rInQkunnWMst9dQ44bkwliww71i4CUcYcLihkxCKgnsP1/4IFir+xhQzw+qmHwYFcNkMbngQS9TNOqlSMiYiQZhJheyvgKvAf8xvfx74b8BnSx2UyHzLZrJcvXyVWH2c2Ayn95hqMe+xxvwNLUtIZNcyFDpBfHQVjccuw7qNhEMhNrVNvnC1PzrK1VdehlQv8bP7cncZTmjWt6ErWLINb1w1zflZ/N5uLJHEixWX7FhNAy634AZWU/opDSzagtf2MDgfv+d/QKY3f2dm6YZVnZ/F77mARWNYsonhN14k23OZcMcy4jvuLNl5RETm20wSsk3OuR3jtn9hZm+VOiCRcjjy0jEuHr9ITaKGXY/eQjRR3NqKhaphhRrzPS/OC5/7Jq8++zzLa2qINU2x5NL4oUkAM1yolkzdJsIDR7AimvVTh94kffo4XixBfM/H8Wqmn6bDa1iJbfoM4LDkLIY8U124kYtYYjkWKZzQjVXCvKZ7cKnTWKQVC5XuTr3M+wfInDqAhSKEb76PbO9lQvVNZC+dw/lZzAtNfxARkQowk4TsTTO7wzm3F8DMbgdemp+wpFINXh3m8IFT1DclWbd5edXO1TTQNUBNMsboYIrRkfSkCVkx1bD2upaCjfmx2iR7PvVxMoPD1LReP8yXHhwmMzRCrKkO+2+PfniXpPfEM9TfcSfpK1fw7vsJZiNFNetne67gxZP4qWFcagSKSMiA3ALjs+CyKRlU5vsAACAASURBVNy5Z8GN4voaYMWvTPldsHASC980q3NNGoPvkz7yCv65w1jzMqKeEV19E5kzx4lu3KFkTESqykwSstuB3zCzD/LbK4FDZvY2WmR80XjjpcNcONNFJpOlsbmO1iVzWxng0OsnOXXoPDftWs3qzZMP5ZXaxrs38P6+91l6UyfJpsJDfMVWw8zikzbmR+qSROquX8YqMzzCuZ++SnYkRcOKBC0T5hELN7YTbhy7rsUNJdZs2cXo0beJLluNV1eOBdB9IAsWyQ2rBsCNDEAogte2Guf7WEMHNU2d1GzYFkg8IiJzMZOE7KF5i0KqRjwRJZPOEAqFCEfmVoEYHkxx5PUPaGit5cBLR1m56Vqj+3xraK9nxy9d/zvEXKph4xvzRwdGuHjgJJFkjPatq/JLXn14ErJdZ8gOjxBOxBkZCBWeR2yGws1thG8v3ypmForjOj4BI2ex5LqC1TGXHcZdPZRbDLx246yrqS4zAl74holtrSZBqHUFft9lIiu2qBlfRKrajBYXn89ApDrsuGMj7cuaSSRjNLbUzelY0ViEpvY6ui/107m6tWzJWCGlqIaNuXTwFL3vXyKbyZJoqad+ecvYSeAbjxA9/QormrdzZctXaNqxCT52bR6xVO8AXiRMpLbyZ0T3EkshMXlV0/Xtxw0dxZyDSB3EZl4B9XvfJ3vip7mpPjY+hld3bcoMC4WJ7ngQRkegZnbLiWXTWU7tP0UmlWHVrauoSWj9VhEJxtzWUpFFZ3BgGDyoa5z7epqhkMedD+9gsG+Y2kmGDedLqaphhURrY/hZH88zwn4vuObr5xHzM0S6D9B522qozQ8v1rbTd/wsl147hBcKsezBXcSaq2cxZ5efHHZsnUznHHg1+UljvdzQ5vj9M0OQugjRlklvCABw3UdxVy/idx3FDQ9ju7+Axa79ImBeCGLJSd8/ne4z3Zw+cJpQyCMcDbP2tqmXfBIRmS9KyKRoQ4MjPPeDvaRGRlm2qp0HPjX7WdHHhCMhGlprSxBd8UpZDSukbcsK4k1JEj/6R4S+fuM8YpMNT4509xEKh8mk06QHhqsmIXPpPtzF53LJV8fHcKnL0LMPF18BTXfnGvprrv+s7uLzkLoCoUTuhgDv+psqnPNhuAea1mNHfgzxJpxXA6MDEJtbZXa8SCyCF/LwfUestvgF5EVESk0JmRQtk86QyWSIJaK5SlmVmM9qWCHmedQ1+HDh9aIW/R7TtGkV6f5h4vEoiSXVs26gGz4LmUHwwvj9h3EXfwR4WKYfr3EHNmEiWeccZAYgnIBsKneNJiRk/gcv4roOY7FGvDt+B//Mm3i1rSVfn7Oxs5GdD+8gm/Zp6CzHzRAiIoXNOCEzs38EPApkyc3w+EPn3LdLHZhUnvrGWm6/ZysXznSxeXt1DO3MdzVs3ImuT7Qmq4ZNscxRtD7J8gd3Xfec831c1seLVM7vTi4zBKHYh8OTFluSq17hY6EanBeF0S5ctjG35uVEoz24UD1kB7H2+7BwgeHqvg+gpgk33EMoVkto66MFYxk+cZLRrm6SG9cTbphdQlXXVh2VSBFZ2GbzU/5e59yvjW2Y2X8ClJAtEus2rmDdxhVBhzGpclfD8ifNLfo9lnw98Uwu8Zrjot/poRSnf7Gf9OAIS+++mbqls18mqVjOz0B2dNJ1Lf3Le6HnLUiugM5PYl4IizbD8l8FHGSHsdpNkLkKbQ/ccGckgLv4MywzDC6de28BtuIuOPsKdGyHmsJTq2T6+rn69kEsEiU7OEjzfffM+nOLiARtNglZjZk9DJwGlgOVfzuYLAqBVcPyzfo3DE/OctHvMSPd/aT6Bokka+g7fn7ahMxPpzHPw0Kzm47EpYfJHn4WRvqxlXsItV8/katzDnoPQmwJDJ6B7CB4ueqSefmmfS+Kt/RxcBksXIsb7YF0L8Q6P1yMnFAMUt25/9q1H0FupA//3H5INON1bMVrunH9SpfNkunrI5RIYNEIXjiCn0oRapv/ZFVEZD7NJiH7LeCXgW3AGeB/LWlEsqD5vs/liz1EoxGaWmY/VDSxEgYEVw2bpll/tmLN9UTrE2SHUjSsXTLlviMXL9Oz9w1CNVGa77mDcGIWvycN9+KGerBYI+7KEZiQkJkZrnkXdO2DurUQLnwzxlji5TJDuPPP4tJXwRnW9lGs4Sas40EYPgfR5uuGK/0PXsYNXIIrR3OJbG3HDccePPg2qQ9O4cUTNNxzL4333EV2YJBIa8vMP6+ISAWZcULmnBsCvjm2bWa/B3yllEHJwnXo4En2vXwQLxTiU4/dRWtb04yPUagS5nk2P9WwiSarhs1xeLKQSKKGNZ+6DZf1CUWn/qs6fOosFg6TGRwi3d07u4Qs2YLVd+IGr+Ct2F1wF6/lFlzTtoJDkTdwafBTkOrKVdScg3Acq10Ddeuv7TZyFb/rOH56FDIjWCgKocLzgaWvXMZLJPEHB/BHhgnXNxCuK91dlyIiQZlNU/93xm8CO1FCJkXq671KOBwinc4wNDgCRRSTiukL66iP0xIvcTUsd/I5N+vPhRfyIDT9hLnx1ctJnb9IuK6WaPPslrOyUJTQpl8C3IcN+wX3KyYZAwjXQ+s9cOkFsJqxN9+wW/b438HgFXA+3uq78eo6sHjhz5DctoOhd98hvnEToTo144vIwjGbIct+59w/G9swsz8vYTyywG3buYHRkTSJ2hhLl0+fwBTbFwZxzKy01bB5atafD7H2VtoffjDXQzaLFQ+yvWeg/wJe2wYsPvO7FZ1zuIGTkE1h9etxve/CldegcTO2+h/DwAnwIpBYOekxzAvhNa7Eaiafly7a3k60vfSJr4hI0GaTkP3BhO0vlyIQWRzq6pPc94nJJ5Sdy12SUOJq2Dw1688XLzz5X2eXyUAoVHjNydQA/uGfgefhes8Q3v44zvm4sy/h+k5iS+/Ea1pf4KjjDJ2Fcz8BwE/3Yd0HIN6Ou/IG1rAZr2HTpG8Nrb8fv/skXrJtymRMRGQhm00P2ckJ292lC0cWs7LdJVn45GVr1i+3kaPvMHrsPcKdK4hv331jBc0sl2Rm0xDK3y2Z6sV1vQOxFty5f4DpEjJc/o9hAPUb8S++DP3n8Qf+Ar9pC6Fle7DEjcmy1dQS6tw29w8qIlLFik7IzOx3CzzdB7zunNtfupBksZiyGjY0T3dJTqaMzfqTuXjkPP3ne1m6dTnJOS7cPsY5R+r4YcJNLaTPnya26WYsfv3ajxZNEtr0CbJn9uWWKEqPQKQWYs0w0oW13Dz9iRLLYcmDuXnIGjaDF8FGR3DUwZlXcFmHnx4htOWzJflcIiILzUwqZLvzf36Y334YeA34kpn9d+fcH5c6OFk4JiZf01bDEqfo6jpFR/1Npa+G5QIKtFl/oqHeQd7fe4xwTZjh3kG2P1b4Lsdi+SMj+CMjhBoaiK5ax+j7xwh3dGI1k9x96Y9C3zlc/wV8L0Ro1e146x+H9EDBiVnd0EVc10GoW43XuA4zwyYMS3rtu/D7z+I7w/V1YQ0b5/SZREQWspkkZC3Arc65AQAz+9fAU8A9wOuAEjIpqFDyNVlv2Pr4eo4PH6Mzu4wEuX6iklfDKrBZPxwNE46GSQ+PUtc+tzUV/ZFh+l54gexIivjGDcRWrCZz/hT+YD9uZAhLFOjTslDuMzs/13wP+eknCs+k7594BhcKYX3HcYkOLHrjMS3ehq15DNczApkRXDZa4EiQHRhg4K39eDUxktu340UL7ycispDNJCFbCYyO204Dq5xzw2aWKm1YUs2KacyfrDfsrx7+K1587RXa69pYsbJzfgKsoGb9zGiGga4BEo0JtnxqByN9w9QtmVtClh0cylXH4nHSly8TDmUhm8WlB0lfOkfN6hsrVVbfSeimT+LSKbzm1VMf/9xr+BfeABzWuRsKTIPhD/bgBnuwaDyXrIXjWDR548GA4RMnyPT14dKXiXYuoWbZ8tl8bBGRqjaThOyvgb1m9n1y8489AnzbzJLAu/MRnFSfYhvzJ5szrK42yafuf6DUQRU3PBmAQz9/l97zfcQb4tzy6C3EGwqvITkT4cZGalatJtPTTWLzFsx83PtHcgloegR/aABvQpXMzLDGItcovXIIlt4LvUexZfdj4dh1L7vREdIHfgLpFNbQQXjLQ7jhPrzmwlNehBsbGXn/JBaJEErqLksRWZyKTsicc//WzJ4F7iaXkH3JObcv//Kvz0dwUvlmO01FyecMmzzAihuevBaaz9UrV4k3xBnpHyEzmiEUnt06lONZKETtjh3XPefd/QmGX36O0ZOHyF48Q/zOh6acr8xl02Q/eB3SQ4RW3XbddBS25Fbs7F5syW1Y/fVJVubCCTLvH8DvvkiouQPSw3j1HVB/4zJIY2IrVxJuaMDCYULJwlU0EZGFbqbTXmQAn9z97enShyPVZK7TVJS8NywXVNXMJeZ5Hhvv2cTZt8+y9Pal1CQKLxdUknNFagCHRWtyd1Hiptzf9Z7BP38w108WSRBec8e1Y7VvxVo3Y971yaPLjJI+/ApevBYsgteygtCyLUXFF25oYKR3kKsnL5BsbySSjE3/JhGRBaToKb3N7J8D3wJagXbgm2b2v89XYFJ5fN9x+WoK53L/mF+rhv3fHPT/iMsDIx8ORYYsxK4lt9wwTcW8VcJyAeaqYX+6Gb7+cG57bHjSCwc+PFlI68pWdjy8g6Wbl87reSwcIbbjbkJN7YRX3QSZzNRviCbBC2MuW3AZo4nJGABeGK+2EX+on1DHWsLr9+Ali1urNDua5tTP3+Tsy+/ywd+/XdR7REQWkplUyL4A3O6cGwQws68ALwP/ca5BmNlngf8T2AzcNm4oVCpEoJO2FqsC5hIrN5f1GTx9HoDkys4phyFDjS2MHHqTzPmzZC6eI3HHg5P+//Hq2ols+zQum8Hqrq8kpk8fIXPmGOGVm4gsW/fh8+Z5RLc/gD/Qi1fbdF0s6b6r9L1zlJrWRmo3rLnhvM53+OkMoWiEbCqNc6683x0RkYDNZNE7A7LjtrP550rhIPDLwAslOp7MUVVUwwYugRs39DZZNWxseHIB/gM/cPIMXXsP0LX3LQY/OD/1ztksbmgQS9biD/TnpriYgiVbcv1fgPNz+7p0ivTRNzHPSB9+HT89ev17IjWEmjqwyPVTV/S88Q6jV3roO3CYdE//DecKx6Is/+g2GlZ1sOLebUrGRGTRmUmF7C+BV8zsaXKJ2OPA10oRhHPuEKAfwhWi4qthkzXqm1VlNWxkYISLRy6QaErQtmZmfW25hNmNbUy5r0VriG3bTfrsKSKbdhQedpzAHx1h5I0X8QcHiO3cQ6ipDa+uGf9qF+nBFCPPPUts7XoiS5bjMhkiLc0fVsac73/4OFyfJHWlGy8awauJFDxX3dIW6pa2FHxNRGShm8ldln9qZn8H3EUuIXtCSyZVv6GhIUbTadJebFYLes9LY/5ExTbqQ0U068/UiZeP0XuuF+cciYYEyebip36oXbMcnMM8j+TK6fvQwktW4vse2YEhrHYAzwvjxSZvoPd7u8j29eDF4ox+cJRESwc1t9yH39/NyEsvEm5qYeDAAfx3joEXom7HzSTXraX/2Gm69x8msbydttu20rhjC4llSwgl4mQyMHi2i9r2RkKRud9VKiKyEEybkJnZVa6/JcvGveacc/XFnMjMfgosKfDSl51z3y/mGPnjfBH4IsDKlYXnNZLidHV18/R3n+HrZ5Kcz6bZtWJldVTDKmgesVLwwh5+1scLeTO+rl44RP3G1UXvn+m6wuAbr+JSo2QG+4m2dZK8dTfRJYWTOa++CS+exE8NEVuyCsjdIOA1tRNdtpL0+TOEGxoZHUzjhUJkB4YA6H3nBNHGOgY/uEjj5rVEG2qJLWkjdXWY9559g+xompb1nay+c1PB84qILDbTJmTOuZKscuyc+1iJjvMk8CTA7t27px6jketMnDOsq6ubrqFRujueIp6okGrYRIugUX/dng00LmsiXp8g0VSeebj8kWFcKo1FIqQvnJ88IYslSNz5CZyfwYteq6SZGcmdu/Bv2oJFogwdPoqfGiW5MdfkX7tmKf3vvU+stYFw4tr7MqkMfjpDOBYl1T80vx9SRKSKzHQeMqlShfrCli9fyrLltYSuVkg1LBdoRS36XQ6RWIQlGydfJiqbzjJ6dZia+jjeHCeODbe0ktx1O9n+PtLnz+EyaWpWrZnyPRYOYwV+VJjnEUrkEsjardfPN9a0bT3161cQqolioWv3DiVaall261oGu67SuU0VbhGRMeamaQQuSxBmnyE3fUYb0Avsd859crr37d692+3bpxkyCplYDbvYP8z93/ocXvwU/vAqfvHrf0NHfRznHL/549/MVcPad/KXn/zL4G6umKxZf2KStog43+f4Tw8weLmXus5m1txf2jsQNb2EiEj5mNnrzrndhV6riAqZc+5p4Omg41goir1LEuLlW8KocKAlnVU/lUoxMpKioaGotsaqkE1nGbzcR7y5jqsXevAzfkkb4ZWMiYhUhpnMQyYVai5zhkGZ5g27MeiSzqo/ODjEd77zA77919/l7QMLZ637cE2EzlvWkh1Js/TW9borUURkgaqICpnMXsXPGTaZEjfr9/T0MjAwQENdPSdOnGLb9uLWUKwG7VtW0L5lRdBhiIjIPFKFrMpU/Az6kwd+/cz6JZ5Vv6OjjbVrVpHxs+zavaPEwVcv5xx+duoZ+ReioaFhnvnhc3z3/3uG3t6+oMMREZmWKmRVpGqrYZM165dw6opIJMInH3qgRAEvDH7W5+yLBxk8303Hretp2rg86JDK5tSp05w5fY5wJMyhd4+y586CPbQiIhVDFbIKVrXVsIkKDU/Cgl5jshKM9g8ycPYKscYkV949FXQ4ZdXc3EQ4EiabzdLZuTCmRxGRhU0VsgpVtdWwXPDFzSUm8ypaGyfR1sjwlT5at08919hC09HRxud+7XGy2Sy1tUlN7yEiFU8JWYWYOG9Yxa0nWawyDE9KcbxImJUP7iSbShOO1wQdTtnV1dVy7NgJvvM336W1rZWHH/4ENTWL7zqISHVQQhaAicnXgqqGzXEusUrn+z4nj5xjNJVh/eblRKKV/VfIPG9RJmNj3j7wDnV1dVy8cIkrV7pYtmz6BdhFRIKgHrIy833H5/9iL3v+8Gf82pN7c31i1dobVuK5xKrB+dNd7P35Qd58+TCH3joZdDgzcvbgGQ488ybdp7uCDqVsNm/ZRF9/Py2tzbS0NAcdjojIpCr71/sF4IYFvQdHef1UF1kb4PVTudeqpho20SJY+Hsis9zs9s45PK96fp8ZuTrMB6+fJFYf49iLh7nt83cGHVJZ3HTTRlavXkkkEiEU0qS6IlK5lJDNo0JDkc3JMC3rv8agd5ykv47m5EN4VgW9YbAoF/6eqHNFKx/95E5SqTSr1i8JOpyihWsixOpjDPcN07yyZfo3LCCxWCzoEEREpqWErISKacwPRQZJhU9gzicVPkFPqofWeGvlV8PUrA/kqmMr1nYEHca0+i72kxoapXl5E+FIiHA0zNaHdjDcP0yyuTbo8EREZILqGXOpcGPVsD1//D0+9+TL+L77cCjSxg1FtsRa2Nm+k5CF2Nm+k5ZYBfaGwY0z6y/QucQuX+rmme/9gn948U2y2WzQ4ZTE1a4B3nz2AG//9B1O7rvW5xaJR6nvaNB6mCIiFUgVslma7TQVZsbXPlmF1bAFOpfYa6+8zdWBIS5e6GLtuuUs6az+z5VNZ/GzPqFIiNTwaNDhiIhIEZSQzcJcp6mouN6wiRZRs37HklYunLtCPFFDMpko67l93yc1lCaWjJY0MW/oqGfDnesZ6hli1Y7Fs1ySiEg1U0I2jYmVMKB6J22dzCJu1r9l12ZWrOwkmYyRrC1fQub7Pm/85F0un+lh2cYOtt+7sWTHNjNWbCn9fFvDwyk+eP88jU11dCxZXDcGiIjMNyVkUyhUCfM8q95pKgpZ5M36nufR3lH++alGh9NcPtNN05IGzh27yM13rycUKr6lMzU0yqGXj2OecdMda6mJR+cx2pyX/v5Nzpy6QCgc4rFfvZ/6Bt0cICJSKmrqn0KhCVuB6pi0tZCJjfqwYJv1K11NIsrKLZ30Xupn/S0rZ5SMAZw9epHzJ65w7tglzh+/NE9RXi+TzhAKhfB9n2zWL8s5RUQWC1XIplCoEgbxXGN+tVXDJquELdBm/UpnZtx81wY271k3qwlmEw0xwAFGoi5e8vgKueveWzjy3ila2xppaq4vyzlFRBYLJWRTGKuETewLgyrpDRtvskZ9s0UzPFmJZjvb/5LVbdz5eAwMGlrrShxVYXX1SXbdtqUs5xIRWWyUkE2hKithY4pt1IcF2ay/GDS0lScRExGR+aeEbBpVVwmDRd+oX02yWZ90KkMsMf9N+SIiUrmUkC1Ekw1PqhI2b4YGRnj/vXPUNSVZsa64pZVGU2le+uFbXO0e5OY961i3TXOGiYgsVrrLciGYePfk2PCkF1ajfpm8+eJhDr3xPnufP0jP5f6i3jPQM0Rf1wC1TQlOvXd+niMUEZFKpgpZtdPwZEUIh0Nksz6e5xXdqF/fUkv78ma6LvSx857STQwrIiLVRwlZtZnYrK/hyYqw8+5NtHY2UteYpKGluAlTw5EQdz68Hd/3Z323pYiILAz6V6CajFXD/nQzfP3h3LaGJytCTSzCupuX076sacbvVTImIiKqkFWTRbTo92KSTmc4/NYpfN+xeedqIlH9tRQRWWz0q3klK7ZZX8scVbVTRy9w8LUTvPv6SY4fOhN0OCIiEgD9Kl6p1Kw/ZydPnObUybNsvnk9HUsqdy65aL4i5pwjWqP5yEREFiMlZJVCzfolNTQ0zN/9fC81NVHOnL3Ar//jx+a00kI6naG3+yoNTbVEo5ESRgor1nVwb00EnKNjeXNJjy0iItVBCVklKFQN06LfcxIOh6mpqWFoaJi2tuY5JWPOOf7+b1/n0oVuWtoa+fhjt5e0Ed/M6FzRMv2OIiKyYCkhqwRq1i+5aDTCI4/eT1dX75yHKzOZLFcu9dLYXEf3lX7SoxlqYhpaFBGR0lFTfxDUrF8W9Q11rFm7gkQiPqfjRCJhPvLRm3EOdt15k5IxEREpOVXIyk3N+lVp3ablrNs087Um+3oG2P/qYRpb6th263rNOSYiIgXpX4f5NrEaVmh4ElQNW6DeeOUQF853cWDfUS5d6Ak6HBERqVBKyOaTZtZf9BqaakmNjBKJhonHa4IOR0REKpSGLOeTmvUXvCuXexkeHKFzeRvhcOiG13fs3kjnslbiiRgNTcWtcSkiIouPKmSlpGb9RaX7Sh8//v5L/OxvX+WtfYcL7hMKhehc3kZjc12ZoxMRkWqiCtk0RkZG6OnpobW1lUhkiglB1ay/6IyOpslmfKLRMIMDw0GHIyIiVUwJ2RQymQzf+9736erqZuXKFXz6049MvrNm1l902pc0s2vPZvp6Btl+64agwxERkSqmhGwKqVSKnp4empubOX/+PL7vX5u2YOJSR5pZf9HxPI+tO9YHHYaIiCwASsimkEwmufPOOzl8+DAPPHD/9cmYhidFRESkRJSQTWPHtq3sWLfk+oqXhielCOfOXqS/f4A1a1dQU6PZ/UVEZHK6y3IqheYRA80lJtPqutLDj575OX//i728/A9vBB2OiIhUOFXIpjJZJcxMw5MypWw2CzhC4RDpdDrocEREpMIpIZvKVI36Gp6UKbR3tHLf/Xvo7e1n8xbdgSkiIlNTQjYVVcJkDjZsXBN0CCIiUiWUkE1HlTARERGZZ0rIpOKl02kOvXuEaE2UjRvXXZt+REREZIFQQiYV76233uHVV97EOUespobVa1YGHZKIiEhJqdQgk+rv7+fs2bP5OwaDY2a4/ILtpj4+ERFZgFQhk4IGBwd56qmnGRoaYuvWm7nvvnsCi2X79i3E43EikTArVy0PLA4REZH5ooRMChocHGR4eJja2iSXLl0KNJZIJMKWLRsDjUFERGQ+achSCmpra+MjH9lFY2Mj99770aDDERERWdBUIZOCzIzbbvtI0GGIiIgsCqqQiYiIiARMCZksOJlMhv7+qx/emSkiIlLpNGQpC0o6neaHP/gxFy9eZuct29izR8OuIiJS+VQhkwXl6tUBLl26Qlt7G4ffOxZ0OCIiIkVRQiYLSmNjAxs3rqOnp5fb79gVdDgiIiJF0ZClLCie5/HAg/dw/wNOs/qLiEjVUIVMFiQlYyIiUk2UkImIiIgErCISMjP7EzN7z8wOmNnTZtYYdEwiIiIi5VIRCRnwPLDVObcdOAL8fsDxTCmVSrFv3+u8/fZBfN8POhwRERGpchXR1O+ce27c5l7gV4OKpRj797/Fq6++hnM+yWSCtWvXBh2SiIiIVLFKqZCN90+Bv53sRTP7opntM7N9ly9fLmNY10QiYZzzASMUCgUSg4iIiCwcZauQmdlPgSUFXvqyc+77+X2+DGSAb012HOfck8CTALt37w5kbZzt27eTTCaJRqOsXLkyiBBERERkASlbQuac+9hUr5vZE8AjwIOuwhchDIfDbNq0KegwREREZIGoiB4yM3sI+D3gXufcUNDxiIiIiJRTpfSQ/RlQBzxvZvvN7D8HHZCIiIhIuVREhcw5tz7oGERERESCUikVMhEREZFFSwmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgERudoTwAACjBJREFUTAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgETAmZiIiISMCUkImIiIgErCISMjP7t2Z2wMz2m9lzZrY06JhEREREyqUiEjLgT5xz251zO4FngH8VdEAiIiIi5VIRCZlzrn/cZhJwQcUiIiIiUm7hoAMYY2Z/APwG0AfcH3A4IiIiImVjzpWnGGVmPwWWFHjpy86574/b7/eBmHPuX09ynC8CX8xvbgIOFxlCK3Cl+IilAF3DudM1nDtdw7nR9Zs7XcO5W6zXcJVzrq3QC2VLyIplZquAHznntpb4uPucc7tLeczFRtdw7nQN507XcG50/eZO13DudA1vVBE9ZGa2Ydzmo8B7QcUiIiIiUm6V0kP2R2a2CfCBU8CXAo5HREREpGwqIiFzzv1KGU7zZBnOsdDpGs6druHc6RrOja7f3Okazp2u4QQV10MmIiIisthURA+ZiIiIyGK2oBIyM/uamV0ys4OTvG5m9h/M7Fh+qaZbyx1jpTOzh8zscP4a/YsCr/8TM7ucX+Zqv5n9syDirGRFXMMaM/ub/OuvmNnq8kdZPcys2cyeN7Oj+f82TbJfdtz38gfljrNSmdlnzewdM/PNbNK72qb73i5mM7iG75vZ2/nv4L5yxljpzOxPzOy9/L+9T5tZ4yT7Ldrv4YJKyICvAw9N8fqngA35P18E/rwMMVUNMwsB/4ncddoCfN7MthTY9W+cczvzf75a1iArXJHX8AtAj3NuPfDvga+UN8qq8y+AnznnNgA/y28XMjzue/lo+cKreAeBXwZemGyHGfzdX6ymvYbj3J//DmpKh+s9D2x1zm0HjgC/P3GHxf49XFAJmXPuBaB7il0eA/7K5ewFGs2sszzRVYXbgGPOuRPOuVHg/yV3zaR4xVzDx4Bv5B8/BTxoZlbGGKvN+Ov1DeDxAGOpOs65Q8656SbQ1t/9KRR5DWUKzrnnnHOZ/OZeYHmB3Rb193BBJWRFWAacHrd9Jv+c5BR7fX4lX3Z+ysxWlCe0qlHMNfxwn/wPqD6gpSzRVacO59x5gPx/2yfZL2Zm+8xsr5kpaZsZ/WwsDQc8Z2av51eVkcL+KfC3BZ5f1N/Dipj2oowKVSF0m+k1xVyfHwLfds6lzOxL5CoWD8x7ZNWjmGuo7+EEUy2tNoPDrHTOnTOztcDPzext59zx0kRY2Ypdmm6qQxR4blF9J0twDQHuyn8H24Hnzey9/MjNolDMNTSzLwMZ4FuFDlHguUXzPVxsCdkZYHxFZzlwLqBYKtG018c51zVu8y9Q/9NExXzHxvY5Y2ZhoIGph9oXPOfcxyZ7zcwumlmnc+58vsXg0iTHOJf/7wkz+zvgFmBRJGRTXb8iLfqfjSW4huO/g5fM7GlyQ3CLJiGb7hqa2RPAI8CDrvCcW4v6e7jYhix/APxG/m7LO4C+saEQAeA1YIOZrTGzKPBr5K7Zhyb03D0KHCpjfNVg2muY334i//hXgZ9P8sNJcsZfryeAG6oVZtZkZjX5x63AXcC7ZYuw+hXzvZUpmFnSzOrGHgOfIHczgJC7exL4PeBR59zQJLst6u/hgkrIzOzbwMvAJjM7Y2ZfMLMv5YfWAJ4FTgDHyFV3fiugUCtSvp/pfwN+Qi7R+o5z7h0z+zdmNnbX2m/nb/9+C/ht4J8EE21lKvIa/legxcyOAb/L5HcNSs4fAR83s6PAx/PbmNluMxu7y3czsC//vfwF8EfOOSVkgJl9xszOAHuAH5nZT/LPLzWzZ2Hy721QMVeaYq4h0AG8mP8Ovgr8yDn342Airkh/BtSRG8rdb2b/GfQ9HE8z9YuIiIgEbEFVyERERESqkRIyERERkYApIRMREREJmBIyERERkYApIRMREREJmBIyERERkYApIRMREREJmBIyESkpMxsIOoZSGP85SvGZzGy1mQ2b2f65HmuKc8Tzk26O5lcsEJEqoYRMRBal/BJq5f4ZeNw5t3O+Du6cG84ff9Gs/yeyUCghE5F5YWa/a2YH839+Z9zz/9LM3jOz583s22b2f8zy+Kvzx/mGmR0ws6fMLDHu9e+Z2ev5pb6+OO49h8zs/wHeAFYU2m+a8xY67kfyMcTyaxq+Y2Zbi4z/q/lr9C0z+5iZvWRmR83stsnOl38+aWY/MrO38u//3Gyuo4hUBi2dJCIllR/euxf4OnAHYMArwP8EhICvklsTMEwuKfovzrl/N4vzrAZOAnc7514ys68B744dy8yanXPdZhYnt2jxveTW0jsB3Omc2zvZfs65LjMbcM7Vjn2mcY8n2///AmJAHDjjnPvDAvE+45zbOm77GHAL8E7+WG8BXwAeBX7TOff4FOf7FeAh59z/nD9eg3OuL//4fWC3c+7KTK+riARDFTIRmQ93A0875wadcwPAd4GP5p//fn5o7Srww7E3mNlaM/uvZvZUfjuZr379hZn9+iTnOe2ceyn/+Jv544/57fxCz3uBFcCG/POnxpKxafabzGT7/xtyi5/vBv54mmOMOemce9s555NLyn7mcr8lvw2snuZ8bwMfM7OvmNlHx5IxEalOSshEZD7YDJ/HOXfCOfeFcU/9MvBUvgL06GRvK7RtZvcBHwP2OOd2AG+Sq14BDH4YzNT73Rj81Ps3A7XkqnCTHmOC1LjH/rhtHwhPdT7n3BFgF7nE7A/N7F8VeU4RqUBKyERkPrwAPG5mCTNLAp8B/gfwIvDpfK9VLfDwFMdYDpzOP85Oss9KM9uTf/z5/PEBGoAe59yQmd1Ebui0kGL3K2b/J4F/CXwL+Mo0xynWpOczs6XAkHPum8C/A24t0TlFJADhoAMQkYXHOfeGmX0deDX/1Fedc28CmNkPyPVKnQL2AZMNtZ0hl5TtZ/JfHg8BT5jZfwGOAn+ef/7HwJfM7ABwmNxwXyHF7jfl/mb2G0DGOffXZhYC/sHMHnDO/Xya401nqvi2AX9iZj6QBv6XOZ5LRAKkpn4RKSszq3XODeTviHwB+GI+gWsB/oBcH9ZXgf8A/BkwArzonPvWhOOsZlyTfKUrZ7xq6hepPqqQiUi5PWlmW8j1Qn3DOfcGgHOuC/jShH1/s9zBzaMs0GBm++drLrL8nZgvAxFyfWgiUiVUIRMREREJmJr6RURERAKmhExEREQkYErIRERERAKmhExEREQkYErIRERERAKmhExEREQkYErIRERERAKmhExEREQkYP8/PDuH5cybssMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXzU1b34/9eZbJM9IQlrIIQ1EBICSTDs4AIoiihwFdGqWLhu39vv7ffirf5qtYuP2uqjtWpra6to1cq9ClhEVKpCQUAhIQFkJxAIe0gIZF9m3r8/ZpgSspCQTGaSvJ+PBw+Sz3LOezKEvPM+53OOERGUUkoppZTnWDwdgFJKKaVUV6cJmVJKKaWUh2lCppRSSinlYZqQKaWUUkp5mCZkSimllFIepgmZUkoppZSHaUKmlFJKKeVhmpAppboMY0x/Y8waY8x5Y8xpY8yrxhhf57kUY0yWMabc+XfKZfcFGGP+aIw5Y4wpMsZ8bIzp47lXopTqbDQhU0p1JX8AzgK9gBRgMvCoMcYf+DvwLhAJvA383Xkc4AfAWCAZ6A0UA6+0b+hKqc5MEzKlVFcSD/yviFSKyGngMyARmAL4Ai+JSJWIvAwY4PrL7vtcRM6ISCWwzHmfUkq1CU3IlFJdye+Au40xQc4hx5v5V1K2U+ruJbeTfyVdbwDjjTG9jTFBwALg03aMWynVyWlCppTqSv6JI8m6CBwHMoGPgBDgwhXXXgBCnR8fAI4BJ5z3DgN+1g7xKqW6CE3IlFJdgjHGAnwOrACCgWgc88V+BZQCYVfcEgaUOD9+DbACUc57V6AVMqVUG9KETCnVVXQD+gKvOueJFQJLgVuA3UCyMcZcdn2y8zjASOAtESkSkSocE/rHGGOi2y98pVRnpgmZUqpLEJFzwBHgEWOMrzEmArgf2AGsB2zAfziXuHjcedtXzr+3Ad8zxoQbY/yAR4GTzjaVUqrVNCFTSnUldwIzgALgEFAL/KeIVAOzge/hWNJiITDbeRzgv4BK4KDz3luAO9o3dKVUZ2bqPlSklFJKKaXam1bIlFJKKaU8TBMypZRSSikP04RMKaWUUsrDNCFTSimllPIwTciUUkoppTxMEzKllFJKKQ/ThEwppZRSysM0IVNKtSljTGk79mUzxuQYY3YbY3YYY37o3LPy0vnNTdwbYYx5tH0irdd3f2NMhTEm57LPv2uDdgOdX49q3dZJqY5FEzKlVEdWISIpIpII3IRjBf1nLp0UkXFN3BuBYwskT8kVkZS2bFBEKpxtnmzLdpVS7qcJmVLKLZzVqu+cf/7vZcefNsbsM8b8wxjzvjHmv9qiPxE5CywGHr+0Sfilap0xJtgY84mzivadMeYu4HlgoLOi9ILzuo+MMVnOitti57H+xpi9xpg/O4+vNcYEOs99zxiz09nuO5e9xnuNMVudbf/JGOPT3NdhjBlgjMk2xqQ7+95njHnb2c+HxpigpvpWSnVMvp4OQCnV+RhjUoEHgesAA3xrjPkn4APMAUbh+P9nO5DVVv2KyGHnkGV34Mxlp2bg2Ax8pjO+cOBbYMQVVaqFIlLkTLi2GWOWO48PBuaLyCJjzP8Cc4wx2cD/B4wXkXPGmG7OtocBdzmP1xhj/gAsAP56tfiNMUOBZcCDIpJjjOkPDAUeEpFNxpg3gUeNMZ821LdSquPShEwp5Q4TgJUiUgZgjFkBTMRRlf+7iFQ4j3986QZjzAAcSUa4iMw1xgQDfwCqgfUi8l4z+zYNHNsFvGiM+RWwWkQ2GmMiG7juP4wxlzYN74sjETsNHBGRHOfxLKA/EAl8KCLnAESkyHn+BiAVR0IHEAicbUbcMcDfgTkisvuy4/kissn58bvAfwBVjfStlOqgdMhSKeUODSVFTR1HRA6LyEOXHboTR9KxCJjVrE4dSZ2NKxIgETmAI0naBfzSGPOTBu6dAtwIjBWRkUA2YHWerrrsUhuOX2YNIA2FAbztnNuWIiJDReTZZoR/AcgHxl9x/Mo+pIm+lVIdlCZkSil32ADMNsYEOStddwAbga+B24wxVmNMCDCziTZicSQo4EiCmmSMiQH+CLwqInLFud5AuYi8C7wIjAZKgNDLLgsHzotIuTEmAci4SpdfAv9mjIly9tHtsuNzjTHdLx03xsRdLX4clcDZwPeMMfdcdryfMWas8+P5OL6GjfWtlOqgdMhSKdXmRGS7MeYtYKvz0F9EJBvAGLMK2AEcBTJxVIYachxHUpZD4788BjqXjvADaoF3gN80cF0S8IIxxg7UAI+ISKExZpNzuYlPgR8DDxtjdgL7gW+u8hp3G2OeA/5pjLHhqKg9ICJ7jDE/BtY657PVAI85X2+TRKTMGHMr8A9jTBmOr9Ne4H5jzJ+Ag8BrzqSxXt9Xa18p5b3MFb9IKqWUWxljQkSk1Pm04AZgsTOBiwKew7F8xV+Al4FXgUrg6xbMIfN6zsn6q0VkRFtc18B9eUDapTlmSinvpxUypVR7e90YMxzH/Ky3RWQ7gIgUAg9fce2D7R1cO7EB4caYnLZci8z5dOgWHBVDe1u1q5RyP62QKaWUUkp5mE7qV0oppZTyME3IvJwxpq8xZp1zpfDdxpgfeDom1facTx1uda66vtsY81NPx6Tcwxjj41yJf7WnY1HuY4zJM8bscu7WkOnpeJR7GMeeuB86d9TYe9kT0S2mc8i8Xy3w/5yTnkOBLGPMP0Rkj6cDU22qCrjeOdndD/jaGPOpiDT5pJ/qkH6A48nJME8Hotxuqj5Y0en9DvjMuZi1PxB0rQ1phczLicipyyY9l+D4j7yPZ6NSbU0cSp2f+jn/6ATPTsYYE4tj7bW/eDoWpVTrGGPCgEnAGwAiUi0ixdfaniZkHYjzEfhROPbgU52McygrB8cq8/8QEX2fO5+XgCfQJyC7AsGxFl2WcW5UrzqdAUABsNQ5DeEvzoWwr4kmZB2Ec1Xz5cD/FZGLno5HtT0RsTmXQIgFxhhjWrT2lPJuzgVfz4pIm22mrrzaeBEZDdwMPGaMmeTpgFSb88Wx68drIjIKKAN+dK2NaULWATjnFC0H3hORFZ6OR7mXs+S9Hpjh4VBU2xoPzHIu2roMuN4Y865nQ1LuIiInnX+fBVYCYzwbkXKD48Dxy0YzPsSRoF0TTci8nDHG4Bif3isiDW0JozoBY0yMMSbC+XEgjk2u93k2KtWWRORJEYkVkf7A3cBXInKvh8NSbmCMCXY+hIVzCGsa8J1no1JtTUROA/nGmKHOQzcA1/zAnT5l6f3GA/cBu5zziwCeEpE1HoxJtb1ewNvGGB8cvyj9r4josghKdUw9gJWO36fxBf4mIp95NiTlJv8HeM/5hOVhWrG7iK7Ur5RSSinlYTpkqZRSSinlYZqQKaWUUkp5mCZkSimllFIepgmZUkoppZSHeU1CppsrK6WUUqqr8pqEjH9trjwSSAFmGGMyPByT19CtN7oGfZ+7Bn2fuwZ9n7uGtnqfvSYh082Vr0q/sbsGfZ+7Bn2fuwZ9n7uGzpWQgW6urJRSSqmuySsXhnVuIbMS+D8i8t0V5xbjzEZ9fHxSAwICPBBh+6utrcXXVzdW6Oz0fe4a9H3uGvR97hpa8j6Xl5fXiIh/Q+e8MiEDMMY8A5SJyIuNXZOWliaZmZntGJVSSiml1LUxxmSJSFpD57xmyFI3V1ZKKaVUV+VNtVTdXFkppZRSXZLXJGQishMY5ek4lFJKKaXam9ckZG2lpqaG48ePU1lZ6elQlPIYq9VKbGwsfn5+ng5FKaVUM3S6hOz48eOEhobSv39/jDGeDkepdiciFBYWcvz4ceLj4z0djlJKqWbwmkn9baWyspKoqChNxlSXZYwhKipKq8RKKdWBdLqEDNBkTHV5+j2glFIdS6dMyLzJs88+y4svNrqUGh999BF79uxpx4iUUkop5W00IfMwTciUUkoppQmZGzz33HMMHTqUG2+8kf379wPw5z//mfT0dEaOHMmcOXMoLy9n8+bNrFq1iiVLlpCSkkJubm6D1ymllFKqc9OEDMdTaVW1tjZpKysri2XLlpGdnc2KFSvYtm0bAHfeeSfbtm1jx44dDBs2jDfeeINx48Yxa9YsXnjhBXJychg4cGCD1ymllFKqc+t0y160lIjwzeFCDp4tZXD3EDIGtO4JzY0bN3LHHXcQFBQEwKxZswD47rvv+PGPf0xxcTGlpaVMnz69wfube51SSimlWs9ut2OxeL4+5fkIPKzaZufg2VJ6hlo5eLaUapu91W02lNA98MADvPrqq+zatYtnnnmm0SUJmnudUkoppa6diLBx40b+9KfX+fbbrZ4ORxOyAF8fBncP4XRJJYO7hxDg69Oq9iZNmsTKlSupqKigpKSEjz/+GICSkhJ69epFTU0N7733nuv60NBQSkpKXJ83dp1SSiml2k5lZSW7dn1Hr1692L59OzU1NR6Np8sPWQJkDIhidFxkq5MxgNGjR3PXXXeRkpJCXFwcEydOBODnP/851113HXFxcSQlJbmSsLvvvptFixbx8ssv8+GHHzZ6nVJKKaXajtVqJT4+nsOHD5OQkODxreaMiHg0gNZIS0uTzMzMOsf27t3LsGHDPBSRUt5DvxeUUqppdrud8vJygoOD22VBbWNMloikNXROK2RKKaWU6pIsFgshISGeDgPQOWRKKaWUUh6nCZlSSimllIdpQqaUUkop5WGakCmllFJKeZgmZEoppZRSHqYJmRvk5eUxYsSIduvv2Wef5cUXX2zWtbfccgvFxcWtakMppZRSbUuXvfAiNpsNH5/WL07bEBFBRFizZo1b2ldKKaXUtdMKmZsdPnyYUaNG8e2337JkyRLS09NJTk7mT3/6EwDr169n6tSp3HPPPSQlJZGXl8ewYcNYtGgRiYmJTJs2jYqKCgByc3OZMWMGqampTJw4kX379jXZ96W2Hn30UUaPHk1+fj79+/fn3LlzADz33HMMHTqUG2+8kf3797vu27ZtG8nJyYwdO5YlS5a4qn02m63B16CUUkqp1tGEDLDbhYKSKtp614L9+/czZ84cli5dyo4dOwgPD2fbtm1s27aNP//5zxw5cgSArVu38txzz7Fnzx4ADh48yGOPPcbu3buJiIhg+fLlACxevJhXXnmFrKwsXnzxRR599NFmxfC9732P7Oxs4uLiXMezsrJYtmwZ2dnZrFixgm3btrnOPfjgg/zxj39ky5YtdSp2b7zxRqOvQSmllFLXrssPWdrtwvw/f0PW0fOkxkXy/qIMLJbWb59QUFDA7bffzvLly0lMTOQXv/gFO3fu5MMPPwTgwoULHDx4EH9/f8aMGUN8fLzr3vj4eFJSUgBITU0lLy+P0tJSNm/ezLx581zXVVVVXTWOuLg4MjIy6h3fuHEjd9xxB0FBQQDMmjULgOLiYkpKShg3bhwA99xzD6tXrwZg7dq1Db6Gy2NXSimlVMt1+YSssKyarKPnqbULWUfPU1hWTUxoQKvbDQ8Pp2/fvmzatInExEREhFdeeYXp06fXuW79+vUEBwfXORYQ8K/+fXx8qKiowG63ExERQU5OTqN95ufnc9tttwHw8MMPM2PGjHptX66hfbuaqhI29hqUUkop1TpdfsgyOsSf1LhIfC2G1LhIokP826Rdf39/PvroI/7617/yt7/9jenTp/Paa69RU1MDwIEDBygrK2t2e2FhYcTHx/PBBx8AjuRox44dda7p27cvOTk55OTk8PDDDzfZ3qRJk1i5ciUVFRWUlJTw8ccfAxAZGUloaCjffPMNAMuWLXPd09rXoJRSSqmGdfkKmTGG9xdlUFhWTXSIf5vu9h4cHMzq1au56aab+PGPf8zw4cMZPXo0IkJMTAwfffRRi9p77733eOSRR/jFL35BTU0Nd999NyNHjrym2EaPHs1dd91FSkoKcXFxTJw40XXujTfeYNGiRQQHBzNlyhTCw8MB+P73v09eXl6rXoNSSiml6jNtPZG9PaWlpUlmZmadY3v37mXYsGEeiqhzKC0tJSQkBIDnn3+eU6dO8bvf/c7DUamW0u8FpZTyLsaYLBFJa+hcl6+Qqfo++eQTfvnLX1JbW0tcXBxvvfWWp0NSSimlOjVNyFQ9d911F3fddZenw1BKKaW6jC4/qV8ppZRSytM0IVNKKaWU8jBNyJRSSimlPEwTMqWUUkopD9OEzA0uLRlx8uRJ5s6d6+Fort369eu59dZbW33NlZ599llefPHF1oRWzy233EJxcTHFxcX84Q9/aNO2m7Jq1Sqef/75Jq9p6mv00ksvUV5e7vr80utQSinVtWhC5ka9e/d27fvoLrW1tW5tv6NYs2YNERER7Z6QzZo1ix/96EfXfP+VCdml16GUUqpr0YTMjfLy8hgxYgQAb731FnfeeSczZsxg8ODBPPHEE67r1q5dy9ixYxk9ejTz5s2jtLQUgJ/97Gekp6czYsQIFi9e7NpncsqUKTz11FNMnjy53oKtzz77LPfffz/Tpk2jf//+rFixgieeeIKkpCRmzJjh2vboyy+/ZNSoUSQlJbFw4ULXRuWfffYZCQkJTJgwgRUrVrjaLSsrY+HChaSnpzNq1Cj+/ve/t+hr8dxzzzF06FBuvPFG9u/f7zqem5vLjBkzSE1NZeLEiezbtw+ABx54gP/4j/9g3LhxDBgwwJXYnjp1ikmTJpGSksKIESPYuHEjAP379+fcuXP86Ec/Ijc3l5SUFJYsWcJ9991XJ9YFCxawatWqOrGdPXuW1NRUAHbs2IExhmPHjgEwcOBAysvLKSgoYM6cOaSnp5Oens6mTZtc7+vjjz/uei0ZGRmkp6fzk5/8xFUpBcdiu3PnziUhIYEFCxYgIrz88sucPHmSqVOnMnXq1DqvIy8vj2HDhrFo0SISExOZNm0aFRUVAGzbto3k5GTGjh3LkiVLXP/GlFJKdWAi0mH/pKamypX27NlT79hV2WwiJWdE7PaW39uA4OBgERE5cuSIJCYmiojI0qVLJT4+XoqLi6WiokL69esnx44dk4KCApk4caKUlpaKiMjzzz8vP/3pT0VEpLCw0NXmvffeK6tWrRIRkcmTJ8sjjzzSYN/PPPOMjB8/XqqrqyUnJ0cCAwNlzZo1IiIye/ZsWblypVRUVEhsbKzs379fRETuu+8++e1vf+s6fuDAAbHb7TJv3jyZOXOmiIg8+eST8s4774iIyPnz52Xw4MFSWloq69atc12zbds2eeihh+rFlJmZKSNGjJCysjK5cOGCDBw4UF544QUREbn++uvlwIEDIiLyzTffyNSpU0VE5P7775e5c+eKzWaT3bt3y8CBA0VE5MUXX5Rf/OIXIiJSW1srFy9eFBGRuLg4KSgoqPM1FxFZv3693H777SIiUlxcLP3795eampp6MQ4fPlwuXLggr7zyiqSlpcm7774reXl5kpGRISIi8+fPl40bN4qIyNGjRyUhIcH1vj722GMiIjJz5kz529/+JiIir732muvfwbp16yQsLEzy8/PFZrNJRkaGq61LcV9y+evw8fGR7OxsERGZN2+e6+ufmJgomzZtEhGR//7v/67zei93Td8LSiml3AbIlEZyGl0Y1m6Ht2+F/G+h73Vw/2qwuKdweMMNN7j2hRw+fDhHjx6luLiYPXv2MH78eACqq6sZO3YsAOvWrePXv/415eXlFBUVkZiYyG233QbQ5MKtN998M35+fiQlJWGz2ZgxYwYASUlJ5OXlsX//fuLj4xkyZAgA999/P7///e+ZMmUK8fHxDB48GIB7772X119/HXBU8VatWuWa+1VZWemqIl2SlpbGX/7yl3rxbNy4kTvuuIOgoCDAMcwHjqrR5s2bmTdvnuvaS5U6gNmzZ2OxWBg+fDhnzpwBID09nYULF1JTU8Ps2bNJSUlp8ms+efJkHnvsMc6ePcuKFSuYM2cOvr71/9mPGzeOTZs2sWHDBp566ik+++wzRMS1x+cXX3zBnj17XNdfvHiRkpKSOm1s2bLFtbfnPffcw3/913+5zo0ZM4bY2FgAUlJSyMvLY8KECU3GHh8f73p9qamp5OXlUVxcTElJCePGjXP1s3r16ibbUUop5f00ISs/50jG7LWOv8vPQUh3t3QVEBDg+tjHx4fa2lpEhJtuuon333+/zrWVlZU8+uijZGZm0rdvX5599lkqKytd54ODg6/aj8Viwc/Pz7VhusVicfXZmMY2VxcRli9fztChQ+scv5QoXU1D7drtdiIiIsjJyWnydVzqH2DSpEls2LCBTz75hPvuu48lS5bwve99r8m+77vvPt577z2WLVvGm2++CcCDDz5IdnY2vXv3Zs2aNUycOJGNGzdy9OhRbr/9dn71q19hjHFNxrfb7WzZsoXAwMBmvd6mXsul976l91RUVDT53imllOq4dA5ZcIyjMmbxdfwdHNOu3WdkZLBp0yYOHToEQHl5OQcOHHAlX9HR0ZSWlrbpwwEJCQnk5eW5+nznnXeYPHkyCQkJHDlyhNzcXIA6SeL06dN55ZVXXAlBdnZ2s/ubNGkSK1eupKKigpKSEj7++GMAwsLCiI+P54MPPgAcSdeOHTuabOvo0aN0796dRYsW8dBDD7F9+/Y650NDQ+tVrh544AFeeuklABITEwFYunQpOTk5rFmzxhXju+++y+DBg7FYLHTr1o01a9a4KpfTpk3j1VdfdbXZUBKZkZHB8uXLAVi2bFmzvjYNxduUyMhIQkND+eabb1rUj1JKKe+mCZkxjmHKH+6FBz5xfN6OYmJieOutt5g/fz7JyclkZGSwb98+IiIiWLRoEUlJScyePZv09PQ269NqtbJ06VLmzZtHUlISFouFhx9+GKvVyuuvv87MmTOZMGECcXFxrnuefvppampqSE5OZsSIETz99NP12s3MzOT73/9+veOjR4/mrrvuIiUlhTlz5riGAQHee+893njjDUaOHEliYuJVHxZYv349KSkpjBo1iuXLl/ODH/ygzvmoqCjGjx/PiBEjWLJkCQA9evRg2LBhPPjgg422279/f8CRmAFMmDCBiIgIIiMjAXj55ZfJzMwkOTmZ4cOH88c//rFeGy+99BK/+c1vGDNmDKdOnXINTzdl8eLF3Hzzza5J/c3xxhtvsHjxYsaOHYuINKsfpZRS3s105CGQtLQ0yczMrHNs7969DBs2zEMRKW9UXl5OUlIS27dvd2vyUl5eTmBgIMYYli1bxvvvv9/ip1Gbo7S01PUE5/PPP8+pU6fqPW0L+r2glFLexhiTJSJpDZ3TOWSqU/viiy9YuHAhP/zhD91eScrKyuLxxx9HRIiIiHDNV2trn3zyCb/85S+pra0lLi6Ot956yy39KKWUaj9aIVOqk9LvBaWU8i5NVch0DplSSimllIdpQqaUUkop5WGakCmllFJKeZgmZEoppZRSHqYJmRtcWpLg5MmTzJ0718PRXLv169e7VqpvzTVt7fJNu9vCqlWreP755wH46KOP6myR5E6X99uYpr6+L730EuXl5e4ITSnVCiUlJezdu5eioiJPh6I6EE3I3Kh3795tusJ+Q5qzBY9q2qxZs/jRj34EtG9Cdnm/10ITMqW8j4iwevUnfPXVej76aBXV1dWeDkl1EJqQuVFeXh4jRowA4K233uLOO+9kxowZDB48mCeeeMJ13dq1axk7diyjR49m3rx5lJaWAvCzn/2M9PR0RowYweLFi13bFk2ZMoWnnnqKyZMn11sQ9Nlnn+X+++9n2rRp9O/fnxUrVvDEE0+QlJTEjBkzqKmpAeDLL79k1KhRJCUlsXDhQtem3p999hkJCQlMmDCBFStWuNotKytj4cKFpKenM2rUqBYteJqXl8ewYcNYtGgRiYmJTJs2jYqKCsCxBVFGRgbJycnccccdnD9/vt79R44cYezYsaSnp9fbIeCFF14gPT2d5ORknnnmmav29/LLLzN8+HCSk5O5++67Xe/N448/zubNm1m1ahVLliwhJSWF3NxcRo8e7err4MGDpKam1un/7NmzrmM7duzAGOPadH3gwIGUl5dTUFDAnDlzSE9PJz09nU2bNtXpFyA3N5eMjAzS09P5yU9+UqcKWFpayty5c0lISGDBggWICC+//DInT55k6tSpLVrlXynlXiJCVVUVVmsANTU12O12T4ekOgoR6bB/UlNT5Up79uypd+xqbHabFJQXiN1ub/G9DQkODhYRkSNHjkhiYqKIiCxdulTi4+OluLhYKioqpF+/fnLs2DEpKCiQiRMnSmlpqYiIPP/88/LTn/5UREQKCwtdbd57772yatUqERGZPHmyPPLIIw32/cwzz8j48eOlurpacnJyJDAwUNasWSMiIrNnz5aVK1dKRUWFxMbGyv79+0VE5L777pPf/va3ruMHDhwQu90u8+bNk5kzZ4qIyJNPPinvvPOOiIicP39eBg8eLKWlpbJu3TrXNdu2bZOHHnqoXkxHjhwRHx8fyc7OFhGRefPmudpKSkqS9evXi4jI008/LT/4wQ/q3X/bbbfJ22+/LSIir776quvr+/nnn8uiRYvEbreLzWaTmTNnyj//+c8m++vVq5dUVla6Xsel9+axxx4TEZH7779fPvjgA1ffU6ZMcbXz5JNPyssvv1wvvuHDh8uFCxfklVdekbS0NHn33XclLy9PMjIyRERk/vz5snHjRhEROXr0qCQkJNTrd+bMmfK3v/1NRERee+0112tct26dhIWFSX5+vthsNsnIyHC1FRcXJwUFBfXiueRavheUUq139uxZ2bBho+Tn53s6FOVlgExpJKfp8hUyu9hZ+PlCbvzgRh78/EHs4r7fZm644QbCw8OxWq0MHz6co0eP8s0337Bnzx7Gjx9PSkoKb7/9NkePHgVg3bp1XHfddSQlJfHVV1+xe/duV1t33XVXo/3cfPPN+Pn5kZSUhM1mY8aMGQAkJSWRl5fH/v37iY+PZ8iQIQDcf//9bNiwgX379hEfH8/gwYMxxnDvvfe62ly7di3PP/88KSkpTJkyhcrKSlcl6JK0tDT+8pe/NBhTfHw8KSkpAKSmppKXl8eFCxcoLi5m8uTJdeK40qZNm5g/fz4A9913X52Y1q5dy6hRoxg9ejT79u3j4MGDjfYHkJyczIIFC3j33Xfx9b36RhXf/9fElLwAACAASURBVP73Wbp0KTabjf/5n//hnnvuqXfNuHHj2LRpExs2bOCpp55iw4YNbNy40bVn5xdffMHjjz9OSkoKs2bN4uLFi/U2FN+yZQvz5s0DqNfHmDFjiI2NxWKxkJKS4notSinvFBMTw8SJE4iNjfV0KF6hoqKCoqIi1yiPV7HbofQseEFsXX7rpKLKInLO5mATGzlncyiqLCI6MNotfQUEBLg+9vHxoba2FhHhpptu4v33369zbWVlJY8++iiZmZn07duXZ599lsrKStf54ODgq/ZjsVjw8/PDODdMt1gsrj4bYxrZXF1EWL58OUOHDq1z/MyZM4221VBM4Hjtl4YQm6uhuESEJ598kn//93+vczwvL6/R/j755BM2bNjAqlWr+PnPf14nyW3InDlz+OlPf8r1119PamoqUVFR9a6ZOHEiGzdu5OjRo9x+++386le/whjjmoxvt9vZsmULgYGBLXrNlzT070YppTqCkpISPvxwORUVFYwbN9b1i7JXsNvh7Vsh/1voex3cvxosnqtTdfkKWZQ1ipTuKfgYH1K6pxBlrf8D150yMjLYtGkThw4dAhwbVB84cMCVfEVHR1NaWtqmDwckJCSQl5fn6vOdd95h8uTJJCQkcOTIEXJzcwHqJInTp0/nlVdecSVz2dnZrY4jPDycyMhINm7cWCeOK40fP55ly5YB8N5779WJ6c0333TNuTtx4gRnz55ttD+73U5+fj5Tp07l17/+NcXFxa57LwkNDa1TvbJarUyfPp1HHnmEBx98sMF2J02axLvvvsvgwYOxWCx069aNNWvWMH78eACmTZvGq6++6ro+JyenXhsZGRksX74cwPVar+bKWJVSytsUFxdTVlZOcHAw+fnHPR1OXeXnHMmYvdbxd/k5j4bT5RMyYwxvTn+TL+Z9wdLpSxutELlLTEwMb731FvPnzyc5OZmMjAz27dtHREQEixYtIikpidmzZ5Oent5mfVqtVpYuXcq8efNISkrCYrHw8MMPY7Vaef3115k5cyYTJkwgLi7Odc/TTz9NTU0NycnJjBgxot7keoDMzEy+//3vtyiWt99+myVLlpCcnExOTg4/+clP6l3zu9/9jt///vekp6dz4cIF1/Fp06Zxzz33MHbsWJKSkpg7d26TCYrNZuPee+8lKSmJUaNG8Z//+Z9ERETUuebuu+/mhRdeYNSoUa7EdMGCBRhjmDZtWoPt9u/fH3AkZgATJkwgIiKCyMhIwPEgQWZmJsnJyQwfPpw//vGP9dp46aWX+M1vfsOYMWM4depUszZCX7x4MTfffLNO6ldKea2ePXsyZMhgfH19SU9vcAvH9nPl8GRwjKMyZvF1/B0c49HwdHNxpa7ixRdf5MKFC/z85z93Wx/l5eUEBgZijGHZsmW8//77LXqStSH6vaCUUk6NDU/a7Y7KWHAMtENBpqnNxbv8HDKlmnLHHXeQm5vLV1995dZ+srKyePzxxxERIiIiePPNN93an1JKdWpXJloNDU+GdHckZSHdPR0toAmZUk1auXJlu/QzceJEduzY0S59KaVUp9ZQNezS8OSlYx4enmyIJmRKKaWU6jwaq4bdv7pdhydbqlNO6u/I8+KUagv6PaCU6jKaO1n/0vCkFyZj0AkrZFarlcLCQqKiotr9iUmlvIGIUFhYiNVq9XQoSinlXo1N1vfyalhDOl1CFhsby/HjxykoKPB0KEp5jNVq1VXClVKdXweYrN9cXpOQGWP6An8FegJ24HUR+V3Td9Xn5+dHfHx8W4enlFJKKU+78unJDjBZv7m8JiEDaoH/JyLbjTGhQJYx5h8issfTgSmllFJXstlsFBcXExYWhp+fn6fDQUQoKCjAarUSFhbm6XDaXicanmyI1yRkInIKOOX8uMQYsxfoA2hCppRSyuusXfsPjhzJo2fPHtx++yx8fHw8Gk9OTg6bN2/B39+fuXPnuHYL6TQ60fBkQ7zyKUtjTH9gFPBtA+cWG2MyjTGZOk9MKaWUJ9hsNo7mHaV79xjOnDlDVVWVp0Pi9OkzBAYGUllZ1Tn2ufXyrY7amtclZMaYEGA58H9F5OKV50XkdRFJE5G0mJjO9WYopZTqGHx8fBg/YTylpaWkpqYSFBTk6ZAYMyad8PBwRoxIpHfv3p4Op3UuDU/+Zhi8NdPxuTGO4ckf7oUHPunQw5MN8aq9LI0xfsBq4HMR+c3Vrm9oL0ullFJKdTBXTtYvPetIxuy1jorYD/d2imHJpvay9JoKmXEsGvYGsLc5yZhSSimlOoGGqmGdfHiyIV4zqR8YD9wH7DLG5DiPPSUiazwYk1JKKaXcqYNuddTWvCYhE5Gvgc7/FVdKKaW6suauJdZJnp5sLq9JyJRSSinVyXXytcRaw2vmkCmllFKqk2toeBK8fuPv9qAJmVJKKaXco4utJdYaOmSplFJKqTZ3PP8Y/u/PIboiF9P3OswDn+jwZBO0QqaUUkqpNrdt/WdElx/CIjYdnmwGTciUUkop1XpXDE9Gxw3jlG8cdizYY8fo8ORV6JClUkoppVqngacnx08Yz7mhn1FpqSIoup9WxK5CEzKllFJKNd+V64hBg09PWkK6071HT8/G2oHokKVSSimlmqehbY5An55sA1ohU0oppVTzNLbNkTH69GQraYVMKaVUl2az2bDZbJ4Owzu1ZB0xfXqyVbRCppRSyqucOHGCL774kujoaG666Ub8/f3d1ldBwTlWr/4UX19fbr11BpGRkW7rq8PRbY7alVbIlFJKeZXt27OxWCwcOZLHmTNn3NpXbu5hamttlJaWkZ9/wq19dTi6zVG70oRMKaWUV+nfvz8lJaWEhYW6vWIVH98fi8VCYKCV2Njebu3L6+k2Rx5l5NIXvgNKS0uTzMxMT4ehlFKqjV24cIGAgACsVqvb+6qpqQHAz8/P7X15rcaGJxta4kJdM2NMloikNXRO55AppZTyOuHh4e3WV5dOxC5p7OnJS8OTyu10yFIppZTqwM6cOcOJEydo0YiXDk96Ha2QKaWUUh3U8ePHWbVqNXa7nalTp5CYOPzqN+nTk15JK2RKKaVUB1VWVo7NZsNisXDx4sWGL7qyGqZPT3olrZAppZRSHdSAAfGkpIykurqa5OSk+hc0VA27NDx56ZgOT3oFTciUUkqpDsrPz4+JEyc0fkFjk/V1eNLr6JClUkp1Una7nYqKCk+HodpTcyfr6/Ck19EKmVJKdUI2m401az4lPz+f0aNHk5FxnadD6vL27z/A6VOnSR6Z5J4Fb3WyfoemFTKllOqESktLyT92nJ49e7Jz505Ph+M17HY7Z8+eo6ysvF37LSoq4ssv13PgYC5ffrnOPZ3oZP0OTRMypZTqhEJDQxk0eCBnzpwhNTXV0+G0KxHh+PFTnDx5ut65zMwcln/4MR98sIrz54s5f74Yu93u9pj8/Pzw9fWhqqqS4ODgtmlU1xLrVHTrJKWU6qREBJvNhq9v15qdsm/fQb768muMMcyceSP94mJd5z5auYaSklIuXLyINcBKTU0NCcMGM3VqExPj28i5c+c4f76Yvn1jW78llG511CbsYqeosogoaxSmHb5eTW2dpBUypZTqpIwxXS4ZAygtLcNiDHa7nfIrHmrIGJuG1RrAoEEDqK6qJqZ7NLmH8tolrujoaAYPHtQ2+3Pq8GSr2cXOws8XcuMHN/Lg5w9iF/dXSpvS9b5TlVJKdSg2m43TpwsICwshNDSE2tpavv56K+cKipg46Tp69Kg7NJeYmEBFeSW+vr4MHNi/zrmePbsz799uR0TYErqN/QdyGT9hTDu+mmt0ZeVL1xJrsSurYUWVReSczcEmNnLO5lBUWUR0YLTH4tOETCmllEfU1NSwYcMWLhRfZNLkcURHd2vwuq83bmXvngMEBQUyZ96tnD9/gX17DhAUHMy2rTncettNda4PDLQycVJGk30bYxg3fgzjxneQZKyZT0+Wlpby1ZfrMBbD9ddPbbv5ah3cpWpYztkcUrqn8Ob0N4n070ZA7QDKLLkE2AYQ6d/wv7/2okOWSimlgEuVqDOUlZW1S38nTpxm//5cjuYd5713PqSgoLDB6woKCgkOCaaispLy8grCwkIIDAqkoryc3n16tEusHtWC4cn9+w9w4uQJ8o/lc+jgIQ8F7Hl2sXOu4pxrw/WGqmFF5TUUHlpI2cEnKTz0EEXlNR6NWRMypZRSAGzcuJmVK1azYvnH7bKgbHh4KBZjYXv2LkpKS/ns069o6EGziZOuw2oNoHefnlitAYSFhTJ33m3cOfdWRo1qYLugjq4VT09GR0cBBmMxREVHtU+8XqahuWGXqmEiFgJqHdWw6BB/UuOi8JEwUuMcn3uSDlkqpZQC4NSps4SGhlJSUkpZWTmBgYFu7S8yMoJ5/zaL2tpafH188ff3a/C67t2jwcDJ46dZvWot8+6aRXBwEMHBQW6NzyNaubhrXFwcd9/9bxhjiIiIaMfAPac5c8OkNpTCQwuxmVIqJZSi8hpiQgN4f1EGhWXVRIf4t8tTlk3RhEwppRQAEyeO5ZtvtjFk6ECiotpnPk1UVCT3LJjD2TMF9Int1eAPRbvdTunFUoJDgikrr3AkcK14elRE2LJ5K7v3HCA9PYWUlOZV2USE0tJSgoKC8PHxueb+67hysn5je09eGp5sBrfsAuClmjs3zGI1pMZFkXXUQmpcpKsaZrEYYkIDPPwqHDQhU0opBUBsbG/mzr293fvt1i2Cbt0ar+b4+Phw07TJ7NlzgMFDBrR62Yjy8nJ27NxDz57d2frtdpKTE7FYrj6D5+uvN7Nr12569erJbbfd0volRRqqhunTk03qLNWwhmhCppRSyuvF9u1NbN/ebdJWYGAgfXr35OTJUwwZMqhZyRjAvn0H6NGjO6dOnaasrIzw8PDWBdJYNUz3nmxQZ6qGNUQTMqWUUl2KxWJh5q3TKC0tIzQ0pNn3ZWSks3nztwwbNpTQ0NCWddrQCvqNVcNaMDzZmXXmalhDNCFTSqkurLq6Gl9f32ZXiToLHx8fwsPDWnRPUtIIRoxIbPkP+MYm6huj1bBGdPZqWEM0IVNKqS7IbrezdWs22zN30atPD2bOvAF/f88+9t8RXFO1pbGhSdBqmFNXq4Y1RBMypZTqIs6dK+Lzz9YRHBxEaGgI//s/fycoKAjBTlFRMT17amLQJnSboxbpitWwhmhCppRSXcTePQeorq7m4sUSDh8+SsKwwWzfvotRo5OafMpRtUAr1xHrCrQa1rCuNWlAKaW6sL59e1NTU4vVGsCUqePpHhPFwoV3c8+CO3S4sq20YJujrqi1q+hfqoZ1tmQMtEKmlFJdRv/4ftyz4E58fHwIDLQyerRnth3KP3aCr7/eSmzf3owfn96xHyjQ4ckmaTWs+TQhU0qpLiQkJNjTIbBp0zZA2P3dXhISBhET00H3XNThySbp3LCW0YRMKaVUu+oX14edO/cQGhrqShAvXizh3LkievXqTkBAALmHjlBVXc3QoYPw82t4j8t254ZtjjoTrYa1jiZkSinVhdTW1nLixGmCAgOJ6e6ZylRGRipDhgwkJCQIq9VKdXU1f//7Z5SWlNKzZw9GjU7i87XrMMZCZWUlaWmjPBJnHbrNUZO0GtZ6mpAppVQXkrltJznZu/H19WX2ndOJjm6fTcQvZ7FY6vRbU1NLRXkFoSEhXLh4ERHBYPCqOoluc+RyZSUM0GpYG9CETCmlriI39zA5OTsYNmwYw4cneDqca1JTU8M3W7LZvCmLkNAgsNVSXVXj6bAACA4O4vobJpKbm0dy8nB69IjhppsmU1VdTULCYM8E1dzJ+l1seNIudhZ+tpCcgn9VwizGotWwNqAJmVJKNcFms/HlF+sICQ1hw4aNxMfHERgY6OmwWuzYsZN8t2s/IcHBIMLYsaMxxlExGzCwn8fXIRs0KJ5Bg+Jdnw8ZOshzwehkfZcrq2GF5UVknckGYyfrdDaF5UXEBEdTVF6j1bBW6sDPGiullPtZLBZiukdz/nwxkZER9dbrstls/OMfX/Hmm3/l8OE8zwTpZLc7Vtyvqqquc7y2tpbtWd+RlbWLCxcvMvX6cQxNGMRnn61n5449fP7pekTEQ1G3Tm7uET7++NN6X/vi4mIqKyuvrVFdSwz4VzXs8jXDxBaCrSIOEYvjb5tjc/auuG5YW9MKmVJKNcEYwy23zODcuUKiorrh4+NT53xhYREHDuTSrVsEW7duY8CA/p4JFPj2m2x27dxHREQYt98xnYAAxw/FosJizhcVM358GmK3M2z4IKqqqjHGYLPbMB10HbDq6mq+/HI9QUFBfPHFOh588F78/PzYtWs3X3+9maCgIO68cxahoaFNN6RriQHNrIaFRjHC8t9szz3O6Ni+rqFHY4xWw1pJEzKllLqKgIAA+vTp3eC5sLBQunWLoLi4mNTU0e0cWV15R/KJiAyj+PxFSkpKCQhwTJwPCw8lIiKcCxdKSE1LwhiD1RrAzJk3cPLUGeLiYjvkD1BfX1/Cw8MoLDxPdPS/kuW8vGMEBQVTUlLC+fPFTSdkOjwJNDw37FI1zBJ4FLuzGmaMYdmicQ0mXjo3rHU0IVNKqVawWq3MmXM7FRUVhIWFeTSWjHGpbN6UybDEwXXmhFmtAdwxZzoVFVWEhv5rYdiY7lEeW/qiLVgsFmbNuoWCgnPExES7VvxPSxvFF1+sY9CgAfTq1bPpRrroWmKtqYZp4uUempAppVQr+fv7e8VekPHxfYmN7cnRvBOcPHmG2NhernN+fn7es8BqGwoMDKRfv751jvXq1ZP77pvf8A06PNkm1TDV9jQhU0qpTmR71m6ys77D4mNh1u030bOXI8Gw2+2cOX0Oa2AAkZHhHo7SQ7ro8KRWwzoGTciUUqoTqampxdfXh1qbjVpbrev4jpy9bN2ag5+vL7ffMZ2oKM8uc9EudKsjrYZ1IJqQKaU8SkQQEdf8H9U6qWkjCAjwIzgkiN69e7iOFxaeJ8Dfn8qqKsrLyts9IbPb7YhIvadU3dhhl9zqSKthHZcmZEopj7l48SIff/wJNTXVzJx5CzExne8HZFMqK6vIytyJn58vo0aPaJM5XoGBVtLHjKx3PC09mdpaG+HhofTu06OBO93n/PliVq9ei81mY+bMm4iJiXZ/p11wqyOthnVsmpAppTwmP/84xcXFBAQEcODAQa9JyGprazl08Ag+PhYGDop3W/Vu1869fPfdPmw2GxGR4QwZMsAt/QBERIQx4+bJbmu/Kfn5JygrK8fX15fDh4+6JyHzwq2O7Ha7Wyu/Wg3rXDQhU0p5TK9ePQkKCqSmppb+/eM8HY7L7t372bhxCwAzLJY6W/q0peDgQOx2O8YYAq1Wt/ThDfr06UWg1YrNZqN//35t34EXTtbfvGkzO3buJCUlhbFjM9q8fa2GdT6akCmlPKZbt24sWHAPdrsdqxclJI5thAwGsNtsbusnYdhgQkND8fGx0LvPVdbL6sCiorpxz4I5iIh7lgfxssn6lZWV7Nixk169e5GTnUNq6uhWv26thnV+mpAppTzKG9bvulJi4lCMMfj5+TLwKtWx8+cvcOrUGXr37klERMsWhrVYLPTt1/AOAJ1Nm66B5uVriQUEBDBw0EAOHTzEoMGDWv3atRrWNWhCppRSV/Dz82PkyMSrXldbW8snq7+gvLyC4KAg7r7n9vZ7irANFRdfJD//JL179SAqOtLT4TTNC4cnr2SM4cYbb2DcuLEEBQW1ODHSaljXpAmZUsrr1NTUsGfPPvz8/EhIGOK1S2KICLW1tfj7+1Fjq3EOdXYsdrudTz9ZR3lZBb7+vsy/Z5ZXVi1dvGx4sjEWi4WQkJAW36fVsK7LqxIyY8ybwK3AWREZ4el4lFKesWvXbjZv+ha7OIY0Bw1y39OHreHn58eMm6/nyOGjDBjYH19fr/ovtdlEBIuPBUTwqpzyyqFJ8LrhydbSapi6xNv+93gLeBX4q4fjUEp5kDEGx7R62u03/6NHj7P7u/0MTRjIwIH9m31fz54x9OzZcZMCi8XC9JuncPjwMfr17UVAgJdUxxobmjTGq4YnW0OrYepyXpWQicgGY0x/T8ehlPKspKRE/P0D8PPzJT7e/cth1NbW8uUXXxMYGMBXX22iT59eWK3tW3k4e6aQ7Zm76RPbgxHJQ9r1h25UVITnt1Jq7jZH4HXDk81xZSUM0GqYqsOrEjKllALw9fUlMTGh3nERwW63t2rifHHxRUpLyujVu7urHR8fH8Ijwig4W0hkZBh+fu3/X+PXGzKpqqrm5Ikz9IntQTdPJ0jtqZNvc9RQJcxiLFoNU3U0638d4/gXESsi+W6OpzmxLAYWA/Tr54YFBpVSXqm8vJzVq/9BycUSpk2fSt++fVrcxoULJaxc8SlVldUkjxzGuPFpgGNY9JZbrqfgbCFR0ZHt/qTkheISzp09z/nzJfTt1wNrYPPXZKutrSVr2x7KSytIu24EoWHBbozUTTrZNkfNmhcWHE1MaIBWw5RLsxIyERFjzEdAqpvjaU4srwOvA6SlpXnT9FOllBudOVNAYWERISHBfPfd3mtKyCrKK6iqqiYwMIDCwvN1zgUGWukX1/I228I/v9qGn58fAf6+TJ46hqCg5idkJ4+f5bsdB/Dz88M/wI/xk0bXOV9ZWUXmt7uw24X0jGQCA73gB70XbnPUVpo7LwzQapiqoyV1+W+MMekiss1t0SilVCNiYqIJDwultKyMIUMGXVMb3XtEk5aWzLlzRaSPSWnWPTabjeysPRSfv0j6dcmER4ReU99N8Q/ww263ExkV0eL2g4ID8fH1obamlvCI+sssHD6Uz769R7BYLIRHhjIypf5QcLvqAOuItURrnpIErYapf2lJQjYV+HdjzFGgDMcDUCIiyW0VjDHmfWAKEG2MOQ48IyJvtFX7SqmOKyQkmH+7aza1tbXXvM2SxWIhLX1ki+45faqAnKw9BFj9ydy6ixumjbumvpsyaWo6x4+dJiIyjJDQlg05Hj92BrEbhg4fwPAR9RPVkNBgx1OrIoS1sO2mFBdf5MjhfHr37kGPni3YLLyDrCPWHPqUpGpLLUnIbnZbFE4iMt/dfSilvEdNTQ3Z2TsREUaNSr7qgqS+vr7tvtZXUFAgfv5+VFVWExHZsq2Rmt+HlSEJ/Vt8X3lZBTu3HyAmOpLDB44zdkL9ZLNfXC9um309IHTvEdX6YJ3WfraBkpIycrL3cNf8WwkKCmz4Qi/f5qgldM0w5U7N/p9NRI4aY0YCE52HNorIDveEpZTqCg4cyGXb1mwwBqvVysiR3rcedGS3cGbdcQMVFZX07OVdyUOA1Z+omAgKzpwnLr5nozsadO/Rrc37vlTlaXKtuFYMT1ZWVmKz2QkODmrz2K+FVsOUuzU7ITPG/ABYBKxwHnrXGPO6iLzilsiUUp2eqyImQuA1DkO2h8hu4UQS7ukw6vHx8WHazHGUXCgjNPzaExcRYUf2fk4cO82o9OH07nP1ocNpMyaRdySfnj27E9jYU6HNGJ7c/d1+vv0mm8FD4klLT8bHx4eysnJWffQ5VdXV3HTTJOIHuH8tuitpNUy1t5bU/h8CrhORMgBjzK+ALYAmZEqpazJoUDwBATMQEfr1i/V0OF7PZrNRW2MjwPqvoV2LxfBd9iFO5hcwPGUAQ4bFYW3hk5TF50vIydxLSGgQmzZkM2/+9KveEx4eysiU4XUPXsPw5Lff5tAtKoKt32aza9c+goOtDB8+hPKKCoKCAjl67HibJmQ2m43MzO2UlpYyZkwaoaH1H6LQapjyhJYkZAawXfa5zXlMKaWuiTGm3RIxEaGyshqrtWP+4KyqrObLT7ZyobiU9PGJDEroC0BxUSlHD5+isryad/+0husmJjFt1lhCw5pfMQsMCiA4JJCSi2UMHHyN6zte4/DkkCHx7Nl9AAA/Px+qq2sB6NEzhrLScoYPH3pt8TQiP/8427Zm4uvnhzGG66+fotUw5RVakpAtBb41xqx0fj4b0CcglVJeT0T4ev12cg8dY9CQfkyY3LIlFaurazh5rICQsCCiu3tmBf3iohLOF5UQFh7MoX35roQsNDyIqO7hbPnnLvr060F5eaVjCLMFCZnVGsDM2ydTUlJOVHQzh2abu9XRVZ6eHD8hneSRw6ioqOSLtRuxWAyDhwwkfcyoZsffEoGBVscyIbU1hIWFaTVMeY2WTOr/jTFmPTABR2XsQRHJdldgSinvUVlZyRf/WE/xhQtMm3Y93bt71+T2q6mqqib30DF69orm0P5jjBmbjL+/X7Pvz9y8l4N7j+Hn58PNd4wnMqrtn7Y8f+4ip46fo3e/7kR0q7+eWGRUGNExERQVXmTslCTXcX9/P6bdNo7EkYPI/naf47oeLU8ag4IDCQpu5EnJK7XhVkfGGMLCQgkLC2X+gtkYY9ya7MR0j2HqrZMItAfRt2/sNVfDzpw5w44du4iP78/gwde2Lp5Sl2vp1knbge3uDUkp5W1OnjzN0WP5BAUFkpOzi2nTrm/zPux2O2dOFxAcEkxYWP2EpDUCAvzpG9eLf36xjSHD4vH1bXprpBPHzlJWUkHcwF4EWP2prKjC19eHI/tPsOKd9Uy8aSRDEh3zmi6cL6WivIqYnpH4+DT8lCPAxeIyDuw+RkyPCOIG9apzrqamlnWfZlFdVcOB745x2/xJ9dryD/Bj2u0Z2Gz2evH7+voQN6AXcQPqtus2btjqKP/YScrLKxgwsB9+fs1PlluiXjWs37VXwz777HNEhNzcXHr27NHgXDSlWqLDbZ2klGp/3bpFEhQYSFVlldvmfG3buoPsnN1YAwK4c87NbZqUGWMI8Atg4MB+1FbZOXXiHH36NjyMVnj2Aus/zUJEOH/uItdNTiJ9fCJZW/Zy7lQxfeJiyPn2ICGhwVwoKmFnVi62mlqGpwwgJWNIozF8s24XF86XcnBPPhHdQgm/gK4TbwAAIABJREFUrAp29mQRB3flEx4VTEzPSCrKqggOtdZLBIwxV00mm6OspAKLj4XAoGbOfXLzVkenT51lzSdfISIUFRUzdlzb/Khx59ywsLAwTp48SVBQkNsSSNW16NZJSqmriogI5+75c6iuriY83D3LPxScLSQ4KJDy8krKy8rbvEoWHBKICPj4WOo8pXglu9gBMBYLNpvj49CwICbckEJNZS3nzhYTHGjl73/9Jza7nZraWvoN6EFxUUmT/QcE+lN9phZ/f198/f6VVNntdrau30O/+B6cPlGIXx9fPnn/awYO60PapOFNtNh8NdW17Np2CLvNTmT3MLZ9vRdfHws33JZOZPRVhl+bMVn/zJki7P8/e28eHEeenuk9eVRm1n0BVYX7IgDeF3h1N8lms7unjzl6ei6tJIdGXq/Csh0h2V7b2thwONbalSWtQ7u2tOEISytbh7Wrw9KMrDl6jp7u6ZtkN9k8cRAAcReOKtR9ZmWm/yg2SBAgAbDJnj7yiWCQqKqs+lUCqHz5/d7v/UyTWFPDfW03GoaJhYUoitRqtft8l3cs+yF7w5599hni8TihUOi+J0fY2NzOx2p0ko2NzcPDNE3K5TJOp/O+LppOpxOnc5Meo/vg6CMHOfP2efr6uolEtzCKZ5PsPdhLQySI5lRoaLy7x6oxGuT4U/vrHYf9bSu3y7LEE58/RD5b5Nt/8ipjgzO4PBr7H+ujIRJg35Hee77+sVO7iU8n8AU8uL23zqMgCHi8TqplnfaeGPlsiVhbmPGhOQ48tv2e26CbZWpsnuGLUwgSSKMSsixSLeukkrm7CjLDMBBFEWEDs/7M1Dw//P5bYFmcPH2IbX1bj6hobonyxBOPks8X2bnr3ufxbnzUnZJOp5Pu7u77WquNzXpsxUP2q8Dkw12OjY3Nw8A0TV566YdMTEyzd+8ujh9/8PMYPyyNjSG+8KWnHtrzS5JEW0d0U4/t6FnfiyXLEk6Xisuj0bu7jWpJ57mvPbqprT9VU+jsbV5zuyAIHH1iN3OTCZo7w4xcmmJ8aI4dBzrvKcbSiRzVsk5Dc+CuCf0foLlUBBEs06J/dwfTE/P4g15ireuMUjJNZgav8ebbs4QiAR5/5gDKPcz6xWIZy7IQBZFcrrjheVgPQRDo395zX8eCnRtm8+lgKx6yf2tZlu0hs7H5BFIoFJiYmKKpKcaVK9d49NFjG17EP05kM3lEUcTj3Voa/dJ8inKpSlNbwwPxXkFdWB17cg+TI/P07mnbvA/rbmucS/P2Dy+jV3Qs0+LQyZ0bVsaWF7O88u13MQyLfY9so3//vatSLR2NPPnCYUzLItIUZO+Ru3QF3tyebJ58h6dcO3ip9s/rVbSf/xYOPY3giawx63d2t5BKZjBMk+07P5qKkZ0bZvNpxPaQ2dh8BnC73fT39zIyMsqhQwc/UWJsaiLOKz86gyhJPPP5xzY9l3FiZJY/+3ffw6E6eOYrxzj4yPYHtqb2nhjtPbEP/TyjV6Z583uXuDE0x4Hj/cQnEuw4eO/KGEC5WMEwLGSHRC69tipVKVWRZBHZcesjvrEpuPGCbm5PihgEi4NE2i1Grk0xdWOe7r4Wjp2MrEkDVxQHRx9bO9R8M+i6jmlaqOq9h8rfjl0Ns/m0slUP2a8KgjCB7SGzsflEIYoiTz75BI8/fgJZ3sqv/c+excXlutlbr5FazmxakF29MEEuU8QC5qYSHHxk669dreiIkgiWxYXXRsgk8wyc2k4w8mByyOKTSRqiPpbiaYqFMsc+t2tTx0VaQ2w/0EExV2bHwU5M01wR2bPji5x7eRDNpXDySwdwee9hOL/ZPTmXgNnJBD3bWwjd3J60Wg5z/ItP8q3/8CrRphDjI7MMHNuBoj6YjsJ0Ost3/uFHVKs6zzxzipbWtQL3zkoYYFfDbD61bOWT+bmHtgobG5uPhI9SjBmGQSFfxON1f6iKXF9/BwtzCRwOmbb2+kVb12vUdAOnS2Xw/Rtcu3iDnfu62LG/a+W4rr4mRq40YtRMDj6ytfE7I+9P8d4rg+SzZTr6ovQfaGd6ZB7NrTL47g0eff7+KkJ3sv1AB+deGeSxZ/dy+PSOVRWteyHLEnuPbaNa0Tn70lUyy3kGTm8n1tHAzOgiqtNBMVcincjdXZDd3J60ps/gkPuYa/lt4lMJvvjNf0AoJpHcjTgFgZ7tbSuTARzKg/v5WVxMUCyU0TSVGzem1giy9SphoiDa1TCbTy1b+e2aAn4R6LYs6zcFQWgHYthGfxsbmzswTZOXvvca8fgi23o7OfXE0ft+Lp/fw+e//PjK18V8mR//w1ny2SKapnDhnRH2H+3j4tnr9OxoXang7NjfRaQ5hKI68AXcm369akXn6tlxsqkCybkMwUYPum6guhQqpSqNLZvY+tskjc1Bnv/FezdYzI0vUsxVaOuLojpXb+2ll3Ik59O4/E6uX5wh1tFA9+4Wln6YItjoIxy7R0TJze1JwawRrg5j5ZdwRtsRRGlVltjRE7s5cKQfhyKvCJ1SsczlC6OoToXd+3qQpI39ebVajcWFJF6fB6/XTSwWwe/3UalW6Ovr3pwvzN1Ao1e1q2E2n0q2Isj+D8AETgO/CeSAvwUOP4R12djYfIIplSrMzy0RjTUwPjrFyccPPzDfWiqZpZArUdNNrlwdx+N1cvX8OCefPbCqgiMIwn2NEJIdEg1NAXKpAi6vRqDBS2tPlJbuCNWyji+0eXH3YVleyHDuh9cAgdxygQNPrPbB+UIe3AEXxUyJvv31iI7G5iDP/9Jja0cQ3SPc1Ww6xMFTx2lsXn87+M5tyqsXxxi6egPDMAgGvbR3bTwh4I3X32VkeByX28mLX3kGn8/D13/u81iWhSAKm/KFAXY1zOZTy1YE2VHLsg4KgnABwLKslCAIm3di2tjYfGqYjy+RSmXo7GrF6Vy7JeZyaeza28vQtTEOHdnzQJsIwpEAoQY/iYU0HT0xHIqDbbvaGHhs+wO5OGeW8gTDHjpfHCDaEUZ2SCvrd7ofbgVGr+jMji3h8qhE2uuRFIIgYFkgiGvfm+ZSOPWVAcYvzzB5NY4oirT1xdae7w3CXSVXA6XL05x7bZDdA92ENvDIaS6VWs1Ar9ZWhdzei8TSMm63i2KxRLFYoiQWCWthRFFkqZDYtC8M7GqYzaeTrQgyXRAECbAABEFopF4xs7Gx+QyRyeT43ndeoVYzmJqc45nnTq55jCAIHHvkAMceOfDAX19zKnzuxaNYlkWlVKVc0gmEPStirFrWSc5n8AXduP1bC7Kt6QZnvn8ZLJgbXaK5J4IoiqQWs5SyZRrbgjgekKl9PYbOTjB5dQ4Egcde3E8o6ufIM7soZMu09a2foWaZJtfPT+Lxu7j02nVCUS/ZqUk8ze14wzenHRQTWDe3J9cLd80k81w8cx3NqXL21as8+417d0Ds3NPNyLUJZmcWuXZlnFhzw4ai+8TJI5w7e5HtO3v479/9p3aXpI3NHWxFkP0+8C0gIgjCbwFfA/7Hh7IqGxubB0KhUKRSqRAKPTjfk2mYWKaFJInUdH3Lx6eXc2hOBc15/xWOD7bjnG4Np3t1he69l6+xOJ1CdSmc/sZhFG3zAkoQQJJFqiUdySEy9PYYs6OLpJdyOL0abX1R9p/ecd/r3gijZiBIApZpYZkWALHOe08tkBwSvpCHTCJHMOKh9ofPES1cIa3uoPxrL6O5NVIFFUvZQaB8Dav5MNId4a6q5kBVHZQKZSLNG28/mqZFPl9kW387s9MLVMpVnK61lVLLsrhydZjx+ATHDx7lC196sl4Nu2x3SdrY3MmmBZllWX8hCMJ7wJPUIy++bFnW4ENbmY2NzYcinc7w7W99n3KlzPHjx9i9+8HkcAVDfk4//SiJRIr+7VsLAh26PMF77wyiaSrPvHAMj29rQa+bIZ8pobkVKiUdvVpD0RzoFZ3l+SzeoAuX7+5VM0mWOPb8XhLxNKrTwYUfD5FL5Lj+/jT7T++gUtq6AN0K24924/JpuH1OgtHNRWuIosixz+8hlyriduRwvH8FEYNAZZBydhHc7UwOLzAX+22EYpLdJ47Sdke1yelWefLFI+QyRRru1QhwE1mW2DfQz6XzI+zc03NXcZ1ILPPfnf1viYuzdCx08ve/+C27GmZjcxe21MNsWdYQMPSQ1mJjY/MASaezFEsl3C4ns7PxBybIALq62+jqbtv4gXcQn17C6VQpFspkM4WHIsgGTu9g9NIMsY4w7pvi68LLQyzNpFCdDk5+/dA9q2bekBtvyE21rGMZJtPD83gDLjBM9py4vzmLm0VzKfQNdJKYSTEzGCfa1YDivIdV96ZR3+FuJBTzc+NSDrfYR9gYpuDbjS9W/x41dYWZHpnH4YkQuIs/zONz4rmHWL2TfQf72Xugb5V4urNTMm8VmBNnQTCZqE3Y1TAbm3vwyUqItLGx2TTNzVF6t3WRSmc4ePDjkd+8e2Ab77x6iY6eJhpjD24b9XZCMT8HQm7Gzk9x9juXECWBuZEFvI0eqiUdvVLb1Damojk4/PweKsUqmlulY1fzPatrm6VWrXH5lSHyywV2n+on2LS6EzS3XOD8D66CabEcT7P39A4mL8+SWcrRc7AdT9CNZVmMvjdB5Ce/hK90FaH9GHzzO+jVGi+Z/4zUxA0a+np5filHMOIj2hbmc794DFESH2iW2J1i7M5OSbcWuWs1bHIhhVsyHthabGw+6diCzMbmU4qiKDz9uVPr3lcqlbk+cgOv17OpSpdpmsxMLSBJIs2tkfveUmqMBvnizz2+8QM/JPHRRcYvTjN6boLYtkYU1YHLq9E30LElo3+0I8zxrx6knK/Q3BvZ+IBNkF7MkpheRvNo3Lg4s0aQmYaBXqogKzKmYZFdyjFy5gayKlMtVTn8hX0UMyWm37tET/EqAsaKUb9zdwuj709jWQJuv4tStrwyVUB1KoxfnWV+Mkn/wY57Z5Rtgg8zTzKTyfCT732PaqXKI48eZv/+PR9qLR81i4uLvPzyK4RCIU6fPoXD8fAaPWw+O9iCzMbmM8jZdy4yPDSOIAp86YWniMbubRy/PjTJm6+9j2VZPPXsMTq6mj+ild4fqqu+zSerDqyaRaDNx6Fndt1Xh2R0A1P9VnH7XahulWqxStf+tWJ45uoc1UIVLOh/pBssAckhUS1V8GkCWBaK04HsbyKV2E5IH0JoOwruRhRB4NQ3DnHlzVEUp0Jj+61csXymxMU3rqO5Fd59+RrP/OLGs6SuD00xO7XIrv09NEZuVTQ/7DzJbDZHpVLF6dSYn198AGf1o8M0Tf78z/8jk5OTtLa2sH17Hx0d9x7ubmOzGTYUZIIg5LgZdXHnXdRnWT6YoW42NjYfGfUL43q/1utTreorQ6Wr1fs3tluWRSlXRnWrGw7Qvh/mRuZZGF2kZVczR7+4jwNP7UAQBXxhzwOPqzBqBlMXp6lWdLr2d6DcFIG1ag1BqIuo9XB6NY69eBCjauD0re5MNE2TxRsJ2nY0kV3KIYkiqlvl6Jf2oPzVV3C8dR6mj+L45nc48PQu3sz+LziMDD0DB+m8KXZcPidHnltbcXKoMppLoZSr0NQZ3vD9ZTMF3nn9EppT4acvpzj15QP3VQ1bzxvW3Bxj+/ZeUqk0hw7t3/hkf4yIx+Mkk0mWl1MIAvj9H67SaGPzARsKMsuyvB/FQmxsbD46jhzbRyjsx+t1b1gdA+jb0Um1aiDLIl09rff9updeH2F6eIFwk58jz+15oKKsUqwy/OYoqltl8KcjnPhPjt0zG6tSqFApVPA0eO4ruHZ5JsXEhUlESUSWJHqOdpNdzHLlR1cRRIG9z+zBfZdUf0VzwDo+NlEU6TncxcSFKdr3tKyIPI9Swlo8j2DVsKbewcovoledIIg4Qk1c+ukIxXyF7n31itv08Dxuv5PmnlvbrKrm4PEvHySXLhLaRAenoshomkKhUOTb3j/nX/3N2APLDXM4HJw+fWLDNXwccbvddHV1Egj4OXRogEBg69MgbGzWY0tbloIgBIFeYOW/dZZlvfagF2VjY/Nw0TSV3Xs2P3BbVRUGjny4/C3TNJkZXiAU9ZGMp6kUq3cffH0fSA4JzatRzBQJRP33FFm5RI7L37+MUTNo2dVC95GtxXdAveIkCAKmYeHQHJiGSXI6iWVZGBWDVDx9V0G2HnpZp5gp0tQbweVVECvL1CP662OOcq5deApXSDt2IJdd+BrcNLaHmBmap1So8M4/XOTdH1yhuS9GuVABq14tCzTe+j+1y6tteM5v94Y986XHGF+Y4vfeGrVzw24SCAT4xje+SqFQIBaLbXyAjc0m2bQgEwThnwC/DrQC7wPHgLepz7a0sbH5GbC0mOS1n54h3BDi+IlDyPLH1xYqiiLbj3QxdO4GHTuacXoe7IVbdkgcfG4PhXQRb8PdC/up2WUufPs8s9fm6BzoJLuUva/XCzQFOPCFfeQWs8xemWZxJE7HoS4kh4hDlQm1br6L1NANLn7/EoV0ETDZG//n+KuD6NGDKP/5D0EUmXv037N4ZQg8EY66VWSHxMAzu+k50M5P/uIMU4PztO2IMTs8T7A5gCiKbLX1Yj1vWLPQZeeG3YHf77e3Km0eOFv59P516oPE37Es6wlBELYD//PDWZaNjc1mOHf2EuVSheGhMbZt66C1beOU9YeBYZhrth+X4xkK6QLRzltZWj372uje24pe1pkbmccTcOPfZADqZlDdKupd5k1+4O1KTiZxB9z4Gr1YlkXPfVTHPsAf9ZOeXqacKQGgl6oc+foRgM1vg5omemqOYqqAO+gmOTSMvzqIiIFj8fzKmKO+Y9uI9UTRPNqq9xiI+HjsKweQHBKyLNK2owlvgwe3z4m/8d6Okw/TKflZqIbZ2HyUbEWQlS3LKt8cWaJaljUkCMLm9zxsbGweOC2tUWZm4jhdGj7/R2/3NAyT938yxOJUkh3HeujcVe++zKeLnPvuJUzDIjmbZv9TO1eOEQSBoTeusziRRHKIHP3KwAPJ97oX+aUswy9fQRAF2ga6Sc8s03Gwgx1P7rqrgNsslmUxd3UGSRLZcXrnXYXY8nQSvVyloTNyy/B/c+i3Nn2GI6H9XA39Lnu/+gSVl/ajpd6vDwK/OeZIlEQCd4mqiHY08PyvnKCQKaF51U2NpfqwnZI2NjYPlq0IshlBEALAt4EfCYKQAuYezrJsbD6bWJa1pQve3n07aG1tQnOquN0PPvV+IwrpEvM3EgQiXkYvTNHc3cCVV4fJLOVWAlVrNXPNcTXdQHKIYFqYxtr7N4NlmmRmlxEEEcWrIisOHHdJtU/NLGOZFmbNoFbRGfj6kTXnuZjMkY2n8LeGcQY27/0SBGjui1EplTHN9TtXs/MZhl++AhaUsyU6Bm5W5YqJeoaYWUNbfp+BX26vD/3e9uP6fe7G+gtsAr1q8O7Lg1SKOoee3kG0fXUn5Z3VsKEbo5/ZalixWERVVSRp/U5YG5ufBVuZZfnizX/+C0EQXgH8wPcfyqpsbD6DLCwk+OEPXsXjcfPMs6dwuTauGgmCQLhha4n35VKV8eFZPF4n7T3rm5INw0QQNt52c/k0gjEf6cUsvQfaSUwvk5xJIasyDa1+GtsbaO1f+xo7TvQxOziHt9G7kjy/1cpLYnyRG68PUkhmkWUZX1OQ/mf3o/nXCtNQRwOJ63EESSbQEkIvVNBLFVxhL6ZhoRfKjP74MqZhkLgeZ9cLhxE2ueXoi/goLKYRRYFiIgOszWgzTZNqsYpeqlBbngOra8WsT9vRuii7rRqGKNaF2Z3PY5hkE3lcPm3NSKX0Uo5itozmVpm5vrhKkN1ZDfu3R36f135wHcPqQHR9tqphFy9e4q233iEcDvPCC19AVT89QtPmk81WTP0q8FWg87bj9gO/+eCXZWPz2ePKlfqY2IXFBPH4Aj09nQ/ldS6dvc7Y0CxYFg5FxuN14fE7Vy6+y/MZzrx0Bc2lcPS5PffsypMdEkc/v5dapYbqUsgm8vWE+ZpJz4EOol2N6x7n9Gpsu+ndyi2kufztd9H8LnZ/cQBlk1uIRrVWP34mhavBi16uUs4U1xVk7pCHfV89CgLUihWuf+9datUa4d5m8vMpKpkihWSBSq6AodfofLQPT3RjoVtKF0gMz+Br9OIMeeAuxT532INl6BzM/SbBN0dhpj7qCFGs/73Jati1N64zO7KI06vyyIsHcaj1j+LUQpbZ0QVM00TXdTxdyiqRe6c3LFFaxiMKROK/wlStwKG29k9MNcw0TRYWFvB4PHi9W9+mH7w2RDAYJJFIkkql7E5Jm48NW9my/HsgA7wHVB7OcmxsPrt0dbUxPjaJ2+kkHA5tfMB98kEorGmYvP2Dy2BA3752dh/rAWDw7ASlfJlqWSe1kN0wJkGSRCSXwvz1eTJzafY80Y/T78S9jjBaj8t/f47x14eolat4m3z0Pr57U8c1bouRvD6H5lWoLGdRemN4oqs9Vvn4MosXx/G2NtCwqwNBEKjmK9QqNRxOhcz0ErWyjuLVqJV1jGqFcE+UpatTuCMB9EIZWVMQ5fW3tm68ehW9VMWq6gRaQ7QOrN8gYJkWPq9BMDmKgIE1fQYzs4AUbFq3GlZIFynnyvhjfuTbAmaTcxlcPifFXIlKsYJDlTFNkzMvXcHCQnAI/FXkj7j0xiX2j9R9YaIgrvGG+b0xHv+cxp5klkBrlPao7xNTDXv77Xe4cOESLpeTr3/9K1sWZQcHDvDKK6/R1tZCOLxxQK6NzUfFVgRZq2VZzz60ldjYfMbp7u4g+ouNyLL0ULdR9h7Zhj/koabXGDo7iT/kYWZskd3HeliezzA9NMfktTgdu5tXZVjdi8x8mrf/7A0UTSG3lOXQ145seEy1UGZ5bIHl8XlKqTyy6iA9sQibHHUpKTIN3VFq2QKWadF6qBv5jjT+uXeGECSRpcsT+NoaUf1uXI0+GvpbKKXyxPZ1MvvuKPNvX8XbEsIb8SEAnliI+LkRUqNzuBr9dDyxb11RJikSxWSZUiJDbmqJUncU5YNtR9NcqXwpToXOJ45R/tZetMwlCq6dXPvOGD0nZcIdq6uI5XyZ89+5iF7WifVG2fn4rd6pXce3MXJugp4D7bgDLmqGwWhyHocqkc+UqGhlLixdXO0LczfQ6FXXeMMEX4y2rk9edWh+fgGPx0WhUKRQKGxZkPX19bJtW899hQHb2DxMtiLI3hIEYY9lWZcf2mpsbD6DVKs6c7MLeL3uFT/YfHyJ5eUMnV2tuFwPLjwVQNUU+na3Y5ompUyF+ckkex/rBaCYK+PxOdl5rJuu3S2bHsS9NLZAMV0kW84Q6qhX90zDpJIroXq0NWImM7XEyEvnSQzNEexspJTI4WsNI1QqTL9+mejBXhT3xu+7ob8ZyzQRJYlAx1rPlSsSIHNjHofHiaTVPVeiJNJ0sJvsxDy1QonozhbyY9OUF1OEd/npePoQqt/FxT/6PtVcgeJimpZHdqB4nJTTeSqpPK5oEIdLpevxXcy+N4al11C8GqmJRfztjSvdkyvesG9+h1BHI/zaT8iMjzL4RhzVrbAwFF8jyPRKjVqlhuJUKN2M01h5v20hGtrq57dmGDz2p1+nII7hMnv4q8f/HZbbifGd1V2SwLresFrNIJ3K4vW5UdX1myE+jpw48RhvvvkWfX19RCL3N/DdFmM2H0e2IsiOA78sCMIN6luWH8yy3PtQVmZj8xnhzTfe4/rwDRRF4StffwbLtPj+d1/HNExmp+Z5+rnjLC4sk1hM09HVhNvjxDRN0st53B4NVbu/i6koiuw5tg2pZjF7LU6wwUu0I0zHjmb0So2e/e0UM0VG3x5DdSv0HO1BVtb/yPA0eGneHiN5YwnJqJGdT5EYnCEzu4w36qfnyb2rTPKZmSSKS62LKcvi4D96lNTIDOnBSQo34piGRcep1R8t1WyRhbODSJpC9PB2JNWBpDiI7eu663tsPtqPK+AELITbZndmxudYPDeIaVpUswUWXjuPszVGNVNAcav17btajXIyh+qrb73WylUmf3wBo1JFa/DTdmIPDpdK6+FeqrkSeqFMuK9u6NeX55Cn3kGwDKypMxjpOHKoBUQRNdqGWZslt5Cl7dnOtecy5GbbsW4y8xk69rev3F4zDMaWF+gNxxBFkbHlBQriGIJgUhTHSJBnoCXGbvE3eG9shl53iOxsgoiv9eb3e7U37PVX3mNyfI5g2MfzL5zE4fj4hgrfTiQS4cUXv/yzXoaNzQNnK7+Bzz20VdjYfIYp5ItomkqlqlOtVOut+JaFJInUDJNCvsSPvvs2hmEwMT7L8y+c4L23Bhm5NoXX7+KZFx65b1GWnE0RH0/gUCQmL8+y60Qvex7vW7l/5M3rxIfjZOJpHKpj1YihzEyCpeE44Z4o0b4mLMPkhngVl9fJ9NlR9FwJd9hLfjFDrVrDoSlYpkkhvowr4CTnVOg4sQNf1I+Ry2OVK4iyhFGrIa0j/FIjU1RSOQy9hretEW/Hxttteq5I6soollX/d/RY3Z+Wn4mTvjqOoKoU4wm0gBsrn8fX0YhpGlSSBUL9bWgBD7JbQ1IcGFUdvVBC0lSSVyapJHN4OyK0PLqTvucOYOWWEH31uYYzV9M0qNtxlwbJK33MvjlH/3MxRFliYSgOgoCsyDjXyV8TBIG2XS207WpZue32apjb7OHNb/4NveEYbrOHgjiGUu5g8tVpwqabv/yVR/nbv3obqVLh/OtDNEYD+EOeVa9hWRazM4sEwz7SqSyVcvUTI8hsbD6tbCX2YlIQhH3ABxNhX7cs6+LDWZaNzWeH4ycOcfHiIJFImHBDEEEQeOKpYywn0/T1d2JZFqZpIokixs3MrrmZBC63RjZdoJAv37cgc/mdSLJIrWaum5iveVQWhuaQFImZ9yfoHOhElETMmsGN14eQNIUbbw6z3aMhGjqaW6NaKBHZ0YbiVlm4MkUrr01GAAAgAElEQVR0TweOm+tbHplh8dwQgijSdmIv3tYGRv/uNSRVwel3Et51AFckSOOu9rVrCfnJjM4iOmQc3s01DFhWvSomiALWzXOnF0osvXoes5DHKhTRGnzUChUC2zuIHd3J0B/+PYWZJcL7t9F6agA14EVSZJbOD2OWStSKFRS/C2ckQG5yEWNgG/J/fBFh+gxmy2FyT/8perHKaPO/ZPH8ZWJHBjAzJWrVGoosoZeqyIqMYRjUbnaKfkA5X+H6mTEsCeQ+D9tjrWuqYQVxjLHlBfobm3nzm3/D2xcHmX97Hocqk0nmEUWBppCbmfE8iuZAUdd+zAuCwGMn9/P+u0PsH9iO2/Nwg3ltbGw2ZiuxF78O/Arwdzdv+n8EQfhDy7L+4KGszMbmM0Ig6OPxU0dX3dbZ1UJn160KyZPPHmUhvkxPXxsADY0BvvfXb9DeHcPtuX+Pmb/By/GvDWDUTLzrDMJu3tFMz9Fu9FIVfyxArVwlORpH9TlRfS6KyRyq18ngX79GfiGNt7WB3i8exRPxI4gikR2tK8+VHp5i+qUzlJdz+HpaKMYTZK6NUk1lkD1uPLEQ7U8eQJQlzKqOUa4gabe22PzdTYgYCKKIGrxl5C7NLZIbGcfZ1oS3p2PV+rWQj+gje6hmC/h66muxaiaIAorfg6g46P75ZygnMjTs76OcSFOYWUQN+cmOzdFy+jCCUO9IzU4uEtjWSmlxGX+zk9RcmmBfC3ItsxLuyvQZzv/BX+Jq66LtxG6CvS0UE3nC22Iorvp7aRvoQlZlVK8T7x1dobODcyxMLfEbld+jMjG5bjXMbfbQG65XB2VJ4tju7VzOypQKFYJRL8OXp9h9qJvOvia8fhfOu3jxunpa6eppXfc+Gxubj56t1Kj/M+CoZVkFAEEQfpf6cHFbkNnYPGSaWyM0t94yMOeWi5x46iCZ5Ty5dBE1dv+m7NvHFhUSuXolx+mglC7ijQU49LUj5JN5vI1e5t4dJTOdACw6H98DgoCAxbn/7RKSQyZ7Yx5XyLviF9NzRYxKFTXsJz0yTbC3heTQFP5tLeipNBgGqkshtH8bvs4mRFlCz+RY/OlZLMOg4dEBtGg9mqA0t0jm/GUsC6xaFbNYRlBksoPjSE6NzMUhXM1RJOdqAeJpX721qfjddH7tNJmhSQJ7esgPj1MrlikE3Lg7mwnu7CI9PEVwVxfxn55HlCWaTx+iYV83yUujdCV/C8foZRqjB1ky/3eKBRk5tA956QKLmRjFqoPKxAIH/vHTKOtUnlS3SufRbStf3+4NcwddxKsZKtrkutWw2z1kH+BQZA6e2s7ghQn+7k9+SkPUT2tnhNMvHNr0z0AykeLSpSFaWqL09d//bE8bG5v7ZyuCTACM2742bt5mY2PzEdO7p50Lrw/RGFvrD7pfcosZhn5wiVpFp5Yv4gp5cDf62f7cAdSbVThRFrFME0EUMSsVSvEEWthPdG8XuZkEjXs6V/xf1UyeuZfPYuo1Qvv68PW0MP/aeYLdMWJHtpO5Nk56aALF58bXGUN2qlQWlsiNTmKWKoiaSjm+uCLIjFIJy7RAFMgNjmJWKwimBQ6FWr6I7HUj3OGDskyT7OUhKktJfHt3oEUaAAjt7iW0u5fy0jLZSyM4PC4Kswv4+jvp/aXnsUyTqW+9SvLiCErQSzW7g9D2DkKtTqx/cxnBrCHG36MYGCU3tYTZ8i+Zv3GWpdkikrNM3+l9KB4n1UKFufdvIDsVmvd2rOk2Xc8b9sUXTvIH3+2hKK2thvU3rp0CAJBO5nn39Wsk4suUcmVaOhq29L3/yctvUS5VGL0+QSTaQCDw4Aa+29jYbI6tCLL/GzgjCMK3bn79ZeCPH/ySbGxsNqJnewvt3VEkWdxUC3+lWCGfyONp8KC61s84q5V1zJqBKApUChX8zSH00uoM6OaBbbgjfhSPk8TZa1imRWE2QdfTB7AscDXcupDXiiXMqo6kKlTTWTS/C7ffgaAX0JfTBPdsw91Wr2jJTpVqYpnkG2cxKxVqRR3V7cLVcUuAuNqa0bN5TL1G/soVCpevoba10vRzLyI6HDh8HkR59UdaLZOjMDaB5HKSvTSI9tSJlfssy8Kq1ZA9rrpoPLADqPurLKu+ftXvQigmUXx10VsqyKD1oRWHKWp9JMZzSGqF7hdPkBpfoDli0PvCI4R76+uevzrN8o1FzJqJO+zF2xri+uIsHa4wLr97fW9YrJm3fnn9atjdkGQRp0ujs7cZT8DF0dN7NjzmdjxeD6nlDJpTtc39NjY/I7Zi6v83giD8FHiMemXsP7Us68JDW5mNjc09cdwlguJOTMPk6g+uUEwXcQVc7H/hwMpFvlbRqeZLaAEP/uYgzXvbKaUKBBrdmAJ0PLJj1XPJqoPwtrrYyPhcFOJJZE1FC3qR7ghl1RpD+Hrb0XMFAju6KU7O1AWTaWIZN71goVseKsswwLIQVJXg9l78B3avSo8XFQfBA7soTk2z/N0JZJ8H0TJR/B4sXUcQBfTlZaoLi6jNzch+H6JLQ3JqGMUS7jtGUeVGxkm9cwHJpRF+7DDO2K2qkiCJ+La10jL/W2jGMPzdS/DL36W0nCXZ/ptIRg7TE8ExuYTidVLLFjj2T7+y5tyrHg3TMBElEUGVePRPv05RHEOtdPJ3j/w+vbvb7uoNu1s1bD28fhdPfHGAXKZIU3t4y00eT5w+xtzcAoGA/2cypN7GxmZrFTIsy3qP+ugkGxubjxnTV2eZuTZH2+4WWnfcuphbpkU5X0F1q5TzZSzDArE+C3Lsh+9TyhQIdkXoeGwnbQPdTP3kAsVCAYF65eVuND26m9JiGsXvRlIdmLpOeSaOIIlorc2IskTDQF3QGYUCrpYIgigiqgpabO2MSyXSgKslQuHKFWgJ1cNVpVtbfJauoyeWoFJGCYepLi/j7GqjcO0a+vw8gsuFWaogiALl6RlCTz+JpKo0nH4Ms1hG9t9qBNAzWZZffZvizBxacxNmqbxqLYIg0Lg7Bj8armeJTZ+BYgJvW5T89CLgx7+tFaNYxbIsHDe9YqXlHNdfOo/DpdL51F5SYdj25B4cmsKMlaN4sxpWUSe4dH2Ujr0dd/WGbZVw1E/4jiaBzaJpKt3daztbbWxsPjo2FGSCILxhWdZxQRBycFuy4q1gWNtsYGPzM0av1Bg7O4476Gb0zDixbdGVGYiSQ6L/VD8LwwtE+6NIN2+vVXTK2SLOgJvc7PKtJxNFLNNCEIV7DruWFAee1lvCKndliNSbZ6gmkgQfOUTDU6cQJAk9mST101epzs/j2X8Az7Fjq0JiP0AQBKxiFte2TvTZOYztOeRAYOX+wpVLVKanEGSZhs8/jZHNobY2kfzWtzB1HdkfQPL6sSwBUbv1/JKqIt0xisoolJD9HrRaBCXow9kWg/ziqgHfphpCd/ajFoepuPpR1BAOh0z7526NhVJ8bizTxNlYX+fwd84Rf2+MmgC/tPQ7lBw3bnVKCu6Vapha6eSRJ+rBt/eqhlmWRTaRR3UpaJscuv6gsCyLd955l4kb0xw7NkBXd8fGB9nY2Nw3Gwoyy7KO3/x7awPDbGw+RRiGwdTkHIrioKV18/P/DMOkmC/j9moPdVyL5BDxRXxkFrIEYv56tlhFxzItHE6FcFuYcNvqQcqKRyO6p4PU+AKBmJfRv3gJ0SESPrgTTyyEFvKupNRvBssw0VPLSC4NfSmBUSojiFC4doXy+DiWrlO8cgl3by+OxkbMYgEkCVG91RWpNDWTfvkHWIUspWgQz6OnVsSbWSoiKg701DLmmdcwi0Wq1/1gGWDWtwUDj59ETy6jRqOrtjstw6AyOwuA2tKCEgnj7u1Cay7i37cT8S9eXDXmCFFElGWW9/5rjOU4criVmLT2++dsqFekPuiUlLX6tu2SXKLkuLHpTsm7Mfr+FENnJ1CdDo5/+cCqjtiHTTqd4eL7VwkE/bz2+ju2ILOxechsJYfsdy3L+o2NbrOx+TRy6eIwZ9++iCgKPP+lJ2hpiW54jGma/PR777EQT9HV18yxU7sf2vpEUWTv53ZTypRw+p2UM0Wu/+AipmHQ9fgu/C2hdY+T9BJKJcvy+RuYpTK1QgmjVCF6dCcObWvmbu/u7eiJJJX4HK6+bXUj/Ws/qQuofBrB7UfyejEqJYzRQcrDVxBVFffRU4geL4IgoLa1ogTcmFaR/JlXUdo7UNt7ANDa2yleH8Iq56hVdWrpZTS3CzkUQNLcOHt6kf1+HLdV1T6gPDND/vx5EAQsy8LZ0UFwYF/9zvziqhwxignwRBAkkeipI1TTOZSAb92qHqydKfnXP/+vOOh183+eefVDe8OScxk0t0q5UKGYK3+kgsztdhEI+EinMvRv37bxATY2Nh+KrXziPg3cKb6eW+c2G5tPHdVKFUkWMQ2Lml7b+ACgXKyyEF+mIRpg8nqcIyd3PtQqmeyQ8DbUuwEzybpokVUH2dnkuoLMKFfIjs6gNQbI3ZjDqFSQFJny9BwZDYpjE0SeeRwzn6c8M4MSiSBqKpLLjSCv/eiQNJXGZ0/XDfuSVO9iNAysxCyqCwS1hHHtNdKj7yD6QgiKitzSRfnSO5jFLEr3TkRfCDM1T3V2Guf2vRilIma5hFEsULp0luroVWqLcQTNjeSLIEeiKI2NyNE2RFUh98r3ERQV98AjiM7bqns3E/uxLDCNle1Jo1zBrEjIrUcQZs7WK2TuW9uwgiji8HsxyhVE1VEfyr3BTMlKT4COhiZ+2Ph/MV1MsbO9476/7/2HO7n8+nUibUGC60xSeJgoisKXX3yeXK5AOBz8SF/bxuazyGY8ZP8F8F8C3YIgXLrtLi/w5sNamI3Nx4l9B3YgiiKaU6WtvWlTxzgUCYcoc/nMKE+9ePSBibHsQobsXApX2E2wNbymcqMXK9SyBSSxnhsW7ll/i1VSFVzNjZTmEjSfGsDT2UStUCRz4TKyqtTFVM0ge+YMRq1G5qevoLU04YjE8B57FEEUqaUS1BILOGKtSN769p1w04gvCAKuvfupXjuDI+CjcmMYDB0jl0IMhMGoIWkujHQS0een+Mb3kKNtOHftRfZ6Ufr6IbtE8fVrCE4ftfgktaVZBMtC9vrwnP4ctZkbVK9fQY9P4mjuwjINzEwaPbmE2tqBkU1jWRZaW1tdjFkm2iv/FcycxWo5TKr5v8GsVHEe/B2832ha5SHLXL1O5tIwxYUkWnOU4O5e3P2dq3LDfvylP8Z6bRSn3rXiF+sNx1gcmmX23TFEWaISiKC4NcbeHqGQyNP9aC/+2Noq3noEIz5OfnXgfn9UPjSapqFp9z8JwsbGZvNspkL2H4DvA78N/LPbbs9ZlrW8/iE2Np8uNE3l8NG9VMpV3nj5faqVGkdP7sZ7D4/V7I0EVhXa25uQBOmuj9sKmbkU7/3lWyyNxAl3R9n74iEivasFYvzsEIW5JJok0PnkHhxOheS5y5jVGsEDO5Bd9QtsLZ1BLqXwNbkJDvQjORxAGC3kpTQ5i9ocRVQVBFnGKhYw0gkMr4pRLKB1tGDpVcrDV+rCbG4K98lnV/m2AASrhux2UksuIgWDWPk8BCMoLZ2o2/eh9u2hcukdShdeQ1QcGLkkguRA6+lD3bGf8ruvIAYbqVw9W3/CchZUD5JLRWlppzp8kerEMKLHhxyKYNUMBEVB9gepLs5TPPcmgp7BefhpnF1d9crYzNn69uTsOSzfEqIvhr6colpppxofR2tuQna7yI9MYGoK15fi7GmNUZpPMN/oXJUb9v/9r3+KdzTD/+Q+RvN//S84sH8voihSTGSRFBm9rFPNl6mWqiTGl1A9KjMXp1YJMsuySMUziKJAIHarS9KoGaQTedw+J5rr/icxfBIpFAqMjo4TiTTQ1LS5/wDZ2HzS2YypPwNkgJ9/+Muxsfl4MzO1yMToHLJDYuTaJAPHdtz1sZpLAaGeFu90f7gLan37z6RcKGPUTBAEatUaRtVY+2DTrA/TvvllMb5I6sI1jGSSWiZD0/OnAMgPXccyavXbl1NI0fpoJiUYQAneEgy+Y8eoLCwgZuPUMklEdLLf+vdg6AiuAI72/lXdmJZpgF5BUF2IsgNHSxuOpmYcHf3IkTZElxvRdWu6gLb/UZAEajMjmPNjyLEOlK4epGAjcksXtfgkcmMLgqpCbgmpaxeS04PodKPtOYRVyiP6Q0heP869R0AQEBWVWmIB9+DvIOdHMef2wa/+pF4Bazta94q1HsG58yB6Iona3U3qzXfANClPz9Fw+gTatja+/Nb/QKl3Eufy2/zk+B8RCTesdEpqlQ5cwwkETcMsVuhyhVeqoLE9HVSLVfxeJ55ogFpFR3EpVPNVYv2rPWTx0UWuvDoMAvQe6cKyoLEtxMiFKWavL+LyqZz8ygCKtjrn7dPMj3/8E2ZnZxFFiV/4hZ/D57Ob+W0+/WzF1P+nwK9blpW++XUQ+D3Lsv7xw1qcjc3HDZ/fjeyQME2LcMO9M59ibWFOfekghmkSabl/D45RrTH2yhWKySwth7bRc7wPf8xPpL+Jxm3RlVFGH9B0dAeZG/OoIQ+q341ZKVOdm0OQJMpzcWrFIpKqYGYTlIauo3Z0IXnuPn5JcrtxdnVhxvswcxn0uQmsXAHBoSEHAqh9e3BEmuuxFYZO9dIrmNkEcvsuHF37cB46hVWtIEdaEKS1HzmCKKLtOoLudKILBmIogpmcQ2jbjrbrCNaOAaxKCX3qOlJjM1Yhj9zchag5UbftQtScWJUySkcvgnIrGsLh1xAKYwiYiInLK2Z9vvkdKCYQ3I14bgrJSj7PWCVDu6lSGhxGVBSWuqKU1PpMyZIywfDkBK0jM/zkhT/mwrn3aUwZpA/NUUoViAz0E+y/NajbGXDT/8z+W+fQIbHviwfRyzrOgIulyQSp2RTN/U2UchVEUUCvGpx/6SrusJvJq3Pohok74KSYK1Mp6SuCzLKsNZXITxuGUUMQRMDCsqwNH29j82lgK6b+vR+IMQDLslKCIBx4CGuysflIWJhPABCJhjd9gWuMBvnC105Qq5mEbhsTVMyVGb8yizfgpH17fYtFEAQaP4QQ+4BSKk9hMY3md7M8Gqf/+QG6H+3HKFeZf+08er5A5NF9uG7OfJSdCg27O1eOd0bCNDw2QGV+ETXSgKgo1JIJqBbxdLfgiIaRN0hnFwQB18BxjFQC58BxSu++jFnI4XzsOZSmW3EIVrmAmVlC9IYx4qM4uvYhhzeOCRFkB46u3Vj5Zax8Cqn31mBsQZQQnB7U/rUfN1a1hKOpHcGh1INkb8sSE4Ot0H4Mps8g3G7WF8W6MLtJzTA4+de/REEcw1nt4G9Dv0x1MUFLtHGlGuYyugneWKbqcpK+MMLRk4+Qvj5D7NgufJ2xTf38OJwKDqdCOV/m2iuDyA6Z1FyGA5/fS6VQActianQBQRAwTZO9J3sZOT9FX18HnkC9u3J5McMbP7yE06lw/Nl9ON2fTn/XU089yfDwCNFoFL///sJubWw+aWxFkImCIAQty0oBCIIQ2uLxNjY/c0zTJD63xOLCMhfevQbAE08dpaundYMjb+ELeFaeK72Yw6E6GDp3g4WpZcyaQSlfZuZqnHBzgL2ntyPJH84/pgXcOEMeyukirYdvxQ+Uk2mqyxkkt5Pc6DSuaJjy9Ay59y/iCDfgPzKw0g3Z8MSj6OkMsrc+79FyupAcCqZhoDSsTc1fD1FzIja1ASA/+wuYyQmolbBqVQS5viUrOL1Ije2YiRnkbQe39D4Fh4Kj/yBmLoHkrW+ZWoaOVc4jOP1rmhdqc6PoI+cQVCfK/icR//Ln1mSJfVANw92IBVjlEtVSkcH3z9Dt8uPu28FYrbziCyspk0yLVXokJ2owsJIb1uUMEP/xWWqlMjgcFGYThHZ2Im0w97GcK2FUa7hCnhXRJkoikkOmWtJx+V0oToWdJ3oBaNoeZX48QWtfDG/ITeyOIeGjg7OYpsnyUoaleJr2bZvPxPsk4fP5OHz40MYPtLH5FLEVQfV7wFuCIPy/N7/+OvBbD35JNjYPj6uXRzn39mXmF5J43Boer5tCvsRifJlzb1yjIern0GM7kaSNRdTYxWmGztxAcsgEYz5qeg1Jlpi5FkfzqCxMJsklC2gupZ59dZ8ZUrLqoO/Zg5g1A/m2eZFq0IfscVErlfG01y/oxevXEd1uKgsLlEYHkZ0ajpZORNmB2nArGFby+vCePI2RWkByqnXfV7WEER9B8ISQGjvvuSYrE8cYfgUsMNPTiIoLQh1IgVaUXSewTJPaxFvol64g9ZxCdIdXtp7uVk2yqiVqV14CvYLljyHvfBr9yg+x8gmkxi7kvpOrHm8kpkF1YpULWMkba7LELC0IkoxwsxpWvvwuuYtn+Xz+u5S0GZylFv5h/B/R8cTTq+ZJHn72eURZXqkafpAb1vzkEXJTcZYujFJJXUPPF2k80HfXc1RKF7nyvfcx9Bodh7pp2lUX/YpT4cDze8mnCgRvM/fXdIPBt2+QXsrh9jvxhtxrnrOlo4HJ63E0l0ogbGd129h8mtjKcPE/EwThXeA09bFJX7Es69pDW5mNzUMgm8kjyRLBoI9YU5hoLMy2/nZe+8EFdL3G6OAMXb0tRJrWD1K9nUyigENzUC3pdGyP0d4fQ/OoZBeyjJybwBN0U6vovPeDS1gm7HxqJ6HWjZ93PURJRLwjKV52abR87hhGPg/VImalgtbRQf7qNUShQvX9N6h5fZiVIlrfvjXPKaBjTZ5BN3Tktj1Y+SRmdgEBC8HpQ/TcWquRGMUc/C6WYCHtfAFBqFfELEysybPQ0AnJMcT930BwaFhLw5jn/gRLL2DGL+I4/mtYYy+DICL2PoOgrWPSNo36H4eKpZdBL0M+ieAMYMxeQ+w6gujQsEwDq1pACoaxskmEUBNipP+WWb/tKHpyGX3sFQxfmElJo8uoUnzvHW4YVUqumXo1zDnLlFUlUCpsKkHf4XWhNQQRRQEEEcx7e5sq+TJGtYasyuSXcqvucwfduIOrBVcuVSC1kMUXcjN+eY6mnghXz41j6Ca7jnShuVRaOiN84ecfQ5IlFPWzY/K3sfkssNUtxzhwFtCABkEQTlqW9dqDX5aNzcNh34HtGDUDl8fJ/oPbkW9u6cVawlx+bxSXW8Pt3Vwlq/9QJ4Zu4PY7iXaEV7YmwzE/se5GHJqDxdEFTKM+1ie7mL1vQfYBlmlSuTGGUSoheZxYxQKVuWnQdSRfEO9jT6BGGii+/m0qkxOIWQ9yew/60GsgCMgd+xG0m5UVvQxGDUFWMEs5BIejXmESZRBEjIVLUEohxvZjTryNmZoAo4o5/H2kw/8EqfdxrGoRKzEI5RyoLixTx4pfxswsgF7EysVBtPj/2XvPYMnO887v97wndO6+3TfnfCfPYDAY5ECAIMAAkqJILSVa5K5kabUquyzvB5fLH3atLddKu1tre71Vtix5tbZMrVZeS6IoWQwCiQwQcYDB5HBzzrdz9wnv6w89mMFwBsQMiRED+vdl7u3b5/Tbfc70ec4T/v/gxJ+CclDKQW/PYHUfvOa9STSJNfEQprCC1TkOkQSqbz/+W19HojH0mSdh1yMEb/wZ1vP/HKu2jmrfi370d0H7l8uTJt6G/+LX0YkUHz32b6i488T9Qf4qOMxgPSCm+qhGF4j7g+zevx+3px/1Pgr63k6xMS3bkaXznv0ENY/MyPWf71c9LNcm1ZmhfbyTWr5K76H3N+5OZRNku9LsrBXZf98oi1NrXDg+j2UpogmXfUdHAH5m+8aaNPmwczNTlr8G/BbQB7wF3A18j0bGrEmTnwqSqTgPPnL0mscPHBmjb7CDWCJKLH5jJs6pbJy7PnngmseNMeTnNyluFGgf66KlO4sOQ7rGr+73qedL5C8uUl5YI7d/hMxo7zX7CgoFqjMzONkc0f4+/I01yqdOoCtF/HNvYMWiGCtC/PZ70eVSY+LSsVERl8jobnS1hNo8gTd7DJXpQjDYuxqlP0l3Yg0eQlcKOEOHwHYJk62IY0NYxiy8jBELvX0WlAVBHZSNJNoRy0Z1NCyNTPswpriKJNowGycwa283vCV3PYxZeBNRVZj/DtQq6P4HcdLdmKAOlRWI5hC3ESDq4hLsnEFlR5F4YxhC9R5AXfg2uHH89fOo/Bzh+adxqmsIBtZOEy6eaGSsRu7hYqnG0NSz6I0ZzldqVNz5hoK+M8vK0JeYaOvn2fZfY851GREbpRTi/mBJktr6NqvPvIYx0HbnftLD7x24rZyaZ+q5M4htcegLdzF6364fuO93YzsWdz9xkDDQOK7N6sJWIxGn9Q3fJDRp0uSnl5vJkP0WcBR42RjzsIjsBv7ZrVlWkyZ/t4gIufabm+baXtrm4vcuku5IM37v+OWSYnmzxOxrk1gRG7/iceDj15YLt8/OsvbaGbbPztF5117W3zxPeqTnmv6q4ptvEZZK1GfmsFsyKNtFlMLUqqBDVCwBbhQr1YI7NIoohUTjOKN70etLWD0j6HNPgvbQi6+gu/ox5n5EFKIU9uCVtenqBrL5PCCY1DCIDcUZ2DkBThQ1cBTp/SgqO3hJkuDSZxdJIpFLgw4oTH0HnATWrs+g+o4SnvpjUAHoCngL4ETRs38LpUVwk6jxXwDLxUx/B+OV0atvwe3/CBXNYPIziASYlTdRsXaoaKS2jbaTqKCMyQyBFSNwojz0R1+grKaI13t4at+vsqteJTF7aUoyGGZEG/yZ01gbywy091FZXAAgfuQenM4edKWCikSusYXyi2VMqMG2qG7sUCvUsGMumdGeqwYNqjtlpp4/y/rUGn6lTjSb4PAX7r6pc0ophXIb++zsy/Hwz92BDjVtPTem7N+kSZOfXm4mIKsZY2oigohEjDFnReTGb/+aNPkJRGv9Q1sazRybwRhYvbBK10QXmc5GQGdHbJRtEdR8otdp5C9cnGPxyVdwWlIox6Kyus5U/Y8AACAASURBVEXrvpHrNrsr1yXwfcRxGor5tTyRaBl3YhA92Ee4sUrivo/h9lwpienCImrzdZQCSexDRu/B7JyCoY8ilg/1PESvyHGYoILeeAtz7quY/Bx03ImKZrF2f4Zw6XuY8gVwk7D1ClJ6E5Maxhz8bxDnOk3l/hooD4lkkGQXKt0HToTw5d+FYAdqi+jV16G2BU4SvApoD1NdQxdnMZunESuG2Xgb+h5AEOxTf45sz2KyI/g9d6B691Pd9TgLbpahsIyVbmEy1kFZTTWyYZElLsydZN/Bh3nhgT9hKr/FcOBRf/sl/OU5dEsN1tcgkcUYKL7+Kv5OCZRFpKuHzP33ot6VNYv3dlAb7kX7AfV8jcWXXgcDu7/8MTLDDYmTeqnGuW+9RXWrRGFhi+xwO165jlep495gxvV6tHb93Uo+5PMFNje36e7uIBZrZuWaNPm75GYCsgURaQH+EnhSRLaBpVuzrCZNbi1e3efVb50iv1ni9kd20T10Y9IPftXDijRKXbmeHLPH54gkI0RTV/p6oqkY+z51G/VijfT3eRb6pQrbb50jlkuxc3GR3oePkNs3QiR7/Ym51JHb8dfWsVJJrFiM2luvYyVT6OIysbs/h5W6VufMVDbBNNT8qW5gD96OqF/GrJ1CEh2NQOid5xqDWfgbmP0GJn8BrDRUV5B9v4rE27BGPkEYljHbp5FKEWIdUJzElJeQlqvvx4zRSG0N2nYj9W0Ia6CSWG170Id+BXPq9xE7DkEJGXgUNo5D55HGWue+iTgKHBvpPIyEdQDETcL2HGI07MzgPPFvqFe2eeSl36fiLhD3enju4BcYTyRI6JFGhswfYPeu/ZjtOThdYeLg46A1Ye8wtXMn0CvzWJ394NXRno9X3KR0+ixWKoO/sYXb30t8ZOSyJ6cVcWm/q1GavvgXz1PbLiII5ZXNywFZ6AVoP6R1rJNMX45aLaRaCTjxjeMc+vTtaK0p71RI5pI4kR+fWlC5XOH1144Tj8e5/cj+q6aJ6/U6f/mX36RSrtDV1cnnfv6TVCoV3nrzJPF4jIOH9n1gfqxNmjS5lhv6ZpDGrft/dUkY9rdF5GkgA3zrVi6uSZNbRX6jxObyDomWGJPHF64bkK3PrFPNV+ka78KNu8y+PsXSqUWyvVkmHt7LwOEB2obacGIObuzqPqR4S4J4y7WyBepSf5cVavoeuZ3OB36wtrIog20VMaVtwvoqkkgTnP4Oouvo1RHQg5iZbyLxDhj+LFK8AN4SxNKIlUDlGrplqu8eaN+HUQZqS5hoB2LFAANeCWJdSGUZSfQjB/8xKtWPqW9i1r6L2HmkrQd2ylBehfQEJBoZOROUMFuvgXKQ3J3Q/RFk4w1ovxt5V+BndxxGFx8F46M6jyLxLky8DbwdjAkAQeI5cA6jEv1I152N95/sJOy/i+2l18n13oEavp/ZxXNU3MakZMVdYjqw2IXmhV/6v7g4fYKhrQuwdgb6D6OLW5dtnCJDe/HHphHLpjZ1gcj4EP76KrpcxGnJUFvbJBSHmf/tj2i55yhdTzyGFY9RXlxj5+wsqaEe2g+PUVraRLkW6aErHouxbIK+o6OU1gt07+/n5JMniSlFrVSjVq5x7BsnmHpzjpbONJ/6rz+G4/54grI3j53k/PkpAj+gvT3H0HD/5b8FQUi9VieRSFAoFDHGcOzYCU6cOI0ONS3ZFoaG+n/A3ps0afKjcEPfCsYYIyJ/CRy59Puzt2IxIvJx4H8BLODfGWP+xa14nSZNUtkEqWycUr7K+G3XXmQK6wVOP30WAcrbFXY/tIuVs0ukOlJszqwz89wpIskoXYeGsd51cW14ToYo28bbyrN9/DSRXAuZ/ROIZWFFXLofuRO/WCbSekn81PdAqevaCoVzbxHMv42e+i4qGkM6d2P3dKESGbjwHzEzAWgfowOwIlBbAO0h8V6skU9d3o+IYNw4LHwNExQg0g49n0FEYXo/BrFOpP8TqOxeJNoQIzWlc43pxcJZSI5Bdi9M/AYqNX65vGrypzDF85jqPPhFrK7HkczYNe9DIi2o3b8CaEQ56PoG5uL/AUYjLYcwAx9Hquuo/++/QxZevyzuGhjDfUSp9PUQD11eCAPGu8eI+/1UnHnifj+jI4cJz3wdsRxGKz7Ec/jTr2GmXsa57TNIpKEnJtEEdmsnOr+JOzSO8eo4bR3E73iA6vw8kdlFtt46hwlCiqfOk73rCLH+HtZePoUVddl44ywDn76fPb/8KAhEMsmrPt+O3b107G4MZgzeMczLX30JNxmhVq6zcHoZHYTMnVzk7EsX2XX36I/FmzKZShAEIZZlEY02SqlBELCxsUUmk+ajH32A6ek59h/Yg4gQi0UIgxClFK7blNlo0uRWcjO3aS+LyFFjzGu3YiEiYgH/K/AxYAF4TUT+qql11uRWEI27PPT5I/he2DAB/z5EFMIl30BLEBF6D/SzcHwO21EU5jcQaajot443pu50ELL+4ltUV9ZJjfQS5AvomkdxY4ZYTyeR9obkhZ2IoWwIlifRtSp68TwSjRLZew8YD0m2X1a+xxjQNahsQmoMk5/BOvD3YOEpJNsL5UWorUCiA4INTHkGqovgb2CCT4CuY7x1JNoLYkFYRisX2XkN40RRuXtRiT5IXHEqMEaD8SHWB8XzkBwGsZBYB5IYvLrXzc1iKnNQX4LN76Cj7VjZqxXWjTEQVsCKInLJj3HlKShchNBg7DSq5+OIRAgXXmcbTW7uZZj9Ohdjhy73hpWtGSaXTrGrZxcv/NzvMLW5zfjQYfSZr2GWXmsIwXYcJVw+h0QTWF3jYFv4k29iAg9n+CCxOx7C1GvgRtA7W0gsjpVIERvfhZ8vUK/+GeWLs2jPR0WjiFK4LSnqG9s46QTKsbFj798TZozga0Nhfptzz58j3Zli6sl5lGszeWwOvx5w++P7b+KMvXG2Nnfw/eC6lmAHD+6hNZfFdR06uxpZ4aefeoHJyVkyLWk+//lPMTo2fPn5t912gGw2SyTi0tPzs+kK0KTJTwo3E5A9DPyGiMwCZXjnemWuFRT64bgTuGiMmQIQkT8FPgs0A7Im1xAEIWfensar++y7bYToDVwkvx/Ltt7T1ijVlmTfo/uoFqp0jjaU3vsODdK9t4+d2TUWXjoLCPa7SpV+sUx1dR1/bZXVc+eJ93VhJZNY0QhW/GrtqPqpVwjnz+EvT2Lnckgsg3fsa6ioi2rpwd7zWGONA7eBGyXEg/oWVv8R7LGH0d27YfYb6GQ3xr4XqZ5HVB1sD9rvACeG8TYw+VcbTfPlC1idTxCkRmDtL9DKheoMZqOCpPaCt4rERpBIF3rnRYy3ikrsh96fRykXlAOoRqYtKKB3nm9k5YxAJA4+YDSm8CYmcwBRV46HKRyH4kmM04px2hBvFUOI9cb3YHMJei4iE/8FQTTHl7r6Oe8GTNQVf1xfZSy5SSIcomzNkAj6GY0awlf/KQrFeHYPYt+FeAVMvA0JaqjxB7F6DhJceLGR/fN8woUzoCzEdnFGDyPxRmZLtXVedUycTJruz32Kxb96EjuZonhummhnG10PHMLbLjYCshu0wXKiDqXNMk7EYfXiOqWaT6lQJwgqKMeiVvZuaD83y/LSGt/466cJjeYjD9/FxK6Rq/6ulKJ/4GrZjsWFZVpa0uzsFKhWa7jvGmiwLIuRkUGaNGly63nfgExEvmqM+TLwB8DXbuFaeoH5d/2+ANx1nfX8Q+AfAgwMvL/YYpOfTZbm1nnzlbOEXsj5t2e57c7d7Do08IE2Hbf2XxFxNVqj/QAr4pIb7SKSjCFKSHRcmYJzUnEirS2UT50hOdKPk4qTvfsITiaNnbh6Yi1cvkCwdAa9OokOe1CpHKSHEEthlp9Hdw+hWiYQJ4rdfxtWzz6oFyF2qcypNDoVByuB6FJDI8yOQmoU3HYk1gNuG5iwIV9hArT2ofJ6o3RZW4GqT6g3ofQCVstHoPAqtDyIrs2DWARb30bFh5HoICpx25UyZW2+kfHyNyGoQno3hhBx2jFKEW58G4kNoJIHG/IYlUmMm0OXTmMq04iTRWhHb62wLUJu+RRS2WCyGnDaNYgIpyPCVKnORE+WF77y/zK5dILx9kFk7q/RfgXCMtS7ERMgXYdQdgxJdiNOHHIp7F0PIpaDEZdwcRKjdSNw/D6M1pROn6FycZbEngnc7i6seJLK8jpWstEDaLkOsc73FvQ1xrB6fhmv7NG9pwcn5pLpTLP34T0U1ovk+nN896sv40Ys7IjCshUHH741A+qlUpkgDBrG5Vv5G9rmIw/fx+uvH+fOuw6TTjftmJo0+XFxIxmyIyIyCPwK8Ec0MmO3guvt9xpvEmPMH9AIDrnjjjt+sHdJk59ZHNdGRFiY3iDbkuL4yxfItqfo6mt9/41vEu0HLD77FrWtAq0HR8ntHiTZda0ulLJtuh6+k9RwD7XZeWKDfcR6Oq+zR3A6uqG8jF0/jZWqwuAw9vj9mLf/JyTcQL/xO5ij/wSV6EasOGI5EM9hwjK6vope/jOor0B9DZO9F0kMgx1FOh5Fxa+UH3XuI1BfRuJDYDyMSoBVhmgvRNog2ABTR9fmUJEutK6gwzz4K2DqGPsQ1GYgvhekkfUStwNTPgMqiTgJIER6voiyooSFVxEriqlcgNgw2BlIHYStZzE758CsYMIKYWaUr3QNNLJhns2fRHOMx9UVT8lwgNGhe5DUKI4IuwePNN5Psh+prmPqeRh4HHGSqIEHoOs2dLVAeOLPGy4BKo7EWnAOfpLI7Y8TlvKoXPc1x8Hf3GL72Repb2xRmZym58tfxFgOTksLfsUjqNawYz9YGT+/vMPUSxcQpQi8gJG7x7Bsi9s/c5haqUYsE6MeGF75q+Nk2hM8+MWjJLPXDnx8EAwM9rJn7zie57HvwI0FfUPDAwwN39zNrTGGCxcmyefz7N+/tymR0aTJB8CNBGT/O41pyhHgDa4OnMylxz8IFoB3d1f30ZTVaPIedPe18dhn7uZE9xRrC1tYliJyydvP9wJOPXeBaqnG/ocmSP0QF7/89AqbJ6dJD3eR7GmltpEnkk1SuLhIbvd7l3BEKZIjAyRHfvAFztlzL6Y8C84YYoWoRB2rY4gw0wZVDX4Js/h1TLwN3XIIESDah86/BEERavOgDUZZ4C2g0neg2h5D7ORVr6OiXRDtIgw2MMEqpO+CymsQ7UZUN6b0BsQnwGknlBpSewsiaVSsH12fw3jzSGQQ5F19dk4Gsg+jrHgjA2ZCTLiNXz2LslOYII/YGVCNjJSKjxL86a9TWH6bbEuG8KEHmKq8KxvmGi5urbArDc//wr9gavopRnMdWNULNOaIrpQJpedhJHcA3AxiNwIlEYFIGlYaZWTKW5iYQgIPUysReiHe2WOI5RC94xFUMoOu1RDHaeiNqYYvpYq6gCHa2U59YxsrFrksffFuKlslZl4+TywdY+CuiYYgsAg6CLHsKxlay7Eu+1Xe+emD7HtgnEjcvaXN/JGIy4MfufM9/26M4dy5SfI7BfYf2E0icW3W8EZYXl7hySefQkQoFks88shDP+ySmzRpcon3DciMMf8W+Lci8nvGmN+8hWt5DRgXkWFgEfhF4Eu38PWa/BTh1X2KOxUyrUnsS308nT2ttD2RZWV+k2jMJdveMKzeWtpheWodN2ozfXyBgx9pZApqhSqlzRLpzvR7inXqUOPlS6y8fBo3m2Tz5DSpgQ5iXVlqazu0HR7/QN6P8TewgzfQ4RxoF3H2YDaPo/b+Onr66xBJIlEbg8KsfwuTGMZsfgsT5sFpQzKHCYMaRp8BG0LZwAnXsC8FZEZXMaaGqAw63KGe/xpab6GsHFZ8AFEuWDGctk/j199G6woEBcRux4rtQVQEE+kDs0IoPkrnEasFExbxit8m9CdBdeCmP4mycnjbf47RVTSC0/oVlN2KqEsBcmGJXwuWON7fw6Gax+9ZE4ymNfFwgIo1R0KPMBavE659G6UDxlJRJCxCtAO4EuCY+iamNI3EBy4HY+9GtY2it6ZQ3XswdgqV7EAyXehzx8B20PUaupynvrpG9cwZrHSa1D330fULn6M8OU2kqxO3vY2O+zLUNrYR12HxxUYLa/ddu3EunTPLb8/iFWuU14vkhhq6Y3sfO4BX9WgdaLvu8VZKkcrdmqzYzbCyss4zT72IshSlUpmPPvrAD7Wfd1oDwlBf9oNt0qTJj8YN/0+6xcEYxphARP5L4Ns0bon/vTHm1K18zSY/mVQrNV558SQYw133H8BxHb779ddYmd8gEonw6OeO0tHb6OmxLEXv92mIxdMxnIiN74VkOxtBWuAFnPz22/iVOvFskoOfPnxdZfyVl05QXtqgurFDWPOwXYUYTe9DhzFBiHI+oIvP2mugFCrZBoSNkqSTRlJ9qOGHMCbAFC5i6hcb2mHePKZ6FiI5qJ+D7KNILI4uCSaYAwV+8Zso+x8gYuHX3sDgYdm9iCTReh1DkSDcQFPHcUZQVgaj4g0NMekkNHXEaoHoCMZsYbxtwEW4NHUJ6LCADpYxug6soWtvIvGHMbqGCdfxtTAzf5bxwfsxwQyYgIulFd6KRtACb0UjzNjdjAXzPPPgXqYqRxlr7cBUzkHlQiP/HtsNAqa+jqz+DSp3DzhZzOK3GlOj2ydh+JcQ6+qgWhKt2Ld9EePVCM69gM5vomolnP4JguU5JJJAZdqpn34RK5UkyOfR5RJuWytu25VStxV1SfR1snl6ltLyJohQmFmhdW8jM5rsbGF7bgMn4uBeEgRu6WkI9IZBSLVYI5qMUCvVmT6xQDIbp3939zXnW61SZ+7CCqlsgu73COQ+aGzbQpQQBMGPJGPR1dXJE098nHK5wujo8Ptv0KRJk/flJ+rWxhjzDeAbP+51NPnxMnVhkbnpZQDaOrMMDfdw4uVJpk4u4kZtopEIH/+lu4knr9/bk8oluO/nbyfww8tZCRNqgpqPE3Op5ct4lTqRxNXb61BTWd4k0pLChBrXClHGY+vF1+l47AHEtgg21xuBVDyOLhepn3wJFUsSPXQ/4jb2Zyrb6OIKKtOLRNPXrM8EZdBbQAniHTD+JVSqFxJ9mPJpTOU8YCCWhNh+TPltjJQxsQ5UWIH4ENgCKoWKDBP6AdhxwMdgAK8hwKoimLCIuF3gdoJXQlQKZbeAnUOzDDqKwaDDeXBShMwT1BZQqhVRgmVSiN2GxibwjiNEEacXwi1EZRCrFcuKYKUfpFp8hV//+r/nfOSbTHzX4t/93K/gWC5DiQGi4RAVa46oHmastR1RXajia4w7IRIuYqSnEfiFNagtgQ4whROQ3EeIoJL7MEG5USJVNu90TujtKczcc5DuRw1+BFEWOr+K3l5GnAjh0jlU+zhhoKBew1+eJzo6QeXEcdyODqzUtcfnHdyWJKLk8s/v0LG7h2RHGifq4iauBIVhEPLmt06SXy3Sv6+HcqnG2uwm9bKHVwsYPtB71VTvmy+cZ3F6HUF49AtHybReXW6+FbS3t/LEpx+jXC7/yCKvg4PNoaomTT5IfqICsiZNADLZKxemTEsSEGLxCLGEi4hqeDReJ7v1bmLvsjIyWmM5FuMP7WblxBy1YpELf/0qudFOvK08LWO9tIz2oixF++EJtk5P03pgBG96GpSD9nxMqPFmzlN8+puYwCfS2U64MglhFRWJY3UO4A5MYEKf8Ow3MdVNdH0Due2XsXNXlzlNZQFxYtD3CGT2YHU2DKhNUMQEBYzxERMQGkGCAigbldiH9pfBasVIkVDqKLsDK3UvYg4R+DMYqxVjiijVhXKGMHoH5fQRhhewo3vQdhIdVBCrGyREJE4QLqHsOKJyGP2Oan4MTAGlOrAie1AqjecdB0K02cZNfQySj+EHZSbzdSaiGid2iIvzJzgfCQlFOO+GzK3lGe3Ootwsz/3iv2R6p8h41+0QrGO8eaz0Q+jSq+iwhFI2JjYCCOJtY/wdsFugtgErT2Ps18FtxaQPoVr2IFajp80svYZxk7B9EToOYlQUXdkBAzrwsVu6G6XKSgVvY5MQm5bHP0ukt/e6/WHvJtXTysgnGv1YkcyVcqOIkGi9dhqxVqqTXy2Qbk+xfGGV9pF26uU6UyeXqAchxe0yhx/Zc+U8MI2ZJIO5/PPfBb29TT2xJk1+ErnhgExE9n6/SKuIfMQY88wHvqomH2r6Bjp54ucfBCDXlkFrzZEHdtPaniHTluTuj+4nlrgx3TG/6nHxu29TL9UYfmAPnWOdLO0UMNqw9OzbtO7tZ+3186T6O7Bch8x4H5nxxpRiOSZUJmeI7ZsAv0bt7AnCwg7h+hzK3wa/jOW4EPqod/pojMboELPyAlRXwGyg7/0fULErsgkSacUoF5EAk+jDeCsYLHTpFUxYwVg22BGUnUXbLsq9AzEedvoBvGCR0H8TlEKbBZzYx1EmBNsFUYCHiGC7jTKSMVXCEJS4WO5+rNgIAmiTJwznUJJujDKLByqGGIVS3dhWL8rKolQjg6RUhjCcR+sCYbgAMsSD/+E3qahJ4nqE57/8/zAycJCJ5yzOuyETns1w7z7EiuHEDqNUnN0JMLpGEMyAeFipQ5hgA8JtTLCCcqKY+ia4LeB2ICoD6y/CxsugK5j2R5FIH2bhKUznvahkH+RGYflNJNqKsaP4b/4t1Ctoz0ObCP7sRdz99xDi4OVLaHsDf2Mdt/PGgpJ3B2LvRywdpXu8k5WpNSbuGqVrrAMn6lD3NS0daQpb5auef/j+XeQ6MqRzCVramnITTZp82LmZDNl/EpGvAv8KiF769w7gnluxsCYfbnJtV/S9lFLc89gBjjy0h8hNTqhVNotUt8u4ySjr55cZODrK1sUEoRcQG+vGy1eI5lKXBT/DahXluoSlIvWzJ9AbK5ROPUc9GUHSLaiIgxUXLPGR1naczkGsXBqVbIz9ix3B3vUYwfxfQCoBpfOYtRfQub1IvBexYkikDQa+gAnLBCt/CLVJiO9DRbrRehPCEqg0xsRQdho7fgBRLjrcRqSEWGnCcB7LGkbrTWx7BGW60Hq9Me2nfZA6RnsYdkBa0LqEpTy0WcFSg1iqC6VyGGNhTIFQn0ekBWOq2NY+lLr6czb0Mrm9xnC2HUONqY0L1FSj56umLnJ+/RnG2xL84Zd+m4VVh4FOB2QbsbtQ6soknwm3MLqAEEEHy2AqGH8Z/E109DakvoKJ9KOcJKrjcczWMTBVMAH4JSgvY9wMsvYSJvY5JNmP7B5GImnQGlOvEK7M4C9NY+//GOHOBqZcQFI5wlqAXl4hyBduOCB7P7TW+LUAN+aglGLvgxPseeCKtdTY7QOIrdhc2Gbi6NBV28YSEXYfboquNmnSpMHNBGR3Af8SeAlIAf8BuO9WLKrJhxtjDBeOz7G1VmTPkSEyrUlE5KaDMYBYLkkkHccr1+g7MoKbjDHxqaMULs5RvDiP29tB9uAEohTlCxepnDmDnUoR3z2Brlaon3kTXVpH2ttws3eQfuQThLNvI24Eq2sEO6UILnyT4OQ81sQnUS39kOxA9R9CLz+DsoDlr2EqZ6DlINL9CUxYBV0m9BYwlbfAaCgfQ1r+MVTfQCJ7QAxWdA/K6QKxMUYjKo4QxaBRVgdGeYgkELEQZaMkgTGbhFTBeGi9gUgOZBOxDNDbaOzX0yAVLHovBWUpDIMYtlCqi3dXg40J8fxVHvzj36SiZojpQZ75z/4po9Eot9XqHI+6HKp5jLgFlHTgRnoZG+jG815AJEkYTqP1fkQMIlFEpREiQACqHZx2lDhoHaKUixELdBWDRpwcpvMTkD/f6BvL3Y6YCHgFdHY/nP8mlNaRVCey65OI5SCdE+ilGVTffsLVWZyRg6hkBre3n8jQKGJZqMQHM+2otebkU2dYn92ib28Pu+4ZBa4up4sIY4f6GTvUNOVu0qTJD+ZmAjIfqAIxGhmyaWOMviWravKhZnutyIlXJnEjDl7V48HP3n7D25bW86ycmCPT20r7rh7ceIQ9TxxBByH2JZ2yoFpj643TbH3vDapLqwz8vcfp/8KnqM/PY6dSBIUiEonitufw0gkINtBeCSudxu7qQioL6Oo2Su0QnHkWll/HGB8TLGDad8Pgp5HcLpTUoTwL3mYjU6YUpvOj6J1nMN4aoQlAJTDhDmJFkegAdnQA411A7A6syAha7+DXXwJcbGcEy9kFVhJj8ggKy2pMBzYCtR0MFooAcBAsDAUEQUig2cEih2EN8AkpYvQuYLPRm0c/IRepBSeZ3kqwq/1OhG2mtk5TU1MgUFfTzGwpJtoD/tDtZGfhDNnufYSZ/YR6CSWdKKsLy+pE63UsaxDfO4lQQ9kD2HY/dvL+RhAqLji96LCKlf0UogPECGjTyHZtv4pk9mH6Pt8wTE9MoOulhtH5xix68mmk/y7ChdNQ8DBumtqxFwjX5nD3HCV658dxescR2yE+NoblOGDb2NkcXr6Em/nRmui9is/G7BYtnRkWzywzftfwB+oU0aRJkw8XNxOQvQZ8HTgKtAK/LyJfMMZ84ZasrMmHlkjMwXFs6lWf5EicwAtABNt5fx/B6efPUFjYZPI7xznyK4/QNt6DslRDvPMSyrHR9TqlyTncliTrT75A3899nPjEOIU3j+N2tuNkMqiDt6N3FgnnHZzBCWK33YO58ByU15G1Mxj2gV8GJwo4YHxM6COVVeh+GKJtjczO5jMNuQo7ggmK6DCP8RaRsIB228HqQJJHMd4F7MTd4LRijMb3L+LVXgUJACEILiIqhmXtxrbHUSqGXFLPV6oTTByh4ZFoKKHULgTVCMDEQtGPiENgtgCNEMFQAjQQAtsE4QoPffX3qKhZEnqYZ7783zMSyV+VDRt1q2hs+PL/SEslhUoNE+qzWFYXiMayHJT6CFAnDHbw6s9iQg+8OUI1gJgiVmQCMTGCwjMQ5FEo7NbPQuowevt1KE9himcQpwU1+EXCqb+Ga+m+VwAAIABJREFU138XrASmZR9itUHrGGZrBh1ksGyX+pvfwng2pNrQgUJluhHbuXTMHWJjY/ilCstPvkzoBeQO7yI9NkBlo0BY90h05a46T973PE24dI51sDq1ztChvmYw1qRJkx+JmwnI/nNjzOuXfl4BPisiX74Fa2ryISeRjvGRzx2hUqrhKMUzf/IKlmNx9JMHSGYTlDZLzLwxQ6o9Rf+hfrxSnaW3pomk41i2xebFZaKpGMtvTNE23oMJNWGtjhWPIiJoz6fr0bvIv/4WQSFPcnyQIL+FKW0TiQeo6jq6XMDOtZP+xJfQ5TzKiSCJNMFSDFMMEdtB7AhMfBpWXkTCEiQ7kEgLJHtg4xkkKGAiXUjXY1CZgvgI4uRQ8b2EtXmwIoidxVh+o5dKXIwuIyqB0XlCfwZjao3+KQnRWEi4g0FwnDEgJAinEaIo1QUEhKYhF2KpIZS4QA1jRhFxEGkEtJY5hGEDQ5xALzK1Oc1Yaw9K9TO95VFRs4hoymqa6a1Zxtt6+EOnjZ2F82R7dkNmgoC3G8FcwkFhNQJDU0doWEqJKCCG0TMY7RGGFyF0MPoEljOM0R6W6obaLAR5tNaQuguJ9CDRXkx5ElOawQQa1Z3CzPw1lFcbmbXsAYwVwRRXoP1Awx2gtIXdtwc9NUlYqqILHvqlZ0jf/zBW+orNlV8sE9Y9rGiE2somTraF6SePYYKQ9oPDdB5qGI+Efoj1PjcAIsK+h3ax+76x9zSpb9KkSZMb5WaEYV8XkSwwTqNkCTB7S1bV5ENPOpsgnU1w7uVGqcyremyv5ElmE1x48Tyr51fQgaalO8Pm+SXyi1sE0+sM3TNBbbOACTXp3hwm1Kw8d4za+jap0V7i7Rnyx95GHIfd/+1v4BfLxDpaKL/yPMHmKrqcJzY6gb88j5XOIo4LO7ME23OovkNIMoEV5FB7P4pKdGCS7RiWMX4NcWLI6BdAe5iwBHYa8TcxHY8hyV2N30XAaUXiwxh/C3EyGL2NEQhqx9B6Czt6G6KiiERRKo2RFJbVhe8/B4AxeaBOqNcwpoQhj5Ci0VUAYNC6TuO/ZwiksNXIpW0NIgqhB0/P8ND//U8oqxkSeojn/v4/Z7ztAHs9OO8aJjwYzaURiSH/4P8kV7Yg0QViMGEBg0doZrHMGLYaw1BHiF96HQ0IqHSj3BiGYCyQGOgq4iYQuxfl9qGNQrldl6ZEQRIjEJShvAkhhGf+AKpbjelLA7LnK1AqQRlMuUhYK6CS7UTufpjo/TalY6+ii0VMEKA9j3eHStG2LJH2VvxCiczeEfyajwlDlGMRVOoYY5j+3gU2Jlfp2tvLwJH3d4Z7r2DMGENhq0w07hKJudd9TpMmTZq8w83IXvwa8Fs0PCbfAu4Gvgc8cmuW1qQJdI+1s3hxFSfi0HpJDb2ar7B2fhllKSrbFaKZOGtnl6isblEayLHvC/c2FPlbUwTVGrWNbSJtGUozy6ighjguulZHgPTuUcJSEV0poSsl8BpBjd3R01hALY9eOQPRNMH3fh9FCXKjmMoG0nNbw+R6401E16HlAABixzHZuxtZsfSdSPU0unQawgo6OgCmgDg5xAjGTmG8OhDB6C3AYHQBy25DWV1gShhJ4Tr9aDOCDmcQcfD9cyiVwOA3sl/YiLSidR5DAWOKoNYAUJd0rvxgncmt84y1ZlAqwfTmJmU1cykbNsP0Vo3x6Db/cWWebQw5BFMbRiU7QRxMsoJmHqMNBuGdANALX0LpHK59ABFFGOYJg7OAi20PNNwCVBZMFds9iJIoyh1GKQfp+GWMtwhWO8bugPoGKBdJDGMibZjZpyAIwM1ArBdi/Sgng0m4iB1Fby1jTBzjeejNJZyhvSQO30XtwlmsRBI7d7UCfn2nRGmjBMYQBppEV5bOw2N4pRrt+wfxaz7rF1ZItCaZfO4smZ4sme7sTZ+3vhdw9tgMk28vEI1HeOhzt9+wVEuTJk0+nNxMyfK3aPSPvWyMeVhEdgP/7NYsq8mHnZWpNfKrBco7FVxLsfv+UeKZhrRE374+Khsl7IhFNBWlpaeL0tImrtIU5tfJjXWR6W8n9HyU65Aa6qU0u0T24Dixtgzbm8dw23O4bQ1tMBWLIUpjJeJYPT0k7nsMFYujw5BwfYqwkkcqOyAG7ZWR6b/F2IIZuAeqy5DsBa8I6aFL2bEqKr0L0g0PzXD9JIiDrpwBXQU8lBpG+3OYegkTbjZ0t5xWlMpg2d0YE4KpNrS4dInAnwOtwMRARwnMSSCF7fRgW+OE4TIGC0P9kpTFSUygLpU644ThCg/88T+iomaI6yGe//LvMJobJKGHqKgZEnqYkWwELR5W325aF85C30Ek0Y9I42tCmw0wDrCDkMUQBVNGhz5GLeAHCVxnLzpcwq+fa2TvIjaW1YpSUZQ9iO1enXFSbge4HY39589gNl4E5WAS+zDFTQgCxID2DHhVJJpCX/wu0nsvavAo9GvM5CkwBkk1AicrniBx6Mh1z6vq+g4m1CBCdT1PvCNL+75BCis7LJ+cJzfcQetQO+eeOoUxcPo7pzn06cPEW27chDu/UeKlvznO2WOzDO7uolquUy5UrwnIZi4uMXVukYl9A/QNdd7w/r+f1dUNTp48x9BQH6OjTRmNJk1+WrmZgKxmjKmJCCISMcacFZFdt2xlTT60FLfKnHj6HNVijc25TXbdPcrMsTna+hoThb0H+nGTERzXJtWeori8TaojQ32zgCiFE3WprG6y9LevEFYq9D/xAK137LksR9D5ye9L6org5FrRiTjKjSJuo7wUnPgG/vG/QaJJ1P7HsPwOwoXnkdYBJJqE2hYSbYVIG7gtGAL06d+FWBfS8wQq0bg4SuoAZud7YATK5zGRDlTsMKKrmPoMgm40uVtx7Oj+xmuXX0TrAkZFMSaP8bfQ4QKWM4aWkIbda4AOd9BWHq03MIQoFUWzSRBGuLi9zGhWoVSeC5unqVzKhlXeyYa1aV5kh52FRbI9aTR1kAjh3/9XUN5GJXajRGGMQesVArMD1NHhJhgXoyMYdtBmE0IHsRbQVj9Gh+j6LOATmtdwM1/B6Bq6vkQYnEfFRkAHEBbByV3ubaO+BsptyIIsfQecRoBlEv2YsA5hiFk/D0QJN59CENzbHsG+6xOAQcXf2wbpHVIDnRTnG5nD9GAjCAq9gMmnTyFK2JpZZ+JjBzn73Dm2FrYo5Gt07elh+I4b92vcWN4h8AK6B3MUtiscvHeMbPvVwq/1msfLz54knojy4lNv8/mvNM7JtZVNEsn4JYeKG+PJbz+HQTM9OUtnZxvJ5I/fxLxJkyY3z80EZAsi0gL8JfCkiGwDS7dmWU0+zCgliAiWY+EmItRKNbrHr9z5W45F10Q3ADPPnCC/sIHtOgw8sA83FSOWS7H2yglKU3Pousfy377MyFc+Dda1dkthMY+3Mk9kdB9hcQsrmbrcyxQunW5Y2lQLqGgayXUgfqnRrO+X0OU1VOowDH8es/UmLH0Dgq2GsGt1Ed4JyOwWJL4LKhcRfwUxAWJFcDKP4m3+OcbbQJfPYGcfB4lhglWMqaAkiVgZQu0ShudAkhhTwrXvwPNOY1gHouggj1EGYwJ0GCcIXR75039NRc0S1wM8+cVPMdJiEdf9VNQ8cT3EaOswqlKChRO06RCzcApTDtBxjUgWlRxHSRYRhTE1QrOKIk6o8+iwiDZl0AGW1Y4igVjtjRKqqWM7PXhYjc9RB2A8jL+OqZzAIA1NtdI5CEtIbBTJNqyjpOUgxi+A3Q9qB1VZwfQ9gnTeB3PHMOUNiOYgPQ7zFwi21zBT54jd9gBiX/kqq61tUDwzSbS3k9TY0FXH20nGGHz8zqseEyUo18Iv14mkYmzObJJoTTL79gLduzMsnF5k4NDA+zb5v0Nnf46pEwtEYi53f+IA6et4VNqORTIVo7BTJteWxrIUr754gjOnpohEXJ74+YdIpW8ssEqlE6yurBONRrDtphtekyY/rdxMU//nLv342yLyNJABvnVLVtXkQ02iJc6RTx6gtFMh15nBYEi8R8moli/jxiP4VZ9otiECC5Ac6gVtUNEIdur625ogoPDdv8KfOYeIEB0bJXRdTODjdPU1+qT8GtI2AokU4ff+Z0AgnkDahjEX/hPh6ksQiUJQQCpLYEcbzfup3Ziwjimcwuy8BpaNVFcxyXFEFFqlkfosVhAiqhUJa4i/08jiWS2IJBtTi/YAtrIx4RYE6+DXCYNXUHaE0K+jZQ7f81is72IwVULJHJMbi5cnJStqjul8grGcx5Nf/DJzy0VGe0cxepIg0oHddwSzcAzTtxff3WloohHHsVOI/U4jug1YhMECWjuE/gZQbfSVGR/L6mmYkaMQyaCUgxt/AO0voewutLeNLp1E+wWUkwbjQ1gGK43xli8fD3GzSO+nG8dG+1DbRNwWxI6ikn2E20uoTA9iuwSbm/iLq/hz86jcJNGRK8n67dfeRixF4fhZYl3t2O+TMVK2xa6PHaS0XiDVkaFSqOHGIrQOtJJsS5HMJpDrBPPXnE/GICIkW+J89BcbQd97SWFYlsVHn7iT7c0Cre0ZRIStrQKxWIRa1adW8244IHvs8YdYXlol15olGm32qTVp8tPKD3U7ZYx59oNeSJOr8TwPy7Kw3scA+WeVbFeGbFfmfZ83cN9eVt+eQUmRi3/2DMmeVnoeOIgddRn71Z8jKJaJ93Ui19GXMqGPyW+B5aArefT/z957B0ma3vd9n+dNnXOY6cl5NszmdLt7e/kOOOAAAgQIECQsiLJp2TItl1lyWZZUVqnsKiWXTUqyVZZsFUkXSIIiRSIDB9zhwh7u9sLmNLM7Oc/09HROb3j8R+/t7tzObLg7ADxcf6q2anqn3+d9++13+v31L3y/xSJKIomsFJCOjRZK4YRTKIFGZkwqGli1hmjp6lnIXUOYO8EdQARaIbQb0XIcETuAUN3YmXdg4ZtQGoXwPoSnG+FqQwnth9IVZOkK1NcRMgt6rDGRCAjFjeY7Bsib5TyHGEKWsOtTOJoLQQysJUw8PPOdH1BWG5mvF7/839MXceF1uigrM3idHnbEP4GgiPr1rzEyfwnZvoP6b/4vSJnB+Y1/jFPMgUfBtqYQahAUCynLN8+TEBp2PY1tTSGlQEhQlCQSiWEcR1ESOJXTSKeANDRwb0P3HkM6eRAGztqPEEJFART/AYTRCVIiqwuIwOa9XkLRwduwN7LX5qm98wOc/DpqSw+uA59A7RrBfOcC9uI1lEB0Q0CmR8JUF5bQvF4U4/6mG91BL+4bwbwr4OHAFw+x+zN7sU0bX9S/IbAaPz3N9OUF+nZ30rO7A8u0Of3iFdLzWfY9PkyqN3FfmmQerwuPN3Hz8ZFjuzj79lXiLRHcbp1qtXZfAZbH46av2TvWpMlHnnsGZEKIAjT8h9/7K0BKKe/duNHkgZienuaHP3gen8/Hr3zus/j9H0xR/P2ytrZOtVojlUq+b9HL9FKWN168SDDk46GnRjBcD25/dDe88SDUqkx96yRWqUJ8pBdVV7AyWapLK6jSJrCth8SjD6G6GjdnKSWVi+eozUyhdg5inf8pwuNDTbShJVPovSMoHh/q4HGU4hpqahhUBQaeQVbziJ7jyLFvINzhhoG45kLaCqLjCUR8H0IIZDUNmXegOAGKB4SB0vbrKO5GqdWpZwBQ3N3g/zQYEYQabZTzhHJDxwukmcXJn8IxZ5HWIraVY6rYyUAigWqojK/MU1Znb/aGTWdhW/IRfvKlEFPzS/R37ETXE9jrc4j5SwjHhvnLKGUbx+sFoYLPhWOv3CiXlkDRcKx5bKKoerJRtpU1BDrCKYNtgj2O0IbR/HGQFo5TQCgBHGsZlW0NOyc1gpQ2QnEjzXWoZSB7FRGPgX8EobeB7kdaVWT6AmgeRGzHzdf+Lua1U8h8BplfRfrDyFIOLRRDiSbRu0PImnkzOwUQPbybeqYbPeBDMd7jySkl0pH3FIB1B9y4A+47/r9eNbl+eoZgws/YW5Okhlq4/NNxzr00Ss9IO2OnZ0j1JjZZsUG1UkNRlE3/DqLxEE988ggT12f48z97HsPQeO6zjxMK32k8Xq/XmZmex+f3kUol7/pamjRp8tHgngGZlPLOT4MmP1OuXh3FcLnI5nKsrKz8QgKydDrDX/7l97BNm0NH9nLgwJ73tc7Vs9NIR7I4u0Z6KUtb99Y3q/eDY1oUZldw6hbVTOHGz4NIy6R4bRLdrVFPr+HtSBHcMQiArNepzUyixWKYC3O4h3ehRhM4xTyukaM311aTfZC8NRWo7fzVmz/bvZ9Crl5EChthlRCK2jAOFwLpmMi570Gt2JABC22H+OM3gzEAERgBzQuKB+HuQhauQvYVpCsOiacaGSLAKY+CU0PUyzgiyJMvnKKs/gif088rX/k3DHr/BK/VRllbwGt30O+poKqteL7xG+yYO4dsG8L5z/4E2zmHSCZQlpdxUv2o/t3I6tuAg+45hCnPgbRRND/CqSIUL445jqonEUJguB/CrL6JU58F20QoCYQQ2NUJsOsg/CArKK7tG94fIVRE8Cgy/SLC1qG+iixcg1oJspfACCH1FGSugHQQhh+CPY3AKbsMmo7wBLHyaWQhjx5rRwknQdPx7tpPZWyMWtnEeumnxI4fRjF0FE3DnYzdca3US1WuP38Ws2bS9+gIgU3kLBzHwapZGFvohmmGSqw9THp+nWRnlLX5dd784UUun5pgdSHLl3736S2v1YXZVV55/gy6rvHUZw4Timz+dz0zvYjL0KlUqmQyuU0Dsjdef4eLF66iahpf+OKnid+YGG7SpMlHl2YH6F9DduzYzszMDNFohJaW9z8O/0GolCtYdQvDZbCeyb3vddp64izOpHF7DYJb3IDeS3YxS2Z+nZb+JL7IPfp/dI3E3gHWLk/ja4sSH+khcXA762cb/UPmWhqrWsUsVW5uIwwDPdWOuTiP0TuIYlew15Yx+rZvuR+nnMOePdeYuEz2IxevIk0TQi1gFpFSorjCSKuKM/cSztIZRKgTETuG6PoMwtMO3OozEoqB8G27ub4sXkXqIURtBcwc0ohSX3mZievfpN9XQ4ntZbys3cyGlZRxJhfP0isKvPhwNxOlFgZad6GqXiinEfPnEdKBxTFkcQFHlqh+6imo1hHBbRjOKkICKAinjNvzONIpgTCwq2cbwrbCj2OuoegxVDUMMo4t8thOBoSBUGNQugqKCyElauxTCKEha6vI8iTC24NwJSF7HlGYgvxVpOJCFjON/j5vK9SzoCVveFuKhtUUYC+MYo69iVAUpD+F2jKMTOmobcMNsV7At2svlWyVwktv4IzOorjdxI5uXgKVUnLt+XNM/OQCwbYY6baFOwIyx3G4/MIVMnMZ2ne203/4TlFYIQS9ezvpHukg1hZidX6d9GKWzuEW/BEfbX1bZ6vmplbQdZVqpUZmNbdlQLZz1yDLy2ukUklaU/FNn1Ot1dB1Hdu2MU1ry302adLko8ODlCw362ptlix/BnR2dvJbv/U3URTlF+aP19beyr79u8jnCxw6vPeBtnUch/nJVWzbpr0ngSIUIokA/qDnntvWy3Uu/fgSIEhPpTn0hYM3S1FbEdveRdvhbVQyOdqO7cKTiOB5+igtjxxg9o+/hVBVKrML2CNDqJ6GfZJv3yHkjt0Il6vRz2TVUQw3dm4Nc24StaUdPX6jvFjMUHvh3+EUVlFT/eg4SLMMuhdRyTf8E6WDvTYF9hXIXoNKGVk+jxj8Eoq3EykdnLkXITeOTB1Hie7Y+CICOxHrb4CrFakFscorPPLt/42SNofPbOOV5z7DUP/j+F77LiVlHJ/dRW/9FEKuoasuhsO7Ea7tqN6dSKlB227kwnlk2w5E+ABaPYZplcDQ0dwjCCUOzIC0kbUMEh+KqxFMCM9h7PUXcTLfxlI9qC1fRfX2IlERKOjGIMIzgrQtZP0k1JbBSGAv/iU4TsNGSgtAeQLZ+nlk5iwUppCVLKhRWP8peNqRQkUkDiBiByHQ1bCi8t0IXKslhKohbQvF7cE2fI2/B9/GbJFiuHBqdRSXgVOpbXmN2HWLynoBfyJEcXGdUMfGDFohXWD0lTFmL8zSe6CX+Ytz1KoW+XSBbccHCbc0PubGz8ww9vY0hlvn2Of2kuyMcvyze5kdXaZ3Vxsu79Y9a/3DHcxPrxCJB0m2bZ3RSiSjfPk3PrXl7wGOHTtEIOAnHArS2vrhZp2bNGnyi6FZsvxryi96fF1VVR7aIttwL2bHl/npjy6ABEPXEI7AH/bw+K8eRDcar6tSqJJLFwglgnj8txqXhSIQisA2HRRVuWcwBlBezYIAXypOPX9bM7qioHo9ONUaiqbBbcGtEALhdr/7AGG4kY5D9cxJpARraRrtxHMIw4WTnkWqGrJexcqtIEo5zMunEGYBdceTaG439vo0zpXvoOIgRQ1RXUd0Pg75+YaNUD0H2bFGhmjsPyL2/A7C0wgKLNtmvOpnoO3LCByY+TYTK7OUtLlGNkxfYNKMsU3zcPJv/BnjS+fpd84j6stIR0V78a8Qy38ELb04n/n7gI38xN9EmiqKNw71NLp3O5qrA2nnEVoMobhR1IexVr+PXP9jbN0Pnf8NiivZEIKtzoPiBruErM0jXW2I0hyyuow0UrD+F6BHkMVRULyIzMug+sHditS8CMVAmjW4+n/C2ttQXQRLgdosGF6I7kW0fwIlPNR4DyKDG95TrWM7mDXQXWg9u9G6tiMUFcV36/ufVSrjG+wh/vhxnFqN8IFdW14jmkundVcPiqrS/9Qeon2tG34//sY4Zq2OWTNZnVyldXuKhbFlXD6D8benOPDp3QCsLeVw+QyqxTqVYg1v0MOjXzhApVjD5TVQ79KbFkuG+NxvPnbz+vsg+P0+jh49+IHWaNKkyV8vHuiuv4mXJVLKVz7sg2ry82F1dY18rkBnVxvGfU6j3Q+27QCNClRmJU/3QIpSrky9aqIbGrbt8Nb3LlDOV/BHfOx9chtXX72GaqjseGSYXZ/YTX4lR7Tzzj6gzfDEgqhuA2nb+DpulXjWz17FNG3sqkl838jNpv4tuRGYOcUciuG+GcApsQ6UQCvWxEVk0cRZ/QailkFKECuz2LEocvEaslLCqq4BApEaQCutI/qfaWh5aX6kK4ac+C5423HGv4+y4yvYEo7/4a81sl5OH69+/p+hVVcYiCbwWV2UtBl8Th+D7Qdw5n+MWpxiMHkUoR1GWgVE3USs/B5COsjlSSjMgz8GtXVYO4UM74eVF7EDuxCtT6O8Wzp1LJzVn8LEH4Dub3hUmmtwI0tG6Dis/e9QmgOZbARh5npDa2z9dXBqUJxBlOcQRrjRsO+PQH0N2n4VofqQ6dMgimBVQQ0hzQokH0Y4VWg5Dv7NJwPN2WtYC5NoPdvRWzoBUAMby4u1tSyrr7yJdBxih/fg7UxtttQGOg4N0LavF2UT78lAPEBuJU/nrg52f3I3iqaSXSlSK9fo2JZiZWaN66dn8IY9WDWLZFeMcDJw47IReDcZANiMDxqINWnS5JeXppflx5RsNsc3//L71E2T4W0DPPnkiQ9t7e7BFJZpI6XE63Vz/fwsIw/147tRsnRsh1qljstrUCnWmL+ySDFTwrYc0rNrtA+nCMTvf5DBFfLT+9xRcCTqjek1q1xl9fQoVqGIrz2B5rn3DVMIgXv/Cez1VdRgFKE11lICMbTtJ6iNnUXxhnFWRgEHoesIbwIR7EHs6MR5508anotmBeHtRKQeQUk1shhC1RE9z2HmM0xW6gw4EgUYzyxTUsZv9IVNcH3sNYZjYRSryKtf+JdMWkEGY60IM4vMXwd3DDH7Isqu32lEvFIi2/Yi589AtAVCu5GeKGS+gXC3NyY9hQsqGWRpGjn0dxFGCKpLsHYSRYvi1FYgvB88NwzI63kUJQAiAoEYFK8jHRvQkHYOXKlGkFW93pDwKM9A+FCjBy56GDXUGABxzAqyloGW40hvD4y/BOtLyM4TiPUy9tyfIfseRo3fUsF3qhXqo2cQXj/1y2+iJdoRm5TtzUIJaVkITaeeyd1XQAZsGowB9B7qJd4Tx+V34fY3rpXDv7KXWsUkEPPx4tffQNM1Fq+t8siXDuIL3bv83qRJkyYPQtPL8mNKvW5iOTYul0G5VL73Bg+AqioM7eq6+bhzYONggm5o7H1yOwvXVugYbsE2beavLKJoApfH4Ox3z1Er1djxxHYC8Y0Vc7NSZ/nKHIbXRWIodfNmreobL+X8tVk0r5d6voQ7lUS4dGrrefSQn8KlUcrjM/i3DxAY7qcyM0t5dAxXZwf+bcMoqTszN2oogd61g/r4Beg6hN7aiqKp6NsfhXIGa+IUys7nkJnrUM6gtG5DTe0EGg3l9uJ1zPwqj539PiV1Ep/Tx8ntX2Yw1orP6aekjOOtt9G7Ngr7/wlCgKG5eVddS+oBcMcR3/tfIT0D73wfvvadRhbvy/8eOf7nSHcAKusI6UWGH4L6Ini6oDgNdhVwgZlrBI16APQ4qMsosccQXf8FiurCKUzBwo+QSHB3QOEy+PqgugbFdYTuh5ZnkCuvQek0VMag5RhK1xfA1bIhA6REdiF9HaB6oJTGzqQbEiHChTX1DtKyUWx5MyBzKiVqk6PYtSqKlKjRlk2DMQBPa5xKKolTN/H1dW55LTq2Q2W9hCvgRnPdKYHx7vEqqkLohu6dWbPIrxbwR30Eb3wxiLaGWZpYxRN0Y7ibs1BNmjT58Gl6WX5MSSRiPPLIUdKra+zes+PeG7xPzLqFqt05nJDojJLovNXY/NAXDyAUheJakdxyDsNjsHBlgeETGy+xxfPTrI4uIKVE9xggHVRDJ9Aa3nDzNsJ+hKHh60zhioVZ+OEbSMcmvKOPytgUeixC4fI1fP3dFM9fQPX5KI9ew9PdherZmP2QUlKdncEM9kOnger1Y1fA8+incIp56ittwtg1AAAgAElEQVRZ1N5HMG6U1yQgc2vUq3WmSgv06xrWtVNcr1UpqZM3s2FXX/46O498lpNf/WPGnv+X9Dp5RKUOuRVEvGvDMQhFh9gxWJtFSBtmT0E5Df4k+Huh+zkoL8LKVWRxHfwpRPvnoJTH8aWxJ7+JyM9CWw3VB0IPofT958haGlwJFO3GNGtlERQFYdch9hi0fR5ZXEGuvoHiiSBr68jpH8PCi2DXkOH2Rk+au9GTJeslUFSEdiMjqYVwFs/jlNZADYBdQ7Ttxn7nJWS1gNRvuShUr57FWl0CdIyhvejtd045vovqdpF4ePMeKsd2WDw3SS1XxjQdCstZ3AEv257dezMoW19Y58pLV/FHfGx/Yge6S7v5Xp95/hLZpRy+sJeHPr8PVVPZ/dgQ3Tvb8IU86O8J7CzL5sqZSarlOiMH+/D47p6NXVleo1Ss0NHViq43g7smTZo0aHpZfkwRQrBjx9DPdB8Lk6u888IVPD43xz+7B49va9Vxb6hxY5aOg+ExsOoWkY47daJUQ0M6DigK2akV1qdWKKfzuHwukjs66Ty+HUVV8HenUL0ult+4wuJrF3CKJUL97ZjFCkZLjPpKGndHO4qmYSST1BYX0UKhTZXdnUKO6uhlhGFgLS2hdPcgdAMpHcqnT4KqUV+eI+uOkgj7sZdmKJ19nWdmv07ZaPSAvdD/RfpVHa/VQ1mbwmt20W+4cdbm0Hv2MDzyNOYbX0f6WqlfPYn7oS8iFK0RdPkSjf62QArZcRg5dwo6DiF8jek6IRREZCfS3YqzNoG0alCvQ2YBufAWspyGlQnwRnDO/r+oT/yzxnaaH6FtLA2L0DZkeR5cLpRAD87MS5CfBjOLxAZPEtYnQHU3AkDViwg3MoFObgZn/Eeg6ojWAwjNA4qOM/sOTjmLk1tGSWxDlCo4ihfhNpBmQ3PaLhUwl5dwsmnUYAjhDoKiIi2b/JUxnEoVb38PQtXQQ/679mKVlrOsXJzFMi3GXx0l0psk3BHDrJo3A7K5i/Ooukp2MUthNU+0o/HlQEpJIVPEE/RSzlew6jaqpqJqKtHU5s4RizNpLr41gaopaIbKvqO3vkSUSxVUTcV1o39xLZ3le996GdO0GNkzxNHjDzbB3KRJk19e7isgE41Pv78rpczS9LJschv5bIn0UpZEKkIgtNEzcvrKIsVcmXMvj1Gr1Hjmq0dxbAfDrW95Q/WGvBz8/AFsy77Zy3M7qV1deCN+VJdGYT6DUASF+TUC+/rIzaZJ5stUMwVyU8sE2qOYpSr+7hTZy+PoIR/h7b3ofg92pYrqbWTCfLtG0BJJFK8PsYlVlTBcN+QVqrh3P4TR2oIaTSA0A8Xtxcpn+VvnPZx95Xsc6Ojkj54MMmmWKRszN7Nhc937GPT6eGXvJxm79BZ9pSUUVUOJdWDnMkhXO6LzOLK4jnn9Mugv4L74+4j5t6DzCHztO0jLxDz2D5Fz5xGhdnTbRNZroGoNsVZ3GKX/M1gTryNX08i5cRSvCxS90W9mVcF1dzsq4Yoger4IgL10Hvv6T8CporRuR+n9UkNZv/4XOMVVpNcD+raGVIeUyOw0KDqyuIxz6ZuN/rr4ECgKTnYBWamAbaNoKlrPAWQph2gdoDYzQeHkC9RmJmmMy0aplF7DOzCA3pqidHUcadusnDyDHo8TP7Kb4HDPlq9B87pQDZXFizNYNYu5M1MYAQ/u22RXEr1xrr12DbffvUHrTlEUdj02zPSFefr2dtxVxuJd3B4DVRPYloP3tuzYzNQir7zwDoah8YnnjhOKBDBNE9u20Q2NaqV6z7WbNGny8eG+AjIppRRC/BVw4MbjppflLwjLsnj55ZMsLCzx+OMn6Oho/wUei81PvvMO5VKFQNDHp758bENpsnt7ite+fY5IS5Bqqc5r3zxLKVsm2hJENzQSXVG6d7Tdsa7u1tHZ3GJJ0VQiPY3MkDfqR2gK7qCXeqGENx5EqCoLb46he10sn5si0pmktLBK92dOEB66VQZ813A6d22alVfeobqUJtjfQfz4PnzvaRBX3B78xx/DKZfQIlGkUFkr1YkLgefACRbn5rky9bt4Wqa5WOkmG/lDBtsH8Cx1UTFm8Dn9DHVtQ1EUKq/+kN66hU0Iz56nkQjKbzwPtSxa5zDSVlG7IjiZGZh7E26UJ+uXXsFcXsZJT6C19WAvTOG430CuzmKtzKDGUqipPoydJwBPw9ZJKIhEDyKQQNn2GSguIVL77/8NXrmEaD2AffV7OHIR2rJoyQT0fwFKFYgEcSZeg8I6SuchlOR2nNws0ggBdUBB6C5oP4JczSApI1U3avtOlHgvspTDLFQonXqV2vgoEoGVL2FnKrh1P1W3C6OrC6GpVNNZilOLqNkKiqHfNSDzhH0MPXsAxeOm/MPzBNpcBFsjN78ELIwucvZ75wnE/ex4eieu92Ruk91xkt2bC7JuRiIV4YnPHsI0LVraG5m27HqBd05dQgDlco3MWp5QJEBLa5yjD+8jlyuya/fg3Rdu0qTJx4oHKVm+IYQ4JKV862d2NE3uyepqmqtXxwgGg7zxxlt88Yu/uIBMOhLTNHG5Dep1E8eRt0t90dab4HP/1WNcPjWBP+ght5qnpTPGqe9cYOeJftKz68TbwvjC3q13chdsy6FlpIu2vb2Y5RqqS0c6EsPvppYv402GSR3fhXScLZvDc5cmKcwsUZpcxBULYRU2H3BQvT5Urw/HkXz53/+U03NzHOjo5E9/+yiutjCqZxqEg+qZRvPYSDXAt5N/i+l6ib2PPn0zUBW6gVPMIzQdobmQ5QKei/8CtXgdZ3oH8te+Tu3ymyj+Fug4BPNvIzuPYK6soIRjOLkV6qPnEf4Y9YtvoHf2I3OrkOrHSc+DY6H2HsKefAsl2Yfauf/Wa0/cf6+grFcgsRN55TuQX0cSwbn4bXjidxGaB6XrEayx55HVGo4wkGsTqD1HETu/jCYEzsoVqJcRrTsbfWymipOroLSFEJqB0Azq5RrV6+dB1dBSnQhVQZRMNOHGLhXxbd+OKxYl/tgxClMLFLNVqukchcUstWwRV3jrSVx3yMvOzxzA3xqmsl6i62A/0BAefvPP32ZtLsPSuEL3ni7893CDuB/ireGbP1fKVX7wrVdJp7OsrmQ59NBOWlKNQE0IwY6RgQ+8vyZNmvzy8SAB2ePA3xZCTAMlbpmL7/6ZHFmTTQkGAwQCfgqFAtu3P3gPWKFQJLuepzWVQNc/mNG3bmg8+ux+ZseX8Ye8zFxboq0ngfs2H8CBPZ10bWtF1RQunhxn/toSPSMp6iUTt99Ac93fJVhcK1ItVom0RVB1lbnzM8ydmcIb8bPjE7vQvTeyHCr0PLmXaraE98aEplmpk51exRPxEUhtVEg3oiHsSh0jFgLDja/3VoArpURKGtkwv4EQguVMnkv2P8fTP83FcjerxW+QDMQ40LKPs6tn2duyl5gnRkldQEPQ7w6g3DjPldk5SukamieCq6sbx7RRdQnFcYR0UNavIvxerJ79lC5fxtzxP+N+OobeNgCnX6V85qcYXYOooVaEquLUGn+GWv8ehHDQenfjVBo+lPquZzc9j06tip1ZQQmEUP2bly/NuVHMiy8jglFE6xGcqSuIah7pCTfOSa2MiA5Ct4WzsgLTZyC6Deu7/wahu9F696ANHESWC1TfehHHtHAsgUgOYBVKSLOOtG3Kb7+BtG2sYpHgw0/gHthOPZPBSqcxOjrQgw0RWD0SIuz3UV7OsvTaBYxElOW3r9D60Ai6z71l+VsoCj1HBt/zfwJP2IszncblNh5IXuVeLC2kqVZqBMJ+6qZFIhGlrSPJc59/9EPbR5MmTX55eZCAbPNP+CY/V3w+H1/60q9SLpeJRO5ser8blUqVb/7V85SKZfr6u3n6mQ+uPZZojeDxuPjhfzyFbVm0TSV4+NmNjcrGjUbqPY8OsfNYP1JKsst5fCEPri1MnDccd77Cme+ew6pbtA23MnximNXxFTwRH6X1ItVCFf9tk2+613UrQANmXr1MZnwRzeNi5xeP4QreyshF9wxSXskgHUniwDYyV2dRdBXN42L19Ch/b9LkYiF7Mxtml5ZQvTeyYd5pVK2EEB7+wyf/A5lqhqgeIf36WSrzy/jb2wkM9qBHG0Fg4exFVJ+b4sUzVJZyqIFx4o8/jNb1UGNqsuMw+WvLZF96EVdnG+WTJ6l0duPpL2KtFVF691Ov1gns3o/Mp9HaelADEWrLy1i5HJalUHvlx6Co+I8+gha6lbV5l+q517HXVxGagffEJxsCuLchHZvaG9/GzqURK7MoiTaU8BCOWUXf/inMsTexF8dRIq0osSRKuA8zW8GZmkAooHYMYy1cQ+sewVqdR9YaHqLCHUQYHpRgrNHz5kikUEA4uHsH8GzbhWNZuJJJXMmGOG1lJYO0bTwtMYSqYCsapUIdOZumuF6lsFIiubuHxEjPPa8hgPmri8xdXqDvYA9DR/uJpMKEU3eeo/fDynKGH377NWzbYc+BIY49speFuVV27ur/UNZv0qTJLz/3HZBJKac3U+oHpj/0o2pyV9xuN273/SmD3061WqNcquAP+FhLZ973/qWUFPNl3F4Xut5Q3nccB1VTMU37rttqeqNp/nbJi3th1Swcy8Zw61SLdQA69nQx8fo1Ip0xPPcoea5cnWN9cgVVVxmq1jcEZEbIT9enH0baDusTC4xfmCKsAJZJJRLkmv/38CQbvWGrxW/Qmuxml9HHJXOCPeEdxG7YHylCIe6JU8/mqcwvY0SCVNdLRBO3fAaNlgSel/8O0dIY9dowmd5/gFOrY//6f8JanUX44pRffQ0tFqd8dQzV7UILRzDXM+jBEOZ6BuHyUM/XUf2tqIEIdrFI/s03EYBTymFEQkizjlMswCYBmaxVGhOitkV9bhq7WMLd048avJEts0xwBxHFdaxMGoGBHo3j5OapvPUTlHoOtbUPe2UGrX8/TnQF6+JpnOwKiteHYtsosQ7QXKjRFqypK2BZaMOHUUMhtEgSoSgIl4vA0RNY2XX0eJLsmYuUJufw9XcR3rOD8uIqSy+fBimJH9qJqyXG/E8vo3rdFJayxPe3YAQ95GZW7ysgs+oW194Yxxf2Mn9lkeNfeeim1MWHgW3ZSNm4vmtVk4GhLgaGuu69YZMmTZrcoKnU/zEiEglx9PgBZqYXOHhwa9+/e3H21CiXzk5SyJboHWzj0ImdHH1qhMxqgb7tH35Pmz/uZ+ChAQprRbp2dQCQ6EsS64nfl/m6LxUFIVB0Dc19Z0ZO87hwHMnffmGa8+k1trsD/NtH2ijOT93Khnka2bBqVvA/FH6LklZh75Gn7iiXaX4vrmiY+nqO4I5bvULScXC3hTDK1xA4GOUxggNJFL+PpRffwiqW8bQXUH1+pCMJP/U0esCPuZrGu2MbejiMnctSnJwjf+EKCFAfPdYo/c2voLldeLtaUQ0VYbjQ4slNz4V7zzHM2evgCVC9ehk0HTubIfjIUwAIw41rz2PULp8CZRnFH8axHJREH0J3YRUl1Z/8BdIIIFI70eK92MUqTl1BhhKEnvothNvf8BENRvEc+zTFt16nNjqG0HSMviGMRBI9EkYLNf45tTqliVmMeJTS+DTBHYPY1TpIiVAU7Fod1dAbgZyi4EtFCXYkqKwXaD9yf1KIiqYQTATILucJJ4Oo+r2vmwehJRXjyMO7KBUr7Ni1tX5akyZNmmxFU6n/Y0Imk6VULLN9+wC7dm37QGtNXV9E11WuXZ4hFPFz+vWrPP0rR+joa9lyGykl5UIVl9dA28K+ZiuEELRvMo15P8EYQP8Tu1g4M0m0J9mYyCzXKKzmqXlcpBIBhBCsFquMun8Pz+A0E5Vu9L1/yp6D29jz4z/nQvYiI4EdRF0R3vqjP2f53ATeRJD1/ln8qY1+m4qmkXzsME693vDOLK6AL8HS65cpTC/RFdiJq3gZ0XkE354jmIUSVqmMFvBSyxRo/8Rx7EoFLdAIaopzK1SyVbSwQE8kUWaXcWz7pjxHfmwS4Q1TL5eJ7diNu3XzQOxd1GAYdedBnGqF2vUxnHoNJbyx9K219lK8dIXKzFlUzzqBxz+FqOWpz01hZrLUl0voHXFqF9/G+NzXsG0Xtmmi4wGUjQMUuoFdKKD4ApTOnsYs1qh4vEQef5T85euY+QKhvTvxdLZRmV3A292Oouv4OlowRypIyyI40Inq0tn2lcdJX5zC392CJxGhIxm6Q30foJAuMvrqKJ6Qh6HjQ+guDUVR2P3MCOX1Et6w976vnftFURS2jzQDsSZNmrx/mkr9HwMymSy//3/8PxSLZT757ON37R2rVGqkVzJEYyF8/s1LgXsPD/HaC+dIdcTBgUTLvXvZrrw9xdjpaYIxPyc+uxfd2PrScxyH8TMz5NdKDB/qxR95f1OY7641d2GO9cU8rliIqO1w5fnz/I/nV7hWK7C/s5Nv/JfHULXSxklJvYzhjfM/Wf81hUAZT9mgnM5TWs2jahqlpRz+9o3BmFUzUXUVoSqNYOwPn4PZU8iOwxS8fw9XPMyM+Mf0PTWMFu8AIdACPkLb+ygvrBDbM4Ri6CiGjnQc8lOLXP/GC1jFCq2P7KHr6cMU8zWWL84RGuxCj4RRdB3F40EN+FF99z8tqLg9+B96BLtYQIsnNvyuMnGd6vQUDi70aBt6Ww96SxtcOo1z+QyOJalOTKH370IgULu2o+TWsFHJvfUWrtYUnqFhbnxW4Nm9j+r4NbRUJ4rbjXQcqisZSlNzqG4XxavjRI/uJ7Rn201hXkXXiO7aOI0YGewg0NXClW+/jXlxAX9rmKFn9tzx2uYuzGJWTUqZErHuOIG4H2/Qg6arBJPB+z5HTZo0afLzpKnU/zFgcmKG8fEZXC6D0+9c2DIgk1Ly4x/8lPTqOoGgj1/5wpObWrv0DrXTO9ROqVChXKoSS95dbBRgZmwJf8RLenGdxek1/EEPkWRg0wm57HKBa+9Mo7s0rp6a4OAnRx78Rd+gXqqxNrOGE/GzcGmO9l2dLGdLzMT/bzzeaS5V7pyU3B3bjZoR2LqNPxnBnjbR/W5cQS9tR7eTnVgk1NNKeKDj5n5WLs+xcGYCbzxA/xO7UWtrjUZ9x0LMvUnys1HWJgpEd/ahJW55LwohCI8MEL4hhVDJFFh4a4zi7Cpmrkh2dB5/Kkzu2jzOEw7zP34H1eNn7cosHfki4X07cbcm0AI+9MCDyTeowdCt3rENCPRYCzgOnm0jCJcXp1LBPbADWa9hZrLoHb1IoSCFgntoN2Z6BZleh7pJZXQUozWFYztYxSLFy2Ng2QSPncApFdHiMVSPF9UwsGt1jFgYIQSqa2snh3dxTBuraqL7XNTym0uUhNrCpKfSKJrCldeuY9dtevd10X/gTo/S91LIlrAsh8h7PFSbNGnS5GfNgzT1f/7Gj02l/o8YHR0p+vu7yOWKHHlo35bPk1KSyxbw+72USxUsy76r154v4MEX8Gz5+9vZdqCb//TvXqZSqrI8v057b4IDj22jezh1x3MNt46qq5g1647s2MrMGvnVIu3DrXj8976Bax6Df7pc4/K1BUaiSf5KU+k/0Yb66sbesHcnJZcySyw8P8nojy+SHGyl+6FtxIbacAW86B4Xg585Qi1XxhX2U81VsC0bfzxAenQWn69KccVpaKBFEw2F/dlT0HmE8J69hPdubffzLkunr1PNFFi5OE3b4SHy00u442ESB4cRAnydSfLjC3gSYXSfB9XQ8fV0bFhDOg7l5SyqW8cdefDAwtM/gOJ2IQwDp26z/vJJhKYSOXEc754j2FULa2WJei5P5vkX8O/fg2dkH+WxMeqzMyhuN/Vsntw75zDXMqCquJMJzGye4O5bWmjJp45j1+ro4fvPWhl+N13HhsnNrZG8rV8xPZMmu5AlNZSibThFuCVEKV/h7POX8EV8rEyl7xmQpZeyvPSdd3Ach8OPjdAzlKJUrFDIl4gnIw9cam/SpEmTB+F9jRk1lfo/WrS0Jvid//a3qFZrtHe0bvk8RVF4/OkjXL44zsHBETyeewc890uiLULXcCPrcv6163T0Jymsb57h8Ee8HPuVfdTKdSK3+QcWMiVO//AyQhFklnMc/tSdEniOIzfohq2V60wE/zXelmmuV7pZLR6lr2+QA2MbdcOgMSkZIsBM3Ub3GpTXy6i6iv+2kqxq6HgTIQorea788DzSceg7NsjAwj9CXz1DNTiCEXihYVX0te9s8KK8HzzxEMXFDP7WCE7dYsfXniHc24or3OgpG/rNT1KcX8XbGkU1NteRW7s8TfrcOEJT6X76IO7ogwVlQtNwd/cCkHv7NI5pIWwbM5vDrlt4d+3DXE1jnruAcBnUZufwtLfj370Hq6sLxeujtrTSOF8BP06pggTc7RuDb9XrQfV6Guvfw2S7ki2hGhqG10Wsr4XYbf2K1WKVKz+5iqqpZOaydO7pZH50ifbtKVL9SdYWsmw73shA5taKXHx9nHDcz/bDvRt6yYr5MpZpoxkq6+k8rZ1RfvDN1ygVK/QNdvDwE1t/mWnSpEmTD8qDTFm6gb8DPAxI4CTwb6WUTUO29+A4DnD/Tec/DxLJ2L2fBLR3tNDesXVz/vvF43fRNdDC1Ogie08M0dYdo29k64nMQNRHILqxBKcoAkQj6FLErXNbyJS4fnqGYNLP3399hjNzc+xr7+BfPTNEWS1u6A17r25YzB2juFZi8p0pgi1BunZ30HWwj+JyjvY9W8sW1EtVbMtG1VUqizMk1s4CNu7iJUR9HYwkKAr4795k/15advcQbI+heQw0t4HynqyM7vcQGb67nEK9UEboGo5pY9fqmz7HMS3Wzl/HqVvE9g6ibRJ8O5ZFZXGN4uQMrlQr5YUVagvLqG430YcPoQWD2OUy7q7G8QhVRY81LIfc7W3UMznAwb9tEFSN3NVp7GtzRHcNoPk85KeXWDx5AbtuEd87QHLfIFJKMtcXqawVSOzoxPC7mX1nkuVLs+hunfZD/Zg1C5fXRbQ7jhACRVFQNQWzZmJ4DS6fbHhUXnn1Go9+9SHU287hxdfHya0VWZ3LkOyKkWi7JQ2S6orTNdBCvWoxONJFtVKnXKwQCHhJr2bv6/3bcP4ch8uXxzDrJjtHhjE2Ma5v0qRJk3d5kAzZHwEF4F/fePwV4P8Dfu3DPqiPMtlslm9/+7vYtsNzzz1LPH7/nni/zCiKwqEndrD/kWG0e2RDtsIX9nLoU7soZIoke+KsFmrE/QaXX7tOPlNi9Noil/g93P3TXCp388oP/jsiLoM9yd1cXL9wRzYs7mm8N+efv8jc5QUMt045VyK7mKdjpANfbIvMkuMQCpkk+pNYdZvk3j4Yb5QnReeRRkbsfSIUBW/iVlbQsR0WLsxSK1Xp2Ntzh+/iZsR39YEj0f0ePMnNBy6K86vkxmYQqoLmdRPbs7GB3q6bpN84x/qVKUI7d4FlY+UKqF4PdrkKQhB97ATScW46EdxObnSS/OQSgYEuNJ+PwuQCq29eRPN7UFSF4HAvC6+eZ+3CBJ5khOzoLPGRXmqFCvNvjqFoKvViBeFxM/rDcwBYtmTy9DS2hNbhNnZ9eg+hVATDa7Dn2T2U1ksEkgHO/egyhUyZUDKAom78UhRJBFidy6AbGp73nEuX2+DY07eGBKSU7D28jYW5VfYceHBXjMmJGV5+6acoQsF2bA4e3HvvjZo0afKx5UHujMNSyttHmn4ihDj3YR/QR53p6VmKxRKapnH9+kQzILsNIcT7DsbeJdYWJtIa4tdv+Enu7+jkH26Ls7aQQ3NXUcUtFX3NqiJtnd8/+K+QYZuYO7bpEMHa3Dr5dAHpSPS3dVoHWph4a5K2oRa0906DOg784XNos6cY6DzSKEsqyvsqT94PucUss2emEJoCCPqP3zswMPwe2o43BiFK6Tx23SLQGm5oetUtHNtB97oQioJ0HPTAnVOs5fllKourCLeH/NUpPN3tVNbXUSyT+MP7G7IcQtyU37gdx7LIX53CnYhQGJ3EQWHp1XOUphdR3Dqx3YMIVaAaOkbQh1WuEuprQ9E1FK0xpWrXLTSPQXpqlZadncy+NY7UdQKpCMtji9imhZS39umL+vDdyKjuf3YXhUyJQMx/x/u97VAPya4obq8Lf+ju/Y9CCHbtG2TXvvdnAv5uz5mUkszaOn/wB39CPB7lmWceb2bLmjRpcgcPcnc8I4R4SEr5BoAQ4gjw2s/msD66dHS04XK5cByHnp6mUveHwXv7wlaLVS46/xx3f0NBP7Hrj0n1xnH7DL7z5q1Jye2RIfwRH9HW8JZ+hwC9B3sQqoIn6CaUCFBIF4m2h1F1tRGA3R5oldM3pyeZPdV47H9/5cn7QXdp1GsWmesZ3KEHk/8oLme59vw5kJL2QwOE2qNM/Ogsdt2k68RO2p8+jLRs3Ik7Ff11vxehqKgeD5amk377KqEdfSghP+6O9rueT6GqeDtbKM8uIbwespcnKS+m8bTGMMJ+fN0pdJ+HzicPkDg4jCcaxAg1gilX0MvAM/uoF6v4WyN4EivMn51i/28cR/W4GD85SseebvpPDBHawvbI8BjE2jcPeBRFIf4h2SXdi67uDp599klMy+TqlWtomsbszDxLSyt0dXXce4EmTZp8rHiQgOwI8DeEEDM3HncBV4QQF2iajN8kFovx1a9+BSklrvsY4/9lIZspkM8VaWmL4XJ9eN/+HUduyIb96W8fvUMzzHBXiUcbmcjbe8PuFjTczvYTQ6QGW/AG3bh8Lsq5Ct6QByHlTS0x3s2G+TZOT36Q8uR7WRhbYvHaMp0720n2NF6PPxHECHnxmw65dIniWhF/bHND7GK6QHY+Q7Qrjjfiw6qaSNtB0VXMUpVKpoBZqaG7DfJzaToe2log2J2Iknr6KKW5FTIXruFU69QzeQL7tqF57m7blbs2S24mjbclSWigncVXzuHvbtDGNOgAACAASURBVEEP+Gg5MoJxQ57DHQvijt2asJRSkr6+hFU1SQylUA2NxFAbiaGGKLBZNZk8O4tVMVmdytCxs3PT/f91QQhBX39jstM0TU6++gb+gI9o9ME8aJs0afLx4EECsk/+zI7il4yPQjlCSsn1a1NUq1WGt/V/oGMul6p8/1uvUavV6e5J8fgnDt1z36ViFY/XQH1Pyete2bD3aobd3hcGG3vD7pd61WRlPkug6qNz0Evg3YCnuLIhG2bllrlyqUi97V+w/dkg3pbOD608Wa/Uufraddx+N5dfHiXeGb3Z/xRui1Av19F0FfU9JVSzarI0toTq1ph7ZxLHdlgeW2LfFw4RbI/Ssqcbu2qS3NEIXrxRP2alTnTwlvOBbdqUV7LoPjfu8K1BCiMcQA/4kFKybrjwtiWIHxhG3Diu6lq+YQkVD20IfjMXJ3BHg5SXMsT3DdH+5AEc08bbGru57WbkF9aZem2UUrbI3LlpRj5zAM9tWUHbdrDqFi6vQbXw0ZolGhnZTldXBy6X8bH6otakSZP754HMxX+WB9Lk58vc7CIv/Pg1EA11/sNH3l/DcblcZXVlHbNu4nEbFAubS1nczpsnL3HtygytbTEef/bgzaDsfrJhm01J3m8mbCsunrzG6nwWaVmEjBLBrt5GoPWebNhKWmHqwjyaoeL2u9nZ+uH1iqm6iifooZwtE0wGEcqttQePDpDoieP2u/EENmanJt6eZGl0Cdu2UaXE5TNwLJtipog/6qd930Y7n/5nDwJsOGeLb18jc30R1VAZ/PQhDP+t3iqhKkgUrLrN2sVJpCNJHhimni0w/9JZpJS0PrSTYO8tSYtgbxvZsVk88RCa140R3DgtK6Vk8cwE5XSetgP9eG9kyYQisGom6bFlzKrN+KujjDx3S2rC7XOx7cQQa7OZTa20/roTDDbFZps0abI1H6zDuslHH8n7DmjyuSLf+9YrVKs1UqkkXp+Xnbvv7ucnpWR8dI5Ea4SF+TSzK0W6W4MPnA17P5kwaDgGjJ6epmuoheH9PUCjT8s2LY6v/yMCf3AVujZv1vesFFB1FduWH8jOaTNUTeXAp3ZRXC/f0YyuGRrx7s1fq1AEElA0laFjA5jlOvNXFjj3nXO0DrYyeHxjQ/pm73WtUEF3G1g1E6tmYvg9VDIFVs9P4E1EUA0Nu1pnfWwOx7JxLJtARwLpOAhFwSxVNqwX2ztIoL+deq5MLV/G8x4dtKVzU5z9o59g+N2YpRrbP/8QAIHWMH2P7aRaNnEFvWiuOz+ekn1Jkn3vr1cvt17k9RfPo+kax57cjdd399JrkyZNmvw8aQZkH1M6OlM8/czDVKo1hoZ639ca+VyRcrmKz+dGNRRObCGc6TgOlXINj9eFoijsPTzE6VOj/HFO55/8Xz/gwBbZMKEUOP3GFF+u/jb/4PEUgx29Hygb5jgOZ18dwxf0cPmtKToGG3prw4d6ScZson91FSG3btaPtAR5+PP7sEybSMuH74loeAyingcrHffu78Eb9uL2u4h3xSlny0yfn8UX9pGZXYP/v707D477vO88/376Qp9o3AdxgwTv+xBFUod1RbJl6/AR23HGHicTlyeztbuV2qpsyjWTqZnNZD3JplIzk52Nx/E4VT4mcSaxZcuSJfmSJUuUKJHifYIEAeIGiLPRQB/P/tHgAeImGvgBxOdVpSr29esHaFD48Ps8z/dh8g5Ba+2E72PFvgY6Tl4hWBi9GZ7a3jlHIjbK4LVe6p7cTdmBraQSKXLyI6TiCcJVJcR7ByCVJrq2AptOMzY4gjfkx+Vx03epjZ5TTRiPm7qn9uLPu7XubbCtF28wh/hAbHz3aOaz6bnchXG72PNbh4gPjJBXWTBp3D0t1wEorMyf989C47lrDPbHGBtL0tbcxdqNy3sNmoisLgpkq5QxhrXrahd0jZKyQmrr1tB3fZAdu6Y+Z36gf4i//9bLDA6OsG77ep5+ah+bt9dTUFPGf/jOZwiUTF8NY8jD2eOXCYT8XH6vg/VVM1ffZuNyuSiuzKf9Sg/RgiBXj53g9KlBcgvDPPyxXZjq2Rfr506zoN4pXr+Xys23GuwGogEqtlTQfaWb+v0Tv19jsVHO/vQUiXiCDY9uJjzeZ82fH6bmwYnnhebkhYj1DODJ8eEN5BDcWI0nmMNIZx/B8kKMy0Xpvk03n9/61mn6L7cTLM6j6tGdjA2O4PJ6SCdTpOITm9OWbathuHMAl89N/aOZvUDdjZ1cfP0cYFn7wAZK108+UqvtYifHf3YWA2x/fBPla+dXKSsuy+P8yav4vB7yCnTIuIgsL/MOZMaY3wKeAVKAAX5orf1utgcmy5/P5+XR37h/xuf84tXDHHn3NEeKN9D7ZiN/ezXJ33/pIB5vbNa1YbHhOP5gDrHhUWrXZWfN0L7HNjPYM0j0R5+FU4cpDW7mZ/xbhgbiFCxSL7HZWGsZjSfI8XsXvB7OGEP9vnrq900Or12Xu2j+4CqBaJDO8+2ED0y/pql873qiNaX4wn6841N7udWlxLr6af7lcQKFudQ8ujMTutJpBps7CRRGGOnuJxUfo3T3OrqOXyYnGiRYkmkzEesdIjWaILKmgB2//TDGZW5+vTZtgUzlLvPnycbiyczj1pIcS837e1NZW8rTv3kIl8tFMKzpShFZXu6mQvawtfYzN24YY/4KUCCTm27fKZkT8JNbVsRw9bcJBps4PY+1YaFwgKeeP0hsOE7hbd3r5+rKhVYuX2hjw7Zq1lRlKl4ej5v80BhcewdIkRc7Td1mL7kFoUXrJTaVdDpNKpXG7XbxzmunuHa5i7VbKtj5wNSVxrlec6bjunoauxjo6KevtY+GB2d+H5fHTbi8YNL9/Vc6MzsoewZJxEZJjQ3T/KuTJOJJbHqY/I1VeII5GGOoOHjrIPFYzyDnXj5KOplmza46yrdPPOi7eG0pNm2x1lK8buqjuyo3lJIYGQNjKF93d59TODd7a//S6TRvvXWEpivNHDp0HzW1mgIVkbt3N4EsxxjzNNAMVAIzt7uWVSWdtnz2v73Ne03X2VOTz998bheRNTm89MFf39VOyVA4QCg8/x+xkdgob//iJMFwDm++eoxPfHIbrkgpY2NJjr7XwcbIFnIHT2Gq9rPn6YeyXhEbHorT1zNAUWkeOf6J68JGhuP88sWjDA2OsPvgeloaOylak0/j6Va2HWjAPUNriKkkEymOvnaavo4Btj28nrK6idOtfe39pJMpcqIBKrZXA4aC6slnm1pr6TrfStuxK+RWFFB9X8OkNhslO+ppf/8i+WvL8UUCNL9xOvO9c7tZ88BWciun3nyQiI9hk2ncXjejgyOTHne5XZRtnLkK6vF5aLhv8nrH2GCcZCKVCdVLqLe3jxMnTpMXjfLmm+8okInIgtxNIPt94OPANqAF+FdZHZGsKHf2DesZHuO9ph5SZoj3miwj1s2BnXvY0569nZJz4fG6CYb9DPUP8dTgf8D85Rmo2s+VfX/F+VNXuRj8Q3bvL2LTgfuyHsbGxpK89sN3GB4cobg0jyee3T/h8d6uAfqvDxEM+7l2pYvajWtoOt/G+h018w5jAIM9Q/S0XCecF6TxWMuEQHa9tY9jL53AWkv9nhoaHtxIIDdAqGDyWrjeyx188N03ifUMUlBXTF5VEfk1E8Nd/ro15K9bQyqR4trh8/S3dJEeTeDPC9/sYTbQ2sv1yx0U1JcRKc+nr7mboc5+8Lm53nKdsh01k977bvV1DfL6C0dJJdPseXQT1Q1TV9cWQzgcJDc3l77+AbZsufvKpogI3EUgs9bGgG/duG2M+UPgq9kc1GoQj8c5f/4i4XCI+vq72+XotDurYd/9vfspCHkoXPcNhl2XCKXXUhB6CmNMVvuGzTIoiHXjDRXz+DP30d9ymfy/O4NJJ7HNhzk5+hZH322nvqECf/GueYex2HCclqsdFBRFKZriyCGAZCJJbGiEYDiH/r6hSbsaC4pzieaHGBqMU7+pgoraEnYealjQoeuRghBD12NsPLB2wmOJ0QTpdAq320UqmaJ84+TF8gCjQ3GGOgfwhnKw3QNYIGeGdVZD7b30XmzD4/MQqS2k6tAm3D4vqbEkTa+fwuVxM9DSw7rf2EnjL09nGtaeaaXmwHqufdBMycbKSQd/343BvhjJsSQen4fejv4lDWR+v5+Pf/wjDA3FKChYmuOYROTedTeL+v/+9pvATlZxIIvH43R0dFJUVEgoNPcpk8OH3+XEidMY4+ITn3iGsrLs/yIZGhrKLGAOzn/dTDw+yuXGq+TmhqmozPwSn60a1jM8hvEMMuppxNg0o55Gro9epyhQtKjVMIDhoRGaGltY99bv4+t4H6r2E/zCjwiu33izuetYyW6GTS677o8SCPqoXTd1OJnJr376Ph1tvXi8bp79zQ/hchm6Oq9TUBglPH5IdzDk5/6Ht3G1sY0N22onBdBAyM8Tn7g/c8j3+JTgQg5d9/m93P/sThKjSfyhiV3gC6sKqN9dS2I0SdWWqc9PHOkb5vRLxzId/NeWUbVnLWU7qgkWTr/o3xcKZHqyJVIEiqK4xg/SNi6DJ+BjdDCOPxrEuF2ZXmlJ8IVzGOoZIq+yYELj24UoqSqgrKaQxtOt9PcOMTw4QiiydKso/H4/fr82CIjIwt3Nb4EBa+2/uHHDGPNfszieFcVay49ffJm29nai0Sif/vQn8Xq9c3ptOp0mk2czC5mzrampmZdf/ilut5vnnvsIRUWT1wzN5M033uXC+UZcLhcf/+RHKCjIn1M1zGUK2Vmyk2Odx9hZspNC//ze9269/rMjDFxrZGPHESA9sZfY+O7JtIkQffEdBgeG2bV/411V6hKJJF6v++ai/J+9coTerj7CuSGe+eSH8I4Hq7r1a6hbP/2aKLfbdVfTk9Nez+PG7XFPeX/dntoZXxsfGCE1miQ1lsychVlTTDKeJJ1KT1vFChSEWff0PrrPtdB+/DIDrT3UP7Idt8/D2sd2EOsZIFiUiy/kp+GJHQy09WK9HuL9cQrXlmatSprj91K/rZKWK130dPRz+shl9j2yefYXiogsM3cTyP7kjttfycZAViJrLb2918nNjTI0NEQymZxzIDtwYD/5+fmEw2HKy8uyPraW5mu4XW7GRsfo6uqZdyBLJJOM4CGQTt2sjM21GvaNJ5dgenJ8avJGi4pUKsWYJ49O33pKkxcxt/cSG989GQA+8vEHSCaS+APTnyc4027Fhx7bzYWzVyktLyAcCTA8MEwoHGAkNkIqlWaOH/+ykluWR0FdMWdeOkZBTTHvfvMXlG+vpvq+dazZUTvt63IiAYY7+vHnhYh1DxLvHyZUHMUX9uO7bbozXJxLIp4gnUwTLonQ29RN8dpSWs+2MdAxQOW2SsILWJCf4/fh8bhJJdMEl7A6JiKSTXezhuzyHbd7szeclcXlcvEbTz7O8eMn2L9/L4HA3H8Z+P1+du7cvmhj27R5A01XW8gviFJdXTH7C26TTlu+3ujhaHOULaVBvlRUgCU952rYYk9Pkk7D3370VhPXL/yIhx7dy6ULLaRKvo8pcE/bS8zjceOZopJ0w+G3jnPm5EW27dzAnn1bJj2emxdmz/23KjAPP7GPc6cuU7euEr9/+R8qPxXjdjE6FGd0YITui224PC48OV7iA5ndkGPDca5f6SKQHyJ3zcRWGIUb1nDt3YsEi3PxR2+FqlQihcvjuhnIQ0URAvkhRgfjlKwvY6h3mAu/vojb52G4P8aeZ6Y+5WEm1lqaL3YQj41y8KntWCzFa/KnfO7YWAKXyzXjZy8i4qQ5BzJjzB9McXc/8J619lj2hrSyVFdXUV29/La7FxTk81u/9ck5PXeqtWHHWvpIu4Y43cmkaljcfYmrXS3UldYsTTXsTrHuTBhL3zrmKDdawq69Gxd02ZGRUU6fuEBJWRHHj55l+84NN6cgp1NeUUx5xdRd/ecqkUjS1dFLJDdEJHdpWzcAjA3FufT6WdxBHyMDI+z73CFcbjdrxndDNr91jt7LnZlzJ5+7j7yaYowxpMaSeIN+Gp7anVkvNl5VbD9zjeYjjeSuyWfdw5twe9z4Aj62fXQXNm1xe9zEh0dxe90kRxP4w5N7zCUTKTzemcNTV2sfh187hQHWba+iZkMZP/67N/H6PDz01K6ba8k623t57aXD+Hwennj6ANG85XXagogIzK9Ctnf8vx+O334aeBf4sjHme9ba/5jtwS1n/f39pNNp8vOn/hf5SjHXnZIuU8iG8EbODJyh3FbQeqGDutKaxa+GZQY5sYN+qPjmQv2ZjjmaL7/fR3XtGq42tVG/rmrWMJYtb/7yKFcaWwkEcnjmEx/C7XFz9J1zJBNJdu/fSCC4uIvGfWE/ORE/g539FK0to6C2BOMyeIOZad344Agt75xnuGeI/tZedvzWg6zZWceVN8/S19yNL+hn08f24MnJBLK2k80EC0L0tfQSHxi52WLD5XLB+EywP5TDzqd3EB8YIVp+a4eitZYTr1/I/HztqGTDvll2IJvMz7AxhsvnW0kkksSG43Rc66V+Y6YyfOVSK26XYXhohK6O3jkHsrGxMYwxc16GICKyEPP5jVMI7LbWDgEYY/4Y+AfgIeA9YNUEstbWNl544UdYa/nIR56ipqba6SHNyZ2VMGBea8P+8uB/4u9/9AP8ST+lZdkJQXMY9KTpSVyumwv1s3nMkTGGRx7fT2x4hGDo1vRzf/8gRw4fJ5ofYfeerTN2w78bfb0DBIN+YrE48fgY3Z3XOXvyMsZlCEcC7Ni7uD2uEvEEhXUlgKF2/1oaXz9NOmVZs7OWsi1VxAdGGB0aw6Yt3mAOvRfbWLOzjpG+YXLCAcZioyRHE3hyMsGldFMFLUevECmN4p9hTVe4IDRp7dhobIwrJ1soqSrg8gctrNs9fW+24jV5HHxyW+ZorfXl9HT2cfHMNXw5XgqKb51VWddQweVL14hEQ5SWz20tZUdHFz9+8TXcbjdPf/QJCgtX9j+8RGT5m08gqwZuPyU4AdRYa0eMMaPZHdby1t3VTTptcRlDZ2fXighkU1XCXC4zr52S5WUlfPE3P0MikVzwL6jWa+00N7fSsL5+5h5OU0xPEi5ZtGOOXC4X4cjEkHDk8HGam1u5dClBWXkJlZXZ3YRx8OFdfHDkLFt3rCMvP8JIbBSXyVSL5nvUT1/XIFdOtFBcXUjFHI8XGursJ5VIUbK+jJH+EYZ7Bhlo68PlcVG8oRyXx0PhxkpajzXi9nsp214LQM3BDbQdbyKvvnTCIv41W6soXleG2+eed3i9eqaNtsZums+289Cn9kwbxgb7YnhzPFTU3foayyqL+NhnH8DtduHLuVXVKi7J55OfexxjzJzH03SlGZu2xMfitF5rUyATkUU3n0D2HeBtY8wPyPRr+CjwXWNMCDi9GINbrtauq6ep6SqpdIqNG9c7PZwpzaVnWHEkh+uj1ydUw37wkxfZt3XPtGvDcnOn7001VyMjcV566WcYDJcuXuGzn3v+1nssYHpyZCTO+XOXCEfCrF2bvW7w0fwIly4l8Hg8BAPZnz4sKS3giacP3ry9prKYp55/gHQqTUnZ5PMkZ3L0tTOkUinaGrvJL4kQzJ1Yoepr7+PKkSvkrcmjZlcNxhhChRF8oRxSY0lqDzTQc7GNcHGURDxB19lW4gMjtJ26SrAkD5fPR25FJqBHSvPoCnVx7Xgzwz1DNDyy+Wbg8frvbprv6tl2Nh9aS2/bANVbpt6McvKdi5w6cplgJMAjz+wmHL0VWgPBqXfPut3zW8xfV1/D2TMX8OX4qKzKzsH2IiIzmXMgs9b+e2PMj4EHyASyL1trj4w//LnFGNxyFQqF+NgzTzs9jGnNdV0YQKH/VjWsLFXOYGeMn/zk5/zzf/6ZrK8Ni8fjvP3WeySSCdKpFNaC23NbBWiB05PvHD7K2bONYC2h5wKUlWengrZ7z1bKyksIBvwUFC5NR/bikruryARz/XS3XMfn9+K+Y1F865lWfv71XxIuDNPf2U9hdRGRojD+3ADbn9uXaVTr97JmRy3Xm7rxBX1c+6CJVCoNxoXb68mcOuA2DLT34/a66L7UQaQkl/5rvSTjCXzTBKK5SKfTFJRHuXy8hZrNawjnZX42kskUnS29BEJ+ejr6+PG332IskaRufTkDfbEJgSxbiosL+dw/++S8qmoiIgsx31XLSSANWDJTlrIMLKSDvjGGbzz5DbqHu3n1+68zMDhIfn7eovwSOnf2ImfOnAdg85YNFOZHqSkOcDNiLXB60uVygbVgyOqOT5fLlfVpysWy67FN9Lb1E84PkhOY2Iaj8chlomVRWk62EMoP0nb6GoNFYco2luP2unF73cQHRxjqGWRsNEHNgXV0nL4GaUvdAxvJqyig9oGNdDd20fTOJYzLUFBTyPWrPRSvL8cbWFjbj8bjLTSf78AT8FK/s/LmdOWxN85z9PVzBMN+8styqd1Yzun3LpNXFKa4fOaA3N83SCKRpKh4/gF3vlU1EZGFmE/bi/8N+D3gf5KpkH3LGPM1a+1/XqzByezms0tyug76LuOiJFzCs899mM7ObkpLixclkIXD42uzjKG6spy61//VxGrYAndP7rtvJ/kFUcLh0NJtOlhmfH4vZXVF9HUM0Hapk+KqAjzjxzMV1xdz9YMWckI5DPcM0Xmpg86LHQTzQuStyQSb4e5BWk80E7sewxPwsvuT9xPvHyFckovb5yGdTnPxjfPE+mP4wzkU1paw9sGNWfl5GRmM4/G6SSaSjI0kGOyL0d7cw3u/OEPLpU4Mhmd/7yFSqTS/8an93Pfo5mmPnOrt6ae1tZN3Dx8nnUrz8CP3sW599qaxRUSybT4Vst8F9ltrhwGMMV8F3gIWHMiMMZ8C/i2wCbjvtqlQucNCqmGz9QwLh0O3QtMiWLuujudCQYwxlIWZuhq2gN2Tfn8OW7curBfZvWDo+jCHf/gBqWSa6s3lbH0os85x7X31tJy8Rm5xhJYTLSRGk3j9XtzeW2EqmUjSdLQJYyBcFsXj9xG9badk+9k2Lh2+RM+VbrY+tY1oRT7GGC68dZGuy13U7a2jfP3U1cTz716m5UIn2x5ooLh68tq4dbuqSSXT+EM5FFbk8dPvvUtsKE5f9yB5xRECoRzW1BaTE8khJ8cz7bFOnR29/PiFX9De1k0ymaCqppzu7usKZCKyrM0nkBkgddvt1Ph92XAS+Djw11m63j1podWwJekZNv3gIdZNeVlJJmhZO3U1bJF2T64myUQKm07j8bkYG7m1Mdrj9bDl0U00H29m93O7CeUG8AZ8RG5rETHYOYgrx8tYbJS0NZPWoQ33DhPrixEpySWRSOP2uIn1x2g700a4OEzju5enDGS9bX289LVfkU6nuXryGv/s3z076ezNQNjPzkcygTqdTpNKp3F7XNRuqqB2YzlF5VE623s58f4lrnf3E8kPsnX3Wnbv3zShQhcbjpFMZqYpx0bHKCktYsvWhqx8b0VEFst8Atl/Bw4bY/6JTBB7DvhGNgZhrT0D2V33k23W2nmdVZkNi1kNu11/fz/DwzHKykoXZwHzIvYSS6VSpNNpNe+8TbQ4wob99fS097Ph/voJj5U1lFHWUMZYbIyOix2YO6pMuWVRiteWkE5a1h5cN+naldurKF1fTjKeoGpH5oSKnGAO4aIwg11DREpz+dV3DxPIDbD9sU34xndbjsUTDPXHcLtdGNfsn7XL5eKBD++gpbGTsqpCCssy3fxPvn8JrKXpchvbChs4e+IKa9dXkV94K1RWVJWxeVsDI7E4992/3ZHTD0RE5ms+uyz/whjzC+AQmUD2hdVyZFI6neaVV17l8uUr7N27h3379i7Bey5NNay/v5/vfe/7jI6Osm/vbu7bvwhf2yL1EhscHOKHL/yE2MgITz75CFVV8zuz816VGE3Scq6d4YERmqNBNt4RygAuvH2R7is9AOx+ZheRokz3+qL6Eg797iOMDY9Svnny9zOQG+CR33+MsdgYwfzx3Y0Gtjy+hdRYkovvXcH2x7ne2kdfez8ltZmfwabT7VRtKmfo+jCPff7gpOpYfGSMIz8/TWI0yd5HNhPJCxItDBMtnNhVf+P2WoKhHKKFYfquDxCOBgmGJrYi8Xo9HHxg/mdjiog4adZAZowZJLOr8uZdtz1mrbW5k1815XVeA6ZaXPIVa+0P5nKN8et8CfgSQHX10jRkHRoaorHxMmVlpbz//tFFCWRLVQ2b/LUNMzo6RiAQoLOrO1tfzJIcddTR0UX/wADBYJBz5y5OG8istcu6+pptI0NxhvtHCOUF6LraOymQpVNpBroGGRtJkBPwYgykkilSiRS+gI/yjTP33fL6vXj9XowxDPfFeO+lEyQTKXY/uZXimiI6m3rICfkmdOEfHhwhGA1QUJFPXsnkXnbtV3toa+rG4/XQePoaOw5OPcXo8bip31BJbcMarvcMEo4EyFmhh7qLiNxu1kBmrV14J9DMdR7P0nW+BnwNYO/evXaWp2dFOBymtraGpqar7Nq1M+vXd3JtWFlZKbt2baerq5sDB+7LxhezZEcdlZWVkBfNZXg4xsaNU/8CP336LG+88TZr19bzyCMPrIqeUpGCEJUby+lu7mXTobUTHkun0vzib9/k7Bvn8eZ4efJfPoo34OO9F44R6x9hwwMNlDeU3nx+cixJb2sfwdwA4YIQA91DfPDqKTxeDzuf3EJvez+jsTE8Pg8dl7vYcP9a8kpzcXvdN6crR4ZHGeyP0ds9SENl3s3+YrfLzQvi9XlIJdMUlM7+bzyXy0Vh8eRDyUVEVqqlOT15hXO5XHz4w08xOjqK37/wTu1OVcOm4na7OXhw/4Kvc9MSHnUUDof49GeeJ5VKTbuG7PDh9ygsKOD8uYvs2rWNgoJ7/wgcl8vF1gcnBlRrLYnRJKlEio5LnYQLw8R6Y3gDXvra++jvQoDNhQAAGIdJREFUGiRSGKb9fPuEQHburUu0nm/Hm+Nl//O7ab/QQSqZJh4bpretj4LyKP5QDqlkmrL6TOUzEJn4d2Q0ljmku2bzmklr1m4oKI3yxKf2k0qlyc3Xmi8RWX2WRSAzxjxPpn1GMfCiMeaYtfZJh4c1gTEma2Fsxe6UnMoSTU9Ox+VyzVj12rixgWPHTlJSWkQkEp72eQuVSCTo7x8gPz9vWTYUPfPrSzSfaaO0tohND2/g2EsnWLu/Dq/fywevnuba+Q7K6lPs+eiOCa8bGRhhsDdGe2M3eRV5VG0qp+VcO74cH9HiCKFokEOf2ou1dtK6MID+niGGBkeo21rBQPcQm/dPXs92Qyh3+oPIRUTudcbaJZn1WxR79+61R44s75Zld1bDugZHOfCnr5IyQ7hthLf+6HGMZ5DHv/c4KZvCbdy89qnXKAoUkbbprFbDsm666ck7Q5qDrLUMDQ0TCPjxeBbn3x+pVIoffP/HdHR0Ub+2lieffHRR3udupZIpfvrNX5NfFqX72nW2P7KB3KIIkYIQVz5opvH9JixQu72StXtqJ7x2oGeQf/rzVyiszMeb4+Xhz9yHy20wLhfenJm/n7HBOK/+/TskRhNUNZSy/4mti/dFioisAMaY96y1Uy5Ev/cX1DjoRjXswJ/+lM987W3SaXuzGhZq+FMK1/1N5vb4eZJu456yGrZswlg6DUOdmR5iMPX0JNyanlwG4zbGEImEFy2MQeaMzo7OboqKi2hqaiGdTi/aewG0t/Rw+Oen6LjWM6fnuz1uarZVcL29n3Q6zZGfnOSt7x9l8PowxbWF5ARz8AdzKFs7eUo5tzDCzse34MvxEi2O4At48QV8s4YxgMRYklQyhc/vIzYYn/fXKSKymiyLKct7xXJaG5Z1U1XDlnh6cjElEgmuXWslEolQWDi5i/xMQqEQ+/bt5MyZ8zz44P2LunEgMZbkzVc+wOP1cO1yB898/mE8U0wV3mnD/nrqdlTyj//Pq7Q1dhEtjpCIJykoj3LwNzP/WJvu527bh9ZTv6uKQMQ/bXf8qUQLw+x6aAO9Hf00bF+aHdEiIiuVAlmW3HNrw+403WL9Rdg96YQ333yLkydP4/Pl8OlPf5xodH47+Pbu3cXevYvf+8rlduEP+BjqHyGSH8Q1hyarNyQTaXzhHMrWFpMYSxEtyaypM8aQTKS4eOwqqVSahp3VN3dI3njPSMHdLbSv27SGuk0zt9EQEREFsrt2T1fDYO6L9e+Ro476+gbw+wOMjo4Rj48ylzzW0nKNI0eOUl9fy/btS7M+yu128aGP7qGnc4DCktx5VeMC4RzW7qym9WIHDburJ2w+aG3s5NyRK7hcBl+Oh4Zdy+fcx7bWDt544x1Ky4o5dGjfstw0ISKyUApkd+Ger4YtYS+x5eKhhw7y3ntHKSkpoaRkblOvP/3pL3G5XLzxxtvU1FTNu6p2t0KRAKHI/HckGmPY8fB6tj6wDvcdU4++HC9gSKfBF5i60WpiLMmlUy14cjzUb1yzZD3dDh8+ythYgjOnLtDQUE95+cr/B4CIyJ0UyGZxZyUMuPeqYXdawl5iy0VBQQFPPPHYvF5TWlrCpUuXiUTCWWmJslTuDGMApTWFHPzYDtLpNMWVE3u1pdNpLp25xtmjlxm4PoJ7fNq0sm5pfhYqK8t5/73jhEIBIhH1KBORe5MC2QymqoS5XObeqobBhOnJtLUkvVF898hi/cX02GMPs3XrJvLz88jJyXF6OAtijJkUxG5obermyC9P03HtOjZlKa8pmjLULZY9e7dTU1tJKBQkGFSvMhG5NymQzWCqSlhxJIfro9fvnWrYbdOT6cp9/LDgy7S2dfLAoa+y7VOl9+T0ZLZ4vV4qK7N/oLm1luarbSQTSWrqKnC73cTjYwD4HTi38cbOyuLyPMoqC9iwvYayqsIle39jDMXFS/d+IiJOUCCbwVSVMOBm37AVWQ27023Tk6b5HXpjj1FQXMfxEyfZtn2b06NblZqvtvGTF3+FBQ4+sIuS0iJe+/FbYAy/8fQBioqX9vin8qpCHvzwLlLJFBV1JXNqsyEiIvOjQDaD6SphxpiVWw27c1H+bbsnbeU+8vIaaO/o5NChg86OdRVLJpJYMsdCJRJJ2q51kU5brE3T1tq95IHMGLNk68VERFYrBbIZTFcJgxVYDZtu56QxN3dPukLFPGstiURixa+JWslq6io4+MAuEokkm7euYyQ2yqXzVwGoril3eHQiIrIYdJblLJb9eZJzNdQJf7Eps3PS5YE/OHPP7pi8F934e5rNn8H4yCi+HO+Sta8QEVntdJblAiy78yTn6s5zJ29MTbo82jm5Ahlj7vpn8PLFaxx//wIjsVvnSX5w5Bzf+9arvPbiYZLJVLaGCWTaZJw5c4H33z/O6OhoVq8tInKv0pTlvWgVNnaVqXV19PKrn76PcRn6+4Z48NHM8U7nTzdRVJxHe2sPQwMx8goiM14nmUzSeKkZr9dDbV3ljOGw+eo1fv6zNzDGxdhogvsP7Mnq1yQici9ShexecGc1bKrGrnCrsavC2KphXC4MYNN2Qu+wrbvW0dvdT3VdGZFocNbrnDp5kZ+99havvPwrrja1zvjczNFGBptOa0emiMgcqUK20k1RDRsmyGh4PXmD56ByHy5NT65aiUSC9VtryM0NUd9QdfP+iuoSurp7KSnNn9MasnQ6NV4Vs6RSM09xVlSW8+EPP8ro2Bhr1y6fMzFFRJYzBbKVbopq2LEPLnLC/3ncrn4+9MDHaVBFbFVqa+3ixy+8zujoGAcf3EXObU1l33z9fbq6erlw/gqFRfkUlxTMeK0tW9fjdrtvTlnOxBhDXX11Vr4GEZHVQoFspbmzl9htfcRuLNaPRrtIptKkvXmEwmGnRywOicXinDx+gdjwCNFomJ27N958LBQOcO1aAo/Xg8/nnfVaPp+X7Ts2zvo8ERG5OwpkK8kcF+tv2bKZ/Pw8fD4fxcWarlytcnNDFBRFqaouI5VOT3js/kM7qa4pJxwJEc2beUG/iIgsPgWylWSqxfrhkluL9ccZY6ioyP4Zi7KyFBRGOXBoBy1X29m3f+uEx3w+L7X1M0893nD9eh893b2sqSjX4d4iIotEgWw5m8P0pMh03G43jz95kFQqNb7zcf5GR0f5wQ9eZiQ2QklpMZ/4xEezPEoREQEFsuVLvcQkS+42jAEkkynGRscIBgMMD8ew1q68JskiIiuAAtlyNcfpSZHFFAoFeeKJh7nS1MyWLRsVxkREFokC2XKh6UkZl06np+wNlkwmeevXRxnoH+TAoT0UFESXZDx19TXU1aufmIjIYlIgWw40PSnjjrx7nKNHT7JpUwPr19fxzuFjlJaXsGfPVlpbOzl96jz+nByOvn+Sxx4/5PRwRUQkSxTInHBnNUzTk0KmAnb0/ZOUlRdz5vQFWq+1MzaWoLW1k+qqcsLhEDk5PsYSYxQXFzo9XBERySIFsqU2VTVM05MCeDwe1m+o49zZRmpqKwmFgpw6dR6/308wFCQSCfH8J54iPjJKSakCmYjIvcTYGwdSr0B79+61R44ccXoY8zPUCX+xKVMNc3ngD85kqmB3Vs3knnDixGneffcYmzY1cP/9e2ddFG+tZXg4RjAYwFpLZ0cPoXCQ3FyduCAistIZY96z1u6d6rHZTxWWhUmnMyHsRvC9UQ1zeSZWw25MTyqM3TPS6TRv/foI0WguHxw7RSw2MutrjDGEwyFcLhdut5vyNSUKYyIiq4CmLGfR2NjIpUuNbNu2lbKysvm9WIv1VzWXy0VdfTUXL1ymfE0pfn+O00MSEZFlSoFsBiMjI7zyyqv4/X6uXm3mi1/8wpTtCKalxfqr3mOPPcTevTuJRMILatAqIiL3Nk1ZzsDtduP3+xkejhGJhGdvijnX6UlZNVwuF/n5eXg8HsbGxvjJyz/nO9/+R9rbO50emoiILCOqkM3A5/Px/PPP0d3dTXl5+cyBTNOTMou2tk4aG5sIh4Mcff8EH/7IY04PSURElgkFsllEo1Gi0Tl0RNf0pMwiPz9KMBggFotTXV3h9HBERGQZUSC7WzrqSOYpNzfCb376WUZHR8nLW5pjj0REZGVQILsbmp6UuxQI+AkE/E4PQ0RElhkt6p/NnQv1YerpSVAvMREREbkrCmQzuVEJ+4tN8M2nM7dBuydFREQkqzRlOZPpFuobo+lJWZBkMklHRxfRaC7hcMjp4YiIiMNUIZvJTJUwTU+uSrFYjNHR0QVf59VXfsE3//t3+O53/5GRkdmPVBIRkXubKmQzUSVMbnP1ajMvv/QaXp+XZ599moKC/Lu6TiqV4uWf/IyB/gGamlp47rkPEwgEsjxaERFZSRTIZqM+YjKu6cpV3B43sdgIXV3dCwpklRXltLldhIJBotHcLI9URERWGk1ZiszRxk0b8Hg8FBcXUlFRflfXsNby7rtHSSST1NZW8cXf+Rw+ny/LIxURkZVGFTKROSouLuLzn//s7GeazmB4eJjjx0+xccM6urp7qK2tyuIIRURkpVKFTGQeFhLGAAKBAGvKS+no6GLdunpcLv0VFBERVchElpTb7ebpjz7J0NAwubkRp4cjIiLLhAKZyBLzeDw6y1JERCbQfInIIorH41y92szw8LDTQxERkWVMFTKRRWKt5cUXf0JHRyf5+Xl86lPP4/Hor5yIiEymCpnIIkmn0/T2XicSiTAwMEAikXB6SCIiskwpkIksErfbzRNPPEJeXpRHHnlY3fhFRGRamj+RrLlRAfJ6vQ6PZPmora2htrbG6WGIiMgyp0AmWdHd3c0LL/wIa9M888zHKC4unv1FIiIiAmjKUrLk6tVmEokxkskUV640OT0cERGRFUWBTLKitrYGv9+Pz+elrq7W4dGIiIisLJqylKwoKCjgt3/7c0BmMbuIiIjMnQKZZI2CmIiIyN3RlKWIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOWxaBzBjzZ8aYs8aY48aYfzLG5Dk9JhEREZGlsiwCGfAqsNVaux04D/yRw+MRERERWTLLIpBZa1+x1ibHb74NVDo5HhEREZGltCwC2R1+B3hpugeNMV8yxhwxxhzp6upawmGJiIiILI4lO8vSGPMaUDbFQ1+x1v5g/DlfAZLAt6e7jrX2a8DXAPbu3WsXYagiIiIiS2rJApm19vGZHjfGfAH4KPCYtVZBS0RERFaNJQtkMzHGPAX8IfCwtTbm9HhEREREltJyWUP2X4AI8Kox5pgx5v9zekAiIiIiS2VZVMisteucHoOIiIiIU5ZLhUxERERk1VIgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhMgUxERETEYQpkIiIiIg5TIBMRERFxmAKZiIiIiMMUyEREREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhMgUxERETEYQpkIiIiIg5TIBMRERFxmAKZiIiIiMMUyEREREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhsWQQyY8y/N8YcN8YcM8a8YoxZ4/SYRERERJbKsghkwJ9Za7dba3cCPwL+jdMDEhEREVkqyyKQWWsHbrsZAqxTYxERERFZah6nB3CDMeZPgM8D/cAjDg9HREREZMkYa5emGGWMeQ0om+Khr1hrf3Db8/4I8Ftr/3ia63wJ+NL4zQ3AuWyPdZkqArqdHoQsOn3Oq4M+59VBn/PqMJ/PucZaWzzVA0sWyObKGFMDvGit3er0WJYTY8wRa+1ep8chi0uf8+qgz3l10Oe8OmTrc14Wa8iMMQ233XwGOOvUWERERESW2nJZQ/Z/G2M2AGmgCfiyw+MRERERWTLLIpBZaz/h9BhWgK85PQBZEvqcVwd9zquDPufVISuf87JbQyYiIiKy2iyLNWQiIiIiq5kC2TJnjPmGMabTGHPS6bHI4jLGPGWMOWeMuWiM+T+dHo8sLmPMp4wxp4wxaWOMduLdo4wxf2aMOTt+POA/GWPynB6TZF82joBUIFv+vgk85fQgZHEZY9zAXwEfBjYDnzXGbHZ2VLLITgIfB153eiCyqF4FtlprtwPngT9yeDyyOBZ8BKQC2TJnrX0d6HV6HLLo7gMuWmsbrbVjwP8AnnV4TLKIrLVnrLWrpbH1qmWtfcVamxy/+TZQ6eR4ZHFk4wjIZbHLUkSoAJpvu90C7HdoLCKyOH4H+DunByGLY6FHQCqQiSwPZor7tAV6hZvrkXGyss3lczbGfAVIAt9eyrFJ9sz2OVtrvwJ8ZfwIyP8FmPIIyOkokIksDy1A1W23K4FWh8YiWWKtfdzpMcjim+1zNsZ8Afgo8JhVr6kVax5/n78DvMg8A5nWkIksD+8CDcaYOmOMD/gM8ILDYxKRBTLGPAX8IfCMtTbm9HhkcWTjCEg1hl3mjDHfBT5E5jT5DuCPrbV/4+igZFEYYz4C/CXgBr5hrf0Th4cki8gY8zzwn4FioA84Zq190tlRSbYZYy4COUDP+F1vW2t1POA9xhjzP4EJR0Baa6/N6xoKZCIiIiLO0pSliIiIiMMUyEREREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgE5GsMsYMOT2GbLj968jG12SMqTXGjBhjji30WjO8R8AYc8wYM2aMKVqs9xGR7FMgE5FVyWQs9f8DL1lrdy7Wxa21I+PX1zmoIiuMApmILApjzB8YY06O//e/33b/vzbGnDXGvGqM+a4x5v+4y+vXjl/nb40xx40x/2CMCd72+PeNMe8ZY04ZY75022vOGGP+X+B9oGqq583yvlNdd9/4GPzGmND4Y1vnOP6vj3+Pvm2MedwY86Yx5oIx5r7p3m/8/pAx5kVjzAfjr//03XwfRWR50NFJIpJV49N7DwPfBO4HDHAY+G0y53R+HTgAeMiEor+21v75XbxPLXAZeMBa+6Yx5hvA6RvXMsYUWGt7jTEBMoe3PwxEgEbgoLX27emeZ63tMcYMWWvDN76m2/483fP/L8APBIAWa+2fTjHeH1lrt952+yKwCzg1fq0PgN8lczjxF621z83wfp8AnrLW/t749aLW2v7xP18B9lpru+f7fRURZ6hCJiKL4QHgn6y1w9baIeAfgQfH7//B+NTaIPDDGy8wxtQbY/7GGPMP47dD49Wv/2aM+dw079NsrX1z/M/fGr/+Df+rMeYD4G2gCmgYv7/pRhib5XnTme75/w54AtgL/MdZrnHDZWvtCWttmkwo+6nN/Cv5BFA7y/udAB43xnzVGPPgjTAmIiuTApmILAYzz/ux1jZaa3/3trs+DvzDeAXomeleNtVtY8yHgMeBA9baHcBRMtUrgOGbg5n5eZMHP/PzC4AwmSrctNe4w+htf07fdjsNeGZ6P2vteWAPmWD2p8aYfzPH9xSRZUiBTEQWw+vAc8aYoDEmBDwP/Ap4A/jY+FqrMPD0DNeoBJrH/5ya5jnVxpgD43/+7Pj1AaLAdWttzBizkczU6VTm+ry5PP9rwL8Gvg18dZbrzNW072eMWQPErLXfAv4c2J2l9xQRB3icHoCI3Huste8bY74JvDN+19ettUcBjDEvkFkr1QQcAaabamshE8qOMf0/Hs8AXzDG/DVwAfiv4/e/DHzZGHMcOEdmum8qc33ejM83xnweSFprv2OMcQO/NsY8aq392SzXm81M49sG/JkxJg0kgH+5wPcSEQdpUb+ILCljTNhaOzS+I/J14EvjAa4Q+BMy67C+Dvwn4L8AceANa+2377hOLbctkl/ulnK8WtQvsvKoQiYiS+1rxpjNZNZC/a219n0Aa20P8OU7nvvFpR7cIkoBUWPMscXqRTa+E/MtwEtmHZqIrBCqkImIiIg4TIv6RURERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjD/n8m4CwVfBX22AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXjU5b3//+c92TfIyg5JQPYkhCUYdlBkccEFOe5VaeG4nXrac/Db+utiW71qq5e1apdjVfRUKz0toCjUUhWFIkhYAspuJAiyhITsezL3749JpgSSkJBMJpm8HtfFRfKZz3zu98ywvPO+35/7NtZaRERERMR7HN4OQERERKS7U0ImIiIi4mVKyERERES8TAmZiIiIiJcpIRMRERHxMiVkIiIiIl6mhExERETEy5SQiUi3YYxJMMasM8bkG2NOGWNeMMb41z2WaozZYYwpq/s99ZznRRpjXjPG5NT9esxrL0JEfJISMhHpTn4L5AB9gVRgBvCAMSYQeBt4HYgCXgPerjsO8CsgFEgAJgJ3GWPu7djQRcSXKSETke4kEfg/a22FtfYU8B4wGpgJ+APPWmsrrbXPAQa4ou551wG/tNaWWWuzgZeBxR0dvIj4LiVkItKd/Bq41RgTaozpD8znX0nZHttwL7k9dcfrmfO+TvJ0sCLSfSghE5Hu5GNcSVYRcBzYDrwFhAOF551bCETUff0e8D1jTIQx5jJc1bHQDolYRLoFJWQi0i0YYxzA34FVQBgQi6tf7BdACdDjvKf0AIrrvv42UA4cxtVr9iauhE5EpF0oIROR7iIaGAi8UNcnlgcsB64G9gIpxphzpyVT6o5jrT1rrb3DWtvHWjsa17+d2zo2fBHxZUrIRKRbsNbmAkeA+40x/saYSOBuYDfwEVALfNsYE2SMeajuaR8CGGOGGGNijDF+xpj5wFLg8Q5/ESLis5SQiUh3chMwDzgDfAHUAN+x1lYBNwDfAApw9YjdUHccYDzwGa4pzJ8Dd1hr93Zw7CLiw0zDm4pEREREpKOpQiYiIiLiZUrIRERERLxMCZmIiIiIlykhExEREfEyJWQiIiIiXqaETERERMTLlJCJiIiIeJkSMhFpV8aYkg4cq9YYk2mM2WuM2W2M+W7dnpX1j3/SzHMjjTEPdEykF4ydYIwpN8ZknvP95+1w3ZC696PKGBPb9khFpKMoIRORrqzcWptat7/kVbj2pfxx/YPW2snNPDcS8EpCVifLWpvanhe01pbXXfNEe15XRDxPCZmIeERdterzul//ec7xHxpjDhhj/mGMedMY89/tMZ61NgfXHpMP1W8SXl+tM8aEGWPW1lXRPjfG3AI8CQypqyg9VXfeW8aYHXUVt6V1xxKMMfuNMX+oO77eGBNS99g3jDF76q77x3Ne453GmG111/4fY4xfS1+HMWawMWaXMSatbuwDxpjX6sb5qzEmtLmxRaRr8vd2ACLie4wx44F7gcsBA3xqjPkY8AMWAmNx/fuzE9jRXuNaa7+sm7LsBZw+56F5wAlr7TV18fUEPgWSzqtSLbbWnq1LuDKMMSvrjg8FbrPWLjHG/B+w0BizC/j/gCnW2lxjTHTdtUcCt9QdrzbG/Ba4A/jfi8VvjBkOrADutdZmGmMSgOHAN621m40xrwAPGGP+1tjYItJ1KSETEU+YCqy21pYCGGNWAdNwVeXfttaW1x1/p/4JxpjBuJKMntbam40xYcBvgSrgI2vtGy0c2zRy7DPgaWPML4B3rbWbjDFRjZz3bWPMjXVfD8SViJ0CjlhrM+uO7wASgCjgr9baXABr7dm6x6/EtRl5Rl2hLgTIaUHcccDbwMLzNi4/Zq3dXPf168C3gcomxhaRLkpTliLiCY0lRc0dx1r7pbX2m+ccuglX0rEEWNCiQV1JXS3nJUDW2kO4kqTPgJ8bY37UyHNnArOBSdbaMcAuILju4cpzTq3F9cOsAWxjYQCv1fW2pVprh1trH2tB+IXAMWDKecfPH8M2M7aIdFFKyETEEzYCNxhjQusqXTcCm4B/AtcZY4KNMeHANc1cYwCuBAVcSVCzjDFxwO+BF6y19rzH+gFl1trXgaeBcUAxEHHOaT2BfGttmTFmBJB+kSE/AP7NGBNTN0b0OcdvNsb0qj9ujIm/WPy4KoE3AN8wxtx+zvFBxphJdV/fhus9bGpsEemiNGUpIu3OWrvTGPMqsK3u0EvW2l0Axpg1wG7gKLAdV2WoMcdxJWWZNP3DY0jd0hEBQA3wR+CZRs5LBp4yxjiBauB+a22eMWZz3XITfwN+ANxnjNkDHAS2XuQ17jXGPAF8bIypxVVRu8dau88Y8wNgfV0/WzXwYN3rbZa1ttQYcy3wD2NMKa73aT9wtzHmf4DDwO/qksYLxr7Y9UWk8zLn/SApIuJRxphwa21J3d2CG4GldQlcDPAEruUrXgKeA14AKoB/tqKHrNOra9Z/11qb1B7nNfK8bGBCfY+ZiHR+qpCJSEd70RgzCld/1mvW2p0A1to84L7zzr23o4PrILVAT2NMZnuuRVZ3d+gWXBVDZ3tdV0Q8TxUyERERES9TU7+IiIiIl3X7hMwYM9AYs6FuJe69xpiHvR2TtJ+6u/m21a1mvtcY8xNvxyTtzxjjV7e6/bvejkXanzEm2xjzWd3OB9u9HY+0L+PaV/avdbtS7D/nruJuRT1krjuz/quuqTgC2GGM+Ye1dp+3A5N2UQlcUddEHgD80xjzN2tts3fQSZfzMK67EXt4OxDxmFm6ScFn/Rp4r25B6EAg1NsBeUO3r5BZa0+e01RcjOsf9f7ejUrai3Upqfs2oO6XGid9iDFmAK71zF7ydiwi0jrGmB7AdOBlAGttlbW2wLtReUe3T8jOVXeL+Vhce9yJj6ibzsrEtXr7P6y1+nx9y7PAI+iuQl9mca3rtsPUbfouPmMwcAZYXtd28FLdYtLdjhKyOnWrhq8E/tNaW+TteKT9WGtr65YWGABMNMa0ak0n6bzqFlHNsda22wbl0ilNsdaOA+YDDxpjpns7IGk3/rh2zvidtXYsUAp8z7sheYcSMqCut2gl8Ia1dpW34xHPqCuDfwTM83Io0n6mAAvqFkJdAVxhjHnduyFJe7PWnqj7PQdYDUz0bkTSjo4Dx8+ZufgrrgSt2+n2CZkxxuCau95vrW1syxXpwowxccaYyLqvQ3BtHn3Au1FJe7HWft9aO8BamwDcCnxorb3Ty2FJOzLGhNXdcEXdVNYc4HPvRiXtxVp7CjhmjBled+hKoFveVKe7LF0/Yd8FfFbXZwTwqLV2nRdjkvbTF3jNGOOH6weQ/7PWamkEka6jN7Da9bMz/sCfrLXveTckaWf/AbxRd4fll/juDh3N0kr9IiIiIl7W7acsRURERLxNCZmIiIiIlykhExEREfEyJWQiIiIiXtZpEjJtAi0iIiLdVadJyPjXJtBjgFRgnjEmvaMG13Ycvk+fsW/T5+vb9Pn6vu7+GXeahKwTbALdrf8gdBP6jH2bPl/fps/X93Xrz7jTJGSgTaBFRESke+qUC8PWbXWzGvgPa+3n5z22lLos2s/Pb3xQUFC7jFlTU4O/vzYu8GX6jH2bPl/fps/X93WHz7isrKzaWhvY2GOdMiEDMMb8GCi11j7d1DkTJkyw27dv78CoRERExFccOXKEgwcPMXr0KAYOHOjx8YwxO6y1Exp7rNNMWWoTaBEREekolZWVrF//D06fPs177/2d2tpar8bTmWqD2gRaREREOoSfnx9hYWEUFhYRGxtD3Qb2XtNpEjJr7R5grLfjEBEREd/n7+/PDTdcT05ODn369MHh8O6kYadJyNpLdXU1x48fp6KiwtuhiHhNcHAwAwYMICAgwNuhiIh0WuHh4YSHh3s7DMAHE7Ljx48TERFBQkKC18uPIt5grSUvL4/jx4+TmJjo7XBERKQFOk1Tf3upqKggJsb7c8Ei3mKMISYmRlViEZEuxOcSMkDJmHR7+jsgItK1+GRC1pk89thjPP10k0up8dZbb7Fv374OjEhEREQ6GyVkXqaETERERJSQecATTzzB8OHDmT17NgcPHgTgD3/4A2lpaYwZM4aFCxdSVlbGJ598wpo1a1i2bBmpqalkZWU1ep6IiIj4NiVkuO5Kq6xpnxV6d+zYwYoVK9i1axerVq0iIyMDgJtuuomMjAx2797NyJEjefnll5k8eTILFizgqaeeIjMzkyFDhjR6noiIiPg2n1v2orWstWz9Mo/DOSUM7RVO+uC23aG5adMmbrzxRkJDQwFYsGABAJ9//jk/+MEPKCgooKSkhLlz5zb6/JaeJyIiIr6j21fIqmqdHM4poU9EMIdzSqiqdbb5mo0ldPfccw8vvPACn332GT/+8Y+bXJKgpeeJiIiI7+j2CVmQvx9De4VzqriCob3CCfL3a9P1pk+fzurVqykvL6e4uJh33nkHgOLiYvr27Ut1dTVvvPGG+/yIiAiKi4vd3zd1noiIiPiubj9lCZA+OIZx8VFtTsYAxo0bxy233EJqairx8fFMmzYNgJ/97GdcfvnlxMfHk5yc7E7Cbr31VpYsWcJzzz3HX//61ybPExEREd9lrLXejuGSTZgwwW7fvr3Bsf379zNy5EgvRSTSeejvgohI52KM2WGtndDYY91+ylJERETE25SQiYiIiHiZEjIRERERL1NCJiIiIuJlSshEREREvEwJmYiIiIiXKSHzgOzsbJKSkjpsvMcee4ynn366RedeffXVFBQUtOkaIiIi0r60MGwnUltbi59f2xenbYy1Fmst69at88j1RURE5NKpQuZhX375JWPHjuXTTz9l2bJlpKWlkZKSwv/8z/8A8NFHHzFr1ixuv/12kpOTyc7OZuTIkSxZsoTRo0czZ84cysvLAcjKymLevHmMHz+eadOmceDAgWbHrr/WAw88wLhx4zh27BgJCQnk5uYC8MQTTzB8+HBmz57NwYMH3c/LyMggJSWFSZMmsWzZMne1r7a2ttHXICIiIm2jhAxwOi1niitp710LDh48yMKFC1m+fDm7d++mZ8+eZGRkkJGRwR/+8AeOHDkCwLZt23jiiSfYt28fAIcPH+bBBx9k7969REZGsnLlSgCWLl3K888/z44dO3j66ad54IEHWhTDN77xDXbt2kV8fLz7+I4dO1ixYgW7du1i1apVZGRkuB+79957+f3vf8+WLVsaVOxefvnlJl+DiIiIXLpuP2XpdFpu+8NWdhzNZ3x8FG8uScfhMG2+7pkzZ7j++utZuXIlo0eP5vHHH2fPnj389a9/BaCwsJDDhw8TGBjIxIkTSUxMdD83MTGR1NRUAMaPH092djYlJSV88sknLFq0yH1eZWXlReOIj48nPT39guObNm3ixhtvJDQ0FIAFCxYAUFBQQHFxMZMnTwbg9ttv59133wVg/fr1jb6Gc2MXERGR1uv2CVleaRU7juZT47TsOJpPXmkVcRFBbb5uz549GThwIJs3b2b06NFYa3n++eeZO3dug/M++ugjwsLCGhwLCvrX+H5+fpSXl+N0OomMjCQzM7PJMY8dO8Z1110HwH333ce8efMuuPa5jLkw8WyuStjUaxAREZG26fZTlrHhgYyPj8LfYRgfH0VseGC7XDcwMJC33nqL//3f/+VPf/oTc+fO5Xe/+x3V1dUAHDp0iNLS0hZfr0ePHiQmJvKXv/wFcCVHu3fvbnDOwIEDyczMJDMzk/vuu6/Z602fPp3Vq1dTXl5OcXEx77zzDgBRUVFERESwdetWAFasWOF+Tltfg4iIiDSu21fIjDG8uSSdvNIqYsMDG60aXaqwsDDeffddrrrqKn7wgx8watQoxo0bh7WWuLg43nrrrVZd74033uD+++/n8ccfp7q6mltvvZUxY8ZcUmzjxo3jlltuITU1lfj4eKZNm+Z+7OWXX2bJkiWEhYUxc+ZMevbsCcC3vvUtsrOz2/QaRERE5EKmvRvZO9KECRPs9u3bGxzbv38/I0eO9FJEvqGkpITw8HAAnnzySU6ePMmvf/1rL0clraW/CyIinYsxZoe1dkJjj3X7CplcaO3atfz85z+npqaG+Ph4Xn31VW+HJCIi4tOUkMkFbrnlFm655RZvhyEiItJtdPumfhERERFvU0ImIiIi4mVKyERERES8TAmZiIiIiJcpIfOA+iUjTpw4wc033+zlaC7dRx99xLXXXtvmc8732GOP8fTTT7cltAtcffXVFBQUUFBQwG9/+9t2vXZz1qxZw5NPPtnsOc29R88++yxlZWXu7+tfh4iIdC9KyDyoX79+7n0fPaWmpsaj1+8q1q1bR2RkZIcnZAsWLOB73/veJT///ISs/nWIiEj3ooTMg7Kzs0lKSgLg1Vdf5aabbmLevHkMHTqURx55xH3e+vXrmTRpEuPGjWPRokWUlJQA8NOf/pS0tDSSkpJYunSpe5/JmTNn8uijjzJjxowLFmx97LHHuPvuu5kzZw4JCQmsWrWKRx55hOTkZObNm+fe9uiDDz5g7NixJCcns3jxYvdG5e+99x4jRoxg6tSprFq1yn3d0tJSFi9eTFpaGmPHjuXtt99u1XvxxBNPMHz4cGbPns3Bgwfdx7Oyspg3bx7jx49n2rRpHDhwAIB77rmHb3/720yePJnBgwe7E9uTJ08yffp0UlNTSUpKYtOmTQAkJCSQm5vL9773PbKyskhNTWXZsmXcddddDWK94447WLNmTYPYcnJyGD9+PAC7d+/GGMNXX30FwJAhQygrK+PMmTMsXLiQtLQ00tLS2Lx5s/tzfeihh9yvJT09nbS0NH70ox+5K6XgWmz35ptvZsSIEdxxxx1Ya3nuuec4ceIEs2bNYtasWQ1eR3Z2NiNHjmTJkiWMHj2aOXPmUF5eDkBGRgYpKSlMmjSJZcuWuf+MiYhIF2at7bK/xo8fb8+3b9++C45dVG2ttcWnrXU6W//cRoSFhVlrrT1y5IgdPXq0tdba5cuX28TERFtQUGDLy8vtoEGD7FdffWXPnDljp02bZktKSqy11j755JP2Jz/5ibXW2ry8PPc177zzTrtmzRprrbUzZsyw999/f6Nj//jHP7ZTpkyxVVVVNjMz04aEhNh169ZZa6294YYb7OrVq215ebkdMGCAPXjwoLXW2rvuusv+6le/ch8/dOiQdTqddtGiRfaaa66x1lr7/e9/3/7xj3+01lqbn59vhw4daktKSuyGDRvc52RkZNhvfvObF8S0fft2m5SUZEtLS21hYaEdMmSIfeqpp6y11l5xxRX20KFD1lprt27damfNmmWttfbuu++2N998s62trbV79+61Q4YMsdZa+/TTT9vHH3/cWmttTU2NLSoqstZaGx8fb8+cOdPgPbfW2o8++shef/311lprCwoKbEJCgq2urr4gxlGjRtnCwkL7/PPP2wkTJtjXX3/dZmdn2/T0dGuttbfddpvdtGmTtdbao0eP2hEjRrg/1wcffNBaa+0111xj//SnP1lrrf3d737n/nOwYcMG26NHD3vs2DFbW1tr09PT3deqj7veua/Dz8/P7tq1y1pr7aJFi9zv/+jRo+3mzZuttdb+v//3/xq83nNd0t8FERHxGGC7bSKn0cKwTie8di0c+xQGXg53vwsOzxQOr7zySve+kKNGjeLo0aMUFBSwb98+pkyZAkBVVRWTJk0CYMOGDfzyl7+krKyMs2fPMnr0aK677jqAZhdunT9/PgEBASQnJ1NbW8u8efMASE5OJjs7m4MHD5KYmMiwYcMAuPvuu/nNb37DzJkzSUxMZOjQoQDceeedvPjii4CrirdmzRp371dFRYW7ilRvwoQJvPTSSxfEs2nTJm688UZCQ0MB1zQfuKpGn3zyCYsWLXKfW1+pA7jhhhtwOByMGjWK06dPA5CWlsbixYuprq7mhhtuIDU1tdn3fMaMGTz44IPk5OSwatUqFi5ciL//hX/sJ0+ezObNm9m4cSOPPvoo7733HtZa9x6f77//Pvv27XOfX1RURHFxcYNrbNmyxb235+23385///d/ux+bOHEiAwYMACA1NZXs7GymTp3abOyJiYnu1zd+/Hiys7MpKCiguLiYyZMnu8d59913m72OiIh0fkrIynJdyZizxvV7WS6E9/LIUEFBQe6v/fz8qKmpwVrLVVddxZtvvtng3IqKCh544AG2b9/OwIEDeeyxx6ioqHA/HhYWdtFxHA4HAQEB7g3THQ6He8ymNLW5urWWlStXMnz48AbH6xOli2nsuk6nk8jISDIzM5t9HfXjA0yfPp2NGzeydu1a7rrrLpYtW8Y3vvGNZse+6667eOONN1ixYgWvvPIKAPfeey+7du2iX79+rFu3jmnTprFp0yaOHj3K9ddfzy9+8QuMMe5mfKfTyZYtWwgJCWnR623utdR/9q19Tnl5ebOfnYiIdF3qIQuLc1XGHP6u38PiOnT49PR0Nm/ezBdffAFAWVkZhw4dcidfsbGxlJSUtOvNASNGjCA7O9s95h//+EdmzJjBiBEjOHLkCFlZWQANksS5c+fy/PPPuxOCXbt2tXi86dOns3r1asrLyykuLuadd94BoEePHiQmJvKXv/wFcCVdu3fvbvZaR48epVevXixZsoRvfvOb7Ny5s8HjERERF1Su7rnnHp599lkARo8eDcDy5cvJzMxk3bp17hhff/11hg4disPhIDo6mnXr1rkrl3PmzOGFF15wX7OxJDI9PZ2VK1cCsGLFiha9N43F25yoqCgiIiLYunVrq8YREZHOTQmZMa5pyu/uh3vWur7vQHFxcbz66qvcdtttpKSkkJ6ezoEDB4iMjGTJkiUkJydzww03kJaW1m5jBgcHs3z5chYtWkRycjIOh4P77ruP4OBgXnzxRa655hqmTp1KfHy8+zk//OEPqa6uJiUlhaSkJH74wx9ecN3t27fzrW9964Lj48aN45ZbbiE1NZWFCxe6pwEB3njjDV5++WXGjBnD6NGjL3qzwEcffURqaipjx45l5cqVPPzwww0ej4mJYcqUKSQlJbFs2TIAevfuzciRI7n33nubvG5CQgLgSswApk6dSmRkJFFRUQA899xzbN++nZSUFEaNGsXvf//7C67x7LPP8swzzzBx4kROnjzpnp5uztKlS5k/f767qb8lXn75ZZYuXcqkSZOw1rZoHBER6dxMV54CmTBhgt2+fXuDY/v372fkyJFeikg6o7KyMpKTk9m5c6dHk5eysjJCQkIwxrBixQrefPPNVt+N2hIlJSXuOziffPJJTp48ecHdtqC/CyIinY0xZoe1dkJjj6mHTHza+++/z+LFi/nud7/r8UrSjh07eOihh7DWEhkZ6e5Xa29r167l5z//OTU1NcTHx/Pqq696ZBwREek4qpCJ+Cj9XRAR6Vyaq5Cph0xERETEy5SQiYiISJNyc3PZs+czCgsLvR2KT1NCJiIiIo2qrKzk7bfXsHnzZt59d63WQvQgJWQiIiLSKGstTqcTf39/qqsvvqC1XDolZB5QvyTBiRMnuPnmm70czaX76KOP3CvVt+Wc9nbupt3tYc2aNTz55JMAvPXWWw22SPKkc8dtSnPv77PPPktZWZknQhMRAVzrVl577TUkJSVx3XXXNLmbi7SdEjIP6tevX7uusN+YlmzBI81bsGAB3/ve94COTcjOHfdSKCETkY7Qt29fJk1KJyYmxtuh+DQlZB6UnZ1NUlISAK+++io33XQT8+bNY+jQoTzyyCPu89avX8+kSZMYN24cixYtoqSkBICf/vSnpKWlkZSUxNKlS91z9zNnzuTRRx9lxowZFywI+thjj3H33XczZ84cEhISWLVqFY888gjJycnMmzeP6upqAD744APGjh1LcnIyixcvdm/q/d577zFixAimTp3KqlWr3NctLS1l8eLFpKWlMXbs2FYteJqdnc3IkSNZsmQJo0ePZs6cOZSXlwOuLYjS09NJSUnhxhtvJD8//4LnHzlyhEmTJpGWlnbBDgFPPfUUaWlppKSk8OMf//ii4z333HOMGjWKlJQUbr31Vvdn89BDD/HJJ5+wZs0ali1bRmpqKllZWYwbN8491uHDhxk/fnyD8XNyctzHdu/ejTHGven6kCFDKCsr48yZMyxcuJC0tDTS0tLYvHlzg3EBsrKySE9PJy0tjR/96EcNqoAlJSXcfPPNjBgxgjvuuANrLc899xwnTpxg1qxZrVrlX0REOiclZIDTOsktz/V4s2JmZiZ//vOf+eyzz/jzn//MsWPHyM3N5fHHH+f9999n586dTJgwgWeeeQaAhx56iIyMDD7//HPKy8t599133dcqKCjg448/5r/+678uGCcrK4u1a9fy9ttvc+eddzJr1iw+++wzQkJCWLt2LRUVFdxzzz3uWGpqavjd735HRUUFS5Ys4Z133mHTpk2cOnXKfc0nnniCK664goyMDDZs2MCyZcsoLS1tMG5TWyeBK5l58MEH2bt3L5GRke49H7/xjW/wi1/8gj179pCcnMxPfvKTC5778MMPc//995ORkUGfPn3cx9evX8/hw4fZtm0bmZmZ7Nixg40bNzY73pNPPsmuXbvYs2fPBdsfTZ48mQULFvDUU0+RmZnJkCFD6Nmzp3vfyuXLl3PPPfc0eE6vXr2oqKigqKiITZs2MWHCBPcm5b169SI0NJSHH36Y73znO2RkZLBy5cpG36OHH36Yhx9+mIyMDPr169fgsV27dvHss8+yb98+vvzySzZv3sy3v/1t+vXrx4YNG9iwYUOj77mIiHQd3T4hc1oni/++mNl/mc29f78Xp3V6bKwrr7ySnj17EhwczKhRozh69Chbt25l3759TJkyhdTUVF577TWOHj0KwIYNG7j88stJTk7mww8/ZO/eve5r3XLLLU2OM3/+fAICAkhOTqa2tpZ58+YBkJycTHZ2NgcPHiQxMZFhw4YBcPfdd7Nx40YOHDhAYmIiQ4cOxRjDnXfe6b7m+vXrefLJJ0lNTWXmzJlUVFS4K0H1JkyYwEsvvdRoTImJiaSmpgIwfvx4srOzKSwspKCggBkzZjSI43ybN2/mtttuA+Cuu+5qENP69esZO3Ys48aN48CBAxw+fLjJ8QBSUlK44447eP311/H3v/hGFd/61rdYvnw5tQ95ZbQAACAASURBVLW1/PnPf+b222+/4JzJkyezefNmNm7cyKOPPsrGjRvZtGmTe8/O999/n4ceeojU1FQWLFhAUVHRBRuKb9myhUWLFgFcMMbEiRMZMGAADoeD1NRU92sRERHf0e23TjpbcZbMnExqbS2ZOZmcrThLbEisR8YKCgpyf+3n50dNTQ3WWq666irefPPNBudWVFTwwAMPsH37dgYOHMhjjz1GRUWF+/GwsLCLjuNwOAgICHA3YTocDveYTWmqYdNay8qVKxk+fHiD46dPn27yWo3FBK7XXj+F2FKNxWWt5fvf/z7//u//3uB4dnZ2k+OtXbuWjRs3smbNGn72s581SHIbs3DhQn7yk59wxRVXMH78+EZ7KKZNm+auil1//fX84he/wBjjbsZ3Op1s2bKFkJCQVr3meo39uREREd/S7StkMcExpPZKxc/4kdorlZjgjm1aTE9PZ/PmzXzxxReAa4PqQ4cOuZOv2NhYSkpK2vXmgBEjRpCdne0e849//CMzZsxgxIgRHDlyhKysLIAGSeLcuXN5/vnn3cncrl272hxHz549iYqKYtOmTQ3iON+UKVNYsWIFAG+88UaDmF555RV3z93XX39NTk5Ok+M5nU6OHTvGrFmz+OUvf0lBQYH7ufUiIiIaVK+Cg4OZO3cu999/P/fee2+j150+fTqvv/46Q4cOxeFwEB0dzbp165gyZQoAc+bM4YUXXnCfXz8Feq709HT3tGr9a72Y82MVEZFWcjqhJAc6wfpq3T4hM8bwytxXeH/R+yyfu7zDb+mNi4vj1Vdf5bbbbiMlJYX09HQOHDhAZGQkS5YsITk5mRtuuIG0tLR2GzM4OJjly5ezaNEikpOTcTgc3HfffQQHB/Piiy9yzTXXMHXqVOLj493P+eEPf0h1dTUpKSkkJSVd0FwPzfeQNeW1115j2bJlpKSkkJmZyY9+9KMLzvn1r3/Nb37zG9LS0hqsFD1nzhxuv/12Jk2aRHJyMjfffHOzCUptbS133nknycnJjB07lu985ztERkY2OOfWW2/lqaeeYuzYse7E9I477sAYw5w5cxq9bkJCAuBKzACmTp1KZGQkUVFRgOtGgu3bt5OSksKoUaMu6F0D1x2TzzzzDBMnTuTkyZMt2gh96dKlzJ8/X039IiKXwumE166FZ0bCq9e4vvcibS4uchFPP/00hYWF/OxnP/PYGGVlZYSEhGCMYcWKFbz55putupO1Mfq7ICLSjJIcVzLmrAGHP3x3P4T38uiQzW0u3u17yESac+ONN5KVlcWHH37o0XF27NjBQw89hLWWyMhIXnnlFY+OJyLS7TidUJYLYXFgjOv3gZfDsU9dv4fFeTU8JWQizVi9enWHjDNt2jR2797dIWOJiHQ79dOT9cnX3e+Cw+H6/dwkzYu6fQ+ZiIiI+Jjzm/XLcl3JmLPG9XtZruu4w+GapuwEW0L5ZELWlfviRNqD/g6ISLfVWLN+/fSkw79TTE82xuemLIODg8nLyyMmJkaboEq3ZK0lLy+P4OBgb4ciItLxGquGhffqVNOTjfG5hGzAgAEcP36cM2fOeDsUEa8JDg5mwIAB3g5DRDqBoqIiqqurfXdz8JY269dPT3ZSnSYhM8YMBP4X6AM4gRettb9u/lkXCggIIDExsb3DExER6XJycnJYvfotamtrufLKKxk+fJi3Q2pfXaBZv6U6Uw9ZDfBf1tqRQDrwoDFmlJdjEhER6bIKCgqoqqrGz8+/2Z1Muowu2KzfUp0mIbPWnrTW7qz7uhjYD/T3blQiIiJd16BBg7jssiHExcWSnJzk7XDapos267dUp1yp3xiTAGwEkqy1Rec9thRYCjBo0KDxR48e7fD4RERExMPO7w1ramX988/rxJpbqb/TVMjqGWPCgZXAf56fjAFYa1+01k6w1k6Ii+u6mbCIiIg0oTXVsC44PdmYTtPUD2CMCcCVjL1hrV3l7XhERETEC7ro0hVt0WkqZMa1aNjLwH5r7TPejkdEREQ6yPnN+j5eDWtMZ6qQTQHuAj4zxmTWHXvUWrvOizGJiIiIJ/nQ0hVt0WkSMmvtPwHff8dFRES6s/Ob8JuanuzkC7m2t04zZSkiIr6ntraWzMzdbN++g6qqKm+HI97m40tXtEWnqZCJiIjv+eKLL9i4cSPGGBwOw7hx47wdknhTN2zWbylVyERExGP8/f0xxmCtJSAg0NvhSEdTs36LqUImIiIeM3jwYK699hpqamoYPHiwt8ORjqRm/VZRQiYiIh5jjCExMdHbYUhHULN+m2jKUkRERNpGzfptpgqZiIiItI2a9dtMFTIRERFpufMb9UHN+u1AFTIRERFpmaYa9Y1RNayNVCETERGRxp1fDWtsarKeqmFtooRMRERELqRG/Q6lKUsRERG5kBr1O5QqZCIiIqJV9b1MFTIREZHuTqvqe50qZCIiIt1NS5v1VQ3rMErIREREuhM167s5rZPc8lzsuWuqeYmmLEVERLqTbtqs77ROzlacJSY4BmMMTutk8d8Xk5mTSWqvVF6Z+woO4706lSpkIiIivkzN+u7ka/ZfZnPv3+91J2eZOZnU2loyczI5W3HWqzGqQiYiIuKrummz/vnVsMaSr5jgGFJ7pborZDHBMV6NWQmZiIh4RHV1NTU1NYSEhHg7lO7D6WyYaDU1PVlfDfNBjU1FNpZ8GWN46aqXyTp7mqExfTBeTkyVkImISLsrKSlh9eq3KS0tZfbsK7nssiHeDsn3NVYNq5+erD/mg836LamGxYbE8srcVxr2kDktd7y0jR1H8xkfH8WbS9JxOLyXlKmHTERE2l1ubi5FRUWEhoZw6NAhb4fTPTRWDavf9Pu7++GetT43PdlYb1h9NczP+DWcirQGWxPhfm5eaRU7juZT47TsOJpPXmmVl16FiypkIiLS7nr37k3v3r3Izy8gJSXZ2+H4pvOnJ5uqhvnQ9GRbqmG3/WFrg2pYbHgg4+Oj3MdiwwO9+tqUkImISLsLCQlh4cKbsNbicGgypt11w2b9lvaGAS2qhsVFBPHmknTySquIDQ9UD5mIiPgmY4zX/5PzGd2wWb8jqmEOhyEuIsjLr9RFCZmIiEhn1g2b9X29GtYYJWQiIiKdSUurYT40PdndqmGNUUImIiLSWbSmGuYj05PdsRrWGCVkIiIinYWqYd2iGtYYJWQiIiLe0s2WrlA1rGlKyERERLyhGyxdoWpYyykhExER8bTzK2Hg80tXqBrWOkrIRESkTUpKSqiqqiI6OtrboXROTVXCfGzpClXD2kYJmYiIXLK8vDxWr15DVVU1V1wxkxEjhnk7pM6nqUpY/T6TPjA9qWpY22k/CxERuWT5+QWUl1cSGBjIyZMnvR1O5+B0QkkOWOv6vr4S5vC/sBJWPz3ZhRIOp3WSW56LrX990Gg1zBjDS1e9zJ/nr+OVOa80qIZN+vkH3PriVpxO666G+TtMo9Ww7pCMgSpkIiLSBgMG9GfIkARKS8sYM0abiHfVRn1rLRUVFQQHBzebADVWCXMYR6PVMKfTcsdL2xpMRaoa1jQlZCIicsmCg4O5+up53g7De3xkj8mPP97Ivn37GDp0KLNnX+lOilraF1ZfDcs6e5qhMX0wxpBbUnlB8tUde8NaSlOWIiIil6K+GvbMSHj1Gtf3zU1PdlLV1dXs27ePfv36cfjwYSoqKoB/VcNm/2U29/79XpzW6a6E+Rm/Bn1h9dWwa36VyW1/+LTJqUhjDG8uSWfL969kxdL0blsNa4wqZCIi0qzq6mp27NhFZWUlaWnjCQ0N9XZInYOPrKofEBDAmDFjyNydycDhAwkKclWqmqqGnV8Jg9Y15qsa1jhVyEREpFlHjhwlI2MXe/ceYPfuz7wdjve0tFm/CzbqT5qczraET/nR1z9k8frFTVbDGquEAWrMbweqkIlIl+Z0Ovn4440c+fIIU6dNZdiwod4OyeeEhobgcBhqa52Eh4d7Oxzv6KLN+k1prDdsd+7ui1bDGusLq0+41JjfNqqQiUiXlp+fz/79BwgLD2PLli3eDsdjnE4nR48e4/jxrxssN9ARBgzoz003LeD6669m9OiRHTq215xfDWtsehK6ZDWspb1hLe0Lq6dqWNuoQiYiXVpERAQx0dGczTtLypgUb4fjMfv3H2TDh5uodTrp3bsXwcFBTJs2iZiYjlkdv2/fPh0yTqfQWDWsC6+q39I7JVtaDVMlzDOUkIlIlxYYGMhNC2+ktLSUnj17ejscjykvK8cYQ1FhEblnzpKYGE/Gtp3Mmz/b26H5Hh9p1oeWr6Df2JphWqKiYykhE5EuLyAggMjISG+H4VFJyaOorKqivLycrKyjVFRW0Kt316nSdGrnryXWVDWsk68lBqqGdWVKyEREuoDg4GCmTEkHYOLEYsrLy+nVSwlZm/lQs76qYV2bEjIRkS6mR48IevSIuPiJciEfWVkfVA3zNbrLUkREugcfWVkfPHOnpO6S9C5VyEREupGKigoOHfqSHj0iSEgY6O1wOlYXbtZXNcz3qUImItKNfPJJBpv/+Sl/+9v75OTkejscz/KRlfVVDeseVCETEfGiyspKvv76FFFRPYmK8vydotZaDAaL7fAFZjtUF27WVzWse1JCJiLiRR9++E+yj3xFcHAw/3bL9YSFeXbj7smT04iNiSYiIpzevrRsho806zd5p2RcKplndKekL1NCJiLiRUWFxYSEhFBZWUlVVZXHE7KQkBDGpCZ5dIwO14VX1m9JNSw6KIayr5ZQcvw4ZeUDsRbySqtUDfMxSshERLzoytnT2Z35Of369+mQKUuf1EWb9VtaDcstqWLn0UJqnOHsPFrgTrhUDfMtSshERLwoNDSE9EkTPF4Z8yldcGX98ythQIurYY0lX8YYVcN8jBIyEREvOX06l3VrP8DptMyfP5N+/bvRBt6Xqgs26zdWCXMYR4urYU1NRaoa5lu07IWIiJecOpVDTXUNWCcnT572djidz/nLVkDj05PQqZaucFonueW57rtYG6uEgetllX21hJLD36fs6NIG1TAtU9H9qEImIuIliYkDOXzwS5xOJ0MuS2zTtay1vvWfdVOVsE7erN/SvjBwNea3tBomvk8JmYiIl/ToEcHN/3Ztm65RUlLK3//2MRUVlcydN4PYuOh2iq6DtXTZCmM61fTkpd4laUzjvWGgqcjuSgmZiLQbay21tbX4+3v2n5b8/AK2b99FXFwsY8YkdesqwskTOeTmFRASHMjBg1keTciOHz/Bpk2f0L9/X6ZOnYTD0U5dL61dtqKTNOu35S7J+ulHVcOknhIyEWkX1dXVrFu3nlOnTjNjxlRGjBjmsbE2bfyEM2dyOXQoiz59etGnT2+PjdXeKioqKSkuJTomsl0SmpjYKEJCgqiuqmFQfP92iLBpn3zyKbU1tXz++X6GDx9K797tlBR1kWUrLrUa1lQlDFQNk39RQiYi7SIv7yxfHz9BdEw0mZl7PJqQ9YzswfHjXxMYGEhISIjHxmlvlZVVvPPW+xQUFjNixGCmzZjY5mtGR0dyy63XUVtbS2ioZ9+LQYMGsHPnbiLCw4mICL/0C3XRZSvaUg1TJUwuRgmZiLSLqKhI4nrFkZeXx5Qp6R4da/Lky4mPH0RERDg9e/bw6Fjtqay0nMLCYiIje3D82Ml2u25QUODFT2oHEyeO57LLBhMWFnrpiXAXWbaivathqoTJxXSqhMwY8wpwLZBjrfWxvT1EfFtQUBA33XQdVVVVHq9aBQQEkJAwyKNjeEJkVA+Sx4wg+8hxJk0ZB0DumXzyzxbSf2AfQkODvRxh8xwOB7GxMa17UhfcY1LVMPGGTpWQAa8CLwD/6+U4ROQS+Pn5dakpxI5mjOHy9FQuT08FoKSkjLVrNlBVXc3AgX2Yd82MNl0/O/s4B/dnMWLUZcQ300926FAWX2Z9RUrKSM8uRtsBe0y2x3IfqoZJZ9CpEjJr7UZjTIK34xARl/z8AgoLi+jfvy8BAQHeDsfn1NbUUut0EhwUSEVlVZuuVVVVzYYPPiE4KJgP/7GZO+++sdHPrLS0jI8/2kJISAjr//4xd9/7b56r4ni4Wf/MmTOsXfs3wsJCufrq+YSFhbX6Gp2hGuZ0OtvvjlXpsjpVQiYinUdJSQmrVq2horyS4cMvY/ZVs7wdks/pGRnBrCvTOX0qlxEjB7fpWn5+DsLDw8gvKCI6qid+fn6NnhcQ4E9IcBCf7dlHTW0N2Ue+InFwfJvGduvgZv3PP/8cp7OW06dzOHHiBEOHDr14iJ2oGuZ0Ovnggw/54ossJk+exJgxKZd0HfENLUrIjCvtH2CtPebheFoSy1JgKcCgQV2vh0Skq6ioqKSqsorQ0BDyCwq9HY7PShw8gMTBAxp9rKiwhNLSMnr1jmkywarn5+fH1dfOIjc3n7i46CYrLoGBgUyfOYmvvvqagfH92fzPbe2TkHmhWT8hIYGDBw8RGhpCbGzsxUPsBNWwcxUVFXH48GF69+7Ntm3blJB1cy1KyKy11hjzFjDew/G0JJYXgRcBJkyYYC9yuohcopiYaKZOm8SJE6cYN24MZWVlBAcHa2qlgxQXlbJm1QdUVlYxKnkok6akXvQ5YWGhhIWFXvS8Pn16MXhIAgUFhYwcefGqUqM6QbN+YmIid911J35+fgQHX3hDRGeqhjUmPDycfv36ceLECVJTL/75im9rzZTlVmNMmrU2w2PRiEinYYwhOXk0ycmj2bIlg92Ze+nfvw9XX3PVRas1ncnJEzls3ZxJ775xpE8ec0FCefTI15SUlDFk6CCCg73biH36VC5bP9lN7z6xJCT2o7KqiuDQIPJy89t1nMDAQG68aT5FRSXExES1/gId0KzfUk31jTVWDYsKjCaoZjCljiyCagcTFRjt1f0k/f39ue66aykvL7+k/jfxLa1JyGYB/26MOQqUAgZX8azdaqzGmDeBmUCsMeY48GNr7cvtdX0RuTT79h6iV+9Yvv76FMXFJURG9vR2SC22beseqqtr2LVjH6GhwYwcPcS9blfO6Tw+WL8VgMKCYiZPG+fNUPl0y24qKqrY99lhEhL7MXb8KHJOnyXt8uR2HysoKIi4uEtMQDvhyvotqYbZmgjyvlhMrSmhwkZwtqza63dK+vn5ER7ehkV2xWe0JiGb77Eo6lhrb/P0GCLiUllZSXV1DeHhF//JfMKEMWz9dAdDLkugR4+INo25aeM2iotLmTEznejoyEu+Vkv17deLndv3knXoGH4Of86czueq+ZMB15IJ9ZxOj4dyUX379uKz3YcIDQshokc44/p2TJXpYmqqq9j20XucLrZMnzGVmGjvrqx/fvLV0mqYI9gwPj6GHUcd7uRL+0lKZ9HihMxae9QYMwaYVndok7V2t2fCEhFPKiws4q3V66iorOTKK6dz2WWJzZ4/JjWJpOSRbZ6q/Pr4Kb44fITg4CD27N7HzFmT23S9lpgwMYm4uGj8HP707BlOQX6x+7HefWKZNftySkvKuWy4928SGj9xNPGJ/QkLDyEsrJOs5+Z0UvPSfNJP7+R0YCLbgp9g/tXzvVYNayz5amk1rKmpSK0bJp1Bi7tzjTEPA28Avep+vW6M+Q9PBSYinpObe5bSsjKCg4PIzv6qRc9pj76xHj0jCAwKpLKyit69O6b643A4SBwygOmzJhAdG8mMKyc0eDxxyACSxgz1ev8YuGLt1Tvau8mY0wklOVBfPSzLJSgnEwdOelcdYUBUcH2wrmqYB5Mxp3WSW57boJLZWPJVXw2z1kFQjasa5pqKjMHP9mB8fPQFU5GqhEln05opy28Cl1trSwGMMb8AtgDPeyIwEfGcfv1607dvb4qLi0lOHtVh48bGRnPzomuoqqomNjb6kq5RWFBCYKA/Ia3cZmj4yESGj2y+EthSVVXVnDmVT4/IcCJ6XPyuxi6jiWZ9M+hy7LFPqek9lqTL27abQItDaaQS5jCOJpepaGk1TKSzak1CZoDac76vrTsmIl1MSEgIN954jVfGbksP2uGDX/HJxkzKS8oZd/loUsYOJTjk4pWt/Lwiampqie0V2S7/MW/+cBfHvjpNSEgw1908vUUxdAnNNOubslwCPTg92ZKm/NiQWKyliWUqGvaGgaYipWtpTUK2HPjUGLO67vsbAN0BKSIdojC/mC8PH6emqoY9u76gvLyKyooqpl3R/J2RZ07ns/6drThrnVw+LYlho9q+CGpBQQlhoSGUlVdSVVl9yQmZ0+kk6/AxqiqrGToinsDADt6eqoNX1m8yjBYu2Ap4dZkKEU9qTVP/M8aYj4CpuCpj91prd3kqMBGRelmHjvHJx3uoqqii2llDz6hwekZGNOgtakpZSQW11bX4B/hRmF/SLvFMnZXKnh2H8SvyZ9enBxmW5EryYntFEhDQ8p9zj391mo0fbscYQ2VlNePSRrZLfC3ihZX13UNf4oKtxmhDb/Fdrd06aSew07MhiYg0dPJ4LkFBAThra7lqbjoARUWlDBna+JZD5+o3KI5hSfFUllUxMqVt+0XWi+sdzaiUwfzj3W2UFJXxzw2ZxA/uS/zgPkyb3XzFrqKiCut0EhIajMNhAIO11H3tQZ1gZX1o+/ZFWqZCfFWX2zpJRLqfUSmDyT9bRFyvSHr3iyUoqOVTewEB/qRPa/+FVUNCgwkI9KOooBR/fz9Cw4PJO9P8np95ZwpYv/YTnE7LFXMn0n9gb2ZdNZHq6moGXzaw3WN08+LK+u29fRGoGia+SVsniYjHnTqRS0F+EQmD+19Sv1V0bE+uu/nid/flnS6ktLicPgNjCGxF0nYpIqMjmH/DFMrLKsjLLeTk8VxSxv9rX8i8M4X4+TmIjP7XTQxncs5SXVWDv78fJ78+Q9/+cQy+7OJVvvPl5xfyxRfZ9O/Xm379+1z8CV5aWb+zbeYt0pl1qq2TRMT3FJwt4h/rtuCsdXLq6zxmzklrt2tXlFdx5MDXhEUE0zM6gg3vbKemqpbEkf25fNbodhunKZHREURGR9B3QBxJqZe5j2dnneCfH+zCOODKq9Pp08/VkN5/YG96Rh2ltrb2khKxen9/72PKysr5bPd+br39ekJDz1m37PypSeiwZv3Ovpm3SGfWmh6y+4Cjng1HRHyN02mxTovD4cDpdK2cU1lRRWBQQJurHnu2HebIgRNgYdzU4dQ6Lf5BflSUVwJQXFBKWWklsX0i8fNr8TrYbVZwthjjMNTW1FJUWOJOyCJ6hHH9olltvr6fn4Pa2lr8/f0avodNNeobo2qYSCfXmh6yX1lr1UMmIq0SHduTmVdN4OzZIoYOj2fX1gPs33OEAQm9mTo7FYfj0hMlh3GAtVggKrYHadNHUZBXxLDkeEqKyvlgdQZVldXE9Y+msryK6F49GDd1BP7+Te86UFZSQWlxBdG9elxyEjd05CDy84rw83MwKKEFU4qtNHfeTI4ePU6fXjGE1BaBDWq+UR9UDRPp5NRDJuKDjnz5FRkZexgyJJ5x45O8XnEYlNiPQYn9sNZy8POj9OoTzfHs05SXVhIWcenbBKVcfhk9osMICw8mtk8ksX0igX4A5J4qoKqyhqCQQD7flkXiiH5kHzxJwrB+9OoXdcG1Tn99lh0bD3A06yRRMREMSx7IuKmXtgxFWHgIs+a139Ts+Xr0CCd59DCvNuqrGibSvlrbQ3afMSYb9ZCJdGobP95GeFgYO3d8zmVDE+jZ89JXx29PxhhGjklk764viR/cl5CwtlVEAoMCGJbU+Kbg0b16MGpCIvk5RfQZGMtXX5wkJCyI8B6NJ4AZH++ntLic7IMniJ46gtzTzd8x6XUd2KivapiI57UmIZvvsShEpF0NHNSPrC+OEhXVk9BW7vnoaWPShjEqdfCF/U/tzOFwkDRhCADWWoanDCI4NJDg0MYTgdg+kZQWlhE/tC89o8IYN2VEg8cryqvYuzOL4JBARoxJ7NCeNMBrq+o3Vg2r38y71JFFUK1rM2+toC/SNq1JyL4C7gAGW2t/aowZBPRBjf4inc6MmZeTnDycHj0jCAi4tOUfqiqr8Q/wa1OPV1Nas5p9ezDGEBnbfJVwwvQRDBnZj/AeoY1W7vZlHuGLfcepramlZ1Q4AxJ7eyrcC3XgqvotqYbZmogLNvNWNUykbVrzr+JvASdwBfBToBhYCXiuUUJELomfnx9xvWJafH5NTS3HjpwmKDiAvgNiObT3K3ZtOUBs70hmzB/f4QmUN/j7+xHX98LesnohIUHU1NTiMIYAD69x5q1V9VtaDXMEmws289YK+iJt05p/ZS+31o4zxuwCsNbmG2MCL/YkEen89mV+ye6MwxgDs6+7nEOff0XP6HByTuVTlF9KTK+eHhs7P6eImppaYvtGdur/xIenDKJHVBj+AX707hftuYHOqYYVRY7mrYgHGTc+hSQPNOtfajWsqalIVcNELl1rErJqY4wfYAGMMXG4KmYi0sVVV9dijME6ndTWOhmePIidWw4SFdWDmupanE6nR6Yuz5zIZ/O7u7FOS+r0YSSO6t+u1y8pLKcwr4SYPj0JDm3bz48Oh4P+8Z65a7GBc6ph4Wc/I663ky1bdzFy8dv4VeS32/RkW6phoORLpL21JiF7DlgN9DLGPAHcDPzAI1GJSIdKGjsYf38HIaFB9B0Qg8MRR+9+sWx8Zyeb3s1k2JhBpKRfdvELtVJFaRXOGid+AQ5KCyva7brlpZUUny1l+4f7qSyvIqpXD2be1LHLKBacLebD9dsIDApg1lVphIU3sbxHE8369tinnA0Zxld51Qy+LAE//4A2TU+2dzVMRNpXixMya+0bxpgdwJW4lry4wVq732ORiUiHCQoOZEzasAbHaiprqCyvJiQsiDNf53tk3L4JsQwZM5D804Uc3fc1xbkljL9qFIHBjfdoFeWV4B/gR2gTS1cAlBVXsHH1TkoKysjLKWLQ8D6UlVRgre3QZOKLg19RWVFF3EJ33AAAIABJREFUSVEZJ47nMHRE/IUnNdOsb8pyiQyKYlFxaZuXLemIalhpaSnGGEJDQ9sUq0h31apOXWvtAeCAh2IRES+y1nJk7wlKCsu4LGUgUb0iGJo8kNyTBaROGdboc0oKyjiRlUN030hi+0W2ekz/AD/GTBnK9vV7qSmrIfdEAWdPFdInIRaAirIqdqzfS0VpJX2HxPHlnq/x83cw+box9IxrPEk5e7qQLz//mh6RofQeGE1cv0gGj+7f4ZWdvgPiOLAvm4DAAGJi696bFjTr14bEUFpaRnh4LP4OB9HRrXtfz6+EAR6vhh0/fpx3312Hn58fCxZcS+/eHXgHqoiP8P1bp0R8SFVVNQEB/h5JLvJOFbL7n4dw+DmoLKsidfowEob2ITl9SJP9Y9v/sZeyokrYfZwrbkkj+BIXeu2dEMvpo3kEhQbSIzrMffzsyULyTxcRFBLIgW3ZhEYEU1VZTWlRRZMJ2ansPBwOw6mv8rjhmmQuG9P4wrGe1n9gL2669UocDkNwSFDj1bDz1hJzhsTwt3UbOPH1KYYNH8zMWZNbNWZjlTCHcXi8N+zrr0/gcBhqamo4deq0EjKRS6CETKSL2LP9MHt3fcmAhF5MuXJMuzfZ+/u71hyrrXbiF+DHJ29nUlJQzoDhfRgzo/EKmXE4sE4nfv6ONjWaDxzWm/+fvfeOruvO7ns/v9Puub2jFwIgAPbeJEoUR80zkkZT/GR77PGMM568LJe8Sd4fzmtZcbJWVpL1Vpw4b+U5y/ZzSeLEJcue8cxYU61RFyVRpCg2AATRe7u9nnN+748LgQQBkAAlyirn8w91y7lnH1wBd9/v3vu7441hNF1dVa4Mxf14fAbVssW+h7qZGV7A4/OQbFlfNZJS4g14qG+L09yZJH4bG4ut4DgO2VQBX8BEN7SVc0kpN34fHAefzIC5PAiwCWf9Qr7A5MQ09Q0JBgaGOfXQidu+z5vpC0t4EywWqve0N6y3t4fr16+jqhqdnR13/TouLp9k3ITMxeVDQi5b4PkfnKVatTj9+BEisRsKkJSSy28PkaiPMDY0TSHXSyC0uV6dfKbIxVcG8QY87Dreiaavv1g7kgzy4NMHKBUq+IImL/efIxDxMTu6sOFrH31sF9PD80Tq3/sUoy+4dqNAIOLjoWeO4NgOpt+zodrlOA5vP9/P9NA8O45t4/in9+DxGkTr3p+VUedf6ePa5XFC0SCPfO4I1arFC997i3y2xAOP76e+6Ybnm2XZvPKTt9jx5j8kWe5HtJ24/Z7Jm7zE/H4fe/bu4OqVaxw7fvvF65vtC4N3Vxjdu0nJSCTCl770c+/5dVxcPsncMSETQmRZtrq49SFquyxD73tULi6fQCZGZ1lazKBpGkPXxjl47MZiayEEO/du4/L56zS31+MLbH4d0rXzY8xNLGKVbRJNEZo617duKBcq2BWbeEMYw6vTub+FqaF59jxwY7pSSsnY5SnSc1k69rcQiPrp3Nd69xe9CTZq8L+ZfKrIxMAskWSA/rdG+amvbK3UdyfGhmYJxwKkF7MUciXSqRyL8xl8fi/XroyvSsgWF9JM9/fxQKkfgb2lPZNCCO4/eYT7Tx5Z89h7mZJ0TVtdXD783DEhk1J+OLYSu7h8jKlWLTJLeVILWaKJEA3Na5Om/cd62LFvG4ZH39IHajDmx646aLqK1+/BqtpcfnGA9HyW3Q92E2uM4DgOZ599h9xSgUDUx4kvHGTn8U52Hu9c9VqZ+RxXX7mG7tEo5UocfWr/e7729wNv0CRSFyQ1m6Vz33v3Mksv5rAqNrH6EEIIDpzo4fxr/Wzf1UIw4kPVFAIhH6VCmfauhlXN+qFwACPWyGyqm/rqAOJ92DP5Xqcka6d2fcNcXD7MbKlkKYSIAt3AytdzKeUL73dQLi4fJPl8gf6+QRKJGK1t768xKYBt29i2g2FsrPQMXBqj/51R/F4/R+/bQ2NzbcowNZ9FNzT8yzYPHnPrZcGO3U2E4wF0j4bp1Rm9OMFE/wy+sJfBc6O1hMyWFDIlvAGTQqaIYzkoxtpyme7RUXWVatnCu06J8W6ZHZlnfnSR5t4GwnVbF92FIug+0IpQBMnW9+aivzCd5pt/+Dz5TJFHvniE3Ue7aO9upL27ceU5gZCPz/xP9+PYDh5DW9Wsb371OzzxxVOUCj8CtVBLwLaoSLmeYS4unzw2nZAJIb4OfANoAc4DJ4BXqe22dHH5yPKT515hfHwCIQTP/MzTRKNbt2/YiHyuyI+/8zqFQplTjx2kqfX2Tu+6ruH11VSMkb4pzv7kKqqmcOrpQ0Q3mCq8E0II4o1hrKrNG399jvRMlrmxReq76mjbVUsyNF1l76d6mbg6Tc+JDjRj/T8NvpDJsacPUMyWiG3C5qJSrDD4xhCKqtB5pAPds/Z1y4UKF5+7iqZrzI8t8uCXjm85keh/c5jr58fQDI2Tnz9IIHr3XlizE4sMXhxH1VTO/Ogyu492rX7Cshqm+5Oga5CbXdOsbwTqlhPwrb9nroO+i8snk60oZN+gtkj8NSnlp4QQO4B/fm/CcnH5YJFy60OCszOLpBYztLY34PWtrxYtzKbJZPL4fCbX+yc2TMi6d7eiagqarq2s51mcyaDqKpVSlXymeNcJ2bvYFYtipkS4LojmUTn2+QMEY4GVx+u3Jahf9v+6HcGYn2DMj+M4DLw6wOLYIp3HOkluW3ttk33TTF+bRToOgViA5p2Na56jqAq6oVEuVAglgnel6uQWC+imRrVkUS5W1k3IrKpNMVvCH/Hetlm+sT1BXVOUSrlKW88t9g2bsK7Y6p5JVw1zcXGBrSVkJSllSQiBEMIjpbwqhOi9Z5G5uHxAnP7U/VwbuE4sFr2tOlYslCjkS0TjIXLZIj/49qs4tsNY2wyPfOb4usfE68KEIwHyuRJdvS0bvraua/TuWe3kvn1fK+nFPJqhUkgVmB1doK4tvsErrMZxHJZ/V1fu8/g9dB/vZPraDPse2UUo/t4SvMJSgamrU/gifobeGFo3IfOGTKQjAYFj2Vx57gqhuhBNu5pWYtM9Goee3Ed2Pke0Ye0Sc8d2mOibxrYcWnY2rjsluuN4B/1vDhOM+ok2rC15WlWbl799nsx8jpaeBg6e3vhPVyQR5Mv/62fILOVpujVB3YR1xVYye0c6fO17X+P8nKuGubh80tlKQjYuhIgA3wR+KIRYAibvTVguLh8cfr+P/Qf23PY5hXyR7/7VixTyRfYe7Karu7XmQaUqVKvWmucvzWV45UcX8Ae9PPrUMXRDR9PWt5vYiGDEx+nPH+Lt564y8MYIQhHc/4WDRO6glGXnc1z68UV0Q2f3Y7sxb5rIbN3VROuupi3FsRGegIkv4qeQKpBojXPh2+fQfQbbT/agL09G1nUk8XzWg0Aw9OZ1Cukic8NzhOpDBBM3rsMf9uEPr19mnB2e58pLA7UbUrJt/9qpzmDMz+HHd28Ya7lQIT2fJxwPMD08D9z+u2SiMUKiMVJTxHKza/ZMMnaGfHQfP/zWRXYf2k73zrZNNevfqoYtFBY5O3MOhMPZ6XMsFBbB+eipYVLWBvE/bHG5uHyU2Mouyy8s/+dvCiGeA8LAs/ckKheXDxm5XJFCvkgg6GVyYo5Dx3bx0KOHmZ9L0b2j5o21NJdhYmSO5vYkfRdGqFZtpscXmZ9O09p5987lUtaa1kHWbtyB2cEZHFuST+VJTaZo6Gm463PfDt2jceDJ/ZTzZSYvjZOdLZKdy5LuTJHoqKll+cU8i0NzRNvieENe0tNpNI+O5rmzlcW7CEWslJTFXZrh+kImXfuambg2y577N7kk/abyZD6yj/+a/XV6D2zjwV/8aypLU3zrr94h4vXwxsuX6expRlVvn3Cvp4ZJO4BdbEfxjuAU25F2gGTwvXmGVatVLl68BMDevXvQtHtrNzk7O8vf/M2zmKaXp556gkAgcOeDXFxc1rCVpn4P8NPAtpuOOwD8i/c/LBeXDxeJZITunds4d+Yq27tbKRbKtHU00tZR64myLJvn/+Ycju1w7eI4+453MTY4g+nVCUff2wfUzhOdBKI+fGGTyCYmEGOtMab6ptFNg+Ad1LRiKk9hIUuwIYLh3/rUpGZoaIZGuDHC5KVx7Kqzoo5JKbny44tIWzIzMMPBzx8isS2BGTC3NKGZbI+z/7FdOLZNQ+fWLSOgptzsPtHF7hNd6z/h1h2TsKo8aS6cJz0zxPcHpune3UpDaxPxunHmZpZobq9bNxnbjBqWDMbZo/wT3hoc51BL6/viGXb1ah8vvvgSALqus2fPxsrh+8Hly1dwHIeFhXkmJibo7XU7WVxc7oatfHX6FpAGzgLlexOOi8uHE0VRaGtr5PqlKRZns1w6d50jJ1cbt6qqglWx0HSNtu5G6prjaLqK6X1vDvYen8H2g5vfxxhtinL8Z44hFLHhtKRjO5TSeQZ+cIFqqYI/HmTnZ9eaka5HOVtk+NV+NI9O+4luNI9OtDmG6dGwsJi6NEa4sdaLpxk6hXQe3WOgGTrx1s31wN2Moig03GJmK6Vk/OoUhVSR9r0tmIH30Ee1XqO+oqyUJ+XYGWZkJ/NZnVDci+n1oKoqDz95lGwqT2idhHuzapgQgj/9+/evSb7eS2/Yu4qYlBJd37wSebd0dnbQ19ePz+ejru7uEmYXF5etJWQtUspP37NIXFw+5BgeDVUROLaD7xY1SVUVTj1xkOnxBRpa4miaSmDZO+zvAv027vZ21Wbob8+TnVpiYXAGq1Ql7fPQ9fAeDL9JOVMgPTKHvyGCP7m2yX62b5L8fBa7ahNuiZHoasCuWghFwR8PUFwqALUktff0Di4/e4HUxAKDL/fReX8P0nGoFCv4Y7WExKpY9L/QR34pT+9DOwhtQgVMTWe48tI1VFWhXKyw7+GddzxmQzZq1BcCvvodRGGesOPny1enqGuKEq+v/Ux0XSO2/PO5WzUM3v/G/N7enpUF9B0d936vZFtbG1/5ypdRVRXDeG9fPlxcPslsJSF7RQixV0r5zj2LxsXlQ0xdY4xHnj5KpWzR2LrWHiIcCxCObb08WS1bqLpyWysGu2JRLVXwBL2rSlh2pcrEG9ewKxbNR7sxNrFSqZovUZjPEmyIstA3SbAhghn0UlrMYfhNhp+/SCVXQlwaofdzJ9BvUfj88QCztoOiKZjL+zTNoJdt921naWyBpt03mu4r+TKpiUUWR+YoLOTQvQaLowtUS1Va9rXRerCdzGyGxbEFPH6TsbdH2f3Y7QcsAFR9eRG6ZW9qtdIqbi1P3s62YtlZ3w/sO7Z+79l7VcPebxRFYfv2TfbJvU94vX93Xz5cXD4ubCUhewD4JSHEELWS5bu7LPfdk8hcXD5kSClRpEIw6ENV7665/FYm+6YYeHWQQMzPvp/au65xqlWucvXZ85SzRRr3tdG0f9vKY+mxBZYGp1E0hYX+CRoPbdAjdROekJfItjrSo/N0P3mY7Pgiut+Dd8UGQ2KVSqgblLtiHfWYET+KqmLepALWdTdS173aZ8wTMDF8Bk7VxvB7kLZDtVjB8BmkZ1K00o4v7MPweSgXKrTs29ga5F2y8zlG3h6lsbuOeHOExCatQICNy5M32VbYjqRSquD1r69afZjUMBcXl48PW0nIPnPPonBx+QgweHGCCy8PoKgKp54+SKx+6yt+bmXy6jTekJfsfI5CKk+4fm2JsJQpUsoU8EZ8LI3Or0rIPEEvQlWQjsQT8W/qnEJRaDu5C3m/RAiBXbVRVIFQFBzLxh/xkukfw1Mf2XCq07fJQQVv2Mfhn72P5n1thJsiRFrjoCrk57K0H6qV08ygycHPHVruv1MZuzCGGfSQ7Fi/H+nKS/2U8xWq5Srte5rX9SVb4VY1bKPy5LISZlUtXvjOeVJzWXYe3sbOw6tLfh82NczFxeXjw1ZsL0aEEPuBB5fvelFK+fa9CcvF5YNBSolt2Wj6nX8Vsot5VE3BqtqUCu/PXEvL7ib6Xx4gXBfCH10/ofLFAsQ768hMpWg/0b3qMX9dmJ4nj+DYNr741hLEd5MEdTmhscsVJp57i6kzl/E1JVAUQTVfRPdtrOhIx6GSL6P7PCjrqIZSSibOXSc7laKSKRDflqTrvhvX4DgOiqKgmzq6qdP/Qh+z12fBkXj85rr9ZP6Ij+x8DsPUNxxaWH7xLbvqZ1NFlmYzROIBhq5O0Xuo3VXDXFxcPhC2YnvxDeDvA3+5fNd/FUL8rpTy/7knkbm43GOsqsXLP7jA/GSK/fdtZ/ue208y9hxso1Ku4vEZ1LW8twXW79KwvZ5kewJFU9aoKJVsAdXQUT06HQ+s37SeH50ic3UIf0cz3CYhk45DYWwKp2Lh72hGWcebqpIpUE7liPa0krk+TfzhLszo7W0zxl+9SnpklkBDlPbTe9f4hEnbITebxhv1U1jIYlUsdNNASsnoG9eZuTpB4942Wg9uqx0gQDpy2XNsfVWp92Q34foQdtnCse2Ng7sLV/1QzE/jtiQzYwvsu3+7q4a5uLh8YGylZPnLwHEpZR5ACPFvqC0XdxMyl48k2VSB2fElIokAF167Rn1znOAGKhWAP+Tl+ON3bjjfKuo6JbelvlFmz11D83poe+ww+jq7MquZLEP/+ZuopofS3CK+lno07/pN/aXpORbOnEcgkFaV0M61Td+eSABfQ4zSfJqeLz9GqP32hrKO7ZAZncWXCJGbXsIqW2sGABRNpe3odqYvjdFyuBPdrD1eLVWZuTpBsD7M1MUxmva2omoqHUc7CcQDeILmKif/m1mcWOTFP36JSr5C+8F27v+54xg+Y/PN+svlyVXXclNf2P0/tbfmq1Vc5Ozrrhrm4uLywbCVhEwAN38dtZfvc3H5SBKM+Eg2Rhi6MoldtPnbv3iT+57Y+76pX++F3MQCus+kmitSyRRWJWRSSqoLi+SHJ1AMjepSGk8yirIpzym54W+toms0nz6EdJxVSpeUEqdSRTH0VeqPoirU7etk7uIwiR0taBtMOya6G0nc0uyveTQiLXFS44vEO5Ooy2uldFOnaVfzba9gum8G6Uhs2yGfKmBVLQxHu2Oz/kY7JtfrC1MUxVXDXFxcPlC2kpD9IXBGCPFXy7c/D/x/739ILi6bR0p51x+Kmq5x6qmD1DVEGTg/hgQyC/mVhGzk8iST/TN0HGihYZ3F2feS2K52pl+7TKAlifeWUmTh2nVyFy9jFcsEmhLI5iTJh+9H2WBXplOpICtFwjs6UHx+/Ntun/DcmoxNP3+W7PVJonu7SB5d7fqe3N1GcvfmTGsLC1mqhTKBhiiqrrL99E6qxWpN3doCTTsbmbw8ztzlPjyeplq8d2jWv5lNTUn6EySDHlcNc3Fx+cDYSlP/bwkhngdOUvuO/feklOfuWWQuLndgoG+U11++QEt7Aw+cPnjHXYLroSgKHbubSc3nAGjeXvvwLuXLXH1lEF/Y5OJP+qn7Svy2PmHvBStXID8yiRGP4G2o+Zv5G2J0ff6BdZ9vZ3PIcpnq2HUCu3cSPHoUzWdi53NUxkdQo3GMuhvlxuz581QmJxG6TvT06TX9Y3apRHFkDNXvx9uyevF4eSHF1A9fQ/UaVDM54gd6UTYxAHErpXSBge+fw7FsEr3NtB7vQVEUPMvWEnbVxrHsNSXP9Ui0RDmt/98YzefIZHcy3fdf6DjcgdV4BHXyDezGI2j+JPl0gWK2RLQhvKLA3XFKstBOdlEQUit4TMNVw1xcXD4wtvSXVUp5ltrqJBeXv3PePttHKBJg6NoEe/d3E0ustYzYDF6/h/ufWG2np3s0/BEfuaUC8ZbIPUvGAOZee5vS9DyKx6D5Mw+i6CpCVREbLIX29WyncPECRiKOk54j9We/j1BArW9DDYbh+gDqQ4+heH0IIZDlcu21bBu5ThN89sJlShOTIEH1eTFi0ZXHHMtGDweoZPL4Wvx3lYxBzcDWsSWqoVHJlVY9Vs6V6Pv+21RLFTpO9hLbdof1O4V5PAvnEdiESldwghVs2+E1/28im+dR/EkOpIuc+dZ5SuUySoeXxx85hqIot52SPHttjFY1yJ//++/Q1J5g//Fu9h/vcdUwFxeXD4Q7/nUVQrwkpXxACJEFbjYletcY9r2bMbm43AVdPa1cONdPoi5CYNkx/v1C1VSOPrmXfKpIML45f6+tYmVzCFWlODxG9spV1GqJVEhFVIsIXce/Zzd6IoniWd2orwX8RB68n8Lld7Cmx3EKWRSvD2tqFMW/C2yLyug1rPFBtLpmAgcOUBoeRotG0ULr/Lou+5gJRVkpV0rLBgHeZIzGR46SGxwnfmjHXZeIfYkQzUe6KC7lqF+eZrWrNgsDU+TmUpQyBTxBL0vDc8S21SGlpJwroXsNVEWsadYXbbUdk7LxCLGeXmzbwXFAeuJUClXSc1lK5Qr/VP57yhPD+P+oixe+/Gdk5sSGfWHf/B+vU1lIc/bVDDsPbKP/4ij7jnWvXO/CfIpcrkBTcx36XSamLi4uLhtxx78qUsoHlv+9/fy7i8sHzIHDvXT3tmF6PWgb9E9tlUK6QHY+R7g+hBkw0XSVgZf6SU+m2P5AN4FYAKtcxbe8h/GuzzMyRvr1t3CkRDPA61MRepjCpXfw93RTHryKXJrC09SE/76HEbc07JsdXejJOuxchsx3/gxZreA/+ShOpYQ93kfh+W/i6T2ENTWK0dFLYO/eDWMJ7dmFHomg+n3okTCVxSVSr7yB0FRChw9QHBom9/ZVKtPTNDxxGk8kjGJo6KHNmcNW8yWWrk9hRvzU7dyxcv/CwBTjbwws78HUcGyH5I5af9vYW0NMXx7HH/Gxa+6fIsZfX9OsP3fxMnMzgpbZDOH6MHse28nzL7yFvmTT/+o1nBad8uwwQjjklUGe/f4ZtEmL1sVf41opxeFb+sIefngXF84MIlRBsVhmz+Gulfc4ncrynW/9BKtaZeeuLu4/dWhL77eLi4vLndiKD9m/kVL+kzvd5+LyQSGEIBBcq4wVsiU0Xd3yjkO7avP2s+9QzpfxR/0c+cIh8ot5Fobn8Ya8XHt5AB0Hu2rTeqSLhjtMA66Hlc+TefMsuasDWHOz4Dj49++DhiRCkXiam0ARIB30ZBKnkMOplFAUgSznEWZwRcVSA0HUQJDYl38FWa2gBsPk/vbPcWauI7MZrJlx9LZuFO/6iZNTLGBn06jhGP6ubSv3lyamaoa5uTzT3/0h6XcGkELFWkqT7RtmKV9EUVXqHz6OEb2zQD55po/c9BICSednfJjLLv9iuQqs6hrbHtpFtC2JAMrTo0y8NYS/PkJ5bhzGX1/TrF8qVOh7K4XhM7jy3BWOPHOUz3z3a+SVQTyebfzL8j/mQGcP/uku8sogfqcLY9YhlAzx6yLLgac/Q0t9cFVSHUkEOfXkAaSUWJa9SgUrlyu1aU6PQTab3+K77uLi4nJntqK7Pwbcmnx9Zp37XFz+zpgYnOXtv+1DNzXu++x+ApHblzKLmSLZ+Szh+jCKqqwYl1aLFaSUeENevGEvxUyJWGOY7NQimmmQm0sDW0vI7GKRhe8+S/7iRYSmYqUz+LZ344mGqXvqCaxsFtXvR6gq1dkDVK5dRm/vQpg+qhd/jJOeRU22o+98cNXrCo+JkBWkVUE4VWQhDeUUWiKM98ipdXvRpGWRO/MCTiGPGo4RuP/0SnJiNjdSGhkHoaCqGv7OVtLv9ONrb0IzDZxKFadcwcoXNpWQCVUB6dTKjcvnqBYreEJeWk/0oBraSjLm/METGOOvs0Pp5o2Z36DroV3AsVpSdpOXmFQEM1qeRNYi3hxncHGGvDKIEA5lzzDFACRb47z81b9gcHGG7ngDEwMzDJwdpfdQ+5pkbFW8QqwpSSbrYpw4eYD5uSUOHNqx7nEuLi4u74XN9JD9CvCrQKcQ4sJNDwWBl+9VYC4ud8PsyAKGV6eUL5NbKtw2IbOrNhe+d4FyvoI/4uPg5w6y+5FdzI/M07C9HkVRUEyFfU8eoFqqops6o69fo5Qu0rR3c1YPAFY2Q+6ts8hKFVkpYWdTSMfG19aMb3sHvl27EKqKHokgl3dHGg3NGA21hE+WC9jzI5CfpjL8Ik5uHK3jBADO8Gs41QqyUkH4omitPViDb6G37EdRbIRc38le2jZOqYTi9eHks7WdlcsJihGLkvz0I0jHJv3WO8hrw/hbEmjCAruMJx5F9ZmYyxOhK9eZL1KYnMcTD+GJ3RiwaDrWQ7oxihn2Y0b82BWLoR++RSVbJNgcp/308kBFbhYx8QYCm4gzwLb9Yboe3Aknv7uqh8yybU7/6ZfIK4N46eSFU3+Kx9TxOzfUsM998RSKomDbDt4FwfD0JNWqzfYj7bR212+53CyEYPfetWa6HyUqlQovv/QyuXyeU6ceJBy+uyEYFxeXe8NmFLL/BjwL/Cvgf7vp/qyUcvGeROXiskmklFx97TpXz1ynfVcz2/Y2sTiVJt4UIdpwe/XGcSRWyUI3dcrFCkiINUeJNUdXPU8ztJWdiS3728hPLbLO2sZaPLYNUq5SpUrDwzj5Ak6ljJ5M4m1txGxsQE/GCT38CEJRkI6NdfmH2H3PQ7ILz5GfRvhqcQiPD8U0sEevQTUHxTTO0CugeUD3Yl35CYqmIlExHvlHeB/7MtbQeRSfF1kpIAzvmjgVjwffviNUJ0cx2rvWrDwSmopAJXriMGooQGFggMrsHGZjI42Pn1732mdeOk8lnUNoKq1PPIC67MqveT3Ee1pWnmdXLCq5EkbApDw9gnT21M7vT0LbceToaxSDe2i67ygAlpQMFi26fRJFiFVqWFG9zmh+gV5fEy9/9S9441IfhXOLnP/+JfY9spPxgRneeWGAqaE5PAGTSF0Qr89DsiW67jV8nBkbG+Odi5cwPR7OnTvP6dMP/V2H5OLichObaepPA2ngS/c+HBeXrVHIlLj44gAzw/MMX5gg1vgYj/zCiU0dq3tNHPqkAAAgAElEQVQ0dj2yi7mheRp66tddjn0zUkomnn+baq6Iamhs++z9qDeVtuxcntQrr+JUq0ROHEeP1wxm9Xic8vAwwvAQPn6cwM4Oyueex4h7a6U8FGRuHmvkLFglmBnAnh9BiVWQqetQzSEMC2GqiGoFKllE407wBHAm3kEJxJDlHIoZABz0bfthYRBZLVG99EOMw19EaMaaa6GURlWrKJ7b99p5EnEC3Z3YlQrBfRuX6xynVpYszS6Sn5gh2NmyrhJlBEwaDnbif/YXMLOX4I+OM7Hn35EZW6Tu1O8hw1m0QoyR5y9hJoJ8ZeifrShfL3/1L+iON6xSw7rjNc81TVXRRqqYPpOFiRSZ+dyNuXAhwKnd2GhH5sedYDCIxzCoWhaJROLOB7i4uHygbKWp/4+Bb0gpU8u3o8C/lVJ+7V4F5+JyJzw+A1/IpJwrE2kIszSVYnFoFn/Uh+k38cf9JNo3/vCJNkeJNm9SLZESx7IRmorjyJUP+HepLC5iF4oIw6A0MbGSkHmamtHCYYSqophenInzeJJhZGYSmZ5FxJoQZhAl3IidmkKJ1SMq8zgXf4icv4poPIrITqB1HUdWimg9TyASXSAUlGgLQqvijLwCse0okc31tTmZRaqD7yA8JpWrb+E99uiGz/XUJUh8+lGshXn0SGhD64v6kweY+vFrqJpg8c1LGEE/Zt3yGqpb9kwmWk3IXQZpI8dfJ61eRYk38Suv/EP65XV61C7+L/9vcGV4aEUNyyuDDC7O0Jts4oef/2P6JsbY3719lUdcQ1eSvjPX8Ue8BKI+wnVBELDrZBdCEfgCJvHGT2aprq6ujp/52WeoVCrU1d3B683FxeUDZytN/fveTcYApJRLQoiD9yAmF5dNo+kqj/3SSTr2taB7dJauz4AQnP/2eZLtCQy/wcGnD+GPvXcvMaEoND24l0z/KMHOZoS0qMwuoUUiKIaBEYuh+rw4VQuzZXVipPpvTDoqgTj2whhC08GsxSUMH8bxLyH3Pgm+MHL4R+CJgGNDOY1ovQ8hdAjUI5I3vLFwKlCcQng0KA4vq2k+9N2PYi+MokSb16hjtfOZCN2DUy6h17Xi5FLIchElWodQ1rEQqZYoXr1MEQgcPoLZ0rLmKUbIT7CjmUylCoB0nOUYnbV7Jv1JnNZjLE68SazxMFq8iamlKa7YgyAcrlSvMZeepTNcjy/VRWFZDeuK1DF1dYqrz11G8+hcX1DYcfqGate6q4lke7xWZl5e2r5t99anYT+uRKOfvFKti8tHha0kZIoQIiqlXAIQQsS2eLyLyz3BMHWSDSGysxl8MT+LIwsYXgNFU24e7HvPSCkpDQ4ip6coyQLlYg4nn0eLRgg98CBqwE/skU8BIFQVWcpSvfh9ZKWAvu8JlEBNqVNiMYS6BxGrTVBKp+bDJXQvIlzr95JNx3DGX4adz6AkdiHCrQhFWxUL0gFfHBAI6YAvVusxow7hi6D5Ihtei+L1Yx57FCefwZoaJPfd30cJ12N07sHoWfs9yyndcNeXpdKax98lvGMbmsyihBsx6+O1O9fZM+n4E3ytoZ7zajMHkg383sMH8M5tx/72DdPWnqcfpCkZ4BX1xqTk5KUJ+n5ylYmLY7Qe2EYpU1gTg+l3nfVdXFw+emwlofq3wCtCiP+xfPsZ4F++/yG5uNyZUq7EwIv9OI5D6/42Bl7oQ9EUfFEfBz57AFVVyMxk8EV8+KLvj9O+tCzKE1MY8RjlyWk0zUELBLCy2ZoKpNZWHr2LNXEJu/95pF1FVvN4Hvg6MnUNe/Q5FECSgcIISBvankJ4bywwF/461N4vrD5/NYdMXUQqHkj3I6wCND+OevTXcEZfQHijEFyrXG2E4gvipKaxRy7jLEyAbuAUsus+19PcgpPLISV42jaYMHUc1P/+RULvKmHbvrPirP+uGhZvPoLwJ1koLNxYYTRzjpSVoaU5vmqZd0tTeEUJ7E02YVs2118bZP76LIFEEF/Ux/aTPZu+XhcXF5cPM1tZLv6fhRBvAg9TW5v0RSnl5XsWmYvLbVgYnic7mwYES2MLKNqyh5jXQyhZm670xzZ2krcKZXITs3giQbzJ9ZUkp1rFWkqhBoOoXhNF1wn0dpMbGCSwsxc97KcyNo5vTwdOagp78gpKXRdafScAwhtBSgc0A0VVca5/Cxb7oDgPkR3IzAhQBKFCZmglIZPSrqlf0oLiJOhhhCeBnHsF8qNQmAahg68JUldQmh9F6f38pn92UjqId11ZdRPh9aMmmlBjTRjdB9Y9RjEM/Htr9hROqUhlahw1GEYN3LTAYx0ljEAdDvImNayeP0CuXuh9ywqjjZZ5Z2ezICHUEMYX8XH0mWN3HMRwcXFx+aiw1ZLjFPA6YAIJIcQpKeUL739YLi63JxAPLNciBfH2BPXdDRQzRSJNUUpLOZauTeJviBJqTa57/MyZSxSmFxGaQvtn7kMPrLWGyLxxlurcHKrPS+T0Q7WEbFcP/p03erjMllak41B59c8Qhhd74BXUaBPCMNGadsDDv4ZMTyEicZyLvwWqAYofPDoivhORugLSRoQ6kE4VWZxALryCkBIpdEQ1DYoBrT8NigdpF0Hzg+IDuwyh7pV4pV0BRV+VyMhqHrnYB54oIrwNZ/Q1nNkrKI37UVsOoyZa8Bx6DKSDEmvclD9X/uyr2EtLCI+H4JEDtUGCW5SwWNNhsv3TlGYvYu1pXaWG3bzQ+1017OYVRhst8zZDJt6IF81QaTu8zU3GXFxcPlZsZcry68A3gBbgPHACeJWaYubi8oESboxw6AtHADCDteXbgURNrRn6wVvY5QqL1ybpefoEut9cc7xj2SjLS7XfNWO9GSklViqF6vdhF4pIy4LlfZJrkhYhEIEITnoOxRcG9cavlRprQObP4lz+XVi4UDNgrduHMPZD9gK0fxGhB0GoyNkfIdPnoTiFjByGwjBSC0JpCVlJgzeGXMwjjBCi9QsILYTQatfmLL4Nc2fA3wJNj6/0mznjL0J6BAkonU8iZy4jgg04Y68jVQM11Igaa7hx3eU8spBCBJPrDgNIKXGKRYTHg+/Cv0C8OrjSqO8IVpSwfeEY//uzP0ZULHKDY9jK1tSw9TADJvs/e5BqqYrvDhsYXFxcXD5qbEUh+wZwFHhNSvkpIcQO4J/fm7BcPmnYls30wAyKIqjffmdPMLiRiN2K5tGoZAqohlZb23MT0nGwsnnqDveQm5jDCPmpTk1gL3ow21pXEgMhBN5tTRTeeBmzdzeqd62C9i5CCPRdDyOz8wh/FHFTQiZzo2CXEE4FYZqgmjXrB2mDUGuJkwBp5aA8Db42KIyDU4WGTyOnvgVODgZ/C1QvWEUwE1CeQ5g3WRcsvY2spmHoJaTqRW381PIDtW41hADNRETbkakRZGERMX4GW/Og7n0GoZlIq0z1wveQpTxKtAl9z01WGMu2FcKfxH/kPsp9b6LkrrEgJPGxM4jCPAtCWVHCzi1dImXvIqZ6iakKu/kNzg1OrKhhTtUic20MXVFgeyuom5u8MLwGhndtouji4uLyUWcrCVlJSlkSQiCE8Egprwoheu9ZZC6fKKb7pxl45RogEYqgobvhjsdsROuDe8hNL2JGg2jm6g/vzKV+cv1DqD4vyYfvo9A/QH7wOjgS1TQx6uuQlRKVsUGqV1/H29mOzM7ilIoo5m2SMt2DiK21VxD+ZuTCeWg4DVYefI3Q+hSUZ5BODmfxObAWEIqJ9DaiVLPIjq+jBHeAU8TxJpG5BajMgncbyCooKsK7+lwy2APX/6Tm3j/5LLLuJDhlsBeQMotoeQLFl0BufxhZycOV79YsMxxn2ZwWsCpQKSC8fmT+piUct9hWaF/9Duw8wtcutvK2anMAD3/gi2PPZ7EL7Si+EZxCO/VPP0NgdpLgnp38WUP9KjUsNTDGwtsDCClRTQNvXYzCbBozFsC4ZWH8/PVZRs8OkehM0nqoY8trj1xcXFw+CmwlIRsXQkSAbwI/FEIsAZP3JiyXTxwrH7KrfSo2MiEFcGyHwtQ8iq7hq4+t3K/7PEQ7G9c9pjw9ixrwYefy5M6fo/DOBWxLotc1rJy3PHABa2IIZ2EaWwi0ZHPNM2wdZGkeOfo9UD2Its/Uxl0UA6HUEkFhJpFdPwupN8FKIUOHUc0EeMLImb8EHGT2IkQfRAgHpemmyUpFh/hpqKbA0wBCQTQ8DaH9OKkzyMIQInYfamAHIroHGe6tJVl2ESlUyI5AJYPwxhB2bvnHrCA8QUTP4zgL1xChFoTuW441iNJ5FLkwjtKy+0YchXnssTMs4RAbO4NSmGeq/y3eUmvv21lpsVBcIuH30pv6Ohcm8+wPhenY38PN39lu7g0TioJAIoVAqCpjL7xDcSGDVXUItCRI7Ggh1FyzCRk+cw2P38PkpXHquhsxQxsnxi4uLi4fVTaVkInaJ+L/smwM+5tCiOeAMPC9exmcyyeHxp4GFLXmG1bXWWvELy3lGH3hHRRdo/2hvWt6wVL9oyycGwCg+eFD+BridzxPcO9O0ucv42ttxJoewdfbS3FwkNCRQ+jJdx39BdK20Fs7MXYcQm/atrKbUkoHyinQAwjVQC5dQToVKC/iXPltRHkMIgdQOn4RoS2bvloZZGkE28rA/LeQ/h0oTV8DPVZTvjxNCKeMCB1aE68a3IE0fxXsHBh1CEXDyV/Dmf1OzeW+Mofc1ozQAsiGB2Hqb8DfCKVJZPoScvFNCHaDrx5pVxDqcqLoi6H6ji1fk0QuDYBVRIluQzo5RGYIGapHKAqWGePnG1rpNyx6Khr/zYyh+FpuqGHLfWFayOS/f/0Es1NzNHW131bJCne3onoNhKLga0pQfb0fxdAZ+v4b6CE/RugCp/6Pn8Hwm0TbEsxfm8YfDaC75UoXF5ePKZtKyKSUUgjxTeDw8u3n70UwQohPA78NqMDvSyn/9b04j8uHD0VVaOxZXaZcGpzCKls4uRLZ6SViXatVL7tcBUUgbQfHsjd1Hm9DEu+nH0JKSe7NCpXpafx792K21vYuSquCKE8jKrNorbvR1DTkpiDWAYCcfAmWLoMnBp1fgEA7YukKEgtRHgfVB9l+qKRq05AAWgCEBrl3ahOW1TlEcRAROw1WmlrBsApKAKcyjlCjCPVm77QqTvEqWHMo/r21aUuh1JQzbzuI2mSlCHYh7VMIATI3CFYaot1QWYCpHyBVDVn/KErgFh+x7Dhy5EeAQI6+Bq/8DkvpMWIN+3Ae/mcMzI1z2agplZcNybWBM3TVd7Az9RXOT1Y5mIyvqF9mXR1tG6zlsYul2vooQ0eoCsH2G+9n66l9zF8ewYgE0LwGdtnCKlcx/CYd922ncVczht+Dqq+zRcDFxcXlY8BWSpavCSGOSinfuBeBCCFU4D8CjwHjwBtCiL92vc4+fiyNzTN9aYJ4Vz3xbUnGXuujsJCl9UQPwYYbq13MiJ9qvogR8GFG1pq7Rne0w3IPkq9xa8uShRD49x/A7C2jVDLI1DREGpCFFBSXMNq6cMZfQspOpLyI8P40whuBzCDSE0OUFpGVJYSvDrp/AewScuzPIXUeYkeQngQydxFZngBPG46mIL3NUJlDqAEwW0EoOLKAk38LKQF7CaHFAB01/AiKWlME7dy55RVJA+BprilloR3IygLCtw2UWjIkAt01ZUxKqM4jcxegtIjwdcLSWah7CLJ9SN2HnHsNPElE/DAUFmpLuIXEqpT4B0aBt1sb2V+a4D+Nn6UrUI/faiOvjeKrNNM+cwmpKPzxsRJLVZX6jvAd+7qKE1Ok3ziHYhjEHjyBFlztEedNhGg9tRdvQ4zRl65Qt7sNX6w2Nasoyh3NfTOLea6+NUKsPkTXnma3z8zFxeUjx1YSsk8B/0AIMQLkqXXLSCnlvvcplmPANSnldQAhxJ8CnwPchOxjhOM4DL7Yh+7RGXm1H00TpEZmMXwmMxdGVhKy0kKahXNXMVUHf9xk9rnX8TUmiO7djl0qY8QiaKZB8uBap3Zp2+QvvYOdzuDftx8tvHaZtDUxQLX/TaRjoQgLFBVt90Oo0UZEMInMLqAkO5CZEWQ1i1JerCVkDQ8gpl9BRrpg/ifglCBxCsW/Ddn5NaRdRjFCSCuNnb+C0ILIzBmkkGAI8O5GSTyDokex8m/hlAaQ5VGEZzvSzuLYaZzqOLacRws+AdVx7PIgwrEQqh/bSoFcwHFyKN42xE2LtYUeRDQ+hSzPIme+h0w+AItvgrcJELUm/9BO5NwZZHEKZl7G+ct/RGruGtH63fD0bzNs+znf//s4As6bHoYsle7CFM/tfIrri3N0pK4jKjmUcBLDDNNQKaG17bztey5tm/TZ81TmF9BCIarpzJqE7F0SPc0keppZGpvn2k8uk+xpINwUW/e5N3P+xX7SCzkmBmeI14eI1oXueIyLi4vLh4k7egsIIf7L8n/+LtBFzXfss8BTy/++XzQDYzfdHl++79Z4/mchxJtCiDfn5ubex9O73CuklFQK5ZUGfc1QGX75CvN9EyiKwPB5qBbLBJuilOZTVHNFKtkCTtVC83pIX7qOEQ6SHZ5g+tnnmX/hDOm3N87TqwvzlIeHcQo5Cn1XAHByKcr957DmpwCwxvsR/jBOehZZKdb8waplhGag7/kp9GPPoDS2ICrXUaIJmHsdACXajbLzqyjx3lqjvGpCfhAAoXpQjOVEQPEitABYWYSvG4SNUEIIPYpgefm2vQRaAvQEil6HGnoEiY3QG8DOQHUcWZlA8e1GKuCoPpzCWZz862DEcSigRB5EShs7dwk79SKyuoRUfUjVU7PaaPk5lOanEXv+T0THL6L4W8CTgMwAVmqYX5YLPNpSz9fsSazJ5+gKaJhON0gF09nO9oiOMEAzFbqDPlRrCXKD2AvXYPIcQhRBv/3uyPLMLHYqTXlqBlkqYiRW9/qVMwUmX7vCYt9Yzf+tXOX6C1fJz2cZfP4Kjl0r6s6NzHP5xX7e+PbbjFycWOUfFwh7qZSrqJqKYa4/gOHi4uLyYWYzCtlhIUQ78PeAP6amjN0L1nvdNY6dUsrfpZYccuTIkbWOni4fKqSUDL14hcWReeKd9XSc7CWxLU5xJkl+fJaBb77C9s8ew4yFyQyMMPaDq2imh4ZTBwi21WPlipjRVlJvvo0a8KHHw6imh8pCasNzqj4/wtBxKhU80Zq6Uj7/Io5VwRq/hnLySbSWHqr9b6K17kQNx0H3oNbX+sSEokA5g0hfRnp0yF+H+lsa7j0JpB6u9WfF7l8Tg1AMlOinwC6AFgZvO7JwHhQ/Qq0lbap3P055ABE6herpQkob6aSxC2eRQqdaHUERoNhLCE8ngkptgAAVoXtRjF4cJ4ed/gGUxlDMHuzsmwg0pAqOpw7VEwAjgqKaWFaV62MX6Go+BJUFhqx3OG9evKGGpYboHvh/efGZf8dQSWe7KWDwr8FIoHiiSGngBGJILOwX/yNix6eRM/2ozXvAu1aFXPlZaBpawEdgVzehvbtQzdUJ3MzZfgpzGVLXp/DGw3gifgyfQSlbwoz4sMpVirkyF350hcG3RggmgqRmMsSaIgRjtVLmvpPdNHYk8AVM/O4UpouLy0eQzSRk/4naNGUncJbViZNcvv/9YBxovel2C66txkceu2KxODxPoD7M4vUZWg51EG6KMWOo5Ks2/mSI2TOX8cd8zJ29gpAC/7YmpGWT2NPBwotnyF0dxtcQRfOaqAEvpf4BfG1NWLkcWmBt6UsNBAif+hSyUkYN1/ZUSkUgc4sIXwQhFLTmboTPgKXriPoOFP8tjeiqiTACEN0J/iZoOI5TnoPSOMLbCloIDC8oIbBmqf3vegtCx3YWoTyNanRB+PGaGayoNaYregJFr/W+2dYijj2KYm4DTy+VzJ+ANYrUkujBn0KoIZzyaK2BXwmALCK0BHb2ZYQawbEv4ZT6wexFccpILOT0H2KpfkTgAKL+l/mFPzq5Min5J7/0KtvNesx3XqSgjWFaLXTpKfAfRsv20dP4KE5mEMf0Q6WE2nAIGUwjx84gpy8hSxby6g9Rdj8Jxu37u4xkgsjJE0jLxtOwtuFf85k4lQUUXUMxNBRNpffx/WRmUoxdnOD1P3+dWHvt52T6TSqlKrpXX6WEabpKY/vW+ghdXFxcPkzcMSGTUv4H4D8IIX5HSvkr9zCWN4BuIUQHMAH8HPDz9/B8LnegkCtRyJSI1odQ73JvoGpoJHsbmR+YJrYtwcgP3sQpV+k4vZtQMkBhcg7HrjJ9sY9gWyOF2UX8zXV4k1Hyw6M4FQvF9GFlsniiIcyIH623E1mpUJmaQoYDqJEYirFadVF9PvDV/LWkVUYhCzKLGmnGmXgDe64fOf4iQkhEoA4e/lcoNznsIyvQcBKheJDWAvbYH0FhABE5gshfQyQ+VbOH0MNQngTWWlZIex6nco3a0LCKZm7so2xXryDQsO1BUKJICiDLCBlAqCGE0FDNm7/71HrthKcdCpfASIKWBBWE3kRl/m8ZXoSOhI5SHmVo/DL9hoUtBP2GxdDUANtDDi88/vMMpdN0Nh1FSV9BOFUIdeMsXYa+30FJX4PoQZgNoHT9LDzwj3HO/B6ikEJxbNTuk6s2E6yHEAJP/fqTlwANh7YTaIqj+008odp7Zvg9eCMBcot5gvEg2dkMex7eQcfBVrwhL+G6MB6fa4Hh4uLy8WHTTf33OBlDSmkJIX4d+D61T7A/kFJeupfndNmYYr7Mc391llK+TMeuJg6d2rHpYx3bITUyi1AEkbYk8fY4Xo+CoqvMj02jmjrlxSxdT50g3T/K4tv9KMLBcRyaHz1G8tgehKpgNtSRD47gNQ1CO7vxJOPIaoX0a68jfCaVaxepSActXkfg+IMbB1QpIRwLrbEDmZvBzl9GehOQHoe6XmQ5c8OtHpDlOeTEtwEbYseRmbcg/RqUpmp9cHWPgBZCeLuR5SGkHkQW+5CyAPYCimcXqtEEQqcmKNsI5fZ9VooSxLYWQRgoShRF7wJZQjePIoSGlBagIMTqxFg1O5FGMzL/JthLIHQc715+6ce/WlPDrij80Rf+Nd3xQ/RUtBWFrCOmI5UAuuijJxpBqgqEOpB2if+fvfcKkiw77zt/55xr0pvK8t619256LMbADAhLkCBAigZLF5IetNzVxm6EYjc2lhH7sFTEhpYPkoLBAEhQIkCKq5CWmCEJUsAMBmN6XM+0t1Xd5X1lZqXPvPecfbg1XV3tezDDcfl76a7Ma87NvFX55Wf+f7F2CkrLQTnWW4PGWjAQgEG2jmLt/yZ68jVExx5U+89u1iFt65Ym8OFkmHRPmtxsjqHDQ3QMtcHQrc3imzRp0uSjzv1MWb7vGGP+BvibD3odTaBarlMt1wjHQmQXC/e17+rYHFOvXASgdUsHq6fGsUIOTjKKnYjgV+skh7uQliK1bQBpW2AMsaFulL1xS1rRCO2f/RRwvaF3lMznP4uuVij+5O8RoTD+yhx+bgmZbL213EE4gezbgx57AfJvY9auQqQDdnwNYWrIwSeR60baxiujZ5+B3HFI7EI08hi3M5imDHWB24rMfDpQ4k8cwCtp8JbQlVMgBcLqQtcvoZxupGrBijwAxkeoO08KSnsUX5wEBEKGcSIPAx7K6sX3l/C8cYQIY9s7EMLGmCpe40ogDiv6GS+lGYonsN1eLs9c2ciGuZqpcjfb2hXf+63XGZt4laHIDKJyGsLDiK6vYbwCYvlHGF2F/HlIPwiUILkdwl3Q8gAm2gdrlxGJUazeQ5iOnaAchHz/dMGkkuz6zC60p5v6Y02aNPnY86EKyJp8eEi1xthxaIilmSy7j45ses73/HVV/ZuDH69ap16s4VWqaE8z+9IZVk5cwo64dBzayp7f/SLGcM08XChJckvfTccB0PU6pl5H3dAnJqRERaKE9hykPnYW4RepvPws9pZ9uFsO3HQcIQRWMo3n1NCFqxAKI1hDjTyOatu9aVtTmQZ8CLWDrmN0Dmk56I6fR+gisv0rQZny2loiGNMIvChVGGOKKGcwOJbRCBlDiNtP/RlTwdcrGAMChRAuhlUsqxeDByi0XgweN2WMKSNEEq9xhUbtNA2/yOf+87+irCYJ+wO88Kv/D8PdW9laU1x0fbbWFKM9owAoJRnpTKFXXkT7LjLUv+4moAOhWUPQG+flwQ2uHzcBbhqRPQFZgxEWulLEzLyGCLcit37hmvr/+4EQohmMNWnS5BPBPQdkQoidN4q0CiGeMMY8/56vqskHjhCCnYeH4PDQpsfnLswx9uoYqc4kO57aibI2PizzU0tMvHiW/KUZlGPhREM4yQjhlhihTJJQKrruYXhrjDGUL1ygPj9PaHCQ6tgFdKWC09aO09OD09WLUBvnc3sHkMpQe30Kb+oSFBZQyQxWez/Gq6Hnz4BykB07QDlgRyDeDaVLyM5DsPwapnUnQkj8wmXM4o8g1IVUIYyTCAKg8gVEqAfV8iAyenN5Toa2IqxMUJKUMTA1EGGM8Wg0zmFMCaUGsKybvTWNMXj+GAYfY7x1Yb8qUrTT8C8h8JGiEyk78LwxhIjia5dLK7MMJWwMNa5k61TVVRBQU1cYXx5jNDPHd77xvzE5t8Ro/yMIFUZ7S/jVC3jl0wgKCBmH9YECYcWh7XPQyGOECEqtC89BeQb8KlSXMXZHkA0zBpbPQyiNyY5jli5Cx65bBud+qUR1agorncbt6Ni4bq1ZOjlOZSlP+4FRwq23n9Bs0qRJk08K95Mh+0/rmmT/Ggit/3sYeOj9WFiTDyczp6aJJCNkZ3KUc2XirfFrz+UnlpBCUM0W6Do0ihCCltEuhDDYYYeOI7fvQzNaUzx1ivxLLxEaHKTw5htYjsI0ahRe+ymRoWFo1HGHtgTb16t4S9PIUASV6UDnF1CtXZjCMrT3o+fPoqffDA5uh1GtI1g7v4Yefgqz8FOE8dezQ0EgYSa/G/RLrb2NGf2foPtjAA8AACAASURBVPA6oNH5lxCmiIjvxhiNX72AXzmDsFqxo0cQKoqwr2tYF0FTutZVjCkhRBitF4CbA7IgiFFgGmDqGOECNTSzGFNHiDCGGpbqQso0nq959M++SVmOEdEj/OSf/N/siI2xv1rjRMhhX7XOsKvAeDihLraMHsB2RvHrk/j183jlc+AX0KKMUgZlpTbW4mTQpQvotddAWAh3C8J4IBQkt0JiXzB5mhiCDg99/q/R8+fwqw0s5aDabhboLRw/jpfLgRBYTz6JigbTmNXVAqvnJrHCDotvXWLgs4fvfuM1adKkycec+wnIjgJ/ALwMxIE/Bx55PxbV5L3D9318X+M4P7tYpu/5pHvSzJ6bJdGZJJIMgo9aoUK9UCE13ElxPkvLjj6UY9Oxf5iWrb10Hb2zkjuAt7pKZWwMv1ymOjZG4uhRhITa1TGc1qCR2/jete3r547hr8wAEntoO0J6CDeO6g4CNpTNOzJ2Yr0/TMS7UfFuTKIbKosQ7d7I7NiJwOhbhhF2AqIj6OIJhBOH2B5M7Qrabccrv4nx5hG6gHY6UerWQaYQYaRMoHUByxq87XVbagSt1/CZB5PDmALQgUDi6xhXc7C1VSOlYnx1jqq8BAKq8hJX85rt7Z/m23YvuamTpLq3oePtaJ1HIlFW4A1qqAMCaXdgdAMZ3o+0OhD2ZoFWUzoPtaUgyxfdidj+P4NXQoS7QYagNI1ePYsoTKOFjcmvQuEYfts2EBGEG0HGN3rlhJRBRu3Gaw47WK6NV6mTGOi46Xnf81lbKhBJhHGjdx6GaNKkSZOPC/cTkDWAChAmyJBdMea60bQm/yhorTn+5kmWllZ54OgBMpn0bbctlyr8w98co7hW5rGnDtA/1P2uz7t4eZ6TP3gLx7Vo39bF1id3IqWkUaoy/sM38ap10iPd7PiFh0CI+/YS1F6D2vQU0raI7t9P/NAhhFLEDhyiPn0V43m4/dfJPmgfhEKvTuN5WWQoir3jEWR43f+wYwc4EUBDOBBiNX4d0Ag3ifbysPgcJjaKTG5HDv4uJnccwv3IUDvacjGVi4FBeGMO4e5DChcpI2gDCAkqhTENQCDExq+SMXUajZNoU8RSoyAExtQQYnNwofUahnkMLhKNFhoBCGGhTSuP/8f/gZIcI6pHeOlbf8WWkLUpGzZkT2LoRf3msyTzb9JwKxgugWhg6EKZIIBVdj8YjbCHEaF9GH8F6QaBpNE1MFWQcUTiAKY8hrDbEHYGGdno7dMzP8LkzmMW3sK0HoXVc8Hkpy/wJs7hzS4hwnHcQ59HRoPMW+zgQepzc1jJJCoaxWhNZTGHCjsMPH0Yr1In1BLnRs799BILY4uEYi4P/PxB7HW9saWZLL7WdPS2NL0qmzRp8rHjfgKy14H/DzgCZIA/EkJ83Rjz9fdlZU1uyfz8Em+8foJQKMQrL7/Bl7782dtuu7KcJ59dIxqLcPnC1LsOyLJTK7z4x8+Tn8/SOtiGGw9de86rNfBrHnbYpZor4pWq1LIFQm0prPDmAKQyPUt9aZXIyAB2YvMHsbe8RKi7A12pEB7ov9YrJpTCHdg8VABgbz+KnL2MH48iKtkgQLsugyakQsZb0WP/BTNbxW/bhyhcCBrwe74Ai8+DCsPKK5hoH9JJQftTG/ubetBLFtmFkCFk/EEQYEUfxEQOI6w0CEO9+iparwYTldZWlNWO78/jmYnA0shbxrG3ofUSluoDYtekKwyLgMLzV7mSzTOaaUWKXqTs4MJKlpIcQwhNSY4xtrrAttYuvuOMkJ1+nXT3TnQijaGBlDGs1MOYxiv4uoJvcihZxteTKJVCCAfLvYXnp67hFV8CXUHYPSi3A9H722A8cG4QWW2s20RZDtTzyPatoDLouoc/PwtiEdW1BRo1atNTNFZXCA0NEx7eCKKXT42TPXsVaVv0f+4I4dYkWmuquTJO1L3WvL+2tEY4HqJarAUisCGbuYllXvybEwAcfmIHQzve/ZeLJk2aNPkwcj8B2W8bY95Y//888FUhxK+/D2tqcgei0TC2a1OtVmm5Q3YMoLUtRaolQSFfYsuOgXs+R6PmcfGli9TLdbY9upVLL55n6dIslWyJUDzMkV95mHq+zPSx89ixEG27B6hmC7Tu6GPmuTfxy1WcdJzezx29lsnwCkVyr58AJaivrNL2mUDOwstmKV84T/XyefxqFbe7Fyt+c9bkRmQ4hhzZj1Xfjj99BtwwIt2NWZvGNGqI9ABUV6FRAjsOKycx9TkoXsV4ZUgOIWoLYCdB3mJK0MogIjsRXh4Z3YUxVRr5ZzCmjhV9GCmj1Mr/QKNxFhBYIobvX0VZ7etN/RXAAxEG46HJ4WuDMSmy5RZaYy6COHV/icf/4+9TkleI6mFe/I3vo0SIrRmXnXXBRcewtS7Y0tIeFGC/9R9IlWbQkShSxhAEfVlCSKQcxNcFpIgiRAQp7tIsb6qgK0G2MPcS2h1GiCiUZ8GvYbp+ARULMmmi61Ow8jZkDiKcNLhpVK2EN3kGz3sbb+IMtDTQMkzx7WNIZeHlsqQ+9eS109XzJaRjo+sNvEodGXI59/enWFvIk+xMMfrEDkrZEoP7+5m7tEDPji4iycAGqVapBxVoIaiUane9P5o0adLko8b9CMO+IYRIA1sISpYAE+/Lqj6haK1ZWysQi0WxrFu/Nclkgl/8xS9SLJbp6rq9+jlAOBLiS7/wOL6vse17j72zs1mWxpewQzbTZ2cQBmLpKLGWOPu/dIDO7d1MvXSWRrFKZXmN9BN76Ng3hF+to+sNVNjFr9TAGLTvo2t1kBJdr1G6cBkn00LLw4cxvkfupz+hfOYEbv8QVjJF/MiDWOk7a3Zdj3BCWMOHADCFWfwLzwaP9xxBduxCxAcw1VVEz5OY838ITgKMh2g5jEBjrBSmOhtMOYYHEDJ4nYSQqOjOa+fxKyfR3jwGSaP4PCZaw/OmECi0zgM+UgbrVjKFrbZgjI8QAmNCCBHH0wV+7dvTvDWT42BPG9//nUe5mq1QklfWM2HjjGWn2d42iqgs8/35SbIYWhDIyipepI4RZyFmgHakGNxUurOsHiyrB2M8DDUEkdu+bkZXMMINjMwrF0DGMfUFaHiwdiq4LhXZCMjcNKL7yc0HCSWxRhOUX30eX1uY6Ums6csIZaHrdeyWze9j2/5Rlk+M4SRjhFoTXPjRGc798ASxtgRSSk7+/WnWVkuEoi5Hv3YI2924Z3tH2inmK3iez8juW9hUNWnSpMlHnPuRvfgd4PcITPveBh4EXgGeutN+Te6dH/23n3D58hW6ezr58pc/j5S3titKpZKkUvcmFSClvO1xbkc4HkY5Fl7dJ9GWoHtLB7W1CkJJevYHmbZoe4r8xAIq5ODEgw9+FXLoeGgPpelFEiM9GM9n6YVjePki8R2jhPt7MLUqMhSitrCEnQwyYVYqg59bJXzoCFYmc9t13RW/AZhgMtCvI5SLGPrixtPDvw7ZtwJjcKMRThrRWEWvPBf0eTVyyOgwWKkgkPKLgRaXlQbVCiKCbkwh7F50YwYpIxgtsOx+XPdo4DEJCGEj5RZ8f4HlUoFMtIwwZVZKkrPm3xEemeBMZYDl0l62Znqvy4TBaEs90B+LppF9e8lMnYS+fZhIBsNrQAnQQARtikgiQA0IX+tjE8JC3OFX22/M4dfPgbCwQvvBL6Jrs1C6AnjgFzAigrhFQz6AKa2gc7PIdC8YhTEKky9iwhmoVUg88ih+oYDdtvkLg5OI0v3Y3mANnk9hcY2uXb3Mn5tl61O7mJ1YJRQNUSvV8OrepoDMsq2b9PCaNGnS5OPE/ZQsf4+gf+yYMeZJIcR24Pffn2V98vB9n/HxCTo62pidnadSqRCN3tm0+f0i3hrj8NcO4Td8Yi3BGh767ScxxmA5wS3TsqWbSGsC5VjY0Y2esmhPG9GeYCqyns3h5YtYiRiVqVlSB3bRWFpCKIXdksZKxInt3UejfwC3uxs70xpM5t0DRuubt032IfsfxTTKyI49wXaVJfS5P8KUJhGRToh1Q+kinPkhOrkP0/4oopHDaB/qL6IrlyC6DWFF8ctngib7yG6syBZM9AGouBizhjEV3MhngQZCppEyvLE24+HreX71OxO8NZPnQE+U7/5mHaniqPAECI0KT6AsD1GZ35QJo1KEmADhYL71PShPQHQrUijQFhAFckAOzSWMiYARCBykHLpmXB6so47WawgZRoqNe8n4q4HW2HpDv4o/jAyt4tWfAcuAdQFEDNz1Kc36GmblDLgtiOQw3rl/wPh19Pw56DmK1TMK0kKGYjgjO1GJJFbizl8YlKUYfngr82en2frETjq2d9MykmPy5DRD+/sIX9en2KRJkyafBO4nIKsaY6oimKBzjTHnhRA/u5FdEwCUUjz08BFef/04Bw7sed+CsVqlTnZ+jUQmSiQRvu12N34g3kotPZSO3fTY9diJOOHeTqrzS6QO7sZtb6X1M09QuTpBfWEeKxohNDjE/X70elOn8S6+BMbH2v0ZrM6gYV0IiejYUN43RuNf+S+w+CrgQz0HEvBWgoCktgDVRYxfA68A4XaMsGH1x2gnifGWELE9oPMASJVGWh1gkih3D1LGQIQQQuD7dVZKPm3xEFBjuVjirPn3hEcmOFsZYLn0z+iMxzjYvpcTy6fY176NdKiGEW2bMmFE9yFYH2iQ3ehYJ9DAUEOKLcAE2liAs/54FTBo5tHaX+8pq6NkF74/hTZFhFEItQMhgl45afeha2sIK4ZQaYSw0aXLCONjyhdBpRGhEZS7Ljcy+yKmMBM0+9uxdd9PAUajUm3Ynf2oZAvunodRiTv3NV5P63A7rcMbWbSWrhQtXak77NGkSZMmH1/uJyCbFkKkgP8K/IMQIgvMvj/L+mSyd+8u9u7d9Z4cq1H3WJzJEkuESWaCwMkYwxt/d5rcYqDx9NjXD2G9j7Y0Qilajm62MqovLVM+fz6YNPR9dCGHX6kQO3DotlkVYwzelVP4S1PI7hG8t/8OU1rGlJbR+WnkE/8Mmem/ecfiNBRmoLYGfhGTCCHCPaC6oXgZknsQTgpCnWBaMU5LIGfhtCHsdOBfqdKIUKBtJu1+LOECAt2YpNEYR9i9+H6DX/vTSd6aK3Kwt4+/+J0HkUptyoZJuQYmzrfnJ8nNTtPiJTEUEaIF860fQHkWER26FjQB6wr+Y8AiRsQRYhDBHmAOY+YQJIE0PucAgWECQwpJHG3mMPggJAbNO5psWheABnb46Ma0p1/EX3sVvFwQDEa3IfwKxNd76JQLugFSIeww1o6n8bOTqJZ+sB10uA0j4wj79qG19jXa87Hcn10P74Nifn4eYwydnZ1N2Y0mTZq859xPU//X1v/7fwghngOSwN+9L6tq8jPz1k8vMHFxDtux+ew3HiAaDwfWRGvVQFKgVMNv+Hg1D7/hEU3fX0ausrKGkIJQ+u4TkZuQEnwPLS0qY5eoT0/idndTvTJObN/NPpQApryGN3EGEYlTf+F7yJCLP3sZTAmhJI2xV3BvEZDp0jyUFjGhPkQkiUiOQtvDyJYgixb0idUw0sIIhYrvAiHxV5/HVGeQma8CDfzcj/FlCBndh3S60H6JpbU8mXgMr/Q8C8UqZ8Vz1/WG/SVpp87+th5OrUyzt3WEtvAwolxGTZ+iVfuY6VOY0hrEXaR0IXZzslnrVWAK8AAJooIgiRI9GDZEbY3fg2EGgwMoDB6CNJbqxtcrCBFDCBetC3jVNzFoJCmk1Y60O/ELZ6E+H0xWWp0opxUhXYS93pTf8QDICCLejQgFj1mxoNevPj9L9dI5hGUhlCSy5+b3sF6ucekfTlIrVhh6ZDvpwTsPo3wYuXp1gmef/VuMMTz99GfZsmX0g15SkyZNPma8K3NxY8xP3uuFfFRoNBqcOnUapSS7d+9GqQ+n8XExX8EJOXh1j0bNg3jQ4H/wszuZODNL10gbXt3j+DMn8OoeWx8epX2wlYULszgRl7bRjttmAdYmFpj88Vt4tTpDXzhKsv9mtfVbYYyhvrCAV62j4g66XEIX1qhNNogdPLJpWz+7jF8uYbd3IZwwIhzDnxvDz84hOoeRfXshewm0h/Abm8/j1QIR2OUzkN4OuTGI9yOsEDiJzdclbfAqiNIYRjgIJ46ozQblz8YyujGL0TVM8S3wVzGxJ/iV717h+MwKBzrL/OkvWyirvjkbpgr43iTfnptjbX6GVMOm6s+D46F6hpEz49B7GBk7ckfjcagS6DCvAWEEG+XAYHrTAB5SdK/nvywErQSXF0YIgRSpjes19SBb5lfx629hrA7wR0CXEDISWCZlnkKGuoLBBhUKyr5vfQ+zdBbRuRdx6DevZdYApOsGmnHaR4ZvHdRXskWqayXcWISVsYWPZEBWLBYxxiCEYG1t7YNeTpMmTT6G3DUgE0IUeKfeccNTgDHGJN7zVX2IOXPmDC+//Apaa0KhMNu23Sy4+Y+N5/lcvTSHZUn6RzqRUnLoie1ceHuCTGeS1HV+k5nuFJnuoE9neWKFRrWBE3bIzeeo50rMnZ/FaI0TdUl137ofqLyUI3t+Cr/uMZc6e+8BWaNBbXqO8OAQtbk5rFAYt28Ap7cPt3dDFd4v5im//jzG9/F7hwjveQD30OeoPP897H1PoxfHsYf3YrJtUCsiBza8EE1tDf/8M+BVMNJHKgfR+QCi9xGECiEiN3hKegUoXgS3DXJvQsenWb+1MQa008vywjEyThSDw3KxzBnzr6/1hmVrv0trJMqBthFOroyzv30faVfSWPWwZ6/SqjVmZhxRnEJHLSq/8s+RFYOTfBolxLrSv8TXs0ADJXuuKfoLWjCUgXYkAwg2gjdjDNpMYSggSKPk8KbL0rpAvTGJMVmkcLCsbSBSYFyMt4gQMUBiaKBie/AbyyBshIxjVk5AfDsimcDU1tDTr0M4jZl8FbP/V4PAdh0rnSH+yBOYRgMrc4OY7DqRTJxoJkFppUBquB2/4d+yJ/HDzJYto6ysrKK1z86dd7cCa9KkSZP75a4BmTHmPmtSH2+UstA6cIyyrA/Hh8ql01Mcf+U8mGBNvUMdJFtiPPDUnfvRUl1J2kfaqKxV6N/Tx+qVRYw2d7U+ive2YcfDhEI2UsHK25eQtoW0FdWFZRqFErHBblI7N8sUCNsmNNhPdWKS2I5toD0Kr78Gq1l0vY501vunfB+0AWVhGvX1fV2sgV34M5exB/eiBnbjVQrInj2ozi3XzmEqWaiXwIkiwmlk126MdKCyCtFEME1ZnABhQawPVBTc9sDHMr4DnE5ky5P4lRlM4Sy/+p8dji8lONDRyfd/azsWiU3ZMMt2UX6F78xOk1uYJl0P45XfQERbMT07YeYcumcLJrIuSyE0RNMgFA3vFKARoh3DMiDwvRWUbEWKLqSMovUg2hRBNIDrs2kehgKYCEbkMKZro4RpPDz/ElqvYkweIXswpoLwCwhvBaFawdSRMonQNsaOIDNfAOHA+J+BisDiTzCxPoQTQ3Tug+UL0H0IoVz8fBZjwGiDDIexUndu5LdDDlue3seJZ08yfnyKlZk8ez6/577lWD5IXNfl8ccf+6CX0aRJk48x76pk+Ulm584duK6LUpKhoaEPejlAME34TglL61trR12P1pr8YoFQ1GX3kxvf9iOJMG4ijBN2SK5Pu2nPp1as4sbDSBV8gEY7W9j2jScoz6+C8cmen6CyuIq0JJWrk0Q6W6kurhAb6MaKbkxyVmfnqc0v4fb1E921k+W//msauTy1uQXcwUESe/cBrE/sHcFfy2Kl29DVCjIUxh49jNW7HWyX+uvPgJHopRkY8UAqdHEF7+rbUC4irRCq+yBE2zHn/1+oZjGWC207YPG1oCQ5+CVEvB86nga/gpZRVop1WmNdyMoECxWLM/afER6d5Gx5gJXGd+lIpjjUvpe3l0+yr3U7LcrHLL2Gmr1IqzGY2QuYtQuYSAr/l/8Nyu9Ch3wcBFI6GEoI4mh/Da3zGJMHuYaSKQwltPbR5iqCCSy1FahiKOD5Ckttva7p3wITBQoINjeZGwPaLwbBp4iCsamX3kDXxsAvY4W2olQXFCcx/kVM+QfIUBcm8zjCbYHqIjipoIQpLewHfhsqOYhkaMxMUDn5JqWxK4h4C053L+lPfQoZuvOsrPYM5VyJaEuUtaUCxjfBxGuTJk2aNAHur2R5q5TJJ65kqZRi69Ytd9/wH5Etu/uRSmI7Fr1Dd+/PGXv9KpOnp3Fcm8NfPXBN4kLZis6tGyU9ozXjz52isJAn2Zth6PFd1z7401t7SW/tJXvuKuXppcC6Rwm8cp3C+AzhUgXf8zbdYIWTZ5G2TWViiujoECqRoDo5hfE8cj/6Md7yMsmjD6KiUZyeQSpreSpvH0M4YaIPP4UMhRGRRNA7pRxMfQ3hhFhvmsK/+jqiUUVbaeTwZxGxjmBbvxZs73sIrxpMHhqN0EHvmZAWmhi/8scvc3x6moO9fXzv14eQ8iQqMhlkwyITkP0hJL/Bd57+E1azl8m0bKWx9H2MKKDbO5CLi5iuLRhXoexB8LOI+BHsTcGSxqsdx+g8vj8NKo6FQMnOIGtmJtFmDil6MHoBRBRt1tC6BCaDbQfvjzbLaJMDLGx5469gEfAR+EhaoTGPqV2FxgxCJhCqA+kMBVOZfimYQBUOonIV0fNzUF0CN7PhWmBHwA7Ef/3iGt7aGpWxMWRqDWG76FrtrgGZ7VoMHxlm9twsIw+OfORKlk2aNGnyftMsWX6EMcbw9rGLTI4tsP/BrQyMdm56XmvN2NtTlPMVthwauKY7trZUwA071CsNaqXabUU4vbpHYSFPNBNnbWYV42vEDWXa1NZ+7HgEIQS6VseJhTH1BjLk3lSScrs6qFyZwIrHkOEQKhojtGUr1bExdKlE4dgxBJB68qlA22t1CeFGMLUyplrB2Da1sbPQqGNtewhKWWSyFWEFWSMRb8PPzyPsEMJ9x+NRYFI70WM/RHQdQnYcActBS5clumhbb9ReKlY5rf+A0MgEpysDLGf/gNbur3Mw/QwnclfZF3ZoXX0O03YE+Vf/gtapVzG9hxBPPY00Lv7nfgEdeRyZ3IWlF0AvI+w+TH0BIyRCRREqCvgYU0aKGFK2IWQScBAigRAhbBWj4RXxvcsYNYhjd+I1JgMjcPMGUn4KpZIYU0BgY6jheROB1ZPqQYgwYBDCxpgK2rsCOvDVFCKCUBksdyvCboPUg1BbBjUBXglT86AwBXYLZnEMmepFRDaXI93+Ecrnz+P0DeD7EqerC5W4t+9k3Tu66W6agjdp0qTJLbmvkuUtvCwxxrzwXi+qyb1RyJW5cGqSdEuM4y+dvykgW5nNc+H1q1i2Qhs48FTgS7j1wREuvTZO15Y4ifbbx9t2yKFzzwDLF2fpPjiMvFXPnIBY70ZWLtSepnhlBrc1hR3fPHWX2LuTyFA/KhxG2jZuVxehvn7QBj+3it3RRX1hgcrVq4T7+3F37KN27gRWZw8inqR84lWqJ1/DamsHyya0bd+m46u+A8h0H8KJIEIb2mtm7jRE+jALlxEDD2Paj/JP/vhljk//gAPd3XzvqRWo5zdPSi7/LbLWw7e/8D1W3/rfaRFrCGlDtQxTr4L2YPoNhPfziNhBsNsQugD5F5GRbYj4U+jcT6hXX0ToHDKyCyv5KYRKoOxtaH8Oxz6MVDG09vBqZ8DUkPZQUHM0Bt8bR8s+BFF8M4s0EbReRKkkUnbg+Zfx/Xm0l0PKLnx/BcfegxApLLUVT0+BlqCSSGcfQoQx1QXMyk8wkRGEcRBWBroPYeZexqycxCyexFRssGLo+bNY+7+OkBvvu4xEST39FazTpxFSEtuzu6nJ1aRJkybvAU0vy48w4ZhLKh0jt1pkeFvPTc87IQupJF7dJxx3rz0eb41x8At7b9q+Vqox9tIFhBCMPLIVJ+LStW+Qrn2Dtzx/YWqRuWPnCGUS9D62B2lb2LEIqZ0jLL12hqVjp8kc3EFsIAgUhZTYyY1sSqi/D6slDVLh5XOUTp+hsbxM8a0TCKUI9/djP/IZALyVJWpjF/BWFjGeR3j3AzetR0iJSGwu2Qoh8GSI5VMvkonYyOIKK7a6lg07UxlgeeXLtEXgYHqUE/kx9sc7yYQz0Cii/sM3aJt+DTq2on/5T5CJbdB3NAjKeo8gW/ZhdAkRGcLkXwfpIvw18Mvo3CugsxgVw+gqxi8HAZnVgZAZdG2cRvE1jCliBCi3H+OvAApj6kiZAqoo2Y3vTaAp4TVmsFQvUkZRogdt8kAJo2fx/TAN3cByDmAaS4jaPAaB0HWEUMjwICZ7HOxWmH0Go9oQ0kL0fBG/MAMXn0UjIH4AkRzBm5vBpM9j929DqI0/FSocInnkME2aNGnS5L2j6WX5Eca2LT791SOUChUStxB2TbbGeeTn91MrN8j03N2SZuXKImtzgU3Q8vgS3bt78Rs+paU8TixEKBHZvP25SaywS3k+SzVbJNIenKO+VqQ0NY+djJE9fflaQHYrrFiQybIiYUy1SqFYgvUy4iaUQkaT2P1bcHoGsPuGb3G0m9Ha8OsvJnlr6SEOJBz+vJQDsbopGybsMhDh20/8G3JSkZp+BSoL0PEQYvp/CbJhCxdRqiXoV/vWM1BeRkTbrpts1EGvWiOLiO8FL4twOpDVBqaRg/JVtOoMdMeEws/9EL92BSNBOAMYcmjdheX2oOQ2PJkCI1BWJ1qXUaod35sGatSqL6FUG8rqQcokINH1eYSuoCkGAV59AmFlMGvHkM4gVC6C04VwuzG1WSAEy29grBCm/UnIzWFkArTA1H38MmjiNC69jXDC2D23f73LqwUKs1mSvRlCqQ/Gf7VJkyZNPuo0vSw/4tiORSpz+7JjsvXeWwDD6SiIYHojsm4qPvnqRZYuzlFayNH7wCiDD2/HDgc9W8mBDqZeOIURAmlv3EpWNIwVi1JeWCWz794H7gR0+AAAIABJREFUINzeXopjU9Tza4jIZp9MK9VC7IFH8WsVnPbu25qQa21YKdVpjTnXesPOOv+W8OgEZ8sDLC3+HpnCFAfCPZyszbK/Yz/te38LIUBYUdJXnsMUVzBYgR7YO9mwvqMQDbwdkRJiN2biJCJ+nY+mkEi3C+1VENYQlC+h9XFM9gWMAEwdKCPCrQgaWOFHkHYnppFFOCEcZy/GX8OvjYPMYNu7wGiM9tHeMtIoPF3DskbxzTyCZTQVhPEQshWsTkx9BuEMBB6UwkGoMLQ8hvBLaO9FaPigfYQB0TIKq+PoxQkIxzCFNbDW7x3r9n8m/LrH+I9Ooj2flUuz7PjqA/dsEP9hQmvN9PQMlmXR3d119x2aNGnS5D2m6WX5CWFtpcjqTI7WvjSx29gkpXta2PeVQyAgnAyyYdV8Ga9UJT+zSuTSPLHWxLUSZrSnFem6GAwLb40x8FTQ0yVtCxEJ4+s8lWwJo/VdP6T9ao3ilWmqK3msaIS1k+dpe/KhTdtYre3XbtgbAy8vn0dj+LW/OHNtUvIvfvchlFXayIZFJpCqiLQd/qjjlynueIDW9m3rFkoN+O6XkJPHMOl+/Af/KbpeQ3zzz4NpzGjbtWnOu2HqWaguIZKfQsWPoLMvYIxAeIXAqFwo8FaRThoiT6GcNrAz+MWfAgbdmMFOPIFXOQGmgWEGO/oYjnsU4+epl17G884iZQtefQnjF9BUUHY30u5D4ENpBuGtIpKPouw4yDBCrQe5VgKR2g7laVAuItyGGhnAdB1Cn3kRU6shDfjRPlQihdXed8frxdxdauXDztmz53n++RcQQvCVr3yRvr7eD3pJTZo0+YRxTwGZCOoy/70xJkfTy/Ijh9fwefNvT+PVPSbPzPLoNw/fVpQznNpclhx4cCuNap16pY4VtnETG7pixtdIW4EUaM/beNzzKc9nifa0UZ5bRTd8hNTkr86jbEV8YLNulvZ85p9/g9pylvrsHLHhHsJ9t89SaG34lT8+xpsTWQ72Jfl32+rUxy+zlsxwWv/ptUnJpeJf0hZJcbB1DydWT7O/Yz+d257EmzyNWVogNjWBSfTjLV3FO/8iocljCONDbhLcTryJt/HOPodMdaGGH0S13b1MavwaZuoH4FfAaYGOx6BcRJRLELIAFxwXE+lA2G2I6iRUxjGhd67XINYVZoR00H5pXaFfIWUYZBylkqBa8L08unoZTA1htaDi+5FWBl28ANkXQIYDD8rOX7ppnTIxjAn/KkgLodadAeJdOPt/Dn9lmurMEvX5RSqT81QLmsjQIE7mZgFY5VgMf3pvULLsa/1IZscgsEaSUuJ5HpVK5YNeTpMmTT6B3FNAZowxQoj/Chxa//kT62X5ftNoeBhjcJw7eRzeJ+tTe4F4rL6vXSOZOHt/8SFKywWM1kTbNpry3WSU3kd3Ul4u0DK6EUBJ2yKzZ4jsuUladg2hXJvl0+MsnxgDBL22jVCSymKOxGAnyrXwihWcliRCKVofO4LbuvHhf2M2bKVU582JFXxR5M1JzVRlksTqHHqLt7k3TK+y9Fc/4vfPdVLdcpTRh38DGUkgEl04z/wLVHEc8+oevF3/HJEZRCeGkYUr0H2IxuUL+OUVpJdDRNL4l19CtvRvam6/9WutQddBhsCvYgqX1jNwFYS9HewodH4eufoipjoD1CG2A9HIo9IP41cnEVpjGllUaD/SX0HIOEI6106h3J341XMoZxhTngJtECqEVOnADUDXQEZBl8BqCd5z7SHUxjFMvYw/eRyEQg0cQljrQVkohtWzHbFcQghJYWwapyypzizR9vTjqJB74xUTySSIZP7x5QgrlSpLi8tkWluIRiN33+EO7Nu3h1qtjus6DA0NvhfLa9KkSZP74n5KlseEEEeMMa+/b6v5hLO6kueHz/4U3/f53Bcepb0j854c13IsDn5+N8tTWdoHM2hPUyqUiaYi19T370b0hl407fksnptB+5r0cBel1RIGgRsPMmiZXUNkdl3nZGAABBhDo1Jj8fglIJjUHPrig2QO76R4dZaWfdsIdWx4Il6fDTs0kOZPf2knZmySluFvU7bGCVX7UGMHqVWrpMOtHIzu48TKSfa17iW6WGTp5FuYeo3Ihav4+RxWIgnlLKo4hsDA8mmslja8lUW8J/4vnJFdeMsLiPG3EfUixmpFex5Wqgvk3cVMhRXGdD0NpSuI5HaMV4G5HwERjJNCtj6CVBGMV4LoFkzhNEZYyPg+UMkgY6Y9dG0amfkCQqbR5cAWCxVDuu1IEcHUqsAEWqsg2DLqWtAmo1swyUOAQKgu/JN/iLAcRM/TyNQoppKjfvbvYW0hkAiJtaI6NnuyhrftQrghQgUfQtFAYPdDVJo0xvC3f/MjlhZXSCTj/NI3vox1h163uxEOh3n88UffwxU2adKkyf1xP3/BngT+qRBiAiixYS5+s35Ck3fF3Owi1Vody1JMTsy/ZwEZQLItTrItju/5vPHMSQorRTqG2tizrk12v2Qnl5l+cxyAiVcu4MZC2BGXnV8+jHJuvq1atvcjHQvl2ETaUywJEQjNqiDIiQ12ExvsRmvD3EKexpkxpKWwdg5fy4a9MWG49PxxEGvUrXGE0HihKcrpR+ju2UXi8AP8ydAvMjd5EXF8nPxbZxHRFKY2h90Sxc60Yoyh4YcxoUHs6gR+agfW7qewGlWwQwgpUcbCm7mI6tqF9gxeqYwaHrpnvS0Z6wt8MgGRPYuxWhBWKyK6ExnpDzJW4T5EZQqReRKZOgSAMT43GmLo0jlM5TKmeBrh9qHdjkDzDDBeAakiCKcdwoPX9hFWHNX2JWis4Z/8Q1g9g0kOIXJnMckRvPP/DbLT6MVLyL4DCPfm7JIMhYhs34XTM0Bleh4RCVNeLhBuV1jue5i9XcfzfMqlCvFE9J5eZ601uWyeWDxKsVjC87yfKSBr0qRJkw+a+/kL9nPv2yqaANDb18mZ05fxfc3Q8M26Yu8F9UqDwkqReCbG0uQK5lYSE/eAslWQ8NIGv+5hhx28ah3ta26VR5K2Rcu2/ms/9z25n8ryGvG+m7Nhb1xdZWdE8gcjFu0dKTKj36Ekx4jqEVqi/xIv57Jd9HPeTLKdPgYPPUS4s41wXzdSSKKrDWq2ja8NqS98hegr/yNq5a8Qf/kGlSf+LWunLuDH/jsiW+PEn/hq0Pd0XVAik22EHvwqfnaR2smXUC3d+IszMPAuglcVQoj1V+SdXi0hIfN4UFr0Suj8GUSkD2EnEMnHMLVZpNsdaIRJF6P94H2SIYz2MPUionQewgPI9JNBCOd0AGCqK+iL34HCFCa5DVbOrHtTJqDlnSlQAbEM0glh7f4CMnX7BnYrHiMyMsD4s6/SKNeoVTxi/R10Hxgi2pa8/9fjFjQaHn//7MssL2XZvnOIo4/c/TueUorPfu5xTp0+z4MPHSJ0F+umJk2aNPmwc88BmTFm4lZK/cDEe76qTyjJVJyvf/NpgNs23f+shGIug/v6mB9bZPsjo+9aZT3Zm6FjzwDVfIXMcCv5yRXSA63XJDHuRrg1iduSCHrD1oPCd3rDtCxythRjTbvEIx41axxhNDVrHPuBIdJrkv/zzX9JtrxKgiitjz2EFVnvbdKaaFuY+pzETqeI9WdQz5wKtMSmXkXn5xCWwuoeJnRoP1ZL6y3XJ2wXle5Apdrw13LYI+8uESziQ9D/ZcBAtA+dPQ8rxyG1C9GyAzP3t6DrmPxpTPeXYOkFhF+CtgzYIKLbUXYKmTwMfgmDg8y9gVYdCJFChjYHUyZ3BnLnQdmw/BakdkKjDzH6TWQiGEqwtn8GvTqJSHQi4213vQbd8PGqDYwxLJ6fwWlJMHnsIju+fORdvSY3Ui5VWVrM0tqWYvzy9D0FZAB9/T309b8/X1yaNGnS5B+bplL/h4z3KxB7ByEEo4cHGT08eMvnC8tFzjx/nkgyzI5PbcN2b32LlFZLTJ2cDnqLLMWWx3bc1zpu7A37s18/SMoV17JhEX+EfV/6LqFkjP3t+3l78W32t++nPdWNSAusU+PoMyWWiqt0PLhMarQHtIbvfgl76lXa+o4ivvVMIFVxnZZYePtBfC4iLIXbc2dfRWE7uIeeAqM32QfdD0IIiAWZQaN9mHsB46YQi8cw8X4wPggrGAaoLkB9GVQEUziHCHUE2TW3BwHo/HlY/DGmPoeIDkCjhClOQrRvI7CO9EIoA5VFRNuDGBVH2HFkZtfGmsJJVM+eu67daE15MYd0bLof2kFubJY2T1Iv1siM3jxx+W6JJyJs3T7AlbEZjjy0++47NGnSpMnHkKZS/yeU6QvzzFxcYGBPN52DG1mSiVNTeHWP5YkVcvN52gY297GVcmVK2RLVfJniaoloOoL27z65eadJyTeuan76n44RSm5kw+r2OCW3RljE+c7T32G1ukomlLkWeKR2DLFycZbEcDe58fkgICsvX/OZFFOvBj/H2jHf+gFrp05Qrbik6z6J/bfPwBhj8MtVVMhBKBWcT9x7MOYtTkC1gOocRTiby2hCKkysB1GcglArwk5A1+cx5SlEdBikjVEx0FWIDN188OwbiHAP2iuBSCEK05jiPKL3ixAbAAI5C73vfwW/ggi1AQJ/8hSN869iDe1Hxu49kFq9OMP8mxcRUjL4mYMMfPogXaUqtUKVaGsc7Wv8ho8d+tl6yqSUPPyp/Tz8qf2bHq9Wazz345cplyo88dTDZDJ3d5to0qRJk48qTaX+Dyn32ttljOHMa+O8/Hcn6ehr4cmvHb6ljdL1FHNlnv/+q8TSEfLLBdp/I3Nt2rKlO8XS1WXssE00Fd60X71S561nT1BYKrA6tUqyLUYq4jL0wJ31uW7Mhn3/dx+kJWpdy4aF6oNk4v+K+hrsSe3mVP40+9v3kwkFwaAUktbw5tJirCtNZihGpSJJDgb9U0TbbqmsX10tsHB2FWkrvGqdnicO3HatuRPnKI1N4rSmyTywj9KlcZCC2LZRpH3nwEPnl/DOvgACdHYWYStENI3q239Nn0v0Pg21VXBSQdYt1IEIdWwcpOdrYLxAVf9G4lvQMz+E0iLUPHACZwXt1ZCFWYxXx3iN/7+9+w6S9TrvO/89nXP35BxuzjkgE4kEQCSCpEiCpldcSxZL9np3VfZWaVUs21vrVWkluVRbK9mSIImSvCK5WlOmAGYADACIeCNuznFyjp27z/7Rc8PcO/nOTM+d+/tUoWre7rff9+npi5lnnnPOc3AESjDB6rGYusheOgIeL9nz+/Fs+9Rtlx291EK6t5/QmmbckRuradPDCRxOJ7lsjmwyDYAn6MMT9JGKpzn046MkhhJseGQt1hiunGynYUM1tSsrb7vHXLS2dnD5cisBv4+jR07x2OP3z8t1RUSWInXqX4LaW7t5+80DlJRGePSp3Xi9k8/LGh6I88Ebx+i80kt32wCNa6rZ8cjUefKV4230dwzRcbGHbY+uwzhuJH6162qIVUdxul14A+Pve60i4nA5SScyRKpjROtK8ATG96aasm/Y5cJzxjV8vRqW9V2mP9lPdWU1f/bAn3Ho3QO4+1wMdQwSrZmgKpLP4/r7z9N09UNs7R4cq39YePymfSZv7qzv9LhxuJzk01lcwaknf8cvteIpjZHu6Wfk9Dni5y+BLey1GVjZfP28bH8fyfNnIJ/F4XJgh3oxXjcmn8c4DLmu8zjCUei7iiNag4kV+rQZhwv8EycsuUQvpAZxRCeojgGmdC+m7zQE1kCyF+ssAXcEm0yQu/pzbNcpbKgOG6zEueVzGG8I4/Fj3B5sJoUJld52zczQMP0HjuFwO8kMDlP5xIPXnyvf2Eg+k8HhcZPNQ7x/lMBYsj/SN0J8YBR/2E/LiTZ6ukfwBj0c+cUZKupL6ekYoPNqHyvW1xItC3HpXBunjl5i1foG1myYpvP/mFgsit/nJZlMU1dXNf0LRETuYrOZ1P/ZsS/VqX+BHf/4PC63i/b2Xnq6BqhrmLzi4PV7iJaHuXq2k2jET2nl9A06HW4HtasruXC0hdHRFCP9ccKlN6pqgejETTZ9IR8bHl1Lz6VeGjfX4XA7adreOO6cfN7y8l+8N277opurYYWVks/gMGXj5oY9+smncDgd9Lf04eg2GI/hyPcPs+qhtVSvq8SR6LuRZI0NTZp8FtO27/rQZOHN3b7PpCcSpP7JXWTjSQJVtyclN4tsWsPQsdMEmupwxyJYCpVKc8sqvpGDH5I8dZzU+dO4K0twRaN4KirwbdiGKxrBpgbJtxcm1xtPodplk8PkWg6Cw4WjfheOm4Y0c70nyf/8f4TMCPmqvTgaH8fR+EmM50bFyhiDqXwQ2t/CuqPY4WFsooV87hjk8pAYwoRqCgsYxhoAG38Y945PQ2oUEx3/fckMj9L74VESrZ34KkvxlJeSyxSqYZ6QD3fQR92Dm7j44Tku/ewETo+LLc/vwB8NECkPEy4LMzoQZ+XuJpIHWxjqGyFSGiKdyvD+T47hdDlov9zDU1+6jw/fOkYoHODAL0/Q0FyJz397g9lblZXF+JUvPkcmkyUWW/zGsyIii2lOjXvUqX/2hoZG6OsboLq6At8E3c5v1ryqlvffPkIo5CdWMvXm4F6fm+f/u4fY+/hGQjE/ZVXTtyJYvaOJwZ5RUpksvqCXq6c72PjAKqCwzZLT5Zh0uLRyRSWVK278Ys/nLd3DqXGbeR/L//647Yuc7tFxKyX7U/2U+8snnBsWLAniDfloP9mG0+vm3HunqXjrqzi6DxaGIb/6/UmHJqfiK41A6fS/1MNrmgmtbhrb1cDi9PvBGDwV4+fSGYeTbF8P1ukk29aO7W4n134VR7gU41lL5uplHMaLd91DmEAMG+8n9c4r5PsuY2waU3cQZ3kTjmA5jobd2K5DkB4B8tB9GCo2YfvPYqp2jruvI7qavK8Ke+l97OAvsQMt5EcTWOvFEavFUbUdU7EG47vxXh2BCARuHFtrIZ9n8OQFMqMJXJEIjrJyBroTXPyzH+IrDVGxuZnqbYVKXXIogcvrIpvOkUlm8EfB7XOz+8XthTYnLiex6hhDvaNEyoJYwOV2kE5mCUX8OBwOSiuidHf0ESuL4J6gT91k7rQDv4jI3WI2qyx9wL8EHqbQN/yXwJ9aa5MLFNuykUymeO0f3yAeT1BfX82zz0+9MHX1ukZq6ipwe1zjtlDq7x3mxOELVNSUsHbjjcqUP+ilaV31pNc7dfASZw5fYdWWejbtWYnL7WT93hUMdA2Rz+Upry9M9G4528mRt88QLgtx36c345mmAehE1bBxm3n7L9Pdcpnm2sZx1bCp5oZ5Qz62vbiTkvpSWo614MkP4Oo6UFiNODZRfzQT5HLjHxDdnKF217YZzbVLDMZJDMYJV0annYR+7XrGGLxVEyd7wfseJDs0SK63GxsfgGwK4/GS72kj0XMJ29eGe+UGcv1dOCsaybUcL6wC7buKjZRjz79D/spHOKvX4QpVYuoexp77Loy2Q9VewAGB8fe28X5sOk6+8yT5vivYZBa8ZZh8BuMO4qhYiylbj8WLzeex6TQjBz/CppIEt+8m0dZNLpEg2T9CdiSOp6wEm8ngioRIDGdIJzIMnG+jtnw9g5e7ridkzXtW0fLxZQJlIcI3VWCNMThdhQUPXr+HivobQ9yPvrCTvu4hqhsKyfajz+xkoHeYaEkIp3NuK1ZFRJaz2VTI/gswDPzx2PGXgf8HuH3nYhknnc6QTKYIBgIMDo7M6DXB0O2Tuj946yijwwkun2+noqqEkrKpq2cA2UyWU/svUVIZ4eyhK6zeXD82zBnisS/tweYtvmChYnfhWCu+sI/+ziGGekcprx0/f+vWuWETVcMqw2XsqtrB4e7DrHCs4vK7HXQHBnjlC3/BUG5wXDVsQvk8rnQfTbuaCVVEcHmc8Ob946ph5358jNG+EXquZAk3jRCZZpg2k8xw8scfk0mkidTE2PD0tmm/b9NxBUKUPvsS+VSSbF83yfOnMNkUDreT/GAnuYEOyGZxjA0TmkhFoe/XigewNk3+yiFIjpJ3XMLhCWIiNTie/Vbh4rnC5tbGc1NVKzFA5uj3IZfB2gwOpwtTthpTtwMSg4UEzF9O4uP9kM3gWbUJE4iS7evBuL0MHTxEqn+UXCJFcmCU4NrV5NMZqh6/H4fHRd+5dnpPXCZcU0I+b6nefmMemz8WYM2js2trEi0LES0LXT/2eNyEY0GOHz1HIOhj7frmBW/xIiJyN5lNQrbOWnvzb7KfG2M+nu+AloNcLkdnRzfhSIhwOEQkEuITj+7l8uU2tm6d21ZFAOGIn76uATxeD55J+oPdyulyUtNcTuvFbqrqS8f1FfPe0sS1eWMNR945S7Q8SKR0/ErNmVTD0qlehrMlfOOZb9Ab7+Xwd87i8Bky6Szkua0adpuxPmJc/RBnw31UfvX7hTlht0zUD8R8DLT343K7ZtRyIZ/NkUtn8QQ8pEamLuiOdPaTz+QI15ZeXxk5GeN243S7cYbCeBsLK01tNkPq3DGysRrcTWtxVRUqmc7qdTjClVhjyCeGyMT/GJsZwVSuBX8Juc5zGH8ER6Sy0NT1FjadgFwGXF4c/moc5U3gi+AsuTFBPtvTgU0dw7g95EYG8VY1YNweyGbx1FWTGriIdThIDowy+v5R6l/4BN7yQtJduX0VkcZKXIHCFlgL4eMDJzl14iK5fJ5QOEh9gybqi4hcM5uE7JAx5n5r7QcAxpj7gHcXJqy72/vvHeD4sdP4Az4+9/lnCYWCrF23krXrpm4PMZ29n9hM8+paQpHAhBW0iRhj2PPJjWwcShII+6asSjSuq6G6uRyX2wmYaeeG3VwN21y6hY+/f5Fs5hw7Hl1P07pqdj/jpeVUO9UrK/BMlDjl8+NXRN7UR4yb+ojdOlF/5Z6VlNWX4Q158Uem/z54Qz5WPLSOgZZeqjdM3NndWkvHkUu0vn8KT8BLzZ41VMxwNeDNjMtNbniEfCJF6tRRXGVVOMOFeX25+CiZE++B14+j+T5IDeNcsYfs2ffJ914Gpwv31mcx3iDGPT4pMuEqHA07IN6Hs3EXxn/76tM8DpLdw+QTCXzRBjIXW0lmfbgiYaLr1uGprma0rYc4IQJeL6mRzI3rOxz4ywtxjvaP0t82QEltjOA0LVRmw+Vxk8vlwDhwuTRsKSJys9kkZPcBv2qMuTJ23AicNMYcRZuMj9Pd1Usw6Gd0NEk8niQUmp9fah6Pm/rm2VcVHA4H4djkk6NvHor0eN0zqoY5XaMY4+cbzxQm5ifb8ux7/Tgev5ve9gGa1lVTUhWhpGqS4cSbqmGznazvdDkpbZh6teStyldWUj5Ff6ye021c/MVx+s61UbmxgdxY3625MA5TWOVoHNdbbwDkWs+Ax4eNj+Dc/BDOaBnGGyTd95NCVSwVJ33wR2AcuDc8grO8/qZrOnA1FPqn2Xye1JXz2FQKRzCKMxTCGYmS6ezEXV3P6JlzDB89xWhrNwQiZAaHyYykqHn6YUK+AAMXu8gl0wRqb9+8PpfNcfSNY2TiGVoCbvZ8bvf1eWIz0d3Zz6EPT1FVW8bWXWvGDU9v27GOWCyMz++lumaaaqmIyD1mNgnZMwsWxTLz4MN7+OjDQ6zfsIby8tltMWOtJZ/PL9rE54matk5XDdtetZ0y//iJ+en6DLUry4mPpFm1ZfLNqq+boBqWcsYYeeabRP1JXNHqccnMQkuPJPCXhojUlhFtLKd8DtWxa3ybdpEpu4ojFMUZupGQOmtWkT/5IY5gBGe0AuMtVPfcqx8g13GGXCpF5tQ+yOYhdApneX1hCPTEPnJDA/g278UZKyfb00ny6AHSXR3kRhK4qhspeeY5vHX1pFtawO3BGQ7jDIyS6O3HV1lGZjiOzeZwh/w0PH0f+XQGT2TiPxTyOYvD5SCfnX4Hhlt9+M4x0qkMXQfOUt9URdlNG5C73S5Wr22c4tUiIveuWW0uvpCBLCdVVeW88OLtHdGnk0ikeONH7zI0OMLjn7qPuvr5nWNz66R8YMKmrbdWw44cOMCOTZuvV8Mmmpjv8bq57+kp9ke8dXjylmpYxl3C2989yPBgnIbVVex5smZe3/t0Kjc2kE1lqdzQQPW2ZpzuuSfEDp8fb/PacY9l+3vBHcT74IsYl3vc3pjGH8G1Yjemu4Vk748gn8WOjgKQG+gh034Fhz9A+vxx/Lsevf69T3V0kRlO4hhOEti+k8CadcQ++RThRJLk1VZKHrqfRNcA8fYuoutW4vC4GWztJdE3QumqiVflOl1OtnxqEz2XeyhvKp9VdQygvDLG2VNX8Qd8BKZpwisiIjfMqQ+ZLIyerj56ewYIhgKcPH5hXhOyiSphDoeZtGnrtWpYbb6JgSsJ3rp6gM/+08enn5g/8c1vH568ZbJ+cjDByGCCcDRAd0v/Hb1Xay3W2lmt4nMHvDQ9NLMFF9ZaBo6dI97SSWzzaoINtyc31lry8TgOn49MTxej+9/HYAls34unbuLqmwlEcK3YWtj+qKRwTUcgjPH6yPT24h0bwnSWV+Hf9RDJkRzxfQdxJPIYV2HOmXE6cYWChDYUEkJ/fS2lbAQgMTDKhZ8fByyjPcOsenzijbzD5WHC5dOv4J3Inoc2smJNHaGwH/8CLQ4QEVmOlJAtIaFwEIfDkIgnWH3/FNWmGZjJ9kUVYS/9qf6Jm7Y+8w26hrv55avHSCXSRCbp3j/JzWc9WT8U9bNhdzOtF7rZ/ujaaW4wuVQ8zUc/PkZyJMWupzZSWj19o9yZGDjfRueBs0QaKynb2MDgqUu4I0F6D5yYMCEbPXGCxPkLOINBPJWlGGsL+07GRye9h/H4ca/fizHgqigsPnAEQjir15LsPkL+Yivu2pW4YjE81XU4q5vwr4mTz1lwT7691q3s7N/+jDmdTqpqZje/T0RElJAtGalUmp//9H3SmTTrNqykeeXEqwFnYrrNvK9VwgDKfGVN8236AAAgAElEQVSTNm2tjlTxqeeD9HQPUFVdOrOK0xwn6xtjWL+rmfW7muf8vgH6OgYZ6h7GG/Jy+XjbtAlZx5l2rnx8leo11TRun3x+U/fh83gjAQYvthNbU4s7EiQzOEKwaeKh1dTVFhxeL0P79uFvasRTHsVbVY2n8UZ/L2stWItxOMhn0gy/9w75kSG8Tatw1zRfPy+XSOIIBrGZLPlkAiissAyuaCTbN4DD58VdMsGen7fwx4KsfHwzqcFRSlao5YSIyFIy64TMGPNPgBeBHGCA71lrvz3fgd1rRkfi9PcNUlYeo72ta1avne1m3jdXwowxE25hdE20JES0JDTJnZl5NWyCTb8XQrQ8hC/kJZ3MUL1y6uHVfD7PuQ/OE4wFOfPuGQZa+yipK6Vua/1tyWekuYr+0y34ysJ4I0EqP7GL7NAIvkkWbQQ3rGfw/Q9wBIPg8ZJJ5HAZL7l4AofXS254mKEPPwAgvPc+DJb88BCOcJRMZxtsvrFo2b92LflsGqfPj7vixkpRf2M9nvIyjMuFwzN9PzaAaF0p1M2ugjU0MEo6maGsKjqjXRHmk7WWoaEh/H4/Hs/Mq4AiInebuVTIHrXWvnztwBjznwAlZHcoVhJh/cZVXL3czn0Pbp/x62ZaDbt1M+9rlTCYeAujGd585tWwCTb9XgiBiJ9PfGE3+Vz+tsa3t3I4HJTUldB/tY9E3yjxkgDD3UPEamPjtggCqNy5hpK19bj8XnLpDK0/O0gmnqLmwU2E6m9/X76mJjy1tfT84EeMHDtBum8A894+vFUV1P/mPyfT2UkuEcc4nKTb2/CvWYunaQXptlZcNY1kh0dwhQuJsDMYIrLnfmwuz+DZK+RTaYLNtaQGRvBEAvgCM+tJBzDSXxgyDc2wv9hA7zBv/uNHZDM5tt2/lg3bm2d8r/lw8OBhPvxwH7FYlM9+9kX8/pm/VxGRu8lcEjKvMeY54CpQD9wTPyFbW9u5fPkKa9euprz89v5Nd8rhcPDQI7vgkanPu5Nq2FSVsDkpcjVsMrPZvHrDYxuID8TpONVG55kOXF437gkSOWMMnnBhHl28o4/0SAJ3wEfnvlNkE2nCzdU43ePv63C78TY0kU1mGPrej3D6fVgL2cEh0v2DDB89hbuslMgDD2IcDoJbtpNOG4bPXmb0SjsVTzyC86ZkK97eQ++hUxiHoeWdIwy19mOcTrb8xnNEmiYfgkzF03Rd7CadTHP5cCsA257eSFn99JWy+GiKTDqHx+eiv2doRt/T+XT+/AVisRj9/f0MDg4pIRORZWsum8n9S6AEeBYoBf6HeY1oCUomk/zwB69z8sQZfvjDNwpzf4rgWjXsgd/7KS+/8gH5vL1eDQuu+T3KVv9V4XhsXpjTOCfczHvOyVg+DyNdcO39X6uGOVwTV8OKkIzNlsPpIFQWYuX9q9n09Fa2PrcNX3jqdg2+sgjeaIhk7yCJjl66952g79iFCc8NrluNOxbDv3YtrrJSvLW1uGNREq0dRO5/EGdZBQ7/jQUTucFhnD4fNp0lnxrfnNbhdmKMwebypIfiWFv4euBix5Txnn73DOc+OM/hHx0jlUhhyTPSH5/R96eytoS1Wxooq4yxedeqGb1mPu3du5tkMsnq1asW5A8hEZGlYtYVMmttHPi7a8fGmN8Gfn8+g1pqjDE4XU5SyTSB4CxWG96hJVUNm0HrirshAQMYHYxz+UgrTreDunXVhEqCOJwOYrXTT4wHcPm9ND69h9GOXtrfOgyAzU2cpLtCQcqfehxvQx2Z3n7Cmzfg9PlwlZbSt+8IwVVNOLw3KnLRHVsYPnUWT1kprtj4YVN/VRk1j+0mn81RtjfLudfexR30U7p+6ia2+ZzFOAyRijCRijC+sI/qlRPvgnBb/C4nux6e3cbi86m5uYlf+7VfLdr9RUQWy1wm9f9/Nx8C21nmCZnX6+Uzn3mWjo4uGhrqZpTgjIyMMjAwRFVVOW73zCZc3+xO54bNeV7YjQDmtM9kMpnizKmLBIN+Vq5uXPRJ4DNx/O2zXD3RRtuZDlbuaOShL+whNtkWT5MwDgfBmnKq7t9ENpEiumryVbHG4SCyaXyPs/RwCv+KlWQzOXLxJK5QIdF3l0QpfWD3pNfyV9+oEu36rc9jbaHKN5X1D6+l/Wwn4bIg5Y2qMomILEVzmUM2ZK3959cOjDF/Oo/xLFllZaWUlc1sdVoqleLV7/6I4eFRVqxs5OlnHp/2NUu+GjbDfSYP7j/O8WNnAfAHfNTWza69Qn/fEKdOXKS6powVq2awBdMceANu4gNxnA4nNm9JjiRhlgkZFCqnkRW1c4rBFQ6SjPfi9Hkw7rl1nzEOBzP5tH0hLyt2aMsiEZGlbC6/CX73luOvz0cgy0kymWJkNEEkGqars2fa84teDbvVHUzWdzqdYAvJylySw7d+tp/4SJwzJy9SVh4jEp2i5cYcbXhoDZHyMG1nOolVhimf5Ubl86Hsvm2kevpxeDwMnm/DHQ0Srps4ye0+3Ur3qVYq1tdRsW7u/elmIp/Pc/LYRQb6Rti6cw3hyOIN0YuI3MvmMofs4i3HffMXzvIQjUZ48MFdXLx4lV27tt72/GJVwxKJBP39g1RUlE09bDrNPpOzaV2xY9dGwpEggYCP6pqZzVO6prdngNHhURKJFH6/D9c0+yiOjiTweN24Z1lh8vjcrNjWwIpt028gnhiI03Oxu9AKo2p8k9m+8x30n2+nfH0d0cbZtfRwej0E6qpofecoI61dgKHp6T04vR6stXjG9oHMpjK07j+PLxqgdf95SldU4ZzFKtLZ6uroY/97J3C7nWTTGR59avLhUxERmT8z/slujPnXEzw8CByw1h6ev5CWhy1bN7Jl68bbHl+salgmk+HVf/wRAwND1DfU8vzzT0184jxM1u/s6CaeSNLQUIPH42bjptXTf4NuMTgwzA9e/QXxeILy8lKe+NT9BIKTtzg4/vE5Du87QzQW4lPP34/XN/9NQ621nP75cTKjKTqOX2X7r+zF7fOQiae4/N4pWj44TeWGeq6+d4pwbRmOWW7EDYVvraUwGTPRO8zpHx9i8GoPq57azqontuJ0OwmURxjtHiRYEcXhmsvC6Jnzej24XA7S6SzBsFpMiIgsltn8qb177L/vjR0/B+wDftMY81+ttX8w38EtB8WaG5ZKpRkcHCIai9DR3oW1trCf4q1J1gwn60+mu6uX1159k1wux85dm9l738yb2o6PN0MmkyUYChAM+Sktn3rLowtnWonGQgz0DTM8NLogCZkxhuHuIfqv9lHacGMyfM/Zdoba+kkNJxi41EXV5kbMNBPrJ2M9XoY6R6jcuoJMOkf/xU5cXjdtB87TsHct3rCfVU9sITk4ii8axMxiw/S5KCmL8PRnHiIxmqSmfnYVThERmbvZ/HQvA3Zaa/+NtfbfUEjOKoBPAP/9AsR218nnLd3Dqet9yorZNywUCvLAg3twu1w8+eQjhWTsb5+HP9oAf/NcoTIGk/cSm6FUKk0+n8flcjE6mpjwnJ7uPr79rdd47R/fIB6f+JyKyhLuf2g7jU21PPDw9Endlp2rGRmOU99URax09hPyZyI5nCRvDYHSEKP9o1x47yzDXUP4ooXKUWxlDSue3Ebz41vm9BllUxl6z7ZRur6RobZ+wjUlhGvLCv9OVlTjGksynW4nwfIITvfsKnD5fJ6Oq710t/fP6nXlFTEamqunHTIWEZH5M5sKWSNwc6fKDNBkrU0YY1LzG9bdZ6KhyKKulAS2bt3E1q2bCgcjXRNXwoy5o15itXVVPPDgDoaGRti+Y9OE5xw/fpZsOkvHYDftbV2sWt102znGGDZtmflQZ/OqOppW1i5oWw2ny4E/GiCXydJxohXjdDDcM8zuL95P7/kuus51MNwzTJVzbomL0+0kXFPKcFs/0cZyfLEgD/7WCyQHRvGEfLNOwG514WQrB94+hTGGTzy/g+r6mbW8SKXS7PvgCJlMlr0PbCM4xdCxiIjMj9kkZN8CPjDGvEphysvzwLeNMUHgxEIEt5RNPBTZTzZvOXC5n97RdHFXSs50oj7c0T6TDoeDrdtunyt3s8bGGs6dvYjP76WkdGbNV2dirsnY6GCCi8daiVaEaVg7vi3HlWOt9Lb0s3JHI9GqCFs+vZWLH52n80QrPec6CZYEGWzrp/dSN6VNFQy1D5AeTeGLTJ20WGtp//gSQx391O1YSbgqhnE4aHp0M5nRJJ6Qr7Ay1WkIlIXn9L5ulRhN4XAacllLKpGe/gVjLl9q5dSJCzhdTsKRILv3bpmXeEREZHIzTsistf/BGPND4GEKCdlvWmv3jz39lYUIbqmaqBpWHvKwsynKwZYWdtY3UB7y0JvsXbRq2C0BLqmu+itWNvLFijJcLid+/9TbEi2GI2+fZqB7hEvHW4mWBYmUFVprjA7EOffhBbwBLyfeOs0DX9yDPxqgak011ZvrySUzeAMeTr5+hNG+UbBQsa4Gb8g77vrZVIbuM+043U4q1tZgHA4SfSN0HL2CJ+jj6kfn2PhCYfWiw+nAe1NribaTbbQcb6V2Qy31m+6sxcWaLY2kU1k8Xhd1zTMfig6HgzhdTvL5PNHY/CSHIiIytdmun88CeQoLwzLzH87Sc2slDLitGtY9nKTj8jlyJX9EyH+eQOV2LPdfnxu26NWwO5yovxDC4WBR7jsRt89NJpXB5XHhvGmelNvrwhPwkBxNUnnT1kKlTeVse2EnNm/pONlKon+UUEWU9U9tIVpbctv1O060cOIHh4j3jbD9iw9QtqqKY68dZOBSJ+UrKqjaOHHD21wmx7kPLxAsCXBh3wWqVlXi9s1+l4drfH4Pux5ZP/2Jt6ipreSFl54gl89TWbn4PdpERO5Fs2l78T8DvwH8A4UK2d8ZY16x1v7xQgVXbBNVwhwOc1s1LN7XxY/ffpOzobNYYzncdZi+ZF/xqmEz7Kp/r9r6yFqqm8sJRQMEozeGGj1+D7ue30ZiKEGk8sZCAWPM9VWW/oifqwcvESwLEa6OMtg+QC6TI1ZfgmNsBWQumWGorQ+n30Prx5e59NF5us50YAysWVND/Z6J58o5XA5iNVH62waIVkZweoo3qb684vZEU0REFs5sKmS/DtxnrR0FMMb8PvA+cMcJmTHmC8D/BmwA9t40FFpUE80Lqwh7sVgCjX9ByH+YQOV2nK7/QIAAVbkaulwdC1sNu9UddNW/V3l8burXTLylkz/swx+efFg1UBJk3ZOFxQuD7f0c/8lRbN7SvGcldVsayOfzBCqjlK+pBmOoXF9Ly8dXcLod9F7p4+KhK4SqYlSvrbnt2sYYNj2xkfhggkDUfz3Bm0+93QO8/Yv9RKMhHnp0J17v1O1C+vsHefeX+4hEQjzw4K457csqIiLTm01CZoDcTce5scfmwzHgc8Cfz9P15sVE88IA+pJ9HO4+TM7mONx1mMCjfj7z4rN8KvE4JbVRKkOVC7f6bx676sudyaZz2Fweh8tJJlUYwW873srlfRdxhkOsfXgtFWuqKW2u4MzPT+Arj1HeVEHrsdYJEzIYW3lZPv/bRV1z9OMzJBMp+vuGWL22icbmieO45tCh43R399La0kFjUx3NzdPvbiAiIrM3m4Tsr4EPjTHfpZCIvQR8Yz6CsNaehLmvmlsot1bCLPdjMBPODStvXITY52Gy/tDQEE6nk2Bw6czputt0Xeji8qErlK+ooGn3CrKpLHWbCvPCUiMpjMuByVpcfg8Op4Oypgr2/JOHOP7GcUZ6hli5d1XRYq+pq+DShVZ8Pi/R2PSJX0VFKWfPXMDtcREK6d+MiMhCmc0qyz8yxvwCeIhCQvbV5b5l0q2VsGvzwowxCz83DOZ9sv6FC5d4/fWf4XI5+cxnnqOiYgGHUpcpay1n3j2LL+znysdXuO8Le/CFbgxx1m9tIJ/N4Ql4idXdmIfldDup3VJPLpOjamzBQD6f58LHLdi8ZcXWelzT9B3LZnPkc3k83rkPG67bsIKq6nI8HteUW1Nds3nzOqoqy/F4PcRiC9OAV0REZpCQGWOGKayqvP7QTc9Za+2MfkobY94Eqid46uvW2ldnco2x63wN+BpAY2PjTF82J5OtkoRFmBu2AJP129racTodpJIpenv7lJDNgTGGcGWYtpMdlNTFblsF6fS4SOeh70ovsYZSomOLAzovdHPkpycB2Jy31K6p4uOfneLN//I+xsDjX7mfXU9N3FgXYGQowc+/v59UIsPDT2+bcZPXicRKZt7KwhhDZZX+nYiILLRpEzJr7bw0IrLWfnKervMK8ArA7t277TSn35FFq4RNZAEm62/cuJ6WljZ8FV4aGyduvSBTs9aSSedJZXIkEpnb/k0MdQ3RcbYTb9DLxYNX2P7MZgDSycK51loyyWzh3L5RHE6DzVviQ8kp79vXNUh8KIkv6OHy2Y47Ssgmk8lkcDqdC7KYQEREpjbbPmT3nIH+AXq6evHWeQmHF7BJ5iJM1i8tLeHllz8/j0GP19HRxaFDR2hsrGfTptn3v5pIMpnixPEzBIMB1q5bWfR5hjZv6b7SR2/rIK2nOli9u5mGjTcauPojfjx+N6l4moZNtdcfr11bTTpRmPhft66wwnPnpzaSGE5ijGHXU1PvduD2urh0rg3jcLDr4fn53t7swoUr/OJn71NSEuXTzz2Oz+ed/kUiIjJvlkRCZoz5LIX2GRXAD4wxh621Txc5LNLpNK+++j0SiQSlpaV86UtfuCc668/VT998i1w+z+VLLdTV1RCLRe/4mgf2H+HY0dOFBRYBPw2NtdO/aAE5nA7qN9XScqqD6rXVjPTFxz3vD/vY+9JO0skModIbk+BdbierdzePOzdcEuSZX39kRve9fL6dFRtrSSbT5O38F4aPHy0kvd3dvfR091HfMPXqSxERmV9LYmzCWvtda229tdZrra1aCskYQC6XI53O4PX6SCbncf/0fL6w2fe1X6wTDU/CjWrYXZCMAZSWlTA6Esfv903b32qmXC4X1lqw4JzjJt7zbd19K9n57BZqVlVSv/H2BNEb9BIuC81r8l5WFSObzePzeQnftNXSncpkMnS0d7FyVSOnTp7l1MmzdPf0ztv1RURkZpZEhWyp8vv9PPvs01y8eJkNG9bNzy/YZdxZ/8knP0F7exclJVH8/ulX8M3Ezl2biUbD+AM+amqL01ctl81x7vBVspkca3Y0Fjr6f3pxN9xes6GB8oooHq+bYHh+vrfWWl7/ydu0trQTCocoKy9h4+Y1HNh/hC1b1uNy6ceDiMhi0U/caTQ0NNDQMI/NMJdxZ32Px0NT0/wuFnC73azfMPFWQwspm8kxMhgnOZpmdDDOqY8u4nA6cLmcrNvTvOjxAJSUz2/bCWstnZ3dxEqiDPQPUVFZSn/fAHUNtUumGikicq9QQrbQZjlZ/8KFi7S0tLB58yZKS7WxczEk42neee0gh946Q1lNlFhZGBeFBMbjn1sPsHw+T8fVXhxOB1V1pTOutnZ19vHLnx2ipCzCQ49tx+OZv62LHA4Hjz72AIcPHefBh3exbt0qBgaGKCmJFn3xhIjIvUYJ2UKa5WT9oaEhfvKT13G7XbS1tfHyy18qYvD3ruH+UYb6RjHGEB9KUllbwq4n1uN0OqlomHjT7e62fi6eaKN+dSW1zbcPOV841ca+X5zAGHjk09upa57Z8OvRg2fJ5/NcvdROd2cTdQ3zO2y7alUTq1Y1XT+uqJj/dhoiIjK9JTGpf9m4w8n6TqcTt9tFMpmatzlYMnuxijBVDWXUrSpn9bYGdj6xntqVlVQ1lU3Yoyufz/Ph68foaR/gozePk0pmbjsnnUzjcDiwFtKp7IxjqW2oJBFPEgj4iUS1dZGIyHKlCtl8mYfJ+sFgkJde+gy9vb3zO29tkfT39+PxeBZtn8x8Pk8qlcbv901/8iy4PS4efmE7+fzWGTVJzectvqCXwd5RgmEfTuftw32rNzWQSedwuZ00rKqacSwbNq+gtr4Cr9eNz6/eYCIiy5USsvkyT5P1y8vLKS+/+7aqOX78JG+99Ut8Pi+f/ewLlJRMPLQ3XzKZDD/6wS/o7Oxh956t7Ng5+bZDczWTZOz8qVYO/vIUJaVhdj+xgfLqKC737f9bebxutt2/Zk5xzGQTcBERubtpyHKubh2evFYNc7gm7qy/zCdJt7a24vP5iMcTDAwMLvj9hgZH6Ozspry8lJMnz932fCqVZnQ0seBxnDx0kUhJkN6eQcIlAYIRDTWLiMjsqUI2F8uks/582rFjO729/dTWVlNbu/Bd3qOxMA2NdbS1dnD/AzvGPTc4MMwPX3uLVDrN40/eR9OKukmucudWbajnyIdnKauMEI7OX8NWERG5tyghm86tbStg8uHJO9hn8m5XUVHOl7/8hUW7n8vl4ulnPkEul7utgWlf7yDxRJJAwMflS20LmpBt2N5M89oaPF43Tuf8FpzbWjt55+0DrF7dwK49i9uIVkREFpeGLKdyrRL2Rxvgb54rHMPkw5NLWC6Xo6enh0zm9hWAdytjzITd5KtqyqmoKAVjWL9x1YLH4Q945z0ZA/jTP/kWb/7kXV75z39Pe1vXvF9fRESWDlXIpjJZJcyYu2548vXX3+DChUtUV1fx0ksvLutO7IGAjxc/9wTW2hk1OE0m0/T1DFBSFsW/hFYyGgr/tAxgHEv/35iIiMydErKpTNW24i4anszlcly+fJXKygo6O7tIJpOL1pqimGaSjOXzed780fv0dg8QK43w/Gc/sWSS1X/xr77Cu788wOo1TVRXL/0qrIiIzJ0SsqnchZWwiTidTh555CH27z/I3r2774lkbKbyectA3zDhSJChwRGy2dySSMiGhkZIplM8+8JjBAJauSkistwpIZvOXVQJm8qmTRvZtGljscNYFF2dPaTSGerqqqbtJeZyOXnkiZ2cPH6R7bvX4fV6FinKyWUyGX7wvZ8xPDxCRUUpL33uae0tKSKyzCkhk2Wlo72b7732Jrlcngcf2sXWbeunfU3TilqaVtQuQnQzk83miMfjhEJBhoZHr8+Fi8cTvPWL98lkMjz2+INEIuFihyoiIvNEqyxlWUkkk2OtMJyMjIwUO5w58ft9PPHkg1RWlfOppx6+XuW7dOkqly+30NHRzelTtzfDFRGRu5cqZLKsNDTUsGv3FuLxJNu2L94Q7eDgMIODw1RXV+DxuO/4eitWNrJiZeO4x0pKYjhdDvJ5S3lF2R3fQ0RElg5jr239cxfavXu33b9/f7HDkHtcPJ7gv/3XH5NIpFi5sp4nn3p4we41ODhELpentDS2YPcQEZGFYYw5YK3dPdFzqpCJ3KFUMk0qmSYQ8NHXv7D7eEajkQW9voiIFIfmkIncoVhJhDXrmgkE/Dz2+P3FDkdERO5CqpCJ3KGjR05y8uQZ3B43jgXYQklERJY//fYQuUM9Pf14vB7SqQwjI6PFDkdERO5CqpCJ3KEdOzeTSCSJRiPU1VVPee7oaJzWlnbKykspKytZpAhFRGSpU0Im97R8Ps/AwBChUACPZ25d+ktKojz3/JMzOvcnP/k5XR3deH1eXv7yS/j92hZJRESUkMk97r1393Pi+BlKS2O8+NJTc07KZioRT+L1eclkMuRy+QW9l4iI3D2UkMk97eKFK5SWxejrHWBkJE5p6cImZE8/8zgnT56hsaGOUEibvIuISIEm9cs97YGHdpNMptm4aS2x2ML3+CovL+WRR+6nqblhwe8lIiJ3D1XIZNlra+vkow8P0tBYy86dWzHGXH9u9epmVq9uLl5wIiIiqEImd6nR0VEOHz7KlSst0577ztsfMDISZ/++j+nt7V+E6ERERGZHCZncld5++33ef38fP/zBG/T1TZ1kVVaVMzIyQiAQIBDQqkYREVl6NGQpdyVr7YzPfeSR+1i3bjWRSEgJmYiILElKyOSu9OijD3LmzHlKS0soLZ26warL5aK2tmqRIhMREZk9JWRyVwoGg+zYsbXYYYiIiMwLzSETERERKTIlZCIiIiJFpoRMREREpMiUkImIiIgUmRIyERERkSJTQiYiIiJSZErI5K6TyWS4erWVoaHhYociIiIyL9SHTO46b7/9PqdPnyMQ8POFL7xIMBi87ZzOzm76evtoam4gEAgUIUoREZGZU0Imd52enl6CwQCJeIJkMnVbQjY8PMJrr/2ITCZLQ0MdL7zwdJEiFRERmRkNWcpd57HHHqasrIS99+0iGAzctq9lLpcjl83hcrnIZDJFilJERGTmlJDJXaeqqoLnnnuKwcEh/vqvv80777w/7vlYLMrTzzxJWVkJoyOjHDlyvEiRioiIzIwSMrkrpVIpTp06S21tDcePnyKdTo97vrm5gYGBAVwuF++99yHDwyNFilRERGR6SsjkruT1elm/fg3tbe1s2rQej8cz7nljDDXVVQwMDBCNRvH5vEWKVEREZHrm1vk3d5Pdu3fb/fv3FzsMKRJrLel0Gq934mQrk8nQ3d1LSUkUv9+/yNGJiIiMZ4w5YK3dPdFzWmUpdy1jzKTJGIDb7aa2tnoRIxIREZkbDVmKiIiIFJkSMhEREZEiU0ImIiIiUmRKyERERESKTAmZiIiISJEpIRMREREpMiVkIiIiIkWmhExERESkyJSQiYiIiBSZEjIRERGRIlNCJiIiIlJkSshEREREikwJmYiIiEiRuYodgMg1mUyGn/70Z3R0dPDkk0/Q0NBQ7JBEREQWhSpksmR0d3dz/vwFXC4X+/btL3Y4IiIii2ZJJGTGmD80xpwyxhwxxnzXGBMrdkzLWSaT4c03f8p3vvMP9PT0FDuc62KxGJFIhKGhEVauXFnscERERBbNkkjIgDeAzdbarcAZ4HeKHM+y1tbWxqlTpxkaGmL//gPFDue6QCDAF7/4K3zlKy+zffu2YocjIiKyaJZEQmatfd1amx07/ACoL2Y8y10kEsHn88B7wDYAAAngSURBVJJIJKipqSl2OON4vV6i0WixwxAREVlUS3FS/68Bfz/Zk8aYrwFfA2hsbFysmJaVkpISXn75SySTScrKyoodjoiIyD1v0RIyY8ybQPUET33dWvvq2DlfB7LANye7jrX2FeAVgN27d9sFCPWeEAqFCIVCxQ5DREREWMSEzFr7yameN8Z8FXgeeNJaq0RLRERE7hlLYsjSGPMM8NvAo9baeLHjEREREVlMS2JSP/AnQBh4wxhz2BjzZ8UOSERERGSxLIkKmbV2dbFjEBERESmWpVIhExEREblnKSETERERKTIlZCIiIiJFpoRMREREpMiUkImIiIgUmRIyERERkSJTQiYiIiJSZErIRERERIpMCZmIiIhIkSkhExERESkyJWQiIiIiRaaETERERKTIlJCJiIiIFJkSMhEREZEiU0ImIiIiUmRKyERERESKTAmZiIiISJEpIRMREREpMiVkIiIiIkWmhExERESkyJSQiYiIiBSZEjIRERGRIlNCJiIiIlJkSshEREREikwJmYiIiEiRKSETERERKTIlZCIiIiJFpoRMREREpMiUkImIiIgUmRIyERERkSJTQiYiIiJSZErIRERERIpMCZmIiIhIkSkhExERESkyJWQiIiIiRaaETERERKTIlJCJiIiIFJkSMhEREZEiU0ImIiIiUmRKyERERESKTAmZiIiISJEpIRMREREpMiVkIiIiIkWmhExERESkyJSQiYiIiBSZEjIRERGRIlNCJiIiIlJkSshEREREikwJmYiIiEiRKSETERERKTIlZCIiIiJFpoRMREREpMiUkImIiIgUmRIyERERkSJTQiYiIiJSZErIRERERIpMCZmIiIhIkSkhExERESkyJWQiIiIiRaaETERERKTIlJCJiIiIFJkSMhEREZEiU0ImIiIiUmRLIiEzxvwHY8wRY8xhY8zrxpjaYsckIiIisliWREIG/KG1dqu1djvwfeDfFTsgERERkcWyJBIya+3QTYdBwBYrFhEREZHF5ip2ANcYY34X+FVgEHi8yOGIiIiILBpj7eIUo4wxbwLVEzz1dWvtqzed9zuAz1r77ye5zteAr40drgNOz1OI5UDPPF1LliZ9xsubPt/lTZ/v8ncvfMZN1tqKiZ5YtIRspowxTcAPrLWbF/m++621uxfznrK49Bkvb/p8lzd9vsvfvf4ZL4k5ZMaYNTcdvgicKlYsIiIiIottqcwh+z+NMeuAPHAZ+M0ixyMiIiKyaJZEQmat/XyxYwBeKXYAsuD0GS9v+nyXN32+y989/RkvuTlkIiIiIveaJTGHTEREROReds8nZMaYbxhjuowxx4odiywMY8wzxpjTxphzxpj/tdjxyMIxxnzBGHPcGJM3xtyzq7WWK2PMHxpjTo1ttfddY0ys2DHJ/LqXt1K85xMy4G+AZ4odhCwMY4wT+E/Ap4GNwJeNMRuLG5UsoGPA54C3ix2ILIg3gM3W2q3AGeB3ihyPzL97divFez4hs9a+DfQVOw5ZMHuBc9baC9baNPD/Ap8pckyyQKy1J62189UsWpYYa+3r1trs2OEHQH0x45H5dy9vpbgkVlmKLKA64OpNxy3AfUWKRUTmz68Bf1/sIGT+3atbKSohk+XOTPDYPfMX13I0023Y5O40k8/XGPN1IAt8czFjk/kx3Wdsrf068PWxrRT/FTDhVorLjRIyWe5agIabjuuBtiLFIvPAWvvJYscgC2e6z9cY81XgeeBJq75Nd6VZ/D/8LeAH3CMJ2T0/h0yWvX3AGmPMCmOMB3gZeK3IMYnIHBhjngF+G3jRWhsvdjwy/+7lrRTv+cawxphvA49R2GW+E/j31tq/KmpQMq+MMc8C/xfgBL5hrf3dIockC8QY81ngj4EKYAA4bK19urhRyXwxxpwDvEDv2EMfWGu11d4yYoz5B2DcVorW2tbiRrU47vmETERERKTYNGQpIiIiUmRKyERERESKTAmZiIiISJEpIRMREREpMiVkIiIiIkWmhExERESkyJSQiYiIiBSZEjIRmVfGmJFixzAfbn4f8/GejDHNxpiEMebwnV5rinv4jTGHjTFpY0z5Qt1HROafEjIRuSeZgsX+GXjeWrt9oS5urU2MXV/7tYrcZZSQiciCMMb8a2PMsbH/fuumx/+tMeaUMeYNY8y3jTH/yxyv3zx2nb81xhwxxnzHGBO46fl/NMYcMMYcN8Z87abXnDTG/GfgINAw0XnT3Hei6+4Zi8FnjAmOPbd5hvH/5dj36JvGmE8aY941xpw1xuyd7H5jjweNMT8wxnw89vovzeX7KCJLg7ZOEpF5NTa89yjwN8D9gAE+BP4phf1E/xJ4AHBRSIr+3Fr7H+dwn2bgIvCwtfZdY8w3gBPXrmWMKbXW9hlj/BQ2mX8UCAMXgAettR9Mdp61ttcYM2KtDV17Tzd9Pdn5/wfgA/xAi7X29yaI9/vW2s03HZ8DdgDHx671MfDrFDZV/mfW2pemuN/ngWestb8xdr2otXZw7OtLwG5rbc9sv68iUhyqkInIQngY+K61dtRaOwL8N+CRscdfHRtaGwa+d+0FxpiVxpi/MsZ8Z+w4OFb9+gtjzFcmuc9Va+27Y1//3dj1r/mfjDEfAx8ADcCasccvX0vGpjlvMpOd/78DnwJ2A38wzTWuuWitPWqtzVNIyn5qC38lHwWap7nfUeCTxpjfN8Y8ci0ZE5G7kxIyEVkIZpaPY629YK399Zse+hzwnbEK0IuTvWyiY2PMY8AngQestduAQxSqVwCj14OZ+rzbg5/6/FIgRKEKN+k1bpG66ev8Tcd5wDXV/ay1Z4BdFBKz3zPG/LsZ3lNEliAlZCKyEN4GXjLGBIwxQeCzwDvAL4EXxuZahYDnprhGPXB17OvcJOc0GmMeGPv6y2PXB4gC/dbauDFmPYWh04nM9LyZnP8K8G+BbwK/P811ZmrS+xljaoG4tfbvgP8I7Jyne4pIEbiKHYCILD/W2oPGmL8BPhp76C+ttYcAjDGvUZgrdRnYD0w21NZCISk7zOR/PJ4EvmqM+XPgLPCnY4//GPhNY8wR4DSF4b6JzPS8Kc83xvwqkLXWfssY4wTeM8Y8Ya392TTXm85U8W0B/tAYkwcywL+4w3uJSBFpUr+ILCpjTMhaOzK2IvJt4GtjCVwZ8LsU5mH9JfB/A38CJIFfWmu/ect1mrlpkvxSt5jxalK/yN1HFTIRWWyvGGM2UpgL9bfW2oMA1tpe4DdvOfefLXZwCygHRI0xhxeqF9nYSsz3ATeFeWgicpdQhUxERESkyDSpX0RERKTIlJCJiIiIFJkSMhEREZEiU0ImIiIiUmRKyERERESKTAmZiIiISJEpIRMREREpMiVkIiIiIkX2/wOUfGNNILFp7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXzV5Znw/899sp3sCUmAIJAEjAlLQiAEww6KgKIIAkVcikth3GY6M8/gU/3VqtP6G1udjlW7jK2CdaNVwKJQpVooiIiETdkxkrCFJITse865nj9OOBJyErKfk+R6v16+SL7n+73v6+SAXFz3ZkQEpZRSSinlPhZ3B6CUUkop1dtpQqaUUkop5WaakCmllFJKuZkmZEoppZRSbqYJmVJKKaWUm2lCppRSSinlZpqQKaWUUkq5mSZkSqlewxgTa4zZaIwpNMacM8a8bIzxrn/tFWPMUWOM3Rhzj4tn/63+mWJjzGvGGL8ufwNKqR5LEzKlVG/yGyAPiAZSgKnAQ/Wv7a//es/lDxljZgE/Aq4HYoEhwNOdH65SqrfQhEwp1ZvEAX8WkSoROQd8BIwAEJFfi8inQJWL55YCr4rIQREpBH4K3NNFMSulegFNyJRSvcmvgNuNMQHGmKuAG3EkZVcyAkcF7aL9QD9jTEQnxKiU6oU0IVNK9Sb/wJFclQCngQzg/RY8FwQUX/L9xa+DOzQ6pVSvpQmZUqpXMMZYgI+BtUAgEAmEAz9vweNlQMgl31/8urQjY1RK9V6akCmleos+wCDgZRGpFpECYCVwUwuePQiMuuT7UUBufRtKKdVumpAppXoFETkPnAAeNMZ4G2PCcEzW3w9gjPE1xlgBA/gYY6z1VTWAPwL3G2OGG2PCgR8Dq7r8TSileixNyJRSvcltwGwgH/gGqAP+rf61TUAlMAF4pf7rKQAi8hHwC2AzkF3/35NdGbhSqmczIuLuGJRSSimlejWtkCmllFJKuZkmZEoppZRSbqYJmVJKKaWUm2lCppRSSinlZpqQKaWUUkq5mSZkSimllFJupgmZUkoppZSbaUKmlOpQxpiyLuzLZozZZ4w5aIzZb4z590t218cY83kzz4YZYx7qmkgb9R1rjKk0xuy75PsDHdCuf/3Po8YYE9n+SJVSXUUTMqVUd1YpIikiMgK4Ace5lM4d9EVkQjPPhgFuScjqZYpISkc2KCKV9W2e7ch2lVKdTxMypVSnqK9WHaj/718vuf6EMeaIMeZvxph3jDH/0RH9iUgesBx4xBhj6vsqq/810Bizob6KdsAYsxh4FhhaX1F6rv6+940xu+srbsvrr8UaYw4bY35ff32TMca//rXvG2O+qm/3jUve413GmC/r2/5fY4xXS9+HMWaIMWavMSatvu8jxpjX6/t5zxgT0FzfSqnuydvdASileh5jTCpwL3AtjsO6dxpj/gF4AQuA0Tj+/7MH2N1R/YrIt/VDln2B3Etemg2cFZE59fGFAjuBkZdVqe4TkQv1CdcuY8ya+uvxwBIRWWaM+TOwwBizF/j/gIkict4Y06e+7WHA4vrrtcaY3wB34jigvFnGmARgNXCviOwzxsQCCcD9IrLdGPMa8JAx5q+u+lZKdV+akCmlOsMkYJ2IlAMYY9YCk3FU5f8iIpX11z+4+IAxZgiOJCNURBYaYwKB3wA1wBYReauFfRsX174GnjfG/Bz4UES2GWPCXdz3L8aY+fVfD8KRiJ0DTojIvvrru4FYIBx4T0TOA4jIhfrXrwdScSR0AP5AXgvijgL+AiwQkYOXXD8lItvrv34T+Beguom+lVLdlA5ZKqU6g6ukqLnriMi3InL/JZduw5F0LAPmtqhTR1Jn47IESESO4UiSvgb+yxjzExfPTgNmAONFZBSwF7DWv1x9ya02HP+YNYC4CgN4vX5uW4qIJIjIUy0Ivxg4BUy87PrlfUgzfSuluilNyJRSnWErMM8YE1Bf6ZoPbAM+A24xxliNMUHAnGbaGIgjQQFHEtQsY0wU8DvgZRGRy14bAFSIyJvA88AYoBQIvuS2UKBQRCqMMYlA+hW6/BT4njEmor6PPpdcX2iM6XvxujEm5krx46gEzgO+b4y545Lrg40x4+u/XoLjZ9hU30qpbkqHLJVSHU5E9hhjVgFf1l/6g4jsBTDGrAf2A9lABo7KkCuncSRl+2j6H4/+9VtH+AB1wBvAL13clwQ8Z4yxA7XAgyJSYIzZXr/dxF+BHwMPGGO+Ao4CX1zhPR40xjwD/MMYY8NRUbtHRA4ZY34MbKqfz1YLPFz/fpslIuXGmJuBvxljynH8nA4DS40x/wscB35bnzQ26vtK7SulPJe57B+SSinVqYwxQSJSVr9acCuwvD6BiwCewbF9xR+AF4GXgSrgs1bMIfN49ZP1PxSRkR1xn4vnsoCxF+eYKaU8n1bIlFJd7RVjzHAc87NeF5E9ACJSADxw2b33dnVwXcQGhBpj9nXkXmT1q0N34KgY2juqXaVU59MKmVJKKaWUm+mkfqWUUkopN9OErBsyxgwyxmyu3z38oDHmh+6OSbVd/YrDL+t3XD9ojHna3TGp9jPGeNXvuP+hu2NR7WOMyTLGfF1/8kKGu+NRbWccZ9i+V38CxuFLVjC7nc4h657qgP9TPxE6GNhtjPmbiBxyd2CqTaqB6+onuvsAnxlj/ioiza7yUx7vhzhWSIa4OxDVIabrIoke4VfAR/WbT/sCAe4O6CKtkHVDIpJzyUToUhz/07/KvVGpthKHsvpvfer/08md3ZgxZiCOPdb+4O5YlFIOxpgQYArwKoCI1IhIkXuj+o4mZN1c/bL40TjO5VPdVP3w1j4cO8z/TUT08+zeXgAeRVc69hSCY1+53ab+0HnVLQ0B8oGV9dMJ/lC/cbVH0ISsG6vf6XwN8K8iUuLueFTbiYitfvuDgcA4Y0yr9p1SnqN+Y9c8EemwQ9OV200UkTHAjcDDxpgp7g5ItYk3jlM6fisio4Fy4EfuDek7mpB1U/VzjdYAb4nIWnfHozpGffl8CzDbzaGotpsIzK3fnHU1cJ0x5k33hqTaQ0TO1v+aB6wDxrk3ItVGp4HTl4xAvIcjQfMImpB1Q8YYg2MM/LCIuDomRnUjxpgoY0xY/df+OA64PuLeqFRbichjIjJQRGKB24G/i8hdbg5LtZExJrB+8RT1w1szgQPujUq1hYicA04ZYxLqL10PeMxiOF1l2T1NBO4Gvq6fdwTwuIhsdGNMqu2igdeNMV44/pH0ZxHRrRKU8gz9gHWOfwfjDbwtIh+5NyTVDv8MvFW/wvJbPOg0EN2pXymllFLKzXTIUimllFLKzTQhU0oppZRyM03IlFJKKaXcTBMypZRSSik385iETA9YVkoppVRv5TEJGd8dsDwKSAFmG2PS3RyTx9NjPHoW/Tx7Dv0sexb9PHsWT/w8PSYh0wOW28zjflOpdtHPs+fQz7Jn0c+zZ/G4z9NjEjLQA5aVUkop1Tt55Maw9cfIrAP+WUQOXPbacuozWy8vr1Q/Pz83ROg56urq8PbWAxd6Cv08ew79LHsW/Tx7Fnd9nhUVFbUi4uvqNY9MyACMMU8C5SLyfFP3jB07VjIyMrowKqWUUkqptjHG7BaRsa5e85ghSz1gWSmllFK9lSfVX/WAZaWUUkr1Sh6TkInIV8Bod8ehlFJKKdXVPCYh6yi1tbWcPn2aqqoqd4eilNtYrVYGDhyIj4+Pu0NRSinVAj0uITt9+jTBwcHExsZijHF3OEp1ORGhoKCA06dPExcX5+5wlFJKtYDHTOrvKFVVVURERGgypnotYwwRERFaJVZKqW6kxyVkgCZjqtfTPwNKKdW99MiEzJM89dRTPP98k1up8f7773Po0KEujEgppZRSnkYTMjfThEwppZRSmpB1gmeeeYaEhARmzJjB0aNHAfj9739PWloao0aNYsGCBVRUVPD555+zfv16VqxYQUpKCpmZmS7vU0oppdytrKyMwsJCd4fRY2lChmNVWnWdrUPa2r17N6tXr2bv3r2sXbuWXbt2AXDbbbexa9cu9u/fz7Bhw3j11VeZMGECc+fO5bnnnmPfvn0MHTrU5X1KKaWUOxUUFPDOO6t5553VHD16zN3h9Eg9btuL1hIRvvi2gON5ZcT3DSJ9SPtWaG7bto358+cTEBAAwNy5cwE4cOAAP/7xjykqKqKsrIxZs2a5fL6l9ymllFJdpbCwkOrqavz8rJw9e5aEhGvcHVKP0+srZDU2O8fzyugfbOV4Xhk1Nnu723SV0N1zzz28/PLLfP311zz55JNNbknQ0vuUUkqprjJw4EDi4uIICQlm1Khkd4fTI/X6hMzP24v4vkGcK60ivm8Qft5e7WpvypQprFu3jsrKSkpLS/nggw8AKC0tJTo6mtraWt566y3n/cHBwZSWljq/b+o+pZRSyl2sVitz5tzE4sXfo0+fPu4Op0fq9UOWAOlDIhgTE97uZAxgzJgxLF68mJSUFGJiYpg8eTIAP/3pT7n22muJiYkhKSnJmYTdfvvtLFu2jBdffJH33nuvyfuUUkop1XMZEXF3DG02duxYycjIaHDt8OHDDBs2zE0RKeU59M+CUqq7yc7OJjPzW4YPH0b//v3dHU6HM8bsFpGxrl7r9UOWSimllHK/yspKPvroY7Kzs9mw4a/Y7e2f092daEKmlFJKKbfz8vLCz8+P8vIKgoICe90RcDqHTCmllFJu5+vry/z588jLy2PAgAGakCmllFJKuUNoaCihoaFd1l9Gxm6+/vprxowZ4/btPHTIUimllFK9TmVlJbt27SI4OJgdO3ZQV1fn1ng0IVNKKaVUr+Pn50d0dDR5eXkMGjQIL6/2b33VHpqQdYKsrCxGjhzZZf099dRTPP/88y2696abbqKoqKhdbSillFLdncVi4eab53D77YuZPXuW2+es6RwyD2Kz2TotQxcRRISNGzd2SvtKKaVUd+Pt7e0xJw9ohayTffvtt4wePZqdO3eyYsUK0tLSSE5O5n//938B2LJlC9OnT+eOO+4gKSmJrKwshg0bxrJlyxgxYgQzZ86ksrISgMzMTGbPnk1qaiqTJ0/myJEjzfZ9sa2HHnqIMWPGcOrUKWJjYzl//jwAzzzzDAkJCcyYMYOjR486n9u1axfJycmMHz+eFStWOKt9NpvN5XtQSimlVPtoQgbY7UJ+aTUdfWrB0aNHWbBgAStXrmT//v2Ehoaya9cudu3axe9//3tOnDgBwJdffskzzzzDoUOHADh+/DgPP/wwBw8eJCwsjDVr1gCwfPlyXnrpJXbv3s3zzz/PQw891KIYvv/977N3715iYmKc13fv3s3q1avZu3cva9euZdeuXc7X7r33Xn73u9+xY8eOBhW7V199tcn3oJRSSqm26/VDlna7sOT3X7A7u5DUmHDeWZaOxdL+ceT8/HxuvfVW1qxZw4gRI/jZz37GV199xXvvvQdAcXExx48fx9fXl3HjxhEXF+d8Ni4ujpSUFABSU1PJysqirKyMzz//nEWLFjnvq66uvmIcMTExpKenN7q+bds25s+fT0BAAABz584FoKioiNLSUiZMmADAHXfcwYcffgjApk2bXL6HS2NXSimlVOv1+oSsoLyG3dmF1NmF3dmFFJTXEBXs1+52Q0NDGTRoENu3b2fEiBGICC+99BKzZs1qcN+WLVsIDAxscM3P77v+vby8qKysxG63ExYWxr59+5rs89SpU9xyyy0APPDAA8yePbtR25dyNYGxuSphU+9BKaWUUu3T64csI4N8SY0Jx9tiSI0JJzLIt0Pa9fX15f333+ePf/wjb7/9NrNmzeK3v/0ttbW1ABw7dozy8vIWtxcSEkJcXBzvvvsu4EiO9u/f3+CeQYMGsW/fPvbt28cDDzzQbHtTpkxh3bp1VFZWUlpaygcffABAeHg4wcHBfPHFFwCsXr3a+Ux734NSSimlXOv1FTJjDO8sS6egvIbIIN8OXfYaGBjIhx9+yA033MCPf/xjhg8fzpgxYxARoqKieP/991vV3ltvvcWDDz7Iz372M2pra7n99tsZNWpUm2IbM2YMixcvJiUlhZiYGCZPnux87dVXX2XZsmUEBgYybdo0567JP/jBD8jKymrXe1BKKaVUY6ajJ7J3pbFjx0pGRkaDa4cPH2bYsGFuiqhnKCsrIygoCIBnn32WnJwcfvWrX7k5KtVa+mdBKaU8izFmt4iMdfVar6+QqcY2bNjAf/3Xf1FXV0dMTAyrVq1yd0hKKaVUj6YJmWpk8eLFLF682N1hKKWUUp3LboeK8xAYBW7eqb/XT+pXSimlVC9kt8PrN8Mvh8GqOY7v3UgTMqWUUkr1PhXn4dROsNc5fq0479ZwNCFTSimlVM9nt0NZHlxczBgYBYOuBYu349fAKLeGp3PIlFJKKdWzXRyePLXTkXwt/RAsFsevOoes57q4ZcTZs2dZuHChm6Npuy1btnDzzTe3+57LPfXUUzz//PPtCa2Rm266iaKiIoqKivjNb37ToW03Z/369Tz77LPN3tPcz+iFF16goqLC+f3F96GUUqoDNTU8abFAUF+3J2OgCVmnGjBggPPcx85SV1fXqe13Fxs3biQsLKzLE7K5c+fyox/9qM3PX56QXXwfSiml2sHDhydd0YSsE2VlZTFy5EgAVq1axW233cbs2bOJj4/n0Ucfdd63adMmxo8fz5gxY1i0aBFlZWUA/Od//idpaWmMHDmS5cuXO8+ZnDZtGo8//jhTp05ttGHrU089xdKlS5k5cyaxsbGsXbuWRx99lKSkJGbPnu089ujTTz9l9OjRJCUlcd999zkPKv/oo49ITExk0qRJrF271tlueXk59913H2lpaYwePZq//OUvrfpZPPPMMyQkJDBjxgyOHj3qvJ6Zmcns2bNJTU1l8uTJHDlyBIB77rmHf/mXf2HChAkMGTLEmdjm5OQwZcoUUlJSGDlyJNu2bQMgNjaW8+fP86Mf/YjMzExSUlJYsWIFd999d4NY77zzTtavX98gtry8PFJTUwHYv38/xhhOnjwJwNChQ6moqCA/P58FCxaQlpZGWloa27dvd36ujzzyiPO9pKenk5aWxk9+8hNnpRQcm+0uXLiQxMRE7rzzTkSEF198kbNnzzJ9+nSmT5/e4H1kZWUxbNgwli1bxogRI5g5cyaVlZUA7Nq1i+TkZMaPH8+KFSucv8eUUkrhevWkMY7hyX8/DPds8IiKWCMi0m3/S01NlcsdOnSo0bUrstlESnNF7PbWP+tCYGCgiIicOHFCRowYISIiK1eulLi4OCkqKpLKykoZPHiwnDx5UvLz82Xy5MlSVlYmIiLPPvusPP300yIiUlBQ4GzzrrvukvXr14uIyNSpU+XBBx902feTTz4pEydOlJqaGtm3b5/4+/vLxo0bRURk3rx5sm7dOqmsrJSBAwfK0aNHRUTk7rvvlv/5n/9xXj927JjY7XZZtGiRzJkzR0REHnvsMXnjjTdERKSwsFDi4+OlrKxMNm/e7Lxn165dcv/99zeKKSMjQ0aOHCnl5eVSXFwsQ4cOleeee05ERK677jo5duyYiIh88cUXMn36dBERWbp0qSxcuFBsNpscPHhQhg4dKiIizz//vPzsZz8TEZG6ujopKSkREZGYmBjJz89v8DMXEdmyZYvceuutIiJSVFQksbGxUltb2yjG4cOHS3Fxsbz00ksyduxYefPNNyUrK0vS09NFRGTJkiWybds2ERHJzs6WxMRE5+f68MMPi4jInDlz5O233xYRkd/+9rfO3webN2+WkJAQOXXqlNhsNklPT3e2dTHuiy59H15eXrJ3714REVm0aJHz5z9ixAjZvn27iIj83//7fxu830u16c+CUkp1d6W5Ik/3EXkyxPFraa67I3ICMqSJnEYn9Tc10a8TXH/99c5zIYcPH052djZFRUUcOnSIiRMnAlBTU8P48eMB2Lx5M7/4xS+oqKjgwoULjBgxgltuuQWg2Y1bb7zxRnx8fEhKSsJmszF79mwAkpKSyMrK4ujRo8TFxXHNNdcAsHTpUn79618zbdo04uLiiI+PB+Cuu+7ilVdeARxVvPXr1zvnflVVVTmrSBeNHTuWP/zhD43i2bZtG/PnzycgIABwDPOBo2r0+eefs2jRIue9Fyt1APPmzcNisTB8+HByc3MBSEtL47777qO2tpZ58+aRkpLS7M986tSpPPzww+Tl5bF27VoWLFiAt3fj3/YTJkxg+/btbN26lccff5yPPvoIEXGe8fnJJ59w6NAh5/0lJSWUlpY2aGPHjh3Osz3vuOMO/uM//sP52rhx4xg4cCAAKSkpZGVlMWnSpGZjj4uLc76/1NRUsrKyKCoqorS0lAkTJjj7+fDDD5ttRymlerTLN3e9ODx58e91DxyedEUTMlcT/YL6dkpXfn5+zq+9vLyoq6tDRLjhhht45513GtxbVVXFQw89REZGBoMGDeKpp56iqqrK+XpgYOAV+7FYLPj4+DgPTLdYLM4+m9LU4eoiwpo1a0hISGhw/WKidCWu2rXb7YSFhbFv375m38fF/gGmTJnC1q1b2bBhA3fffTcrVqzg+9//frN933333bz11lusXr2a1157DYB7772XvXv3MmDAADZu3MjkyZPZtm0b2dnZ3Hrrrfz85z/HGOOcjG+329mxYwf+/v4ter/NvZeLn31rn6msrGz2s1NKqV6nG6yebCmdQ+bmiX7p6els376db775BoCKigqOHTvmTL4iIyMpKyvr0MUBiYmJZGVlOft84403mDp1KomJiZw4cYLMzEyABknirFmzeOmll5wJwd69e1vc35QpU1i3bh2VlZWUlpbywQcfABASEkJcXBzvvvsu4Ei69u/f32xb2dnZ9O3bl2XLlnH//fezZ8+eBq8HBwc3qlzdc889vPDCCwCMGDECgJUrV7Jv3z42btzojPHNN98kPj4ei8VCnz592Lhxo7NyOXPmTF5++WVnm66SyPT0dNasWQPA6tWrW/SzcRVvc8LDwwkODuaLL75oVT9KKdUjdYPVky2lCZmbJ/pFRUWxatUqlixZQnJyMunp6Rw5coSwsDCWLVtGUlIS8+bNIy0trcP6tFqtrFy5kkWLFpGUlITFYuGBBx7AarXyyiuvMGfOHCZNmkRMTIzzmSeeeILa2lqSk5MZOXIkTzzxRKN2MzIy+MEPftDo+pgxY1i8eDEpKSksWLDAOQwI8NZbb/Hqq68yatQoRowYccXFAlu2bCElJYXRo0ezZs0afvjDHzZ4PSIigokTJzJy5EhWrFgBQL9+/Rg2bBj33ntvk+3GxsYCjsQMYNKkSYSFhREeHg7Aiy++SEZGBsnJyQwfPpzf/e53jdp44YUX+OUvf8m4cePIyclxDk83Z/ny5dx4443OSf0t8eqrr7J8+XLGjx+PiLSoH6WU6hG64erJljLdeQhk7NixkpGR0eDa4cOHGTZsmJsiUp6ooqKCpKQk9uzZ06nJS0VFBf7+/hhjWL16Ne+8806rV6O2RFlZmXMF57PPPktOTk6j1bagfxaUUo3V1taydes2SkpKmDp1Cn369HF3SC3X1PCkBx0QfiXGmN0iMtbVa1ohUz3aJ598QmJiIv/8z//c6ZWk3bt3k5KSQnJyMr/5zW/47//+707pZ8OGDQ22/fjxj3/cKf0opXqe06dPc+jQYc6fL2DPnpZPPfEIPWh40hWd1K96tBkzZjRaDdpZJk+efMU5cB1h8eLFza6yVUqppoSEhODn50tNTTV9+3bOArYO00NWT7aUJmRKKaVULxEREcHtty+mqqqKqCgPTmh60OrJltIhS6WUUqoXCQkJoW/fvk1uc+QRevjwpCuakCmllFLKs/Sg1ZMtpUOWSimllHKvy+eLXdySqocOT7qiFbJOcHFLgrNnz7Jw4UI3R9N2W7Zsce5U3557Otqlh3Z3hPXr1/Pss88C8P777zc4IqkzXdpvU5r7+b7wwgtUVFR0RmhKKdV1XB0GDj16eNIVTcg60YABAzp0h31XWnIEj2re3Llz+dGPfgR0bUJ2ab9toQmZUqpHaGq+WC+jCVknysrKYuTIkQCsWrWK2267jdmzZxMfH8+jjz7qvG/Tpk2MHz+eMWPGsGjRIsrKygD4z//8T9LS0hg5ciTLly93Hls0bdo0Hn/8caZOndpoQ9CnnnqKpUuXMnPmTGJjY1m7di2PPvooSUlJzJ49m9raWgA+/fRTRo8eTVJSEvfdd5/zUO+PPvqIxMREJk2axNq1a53tlpeXc99995GWlsbo0aNbteFpVlYWw4YNY9myZYwYMYKZM2dSWVkJOI4gSk9PJzk5mfnz51NYWNjo+RMnTjB+/HjS0tIanRDw3HPPkZaWRnJyMk8++eQV+3vxxRcZPnw4ycnJ3H777c7P5pFHHuHzzz9n/fr1rFixgpSUFDIzMxkzZoyzr+PHj5Oamtqg/7y8POe1/fv3Y4xxbrMxdOhQKioqyM/PZ8GCBaSlpZGWlsb27dsb9AuQmZlJeno6aWlp/OQnP2lQBSwrK2PhwoUkJiZy5513IiK8+OKLnD17lunTp7dql3+llHK7HrzbfruISLf9LzU1VS536NChRteuxGa3SX5Fvtjt9lY/60pgYKCIiJw4cUJGjBghIiIrV66UuLg4KSoqksrKShk8eLCcPHlS8vPzZfLkyVJWViYiIs8++6w8/fTTIiJSUFDgbPOuu+6S9evXi4jI1KlT5cEHH3TZ95NPPikTJ06Umpoa2bdvn/j7+8vGjRtFRGTevHmybt06qayslIEDB8rRo0dFROTuu++W//mf/3FeP3bsmNjtdlm0aJHMmTNHREQee+wxeeONN0REpLCwUOLj46WsrEw2b97svGfXrl1y//33N4rpxIkT4uXlJXv37hURkUWLFjnbSkpKki1btoiIyBNPPCE//OEPGz1/yy23yOuvvy4iIi+//LLz5/vxxx/LsmXLxG63i81mkzlz5sg//vGPZvuLjo6Wqqoq5/u4+Nk8/PDDIiKydOlSeffdd519T5s2zdnOY489Ji+++GKj+IYPHy7FxcXy0ksvydixY+XNN9+UrKwsSU9PFxGRJUuWyLZt20REJDs7WxITExv1O2fOHHn77f/pftMAACAASURBVLdFROS3v/2t8z1u3rxZQkJC5NSpU2Kz2SQ9Pd3ZVkxMjOTn5zeK56K2/FlQSqlOZbOJvHajyNN9HL/abN9dL80V6aC/hz0VkCFN5DS9vkJmFzv3fXwfM96dwb0f34td7J3W1/XXX09oaChWq5Xhw4eTnZ3NF198waFDh5g4cSIpKSm8/vrrZGdnA7B582auvfZakpKS+Pvf/87BgwedbTW3MeiNN96Ij48PSUlJ2Gw2Zs+eDUBSUhJZWVkcPXqUuLg4rrnmGgCWLl3K1q1bOXLkCHFxccTHx2OM4a677nK2uWnTJp599llSUlKYNm0aVVVVjTZcHTt2LH/4wx9cxhQXF0dKSgoAqampZGVlUVxcTFFREVOnTm0Qx+W2b9/OkiVLALj77rsbxLRp0yZGjx7NmDFjOHLkCMePH2+yP4Dk5GTuvPNO3nzzTby9r7ym5Qc/+AErV67EZrPxpz/9iTvuuKPRPRMmTGD79u1s3bqVxx9/nK1bt7Jt2zbnmZ2ffPIJjzzyCCkpKcydO5eSkpJGB4rv2LGDRYsWATTqY9y4cQwcOBCLxUJKSorzvSilVLfTC7ezaKlev8ryQtUF9uXtwyY29uXt40LVBSL9IzulLz8/P+fXXl5e1NXVISLccMMNvPPOOw3uraqq4qGHHiIjI4NBgwbx1FNPUVVV5Xw9MDDwiv1YLBZ8fHyce81YLBZnn01pal8aEWHNmjUkJCQ0uJ6bm9tkW65iAsd7vziE2FKu4hIRHnvsMf7pn/6pwfWsrKwm+9uwYQNbt25l/fr1/PSnP22Q5LqyYMECnn76aa677jpSU1OJiIhodM/kyZPZtm0b2dnZ3Hrrrfz85z/HGOOcjG+329mxYwf+/v6tes8Xufp9o5RS3UIv222/PXp9hSzCGkFK3xS8jBcpfVOIsDb+C7czpaens337dr755hvAcUD1sWPHnMlXZGQkZWVlHbo4IDExkaysLGefb7zxBlOnTiUxMZETJ06QmZkJ0CBJnDVrFi+99JIzmdu7t/1noIWGhhIeHs62bdsaxHG5iRMnsnr1agDeeuutBjG99tprzjl3Z86cIS8vr8n+7HY7p06dYvr06fziF7+gqKjI+exFwcHBDapXVquVWbNm8eCDD3Lvvfe6bHfKlCm8+eabxMfHY7FY6NOnDxs3bmTixIkAzJw5k5dfftl5/759+xq1kZ6ezpo1awCc7/VKLo9VKaU8iqvVkxe3s/j3w3DPhl5dEbtcr0/IjDG8Nus1Pln0CStnrezynYujoqJYtWoVS5YsITk5mfT0dI4cOUJYWBjLli0jKSmJefPmkZaW1mF9Wq1WVq5cyaJFi0hKSsJisfDAAw9gtVp55ZVXmDNnDpMmTSImJsb5zBNPPEFtbS3JycmMHDmy0eR6gIyMDH7wgx+0KpbXX3+dFStWkJyczL59+/jJT37S6J5f/epX/PrXvyYtLY3i4mLn9ZkzZ3LHHXcwfvx4kpKSWLhwYbMJis1m46677iIpKYnRo0fzb//2b4SFhTW45/bbb+e5555j9OjRzsT0zjvvxBjDzJkzXbYbGxsLOBIzgEmTJhEWFkZ4eDjgWEiQkZFBcnIyw4cP53e/+12jNl544QV++ctfMm7cOHJyclp0EPry5cu58cYbdVK/Usoz6fBkq5jmhq883dixYyUjI6PBtcOHDzNs2DA3RaR6oueff57i4mJ++tOfdlofFRUV+Pv7Y4xh9erVvPPOO61ayeqK/llQSnWpy4cnRRyVsYvDk1oRwxizW0TGunqt188hU6o58+fPJzMzk7///e+d2s/u3bt55JFHEBHCwsJ47bXXOrU/pZTqUL3wMPCOpgmZUs1Yt25dl/QzefJk9u/f3yV9KaVUh3M1PBnU97vhSXVFvX4OmVJKKaVa4fKNXUE3d+0APbJCJiJdPjlfKU/SneeGKqU8WFNDk73wMPCO1uMqZFarlYKCAv0LSfVaIkJBQQFWq9XdoSileprmzp3U1ZPt0uMqZAMHDuT06dPk5+e7OxSl3MZqtTJw4EB3h6GU6u50Y9cu4zEJmTFmEPBHoD9gB14RkV81/1RjPj4+xMXFdXR4SimlVO+iKye7lCcNWdYB/0dEhgHpwMPGmOFujkkppZTqnXRj1y7lMQmZiOSIyJ76r0uBw8BV7o1KKaWU6iUuXz2pKye7lMcMWV7KGBMLjAZ2unhtObAcYPDgwV0al1JKKdUj6fCk23lMhewiY0wQsAb4VxEpufx1EXlFRMaKyNioKM3WlVJKqXbT4Um386iEzBjjgyMZe0tE1ro7HqWUUqpH0uFJj+MxQ5bGsZPrq8BhEfmlu+NRSimleiQdnvRInlQhmwjcDVxnjNlX/99N7g5KKaWU6lF0eNIjeUyFTEQ+A/R3gVJKKdWZdHNXj+QxCZlSSimlOsHlu+3ruZMeyZOGLJVSSinVkS7OF/vlMFg1x/E96PCkB9KETCmllOqpmjsMXHkUTciUUkqpnkK3s+i2dA6ZUkop1RPodhbdmlbIlFJKqW6gpqaGioqKpm/Q7Sy6NU3IlFJKKQ9XUlLC22+/wx//+AaZmZmOizo82aPokKVSSinl4c6fP095WTmBQUFkZn7L0Lg4HZ7sYbRCppRSqlN9tf8rXnnl93z22XbkYjVHtUp0dDT9+vXDbreTnJykw5M9kFbIlFJKdRq73c7nn++gb7++fLX/K1JSRhEUFHTF52w2G1u3biMnJ4epU6dw1VVXdUG0nsvfz4+FN05GAiIxFotjmFJ32+9RtEKmlFKq01gsFuLj4zmXk8tVV12Fv79/i57Ly8vj0KHD2OpsfPHFzk6O0sNdsrmref1mx/cXd9v/98NwzwatiPUAWiFTSinVqaZfN42xaakEBQXh5eXVomdCQkIICgqktKyMhMSEzg3Q07kangzq+93wpOoRNCFTSinVqSwWC6Ghoa16JjAwkO99bxHl5eVERER0UmQe6vKzJ/Uw8F5BEzKllFIeyd/fv8VDnO5QVVXFyZMnCQ0NpV+/fh3TqG7u2qXsdqGgvIbIIF+Mm3+umpAppZRSbbBlyz/45vg3ePv4sGTJ4lZXAV3S4ckuY7cLt//+c/acPs2YgYNYvWw8Fov7kjKd1K+UUkq1QVVVFT6+Ptjtdmpra9vWiG7u2mXsdiG/tNq59Up+WRUH7D/HOvT/54D9WfLLqtwan1bIlFJK9Wg2m41Tp05htVrp379/h7U7ffo0vv76AFFRUURGRra+AR2e7DKuqmFe3uV4+WeDsePln42XdzngviFyTciUUkr1aLt372Hnzi/x8vJiwYL5HTbfKzQ0lEmTJra9AR2e7DSXzw37rhqWzYHKGPLL/kTf4AhS+41mX/4+UvqlEOHv3sUjmpAppZTq0crLyvDx9qa2rpaqKjcNS12+chJavXrSZrNhjMFi0dlGzWlpNcwYf16b/RoXqi4QYY3QSf1KKaVUZ0obl4axWAgKCmLQoEFdH0BTQ5MXN3dtwfDkmTNn+OtfPyI4KJibb5lDYGBgF74Bz9aeapjFWIj0b8NwcyfQhEwppVSPFhQUxLRpU90XQFNDk9Di4cmDBw/h7e3D+YICzp07x9ChQzs56O6hu1bDXNG6p1JKKdWZOmDl5DXXxFNdXUVISDB9+/be+WUtWSkZ4e+ohnkZL1L7j25UDfPEZAy0QqaUUkp1rMvni7ViaLIpsbGx3HPPUry8vPD27p1/dfekapgrWiFTSqke4MyZM3z88SYyM791dyi92yUHgbNqjuN7+G5osh3JgZ+fX69KxnpyNcyV3vPJKqVUD2W32/n4401YLF6cOJFFdPRdBAQEuDus3qm5+WKqxXp6NcwVrZAppVQ3Z4whJCSE8vJyAgL8e1UVxe10p/0O0duqYa7on1qllOrmjDHMmXMTOTk5REZG4uvr6+6Qegfdab9D9MZqmCtaIVNKqR7A39+fIUOGEBIS4u5Qeg9Xw5PQIfPFejKthrmmFTKllFKqJS5fPdnKnfaVVsOaowmZUkqpDlFXV4fFYumZR/vo8GSH6K676HcFTciUUkq1W07OOTZs+Cv+/v7ccstNPW/oVA8Cb5M6m43MC7nER/THYrFoNawZPfCfMUop1TOJCBkZe3jvvfc5ffqMu8Np4OjRY1gsXhQXl3DuXK67w2k/XT3ZbnU2GxNfX8SCDTcyftVC6my2Xjk3rKW0QqaUUt1EYWEhX36ZQUhICJs3b+Xuu5e4OySnq68eyvHjmQQHB9GvXzevGHXy8KSIkJ2dTU1NLUOHDsHLy6sDg3efyw/5zryQS7klE2PslFsyybyQS0LUAK2GNUETMqWU6iYCAgIIDg6iuLiYhIR4d4fTwMCBV7F06Z1YLJbuvw9aJw9Pnjx5kvXrPwRg8uRJjB6d0u423c3VZP34iP4E2odSbskk0D6U+Ij+QO+bG9ZS3fxPjVJK9R5Wq5XbbruVkpJSoqI87y+0brv/WRevnqyrqwPAYjHU1tZ2aNtd4fJKGLierN8vxJ/tS99tMIdMNU0TMqWU6kYCAwMJDAx0dxg9hxtWT8bGxjJt2hSqq2tITk7q0LY7m6tKmMViXE7WB3+8vbxIiBrg7rC7BU3IlFJK9V5uWD3p5eVFcnJyp7Td0S6vhjVVCbs4Wf/yrStUy2lCppRSqvfQzV1brKWbuII/xhidrN9OmpAppZTqHVo4PCkinDp1GrvdzuDBg3rN3KeWVMOa2sQVdLJ+e2lCppRSqndo4fDkt99msXHjxwDMmDGdYcMS3BVxl9Ejjdyvd6T9Simlep82bu5aXV0NgDGGqqqqroq2S+kB355HK2RKKaUaqampIS+vgPDwUAIDA9wdTuu1Ynjy8sQiPn4oZWXl2O02hg9PdNMb6DxaDfNMmpAppVQPUVxcQnFxKdHRffHx8WlXW3/btJWTJ08TEhLMou/d0v32GLvC8GRdXR2ffrqFkydPM23aZOLjhzof9fHxYdy4VDcG37HaMzdM54V1HU3IlFLKAxw9+g3ZWacYlTKSfv1av9KvrKycdWs3UllZRULi1Vx33aR2xZOfl09oaAhlpWVUV9d4fkLWytWTBQUXyMzMok+fcHbt2t0gIetJtBrWfegcMqWUcoOiomKys09TW1tLSUkpWzZ/Rs65PP62aUuLnj916ix//tN6Pv98F3a7naqqaqqqqwkI8OdCQWG740ufMJbc3DyGXh1HcHBQu9vrVBeHJ385DFbNcXxvjGN48t8Pwz0bGm3uGhYWSkREOIWFRSQkXOOmwDuezg3rvrRCppRSXcxRzdpAZVUVCQlXM3HiOPysVsrLyhk8+KorPn/2bC7vvfsBERHhfLX/EPHxQ4iM7MP49FRycvJIHTuq3TEePZJJUGAQ336bzdjiUYSEBFNQUIjV6kdQkIedFNCGzV39/Py47ba5VFVVERwc3MUBdw6thnVvmpAppVQXq6qqorq6hoAAfwovFGG1Wpk//yYuXCgiOrr53eHPn7/AB+s3ceZ0DqdPnWF0ajJBQYEYYxiVMpJRVzinuqamhrKyCsLCQprdX8sYg10Ei8Xxl/WBrw+zffsu/Hx9mXfbjYSHh7X6fXea+uFJObWTuv5j8A6I5GKKISLs2bOfrKxs0tJSGTx4oPMxHx+fds+18yQ6N6x704RMKaW6WEREHyZMTOPs2XOkpjoyqNDQEEJDQ674bF1dHYhwzTVDCAsP45a5M/H3t7ao39raWta//zcuXCgicdhQpkxNb/Le666fROY3WURG9iE0NISzOXlYrX5UVlZRUlJGXZ2NM6fPEhM7qOuTs8vnixlDyW1vs/Hddyis9iZ9/wFGj3YcTVRcXMKXOzMIDQ1l8+atLF16R9fG2onqbLYGB3drNax704RMKaU6QFVVFVv/sYOKikqmTZ9IWFhok/caY0hOHkFy8ohW99OvXxRTp0+gsLCIpKRhLU7GAMrKKrhwoYg+EWFknTjNlKlN3xsUFMiolO/iS01NZmtZOYMGX0VkZDjv/mk9tXV1HDx4jCV3zO+63eyb2M6iuKScC9XeBAUFOSqH9QmZv7+V4JBgiouLGXr1kK6JsQvU2WxMfH0R5ZZMAu1D2b703SbPk9RqWPegCZlSSnWAU6fOcvz4t/j5+fH114eZPLnp6lN7GGNITLy6Tc+GhYUwMimBEydOMmFi67Z1iIzsw20L5gCOjVOlPpaLk8e7TBPzxfr370tCQjz558+TNm6M83bHXLFbKC4uISqq+yYll1fDMi/kUm7JxBg75ZZMMi/kkhA1QKth3ZgmZEqpXs1ut1NQcIHw8DC8vdv+v8SQkGDy8s5z/vwFho/wjFV71dU1nD59jpDgQKL6Ov6CnjBxLBMmjm1Xu35+ftw0ZwanTp1hyJCYzquOXT40CU1uZ+Hj48P1M6a5bCYgIICAAM/a3La6uprCwkIiIiKuOI/NVTUsPqI/gfahzmvxEf0BrYZ1Z5qQKaV6tT/8YRVbtmxjyJBYfvKTx9q835a3tzfh4aH069eXUyfPwoQODrQNPt++m2NHvsXbx4sFi24iLOzKc9Raql+/qDbtl9ZiTe20f3E7i8sTtW7Ebrezfv0H5OfnEx0dzbx5tzaoZrW0GrZ96bsN7lPdm36CSqley263s337F1x11VVkZp7g3LlzbW7L39/qmNxuIDKqTwdG2XaVFZX4+vpitwu1NbXuDqd1XA1NXnRxO4tumIyBY6Xr+fPn6dOnD7m5uY6FGvUuVsMWbLiR8asWUmezOathIpYG1TBvLy8SogZoMtZDaIVMKdVrWSwW5syZxfr1G0lJSSY6OrrNbQUE+DP/tjkUF5fSv3/nVY7OnDnHtn98Sd9+kUyZOq7ZYdaJk9P4+qujREaGE9U3otNi6hCt3Gm/O7NarUyaNIlDhw4xZepUiqrsRHo7ztTUaljvZbp8QmYHGjt2rGRkZLg7DKVUN1ddXY2vr2+3mAT9l3V/q996opRb5s4gekBfRISdO/byzTfZpI0bRUJiN1tN2NTwpKs5ZC1UVVWFr6+vRycvrjZyBWH8qoXOuWE77nnPo9+Dah1jzG4RcTmJUytkSqlez8/Pz90htNjgmAFk7PqKoOBAQkIdRxqVlJRx4OtjRESGs+PzPd0vIWtmp/0LNT58tP49/Pz8mD37egIDr3xKwIEDh/jssx1ERUVyyy03esQ5nJcf8A2uN3LtF+Kv1bBeShMypZRqg2++OcHhw98wcmQCcXGDu6zflNHDiYkdSECAFavVkUgGBvoTGdmHnLO5DBka02F9lZWV8/n2DHx8vJkwcWzHJa4uhidl0LUYF8OThw8fpaK8kqLCYk6ePMOwYVdewXrgwCHCwsLIzc3nwoVC+vfv1zFxt5GrSpjFYlxu5Ar+zrlhqnfR1FsppVqpurqazZs/p6y0nL//fXuDSdmdzRhDnz6hzmQMHCs8J05JxeLlw+nT5/g282SH9HXw4DFOZp/hyJFMsk6c6pA2Lz8IvKqygvf/soFVsoTcO//R6CDwgQOvwma34evnQ2Rk48USZ86c5eOPPyUz84TzWsqoJIqLirnqqmgiIrp+gUVLDvgGmjzkW/VOWiFTSqlW8vb2JjQkmMLCYiKjIjxiWKmstAKLAavVj1MncxgytP1Vu/DwUGw2O95eXoSEdNAB3JcNT+aeOMLZM+cICgpk3/FcZg0d2eD2mJhB3HnnIiwWS6O9xOx2Ox9/9Cle3l6cOJFFdPQSAgICSByWwNCrh+Dt7d3l8wJbesA3+GOM0Y1clZMmZEop1UpeXl7cfMsNFJwvJKqvZyRk/aOjGHBVP8rKyhkxsnUb01ZWVlFXZyM4uOH8rGuuGUJoaAje3l5ERIS3LbArrJ4Mv2oogUFHqKysIm6I6+HWoKAgl9eNMYSEBpObm09ISFCDDVa76tDwy+eGteaAb9CNXNV3dJWlUkp1Q9XVNQD4+bVvwvqFC8V8uP4TamvrmH7d+CYra3a7nSOHj1NVXcOIEde0bD5ZC1dPVldXU1tb22Ti1ZzKykpycnKJjOxDSEjHbXzbEq6qYReqCpj+5+vB2EEsbP7ep0QGRGIXu1bClK6yVEqpniQvt4BNGz8DY5h10ySi+rZ9ntS5nDxKSkoJDQnh1KmzTSZkp06eZcvmHRiLoba2jmuvHX3lxptZPUlQX+dtfn5+bV4w4O/vz5AhsW16trXaUw3TSpi6Ek3IlFKqmzl7Jg+b3YYI5JzNb3NClp9XwPZtu8n85hQJiUMY0cwZnBaLxXmYuLdXE0O0PXhz15bODTPGX+eFqTbxqITMGPMacDOQJyIjr3S/Ukp5oiOHM8k5k0fSqEQio9o498qFyspqdn95kMqKSrx9vPHx8WFwTNtPF8jJycNiMSQnJzIqZVizRz4NHBTN7JumU1NTy1BXW2s0NTzZTc+d1GqY6moelZABq4CXgT+6OQ6lVC9js9nIzjqDt483gwZFt7myUVRYwufb9uBn9aWwsITbFs3qsBiPHTnB8SMnsNuFCVNGkzh8SLsqMDGxAzlyOBOEK67KNMY0v99aC4cnuwOthil38KiETES2GmNi3R2HUqr3OXTwOJ9ty8AYuHHOdGJirmpTOz6+Pvj5+VJZUd3smZYigt1ux8vLq8VtBwUFYBfH8GFQUEC7E4DQ0GAWLZ4D0Pq2evDwpFbDlDt4VEKmlFLuUlNTh8XimCNVV9v2jV4DA/2ZM3e645DxaNdJSWVlNZ9+9AUlRaVMuT6NgYNbtpP8kKsHERgUgMVi6NuvYzYRbVNS18OGJ+tstgZHFWk1TLlDixIy4/idN1BEOmir5rYzxiwHlgMMHtx1x5UopXoGu91OXm4BAYH+hIR8t83CyKRrAMHX14fYuIHt6iMsPISw8Ka3YCjIL6Igv4ig4ACOHPi2xQmZMYb+0R5QjelBw5N1NhsTX1/kPMx7+9J3nTvoazVMdaUW7WYojs3K3u/kWFpERF4RkbEiMjYqqvuWxJXqzcrLy9m5cxfHj3/T5X3vzjjA+r98wvtrP6akpKw+nkoydn6NwcLwEfGtGkZ0RUQoKS6npqbW5et9IkIICQuiorKaqxO64T8sLw5PWry73fBknc3G0fyz2O12ADIv5FJuycQYO+WWTDIv5Dp30P9k0SesnLVSq2GqS7RmyPILY0yaiOzqtGiUUr3Ctm3bOXEiG7vdTmhoCH37dl1VJT+vgAB/K5WVVZSVlhMSEsS+PYc5fiyb2tpaIiLDiYlt38HOX+09zle7jxIcEsjsWydhtTbcvDUg0J9bbptGXZ2t0WvuZLPZyMnJJzDAn/A+od+9cPl8MWO65fCkq2pYfER/Au1DndfiI/oDWg1TXa81Cdl04J+MMdlAOWBwFM+SOyoYY8w7wDQg0hhzGnhSRF7tqPaVUp7B29sbu83mmK/TzmpUa427dhQ7d+zl6vgY5xyvoOAAamvr8PLywurftg1KL3XyRA7BoUGUFJZRWlLuMuny9vbC27tr3/uV7N51gH17D+Pr58O8+Tc4hl2bmi/WDYYnL58b5qoalhA1gO1L321wn1Lu0JqE7MZOi6KeiCzp7D6UUu43adIEBgyIJjQ0lIiIjpmcfiVnz+Sx47O99I+OZPacaQ0SwaTka+jTJxRfP1/6dcBk+ZTUBD7fup/YqwcQ3qdrj/O51JlTuRz46jhxQwdxTaLrcyIvVXihGKvVl+rqGioqqxwJWVPzxTxca6ph3l5eJES1ryqqVHu1OCETkWxjzChgcv2lbSKyv3PCUkr1ZFarleHDh3Vpnx99uJXi4nLO5xcSnxDbYJWixWJh0OCWb7BaXVVDZXk1IeGBLisqg2L7szi2f4fE3VoiQk1NLb6+Pvzj0wz8rL588dl+Bg7qS0Cgf7PPXjs+hV0799E3GPpf/Pl0k+0stBqmursWJ2TGmB8Cy4C19ZfeNMa8IiIvdUpkSinVQfJyCziZfY4zp3OJjRtAYFBAm9uqrqph0/tfUFZSQUJyHGPSE1r1vIhccZJ47tkCdmz+mvCIEMZfl4yvb8v+V2232/ls816yv81hxKirCe8TQt65AoJCAvHx9bni82GhQdyQ8yx8uROOdZ/tLLQapnqC1gxZ3g9cKyLlAMaYnwM7AE3IlFIeTQQGDY4mIjKcESOHEniFStGlqipr+PboGYKC/Rk8tD/lpVWUllQSHBrImew8lwlZbW0dOz75moLcYsbPSKL/QEe16fSJXHZuPkhUdDjjZyRRcqGcQ3tPEB0TydXDvttq49DeE2DgdHYeBXlFRA9s2eTyivIqsjLP0rd/Hw5+lcm8xdPIyjzD4NhofHwa/+++uroGEcFqrZ831022s7j8WCOthqmeoDUJmQFsl3xvq7+mlFKdorCwmKKiEgYM6IefX9tXI/brH8F1N1xLWVkF8QlXnkt1qX1fHCXreA6IEBBkpU9UCFcPG0jO6QLGTkh0+cyF/BLOnjxPcIg/h/accCZkB/eeICDIytmT5yk6X8rOLQex1dk4e/I8faPDCQkLBGBATBTndhQQGGQlJDSwxbEGBFoZHBfNyawchicNYfvmveSdu8CZk3nMvHlCg6Sk4HwRH324Bd+6YqbMuYl+0VHdYnjS1bFGWg1TPUFrErKVwE5jzLr67+cBugJSKdUpyssrWP/+36iqriY2diCzZk9tV3txQ9u22avFYiH3TCGlF8oZM76Y0PAgwkKCiBgVSvQg15WrkNAAgoKtlJVWEp/03T5jMUOj+WrncULCAggJDyQ0PIjTWXlY/X3x9ftuSDFhZAwDBkXh6+eNXyu2xbBYLEydkUpNTS3GGP70x48I7xNMfl4hdXU2fH2/S8hyc3K5/uwz9K35hvJ3X4NHNnvc8OTllTBwfaxRvxB/rYapbq81k/p/aYzZAkzCURm7V0T2dlZgSqneraamlpqaWgKsVkqKy9wWx9BhV7Fr8yFiru7Psa9OUldr5+udmSCCr58Pg4Z+t8u+3W6nvI00oAAAIABJREFU+HwZ1kA/Zi0cT3VVDUEh381XSxwVw+Ch/fDx88bHx5v060aSl1NISFggVv+GiVdwaNvmuRljnNXEtPEjOXLgW9LGj8T3sjlkgyJ8CazJxIKdoMIDHjc86aoSZrEYl8cagb9Ww1S319qjk/YAezo3JKWUgvDwUKZOu5bTp88xalT7VmTWVNfy5T8OUVJUTvr0kfSJavlWFEEhAcRcHU15WRVhEcF4eVlABAHH15c4siebw7tPYPX3Y/r81AbJ2EUBQVbn1z6+3lwVE0VdbR1f/O1rigrKSJs2nIj+oY2ec8Vut3PuTAG+vj5E9gtr9HriiDgSR8QBUFVZya5PtlBqDyBtfBJVtX74X5WGycnAeMDw5OXVsKYqYU0da6RUd9eihExExBjzPpDayfEopZTTNQlDuCZhiPP72to6vL29Wn2UTX5OIacyc/EP9OPI/iwmzGh6P+u6Wht2mx1fq6Oi5Gf1ZfqtqZQWVRDRLxRjMfhaffDx9SY6puGQ5fkzRfgH+FFZXk1FaRUBwdYGr1dX1VJ0vpSwiCD8LqmIFeSWcCozj4AgKwczvmXKzaNb9L6OHshm9/bDWLwszJh7LX37h7u+0W5HVt7MxLw95Pldw5+/eRhrUACBAY8w7+EUrH0GunV40lU1rKlK2MVjjfSQb9XT6NFJSqlu4cjBE+zacYD+0RFMmznO5arBplj9/x977xlk2X2f6T0nn5tz55wn9OQMcJAJAiRIkGDSSpa0krwSXbuWa2urbJdVZXlrVa4tl+RyKIcty5a0uypRK4kUwQySIAhgMANMTt3T0znnvjmd5A93pnt6umemG5gBQeA8X4C+95z/+d9ze+799S+8r4ZlWuRyRarqo/c8Lpcu8OarFzGKBoef20VNUyX74gt48AXWJjNbezYvje043MIP/+M7aLqC7l+v+G/bNm+9epH0cpZg1M9TrxxkZmyR8Rtz1DRH8fg0CrkiHb2NW3pNA9fG+OE/vIPj2CRqopQK5XsfnF9EX7iIgE1VaQBNzeL3x8nnC5TlCLogsLKc4trVm9TUJujo3Nrgw8DAEGffu0h3TwcHD+7d0jmwtWxYVeDemTDX1sjl48hHyjrJxcXlo4fjOLz33nkGB0c4duwQbW0tv5R9XLs8RCQaYHpqkXQySyyxsUS3GZZlc+mtmzhFm2w6TyFZxDStTW2LkgsZCpkiuk9janB+NSDbKkbJxOfzICkiQ5cn2ft45+pz5aJBaimDP+Qlm8xRyJU4+9M+NF1hYWqFZ756GNOwCEYePFVpGCbnTt2grbuB6xeG6OltXhswuNt3EsCXQGg6ijNxBqv2IJ9/6atcvHCDvfu7CYb8ALzx+hnS6Sw3+oeIxyMVlf77YNs2v3jjHcLhIGffvUh3dwd+/4P3vtVsmCB43EyYyyeK7fSQ/QEw9mi34+Li8lEjlUpz7uwlIpEwb7zx9i8tIOvZ1cr5M9eprokSDPu3fJ5ZNkkuZSkVTObGl+k7N0q8Nkxty8YMS7QmRDDqp5gv07Jj+w3imq4iygKWYeO9I0OWXs7xzvcuUUgX8Xg1Djy1A92r4fXrZFJ5QlE/Hp+25elAWZaoqY8xM7nI4cd3cvDEjsq59/KdvGUGLuQXUXwJqgSBT7+w/vV7PDoL80somoq8heyjKIo0NdUzNDxGVSK2pmV2Fx8kG+Zmwlw+SQiO42ztQEE45zjOR6qH7NChQ87Zs2d/2dtwcflYUy6X+fu/f5XkSpKu7k6eeebk+17LcRwcx3nfsgTFYhlVlbd9/uCVCU794DLFfJlEbZjeY+2EYgHi9eENmZcPusfluTRG2SRRH15dY/jaFFdPDSLJEjXNURzLQffrtOysJZPME0kE0L2bBzSO45BczKB51HUDAaZpkUnm8Ie8a+Xb7Dz82Y6KsKsow7/s2/LEZLFYYmpylnA4SCx+j160u7Asi+XlJKFQAFXdKM+xWTZsubjEU3/7DAg2OCKvf/WnxL1xbMf+wNmwTCbDpUuXicVi9PR0u1k1l48ct2KpQ5s95/aQubi43BdVVfniFz9LOp0hFrt3/9WDKBRK/PgHb5NJZ3n6uWPU1W9fWkG/jyZXejnH6R9eQVFljj6/e11DfUdvI2276lmcTrEyl6LvnREcx6bzQBNN3bX4wmvTkIIgfKAv8mj1xlJfVX0Ej6/Sx1bIlliZz2AZFrGaIImGKKN90wiSQEtP3YbJzYEr41w8fRNVlXn25cOVcurYAj6/TqIqVClPyrfKkx9A2FXXNRoaa8nnCxvsnZaXkywuLlNfX4PPt3avJEkikbh3WffDzoa9+eZbjI2NY1kW0WiE6urqB5/k4vIRYbs9ZH8gCMIobg+Zi8snCl3X0XX9wQfeh/m5JZYWlvH5vfRdG35fAdn9GL8xS7lkUsiWmJtYpnXn+pKjKIpUNUTIpwuAQ3I+w7vfv8r41RmOfn4v4UTgA10/uZBBFAWCsfXlVNu2sS2bk186gKzIjF6bZnE6hSRJ6F6N0b5pLr41AE6lFNncvd7kfGEmiaYrFHMlspkC/VfH6L8yhizBl/mfUWbPrS9PPkDYNZPOMje7SFV1fLV/DCCfL/Cdb79GJpPj4KFeDhzcDVQyZ69+50cUi2XiiRivvPLiPe/B3Qbfd/eGWc4KAwM5/s2eP0GPag+9N8yj65hmZRJXUR7s3eni8lFiOwHZC49sFy4uLh97YrEQ/qCPfK5Ie8f7U82/jWXZXD01yPJsmt7HO4jXhqlqjDBybQpZkYjcJ7iq76iikCkydGEcURQwTYtCuviBArKZ4Xku/rQfEDj84m7i9Wslv+unhhi7PoOkihz+TC+tu+sIxf0oqkwo7md5Mc2tv28RxY3Bya4DrZx9s4/axjjxmjBDNyZRFAmltIy8eBYca8u+k5Zl8cPv/YJMJofX5+HLX/sMslz5GkinsqQzOULBAGOjk6sBmWVZGIaFrmmUCqV73oPNDL7v1gwbuDDIlSt9SJLEV7/6RQTPwy0pPvb4YzQ0NhAIBIhG338218Xll8F2ArJx4NeBNsdx/rUgCE1ADW6jv4vLJw7TNMllCwSCvi33WvkDPr745ecwTQuPZ/N+qa2SnM8wen0aj1/n+ulhHv/CPmzDprYxiqopaPq9syOKKrPjaBtN3TVcffsmulcj3ri+Z8q2beD+5UvHcZgbXcQybbIrORAEbMsmlyqsC8jmxpawbYvLPxtgemiBA8/uoPfxrtXSZEtPHbIsIYoC9e0bA6lIIshzXzq6Oj25/2g3Xp9OINgN7x7bVnnScRyKpTKarmKUDe5sIY4nInR0NDM7u8ChI2vtwj6fl+c+fZKJ8Wm6e9pXH787G3Yvg+87JyVfe+11FEXGsixM03zgfreLqqp0dnY++EAXl48g22nq/z8BG3jacZwdgiBEgB87jnP4UW7wfrhN/S4uHz62bfPD773B9MwC7e1NPPXMsQ99D4VciV986xylvEHn/iZ8Po1T377A+PUZWnvradvXxMHnd72vtXOpPBd+eJXkfBpJkqhpT9D79A5kpSKTkU8XKBcMCrkiF3/ch4ND+4FmcqkCkiyy43j7qqgswMzwAq//7XvMji5RyJSoaY3yzK8dpWVX/dY3dWt60pk4QzbUy+STf07X7hYkQdi27+Tc3CJDA2O0tjdSW/f+ysabZcNEQeD4X3x59bF3fvvvNgTr2WyWK1euEQ6H6enpcpvuXT5xPKym/qOO4xwQBOECgOM4K4IgbN311sXF5WNBoVBiZnqBquoYI8MTnHzyMJK0UdPrNotzSWYmF2lsrSYc/WB9Wrfx+DSe+NIhirkSwZiP09+5yMTVaZZnksTrQ5glY0Nj+lZZGFummCszN7xItD7C4sQK2aUs4ZoQuWSe09++iGWahGpCOFSuIcsiB57buel6tW0JvvRfPsvPvnmGoQsThBJBbMvBsmwWJldQdWXTQYB15Bdh4gyCbeJbucSVN8/gD/ppbK3etu9kdXWc6urtNc9vNRv2IINvv9/P8eNHt3VtF5dPCtsJyAxBECTAARAEIUElY+bi4vIJwuvV6d3bTX/fMEeO7b1vMFYuGXz3m28yN71Coi7Cb//zz75vOYm70b0qurfyN6EkijTvricQ9aIpMqnZFONXp2jufXCvmuM4FDJFUvNpZm/M4k8EkVWJUHUQWRHxR7x4b01hFrJFLMNE0RUUWWL3yS7MsknTzvtrluleled/8zEmjsxgWw5NO2oZOD9G/9lRREnk5Mv7iVTdJyi7NT3pjJ9mXu6kLIVWM3aPms2yYZ2xGnx2++pjnbEaANfg28XlA7CdgOx/Bb4FVAmC8CfAl4E/eiS7cnFxWUexWEQQBDTtg/VePYgbfUOcP3+NHTs62Hdg84wPQG1tNdFohObW+3/5Oo7D4PVJLNMmncxRLJTx+j7YtOZm14jVhZkZmMOjSZSzJWRFIjmXprn3weePXZpg6Nwok1cmaT/SRmo+w5EvHUTRFSzDQtbk1eAnUhOiaVcd2WSBrqOt+Legqn8bSRLXlSnz2SKiLGKbNuXSXf1Ud6vt3xJ2tTNzlBfhGU2htmFrWa7p6XlKxRKNTbWrDfz342Flw1xcXLbHlgMyx3H+oyAI54BnqIwEvew4Tt8j25mLiwsAs7NzvPrq9xFFgc9//rMkElvXltoOlmXx9tvniIRDnDt7ha6eVrxez4bjZqcX+ekPTmPbDgeO5Nl3qOeea2q6yr6jXUyMzFFTF9vUrggqfWnlgoHmVbddZpy9OcfYhTFKqSyR6iCZlTxm2aT9wNb8GOeHFyo6ZIJAeiFDrDGK5lORZAlFW/8RKckSPSc6NqwxN7LA+LVpGrprqO3cmvbVjkOtiKKIN6CRqL/DBupeavuiiBSqpSm0peUr+5pd5Puvvo5t2Rw4vJtDh+8fobrZMBeXXx7byZDhOE4/0P+I9uLi4rIJ4+MTOI6DYVhMTU0/soBMkiQaGmoYH5smFg+jaZu3iFqWjQMItyQjNiOTzHPzygTRqiAvfvUxFmZWiMQCqNrG6UfLsjn7w6ssTydp6a1nx7H2Dcc4jkNyNoUgCISqg+uCtlK+jCAK6D4d27Kp76ph/4t78EfXslelXIlipkggEUC8S3i15UAzN966yb4X9lDfU0MgHkC6R+C46f0wLa6+cYNSrsT45Ule/BfP4LlDlLaYK9F/ZgRFk+g63IqiVj52vQGd/U90b1zwVr8YtgkTZ3ByC1y5kWZuZpl9R7pIVG9U0Z8Ym+Ha1UHaO5vo7FoLRA3DwLZsJFmiuIlkhZsNc3H56LCtgMzFxeXDp6OjjRs3BhBFkZaWrWV93i9PP3uCt984z9DgBO+8dZHHTh7YkLGqa0hw4uQ+CoUiPbvaNl3n7M/7SC1lGb4+xXNfPkJzRy2Z5Rzz48tEa9f3PxWzJZamkoRrgoxfn9k0IJsfWeDaz/oAgd5nd5K4w4eyvqcWo1BGlEQSLXFkXcEbXMvslQtlLn/3IqV8iZruWjpOrJdFqGqJU7WJr+VWESURHBg6O4bqU5m4Pk3X0bX7MnJ1ipmhBSzTIlQVpOHuDNrd5cm71PaXCyqXz93E69N5763rvPjKY3edbvPGz95D92ic+sV56huq8XorAWFdfTXHHz9ANptnz971mcytZMOcpRyvX3mL3j07N2TDLMtCEISHHqANDg4xODhIb+9u6uu3MYnq4vIrjhuQubh8xIlGo/zGb/wawCOXCbBth5HhKWpqEwwOTLDvwA78Ae+6Y0RRpHtny33X8Xg1FmeSKKqErEjk0wXe/seLlEsGzTvr2Huya+3YgEZ9ZxXTwwt0H9583VKuzG3x1EK2wNDpQVIzKdqOthGui9B5vAOjaCBr8oZ7VM6XKeVLaH6dzHz6fdyV+yMIAjs/1UV6MYPm0zdk4HxBHduxESURj++uHsB7lSfvUNv35Et4vBr5XJH65o0TlYIgEIkGmZ9bJhjyr/laUnmvevd037qUw0KmtGry/aBsWELy8J/+9rtoqsr8/BJf+/oXVtednZ3n+997DY9H53MvPU8gsHWz9/uRz+f5yU9+isfjZWrqNX7nd37LlcZw+cTgBmQuLr8CfBhfSrPTi7z+o3dZnEtSKpZp62jc0IBfLJRxbGdjYHEX+092U9+WwB/y4gt6SC5kMMommkclm8yvO1YURfY+1UPvE133zLbUdlZTzBQRBPCHfVw/O4KiK/S/3kdNRxUrUyuUsgVizQnaP9W9bh1f1EfjvmZSM0mat9hXtlUcx6GcL1PVGuPoywcwiib13eszYI09tfjDPiRFJBS/S/bjrvLkZmr7Xp/O8y+fIJctEK/a2EAmCALPfuYEC/MrRKPBdQHZbTYz+X5Qb1gul0dTFYrFIomq9X6VN/pvIkoiyWSamZm5hxaQybKM1+slk8lSU1PtBmMunygeGJAJgpDhltTF3U9R8bJ8gICOi4vLR53lxRTvvXMNSRaJxSMce7yX7p2t6wKblYU0P3/1PLZt89hn9lLTUPmSzmeKXHtnCEWT2XW8HUWV0XSFxo61wCQU97PzeBsrcxm6DjRtuof7lb4UXaHrVjN9uVDGsRyG3hrAKpuUUjlmrk3S+eQOlkYXaD7chupdCxgdxyFUFUD3qYy8PYDiVel8cieqZ3syikbJZOzCKDjQvL+ZcqHMmb8/S3ohS/PeRvZ8etemvWeCIBCtvRVIPaA8eS+1fX/Agz+wccDiNpqm0tBYfesSDku58momDDY3+a4Oeu7bG+bzefn8y58huZKirn59kNne0crNm8P4/X6qqx9eT2PFyP4LLC4uUVPjGoO7fLJ4YEDmOM7DUXJ0cXH5SLIwt8KPXz3F8mIKw7Ro6ailoWnjF/TyQhrTtJAVibmJ5dWAbOjKJLNjS5iGRaI+Qn3H5mW19j2NmGWTyz+6SiFbZN8LeyrTjdtE9ag09tbjGCYrY/OsjC8SqAqSnk6S6KhCvss2afLCKBPnR0hPJwnUhpEzCumZJPG2yj4z82kmL44SrAlTv2fzYBFgbnCOqetTCI6A5tMYeneYM//pPWRVxjYtuh/rwBu6z+u5Q22fxqMIv/VdHEFg4dm/QjGTRFrat6y2f+9LbMyEiaKwweRbknNkMhbz80vUV8cxDIOF+SUi0TA+39priEbDRKPhDddpaKjjP/vNryJJ0pakNLZDIBAgEHC/dlw+eWzrX9Itu6ROYLWO4TjOLx72plxcXD48cpkCpmERjYdp66zn8GO7N5WnqG2KE45NYRgWLd21q48HI15s20aSRfQHlDJHL47x3j+eB8AsmTzx249vOCYzn6aYzpNdypIcW6BuTzPVPesbyqu6alkeXSA16uANefHEKmbdhaUMiwOzJLpryc6lyK/k6P/hRXLzafR4AKNgoAe8eO+YwLz+w0vMXJ2klCty/HefoulAy6Z71/0aIIAAilelXDTwhr0UkgW8YQ964AH6avlFnPEzCI6JPXaa4uIUU/Nw/s0BRFHg5OdiVNVvnKC8H3dnw+6VCbvb5Dushvm7v/0eqXSGcCiApmvMzS0QDgX50pdfRFHu7QV6m0etiefi8kljywGZIAi/B/wh0ABcBI4B7wBPP5qtubi43EkqleGtN9/F6/Xy2OMHUdWH41xW31xFT28rxXyZ3gOd99QK8/p1nntlo+1NU08tgYgPWZEIxu7fS6SolS96AQFJFsmv5NAC+mqpr5gu0Pfjy5TzJVYmlmg71sn42WEizTEkWUa6NZ3pDfvo/fxBnLKJ4tVITy/jyCKKppJfzrA0JDL6dj+p6SSaT8OJ+ane2UD3c3uQVQlFX7t3gixSzBbQ/B7SM8vYVhNGoYziVXEsZ/Wa8eY4+17cC0CwOsjRrxxB82koXoX9L+zdWHLdpDyZDfTiS19mWemhnNHIZ1JIkohpmJSK5S28W3cuvzEbtlkmDDwIgrDO5NswDPKFAj6vTiabJ5PNEQwGSKUzlMvGlgIyFxeXh8t2MmR/CBwGTjuO85QgCD3A//BotuXi4nI3Vy73MTe7QLls0NRcR3v7w2lQVxSZo49vQdL+HgiCQLRma2qlTXsbefr3TpJL5hFNkyvfOU+wJkT3c7sRRRHbsnEsGwEBRVPILWVQvSrXv10pDXZ+ei+CILA0NIs3HqDtUz0sDM7SsG8/qZkk5VyRmt2NLA/PI4gi3rAXR4BoSxWdT+9CD27sw9rz0kEkScIyTOr3NtP/2hXSs0nKhTKyqhBrS9B2vBNFVwnd8TpD1UGe+Kef2vyF3mN6MvvFb3Lqx6cRvAkeSwSI1IQol0xUTaa2Kbb5Wvdgs2xYVWB9JizmWVtTFETinoq8h6qqfPrTT3BjYJie7jYsy+bS5evs379rXcnSxcXlw2M7AVnRcZyiIAgIgqA5jtMvCMImqoYuLi6PglgsgmGayLJM8CFNtT1MbNtmpm+GUr5Ew+6GTZvmBUGg81gHZtnk3N+8gy/mIz2XwjYsRE3EG/FV9MjODlPVmqDz2V4WB2bIziUxciXyixkW+idZvDGN7FHY8/VP0bi/Fdu0aDnRtdrEnuiuo5wvISkStXuakdSNchi30QM6B792DKhk6DLzKRRd5eYbfQRrwkxeGqOYKdL72f0bJC3uyT2mJ2tbq4n+5gtIsrSqxXboyR0bTl9aSLG0sEJdY9Wq7MjdIq6bZcMEwbMuE3a/KcWGxloaGtdKz03NruaXi8svk+0EZJOCIISBbwOvCYKwAkw/mm25uLjcTc+ODuLxKLIiE4lswz/nQyI5lWTw9OBqpqvj2EaLodvIqkzToTZmrk3SeKAF+ZaCv21a5OaSVLUmsG0bQRRI9NSRmV5Gj/jwVYfo+867rAzNIMgiqfF55i6P4dgODce6iHVWes0Uj0r9vhamzw8ze2mU2v1tq6XHe+HYNktDs+QWM6xMLCHKAlNXJmh/rJtSuoBtWvcOyLYxPak9YLqzVCzzk++dxjBMwpFxPvflk5uKuN7dF3Y7G3ZnJszFxeVXh+14WX7x1v/+sSAIrwMh4AePZFcuLi4bEARhgx7Uh4lt25hFE9WrUswUWRpbBAHmBuYIJPxEm+OAgGVaq71im7EyOs/S4AzxzloOfGV9T9rspVGW+sZZHJyl8/n9eCN+RFmi9yvHoZKdJ9pWhWNZKLoCDtiWhaTIlDKFdWst9E2SHFvANi28iSDR1s1lFEqZAjOXx7Atm7n+abKzSfLzKWr2NFHdWUe0JUHT4bbVoHGTG/NAcdftTE/ato1hGSxRwFOqNM7fS8R1q9kwFxeXjz7baerXgFeAljvO2wf864e/LReXTw7JZJqrVwaoqorS1b25FdF2KZcM0ss5QremDz8otmVz7SfXSM6kaOhtYGViiUKywEz/FA29jczfzFHVXs2ez/Rilk2ijdFN17HKJuOn+lG8GmNv9xOoi63LXOUX01ilMonOGjCt1UBGEEXMkkFmchErmydUG6L++A6CdTGMQgmrZBLvXiu5OY5DdnaFuWtjBGojqJ57TwROXRghNblEKVukmCpQzhWo7q7DyJdoOdpJ17O9yPe7h1sQd90Oiqbwv/DnFJRhvMV2vmA9RXukCo/ZRkEeXifi6mbDXFw+Pmznk/ofgRRwDtjoUuvi4vK++MXPz7C0lKTv+k3i8SjR2Ebdp+1g2zZvfv8iS/Mp4jVhnnzpAKIokksVmB5ZIFYbJlq9PT3nYrZIcjqJPxFgpm8a1aMiiALekJdyrown5EEPetDukr2wLZvcXBLZo+KJ+MnOLFFMZjCKZfzVYURpfVan4VgXiwOTWEWDxK6G1RLhcv8EcxeHWL4xSdWBDoxsAV8sgKTKNBzd2MpaTObILawg2hbp4Rnyiyn8NZvfVy2gk5lNkltI0fHsXhI99WTmkpRzJbILaeb7p6jbszZAYVsmYmF52+Ku92Izg++CNIwg2OSlSjZMWC7xe6Wvs1TM8ZXnnnYNvl1cPoZsJyBrcBznM49sJy4un1A8Xg/lmQVUVUHexPZmu5iGxcpihlDUz8p8GtuyEUWR9358lXyqyKA4zlNfP4Lu3bpshh7QibcmWBxdoPVQK7HGKAvDi+z69C5kVaGYyjL93k0irVWE7/BbnLs8wsLVMQRZovH4DiZP9eEJ6MgejbandlNK5pC9GvItGQo95OPIN16knC2i3TERuXxzCi3kQ5QlcrMrBOrjZCYXMYtlYj2NyHdlwGRdRRQlzEKJcGstK4MzaEEPheUs0Y5aVP/a2tW7mhh/Z4Ca3hayMyvsfuUY2cU0N39yFcdxVkuBlmFx4/VrNJz/BoFSH0LTsQ9cntyKwXdnrIbrM0NIokiCAJZlbXn998vy8grzc4vU1dcQDLoirS4uHwbb+fQ/JQhCr+M4Vx7ZblxcPoF86uRh2toaCYUCBIMffHpS1RQOfKqboWtTHDjZsxrkJecyLE0nidWtzxQV0gUmr0zii/qo7andtBdJFEV2PNlDZq6GzPQypVSOYETH49eQPRrDr11AUmQy0yv4ayKr/ValZA4jX8IBrLKBcGstfyLESv8Ey/0TKD6dlk8fXAuqBIFyMoORyeFvSCAIArEdTcyeHaDuWA+JPW2YxRJTv7gCoohdNqk92rNuv4pHpfsLR9GCHoxciVBzgvE3+xAEKCxmaH127+qxkiIR76wlO5tEj/goZQpMnxtBUiWirVUkuiuDAvlkjtzkKIFiHwIWzvhpJk5foOHorenLLZQnb2fDmnxRsqkiC6Tva/B9O2vWvaMVwzAqjgedD9eP824Mw+DVV39MIV8gFAryta+/7GbkXFw+BLYTkD0O/LYgCCNUSpa3vSz3PJKdubh8QtB1jfaOh/sl29ZTT1vPWk9VNplHAjy6QiCgr8uODb4zSGYhw+zALIG4n0Bi83KmZViMvnEN27SYvzpOorsOPeyj87OH0AIe8ktpjHSO0R+dpWpfO8GmKlSvQn52CdWn44n4aH5mL6VkvhIgvX4RSVFYujwk29XVAAAgAElEQVSMrMk0PLkPWVdJDU4y994NEKD+5F4CjVVEOuoItVQjSCKCIJBfSIEg4Fg2orr59KQe8tHz8nEc26acLbLYP4lZMJi/NoZlmjQ/sRvFoyEIAm1P7qawkkUPebn4N28z/u5NUpPLtJ3swe8pkti3B0/QixqrJzndTcjoZ95opf+9RfyNyXv2zN3JndkwtdTCv3K+QV1D4r4G37dRFJn9B3du5a3fFrZt8+YvzjA8PMbxE4fo7m7Htm0sw0TTNMpl46Ff08XFZXO2E5C98Mh24eLyMcEwDF7/6SkWFpf5zAtPEovd3wrHtm0unRtgaSHJwaM7icS219u1VSRJxOvTUFWZSM36a2h+jZWpZSRZQrpP87oggCiJGMUyjm0jezXMYhkcaHu6l+TYArOnKwblM+/2E2yqwsgWkB0bSiXMfIlgczX+6so9qd7fwY2/eR0jmyM9MsXA5Dz+hjhaLISZzeE4FRmM24h3OAh4EyGant6HWSwTqI9TSuWYPnUVSZapfWw3yh3m4oIoogW9tD6zj4m3rzN/eZjZszeZfneAA//sefw1USRFwl9VkRJxLAuzaGCUyuzJ/hvC3xmCi8dwvvYPeCM+LsX+NcmRURbnHap9Bopn8+nLzXrDbmfDytooBdlmaT7NW7/5twyvzG9q8P2oSSbT9PffJBaL8r3v/oRTb79HdXWCZ547yeTkDF1d7W52zMXlQ2I7shdjgiDsBW5LU7/pOM6lR7MtF5dfTW4OjPLNb34Xx7ZJJzN845//5n2PX5hb4fK5AXSPytnT13jus8fveazjOOQzRXSvumo1tFU8AZ1Dn9tDLpkn3rA+SGw/0k60Pooe0O9rji3KEm3P7CE7l6TpWDeFpTTh1urKlKQiEW2rJj00RTGZJdhUKd+Jt3wfEYUNpVA94kfzqxRsi+WrIyT2tlNO5XBEASNXRJBERHHtHMdxyM8sYRsmvoYqfDVrWanUyBjlbAFMm9z0IuGOjSKnvqoQoeY4VqmMUShiFsvMXhim44Xoums0n+hh5vI4iXqFkDOIgA0TZ5i7dI3R9+aY7JvGKJqoXo19n99HIB7Atm1GL0+RTxVo29+E6lPu2xumm600+CPseqwNRZbXZcPuR7FYYnFxhXg8gq5/cC/JQMBHPB5lYWGJxcUlvF6difFJ9h/YzWOPHfnA67u4uGyd7che/CHwnwP/cOuh/yAIwr9zHOd/eyQ7c3H5FUQQBGzLRpYlDNPe9BjDMBm5OYmqKkTiIVRNoVAoE43fX+z16jtDjFydIlId5MRn92w7KAslAoQSGxu0JUUi3rJROsEqlREkaV1myhP24QnfNuauIzs+y8LZPkKdjaghP03P7MfIFtBClWP89XEK8yuIsoS6SbCnR/zEdrVilw0kXSE7MYtfqMZXG0WgUiZ1HIfUjXGWr49QXEwh+zzED3QhaSq5yQXC3Y14q0Ks9I8jyBJa5N5N6FW9bbS/eIiJt/sIN1fhr70VjN0Sdl0YLzF5bhDLNInv3kWutAN/+QZC41GKdoDZGxfJzqep3lFLTXcd4VtWSguTy7xx6gL1WgTHslF7g1vqDXsQdw4V2LbND773BkuLK0RjYV7+0nMfOHulKAqf/8LzXLvaz9TkNG+9eYajxw4QiXywSV8XF5fts52S5e8CRx3HyQEIgvBvqZiLuwGZi8sturpb+bVf/wJTk7O88OJTmx5z/dIwF8/eABye++wxXvzipyjkiySq71/enBiYJZwIsDKXppAt4Q9v33OwsJIlPblIsD6GJ7o+cHEch/JKhszEHEahRG58DtnnoeGpg0i6wsqVQUrJDNE9XWiRAEYmz8wvLmBm8mSGp2h84TiSR8NzR9k13NWIJx5G0hQU/3ofSUlTqXtiP/nZZfyNVSycuYasSjiGgbeuCi0SxN+QoLSSYebUFQpzyxSXUiQO7sBI51geG0bSVWZPXaXtiydpe+kYCCJGJs/KjXECjdXI3vVZJEmR6HrpGG3PHcAolNHDvnXCroFgL3bgv8MqmSTHlxh/4s/Y9Wwb+BJEp1ao3VFPvL0KXyxIx7FO/DE/pmXx0mv/jLx3CLXYzF/pf7rppCRs7A27F4Zh8rPX3mF+fpknnjpMU3MdlmWRXEkRDPlJrqQxTQtV/eDlREVREASB2roaovEoj3/qKB6P/oHXdXFx2R7bCcgE4M55a+vWYy4uLreQJIlPP3/yvsc4to0A2A7YtkMo7CcUfvB05Y7DrVw7PUxjVzXe4Pa/MG3LZuSnl7EMk6UbU3R/4diqKKtVLDP+/XeY+vk5bMtG0jWiu1pxbIfSShpRkUj2jyLpKsuXB6h94iCCLJIbn8FIZskMjSKYJfRElOonDyPemuwUBAH9Pn1xnngYNeClOLuEJAsIVAK16kM9mMUSQ3/zI7LDU2QnF9CiISRFJtzTSKijkfzcCuVUFkGRKS6n0aNBypk8Uz+/iOPYZKcXaXzqwKbXlXUVWVexTYuF986RGD+N4Fjo6Sv4agzCDTEirVWVoPXW9GSkPsKeL+ynmCuRi0NNdQ2CIDC0PEdeutUbpo9x9toN6tqq1mXDbl6ZZKR/mp59zbR01266pztZXFhmanKOYMjP5Ys3aGquQ1EUnnjqKNevDXLw0G7U+7ghbJfung5S6QyCILBrl2tR7OLyy2A7Adn/B5wRBOFbt35+Gfjzh78lF5ePD5ZlMT2+iKrJVNdVbI927mtH0RQ0XaGucU1EdHZskaHLUzR119DYtdHmp3VXPS0767ZkkWOVDVaGZ1F8OqE7rnFbI6u4nGbh3WuEupsoTMyydGmQzOwSju1g5otoYT9W0cDfUIUWC+EYJqKqYBdLaJFKf5bs0YnubKGwsEJ+bBol6KecTGPmi6ihrct3LJ+/Tm58tiJvsb8HvSqCEvCxcm2Y8kISLAvF78FXF8ffUkuorb4iCPvMQSZeew8zk2f6Z+do/MwxcMBx7Mo9sp0HXjszvczcQAaf3oO32I/QeJSer36G+M1ZklPLpKaS9P3wIu0nd6B6NaLN8XW9Yf/47P9N7vrSqoq+Wmym3hNhamCOaE2IlkCCt753kXdeu8quQ62cf7Ofxo5qpAeYlIfCQYKhAJl0lp271jxB29qbaGtv2vK93Sq6rnPy5L37F11cXB4922nq/zNBEN4AHqOSGfunjuNceGQ7c3H5GNB/eZRz7/QjiiLPff4I1XUxVFVh1972dcdZls35n/ajehQuvnGDqsbIpibUDwrGHNtGEEVmL42wdGMKgPZPH8BXFUKURJof72H8B6fID42QFIpkx2aQZAE9ESY1Mo2/sQrJo1F7Yg/R3nZEVa5cU1epf/YoZqGI4FiUF5dQ4zFqnz1GbnQac38Phak5/K0NKIEHl1Idy8LM5pH9XqySgaDIYNmoYT9qyI9tmHhr4yhhP+VMjupjuwnvakfSZKZeO40oy9Q+dQjV78ExLWzLxrEs1JCfuif2UVxKEWq9RybqDiNwWVNAFhmI/hEN+2tIHNxf8QztriOfzGOTYujmLKn5NI37WsjUSOt6w37y2ru0+BP8ifhfET9Ry8p7S1iGTW17JQieHplnZnwZy7AZvj7F/pM9DwzGALxenS986RlKxRL+gO+Bx7u4uPzqsy1ZcMdxzlGxTnJxcdkCxaKBJEtYloVRNu95nCgKBKI+VubS+EIe8qkC51+9hObX2P1UD+omwdndLF4fZ+7SCOHWahwABxAqvWFWqUxxbpFyOo+qiFiZDEtnrhDqaiKyt5tyKkvTCyeI7a80yxfGJkifP4+3vQ2tqhJcKAEv5soKK+9V/g4LHz+Ep66G0M42csNjqHotvs42hHs0mjvOWsZq8dR5SnOLaDUJogd3khkcpzS3yOi//0dknwe9KoYgyzR//iSyz4Oka4iyxOLZ64iKjF0sU05m8NXFKS0lie3pXA3kClPzFRHau/ZhlQySgxMEfva7KMuXKEf24PnGa/irI8xcWObad/sIXlmm/nAnVbua8NeG+IMfDXCjmKJ9zuCPrWH2vHRgXW9YR7SG7FIeX9DL3rZ2aO/AsR3kW6XgQNiHokh09Daw81ArPQdaHvg+3kZRZJSH4Nzg4uLyq8ED/7ULgvCW4ziPC4KQofIRv/oUFWHYRyOc5OLyMWDXvlYAdI9KbeO9TaAFQeDwczt579VLFDMFrr3eh2NBbjrJykyK6ra1suP0xREW+qeo3t1Eze618tX8lVE80QDJoRlanj+IGvSh+jR8VSGW3r1MbnQK27AQFBUtoOOpbUAyMih2hshje5AUkeLgTeR4gszFy4gendR750m8+Ok1+6BCgdsNcE6xCEB5fpHMxasIkohjWoT27d7w+ox0hqW3zyJIIpFD+yjNL6FGw5TmFpE1ldj+HQz8H3+NVSqRG5nE2Wnjqa2ivJzCUx1bXSfQ3kBhdgklFkLUVFbOXEGSJQoz80R2tJCdnCd1cwJBElF8XmJ718p9S9dGWD53lsjiRQTBRl2+TH5siFIqRylXZmxonsRyFtuyCdRGMMN+xuL/F17vGFP5ZmZXfp/DXm1db5hZMkktZAjG/GtTr3cMv8Zrwzz7lSPYlk047loQubi43JsHBmSO4zx+67/up4mLyzbRPRoHj/c8+ECgXDAo50oEYwFWZlZQPRqqruCLrJUAzZLB7OVRjEyevm+9Q7gxjn5LTiLSXsfSjUl81RE8ET+++NrfSuZKitLwIDhQ9/WXie3rIn3hCubUCubiPKXhIexMCgewBwfJD97ETibx7tgFjrPae+ZtacLKF7AtC3NlmezVLHIsgZnJUJqeRdBkgnt3bSitFiZmcMoGtmVRXlohuLuL7MAogV2dmLkckqkR6G5l/qen0avjqNFKwOWtq8I2LQRRwC4bKD4PjZ+rSCEa2TyiKGIbJpJWySAqPr2SGbMd1KB3XXlSkETSswapcgMhdZK81okSbyCxL8Qfnl/gZmMNbabK/6SryJqKJGaRvGMg2EjeMdoP1KLemtq8PSmpelQSTTHuRzDyyys55nJ53nrrDJIo8tjj7vSki8tHme3okP1bx3H+6wc95uLi8v7wBHQCUR/Z5RzdJzqp6ahCksV15UpJkZBkmZn+KXzxAMnBKWoOdgJQc7Cd+I4GJF2teCvegV4Vphj0IXl0BMsg1N2OkJxh9tSPMMZFhFIORAnR66U0OoI5PYZg21BswkqnkcMVXSpRUwnt7yU3MEC+rw9s8Pt8yH4PcmcrTrGElcki32VIrVXHyfQNUJqcQQ0HiD52hGB3G5m+QRZ+dgpEASUSJnFiD+H9u/DUViYbi7OLzL3+DnbZAEdA8mpUPXEEJehH8XupeeowRjqLt7aSQfRURWl47giObaMEvTh/8VmEyXeh8SixX/82+bkkI9f+CGNhmuju/bSoMmYizETD/4vXM8Z0vpn4U38BooA9UWJvpJcryavsCuxg98EP5hJn2zb5XAmfX9/SYMbD4MaNQUZHxrFth+rqBG3tLbzxxikAnnjiBD7f9qVTXFxcHg3baVB4Drg7+Hphk8dcXD723Lw+zsTwHDv3t1FTf/8MyVZRNJmDL+2lXDDQ/RWPRatsMv7GFUrJLPUnduJNhGh7ahcUckiqUskC3UIQBBTf5hkQT2Md5ak6EATUWEUM1ZybQgso2KUy1sJkpUdsPoek6ig+H2Y2i6h7EPW1NR3LpDBwg+L4OHapjKiqiLqOXlNF6t0zKOEwgrJRjkGLRwl0tiDiYKysUJyewdvaTGlxGUnTyE/NYCbTKKEgZjKNUF/R7coOTyCqKrnhSZRwANswKCfTKLdM2PVYCD22XlBXiwYxMjlmv/cD6sbPABZMnEEsJ2l67iCiT+VKHwQNg8zoLFKLH8mzlgkTpCxDb46TmUvzh9Lv0/C5dmqim5uubxXbtvn5j84xPbFAe3cDx5/4cCyAw6EQDhVD93A4xM2bw4yNTQAwMDDE/v29H8o+XFxcHsxWesi+AfwXQJsgCJfveCoAvP2oNubi8lEllylw7u1+fH6dt39yiVd+6+mHtrYkS3gCa01IhcUUmclFFJ/G4rVRmp7cS6A2StfLJ7BNC29VGKtQQFRVBGntvPLsFOWB68i19WgdO9AScWLPPgUCSLcCLDnoR/GqOLqMkohjJxfQGhqQfD6c7l4En4/gkRPrAjJjYYHizX4QJbSaBL6dvSjxGMXRUbRoBCuXozwzjd7aCra9bk9KLApDowiCgOyvBFTB3d2kLlwj0NlKeSmJ4zjId0hm+FrqWX7vMloiSnZwFElVcIy9m9+8O8qTxcUkRtlDydeDlq/IWeBLYNk2r/T/9+TlYfRMMz8J/T/oBZUdcjs3zCG6xDYSvjhpcwlJFnEch6ga+cAZrWKhzPTEAlU1EUZuTnHk8V1I0vacFt4Pbe3NvBL8HIIgEI9HcXAQbslHRqP3FyJ2cXH5cNlKhuyvgR8A/yPw39zxeMZxnOVHsisXl48wqqbg9etk04X7Nuq/X5JD0yxcHibYXE24s75i4l0o4d+51sB/Ww0/f+MGhYF+5FCYwPETiLeyU8Ur5xE0jeL1CwhWEaWuBSkYXXcdva0Lp5BBEEXUrj2URgYgn0fr2onetbExHyolS0GSwLbQ6+pQ4pXsoOjzUpqZQpIVCjeuU56fxZxfQG1uQqurRw6F0etrCfS0Y5dKiJqCXSqhRkIknj4BgJFK49gOamQt4+VtqEGvipGfmEb2KAiyjJUrrD5vpDMUZxfQq2Io3/o1mDgDjUfRX/kmss/DdNsfU+wK0LPzCOKqiOswgmBT1MYYzSyjvDHLf2v+Pk69Tve+fWgBL22f6mZhcJZAVRAtsN5h4P3g8Wp07WxmsH+C3oOdHygYs22b2Zl5vD4v4fCDZ6oSibUMblNTA1/92hcANyBzcfmoIdw5iv6rxqFDh5yzZ8/+srfh8jFmbGiG6fFFunc3E02sffnlc0VSK1niVWEUde3vmmKuxNSNObwhndr2Sh9UIV1g+MwQmk+j9XDbqjr+nSxeG2X5xiTRniaWr4+i+HVKKznaPncUUVWwSgay5FCem0OORFAilS/TlZ++hiArWOkUwcOHEEUbMZygcP0y5elx7JGziLKNFK7C98V/gaiuWQkZs8NYEwNIjT0oNS1ARR9MeECwYKaSOOUyUiSKvbIIigqqzvJ3voWVTqHEEwiySnl+nuLEGLLfj2/PPry7e8m8dxYjm8XKZtESVQSPHUWvv7+VkLG8gpHLkxuZwi6W8NRVoSWiqPEocz/+BeVkGrG0TP34v0KwTRxRRviXfRhqhMf+/VfJS8OrBt+iIHD8L768Klvxgyf+d8Zfv4pVNqg91EHdkUerUn/bm3Lw5jjXrwyxY1crnd0t21rj9OnzXLxwDVVV+NIrL24pKHNxcfloIAjCOcdxDm323Haa+v8S+EPHcZK3fo4Af+o4zu88nG26uHy0yGUKnPrZFTRNZm5mmZf/yROrz3l9Ot5N+rUGzgwzP7KI7Th4AzqhqiCTVyZJz6YwyiaR+gix5vVZNbNksHB5BD0aYOHSMMHGOJmJefRIAFlXERUZWVNYef11zEwGUZYJfepxzLF+hOQE5WwRrWMHxs13wSgiBmN49j+D0tRGbvYigihhJedxcklQKw4A1vwwxpv/AQcRa/g0whO/gVzTAYKAMdkPpQJyYw+CujE7JIfCOI5D4dK7lAb7EH1BfEdPotVWUzYLCIKJoPkxV1aQdA0EESudxslXMltOJotdLJDr68NMp4i/9DnU+OaZxvLSMstvngLbIbBnF2Y2T67/JrkbDtFDnViFEvnBERzTJK+3UjBG8OvtOGmbwdzQajbsXgbfRr5EMZWjnC2QW8q+79+VrSIIAoZhcuoXFwgEfLzz1iWaW+u3ZYO0tLiCR9coFEsU8gU3IHNx+Ziwnab+PbeDMQDHcVYEQdj/CPbk4vKRQFYkVE2mUChTXVsp9xllk4FzY1imTfeh5g1q+pIkUkgXyMykWBhZIFQVxBfxMWdYiJJIenye0vwKid3NKLfOlRQJX3WE7NwyvlgQj1JCrdEJH9q56gkJYGVSGBPDCJpG4VSK8sAl5PpmlOIoailQKQUG4jj5DIgiSjSO5/DzlPtOI0SC2PPXwEhjL45ijl3CLqSwZoaQ2w9h3XwXKdGCnZrHGDhbkY4wDZTuI5veG2N6jNzbP8KcnUBu7sFbPork8SDH4gi2g//oMby795C7fAlzeRG9rQ29rRXB58NYWiJz9hyGZSH5/VipNNwjILOLJRzLRpRkykvLFIbHMFNJqtP/DvXqTWpqDlCK/jqWJPGEXUXJa6AXq/n+5DTNiSo8pWYK2hgeo3VTg28B8NdEkb0qVqG05d8N07AwyyaCKHDl1BAAvSfaN3VXuBtJEonFwszPL5FIRJHl7ZUvjx0/wJnT54nHY1TXJB58gouLy68E2wnIREEQIo7jrAAIghDd5vkuLh8JpqfmeOfti9TWVXHsxF7EeyjLa7rKsy8dIbmcpbquEpDNjCwwdGkCURTRvQpdB1vWndN5tI3Ji2PUtMWY65umYWc9tTtq8cf95OeTzJ6/iShJIArUHayIlgqiSMPJXoxskfL8LNmrfQiCQGl6BqW7A8cog2OjeoBIEMHM4pRyiMEo5sRNlEQcp5wFMwu2F3XPc6tN6OruxxFjcez+H2AvjWFe/jZCpBEnNYmYaAXHQQglcAQbY+xCReoCGywHVA3bNLHnRhADUcTgWi+SnUnhlPIIqgblPFIojLd3P6XJMSR/EDkcQQ5H0Ovr184pFhAdA29LE972NjIXLiAIImrdvUuWWnUV/u5OrFIJp1RE1GREM41cuMmS4BCdu0DN1/6Ui30jFJNTCIJNQR9nLJ9if30v3z3wJ4wk5zlw/Pim77Pq91B3pJP05BKJXVvziCwVypz+7iVyqSK+qJflhQwAobifzr2NDzxfFEWefeE4K8tpItHgPX//bpPL5VeDN7/fRywW4cXPPrOlvbq4uPzqsJ2A6k+BU4Ig/N2tn78C/MnD35KLy6PlzKlL2LZN37VBOruaSVStNbuPD80yfnOOzt5GquujhCJ+QpG1qT/dq2GVTTKpApu1X6q6Qv2OWpKTK8i6gpkvIokQrAoiOhaiKOLYNrK+lklxHAcBBy3swykGEITKdJ/k92Hn0hTP/QzHNJC8flQlA9YSYjmHqBWQn3oJChms0dMorTsRnNLqVKRjlbHGf4Ez8GNIzgIC5LI4Rg4xWIe093lEfxxr4A2smSuYE+8i+GsQFC9iwx7kpl0U3/47jP7TIKt4X/wGck3FeUBp6UKpb8HJ51DbehA0HUGU8HTuWHc/HNvGMcqImk7mrdcpXL+Ag0D0S/+E8GOPPfC9EmSJwM5uyC+SHV2kPDuHWNfOrylNDGgmXWWZv27fxdH2XXj/8i/JS8N4ys3UzOew0hmqD/dyp017KZVl/vwAit9DYl8nVslAj/qJdGxd1iKbzJNN5vGHvGTuKHP6Q1tv/tc0lZraBw+E2LbN97/7U1ZWUgRDQb7y1c9+KNOZLi4uHz7bMRf/K0EQzgJPU8n0f8lxnOuPbGcuLo+IuoZqrl4ewO/34r/DCLuQL3HmZ9fweDXe+tFFvvjbT27IXiQaIvi8CqVUnqkrk7Tv/f/Ze88gybLzTO8557r0prKyvPfte6btzGAsxmHgzYJwXJAigxKDG2Lo3+6v3Y2QIiRFSCtSseKSoriLAKkVwQ2CAIGBHYz3PdN22pf3Pit9XnOOfmShexrdM9MNdHPJQT5/qirzmpOZN/J+9Zn37b7iW/hzxh7cQX5li+raFlPPHEdaFoOP30WsNc3AY3ehPJ/4dsZNBwGFY8fwVlYI79iBaUM4XMXs6McOa9yJUwTLE+jSGrKlGzMukS096IUTmCMPIGQF88in8JMhdG4OnBiY28FeYR69dh5qG5DIQG4aGRFg+oju3ci1E+hVDbUSwomhc4sEa5NYw/dBfh6Uj788BaZFsHCZys++idHWjzVwN2bvTlKf/W2CfA6ZSCLk9UGC9n1Krz6DNz9FaOd+3NlJ/PU1/M11Nr/9VzR97jexOz8gK6UUwX/6OJsLx2jqOID1sf/IeHmLsy/Wm+PP2prxzRVGsx288lv/heMvPEf69CT+5ia8qxTobhURhmTib59n/cwkhmOjPMXG7DrKU7QfHCI71nVT10+yOU5zR5rcSp4Dj+4kFK0PSqRbbn8vl1KKYqlMJBqhVCoTBEEjIGvQ4EPKrZYcF4E3gBDQLIR4QGv9wu1fVoMGd45DR/YwONRDNBa+xkrGtAzC0RATp+ao5qucGRln70eGr9lXa01+KU9+PkdhKc++j46R6khf9TEETMck2ZJg/e2L28beHrVCBScZJdqSRHveFSuioFTCW17CSKepXDiPbZQwwg7BxDHcVRPluwQrlxCRKGLpWUQ0g5ZDiGgG3DKieRAd1JAt3ahUK0bTEMLcnqS04wgrgk50IRXolh2wNYG2DERlGW1FQRiQ6UKG4ojWUWQph1YKGWsGwyZ05NNUn/kGsrkb5ZaR+VX8yZMY2U5kNIXZ3Ioq56m89VMAnH0PICOJuoDsiVco/vA/E3g+tfNvE33iy7jz0wip0eUi5ZOvY3V0v29myi8s8zvuOCe7WtlXneD/icBY6wjR5+sG3xGvj+6KV3/fDYPBcIpiNIy0LVS5AqkkxckFVt84jVesUFrKI0wD5fr4rkfg+pghm8paHoDKVpnlS3W5i0zPjTNYpmVw5ON7UUp9YLnxV8U0TR577AHOn7/MyOgAtv3BPWq/KlprTp9+h+XlZQ4cuIumpqYP3qlBgwa/MrcyZfm7wB8CXcAJ4CjwKvWMWYMG/2SQUtKcrctGVMs1Al8RTYSxLJP7n9zHxkyOnoODTL0zz9jBPuyQdc2+0ahF0RAICae++zYtAy2MPbbnGjmLhZdOUZ5ZYuXEJZp29uDEDqK1pnDiJNXpOUK9XcPIfM8AACAASURBVMT378OIRjGzWby1NUJDQ+izPyKYuICwDJQ9hoykcXbcBfPPImrrCL+CaL4PY/hrsDUOiQzBO38MG2cAhep6HNn3eYQZQUSaMXZ8ASOooUNN6NmXCS5/FyM9BNICHNAKGZRBFxCGiTj4BaiVAQgmXkKG00S/8q/xLryGP3ECEYojQhGwQmivhrAcgpU5dHV7n5U5ZN9OgvVl/KUpgmIeVasg/CpCVWn++h9QeOa7yHAYI3q9Pa7ve0zMn2OoaxfSMBivKU6EHJSAEyGHyxWfIb3Fi1/6S04980P6DIfCiy9RTpwm8AOqi2t1K6WBviuOAeXldbbG59k4PYHd1kRyqI/We3bRtGsALS7gVV1advcCcOmFC5S3yiycXeCuzxwgnHjvMuQvBmMLM6vUKi5dA61Y1u1rr+3qbqeru/22He+DWFtb48UXX8JxHPL5PJ///Gf/wc7doMGvM7fyrfGHwCHgNa31w0KIMeDf3pllNWhw59naKPL8d9/Gc30OPbyTnuE2kk0xdh8ZZO7iMh3bOmJby1tE01FM26S4VsA2DUIhA7dQJdObobiap1aqEknVTaS11rhbJQQB8ZYEqZY47mYeK+JQnZmtK9vPzBHbtRNp2ySOHEXl1/AvPItXncdM2KA8DFlCdt+HTKdQxgp6dh20i9TLkDsOhcuwNA+FSSjNgzDQlSV0cRKcDDjNCKdeRhMAvQ8gEh3owjyyeRdsPxec+msIpdHVHFJ5iHgz/vmfovOLaP8SMhTHcCRydC+yeRiiafyLr6A3FzE6xpDNvTAlQQhkut6xJcIRhGlgd3Xir69hdQ8j7RBOdy/mZ7+Gv76K2Xpt35bve3zlLw5x0a73hv3lV15guLmdkBqmLMcJqUG6VlYpzLwJAjoWl/CEgV9xCUVjFE6cILZnH0YkTPLuvTjbgqiJwS6m/u557HQC07TI7Oqj5e5RVs/OkptbJ9wUw9o2DTcck8ALMEyJkDevzr+8sMFzT7+N1po9W2X2Hh7+4J3+kRIKhbBtm0qlQl/fzQ06NGjQ4FfnVgKyqta6KoRACOForc8LIe6simKDBneQ/GaJWsXDCdssz23QM1yXRbjroVF2HO7HDpmc+P4pCmtFEi0J9j+1B2lIwskwXbs6scIWtXyFTH+W0LsyKUII2u7bzfJr72BZAjMexUknEJZFqLeX6vQMod4e5Hb5SUiJ3pgGHSBjCfTaRYxIBUObiIiHmP7PGMFZgkwG0ruR0Wa0DqC2BJUpUBsgNFgmQlfR899FmzFEYgzR/tg1r1mmhyBdn+7UWkNhGpq6Ib+K6LjrSpAmQnH0xhQYNjq3gFqfBAQ63oxaPIP39g+QXbtg4Tx2/37C936ivp9dLwEb8TRmNEJobA/Kc7FHD+H076o/l0xjJNO45QKXps4z3F1Xrp+YP8dF2ycQgou2z9kffYOdh57iuSf+N6bdGiO9IxRf+CkyGqXwygtoLdCBJnrvAxSOnUQEmsrUFOn77yPSfzWQCGXTDPzGYyy9cBw7kyR7sD54sHZpkdJmiZk3xpEhm6GH95DqamJjPkfP3h5CsRv7gt4IFSjQILd1xt4Pz/N5+9g71KouBw7vJhr91Z0AbifxeJzPf/4zbG3l6erq/OAdGjRocFu4lYBsTgiRAv4O+IkQYhNYuDPLatDgztPS2URrdxPlQpWh3VflCoQQhKMOXs1nc2GT/NIWa1Or7H5kB5F0lF2P76GSL5PpacZ0zBv2QEVbmxj49P34hRJaK6xEvTyX2L+X2K4dVyyOrhCJoldOYjgx5JFPwdY4wglvZ7/mwApjJDsQXR9FpHaAkOjSJXBSiNoymDGwUkAVCuNgN4GdvG5dADqoQnUVVd2C+efq0hdt92C0Hriyjew+gEh2IOwIqlaGlUvorUWCKRdVrSJa+gnmziL3PoFanUA29yMMc/v4HtqtoIXATDajA4/Q0B6Ec3WAwi3m+Mj/+5tU7BnCbg/PP/W/M9A6zEjN4KITMFI16O/upfTGzzCiCbosG9p7CO3aR/XcaYxEmqBaBRXgdHZSmZzBSKcJdbSROnIIgPL8MkvPvUko20TrAwdp2jNEYW6Nwvwayf52MsNtjP/sDMmuJjan1ylvlZk8Nokdc5g5PUvnnq6b7hFr7Wzi0IM7qVVchne9v/TF7PQCp46fx7RMQmGHw0f/YYzGb4WmpqZG71iDBv/A3FRAJup3nP9+Wxj23wghngWSwA/v5OIaNLiTOCGLBz7x3trGlmMSS0ZYHV8h2RynsJon09tMsi1Jsu3Gwc7P0Urhzk6R//Hf4i9NE9q1n8Sjn8FIZK4PxgBRmcPs7APlIbMjaFEBaUPbUShfhMoiJIfQ0Qxq9e8hKCGadoBbhOwRtJlCSAtybwIK3AK0PHj9urRGz/0AqsvgVtFKw9YkurKI0j6y7Wh9PYaJSNcDCyOaQYw8iH/2exCJIbYWEIlujLZHoLxMcGkZ7ZYxu/eh/RreyR+jyjnMpl60EcFo7iAwHcZXFxjOtCGlZGJxkpo9BQJq9hTnnv9bdgzt509CX2Jy9TJdxYDAPofVMwxConwffB8724qdbSW8cx+5Z3+Cv7FO9eIF0Ar8ABmpB306UMx++2dUltbIX5giMdwHoRBzL55GA17FpWXfAGOfOUxudp2mvix2xMaJhKgUKsSbY7dkKC6lZHjnB2uQAYQjIaQh8f2AeCJ60+do0KDBh5ubCsi01loI8XfAge2/n78TixFCPAn8EWAAf661/p/vxHkaNLhZevf3EFRdDEPi3EIJq3rxLKXXn6N2+jUkJarPnMXUBaJP/BYylrpuexFqAmMCbdroYAVahxGpu6B4Dp3qQIc0JDrQudegcAYtTKhOI6JDCHcLoTPI9P1o8150dQmZ2I2wkmgdoAvnIKgiErvRfhmdPw/uJiAQ2cfQ1VVE9m7YOIluPYwQ12eFRKINEWuuS2R0jKFnj6HOnoJQM7LnXrRbxr/8Etp3UcV1ZLwZyhs4hx7ADwLu+8Y/u+If+fLX/4bhTDP7qzVOhmz2VV36ywvULmtYnqR7ZRmjawhdXAO/G5nMYveNIGNXZSWs5iyxuw9Reuc0Oqi7IFgtbdhNaYqTs7irG2CI7eY5gRkPU94osXJ6GoBkXxtCCAYf3IlbdrEjNkJK9j61h9J6iXg2fiUg82oetbJHNBW+pSDtvWjvaOGTn3kE3w9o72go7Tdo0KDOrZQsXxNCHNJav3knFiKEMIB/DzwGzAFvCiG+29A6a3Az+H6AUuqWPAFvhraxusq+aZuEk5FrnlOeR/HSJNK2iPb3XGPKHeQ3kSELEVTALWCkUqjcKtqtANcHZGR3IiJpqC0jyuehpsFKoWtL6OokeBtQuQDCRhGg3RmkEUUziC6PI+JJ9MaLoKsAaL+nHpCVplHzfwOqBqUJpF/Z7jsLINqHyIwihEbnLqCjHQivcMNSp7BCmDs/ga7kYPksQW6mfgy/AI5NMP4sVIuQ7EaEm9HVAsbQEQDGN5YpyfErnpKX1xYYa+niL6x+NmePkRAZKl0Jgs05hGNhNLUgrBB4VXSthMopzLZH668rCAjyOUQ4gru4QPX8WcymDOlHHkfaIXBCrL3wBsIyiXc2k943RrS7jVBzmsJSnnhPC8r3sbZ9SIW8NtB2Ig5O5KoBu1v1eOU7JyhtVRi6q4fRQ30feM1ceGeKxbk19tw9RCZ7g88aaGnN3PDxBg0a/PpyKwHZw8B/K4SYBkrU//fUWuvb1QBxGListZ4AEEL8f8CngUZA1uB9yeeK/OT7r+O5Ho987DAtbbev90UIQTxbz8xsXZ5j68I0icEu4v1tzH/r76mMTxPq7USGHCJddQsg7dUwjRru7Bs4g50IvwUjnsbZ+xFkqj65qYMqKA9hxdG1dfTCfwHloxMHENQtALQArbfQQoGUCCuJjB8EK4zy+9DF45B/BWHE0flX0WYWQQ0RGQV/E+gGfwtqy+BuQG0JFR5CRLsgqCCi3Qg7AV2PolUeUV1Bz3wH+r+IMEJoraC6BmYUYUURTgzhxECa+KYF1XWIRAEfdIAuLqEiWWZ7xhju2XlFwHQ400bU7aZszxJxuxmKREAIjN/+Aampt3DHz2BUS2i/Ckpjj+zH3nk/lZf/HvfiSbRXRVeriFgK7Xr17KDlUFvNYba0IoREhCJ4pTJWOIIwDFTNI9LTTtOR/Vc+y1h7mmhLCt/zCbfcOFD6RcqFKqWtMrFUhKXJ1Q8MyHIbBY698g5OyOGV507yyX92fdm4QYMGDW7EBwZkQohvaq1/E/gz4Nt3cC2dwOy7/p4DjtxgPb8H/B5AT09jJLsBrCxvUi5WcEI20+OLtzUg+znKD1g/fgE7EWPj9GWskCQoldEC3LUN5LZSvSptUXvze7iXj2N29KCLm1i9u3GOfApjOxhT1RX01LfqWmAt96Irk7B1AjAg3A3Zj6Iq59D+PAAidQC0j0zsJ9BliPTDxo/RdgJUER3dDZULyGgXqjyFaaYQ4YH6vtF+iI1C4TQk7wZvC1IHEPERhJNFVxah+BKU58BOg18D5aG9Imr9OCJ3GawI9H8eYdUtpGSiDePuL6PHfwhSgptDFCbwTclHp56jNPefrpQmTcNAAi8VptkqzZO0q0hz+2tHSmTrMHJhCpVbAreIzm8QGJIglcUeuRtVyKM8l9qlEzh77qM2cZ7Q6F0or4a/lUOVSohwlNwrr4FhYbdmaX7oKEGxjNNybRYqnEnQcc8OLj/7DpMvXWD4UYdo8/VaaO8m3hSlc6SN9flNdt039IHXiROysB2bcrlKtvXmgr4GDRo0gJvLkB0QQvQCvw18g+2ujDvAjY57nVug1vrPqAeHHDx48AZugg1+3WhtayKWiOC5Pv3D1xtV+65POV8lnHDwawFO1L4lhfX8+By5d8bxK1W01oQySax0EstwUX6O+J7dOO31YMu7/Cbe5TcgUAgS2HsfxhzehzQqaOWhtUJf+D8hdwod6QV3FpwwqBJYGYSdRhsCdBmhTXA6kFYzItSLV34dVAmNAekHEcVjaH8dVbuAEC6q+g4y1IdoegS0R1A+jzDTyJ7fQq89B0ERkX0YYWfRhVMoPwebp+uBlmmirRQkWtDVNcTiT9CrJ9CJEaQHuHmwrnp6GuEortBMejAQ8jF67mHq8uuUzKkrpclLJ77HSHMbIpzELMzSjEZXl/HOfB/r4JcRQiCjKZzDn4Q3v4fR3E3l1W8jfJdgaYLwQ18lqJaovfkcqlzEvXwKe/guCIVx2ofR8Vb89VUwTHwXQIAGO5WA1I1tjEobRaRloAJFYTn3gQGZYUj2P3RV3aeUr+CELcz3EH4NR0I8+el7yW+VyLalb/oaa9CgQYObCcj+A/VpygHgLa4NnPT247eDOeDdY0pdNGQ1GtwE8WSUT//GQyilMc1rff5UoDj2gzNsreQpbZZIZqK09GfZ/fDYTTVoa6XYOH4eOxnHqlRp+cg+wtk0QX4To7pGtD2JWcuDVqhSDl3ZQiay6PIWoQe+iNnajR7/FsqvIFIj6HgHVGfRqoTeegXkEMIeheQ+SB5Gh5PgTqJR9ZJmOEtg2OCewXcvooM8iCRmeAARuxvtzkGwiKpNI4w4gk0IcqjyeZRfF5I1Uo8j2z8D2kNIm2Dpu6ADqC6ANOpZs3B7fXKzeBZdvASASA6gAx+aD0D4qkW32jyPt/QqD82NU7IXiK708fzuJxjKtBGd7qRszxNxOxnIT6DcFYhkkZEWZHmZQIbxTn4f2XsEs2WQILeEXp1Atg2glidwRo6inTBGcxcyniZ65Enci2cwQzF0rUL08EOYTfXg1+518TfWMeIJvGIJfytP+AN0s5r6WtiYWEEYglT3B5t7v5vzb09x7s1JYskID3zmbpzQjfsV48ko8eTtmZ5USjE7Mw9C0NPT+UsPFZRKJU6ffodkMsHY2OhtGU5o0KDB7eUDAzKt9R8DfyyE+BOt9e/fwbW8CQwLIfqBeeBLwFfu4PkafIiQUvLupFet4mKYBoEXkF8rEk2EGX9jkp4d+1idWiM3v8nSmVnibUk69/Ved4PSum5eLaTEScXInziN09ZMuKUJaRr45QICja6UEAb4F15Erc8gNJidA8hUB2b7IHh5VHUNzDCU5hGpAXRsEOGuouM70QYodx6j41FkfAy/9DJaKZR0UXoVypOAjZDNKL2OkA6IIggHzBrSGEOVZsGMoIVGWZ1AAAi0uwj+GoGRxEw+jJDbQrR2Bl2eRAsbkiNgJBBmGJZ+BEa07rPptIJWiEgnujiFv/YGE3QznGqC6R8wuTpByV6oZ8PMKaY6H2K4I8fL575LbnmBVNRDaRekiUh14d39+wRvfwuNgVAeav40OtODf+7Zup+mDnCOfAEAld9ARhOIbZN0s60Xf+oCxNJsPfMDnIFRoncfQdo2dlvdUsiIRqG15X2vEd/1mX17EiUEg/eNXSPmezPMj68ST0Uo5MrMXl4i1Rynue32liXz+UK9bzFez0ZeujTBMz99Ea01TzzxMEPD/b/UcV977XUuXLiEUopkMkFHx/WZ5AYNGvzX5aab+u9wMIbW2hdC/AvgR9RlL/5Ca/3OnTxng38YisUiCwvLZLMZ0uk731ezNLnKyZ9dIBS1OfzxvQwf7GXu/BJ3PbmLwnqR9sEWjn3zRdxShVAiTKItSeJd5aX1ExfInZ0gvXuIpr3DOLYm3tOMkAJ3fgYrncJIZQgPj6JKm9jNJv7cGYzmPnRpA+fgpxFOPUPiz78EGy9DbQXdNAphCb1fhfQOKBxDeVMQbkGpJYTqRbmzKFVCSZAyhgrW0SKMIdMIGQGZBLVJ4J1DGCkMK4uwsggzg5AhjNBehNmMiCUJ3EmE0wXUQG3rmgEidZjASKAX/hRyP4HIDmTn7yJCLeBXkNkHwcnC0o/R43+Oj80DJ85RMmeJqkFeOPQxBmWRqNtRz5B53QyuvYBoO4zML9CsfHRhCTn6BCLZiYhlkc39ePEswYWfobVAhOIgJMIMoasFRChOsDaP9iqYLX0I+2qwFHvo07iz42z+4Duo1YtUJ8axO7qx229NRb6wlGNjeg0rYrNwepbhh3be0v5jB3t5+7kLOFGbYy+cQxqSex7dTfdg2y0d572YmZ7nxz96HiEln/jER2lty1Kr1oD6cEnNdX/pY1uWRRAEGIa8MmzRoEGDf1zcPgfc24DW+mng6f/a62hw+9Ba8/TTP2FtdZ1INMJXvvIF7G3LoDvF4vgqTtiiXKiSXy/Rv6+b/n3dV9Yz/dolqoUyyyenSHamWb+8dCUg8ytV5n/wEqiA8uwSyR19mIk4cnUNVStROfEKrmMT3n8vsYc+hvvTf4e+9CY68FGRJGbvvivBmKptINZfRYdi4F0Adx69+RYicw861oOWVUTQCcE6AhAyjAj1YmgT1BJaVxBEwGjBcDpA7CbwTqONLgQBhtmDkAIn+SVUsI5htSHkdp+XYWIkHkFVziCtVgJVRFSXkHY3QkYQ/mK9/CkdqM2gV78DGoSdwDfijK/MMrj6GtJbY3KzQsmcvdIbNpm+l+H0KC/srDG1sUa/WkXkzhN4BczOu9Hzb0H7fkTbLoRRL+vJaAZj4F7U9JuIaAZdXAbA3P1R1NxZ/PVFqn//fyCcCEbPXpz9j2Ik6yVFYYfw8kVqcwtot4aVaYYbBBXl5Q1Wj50n3JKmafcApdU8getjRhzibSlCyQhmyMaveiQ6bv0fA8s2Sbck2NossDK/QTITo7hVueXjvBfLy2sIAYHvs7a2QWtblrEdw9RqNYSUjIz88t0hR48eoaWlhVgsSmtr6wfv0KBBg39w/lEFZA0+fGitKZXKRCIRXNcjCII7fs6eHe0cX8iRysZJtV7btC2EIJSKkmxLUVlJ076rG8OU794AAQRaYOqA8rkzCM8jeWAfqrhOMHcJEKhyAbO1A7wy2GHwXOydjyDT9ayNrq6gZ/4a7a7XRVitDEgDJWqopT8DO4NEI6I7EWIH2s6gMDCcnSh/CUN2IAybwFtGGmGUWsQw2pD0AwqhjXpGzBpAygTSvL6B3HA6MZxOdFDALb4E+Eh/Eyt2FBnqRUXH6iVRsxW99SbaSqLZxQPf/GpdxNXv4oUDuxhsh+iiT8mYJup1MqhnMDqfwPjGJxiZfR2aevFHjyLsKOqBP0CvTYLlIBaPYXTdU38/tEZNvoQwTXR+EbL10psqrBMsXMAbfwtUQLB4GW/6Ev7UBcJP/jZWaw/e6jLupYsYyTRoRfjAEeyWNpTv45cqaC/AbkqwfvIyWmvy4/PkV7bIzayzdnGRzM5eWvb2UdooEWtN0rm3m1jm/Zv5b8QbPz2LkJI3fnaWSDKECop0Drx/mfRWGBkdYHZ2AdM06Ouv/wNh2zaHDt/9Kx/btm3GxhrWww0a/GPmpgMyIcTOXxRpFUI8pLV+7ravqsGHBiklTz31GOfOXWRgoI9w+P37dtZWcyzOrdLd20aq6dZvmgCZzjSPfO1ovQfsBs3LrWMdRJqiFO4fQxqC5pFt/TCtwfPofPwo+YvTRNsTlN98De17xO4+TGTffmrKBaWxOvsQQmDf93X8Mz9GtI0gUh3o6ho6dwblF6BwCkwJLUch2oZyl1D+JNqv1TNUkT1II402NVpvotwcVvhehBHH9y+hlcAwmwj8aYSMoHURyx5E4CBkmrqW8vVorVBqFa0DDKMFkOhgHeXN4AU53PIxnMQnsbr/AC+Ayxf+LwZsB1md4HKw+6qIqznHpHiKkbYhXnhwP5OTzzBoFZC1RXRhATH7OkL56I0pZOqf13vBQhlwluqSHm6hvh63hJo/DrU8ItMHgY+540mENCDw0Ghktgd/YQq1lYdEK0Exh9pcQaVb0b6PAgJPgelQ26yRe/sUxclFNs9cJtzdRtNdO4m0N7F5dgozEsILACkJ/ACBZuHEFHYyhrecp3XklysxppvjLE6vEYo4DIx2YIdtQuHbl+1NJuN87vMfu23Ha9CgwT8tbiVD9i0hxDeB/xUIbf88CNxzJxbW4MNDa2sLrR/QcA3guh4//f7rqCDg0tkZPvPlh5FSUi5UWZpdp6klQWpbpiDwAwzzvXthgprP1LEJAPoODmC968YphCDRmiLxCzpRxbMXKV24jBGP0fO5R3FnJ1l/bQmkxFtdQtohwnvr0ni6sESweBHRNIjzyB/UH9MKdfnPwSvUJSLMRH0m2dBoJwYYaBFD+2toK41wutH+LIG/jpRJDLunvr0wfy67jDRakEYcpVYAEykzCFEXbQ3USr2sKRJIkbxieaR1Dt8f335VPqbZgzBiqGoBrdbBq+EWv4eV+j3u/6vfoCTHifgdPHdPP4PiNBG/m/J2v9jwzq8jrAiWfJXhVDtUylDdQBdOI7qPoGdfh/Y9iNEvIOwIOCmUnUSXVxHxLnQtj1o4hV69jCquIsMZzD2fRMbrlkFGSz+4FQzfI9h8GlpBb61htvagnQRbP/0+pXfO1oM9w0FmO6nOzOBWAnwPtB+gqjVqa5u0PXoPse42zJCNV/Vw3pki1pEhnEmAZbL4zgKGbd6SBda7OfzYLtaXt/jIJ/ezsZKnrTuD7dy6M8TCwjLPPfMqTU0pHnnsvtvuLtGgQYN/mtxKQHYE+F+AV4A48FfAfXdiUQ1+fbmS0HpXYuvVH55ma6OI5Zg8/qWjTJyYYerMAt1jbey6b+iGWbDV8RXWxlcAiKZjdOzu+sBzV+cXMRJx/HyeoFzGamklPDoKrovTf7V/Ryuf4PKPQBjozUnE3i8jDBuqS3UpCbeIIAuDvwfeCro2hQpK6No82k4j7BQiPIaWIXymkSKC0j62sxchHKS0saxdaB0gRAwhWhBXAq66rY/SWwRqCqVW0NpBiihCNmHKbvxgE1/NAw5S1gNhYfXhi9eY2JIMJmpIrRhfn7uSDSubC0yWRxgOL/Dcg4eZ8T7NUP+nkEKBchHf+x8Rc69Dpgv9xFPgbqL/+XfQp/9vtASx+CwMfxkhJEbrXoLJ51FTzyOsCDo5gKoVYGsRkt2ombcwsnWRVWFYmL37CHKriHAM03OhtRfRuovy6y9QGb+Mt1VGSwNCcWoTk5iZLHYqjmmG0QgIRyiullg7OU7zvkGEEBghm577dl39zLQm09eCGbIIxa/P0m6tFhg/MUOmM03vzhtPIFq2SVt3XWz25z9/GU4eP1c3WJ+YYXCql+GRX25yskGDBh8ubiUg84AKEKaeIZvUWqs7sqoGv5bYtsWjTx1lYX6F7p62K+KtnudjWAaBr/BqPlOnF0i3J5g5t8jwgV6cG5SNnLiDVgqv6mFFbi4DEds1Sv7EGUJtLUhDYCSSJB/5GKpWwwhJgqWLyKYu9HajuvbKSKc+LQig/QIYFoSaoP1xjMQoWo/gLy9A7nlEeBhpRcGKovw5lHRBVNBGC2boIBoXz3sHKdsRIkqgzqN0EUEzUtbtiaT0MEQLQsi6VhkaTRlFBaG38IISSm2icYEtgiCDlCm0keXxH5ylLKeJBF0889lHGYwLompw2/R7gKHWXSA8LHeNkfZd6NoCevU0uAox9wZCBej1OVAmovPhevRsh+rBc+CCfpdOc3kV7CjaqyCbhxDRFpAhhDAQ0eudFGQ0gdk9iirmMHp2UpuYwMi04L/5OoFnYLe1QSJL9MgY3toazQ/fj9VUz3BO/v0rCMtk4/w0if42zHCI9YklTMci3ddypXQdy95YLBbg1HMX8F2flal1Mh0pYqmrvqUby3mWZ9fp6M+SzMSu21drzenj46yvbLLv4ChNze99HoDevg5+/MNxLl2cRMq6xEVbe8NkvEGDX3duJSB7E/gOcAjIAH8qhPiC1voLd2RlDX4tyWSTZLLXmlvf88QeZi4u0dLdRCwZpnOklbmLS7QPZLHfQ5wz05sl3RIlP7fB5vk5Mj3NyPcpceogINTRhp2MUnjmO2z97fOEDj1MZNdBpFvGSfY/owAAIABJREFUP/5tdOChVrLICOjqIpSXoOe+ugelMGDzbUjuhOJlcOdQWycQib11La7EQXAXUCIKKofWeYRsRWuNNHsxQ7vx/XMI4dT7x7AI9GnABWEgVBOGaEPoPNAC2sEQgyjRBOSAFUChtY/WGl8FTG5WGUxPotQ8E7kIZTldz4YZc8zkXcbiJi9//W8Y31hmONMG7iLaXUSG+hFuQLD5M1RpCpSH0bkf5k8guo8ghr90NZXZ9xTkLiGSQ1cmKgFk7wOohWPQshsRzSKiWVCqLpzbsee6919YDqGDj6M9FxmOIowQ5TMncfYcIiRtzNY2dCiOv5HDbm2hslkAy8ZOxoi0Z9gan8dJxDAjIZbOzLB4agaBxnRsEh0frJgfS0V459XLrM3myHSnOfD4LqSUeK7PKz84hfIV0xeWePzLR65zeVhf3eLUmxdxwhbHXnmHxz/1/l0cO3eNsJUvEArbOLbN3NxiIyBr0KDBLQVkv6O1Prb9+xLwaSHEb96BNTVocA3JTIw991z1EdzzwDCjh/qww9YNy5VaKRACr1gl1d3M+vlZIgmLlv1DdQFZ27omOHOXFikefwszkcDp6sCfPoewHSrPfxu5+g4ilYXARRg22iuiizmQGtwcurIExVlEahhtJcEvgi7XfSGLZyA2ioyMEBQrED8EwSJoD60qECyDjIM0CbxFhHTQuooQYZQuAx5oD4QCttC6AnqEQOWAGYQwscw+lMoQ6ABYB+kT6CYe/+s/pixniKgefvrFrzKQChFR/ZTlJBHVy0CmC2l2IIRkNLtdogt1gt0O3/gEzL6OaBlEHz0KSqPufQJh/g6i/7PXvOci0oaIXN8kL2ItGCNPXfk7WJ3Ev/QSurSFvvQmRscurLF78VcXoVrC7OhH2CGEWQ/qnMEdGM0dBC++iEAT27MHq6UVfyvP0qtnKB2/iLRMmg7uIjnUSWqoEysaxrDM+nAG1MuZ17uv3ZDdD44wdWaejodaWZ3ZpJSrEG+qy5cEns/y3CbxdOSG+zohG8sxqZRr9A7cnODqrl2jzM8uEwQBg0O9N7VPgwYNPtzcijDsMSFEGhimXrIEmL4jq2rwa0kQKC4dn6FcrLLjYB/hdzVfa62ZeGuardU8Y/cOEUlef3MMvIDJF96htLpF771jdB0cYublc0jfpTS/xvTUAnZIYqfiZI/uxc9tYsbjVCfHkY6Du7GO1ZxGxpOoSglDFQgWTsNUGWP0KMLPI9vuQpo9qJnnINmFNOuN7Lq2iva2/R5bHkP4ubravXQQVrougKp9pJUlcGsI4aBlBi1ddLCENqIY5ghKrWAYfajgPOCAqFcEJSZC2kgp0MyhyaEJ0DpOoGwmNkr0N1lIUWByc5GynKlnw+QM01sOYy3tvPS1P+fSymsMpqKYZis62ACj6V3DABq9/iZi9jWEChArlxHi41B6C3KX6z6cponR/8X3/Ry1WyJYOIkwbWT7vnrmzHfrlc3cEiLViVqdxI9lcS+dAq1R5QLOzsPoIED7PghB/u0TBG5AdMcoTkddTsRKp0BppGWyNbNKMX8cM+TQ+8RBjO0G+/bdvVghBytsIWyLc8+cJdGaoGPXe1sPWbbJ2L2DTJ6aJ92WIBwPXXk8mY2xMLOO0prcapGm1mtLkvFEhI995l5KxQrZmzS2TyRifOGLT33whg0aNPi14VZkL34X+EPqHpMngKPAq8Ajd2ZpDT4M+H6AlOKmzLxX5zY5+8YEpm0ihWD/g1d1k5Yur/Dj//AsKtCsjK/w5L949MpzWimElFQ2ChQWNwglIiyfmWH0qQNEm+NM/7A+uenmtoiN9eBu5sm98iqqVELaNtHRISoXziHcAsHkSeyuHqzBvaiZt1BTryMiSVh4A9hA5c8hH/zXmJ33oGubIC2EFUOtPFOv4vkVaLoHYafBiCKERPk5hLBBFYAsVuQu3Bp1Q3HlI4x2IECpOZT2Ud5xpJmEoA/FXP1FCgnEUYRBlNB6A3DxlceD3/wTSnKCiOrjua/9Nwym40RUz3aGrJ+dbZ9CSgj8CYab25CiCVW7gKpdwLBHMYI0RLPo0lmCwqv1ycflSeg+Cpn9gAez34ZQOyw8jer5HNJ4768O/9z3UZd+Ug+cdn0Wc/QxZMsA2isDDt47ryCcMKJzL/UMVj2LpTyXwmuv4OdyGKk07sYmViqJu7wCO8a23wZJ6/13UZxeJLBDeKUaygsIKi5VWaayWdcaa91ZH+I4+d23qZVcNmbXSXWkiDbVe8CUUmws5JBS0rQtEjt2uJ++nR3YERvDuHq9xpIRWjrS17r4/gKJVIxE6vr+sgYNGjS4WW6lZPmH1PvHXtNaPyyEGAP+7Z1ZVoMPA/Ozyzz3kzeIJaI8/tS9hCPvLzdgO2bdf9L1CSeu3db3/PoN3hB4tavishuTK0y/epF4W4qeI0OEElFqhTKdB+olTicVo/vRg/iVGqpaZev0RaLdbcjSOjg22vex2zpwuntwz76Oyq+hvRpmIg1HPk3Q2g1Sok//KZQXoTiHzs9CJINw3tWbFOqC8gwYYYTdhLCuZlFkqA/fXUbVxuv2R56LYQ+gvPFtK6Q80j5AEMzgq0WkTEMQQsstUBKERhBFij78YIbJzRxDzQopLcbX85TkxHY2bIrJTZPhTIjnvvI/Mbm5wmBTK1LWcN1L+O5pDNmK1gVU+STK28D4/r9EryxB5wH041+E8kWCw7sQwWFE0z4wIxAbgNggiDDEBq8EY9oroVdOgZNEZHYghEBVtvDPPo1euwTRVvTZZ9CVMtbuJzF77sKfmUB5oKtFvOe+g9nahzO0C3toH0GhiL+Vw93I4Z67gIimEIYkeejANdeCk07gpBPEB8usnpzATkSwklHOff9t/IpLrCXJ6JP7AYikoxTXilhhC/NdEhXzF5Z46+nTVEsu93/pEJ0jbQghrmTG3s2ee4ZJNseJJcKksjE818eyG5raDRo0uL3cyrdKVWtd3Z5YcrTW54UQDennBu/JhbOTOCGbzY08qyub9PS1X7dNtexih8x6pqItyf2fvgvP9cl2XqsR1rWjg4987R62FnPsefyqnMHi6RmceIituXW8PT2MfOxulOdjRZwr24Sbk3i5LbygSseT92FGwvj5ApWpKaxMBiNW7xUy0k1U3/wuRjILwkedfRrhu4iBj6C6DsLMixBpQoSuHToAkIlRdLgNpI0wfkFWQUYQwkIEZahOQ2QHVuQoQS2CVlWEmUWpBXx/brtfLECKOBqDQMwhMBEigh/M8eBf/hFlOUVU9fLC1/87BjOZK5OSEdXPYFqgiWNIyUBTBSkquLU38GuX0LpIoCoI3Y72N2FrErm8gNC6bndU+xzCbgVC4JXRQQ1RuABtn0L7AjZOgoihNs4gm3aj5l9Fb16qS6eFkhDrRM28UTddd5KgQHbth1oJXd5EhOIo30M4UfypC+iERMazaC9A2A5GwsDKNFM6fxGndwDhODQ9+CBW+vr3G8COR+j8yG4A3FKtbpMUtqmVqkDdTDzRniKcjmBYJhdfuUy2v5m2oVa2VgrMnF1E+YqzL16i833EYp2QxfCebqoVl5/87evkc2WOPrKb7oGGBVGDBg1uH7cSkM0JIVLA3wE/EUJsAgt3ZlkNPgwMjfby/DNvkkzFaM5e7x146uVLjJ+cJdvZxD0f34NhGtf15/wcIQR7HtlxzWPl9QKxbIK1y0uE0zGcRBjDMjCsa6cpg2qV5e88TWVqBru9le7f/iqqmMNpacJqrQeJWincUz/FNBVUVggWLyC8MlhR2JhA9nyk7k0ZToEdR7tb6Pkf1dfW+QTCTqLdTfC20JFeKF8GJCKxG9DgryOid6HdeYzYQaSZRKthguoJfHcWDBMhrPpEJVEMoxNPXWazYtEUSgKCyc1NynJq21Nymsn1QUay/bz89b/h0tob9KaW0WITrSoI0qAlAZsILREyhvZqiNI6ImSCiIIdQjWnkGs56LwL0f441BbQpSnIn0dsnASvBNM/BjMOQVDPlC2/hk6OoBaPwdoZyIzWlfkBEu0IK4KR7EQMPgxKImJJRLyuh2bveQAUKDtJkC+A1hjN9cBGmCbxo/dhdfdTPn8Rp70VM3X1elB+wNIb56mubdF6ZAfR1qsZSjvq0H/fKLm5dVpGO1FKcfJ7x1mdWCXWHMf1FJFEmI35TVLtKTpH20i3JjBMg1g6elPX8+Zans21IvFkmPGzc42ArEGDBreVW2nq/+z2r/9GCPEskAR+eEdW1eBDQU9fO1/82pOYpoHxC2bQS9Nr/OA/vkQ4FsLzfEr5Komm62+M5c0Sl16+hB2xGb5vBNOpX7IbE8tMv3weIWDg/h0kuzLvLWuhNJWZWfzcJu7yElvPtiLcQj2zc+gjWK0dgEaEY2ix3dyO3g4yNKI0i155BVFahkQbeuk1dDSLcHMA6PwExLvRC0/XxWLNtxGGUdflMqPI2CgisgMq48jEQ0irLioq8BHSwcACaRNoE4SL1lWq/il+/5l/x6m1SfY29/Onj/5LBps63zUp2cdAuoLWMxiyn+HmQfxt/TGNRmiJ1kFdssIYQRghQn/9R4iFC+j2MbyPfw1t+vgfG0OSwOz4LDLUhY4MoK1OdGgUeAHW3gIvB5UVsLOwcgyV2onMz9WD0NZDqFoBUVhFhpow23cjH/lXEFQRmUEQ8ppGejPTgfnIl3A2llHlIiKZwYxfDdaFEIS7Ogm1txNUqvX3cHv/6nqe/NQSVizM+ukJoq3XljLTfS2k++qB3/L4MuOvXKZarKK0JtWVoVKqEo6FMC2DdFuSJ3//IXLL+ffNjl1z/OYE6eYY+VyZvUeG33fbarVGpVwllU685yBBgwYNGrybX6oRQmv9/O1eSIMPJ45zY6+/xal1OgdbmD63yPD+HqLJG3tczp9doLJVprCSJ9ufJRwPsTGxRHWrhJACFShUoN4zGPOLJbz1dWKjQ2y99jrRwR783CZ2zEYrhd42OxfSIHTP5/DndxMsvI069TdgR7Af+R/Qs88ioq3orSn08jHUxmmEFBBrQiQHEJE2VGEC1t8CaULzYYQhAQ2y3pNkRMYgUm9M1zpAVc6igy2EjCGkjensJlDL+P4MQXCJ1cI8x1cmQSiOr0yyVl6iNdrJc1/9V0xu5hjM2AhZRuMAAYZMoHQ3Si9jiFaUAuWNI4mhWcYOdsDCJYRSsHAOsfQiIns/QnvI9EPgbGcKC5dh+RlQCiIdEJ4Fv4pItKKTe8AL+P/Ze9PgOO/7zvPzf66+bzQa9w0CIEDwvkVZkiUfshwfseM4u4mTmU3N7G7VvJuarZ3s1mzVbNXOVu1szZHZN7uuzXgnkxonjhMfiUeyLUqiRImieJMgQNw30Oj7fo7/vmgKFASSInU49rg/r4Dup5/+dz9P9/Pr3/H9InSklUf4Ezjrt3ByWZyz/xql9xT64f8aJdpV31etgrVwEww3Wscw4j2DHUqoidLsPOa1m/j2HcDVUTfTlo5DNZlh8/xVKhtbhPf2Ez9V7wfTA140rxurWCE82P7Q886uWsR642RWM3TsbWf4mb3kNvP4oz60u/1f8c4o/rCXW2/MoHs0mrti+MPeB56Lbo/Bc189jm076PqDvzorlSp//f0XyWbzjO8f4fiJAw9da4MGDRrAIwRkQog89xfzqbvtSflwWeoGv1akNrO8de4GkViQwydH0B4QKPUMt7I+v0VbfzMnvzC+Y6rtvQQTQTburNU9CAMuZn5+HSklZqlKsDWM4XMT6ri/jY10HLKvn8culVG9HuJf+AyyWMQIGzipDYz+sbvZsTpCUVEMAzu/DLoXqkWcuTdA8yB8McSh/xax9iqkboIeATWK9HTVs0dmBsIHoTgL5TRS70HETyDcuwMHaSVxKtOAQNoZbL2F6ewsg/E+hKjicAPHEtjlbhTPPE65G+G04JBHV1sZaCohRP1jJ2S4XuYUBrq6F8fuwK5exK4uoWhuJAWEMoDwJKDzOHLxPLKpGTwhKN5ESXwDNfAeoVanyvY4YWAPSs83kbnpepbKkbDw0/rz6QEYeAElPITz6h8jKzmcmTeRA08jIvWAzJq7jrU8hXQsFG8IdC/SsVHDMex8DnO1blVVnprYDsgyVyfIXJlk7ewFvF0dVJJZmk6MIxQF3eui9/PHsCpVjODDy4yJwRasWj3Ybh9tR9VVmrp2nyczV5dYX9xieWoDt99FrD3Ck1899MCgTFGUD5wYLuSLZLN5QqEgC/PLjYCsQYMGj8QHBmRSysAvYiEN/svg8oVJZidWeGX2MnbN4dSnx3dtk1xOszy1weFnhmlqj9Sn8xyHlVurmGWTjrF2dLdeLx3WLJo6IrSOdeKP+lENjWquhOF30/fM+K5+sR1IiWPZCF0H6RB58kmcbIry22dRQ2EwS/XS4l3MibPIah70MIpQIdaNrKZR8CF8zSitR3EUkLUc6B6kqiNy0zhrbyHC/aD5QHUjvG2IaroudYFEVjbr05d6YHtdOA5SFjAdi6f/4o8pqfP4nB5e/NLnEUqJJreHYed3uTJtc7A9TjzgRRF+wEQVQyhCx6zOYjqXUAhguEdR1ChObQq7egdhF6GkYzQ9jWqM1AOqb/0QO30LZ+tPwC5A4CRK6NSOt0wE9+DUssjlVxC1t5AYKE33jqH0NGGv3UBO/Ry8MZShz6G0HcKaeAk8OnZyAeVuQIbuxjFrCFXFymWpTr4BUuIeO4zW0oEaCGLnsrgGh8hPzmDlCpTXttD8HjSXgV2t4O1o2ZFZU136tt7YwyjnynjCXsKt4YeeI/6IF8d2qJZNYu1hrKpFuVh9YED2KERjYYZHBlheWuPU6UMfej8NGjT49aIxu93gYyUaDzF9cxl/yMudG4sceWIE4z0XUMu0ufTSLZCSiz++yuChHvY/O4JZqjL1+h2EquDYDv3H+8ivZ5l/6w6KpqLpGsFEiIFP7yO/nsHXFHx4MAYIVSV84ijlhUX0UKAusOrx4pTyWNPXcY0eRkp5r8dH1cG2UcLt6Ae/hHCq2Lf+qu7T6A7XTatbjiETR8Eq42xdR66dhcxNUHVEdAw6xyF9CYlArr5Uz5xpGkLzQesXMc08M/M/oT+goYSGmdu4Q0mdv9uoP8dspkavfwtklW9/9TbpahOt8R4MbYy7ppFIp0ol9z1sewkcGwcbaS3j8n8GoYaQTg3X97+DsrqA6Pxb+NYPAZBCICqTiNx63Rcz4EMoO78ChGKg+PqQ+lWkKwKZSWR0FCc9C7aF3JrFvvNTlNYxKG4hqnmUkedRKjXQdITvXqN9dWme6sQN9L5RVMN7Vy9OxSkWcMpV9M5ePMEAUsLm2fMITUNxuzE8Qdq/9AyK10dktP+xz8HUcooX/+1LqIrCyFMjjD43+sBtu0ZaCUR9HHhmmMXb64Sa/ERbPlrSX1EUzjx59CPto0GDBr9+PE7J8n6dqY2SZYMdjB8e4Mxz+1lfSlHJ1ViZS9Iz1IpZs6gUqrgDLgy3xtrMJqVsBbNmMn99iY49LQhF1Pu6gNxaut4Qrgps08K2THJLW/hbwsT6603Y0nYwi2U0r3tXD5mZSlFeWMSVaEaxilRu3sFcniNw8gzC0DF6h5C1CrJcAJcHa+pNnEIeER9EbxtEcfsAH+reL4NZgsB7JDukjb1xC3vhTXCHUcJjoPkRSET0EAT6kZtvIiobyPwUuKJILKzgAme+90cUlVl8dicvP/UE/VYar9VOSVvGa7XT59pAoCGFguokaTJSmIUXUQDdexghdKzaNaS9DmYG6eQRagCsNI6VR9X7MJRTKKv/DOHYsPgmlJLgb66XI8sLCLMC1S1k6gIy/gTCdc9HUZpFpGKAvxNRWoP2Z3CSt3GmXkRWcuAoSM2HtXQZJdBD7dpLSEdDWipq2whqS30S1qlVqF55DSWSwJy9he+JL2B0D2AXCohoK+lzb+BUq2iBAIHDh1BUFcc08fZ1ERrfOU0L1PsEH1DWfj+LVxapZMo4tsONl29RqZjsOTVA4D7G4EIIoi0hIERzV4xcqohtOSjGoz1XgwYNGnxcNEqWDT5WFEXh+d9+gr/+9itomsqlsxOEon6unZ0klyrQM9rGsefHWbmzwfTbc9imTbQtTKQtzPjn9lHJl7ny529ycSVN99F+Rr9wkMJ6mo0rs8wsJYmPdNB+tD7htnH+OoWldTzNEVo/dWi7tGVXqqz8++9QnZsDVSUw0IF3dB9mKknpwitUp2+BY6G192AlV1B9fuy1GXD7cdZnsfJJlHgPuL3IrQWUthFUce8C7azfxH7tX0JuAbwxZMswuCzo+nw922aEEf4erMI8M1aC/tIVFEVhpvoSRWW2ng1TF5nNFhgIe3n5VBcz5j76o2FU/1EwEliV17HtAtgFhGUj3etIpwBKCMfRoZJB1FZBCnD5wATkbWzrTRT/OKLzRD0Y6zxeV+E3CzjrZ5G2A6jggCinkba1/UtLljZx7vyg3vPV8xyi+3mEUDCvfx9n5Wp98lQa4NhITwtSuhCWhb14FW3oCWQ2uX0MhO5Ca+/HWpxCa+kCfwhLGuQn5tCWkjimgxoIYJXKlNeS+Ib6McJB3M1Nu86pzZsLbFyZJdjVTMfJoR0lzEq+zKU/fxPbdDj4tWP4on7iPXFi3TGyGzncQS/lXIW5Swvse3bvA89bKSVv/M01ttayRJuDnPnSgUdyl2jQoEGDj4vHKlnex8sSKeUrH/eiGvxqo+saifYoa4tbuDwGVs0inyoSjPlZn9ti7PQg/Qe7aN+TwLZsfHd9KaPtEdLLktxKhkAixPK1RY793hmEdNiQEs2lUStU6ubhEoorm7ijISqbGeyqieapi8FKy8TOF+qKCRLQXVRuXMLObWJdryCFBKsKt96iLE30ti6smZuIQATVpYI3gDV9ARQHxRfBnjiLcvy37pU2HROUu3/bFYTmRQS6kMVNCPfVN/EPcObcP6lnw8w2XtnXRb9c2hZx9Tn99DWPIKqTGOEzDPn6QfWgKgGE6kML/z61rb/AcW7W5THsGo504yz8K2R5CkWRYLQgrRSu7/8lSnILWvpxfvOf45Ruwwv/E+TmEO3PIYSoT0+WlhC2QPr2I4IGFFaQK28gO59FuILI8tZdE3UXFFcR4d67R1SB5lFEtYTjboZyHrkySW1hGsUXQcT7cLJJpBqgevsSRt8oQjcIfvFb2FvrKOEmrFSa3GvnMJObyEQLvgMHUF1uyskc2auTICDxzAnsmgWWjea+N527cW0OTzRAdn6d5vEeXIF7/V13XrvN3FszIMAT9nD4t07SOtLKp+JPUq2Y3Do7SaVYxVuzyKznCD9A5862HNIbOYIRL5lkHsu0MVw7A7JKpcbM1BL+gOe+IscNGjRo8FFoeFk2+NjYWsty8ewtmtujHPn0XrZWMwTCPvxhD92jrazPbTFyso9qscryrVU8IQ8tA8079hFsDtG+v4v1iRWGPzuOoir44kFaD/VT2sxi53JMf+9VWk+PER0fIHNrjvBIz3YwZpfLlGfmCRw5TOnGTbSQH9/wEPb6ApX0GnalBtUCOCVUl0Zt+hpCWmgjp3HSayjxBLWptxEuH2qiHZnbxMrnELfPow0eQag6SmIM5eg/RK6+A9FBRC2FbVvM2n72OA6KonBn7vy9bJi+wqx1hMGOE5w7+C+4szHFQPkSimlD6x8iPC0IoeEUJpDpc/Ver+jTaEoC27wNjgbVWZzUv0ZmX60PBVBGeGJQqKAkk3W1/bVpZG4J6e9BLv8QhAu56UI0P4dMXkfOfr8+eBAYw6luQnkDxVjDWX4Nte/5utK+rSHsGiJ6V6LDtlA7j0CtBE1hZCaLuXQV6YlBVUfG96C2DiK8zZTP/Q3cuoaU4B4+CAgqKxvYd+bQW1rQImHsfA7V5yUwuhfV66X21lXYygFQWk+xdWMOoSp0PH0YV6SenI8NtpGcWMKXiOxwYLCqJt6gux4oOxJ/U317IQSBeJAAcPTLB7n601tsLKZIr+c48ZVD+ML1HwCO47AwsYpZtene28r4E4NMX11i36mBHX2P73Lpwi1u35wD4Pkvn6E58WhG4g0aNGjwKDS8LBt8bPzsL9/m9jtzWKbDHzQH6X6P4ObY6UHGTtdLjTdenmBjdhNpSzxBN+HEPWscVVc59YdP41jOtl6UUBSCrRGKC2sUV7bwt8XITC3R/uR+wkPdO9ZQuH6T6uoa0rZp/f1voceiOIU8+XNp8PgR0kYJR3GKKYQhUBIdaJ1DVK+9juIOoLT0IsKdoGoorfuQyRkU1Y+1egelqQO1qROhudB7noCeJwAwzRpPfue3KSr/Ep/Tz7lvfZcBkcNndVHUFvDZvQwe+Aco3hZwqgymX4TsNWR0HFFeRdoWjplH2hsgZV1PpppEVFZRbB+kXkVICbixa1sIs4bia0KoA2As12UskhvQcRSl/evIqW/D0stI3YdcfgPEn4M3gVCbwIgg02vIQDeymkRmN8DxoJgVZHIOp2wji2mUhesII4A9dwmpGhhjz4B0sJNn0QdOYK9OYwkde20drWMcp1rBKeZAUbFSG/X3JblJZWEexXChuF0ET5xAHjqEu7sbxahnwMLjw2hBH7rfR3Ezj1AUnJpNJZXbDsgSB/uJDXeiufXtcmVuPcPkT28iNMGJ3z+D5jZoHd0tMeL2u9FcOrqhIW2JZd7zQV2fT3Hp5cn6qIRlM3y0l96Rtl37eBfp3D021EucDRo0aPBx0vCybPCx4TgSs2ahKArVcg2AYqZEPlUk0hrC5alfhFVdxbGd7YurWa6he+6VqBRF2dFULaVk6exVzHKV/FISw+8mNr57+s7K5cldu0llYQnV78U3PITRFEMNBAl9+nnco/vJ/dWfosaaUPQBPOOH0Nt7sVIbaJkUePxQrSFcXkAgvCHMKtib62jNbQh3XfvKsm2mU+sMxlrqvWGZJEVl+u6k5DR3lqcYShzilRO/xWw/pQpmAAAgAElEQVRNpb/jEKJmImtzUEuBU6u7AJRWQPXC6k+gsAB2BemPQ/Rw3VNSmUbYFVC8YBWgvI5+ZRmRzSHjVZzPvQDuAzhPjkDoMFrnc8jMJHLlTRxTQwgJZg3cLtiagNYjoBmgaSieBE7NQtYEomJiL76Dk09hXv8ZTiGDmJtAuIKIQDNOdgNZq+I6/ALSAVkpop/8GnLiCqrhxlpfR3QMorb1o2g6Rl99qlHxehGajjRN9GgMd/fO4FlKSerGDLnpJcJD3QR7Wykub6D7PXhb72mGCSF2ZMYA0gtboIBVqZePV2+vsTa1wehzo3iCOyUrRk4NsHBjmUCTn1D8Xkusor4bXgmE+sFq+oeOjRAM+/D7vY3sWIMGDT52Gl6WDT4WLNMmFPaCA0MHu+gcSGBWTc7/4ArVskkkEeTkl+oCmQNHewk1B9B0jYW3Zykk8/Qc7aNt74PV1xWXBuUq8f0DdH/mEK7Q7om50vwiqteHlc/jammmfOcO3v5eFMNA6AZOLocSiWNtbuD/1Odw79mPld4i/+pZqpPX8PT34Xnhm/WJTaFQW5zGKdeQwotVgsrkTbThg5z5s9/d7gN77Xf+A12rd/DWOikZi3jNLvqoIXwJXGO/y+DSRZzZVzC3plBCzWB4ULxe8A5C9Ajod7OD1RS4opDdRNQuIbKr0PU8RE4ic9egMAXpFUT239WzZclVlOCzsH4WabQjyus4qWmsqR9ArgwVExk5ijCzOGsTiOgBRMtzaL1PIitpnPQ0auIw9txFnHwKZ3MBO5vBKZvIYhER1Opm4PktMHzY+SzWxjK1TAk7lcTVkkbxhbFLecyNdYSjg7cJ6Y9QuHQN3wEVV2sr4aeeRpq1uu7b+6huZdm8OIEnEWP13FUGe1rpeeH0Q8+zar4MQKy3meTsBu6AB7NqYVVMHEeSWtiifaxjx2M8QTdDJ+sBfG6rQCaZJ94eJRD1se/0IIZbo72/eddzvR+3x8XY/odbJjVo0KDBh+WRAjJR72b+R1LKDA0vywb3IZPMUynUePKLB1E0BY/PRaVYxarZuLw65UJ1e1vN0GgdbCG/mSO/mccX8bF+e/WBAZkQgs5P7ae4nsYTDaAoCslLE7jCQQK990pMejhI8c4sTtXEyuZQ+nt2CL+qPj9qMIYWiePqqjeslyauY64to0TiOJoP4fKieOuZMMXwYFkW04UcfcIDG6vM6tqObNj03E26k4u81PVVZrNLDLQ2Yc/dwkRD79oLVqXub1lO4zgCaXghcBrK84iVm/WMXOuzONINCy8jq1lkdx/CKkI5jSimUZpOQNPTyMDb0PJz5PptROdxCPUgty6AWUS6mpBzr0CthizlILQXUhVk92fBNYLijSHetYlyR1BbjwDgVG3sjZcQagWZ3kREe5GaD6WpB23oCdTmXkoXXkTWLCrXL1Cbn0YYLmo33iH01T/AKZewL74JQsHJ57FSabRwmPLUbVytrai+unyIlHKH5ptVrrLyymUqGxk2LkwQ6O9g8WeXSJwYRXMbuMO+XR6Q2ZUUUz+7gQSGnxvn4NeOA1BIFkjOJlE1hWBLiAdRq5i88YMrmDUL3aVjOQ6maXHoqWHUB/mgNmjQoMEviEcKyKSUUgjxfeDw3f8bXpYNdhCM+AhEfeTTJfadGgDA7XMx/swQG7NbdI/dC5zyyQKKKvCGfYRbw+Q2cvSd2FmClFKSnlmnVigT29OO7nMT7qtPti2/eJ5aKkdOgBH244oEMXN5irMraLEYRlsCJ1fAv398R0BmdPehBIIITUfx+CjPzVO6M0ttM1XvY2puRXG5qK6t4VSqqG09fO7lf0pRncG71cWPxW/RWVN2TEoOtPZgrk+jGYKRE1/HmrmEcAcw71y6O4E4Atl1bMuHs3wdUc5jz91GiTWj7zkBpU2UwDM44iZO1QuKG2lWkdFDiP/wTcTWNMT6sb/xn2Ajg/jK/4vqDYMvXnc4SDyNszmFEt8DpZcRnhgyfgx78RZ421FySdSWfXXR1Y6dZtwAaqQDJVg/NmrPfuzkMnrvMTwnf4PK1C2qly7gFEzUWBPYNlqiA6dcQngCODUb25SYFVBkDdfeA5Qnp7ALBbwj9yQmSsvrzP3HH6O4DXp/5wVc0RB21cQxLQIDHdQqJt7OFpbemGD+9Um8iQj9nz2EK+InObVGbKCFcGcTxWR9chagkMwTuNt7GGwOcuRrxwDQ3TqO7XD7zRkyq1mae5tw+1009zThOBLbkeiGTi5dRDFU3D4XydUMXY9oMN6gQYMGnxSPU7I8L4Q4KqW88ImtpsGvLIZb56mvHKJWtfD47vX7tPbGae2NI6Vk4doScxfnKWVL6C6NodMDDD+7FyS7MhSlzRzLb9wCIajlSri9OvmlTXwtYZKXJqllC0T39m4LwqbfvoaZL2KbDmZqC29fJ/kbk7ia74meCiHQY3EcyyJ99hzl6RmcWhn3oVN4urrw7D/ArZlJotemUIRkuSVGUZ1BCIeSscC06TCwssaPuv4hyfFR9jS1IsslROdB9FAQLZZAZtawN5awywXKb7+M8PoxOnoR3psIdQWUYr2PS/Fib6URbftRHAdZLNSdAiwTtefLCNWArWmEdJBb0zg3f4gItiNnzqMc/npdysI2sSbOg1VFpjNoY89DNYfjvgOyBbk5BVKi9Z5EuOslXjufpXzlPHZ2C729F/fwAfTRJ5HVIk7FprZVxKko2IU85tIMii9IZfo2usuP9/BpvNE4mZf+hsL8EqW/+E8YLe2oPh/mxibVyzcRmkZgZAjv4L3SXvL1K1i5AvaWTfbGHZrPHMYI+VA8Hrau3SE6PoAe9OFNxMitpZGmRWZhk9L1RTS3wdxrE+z7zRPE+prJLqdAQKwnvuN80d31qUgpJTdfneT8X14i0hHmytnbdO1tp2e8wN5TAxz9zF42FlIkepp49QeXuHFhhkgisNOxoUGDBg3+DnicgOxp4B8IIeaBIvfMxXebFTb4L4ZqpcY7b97CcSSHT4zg9rh2bbM6n6RartHRn9gRjJlVi3K+gj/ipZwrM31hltxGjo2ZDaRpUdrKY5ZNeo/17dqnUAWIunK/Y1qkp9ZwhfysvnqV8EAX5fUtIuOD6AEf0nFQPW4qa5ugaNSqDs7MMuX1NFI18HS0YOUL+Pq60AM+nEoFK5/HaG1h6+Vz1Eo2rvEDPPGnv0NRmcZT6+Kvm/4+fe7AdjbMU+0iUSxSCwhUy89QvA1pmuTOvYZTqaBFIoTOJCDSQ3V2BTtZxNPfiqyUEMEW9OFPY/qbIDWH8IRQWg/gZLaQ85MooTYUfwInsg9cfoQ/gZ1JI4J9KLkZaDuEEulFFpM4wkXl2hsoviB67yg4Niga0rER7hDCG0WTBjKzgQg2o+//DFLR61IZtk3x9ZcoX38LO5NGCV3Fzmfxn/4MQlEoXXkTM7mFtbmOCDajtfdSfucNhOGjlq1S+enLCJeXytwcQlpUltcpLm0gy2W0YAijowvN66WWzmFXa6iu+qCGt6+D1OUJFEPH054A6hOLZrlG84l9FBY3CQ33EpUKKAqeeAh/W4yZN84jEHQc7kPRFFyGm5HP39+o26xaOJaNZdks3lpFCMHi9RUiHREUVWDfna6Md0SJd9Qb8hVd4cjTw6zOJynlK/iCH96/skGDBg0+Ko8TkH3+E1tFg19a5qZXuDOxiBCCYNjHvoM7m5o3l9O8/uOrIKGQKTN2t/RomTYXfniFfLpEa1+c4ZN9GB4D3WdglqqYxRrVYo18Mn/f5/XGgvQ8M45ZrOBvjbD8SoVqpkDT/kHsYpFgfwfBgU6q6Rxrr17CKpQo3F6iOL+CEfZiZXJEDu2ltLBMfmoWIxyiupUm8cwpVJ8PV38PN65fpXV4BG9XBxPT09u9YWVjgfWOOOOje3m55//hnf/8EwbbWihcvU5N1NAMsAtFFL1u9yPcHuxSCSkltZUl1HAcWTOxK2WMrj7QPGh9x9AHT26/PnP2KrXZScylRYxrf4xSmEVpOwy/932E4cWc+s/Iw/8jtTuX0IeewN17DMUuY05ep/zGSzg1k+CX/gB97NM4W4so8W6cQoHa6jJ6cwvq3k9TunqZwosvomg6ekcX3rEDoChYhSq19SSG7scpldmuA+oeKrPzdUPwyUmiX/gynPST/vnPqNyYwNXTS21+GS0cws6kkaqO0dJOZXEZo6MbPRLCLFSo5Nao5M6TeOY4issgMjaAryOBomu4ovUyo6IqhPvbSE8tU0gVsa/MoHvdHP7vv4Bq6Fz73nkUXUdaNol93TvU+d9PKVvinR9dxaxa7DnVTyDqo21PM+GWEB17WykXanTv3S1n0dbbzMLkKpF4AJfXuM+eGzRo0OAXxyMHZFLK+fsp9QPzH/uqGvzS4PN7kABSEgj6dt3/rh6TEALbdgAo5cpYNYtCpkwg4mNzKc24x+DwF/eTWk7j8eiU0kWKqSI9R3t37RNAOg6G34M/EUYoCl3PHsYqVTACdVFP6vIrZG/PgeNQXFijtJnFkYLyZo5AVwKnWkNoGvk7yzjTq8RPjAFgOw6fvfA/U1SmcVud/H9z/xWjz57Ct3avN2z8yEkURcGtaYwNjVFdXcczMADS2dahUtwe/IcOY66uYnR2giNxdfdRvnIBva0L37HTFK9eo3D2LHqsieDJk9uBhda1F/vKRdTmDtSJaQQOrFyEWgEML0o4QeXWRZyqwM5lsdZWcA2OYW69grkwC4pKZeomrr6voQTjSMch88PvUZmdQfH48I2OIS2Lyp0JfONHMFdXkMNjuPefoLK0gtE3gl0s4h49tN1np7i9aK09mJvrSNuhtLBMaXqW0vIW7t5BzLU1NL8fI9GC7OyhOL9KLVtAi0RRgwEip4+zdfEWimVj5oukrs+wfvE2Ts2k9dQ+4oeHdxzjxJEhoqM93PnxRZAS27RwbIkK5DdylLMlAAzv7qzse8lvFamVTQyPTnY9x5EX9lPKlgnGA2gPMaA//Kkhhg504fW70BpN/Q0aNPg7pqHU/ytAKpUiny/Q3t6Gpj2W29VHpqM7wfNfOY2UEE9Edt0fb49w6KlhKsUqfWMdLEyscv3VOxgejbaBZtJrWfaermfN3H43bUOtYEs25zYJxPzc/Ml1As0BQokA1XyF9vFuXAE3s6/cID23ie7W6Dg6SKQ3cV+pC29bnPzMMu6WKHapgoyGCPS3EurvIjDUi1WuUi6b5CiB28vWzTmmc5vb2bCKZ5EloTHU08m5nu/u0BdzTIu18zeoJLMkTuzHFfJSnl3EUXVQNKxyBcvRkNEWNl67gurxEH/yCMFnXwBFASmprq6iRyKYqS1krVqfUFyaJHX+GtXZFVSnhjcwgFacqU9O+uq9UaJlD2zkUdQAQigo/npmSWvfA9FOANSmnVmf2vo6jmXjZNJguCCTQm+pN+Ebnb2k33oHK5vHO3YMKjmMti5cHd3YlSqKoePq7iX07GeprixTXNokc/4iQlVQPV7QdELPPYd3oJ/UuYukr03hikdxt7TQ9NRJjEgI1e0ivG+Q9MWb6KEgGxdvs/ryJYxokFq+TNOhoV19WrrHRc/T+0jdWSXYEdvWo2sebkdRFQyvC09k9w+B9xJuCRGMB6gUKrQPt+L2uXD7Hh7EQV3vLvi+fW+sp1hbSdLd20YovPt8a9CgQYNPioZS/y85mUyGv/iLv6JarTE+PsqTTz6xfd/ly9e4dWuSw4fG2TP0yekjNTXvDsTeRQixQ918fW4Lt9+gnK/Q3NvE2Kf27HpM29422va2ceUHl3D5XazfXmHztsQfC2DXbPpO72Hx/CSZuQ3K6SK1QoU+INq/0z8wt5SklivR+swxdJ8bs1DCqZm445HtTFStVOKfGd/hpjXNaHoPf7Tx3xCQAo/VS1mbxVPtZmSoD6EqaMBQ/N5rqaTyFJc30f1eUjdm6Xz2KCIUYePcNbgyhyIccCRmMkmguwUzX6SWzuK92ycF4BsdpXT7Np6BQYRhwJ+8gL5wnoirj5XqF1ESHRQO/DGRsZ56MCYETs0ke/7tujK8GsV/4jRauC6U6t27H0Wv94S5h8buHQdFIXDiSfIX30QLR/Du3QcjdU9JoaqYmSyFV99AC/oxCxViT3+6/h7emKQwMY0RjxI7dQRP3wDC46e8lkWPRbByBYIHx/GNDONua8GuVHGkwNOaoLy8SmCwB1csgmLUm+o9LXE8X/gUlWSG7EoKxVUvO3ri4V3BWDldYPH8JIbfTefxPajGva+jnpN70NwuNI++43aolyhXJ9cJJYI0dcVweQ2O/MaBj9yYXy5XefFHr+M4kjuTi3z1G5/+0Ptq0KBBg8elodT/S06lUqVWq+F2u8hkstu3l0olzr9xgWg0zMtnz9E/0Ieq/t2XXfr2d3DppVvEO6JEEoGHbhvvb2buwgzeqB9qFnbNqpfellNsTq1R2sii6oLsUorM0ha+5vC2sXQlnWfplbpvYjmZpf30KLm1LLZpkXdbxIPN9ZKmLHHdnAbhcK08SUbJE1WC/M1T/4akT9KtB3CF7284bQS9aD4PZrFMcKCukVZOZuvl2ZpJNVck0BnHLnmppPOoho4e2vmaPX19ePruDi0UNpCLbyKkjVGZxrIrmKkycnYVd1cPHv/dYEIAQoB0EC4vavBeQCw0Dc9IfY5G2g7Sued44B0bw9XdjWLoKO6dDepaMIgeDWNmcoT279u+vTgzjx4NUd1MYZXK6EE/rngc//AgdqmMf3QYs1ihsr6FGqqgB30ERgYoLazQ9OQR/H3d28HYe3E3hen+/EmCfe0IIYiND+zaZv3GItV8mcJGlkhPM6HOpu37smtZVm4tIx2Joqm0jd4Te7358m2KmRJL15c59rUjeAL1DorGlGSDBg1+lWko9f+Sk0g0c+rUCTY2Njh69J6OlMvloqkpyuZmks6ujl+KYAwgkgjSvidBej1HMVchHN99sX6Xtr3txLqb0AyNSq7E5p01Vm+tsHRlHl9LFMPnwSqVUT0Gt3/4DluTq3SdGiIx2rVzR0KQXdhk+a3b/K/8W6YuzXEgcYBvf/bbSNuPXe5G8czjlLsJHxqndH2e9GyKgSf3ot3HRPpdNI+Lrs8dx6ma6P56gBPqb6eSzKLoGv72GKXVLXy97WxensExJfnFJNGRu+tzHCglwRdHAhs3Ngm69+Au3abiHsDU9mAEPAjNwC6Vt5/XrlpUlQCOU6bl2OH7NrRXNtOsvXoZoauE9vTgaY7gigTQgvcPLhVDJ3rmFNK2UXSdWq7I1sWbmCY4Wxk8na1o/np/ntBUAmMj9bVUamy8donyeopq5lUih/ZiFytE9vYSHO6+73O9i7clhrcldt/7KrkSxa0cufUMweYQxt1A26zUUA2NWrmGbTqouoJztzfxXVRDvTtR6bC5mKK5O/ZIJcoPwuNx8dwXTrG+mqSrZ/cQQKFQxHEcgsGH/9Bo0KBBgw/D4zT1f+Xunw2l/l8gQggOHty/63ZVVfnib3yeTCZLNPrgkuIvmsxGnpkri7h8Lm6+Mc3JL+5n4cYKycU0/Ye6CCd2BgyuuxdSXyxAdjWDogg8QR++oAdfzI+iQG4lQ245hRFwk5nfJDHahRH24TvRgbdsEOlrobiZJUuBCTkLwuHi2iXe+OHLRPUIe+U/5vL0Coc6OvHULOyQn/xqmsJ6lnBX0/1exjaqrqHq9z4mRsBL57NHtv8PDXSSX9xEyvq2tUIFq2pSSefx/uh3UJYvQOdxrK9/l9zsKuahf0X+5lVcsTYMx8ET9uFpa0L4/VSzRVwhH5nb81SzJWq5EtVMCSOy23YoP7uCUBWSV6fJLWzgbY7R9fwJdN+DpRuEomwHd9nbc1TTeZyaQ/TkQfzdrQ94EEjLprCwhh7wsfbzd2h75jCpq3cI9rej6B+up3H2tVvUijU0t0HPU2N4wj7mL86wemMZRVMxqxa1co2+/f20DO8MjvY+OcTG3Ca3zk0zcW6auatLdIzWe8dae+MfKVPWnIje16dybW2TH/7gRaSUfO5zT9HZ9WCbrwYNGjT4MHyob9OGUv8vBy6Xi0Tigz34fpG4fS4Ml0GlUKW9v5lipsTkmzOousa5P3+bM984RrDp/s3STX3NFO/KYHQfH8DwGNRKVZbfmaGQKZJbz9NzegRHOvy9v/17XN68zIHmA3x777cJdsbpOH4U+2fdKN55nFI3G8kSqfQG/+L5AwR/9xhNfoPU7AaZ+c279jzeXWvIb+YopotEO2MYnkeTQvC1RmnaVx8giA53MPvz69TW5tm7+BZgw+KbaE4eX2uM4uoWsZOn8UTrWRZ/TxuZ2TXmfnYFRVHofvYQmt/N1sQCtUIFNRrG392yK0vmaY8z99I7pO+s03wgWNdrs+xHPk6uaIj87DKKrqEHdx4Px3aoJLNoPjeG30PLM8cwy1UcFNRAiWo6j7e9CfGeyUSzXGPz6iyKSyM22MHW5BKOhFBnE6uXZtG9Bh3H7vWJqWrdYN7wuXH53VRLVZYuzRNujzL16m0Sw624/G425rZYmdpkz5nBeia1WCPeHaNloIXbb82j6Spz15bJpooIVeHkFw1ibbsD2I/KVjKFY9uoqsra2mYjIGvQoMHHzuNMWbqB/w54ApDAa8D/JaWsfEJra/AriDfg5vRXD1IpVgk3B7CqFuVilcs/uYTbb+DyGpz6zSN4g+5djzW8Lgaf2rvrttxmgWh/K7VSjdRqluXcBhfXL21nwrZKKeK+JvqG2hg7+094Z3qJsWgz5vwcUtfYmFyn/3RdciHWl8AfD6LoKrp7Z8BVKVS4/pNr2KZDuC3J2Gf38SgomkrzeC+Ukti6TjmVx4i0UVwfwVedQHQeRwQStJ5pxq6YqB4DIQTFrTylTJFKpoBQVRzTorCWZnNimWyqSuvhASzTwTZtNNfOgEx1u/F0thDo76S0liJ+bOS+U6gPItjfgSsarAdk/p2B6ealKTJTS6gune7PHsXdFKbvm5/DzBXR/V7smonu8+zIRG1NLJKaXkVaDuV0gdziFiiwNbkCCAprJqHOOOHu+hRpz5kRcktbeKJ+zJrN9b+9SmYjRzlfpvtoL9ViDWEoLN1eQ1EEpXwZYehIR9I11sbQyQEGjvXwyp9doFiq4i3XcPvd2zIsj4J9N8B6FHp6O7kzPYdl2ewZ6v/gBzRo0KDBY/I4GbJ/D+SBf3P3/28C3wG+/nEv6tcNKSW1Wg2X66P3wfwy4A248d5ttDY8BuVChWrVpFSskFqtN94/DqrPYHJrlWBKofrOHHkEtnM3E1buRtr1QEQIwZ/94Sm2ijVCGrzzXQ2zbBLp3NnH9O5gANSzQcVsCd1Vv9g7toOqKVi1x1ij48CfvACLb6J2HqfjzP9NcnKV2m9+F3+Ltj09KYRAu6uplZ7fZPqVWwB0H+/H1xxGc+s4UmJVLYIDHVSyFXqfHb5vn5sR8OCJhahmS3Q+e4hQ7+6ep/dj10wqmRLusA/V0HBF7t9vVknnUd0GVqWGVa6h+zysX50jdXuJjtN7Cfckdj1G97qQtoNQBK6gl1ppheSdNQJtMTwRH7rHwPDfC8INr4umPfU1b85sYFVMmnqbiXZEGHhiCCklmbUsd/63H2Obde23QCKMqgqsu6r7qqYS64zQrCqousbo6f5Hyo7Zts3Zly6yvLjO0ZNjDI/eXwvvvfh8Xr70pc9+4HYNGjRo8GF5nIBsSEr53mamnwshrnzcC/p1w3EcXnrp50xPz3LgwDgnTx77u17Sx44v7CPSEqZSrNB/sItA7NEzOZZt8/eX/heK2jSeSC//u/hHGJkKrZk/ZFYWGQ3Hsdcz3LycpXO0nUDMTzxQD3oOfOUI5WyZQPz+Tdi2ZXP+exe59vMJQs1BnvmDJxh+eoTceo6WxzGbLiVh8U1wLFh8k2iLRnRgt5H3e6nm7irkS3BsSffT9Y9WOV0gObGCtzlK3zNj+OKh+z5eNXR6P3MYu2qi+3ZnG9+PYztMv3SFSrqArzlM37P7H9hrlTi8h80r04SbQrijAYobGW79x5cRqkp2Zp1Tf/QNqtkS5XQBfyKM7nURHWzDCHhRNBVvPEh2NYtUNVRDI9KbILuaYeHSHP1PDG/7Tr5LuDVMuC1MrVSjbayTu5PceINeug/3UM1XaNvbSrQtQilXpmu0Xi6MJIK4fS7SG3n6DnQQba1La1imxcVXb5NN5Tny5F6izTsDz1ymyNL8GrF4iGuXJncEZFJKLly4wu2JaY4cGWdk7ycnJ9OgQYMG7+VxArJLQogTUsrzAEKI48C5T2ZZvz4Ui0Wmp2doaWnhypVrHD9+BOUhNjEfhJSSty9c5dbNSQ4fGWd07O9emeSpbx4nEPURiPoYf+rh67Fsm+nUOk01N3OXF8kGrXuWRvosxkiULsfHP722RMHxMzCUYOK1O+iGRj5Z4PhX7wVC7oAHd+DBTe6VQpX12SSqrlFIFkjObzH6qSFiH9DovwtfHDqP14Oy94i7PozYQAuldAGEINp7rw/QE/Ez8uXjIOUu/a33o2jqtrn6B+FYdj07FvJRSubq2az3PXb96hybtxZpGumk8+mD27eblRrFVB4BeGIB7KrJnRcvY1Vq+OIhBj93qK6D1navGT4x2kUlU0LVNcyqhZSQXUqRW8vsNgb3GIx+drclrtvv4uiXDlLOlQm3hNDe9374w14Of2aUn/352yxOrVOrWJz4/D6Sa1nmJlfx+lzcvDjDE+/zvwyEfDS3RNlcT7Pv0M6Aq1gscfmdG8SbY7z++kWGhvs/0uexQYMGDR6VxwnIjgO/J4RYuPt/F3BLCHGNhsn4h8bn89Hf37edIfuoX/7FYolLl64Rj8d4442LjOwd/EQuKFJKLNNG/4CgAcAf8fKp3/7gzJ9l25z+k69TVKZxVXv4PwL/A9ZqDa/op6TWLY1OHh1HCEGoPYJZMQk1h9hazlKr1AjGH09Z3RN0078FYpAAACAASURBVHegi/RKllhPE+3DD5g0fD/vkbNA1E3Q+dYPd972Aegeg74n9973PvUhdj8PolauMfP6JI7t0H9qDy7/zqyZ5tJpO9xP6s4aHSeGdgVyds1i/do8vniQjWvzxIfbUe/qixXWMsT391PazNH3+aM49t0BAkWhctfeSDoOhc08qkvDG/YR7W3G1xRA0VXSSymya1k0l4YntHuQ4mH4wl589xm+eBfHkRQyJfLZIpWyyaFnhvGHvLg9BpVyjXjb7glkTVP5zAunqFZqeLw73yePx02iJc7a2gYDAz2NYKxBgwa/MMSjNsEKIR4qOiSl/IV7Wh45ckS+/fbbv+in/dj5sD1kqVSGl39+jlA4yJkzxzEMA9u2+eEPXmJ9bZO+/m6efe7Mx75ex3F48+c3WJxeY894DwdOfLiyzrvZsHetim5vrvCbP/o8QjhIqfCPK/+cvlAzh744zlI5vb3d+ymmixQzZSKtoV3lsEfhvX6cH8h7+sXoPF4PxD7CRTuXLDDx2iT+qI89JwfQdJXN+SSZtRztwy14HzGAWZtYYfb8HYQqaBvtpOtQz2OtQ0rJ/Cs3yC0mCXbE6P7U2Pb7sXFriZW3pxCKwsBnDuCLh1i9MsutH13CtCyCrVE0j4vlKwtUCxW6jvcTbIkQ620mNZ8kt5Gj82A38d74B/pSPg61qsmf/p8/4fJrk5g1k+FDPcS7ozz7laP4Ah6q5RqhmP+xZTBM0ySfLxIOBxsBWYMGDT5WhBAXpZRH7nffY5mLf3xLavBehBAfqqH/0jtXyWZzrK1t0N/XTU9vF6qq8vwXntm+oHwSVEo1Fu6sEW+LMHl1nvFjj1/WeW82zOf0c+5b32Uw1oLPqRt8e51+Pv30EZrao7j9Lob8Dy49+iI+fB/gd/gwHuuC/b5+MUpJ8H846REpJdMXZqkWa+STBRJ9cTxBD9d+OoGqKWTWshz90sEP3hHgDftACMrZMppLo5Qu4g557ntczIpJKVXAG/VtT5oKIeg+s5dasYrudW1PgS68dQd3yEuwO4G827APdaFZf2uE5Utz+JpCLF+eRArIrWa4+v13aN3XycbUOkLXCCWCJGc2aX+P2v79cByHG69OsT6bZPhkPx1DD+/jS63nWJndJBjxsra4xdzMGkbA4LWfXOE3fvcMng8pFqvrOtHoxy+d0aBBgwYP4xfrVN3gY6WlpZmpqVlcLoNg6F7w9UlfUNxeg87+BIvT6wyNdz9SMPb+bNh0an27N6yoTDOdWmco3sa5b32XG4sLrL+6ypVXpth3ZpCuRy0lfhK8vzz5IfrF7odl2rzz4k2mL85haCrxzgieYD2AUlSBVbMfq3QZbAkRaA1TyJV5/U/fIN4dp2WohaFP1eU+Clt5Mkspwp0x5s/fIbOcppIrMfyZcVpH21Huisa+dwJ16Z1ZqvkKm5OrIATukBfD46LzcB/hjhjJpjV88RCKqtB7Zpi1G0uUMmWMgAerZuEJe9HcBpV8mZ6j/TiOQ2o5gxAQbY/sCoRL2TLLk+sEm/xMXZj7wIAsGPExuL+LuYkV9p0eoFAo4fa68fhcDRulBg0a/MrRCMh+hdk7OkRTPMbVq7d47bW3OH36KLHYR1Ptv/zOBDNTixw4Mkxff+d9t1EUhZOf3sfhJ4ZxuT9YPPWDsmE+p5/BWP3iq6kqrWqIhdIC3oCb1dnkYwVkjuMwcXmOfLbM2JE+fA9p6n+End2/PPmY/WL3I58qsrWcoWOkjUqhwrEvH8Ltr2d0Dj0/TiFdJNaxWzH+YVRLNbxhHyvXl+gc62BrPonjOEhbcuvF69iWzdrECk7NopgqkFncYvaNKXxRH+H23c8VaA6SX02ju3WkFOBIFK0efLsCHka/eISRzx+kWqjgCngQ3xBkllPk///27jw47vO+8/z76bvRjfsGQZAACJ4gQVI8RJGyLsqSZYmW5Di2k4y9STau7MzOztbU1mQy3pnsbjY168nM1tZmrngdb6bKSWYTx4odyYcO2zpJSaQE3vcNkiDuo9FoAN397B8ASYBoAN1AAz8A/LyqXGaju3+/L9Ai+eFzfJ+2frw5PgqrCvEGfSRG4vhy/Nw6f5uTvzgDwOb9GyivmziyGAgHyCsJ0985wOrNMzde7e8bIOlO0j3QR8+n/Xz2pT3UNlRRWpGvQCYiS44C2RJ2Z4v/xfNXCOYE+PDQJzz3+admfb1If5TmI2coLMzlg3c+pbauesq/2IwxU4axTEbDxr/ujsKyXEpWFNDfHaW+afpprvvdvtHNsQ8v4vG6sdby8JONGb1/vGSkDVeq6UmXa9bTlHeEC4LkFYfo7xpg/Z76u2EMIK80l7xxrTqGYyOMDMUJ5U8fLusfrufK4Suse2wD1kLtzjpcLheJxL0O/sblou7RdZz68VEKaorxBCYeDTVe5eYa8qqK8AS8DPYMkBiOU7Rq4oigy+MmWHBvuriwupjC6ol93+6M9A3HRjDGYIH40ORTBYyBpqc2jO7mzJ25lceZT6/Q3zfA+dPXadhUw9s/PcJjz6Y3xSsisthkHMiMMb8GHAASgAH+3lr7V9kuTNITCocwbhdXr96gsnK0YefIyAheb+aL2wNBH4WFuXR19rK6bkVaowwXz13n8vmbrG9cTfWq8oxHw9aVTmxoGo8nGIjE2PlsI540WzpM+B4CXlzu0cauoTT+Up9gbHoy7i/i3TebaW3p4MXirQQ7m+c0PZmK1+/l4S9sJT4cxz/NEU2D/TEO/egoQ9FhNuytZ9XGyQ1g4yMJ+jv6yckLsvX5rZOed3vd1O1bx0BbHyW1peQUhtj7jSfpvdGNx+/Fm+Pj9Fsncfs81O2qx+Mf/WMh0hnh3LvnyCnIoWHf2kltJ+6w1nLzzC16b/dSsaYcXC7iIwnOfXCB3JIwmx5fj8frZsW6CuJDcYyB8jUTA+3Q4DAHXz1GpHeQzXvrWbVh5ka3VbVlXLnYSl5hmGh0kO2PON/iRURktmYzQvaYtfYrdx4YY/4DoEDmkIKCPCrKS+np7uHy5Wv89Ce/5Pq1m2xqXMsje1Nu5JiSx+Ph2Rcepb9vgILC1M1UxxuMDnHonWPYUJyOn3fzq1//bMajYeNZa3n/Z0dpvdFJxYpitu9bh8frIZjBzrzC0jz2v7iTodgwZSmm4aY0bnrSVjzEjeQ/obAknzfi/zMHvr5pTtOTU3G7XbhnOC8z0hNlMDJEMM9P+7WulIHs5Dtnab/cQTA3wK4Xt+P1T/xtfevcLc5/cAFfjp+ydaPTv26Pm6JVo/3Wrnx8ie6WbhLxBPmV+ZSvGQ3M14+1kBhJ0Hmlg4p1FXiDfoYiMQqqCnCPC8sDXQOcP3gR43LR/NMTlNeX09vRT0VdKR1XO+lr66NoRSEen4f6HatTfp/93VH6ugYIF+Zw7ezttAJZw6aVVK4s4cCvP0o0EqMy0/5xIiKLyGwCmd8Y83ngOlANzGGRjmSDcRlKiouIDQ1z+tR5GhpqOXHiLDt2bsHnS++A7Dv8fh/+0vTe4/IY/sr3Ha4NXaLWW8+XeDqj0bD7xUcStN3sorAkj1PNl7h+7TbBHB9PvbCbgqL0e4zd35k9LeN2T3paj1C53nK7u5+mXWvTmp6MxxNcv3wbn89DVU1pxmuYYtFh+roiFJTm4vG6OfPRZVqvdbF2ew2lNYW0Xetiw56JZyhGuge4+Ok1Lh25StnqYmL9Q4wMjUwKZB1XOvGH/MT6Y6O7L+/bfRgsDJFMJnF53ATG7WYtrCqg63onvhwfYGh+tZn4SIIVG6to2LPm7us8fg9ur5tobxQwBPOCDPRGiUWGCYT9abXuyC8JU1JVQE97HxueWJ/2zy2cFwSCFJbMz45iEZGFMptA9g+Bl4HNQAvwj7JakWTsscf2cPLEGUrLimm53srJE2dZv2FNxmFsJkmbpCvWRXGgGGMMfSN9XE1eApPkUvwiXYPdlIZK0hoNS8Xr87BlVwPnjl+lpKIAl9fFYHSI3u5IRoEsvW9m6t2TZuVuHn/5WYaHE2mPzp09cYVPDp4BDE89v5OqlelPb8bjCd790adEegcpKstj66MNXDzWQig/h5MHL1FYEiaZtJw8eJGiinx8Y73WTn9wib6O/rtrstbsqiUnb/K/j6obV3D6F2coqCokt/RecGm9cJtLh69QXl/Kls9vxe1xEyq6tx6sckMV+ZUFuFyG21c6iEWGCOYHiPYMTrh+IBxg+/NNDPbF6O8aoOtmN/t+bTeBcACv3zspIKbi9XnY8/wWrLXq/SUiD6SMA5m1Ngp8785jY8zvAd/KZlGSmfz8XB7ZuxMYPZ/x9Knz3G5tJxIZIByefX+u8ZI2yW/99Ldobm9ma9lWvvvMd7GJMInBVbiCEw/5Tmc0bCrrmlaxrmkV3R19vPfWUQqLcimvymy34YzS2D3pNoagJ/3fHvHhxOgC+mSSRDyZUTmJkQQD/TFCeQF6uyL4gj5CeUF6OyNEugc4/t55SqvywWUYjAzdDWShvACdN7oJFefS9NlNFJTnER9JMBwdJpgXGNv0kcAb9PHwV3dPCjoXDl0iEPbTcuIGVesqCaYIczkFOZx8+yy3zrUSjQxRWl9Cw+76Sa+70wuuZFUxtdtqsNYS6RnES3qNp4G7Z1iKiDyIZrOo/6/HPwS2okC2aFy+fJ2Cwjz6+yJ0dfbMOpDdPxrWGe3iyO1PwSQ50vopndEuSnOLaXT9Hp9cbGFb9UoSkX7aY1FKy+YeoApL8njhyxNPGTh+9Bwnj19gc9NaNm1eM8U70zBVc9c57J7c0FSLy+3CH/CyYlVmi//9QR/bPrOOq2du0binnmDIz74Xt9F+o5sjb5yisCyPC0evseOzjeQW3Zv+W7enjnBJiFPvX+TD146xae8arp64wUBPlNqmldQ2reTwq8fo74ywYl0FGx+deKJCyaoiWs+3ES4O45tmLVt/R4RgOIhxuajfVU/ONEcZ3XH24ytcaL5OKD/I3i9svRsi75dIJDl/7BpDQyOs37oqrTYq2RCNRnn99Z8zMBDl2Wf3U1yc5dAvIpKh2UxZ9llr/9s7D4wx/ymL9SwpyeToSMhimmLZsmUDb77xLpVV5ZRXzG6Rc7qjYcYY/uvvPELnwDDdN27yk79/F5cx7P/cI+TlhQiFg7jdE3dKDkQGaT5yhpxQkC3bGiY9P5WhoWGOfHSCouICPj50jIZ1q/D50txJOg/NXQciUS6cv05xSQHVK8vx+b1sfmj2IXHVugpWjWuE6gt4qaorpatxBTcutvPyP36KmnUT+7G5PW58AR82afHn+Lh68iaRrijhwhxaL3VQtqqIy83X8QQ8JBLJSYFs7d4GqjdVEwj7p21Cu2FfA5c+uUr1pkpy8oNE+wbxBb3EBoYJhPx4Ury39UoH4YIgke4o0f7YlIHs1tUOmj84h8vjwhjDlt1zCNoZaGm5yY2WWwSDAU6cOMVjj+1bkPuKiExlNoHsj+57/M1sFLLUtLe389qrP8XtcXPgwOfJz893uiQAVlRX8rX/5ksYY4hGB3nj9XcwLsPevTsJBlO3gch0NGx79UpKc0fXVrlchtJcP9f6orhchkQiyS/f+oiR4RFWVJez/9k9EwLr0U/OcPH8dRLxBCWlBaxcNX039ju8Xg/lFSXcutlOVXUZ3il6Z03+5rLb3DWRSHCj5TYH3ztKLDqENfDiF59Ka1dqpowxbN7XwOZ9U58VWlieR25JmFh/jLX71nDrYgcdLV1s3LeGq8dvcurgBbpu9bB2Vy37fnUH4XFHTLlcLsJFE0dQu2/34XIZ8sf1Qcsvz2Pb5zYDcOqDi1w5cYNIb5Sc3CB5pWH2vNA06ZD59btqOfH+BarXVZBbNPUorcfnZiQep/VqF8WV+VhrF2Tasri4iEDAz/DICCtXZtbrTkRkPsxmDdnl+x53Za+cxcVay0cfHeb06TPs3PkQmzZtvPvchQsXiSfiDMZiXLvWwubNiyOQwb2zGc+du8jlS9ewWMrKitmyZeOk1045GhZdhSsn9WhYSdg36S/NDY31RAdiuFxw+tRlqlaUcuNGG7HYMDk594JgKBwkEY/jcrszmp5yuVw8/blH6O2JkF+QwYHRGUxPJhKJGUfsjh87x8eHjnPu9BVW1lSSV5CblW4YyWSSaGSIYMiP2z31iGt/9wDGGMJj04b+HB97X9p2dzF8ac29pqxXT9zA5XFTWFXIyFCcaN/ghEAGcOXkTdqvdVK/dSVDg8M0v3UGAzz0zKYJ17qj5Vwr+eW5nD18mcZHG+jvHGCwfwhv8cQ/SipWl1CxeuYR2orqYnxhL0l3gpart+m43UNpxdxOm0hHcXERX/21XyGRSJCbm/0wLSKSqbQDmTHmn6b4ci9wxFrbnL2SFo+BgQGOHPmE0tIS3nvvAzZsWH93tKe2djUnT54mEPBTVZXeKM9CKygYDYkGQ0F+/qSRMCDlaJh7xENx229yYyRGTSA8aTQslZycAI8+8RAA4bwQxz49S+OWhglhDGDz1rUUlxTgD/gyXmvm8XgoLpnhjM5ZTk+eOX2B9977mOrqSvY/vQ/PFAv6ByKDeDxuVtdXsXZtLZu2NJBfMLe/0K21fPjzk1y/dJvKlSXsfWZLymnw1mudfPjTExhjeOT5LZRUjv4sploMv+WJ9bRf7+JS83VWrK3g8M9OsaKhjM2PrcXlcjHQE+XMBxfxh30c++VZVq6vxGCw1hLtH0pZ67pdtZw+eImmx9cTH06wcn0F4cLZd76J9EW5cvEmN6+3k0gm057CzoacnJnXwomILJRMRsh2jP3v78cefx74GPhdY8zfWGv/TbaLc1owGKS8vJTbt9uor6+f8JdkRUUFX/var2OMmVVX/IWwevVKXvri5wAoLimcNBLmMq6Ua8NycuB36qCjDzavLch4Cqlp23qatqXuJeVyuaiuGQ2wAwNRfvHmQYZHRnhq/yPkF8yxl9Qcpic/OXKCosJ8rl29QXd3H6WlqcPi1u0bAAiFgmxuWpuVABGPJ2i5dJuS8gJuXetkeChOIMUi+572fozLkEwk6e2I3A1kUwmGAzz/D58E4O/+5Ockkkmunb5F/dYawoU5eANe/Dk+BvtiVNSWUL2ugoGeKC63i8r61MF11cYqajZUTvhvIpFIEh+J40l3GnmcWGyYiuoi8gpyKK0opKhU/cRE5MGUyZ+gxcB2a20EwBjzB8D3gc8AR4BlF8jcbjcHDrxAX18fBQWT//LLdp+vdLS1dXD61Dlq61ZRUzPzAcylpaPTTu0DHZPXhYVKKM31T1obZozhxRefpre3n4pZbgxIx7WrN7l1qw2Px8OZ0xfZvWeO5xDOYffkho1rOHz4GGVlJRRMM+IVCgXZ++j2udV5H6/Xw6YddZz+5ArrmmpShjGAmrUVdN3qxbgMVXXpb0To64zQ2dpL+/UuajZU3D030xfw8vCBJiI9UQor8vF43WxJoynr+DA20DfIu681Exsc5pFnNk86HSGZTDI4MDoVm2rUr7g0nx17N9J5u5fND029Vk5EZLnLJJDVAMPjHo8Aq6y1g8aY1PMby4DX66W4ePJaGickk0l+/OM3wY6uD/uNf/ArBIOpp4vuP+B7qp5hU60Ny8sLk5eX5Was9ykpKcTj9WCTlqoV5Zm9+f6pSZjT7slt2xtZt74ev98361Evay2nT16i9WY7W7ato6Q0/bVQG7fXsXF73bSvyckN8MjzTRnXlUgkKasppLgyn8r60gm7IoO5gbQO8p5KV1sf1y+0MjQc5+ynVycEMmstB39+nFNHL9Pd1cv2Pet5dP+2CWsHjTFsaprc10xE5EGTSSD7S+CQMeaHjPYfex74K2NMCDg1H8XJRMYYcnKCdHV0EwxNbilxR6oDvlONhN0x3dqwdF27doP2ti7WrqslN3dikLt44QqHDn1CbW0Nex556G7oKy0r5ktf/jzJZDKz8DfV1KQxs949CZCTM7dTwLq7+vjwg6MEAn4+ePdTDrz85Jyuly0Fpbk0Pb6e/s4ItZvv7Si01nLp5A06W/tYt62G/OKpP4PerggXTrRQtqKQlfX3wrPH6+bG9Q6SiSTtbb0T3jMykuDapVZisRjtrd20XLnN7Ztd1NQtzjWXIiJOSjuQWWv/0BjzY2Afo4Hsd621h8ee/vX5KE4mMsbw3HP7uXXzNiWlRXenTO8fDZvqgO/pdknORXd3L6//9G3AcOvWbZ5/Yf+E599/7zA5oSAnjp9lw8YGCgvv7UgNh2exsDragb12CGMTo/9/Z2oS5tTcda78fi8+n49odJCqFQtTQzKZpKe9n2A4QDCUOlQbY6hZNzkE9XYOcPT98/j8XqJ9gzz+8kNT3ufDN08QjQxx+fRNCktyCY+dT5lbGKJxVz3DsWFK71vT5vN52Li1lnff6KWkopBwXg4FRdrRKCKSSqarcONAErCMTlnKAguHQzSsvTe1lWo0bKoDvrMxEpbK6NogQzKZTBn0autrOH3yPEVFBbMLYPfpSwSIeFZTMXKZNl8tFbNo7DofQuEcnn/xMfr6BqioLCEeT9B85AzRgUG279xIODf7u/pOHb7MmU+v4A/6ePKlHYRy0x/l8/k9eL0ehgaHqaiZfsdrMMdPT2cEX8CH23NvZDacF+TJAzvo6xmgMkWbjKZda9m8Yw3RSAyP100gmP3//kREloNM2l78E+B3gL9ldITse8aYb1tr/2S+ipPJ0h0Nm+0B37ORn5/Lc59/ks6uburqaiY9v3fvDjZtWks4nDO7Han3rRcLBAP8qOafMdLTSnntBp5bROcf5hfk3m2DcfXyTY59ehaPx43X52XPvszXf01nZCTOsQ8vMBQbwSYtg5GhjAJZTm6Ax17czkDfIKUrJq93u3L+FlfO3aKhsZqdT22i7UY3eQU5k0biisryKCqbeneky+UinJd+GB0ZGeHSxWv4/D5Wr66+G/JjsRgfffgpALt2byMQmP3aNxGRxSaTEbLfBnZbawcAjDHfAg4Ccw5kxpgvAf8LsAHYNW4qVMbJZDRsLgd8z0bVivIpF+a7XC6KimboHzaVFOvFfD4fL738At3dvZSXOzs6NjIygtvtThl6gzkB3G438XiSvLzsHPI+3rlj14gNDnH9QhuPfHYzhdOEoqnkFYXIS9FJfyg2zMdvnyQnFODQWyd48euPU7Mmw40Xs3S0+TQff3QUg+H5A09RvXL0yKhzZy9y4sQZAAoK8tjStGlB6hERWQiZBDIDJMY9Tox9LRtOAC8Df5ql6y0Zw8PDNDcfw2VcNG3dPGEEaTGOht0Ri8U4dPAISZtkz54dU+72nLMpWlmEQiFCoeyHnExcvHCVd375EUXF+Tz73OP4/RPbVZSVF/H8i48xNDxCReX87NTNyQ2ydmsNm3bWpezwn0wm6WrrI5DjSzlKFY2MnjPp8UzcIOL2uAnlBunviVJUmofLlf5v9aGhYbo6eykozCM4iynKRCIxujPY2rvnxQKEQqG7o2VOf/YiItmWSSD7f4EPjTGvMBrEXgS+m40irLWngawuNF8qTp8+y0cffgKMdg7fuGm0D1Smo2FrSyoX9Od37twlTp06h8sYigoL2Lptc3YuPA8Hgc+XkyfOEwrn0N7WRWdHd8oRwuLSWY4MjunrieDze1OuvVq7pQav34PP56FiZerAd/KTS5w6chmvz8P+l3aRV3AvyJxuvszRj86RX5TLUy/sxOe/948Bj8fNE88/RE9XhKLSvLT/27LW8tbPDtHW2kl+YS4vvPT4lKceTGXrtk34fF6CwcDd0TGA+jWreTE02ui4snJhRutERBZKJrss/09jzC+BvYwGsq8v1yOTFpLf5wcsFssAA3cPV85kNKy9vYOf/OR1AoEAzz33WcLh+e0fBpCXl4txjf4FfH+bi1mbRaf9/v5+zp27QGlpCTU1K7NTR5o2bKzn3bc/pqiogKLiuQWvVM6evMrhD07h83t59gt7yM2fOCrk9XpY2zh5zd54XW19+AJeYoPDDA7EJgSyS+dvkl+US09XP309A5SUT/wegqEAwVBm67SSySSdHT3k5Yfp7YkwMpKYMpD19vbz7tsfEggGePQzu+6OMPr9PrZtb0z5HgUxEVmuZgxkxph+RndV3v3SuOestTathSvGmDeBVA2Ivmmt/WE61xi7zjeAbwDU1Ez/l9FSsHbdGnwBH//i6O/zZ0f+M1uvjx5rlMnasDOnzzIyEqe/v5OWlpusX7923utevXolL7/8PNZaKiqy1OJhFp3233rrbVpbb2Ot5atf/ZWUJyrMlzUNq6lZtQKPx43b7WZoaBiv15O1aeNbLe34gz6iAzH6egcmBbJ0bNnVQPMHZ8lfE6bkvkO7G7fV8dE7J1mxqoyC4rm3o2i73ck7vzyM1+fG4/XwyKNN005Znjh+hva2ToaGR1hdW82aNavnXIOIyFI1YyCz1malcZC1dv/Mr0rrOt8Gvg2wY8cOO8PLF6Xxh3y7XC5yy8Kc7Dk16VijdNeGrVpdw+nT5wgGA5SVLdyU3pwX1GdhetIYQzJpcbtdCzpl23L9Fm+99T45wSA7dm6hq6uH5k9OUVFZyjOf+8yUo0IjI3E+OXyKkeFhtu9snHT4+niN29bw/s8/pWZVOaUV6Xf9H6+wJJcnDuxI+dyqNZXU1Fdk7efW/Mlp4iMjRCKD7HvsIapXTt8AtrS0mJMnzuH1esnPm/jHjLWWkZERR44nExFxQuanAT9grLUcPHiIM2fO8fDDu9m4ceaz/qaTtMlJh3xPdaxRujsla2pW8hv/4Mu4XK4pWwFYa/nggw+5cvkqex7ZTV3d6jl9H3M2h4PAx3vqqce4cOESpaUl5Ofnz/j6bDl29Axul4s3X3+XSxev0dXVw8N7tnPrZhu9Pf0Ul6QOUFcv3+D40bOjn1UwwI5dqafmAErKCvjCV56YdY1trV2cOnaJmtpy6hpST+dmM8SuqC7nRstt839kvQAAGMpJREFUQqEg+fkz/ztu7bo6iotHj88a//pkMslbb73DpQtX2Lp9M7t3T92wVkRkuVgUgcwY8xKj7TNKgdeMMc3W2mccLgsYXaN0tPk4JaUlvP/+BxkHsvGjYcYYOqNdkw/5zi2e8lijdOXkTN/nqbu7h6NHT1BYmM+77x50PpDN4SDw8cLhMFu3bpnHQlOrX1PD5TeugzGUV5aQSCbo7OxmxYqKu33IUgnmBMZG9ZJpN4qNxxP09UTIzQ/h9U7/W/ZmSztnT12hbs0KPnr/JC6XoeVqK+WVJYTCQYaHRzjy4SkGozF27mkkN4vtODZtbqBqRRn+gH/akb/xUgXXaHSQi+cvU7migubmE+zcuW3Bdg+LiDhlUQQya+0rwCtO15FKTk4OZeWl3L7dzvr1a7HWcuHCRaLRKOvXr8Pvnzo8pTsaNtUB39kUCuVQWJhPd3cvjZvmNso3K0to92Q61q2vp3plJRfOX+Ha1Zs8tX8v5eWleL2eaT+/FdXlvPDiEyQSSSoqS4DRaczWW+3EBodYVbsCn+/ebkdrLW+/eZiWa62UlhXyzAt7pzzDNJFI8PYbh/H5vdxsaacgP0xnRy+hcBDPWJC7eb2NMycv4/W4OR2+yK69Wzh94hItV1tp2rGesvLpO/bPpLBo7qOUOTlBautXc+XyVbY0bVIYE5EHwqIIZIuZx+PhwIHniUQi5Ofnc/PmLX72szcA6Ovr59FH99597VxGw+brWKM7/H4/L798gP7+CEVFs1uPNGtZmp5cbEKhHJq2bqRp68aM3ldWfq9FxeVLLbz6w19w4exV1m2sZdtDm9izd+vd55PJJDdbblNUkk9Hew/DQyMEc1IHMpfLRW5+iM72XnLzc3j8mZ10d/aRX5iLf6ylRU44iMfjJp5Ikl+YR093Px8dPE5OToB3f3GEL37l6Vn8JLLL5XLx2c8+ztDQkLrxi8gDQ4EsDV6vl8LC6UPMYhoNm4rf7592RG/eZGl6cjk6e+oSgYCfgYEoscFh4iPxCc+73W527d3C8U/Ps3XHOoLTTAUaY3jq2V10tPVQVJJPKBwkFJ7YsLesvIgXXn6M4ZE4pWWFxGLDBIN+IpEoq2pXzMv3OBvGGIUxEXmgKJBlqKqqkmef/SyRSISy2tK7fcMW02iY45bZ9OR8WrexjtbWDh7a2UjT9g1s3b5h8ms2rGbdhtUTvtZyvZXBaIzVddUT1pUFcwIEQ35e/8l75OaGefSJhyadIFBQdK9TTTDo53MHHqWvN0JZxfycJiAiIjNTIMuQMYa6+trR0bBji3c0zDHLdHpyvtTWVVO9sgK325X2WqlbN9v52WvvkbSWrT0Rdu6euFPz+NHzxAaH6eq6ydpbq6hZPf1O3dy8UFYX94uISOa0WnYGSZukY7ADa++1PLszGpawiXGjYX4aXb9H7OK/oNH1zyeNhj0QYQxST0/CvenJB+XnkIFMm8kmEgmstbhdhng8Pun5FdWlxIaGCfh95KXRfuLqlRu88/bHdLR3Z1T3TGKxGK2tbSlrFBGRiTRCNo1U68JcxjXtaNiFllaCJn53KnPZ0/TkgqtaUca+x7YTjcbY2Lhm0vNr19dSXlGC1+edsf3EwMAgP3/jIF6fl5strXzl11/ISo0jIyP83Q9+QnPzCfLzc/lH//i3ycvLSo9pEZFlSYFsGinXhYVK7o6G3b82rKurk1/85FVGRuI8/PAuduxY5g0tF9n05IMSgl0uF+s31k/7mul6oVlrGRyMEQwGcLtdeH1eBgcHKS8vyVqNsdgQly5fo72ji9bb7Rw+3MyTTz6ateuLiCw3CmTTmKqD/lRrw6LRKCMjcXw+L93dPU6WvjAW0e7JI0c+4eOPj7BlSyN79jy8aIPZ4GCMrs5uikuKCASc2djxwftHOH3iAqtqV/DU03t5/sATdHb2UFGZvdHM3NwwDz/8EFcuX6OiopRIJEo0Gp2xgbGIyINKa8imMdW6MEi9NmzFihU89NB2Vq2qYdeu1OcHOimRSPDOO+/y13/9N7S2tmZ+gWQSIm1wZz3dnelJl8fR6cl4PM5HHx2mvLyM5uZjDA4OOlLHTBKJBD9+9S1effUtfvzaWySTSUdqOHv6EhVVpVy93MLgYIyCwjzq19QQCgVnvkAGnnxqH//rH/4zystLuH79Oq+++saEtZgiInKPRsimkekuSbfbzZ49uxeousy1tbVx/PgJwuEwH3xwkJdffin9Ny+y6cnxPB4PDQ31nDt3npqamkXbvyoej9Pd00t+fi7d3b0kEokF70LvdrvZ3LSeY82nWbu+npyc7Iaw+xUU5OEP+AkGA0QiAw/MtLKISKYUyGawnHqG5ebmEgqFiEQirF+/LrM3L6LpyVSefPIJdu3aSTgcXrRH7fj9fh57fA+nT51n1+6teL3emd80D3bu2sK27RvxeFL/9rfWcvLEWTo6uti6rZGCgryUr0tHMBjk6acf5+LFyzQ2bli0n42IiNMUyB4g4XCYL33pi0SjUYqLM2wCush3T7pcLvLyZh8cFkpDQy0NDbVOlzFlGANoa+vk/fc+xuvzMDAQ5fPP75/TverqVlFXt2pO1xARWe4UyB4woVCIUCiNJqD3t7MwZlFMT0pmenv7eeNnb2OMi6ef+Qx5eeEZ3+P3+3B7PQzFhgmHtQhfRGQhKJDJZFOtF1sk05OSvgvnr9DbFyGZTHL58jWammY+CL2gII8vfOGzRPoHqF5ZuQBVioiIFnTIZFN125clp6qqDAN43G4qytOfZi4tLaa2rsaxdW4iIg8ajZCJuu2nkEwms7YAvbu7h/7+CFVVFdOu3ZoPlVXlfPmrBwAIhWaefkwmkwwOxsjJCWo3pIjIAlIge9At4nYWTjl48EOam4/T1NTII488PKdr9fb28YPvv8rQyDCbN2/k0Ufndr3ZSCeIwViftNfe4MaNVpqaNrLnkV3zXJmIiNyhKcsHnQ4Dn2BoaIjm5uNUVlbQ3HycoaGhOV1vcDDG8MgIgUBgTqc3DAxE+cUv3ufQwSPzdlh3JDLAjRutlFeUcuLk2Xm5h4iIpKZA9iC5v9M+LJpu+4uFz+ejvr6WmzdvsWZNHT6fb07XKy8vZffu7VRVlbNv3+ybBjc3n+D82Yt8cuQY1662zKmmqeTmhlm7tp62tg527dw2L/cQEZHUzFI+ymTHjh328OHDTpexNEw1NXnnuQd0ejKVZDJ599zFxdLI9NjRk/z0p7/A5/Pyq1/+AlVVFfN2r2yunxMRkXuMMUestSnPVtSfug+K6XZOPqDTk1NxuVyLruO/MYZ4IkHSWvz+9E6OSCaTtLV1EI1GM7rXYvq+RUQeFPqTd7lapAeBy+y0tXdSWVFGIOCnt7cvrff87fdf5d/9u//I9773/YxDmYiILCztslyOtHMya6y1WGsdHzXatq2Rvr5+avJWUF09c7PWrq5u3nj9F8STSfr7Irz44nPk5KjrvojIYqVAthwt8oPAl4qBgQFee+1nRCIRnnvuGSoqyh2rpaiokJdeei7t1xtjqKtfxcWLV2lYs5qSkqJ5rE5EROZKgWw5UGPXeXHrVivt7Z2EQjkcP37S0UCWqcLCAr729a/Q1dVNXd0qx0f4RERkegpkS52mJ+dNaWkJ4XAOsViMNWvqnC4nY1VVFfO6G1NERLJHgWyp0/TkvMnPz+erX/0SiUSCYDDodDkiIrKMaR5jqdHuyQXl8/kUxkREZN5phGwp0fSkiIjIsqQRsqVE506KiIgsSwpki5mmJ0VERB4ImrJcrDQ9uWD6+/sZGRmhqGjhe3W1tt5mcDBGTU01brd7we8vIiKLgwLZYqXdkwuio6ODV175IfF4nCeeeJz169ct2L1v327jlVdeJR6Ps3vXQ+zanfK8WREReQBoynKx0PSkI3p6eonFhvB6vdy6dWtB7z00NEQikcDr9RAZGFjQe4uIyOKiEbLFQNOTjqmuXkFDQz2RyABNTVsW/N579+6mv6+f7Q9tXdB7i4jI4qJAthhoetIxgUCAZ599ZlbvvXWrFWstlZUVmFkEZpfLxbZtTbO6t4iILC+aslwMND255Fy6dJkf/OCHvPLKj7hw4aLT5YiIyBKnETIn3H8YuDGanlxiIpEI1lrAMDCP67+SySTnzp3HWsvatQ3aiSkiskwpkC20qdaLaXpySVm3bi09Pb1Ya+d1Z+b58xd4/fU3McaQSCRobNw0b/cSERHnKJAttKnWi8mS4vf7+cxn9s37fezYrltr7/1aRESWHwWy+Xb/9OSd9WJ3Rsi0Xkym0dCwhng8jrWWDRvWO12OiIjMEwWy+aR2FjJHbrdb05QiIg8A7bKcTzoMfNm5ePES3/+bH3Di+EmnSxERkWVEgSyb1G1/WUsmk/z8579keGSEd997n2g06nRJIiKyTGjKMls0PbnsuVwuyspKaWm5SXFxET6fz+mSRERkmVAgyxZ1238gfO5zz9DR0UlRUSEej377iIhIdmjKcrY0PflA8vl8VFVVEggEnC5FRESWEf0TfzY0PSkiIiJZpBGy2dDuSREREckiBbKZ3D81CZqeFBERkazSlOV0ppqa1GHgIiIikkUaIZvOVFOToOlJERERyRoFsuloalJEREQWgKYsp6OpSREREVkACmQzUWPXjHz66ad8/PFhGhsbeeSRPU6XIyIisiRoylKyJh6Pc+jQh5SUlHD06FGd9SgiIpImBTLJGo/HQ319PbdutVJdXa1u9iIiImnSlKVk1f79T7F79y7C4TAul/K+iIhIOhTIJKtcLhf5+flOlyEiIrKkKJCJZOj8+QscPHiINWvq2bPnYYx234qIyBxpTkkkQ++88w5+v4/m5mP09fU5XY6IiCwDCmQiGaqtraWzs4vi4kJycnKcLkdERJYBTVmKZOjxxx9jy5bN5OXl4fV6nS5HRESWAQUyWdastVy5coVYbIg1a+qzEqBcLhclJSVZqE5ERGTUoghkxpg/Bl4AhoGLwG9aa3ucrUqWumQyyY0bN3jttZ+QTCbp7e3l4Yd3O12WiIjIJIsikAFvAL9vrY0bY74F/D7wew7XJEvY7du3+fGPf0J/fz9DQ8MEg0ESiYTTZYmIiKS0KAKZtfb1cQ8PAb/iVC2yPJw5cxZrLS6Xmw0bNlBRUU5j4yanyxIREUlpMe6y/C3gJ1M9aYz5hjHmsDHmcHt7+wKWJUtJfX0d8XiCcDjM3r172LHjIR3lJCIii5ax1i7MjYx5E6hI8dQ3rbU/HHvNN4EdwMs2jcJ27NhhDx8+nN1CZdmIxWK43W7thBQRkUXBGHPEWrsj1XMLNmVprd0/3fPGmK8DzwNPpRPGRGaiETEREVkqFsUaMmPMs4wu4n/MWht1uh4RERGRhbRY1pD9eyAXeMMY02yM+c9OFyQiIiKyUBbFCJm1do3TNYiIiIg4ZbGMkImIiIg8sBTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhMgUxERETEYQpkIiIiIg5TIBMRERFxmAKZiIiIiMMUyEREREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhMgUxERETEYQpkIiIiIg5TIBMRERFxmAKZiIiIiMMUyEREREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhMgUxERETEYQpkIiIiIg5bFIHMGPOHxphjxphmY8zrxpgqp2sSERERWSiLIpABf2yt3WKt3Qq8CvwrpwsSERERWSiLIpBZa/vGPQwB1qlaRERERBaax+kC7jDG/BHwNaAXeMLhckREREQWjLF2YQajjDFvAhUpnvqmtfaH4173+0DAWvsHU1znG8A3xh6uA85mu9YlpgTocLoIyRp9nsuHPsvlRZ/n8uLU57nKWlua6okFC2TpMsasAl6z1jY6XctSYIw5bK3d4XQdkh36PJcPfZbLiz7P5WUxfp6LYg2ZMaZh3MMDwBmnahERERFZaItlDdn/YYxZBySBq8DvOlyPiIiIyIJZFIHMWvtFp2tYwr7tdAGSVfo8lw99lsuLPs/lZdF9notuDZmIiIjIg2ZRrCETEREReZApkC1RxpjvGmPajDEnnK5F5s4Y86wx5qwx5oIx5p87XY9khzHmS8aYk8aYpDFmUe3okswZY/7YGHNm7Ki/V4wxBU7XJLOzGI9sVCBbuv4ceNbpImTujDFu4D8AnwM2Al81xmx0tirJkhPAy8A7ThciWfEG0Git3QKcA37f4Xpk9hbdkY0KZEuUtfYdoMvpOiQrdgEXrLWXrLXDwH8FvuBwTZIF1trT1toHvXn1smGtfd1aGx97eAiodrIemb3FeGTjothlKfKAWwFcH/e4BdjtUC0ikp7fAv4/p4uQ2VtsRzYqkIk4z6T4muP/WpP0pHssnCwN6XyexphvAnHgLxayNsnMTJ+ltfabwDfHjmz874GURzYuFAUyEee1ACvHPa4GbjpUi2TIWrvf6Roke2b6PI0xXweeB56y6hu1qGXwe/MvgddwOJBpDZmI8z4GGowxtcYYH/AV4EcO1yQi9zHGPAv8HnDAWht1uh6ZvcV4ZKMawy5Rxpi/Ah5n9MT628AfWGv/zNGiZNaMMc8B/xfgBr5rrf0jh0uSLDDGvAT8CVAK9ADN1tpnnK1KZssYcwHwA51jXzpkrdVRf0uQMeZvgQlHNlprbzhakwKZiIiIiLM0ZSkiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEJKuMMRGna8iG8d9HNr4nY8xqY8ygMaZ5rtea5h5BY0yzMWbYGFMyX/cRkexTIBORB5IZtdB/Bl601m6dr4tbawfHrq+zUEWWGAUyEZkXxph/aow5Mfa//3Hc1/+lMeaMMeYNY8xfGWP+p1lef/XYdf6LMeaYMeb7xpiccc//nTHmiDHmpDHmG+Pec9oY8x+BT4CVqV43w31TXXfnWA0BY0xo7LnGNOv/ztjP6C+MMfuNMe8bY84bY3ZNdb+xr4eMMa8ZY46Ovf/Ls/k5isjioKOTRCSrxqb3HgP+HHgYMMCHwG8welbnd4A9gIfRUPSn1tp/O4v7rAYuA/uste8bY74LnLpzLWNMkbW2yxgTZPQA98eAXOAS8Ii19tBUr7PWdhpjItba8J3vadyvp3r9/w4EgCDQYq391ynqfdVa2zju8QVgG3By7FpHgd9m9LDj37TWvjjN/b4IPGut/Z2x6+Vba3vHfn0F2GGt7cj05yoiztAImYjMh33AK9baAWttBPgB8OjY1384NrXWD/z9nTcYY+qMMX9mjPn+2OPQ2OjX/2OM+fUp7nPdWvv+2K+/N3b9O/4HY8xR4BCwEmgY+/rVO2FshtdNZarX/2/A08AO4N/McI07Lltrj1trk4yGsrfs6L+SjwOrZ7jfcWC/MeZbxphH74QxEVmaFMhEZD6YDL+OtfaStfa3x33pZeD7YyNAB6Z6W6rHxpjHgf3AHmttE/Apo6NXAAN3i5n+dZOLn/71RUCY0VG4Ka9xn6Fxv06Oe5wEPNPdz1p7DniI0WD2r40x/yrNe4rIIqRAJiLz4R3gRWNMjjEmBLwEvAu8B7wwttYqDHx+mmtUA9fHfp2Y4jU1xpg9Y7/+6tj1AfKBbmtt1BizntGp01TSfV06r/828C+BvwC+NcN10jXl/YwxVUDUWvs94N8C27N0TxFxgMfpAkRk+bHWfmKM+XPgo7Evfcda+ymAMeZHjK6VugocBqaaamthNJQ1M/U/Hk8DXzfG/ClwHvhPY1//KfC7xphjwFlGp/tSSfd1077eGPM1IG6t/UtjjBv4wBjzpLX25zNcbybT1bcZ+GNjTBIYAf67Od5LRBykRf0isqCMMWFrbWRsR+Q7wDfGAlwx8EeMrsP6DvB/A/8eiAHvWWv/4r7rrGbcIvnFbiHr1aJ+kaVHI2QistC+bYzZyOhaqP9irf0EwFrbCfzufa/9zYUubh4lgHxjTPN89SIb24l5EPAyug5NRJYIjZCJiIiIOEyL+kVEREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIw/5/3kQBnCXoF7sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXjV5Zn4//dzTvZ9ZwskAVlCFhOSYNhBkUUUF2AQlyJaGLfvdKbfwVG/tdppvWqrv45VO+3YKjhqZUYBi4pKVRAMqAQIsi+BsMiSEAhkJck59++Pc3IkyUlIIMnJcr+uyyvJZ3vuk5OYm2e5HyMiKKWUUkopz7F4OgCllFJKqZ5OEzKllFJKKQ/ThEwppZRSysM0IVNKKaWU8jBNyJRSSimlPEwTMqWUUkopD9OETCmllFLKwzQhU0r1GMaYeGPMamPMOWPMKWPMK8YYL+e5V40x+4wxdmPMfQ3uSzbGfGqMOWOM0eKNSqk2pwmZUqon+U+gEOgDpAETgIed57Y7P9/q5r4a4H+BBzogRqVUD+Tl6QCUUqoDJQCviEgVcMoY8wmQBCAifwAwxlQ1vElE9gH7jDHXdGSwSqmeQ3vIlFI9ye+BO40xAcaYfsB04BMPx6SUUpqQKaV6lC9x9IhdAI4DucD7Ho1IKaXQhEwp1UMYYyzAp8AKIBCIAsKB33gyLqWUAk3IlFI9RwTQH8ccsosiUgwsAW7ybFhKKaUJmVKqhxCRM8Bh4CFjjJcxJgyYj2N1JcYYH2OMH2AAb2OMn7NXDePgB/g4v/Yzxvh65IUopbolTciUUj3JHcA0oAg4CNQC/+I8twaoBEYDrzo/H+88F+f8epfz60pgX8eErJTqCYyI1jhUSimllPIk7SFTSimllPIwTciUUkoppTxMEzKllFJKKQ/ThEwppZRSysM0IVNKKaWU8jBNyJRSSimlPEwTMqWUUkopD9OETCnVpowxZR3Yls0Yk2eM2WWM2W6M+WlddX3n+Y3N3BtmjHm4YyJt1Ha8MabSGJN3ydc72+C5/s7vR7UxJurqI1VKdRRNyJRSXVmliKSJSBJwI459KZ+uOykio5u5NwzwSELmlC8iaW35QBGpdD7zRFs+VynV/jQhU0q1C2dv1U7nf/98yfGnjDF7jTF/N8a8Y4z517ZoT0QKgUXAo8YY42yrzPkx0BjzkbMXbacxZi7wHDDI2aP0vPO6940xW5w9boucx+KNMXuMMX92Hl9jjPF3nvuRMeY753PfvOQ13mOM+db57P8yxlhb+jqMMQONMduMMVnOtvcaY95wtvOeMSagubaVUl2Tl6cDUEp1P8aYDGABcB2Ozbq/McZ8CViBWUA6jv//bAW2tFW7InLIOWQZA5y+5NQ04ISIzHDGFwp8AyQ36KW6X0TOOhOuzcaY5c7jg4F5IrLQGPO/wCxjzDbg/wFjROSMMSbC+exEYK7zeI0x5j+Bu4H/vlz8xpihwDJggYjkGWPigaHAAyKSY4x5HXjYGPOxu7aVUl2XJmRKqfYwFlgpIuUAxpgVwDgcvfJ/E5FK5/EP6m4wxgzEkWSEishsY0wg8J9ANbBORN5uYdvGzbEdwAvGmN8AH4rIBmNMuJvr/skYc7vz8/44ErFTwGERyXMe3wLEA+HAeyJyBkBEzjrP3wBk4EjoAPyBwhbEHQ38DZglIrsuOX5MRHKcn78F/BNwsYm2lVJdlA5ZKqXag7ukqLnjiMghEXngkkN34Eg6FgIzW9SoI6mz0SABEpH9OJKkHcCvjTE/d3PvRGAyMEpErgW2AX7O0xcvudSG4x+zBhB3YQBvOOe2pYnIUBF5pgXhnweOAWMaHG/YhjTTtlKqi9KETCnVHtYDtxljApw9XbcDG4CvgFuMMX7GmCBgRjPPiMWRoIAjCWqWMSYa+BPwiohIg3N9gQoReQt4ARgBlALBl1wWCpwTkQpjzDAg+zJNfg78gzEm0tlGxCXHZxtjYuqOG2PiLhc/jp7A24AfGWPuuuT4AGPMKOfn83B8D5tqWynVRemQpVKqzYnIVmPMUuBb56G/iMg2AGPMKmA7cATIxdEz5M5xHElZHk3/49HfWTrCG6gF3gR+5+a6FOB5Y4wdqAEeEpFiY0yOs9zEx8DPgAeNMd8B+4CvL/MadxljngW+NMbYcPSo3Sciu40xPwPWOOez1QCPOF9vs0Sk3BhzM/B3Y0w5ju/THmC+Mea/gAPAH51JY6O2L/d8pVTnZRr8Q1IppdqVMSZIRMqcqwXXA4ucCVwk8CyO8hV/AV4CXgGqgK9aMYes03NO1v9QRJLb4jo39xUAmXVzzJRSnZ/2kCmlOtqrxpjhOOZnvSEiWwFEpBh4sMG1Czo6uA5iA0KNMXltWYvMuTp0E44eQ3tbPVcp1f60h0wppZRSysN0Ur9SSimllIdpQuZBxpj+xpi1zirgu4wxP/F0TKplnKsEv3VWSd9ljPmFp2NSrWOMsTor4n/o6VhU6xhjCowxO5w7IeR6Oh7Vcsaxh+x7zh0o9lyygrjH0zlknlUL/F/nhOZgYIsx5u8istvTganLughc75yc7g18ZYz5WESaXZmnOpWf4FjBGOLpQNQVmaSLFrqk3wOfOIs/+wABng6os9AeMg8SkZOXTGguxfHHoZ9no1ItIQ5lzi+9nf/phMwuwhgTi6MG2l88HYtSPYUxJgQYD7wGICLVIlLi2ag6D03IOgnn8vZ0HPvrqS7AOeSVh6Mq/N9FRN+7ruNF4DF0JWJXJTjqvG0xzk3gVZcwECgCljinC/zFWThaoQlZp+CsWL4c+GcRueDpeFTLiIjNWbIgFhhpjGlVrSjlGc7Cq4Ui0mabmqsON0ZERgDTgUeMMeM9HZBqES8cu2T8UUTSgXLgcc+G1HloQuZhzvlHy4G3RWSFp+NRrefscl8HTPNwKKplxgAzncVTlwHXG2Pe8mxIqjVE5ITzYyGwEhjp2YhUCx0Hjl8ymvAejgRNoQmZRxljDI6x9D0i4m67F9VJGWOijTFhzs/9cWxKvdezUamWEJEnRCRWROKBO4EvROQeD4elWsgYE+hcBIVzuGsKsNOzUamWEJFTwDFjzFDnoRsAXcTmpKssPWsMcC+wwzkXCeBJEVntwZhUy/QB3jDGWHH8w+Z/RUTLJyjV/noBKx3/nsUL+KuIfOLZkFQr/B/gbecKy0N03904Wk0r9SullFJKeZgOWSqllFJKeZgmZEoppZRSHqYJmVJKKaWUh2lCppRSSinlYZ0mIdPNmpVSSinVU3WahIwfNmu+FkgDphljsj0cU4fQrT+6Nn3/ui5977oufe+6Ln3v3Os0CVkP36xZfzi7Nn3/ui5977oufe+6Ln3v3Og0CRnoZs1KKaWU6pk6ZWFY55Y0K4H/IyI7G5xbhDO7tlqtGb6+vh6IsG3V1tbi5aWbJnRV+v51XfredV363nVdPfm9q6ioqBERH3fnOmVCBmCMeRooF5EXmromMzNTcnNzOzAqpZRSSqkrY4zZIiKZ7s51miFL3axZKaWUUj1VZ+oz1M2alVJKKdUjdZqETES+A9I9HYdSSimlVEfrNAlZW6mpqeH48eNUVVV5OhSlPMbPz4/Y2Fi8vb09HYpSSqkW6HYJ2fHjxwkODiY+Ph5jjKfDUarDiQjFxcUcP36chIQET4ejlFKqBTrNpP62UlVVRWRkpCZjqscyxhAZGam9xEop1YV0u4QM0GRM9Xj6O6CUUl1Lt0zIOpNnnnmGF15ospQa77//Prt37+7AiJRSSinV2WhC5mGakCmllFJKE7J28OyzzzJ06FAmT57Mvn37APjzn/9MVlYW1157LbNmzaKiooKNGzeyatUqFi9eTFpaGvn5+W6vU0oppVT3pgkZjlVpF2ttbfKsLVu2sGzZMrZt28aKFSvYvHkzAHfccQebN29m+/btJCYm8tprrzF69GhmzpzJ888/T15eHoMGDXJ7nVJKKaW6t25X9qK1RISvDxVzoLCMwTFBZA+8uhWaGzZs4PbbbycgIACAmTNnArBz505+9rOfUVJSQllZGVOnTnV7f0uvU0oppVT30eN7yKptdg4UltE72I8DhWVU2+xX/Ux3Cd19993HK6+8wo4dO3j66aebLEnQ0uuUUkop1X30+ITM18vK4JggTpVWMTgmCF8v61U9b/z48axcuZLKykpKS0v54IMPACgtLaVPnz7U1NTw9ttvu64PDg6mtLTU9XVT1ymllFKq++rxQ5YA2QMjGREXftXJGMCIESOYO3cuaWlpxMXFMW7cOAB++ctfct111xEXF0dKSoorCbvzzjtZuHAhL730Eu+9916T1ymllFKq+zIi4ukYrlhmZqbk5ubWO7Znzx4SExM9FJFSnYf+LiilVOdijNkiIpnuzvX4IUullFJKKU/ThEwppZRSPZPdDmWF0AlGCzUhU0oppVTPY7fDGzfD7xJh6QzH1x6kCZlSSimlep6KM3DsG7DXOj5WnPFoOJqQKaWUUqr7azg8GRgN/a8Di5fjY2C0R8PTshdKKaWU6t7qhiePfeNIvuZ/CBaL42PFGUcydhW79LQF7SFrBwUFBSQnJ3dYe8888wwvvPBCi6696aabKCkpuapnKKWU6llOnz7N6tUf8913OzwdypVpanjSYoGgGI8nY6AJWadis7XNBufuiAh2u53Vq1cTFhbWbu0opZTqfr74Yi2FhYV89dVXnD171tPhXF4nH550RxOydnbo0CHS09P55ptvWLx4MVlZWaSmpvJf//VfAKxbt45JkyZx1113kZKSQkFBAYmJiSxcuJCkpCSmTJlCZWUlAPn5+UybNo2MjAzGjRvH3r17m2277lkPP/wwI0aM4NixY8THx3PmjONfBs8++yxDhw5l8uTJ7Nu3z3Xf5s2bSU1NZdSoUSxevNjV22ez2dy+BqWUUt1bREQEZWXl+Pv74+fn5+lwmudu9aQxjuHJn+6B+z7qFD1iDWlCBtjtQlHpRdp614J9+/Yxa9YslixZwvbt2wkNDWXz5s1s3ryZP//5zxw+fBiAb7/9lmeffZbdu3cDcODAAR555BF27dpFWFgYy5cvB2DRokW8/PLLbNmyhRdeeIGHH364RTH86Ec/Ytu2bcTFxbmOb9myhWXLlrFt2zZWrFjB5s2bXecWLFjAn/70JzZt2oTV+sN2Uq+99lqTr0EppVT3df31k5g582buuON2AgICPB1O87rA8KQ7PX5Sv90uzPvz12w5co6MuHDeWZiNxXL1b1ZRURG33nory5cvJykpiV/96ld89913vPfeewCcP3+eAwcO4OPjw8iRI0lISHDdm5CQQFpaGgAZGRkUFBRQVlbGxo0bmTNnjuu6ixcvXjaOuLg4srOzGx3fsGEDt9/+wy/WzJkzASgpKaG0tJTRo0cDcNddd/Hhhx8CsGbNGrev4dLYlVJKdT/e3t4MGDDA02G4Z7fXn5hfNzxZN4G/Ew5PutPjE7Li8mq2HDlHrV3YcuQcxeXVRAf7XvVzQ0ND6d+/Pzk5OSQlJSEivPzyy0ydOrXedevWrSMwMLDeMV/fH9q3Wq1UVlZit9sJCwsjLy+vyTaPHTvGLbfcAsCDDz7ItGnTGj37UsbNvxKa6yVs6jUopZRSHtEFVk+2VI8fsowK8iEjLhwviyEjLpyoIJ82ea6Pjw/vv/8+//3f/81f//pXpk6dyh//+EdqamoA2L9/P+Xl5S1+XkhICAkJCbz77ruAIznavn17vWv69+9PXl4eeXl5PPjgg80+b/z48axcuZLKykpKS0v54IMPAAgPDyc4OJivv/4agGXLlrnuudrXoJRSSrWpLjo86U6P7yEzxvDOwmyKy6uJCvJx22t0pQIDA/nwww+58cYb+dnPfsbw4cMZMWIEIkJ0dDTvv/9+q5739ttv89BDD/GrX/2Kmpoa7rzzTq699torim3EiBHMnTuXtLQ04uLiGDdunOvca6+9xsKFCwkMDGTixImEhoYC8OMf/5iCgoKreg1KKaXUFesmw5PumLaeyN6RMjMzJTc3t96xPXv2kJiY6KGIuoeysjKCgoIAeO655zh58iS///3vPRyVai39XVBKdStNDU82TNI6MWPMFhHJdHeux/eQqcY++ugjfv3rX1NbW0tcXBxLly71dEhKKaV6OnfDk0ExPwxPdnGakKlG5s6dy9y5cz0dhlJKqS7o4sWL+Pi0wRSgbjw86Y4mZEoppZRqE199lcN3333HkCFDuOGG6688KetGqydbqsevslRKKaXU1autrWXHjh307duX/fv3u3aZuSLdaPVkS2lCppRSSqmr5uXlRUpKMidOnGDIkMH4+/tf+cO6wN6TbU2HLJVSSinVJsaOHUtWVlbr55A1nC9Wt/dkNx2edEd7yNpBXcmIEydOMHv2bA9Hc+XWrVvHzTfffNXXNPTMM8/wwgsvXE1ojdx0002UlJRQUlLCf/7nf7bps5uzatUqnnvuuWavae579OKLL1JRUeH6uu51KKVUV+Xr69v6ZKzhZuDQrYcn3dGErB317dvXte9je6mtrW3X53cVq1evJiwsrMMTspkzZ/L4449f8f0NE7K616GUUj1GU/PFehhNyNpRQUEBycnJACxdupQ77riDadOmMXjwYB577DHXdWvWrGHUqFGMGDGCOXPmUFZWBsC///u/k5WVRXJyMosWLXLtMzlx4kSefPJJJkyY0Khg6zPPPMP8+fOZMmUK8fHxrFixgscee4yUlBSmTZvm2vbo888/Jz09nZSUFO6//37XRuWffPIJw4YNY+zYsaxYscL13PLycu6//36ysrJIT0/nb3/7W6u+F88++yxDhw5l8uTJ7Nu3z3U8Pz+fadOmkZGRwbhx49i7dy8A9913H//0T//E6NGjGThwoCuxPXnyJOPHjyctLY3k5GQ2bNgAQHx8PGfOnOHxxx8nPz+ftLQ0Fi9ezL333lsv1rvvvptVq1bVi62wsJCMjAwAtm/fjjGGo0ePAjBo0CAqKiooKipi1qxZZGVlkZWVRU5Ojut9ffTRR12vJTs7m6ysLH7+85+7ekrBUWx39uzZDBs2jLvvvhsR4aWXXuLEiRNMmjSJSZMm1XsdBQUFJCYmsnDhQpKSkpgyZYprguzmzZtJTU1l1KhRLF682PUzppRSXYLdDmWFUFeYvgfOF3NLRLrsfxkZGdLQ7t27Gx27LJtNpPS0iN3e+nvdCAwMFBGRw4cPS1JSkoiILFmyRBISEqSkpEQqKytlwIABcvToUSkqKpJx48ZJWVmZiIg899xz8otf/EJERIqLi13PvOeee2TVqlUiIjJhwgR56KGH3Lb99NNPy5gxY6S6ulry8vLE399fVq9eLSIit912m6xcuVIqKyslNjZW9u3bJyIi9957r/zHf/yH6/j+/fvFbrfLnDlzZMaMGSIi8sQTT8ibb74pIiLnzp2TwYMHS1lZmaxdu9Z1zebNm+WBBx5oFFNubq4kJydLeXm5nD9/XgYNGiTPP/+8iIhcf/31sn//fhER+frrr2XSpEkiIjJ//nyZPXu22Gw22bVrlwwaNEhERF544QX51a9+JSIitbW1cuHCBRERiYuLk6KionrfcxGRdevWya233ioiIiUlJRIfHy81NTWNYhw+fLicP39eXn75ZcnMzJS33npLCgoKJDs7W0RE5s2bJxs2bBARkSNHjsiwYcNc7+sjjzwiIiIzZsyQv/71ryIi8sc//tH1c7B27VoJCQmRY8eOic1mk+zsbNez6uKuc+nrsFqtsm3bNhERmTNnjuv7n5SUJDk5OSIi8m//9m/1Xu+lruh3QSml2pPNJvL6dJFfRDg+2mw/HG/Dv8OdFZArTeQ0Oqm/qVon7eCGG25w7Qs5fPhwjhw5QklJCbt372bMmDEAVFdXM2rUKADWrl3Lb3/7WyoqKjh79ixJSUnccsstAM0Wbp0+fTre3t6kpKRgs9mYNm0aACkpKRQUFLBv3z4SEhIYMmQIAPPnz+cPf/gDEydOJCEhgcGDBwNwzz338OqrrwKOXrxVq1a55n5VVVW5epHqZGZm8pe//KVRPBs2bOD2228nICAAcAzzgaPXaOPGjcyZM8d1bV1PHcBtt92GxWJh+PDhnD59GoCsrCzuv/9+ampquO2220hLS2v2ez5hwgQeeeQRCgsLWbFiBbNmzcLLq/GP/ejRo8nJyWH9+vU8+eSTfPLJJ4iIa4/Pzz77jN27d7uuv3DhAqWlpfWesWnTJtfennfddRf/+q//6jo3cuRIYmNjAUhLS6OgoICxY8c2G3tCQoLr9WVkZFBQUEBJSQmlpaWMHj3a1c6HH37Y7HOUUqrT6ObV9q+GJmRN/XC0A19fX9fnVquV2tpaRIQbb7yRd955p961VVVVPPzww+Tm5tK/f3+eeeYZqqqqXOcDAwMv247FYsHb29s1udJisbjabEpTEzFFhOXLlzN06NB6x+sSpctx91y73U5YWBh5eXnNvo669gHGjx/P+vXr+eijj7j33ntZvHgxP/rRj5pt+9577+Xtt99m2bJlvP766wAsWLCAbdu20bdvX1avXs24cePYsGEDR44c4dZbb+U3v/kNxhjXZHy73c6mTZuueBm3u/e+tfdUVlY2+94ppVSn08Oq7V8NnUPm4bHr7OxscnJyOHjwIAAVFRXs37/flXxFRUVRVlbWposDhg0bRkFBgavNN998kwkTJjBs2DAOHz5Mfn4+QL0kcerUqbz88suuhGDbtm0tbm/8+PGsXLmSyspKSktL+eCDDwAICQkhISGBd999F3AkXdu3b2/2WUeOHCEmJoaFCxfywAMPsHXr1nrng4ODG/Vc3Xfffbz44osAJCUlAbBkyRLy8vJYvXq1K8a33nqLwYMHY7FYiIiIYPXq1a6eyylTpvDKK6+4nukuiczOzmb58uUALFu2rEXfG3fxNic8PJzg4GC+/vrrVrWjlFIdzt3qybpyFj/dA/d91GNWULaEJmQe/uGIjo5m6dKlzJs3j9TUVLKzs9m7dy9hYWEsXLiQlJQUbrvtNrKystqsTT8/P5YsWcKcOXNISUnBYrHw4IMP4ufnx6uvvsqMGTMYO3YscXFxrnueeuopampqSE1NJTk5maeeeqrRc3Nzc/nxj3/c6PiIESOYO3cuaWlpzJo1yzUMCPD222/z2muvce2115KUlHTZxQLr1q0jLS2N9PR0li9fzk9+8pN65yMjIxkzZgzJycksXrwYgF69epGYmMiCBQuafG58fDzgSMzAUUsnLCyM8PBwAF566SVyc3NJTU1l+PDh/OlPf2r0jBdffJHf/e53jBw5kpMnT7qGp5uzaNEipk+f7prU3xKvvfYaixYtYtSoUYhIi9pRSqkO1wOr7V8N05WHQDIzMyU3N7fesT179pCYmOihiFRnVFFRQUpKClu3bm3X5KWiogJ/f3+MMSxbtox33nmn1atRW6KsrMy1gvO5557j5MmTjVbbgv4uKKUaq6ys5ODBfCIiwunXr1/bPrzh8KSIo2esbnhSe8QwxmwRkUx353QOmerWPvvsM+6//35++tOftntP0pYtW3j00UcREcLCwlzz1draRx99xK9//Wtqa2uJi4tj6dKl7dKOUqr7+fLL9Rw8mI/VamXu3DlERES0zYN74GbgbU0TMtWtTZ48udFq0PYybty4y86Bawtz585tdpWtUko1xWazYbVaEBHsdRXx24KunrxqmpAppZRSPcSECePZs2cvERHhREVFXdlDGg5Ngq6ebAOakCmllFI9RFBQEFlZbqcwtUxTQ5M9cDPwtqarLJVSSinVMs3tO6mrJ6+KJmRKKaWUck/3newwmpC1g7qSBCdOnGD27NkejubKrVu3zlWp/mquaWuXbtrdFlatWsVzzz0HwPvvv19vi6T2dGm7TWnu+/viiy9SUVHRHqEppZQWdu1gmpC1o759+7ZphX13WrIFj2rezJkzefzxx4GOTcgubfdKaEKmlGpXWti1Q2lC1o4KCgpITk4GYOnSpdxxxx1MmzaNwYMH89hjj7muW7NmDaNGjWLEiBHMmTOHsrIyAP793/+drKwskpOTWbRokWvbookTJ/Lkk08yYcKERgVBn3nmGebPn8+UKVOIj49nxYoVPPbYY6SkpDBt2jRqamoA+Pzzz0lPTyclJYX777/ftan3J598wrBhwxg7diwrVqxwPbe8vJz777+frKws0tPTW1XwtKCggMTERBYuXEhSUhJTpkyhsrIScGxBlJ2dTWpqKrfffjvnzp1rdP/hw4cZNWoUWVlZjXYIeP7558nKyiI1NZWnn376su299NJLDB8+nNTUVO68807Xe/Poo4+yceNGVq1axeLFi0lLSyM/P58RI0a42jpw4AAZGRn12i8sLHQd2759O8YYV5mNQYMGUVFRQVFREbNmzSIrK4usrCxycnLqtQuQn59PdnY2WVlZ/PznP6/XC1hWVsbs2bMZNmwYd999NyLCSy+9xIkTJ5g0aVKrqvwrpVSTdHjSs0Sky/6XkZEhDe3evbvRscux2W1SVFEkdru91fe6ExgYKCIihw8flqSkJBERWbJkiSQkJEhJSYlUVlbKgAED5OjRo1JUVCTjxo2TsrIyERF57rnn5Be/+IWIiBQXF7ueec8998iqVatERGTChAny0EMPuW376aefljFjxkh1dbXk5eWJv7+/rF69WkREbrvtNlm5cqVUVlZKbGys7Nu3T0RE7r33XvmP//gP1/H9+/eL3W6XOXPmyIwZM0RE5IknnpA333xTRETOnTsngwcPlrKyMlm7dq3rms2bN8sDDzzQKKbDhw+L1WqVbdu2iYjInDlzXM9KSUmRdevWiYjIU089JT/5yU8a3X/LLbfIG2+8ISIir7zyiuv7++mnn8rChQvFbreLzWaTGTNmyJdfftlse3369JGqqirX66h7bx555BEREZk/f768++67rrYnTpzoes4TTzwhL730UqP4hg8fLufPn5eXX35ZMjMz5a233pKCggLJzs4WEZF58+bJhg0bRETkyJEjMmzYsEbtzpgxQ/7617+KiMgf//hH12tcu3athISEyLFjx8Rms0l2drbrWXFxcVJUVNQonjpX8ruglOqhbDaR16eL/CLC8dFm++F46eKCE58AACAASURBVGmRNvr72NMBudJETtPje8jsYuf+T+9n8ruTWfDpAuzShoXyGrjhhhsIDQ3Fz8+P4cOHc+TIEb7++mt2797NmDFjSEtL44033uDIkSMArF27luuuu46UlBS++OILdu3a5XpWc4VBp0+fjre3NykpKdhsNqZNmwZASkoKBQUF7Nu3j4SEBIYMGQLA/PnzWb9+PXv37iUhIYHBgwdjjOGee+5xPXPNmjU899xzpKWlMXHiRKqqqhoVXM3MzOQvf/mL25gSEhJIS0sDICMjg4KCAs6fP09JSQkTJkyoF0dDOTk5zJs3D4B77723Xkxr1qwhPT2dESNGsHfvXg4cONBkewCpqancfffdvPXWW3h5Xb7qy49//GOWLFmCzWbjf/7nf7jrrrsaXTN69GhycnJYv349Tz75JOvXr2fDhg2uPTs/++wzHn30UdLS0pg5cyYXLlxotKH4pk2bmDNnDkCjNkaOHElsbCwWi4W0tDTXa1FKqTajw5Me1+PrkJ2tOkteYR42sZFXmMfZqrNE+V9hsbzL8PX1dX1utVqpra1FRLjxxht555136l1bVVXFww8/TG5uLv379+eZZ56hqqrKdT4wMPCy7VgsFry9vTHOXySLxeJqsymmiV86EWH58uUMHTq03vHTp083+Sx3MYHjtdcNIbaUu7hEhCeeeIJ//Md/rHe8oKCgyfY++ugj1q9fz6pVq/jlL39ZL8l1Z9asWfziF7/g+uuvJyMjg8jIyEbXjBs3jg0bNnDkyBFuvfVWfvOb32CMcU3Gt9vtbNq0CX9//1a95jrufm6UUqpNaWFXj+vxPWSRfpGkxaRhNVbSYtKI9Gv8B7c9ZWdnk5OTw8GDBwHHBtX79+93JV9RUVGUlZW16eKAYcOGUVBQ4GrzzTffZMKECQwbNozDhw+Tn58PUC9JnDp1Ki+//LIrmdu2bdtVxxEaGkp4eDgbNmyoF0dDY8aMYdmyZQC8/fbb9WJ6/fXXXXPuvv/+ewoLC5tsz263c+zYMSZNmsRvf/tbSkpKXPfWCQ4Ortd75efnx9SpU3nooYdYsGCB2+eOHz+et956i8GDB2OxWIiIiGD16tWMGTMGgClTpvDKK6+4rs/Ly2v0jOzsbJYvXw7geq2X0zBWpZRqsYbzxXT1pMf1+ITMGMPrU1/nszmfsWTqkiZ7iNpLdHQ0S5cuZd68eaSmppKdnc3evXsJCwtj4cKFpKSkcNttt5GVldVmbfr5+bFkyRLmzJlDSkoKFouFBx98ED8/P1599VVmzJjB2LFjiYuLc93z1FNPUVNTQ2pqKsnJyY0m1wPk5uby4x//uFWxvPHGGyxevJjU1FTy8vL4+c9/3uia3//+9/zhD38gKyuL8+fPu45PmTKFu+66i1GjRpGSksLs2bObTVBsNhv33HMPKSkppKen8y//8i+EhYXVu+bOO+/k+eefJz093ZWY3n333RhjmDJlitvnxsfHA47EDGDs2LGEhYURHh4OOBYS5ObmkpqayvDhw/nTn/7U6Bkvvvgiv/vd7xg5ciQnT55s0UboixYtYvr06TqpXynVOu7KWYAOT3qYaW74qrPLzMyU3Nzcesf27NlDYmKihyJS3dELL7zA+fPn+eUvf9lubVRUVODv748xhmXLlvHOO++0aiWrO/q7oJRyq6zQkYzZax0rKH+6RzcA7yDGmC0i4nbvqh4/h0yp5tx+++3k5+fzxRdftGs7W7Zs4dFHH0VECAsL4/XXX2/X9pRSPUjDzcB1vlinpAmZUs1YuXJlh7Qzbtw4tm/f3iFtKaV6kKY2A9eNwDudHj+HTCmllOq2tJxFl9EtE7KuPC9OqbagvwNK9VBabb/L6nZDln5+fhQXFxMZGdnhKyaV6gxEhOLiYvz8/DwdilKqI+nwZJfW7RKy2NhYjh8/TlFRkadDUcpj/Pz8iI2N9XQYSqmO5G54Mijmh+FJ1al1moTMGNMf+G+gN2AHXhWR3zd/V2Pe3t4kJCS0dXhKKaVUq1VUVPDFF2upra3l+usnERIS0nYP19WT3UqnSciAWuD/ishWY0wwsMUY83cR2e3pwJRSSqkrcfhwAUeOHMVqtbJnz16uu25k2zxYhye7nU4zqV9ETorIVufnpcAeoJ9no1JKKaWujM1mo6ioiJMnT1FTU0N0dBv2WOnqyW6n0yRklzLGxAPpwDduzi0yxuQaY3J1nphSSqnO6sCBg3z33Q5CQoJJS7uWgQOvYjqNrp7s9jrTkCUAxpggYDnwzyJyoeF5EXkVeBUcWyd1cHhKKaVUi9St9Pfz82u0b26r6PBkj9CpEjJjjDeOZOxtEVnh6XiUUkqpKzV48DWAY+hy6NAhV/4gXT3Zbuxi52zVWSL9PF8qq9MkZMbxnXgN2CMiv/N0PEoppdTVsFgsV5aI6erJDmEXO/d/cj95RXmkxaTx+tTXsRjPzeTqNAkZMAa4F9hhjMlzHntSRFZ7MCallFKq4+jwZIcprjjLltPbwNjZcmobxRVniQ6M8lg8nSYhE5GvAP0pU0op1XPp8GS7aTg8KbYgbJVxWPyPYK+MQ2xBHo2vU66yVEoppXoEXT3ZIeqGJye/O5kFny7ALnaig31JtvwbVflPkmx5nOhgX4/G2Gl6yJRSSqkeRYcn203D3rCmhieXLRxNcXk1UUE+Hp/Urz1kSimllCdocdd24a43rG54UsTi+OgcnrRYDNHBvh5PxkATMqWUUsozdHiyTdjFzpnKM4hz2LeuN8wmth96wzrZ8KQ7OmSplFKqU9uzZy9ffZXDwIEJTJo0EYulC/YlNCxlAY6POjx5VdyVrnA3Wd8Y06mGJ93pgj/VSimlepJvvtlMaGgo+/btp6SkxNPhtF7dXLHfJcLSGY6v6+jwZKtcTW9YZxqedEd7yJRSSnVqQ4YMJi8vj+joaIKDgz0dTus1VcpCtUp36g1zRxMypZRSndqoUdeRnDycgIAAvLy6wJ8trbTfLtyulAyOJNnyb2zNP86I2P6NesO6ki7wk62UUqonM8YQEhLi6TBaRktZtJmWFHLtqr1h7mhCppRSSrUVrbTfJtwNT9bNDesOvWHuaEKmlFJdTFFRETU1NfTp06dL9wjUOXr0GBs3fk1c3ACuuy6ra62i1OHJNtEVC7m2NU3IlFKqCzlx4gTvv/8BdruNiRMnkJyc5OmQrtr69TkYA9u2bWfIkGuIjIxst7bKyso4efIkMTExhIaGXt3D2nl48tixY3z++Rf06tWLyZNvwNvb++ri7aRaOlkfuk9vmDtd6J8hSimlysvLqa2twcvLyvnz5z0dTpvo378fJSXnCQ4OJjAwsN3aERE+/OAjPv3076xc+T41NTVX98B2rrS/eXMuXl5eHDp0iMLCwquLtRPpLoVc25r2kCmlVBcSHx9PenoaVVVVXHttaovuKS8v5+zZc/TqFYOPj087R9h648aNITFxGMHBQfj5+bVbOyJCRUUFAQEBXLx4EZvN1rpepw4enhw4MIGNGzcRHBxMWFhYmz7bU7p76YqroQmZUkp1Id7e3owbN7bF19fU1LBy5QdcuHCB2Ni+zJx5cztGd3l2u53a2tp6iaHFYiEmpv3nWlksFm6aMZ09e/YyaNDA1iV/Hlg9mZaWRkJCAn5+fvj6do8eou5euuJqaEKmlFLd2MWLFyktLSUkJISiomJExGO9DVVVVXzwwccUF59l4sRxDBs2pMNj6N27N7179279jR5aPXnV89w8rNZmI//saQZH9sZisWhvWDN0DplSSnVjQUFBjB8/luDgIG688XqP/rErLj5LUdEZQkJC2Llzt8fiaBG7HcoKwTnPSTcCb71am40xb8xh1kfTGbV0NrU2W5fd1qgjaA+ZUkp1c0lJiSQlJXo6DKKiIunVK4YzZ4qZOHGcp8NpmhZ3vSINS1fknz1NuSUfY+yUW/LJP3uaodF9tTesCZqQKaWU6hC+vr7cfvstrZ9M39G0uGuruZusPziyN4H2QZRb8gm0D2JwpGOouKfNDWspTciUUqqL2b17L5s3byExcSgjR2Z6OpxWsVgsna/wqxZ3bZWGPWHQxGT9wChy5r9bbw6ZapomZEop1YXY7XY2bMghIiKcLVu2MXz4MIKCgjwdVtelw5Ot4q4nzGLcT9YH8LJaGRrd18NRdw2ariqlVBdisViIjx9AUdEZYmKi8ff379D2jx//nq++2kRR0ZkObbfdtHNx166uJUVcgR5ZyLWtaQ+ZUkp1MZMnX09GxjlCQ0OxWq0d1m5lZSWrV6/BarGSn3+YH/1oXteblK3Dky3Wmi2NtHTF1dOETCmluhir1UpUVFSHt1teXk5x8Vl8fHzo168LDkPp8GSrtKaIK+hk/aulCZlSSnVhFRUVGGPafehSRPjss3V4Wb2prq5myhTP1jS7Irp6sllaxNWzNCFTSqkuyG638/HqNXy65gsGDUpg3rzZ7br9kIhQWVFFVFQEtbW1BAR07Ny1NqHDk02qK+JaV6IiZ/67rnlhPX1Lo46iCZlSSnVBJ0+e4sv1OZwvKWH//oOcOnW6XRMyxz6QU9i7dz8DBya06ybgbabhfDFjdHjSSYu4dj6akCmlVBcUEBBA3759KCw8Q+/eMcTHD2j3Nnv1iqFXry4ytNfUfDEdntQirp2UqVvK2hVlZmZKbm6up8NQSimPOHv2HOXl5fTt26dDV1t2CWWF8LtEx3wxixf8dE+PTcQa9oYVlZ/h+ndvAGMHsfDFnM+JDoxqNIdMtT1jzBYRcVvNWb/jSinVRUVEhNO/f+xlk7FTpwpZtepjtm3bQVf+R3izdDNwt+p6wya/O5kFny7ALnbXZH0Ri+NjgyKumox5hg5ZKqVUN7d27VfU1NRy4vtcBgzoR2RkhKdDaltazsKlYW9Ya0tXKM/RhEwppbq5mJgo9u07QGBAIP7+XWAyfmtpOQug5YVctXRF56QJmVJKdXMTJoxm6NBrCA0NISAgwNPhtEh1dTU5ORuprKxi3LgxBAcH/3BSq+271ZreMJ2s3/loQqaUUt2M3W7HGOPq+fDy8iI21vOV9W02GxaLpUU9MkeOHGXnzt14eXkRGhrCmDGjHSd0eNJFC7l2L5qQKaVUN/L99yf59NO1hIQEc9NNN7jtEdu6ZTu7d+9nREYqw4cP7ZC4CgqOsGbN54SHh3PzzdMuu7NAUFAgVqsVu91ORMQlc950eBLQQq7dkSZkSinVjezauRdvLy8KC89w6lQRAwfG1TtfUVHB5s3biIiMYMOGrxk69JoOKZmxc+cu/P39KSwspLCwiLi45uum9enTh7n/cAf20kKi4ob8cKKHDk9qIdfuT9e2KqVUN3LNNQlUVlYREhxEdHRko/O+vr706hVD8ZmzDOjfr8Pqlw0bNpSKikoiIsKJimocVyN2O5EfzCf6zfGYN252DFXCD9X2f7oH7vuoRwxPuitdUVfIVcTitpCrJmNdjxaGVUqpbqayshIvLy+8vb3dnq+pqeH8+QuEhYXi5dVxAyVVVVV4eXm1rM0eXNhVC7l2X1oYVimlehB/f/8mkzEAb29voqIiOzQZA/Dz82u6TS3sCmgh155M55AppZTyrB68clILuao6mpAppZTyrB66clILuapLaT+nUkqpjqXDk8APhVxtYrukN8xRuqIq/0mSLY83Kl2hyVj3pT1kSimlWuX06ULOni0hPr7/ZeuJNdJDhyfdTcDX3jB1KU3IlFJKtdiFC6X87W8fU1tTQ1z8AGbMmNK6B/TA4Ul3RVy9rFYt5Krq0YRMKaVUi9lsNmw2G15e3lRXV1/+hh6472RLi7hqb5i6lCZkSimlWiw8PIwpUyZx+nQhSUmJzV/cA4cn3U3UryviWtdDVlfEFbQ3TP1AEzKllGondrudTRtz+f77U4wZk0W/2D6eDqlNDBqUwKBBCZe/sAcMT7aobEVgFDnz39UirqpZ+lOhlFLt5MyZs+zcsZfa2lo2buyBu4pc4erJixcvkpe3nT179mKv2zKpE9IirqotaQ+ZUkq1k8DAAIKCAii9UEbKtcOv+DnFZ86xMSeXiMhwrstOc1W7r6mpoeTcBcLCQ5qtzN8aIsKZM2cJCPAnMDCgdTc3nC9Wt+9kK4cnt27Zxpat27DbhYCAgMtuRO4pWsRVtSVNyJRSqo2JCJs2bmH37v0kJw9h4KB4oqIiEBEKCo5TfbGaQdfE1dtGqLKyipqaWkJCgho9L3fzd5ScK+XEiULi4vsRG9sHu93OJ6u/5NSpIvr27cVNN0+qNyn8/PlSjh45Tp++vYiKimhx7Lm5eWzZ8h3+fr7cMetmgoMbx+NWU/PFWjk8abPZKD57jqqqKnx9/TrVRPeGpSu0bIVqS5qQKaVUG6uoqGTnjr307h3Njh37yRqZjsVi4dixk3z68XoAysoqychMBuB8SSmr/vYZ1RdrGD9xJIOHxNd7XnRMJEePfo+fny9BQYEA1NTUUnj6DJGR4Zw6WUhNTS0+Po5eMhHh44++oLS0DB9fH+6cNxNf35b11Jw8cZrAAH/Kyiu4cKG05QlZU/PFWmnTpm84dOgwVZVVTJ1yI/37x7b6Ge3BXekKLVuh2pImZEqpTuPChQscOlRA3769iYnpupO+/f39iO3fh+PHTjJk6ECsVivg6P0RESwWg91uc11/7tx5KisuEhjox/fHTjVKyNJHJBEb2xs/fz9XD5qvrw/Zo9PZufMAo8aMcCVjdRylKazY7XZXQfyWGHndCDZs+JoBA2Lp3buZ96CdylmcPn2akJBgvLy8iI6J8lgPU8PesKZKV2hvmGorRlrzm9rJZGZmSm5uD5woq1Q39c47/0NJyXm8vLy45555ra8C34nYbDbKyysICgp0TeS22+3s3ZtP9cUaEodfg6+vDwBVVRdZ+/kmzp8vY+y4TGL7927u0ZclIhQXn+PQoaPEDehHr95tXOurqeHJhknaFSgsLGRjztf07tObkSMzPTIJ3l1vmMUYRi2d7Tq26b73dIK+ajVjzBYRyXR3TnvIlFKdht1ux2q1INJ5V9a1lNVqJSQkuN4xi8XC8OGDG13r5+fL1OnjWff5N6z5+CuSUwczMvvaK2r3woUyPlm9jtraWqZOn0hkZFiL7qutreXwoaP4+HgzIC62+d6edixnERMTw223z7yqZ7RWSwu5aukK1Z40IVNKdRo33TSNAwcO0r9/bKftHdu5cy/79hzi2rRErhncglpcLVRRXknB4e/p1TuK3TvyyRyZckV/9I8dPcH586V4e3uRf7CAyMi0Jq8tLS3j22+2ERgYgJeXhW+/yQMDN98yhQED+v1wYYOerzOVFsL6ZuJ1IrfLV9tvTSHXutIVSrUHTciUUp1GeHg4I0dmuT2Xn3+Y0tJShg4d7LFkraKikk0btxIWFsKXX35DwsABrvlhVysg0J+Egf0pOHSc1PShV9wD07t3ND6+3thtdmIvU4g2b9tO8vOPUFtTQ9++vTAWg91ux1Zb+8NFDYYnd4/8//jyy014e93FHQteIiJ2SJeqtq+FXFVnpQmZUqrTO3XqNJ9+8hkCFBef5YYbJnokDl9fHyLCwyg+e45+/er/oa6uruFowQkCg/zp07f1w3YWi4WJN4ykZnzjCfqtERkVzp3zZmK32/H392v22tDQEGy2WqxeXqRnpBJbdAY/X1/i4vv/cFGD4cmzfQ7g4+vLxaoqSmr8iOhiyVjD3jB3pStAe8NUx9OETCnV6bnmM3l4EZLVauXmmZMpOXeeiMiwevOscr/dya4d+7FYLMy8/QaiY1pe+6uOMeaqkrE6dYsFLic5ZRgRkeH4+voQHR1JXFzsZVdPDs8aS2HFRoKD+122B66z0UKuqjPThEwp1WEcq/+KCQwMbNWwY69eMUy/aQoXLlxg6NDGk+I7kq+vD716R1N4upiCw98Tn9CPmF6R1NbU4mW1YrMLNpvt8g/qBCwWS/2kqgWbgUcYwx133Oy5oFtBC7mqrkQTMqVUh/n221xyc7cSFBTE7Nm3ERgY2OJ7ExLi2jGy1qmtrWXNJzmICPv3Hmbu3TPIGJmMf4AfoWFB9Ood1ez9dru9c85L6kabgWshV9XVaEKmlOowx44dJyQkmAsXSiktLWtVQtaZGGPw9vaivKyCgAA/x8heoD9Z16U0e5/dbuertds4evgkGdnDSUwe2EERNxlQuxR39QQt5Kq6Ok3IlFIdZtSo61i//iuSk4cTHd18L1JnZrVamXbTOE6eLMLLYmXd33Pp1z+mXoJlt9upqbHh6/vDnLDS8+UU5H9PdEwY23P3NpmQ1dTUkpe7h8rKi4zIGk5QcCs3+W6JFgxPdpXVk+56w5oqXaG9Yaqz0oRMKdVh+vXry7x5/9Buz7fb7RhjOqTnIzQsmNCwYFYs+zu1tXa+P3aaPv2iCQsPprbWxtpPNnP6VDHpI4eRlDoIgMDgAHr1ieT0qWLXsTqnTpxh93f5DBjYBy8vK9/lHcDb24q3jzejxl5ZkdhmtfHwpIiwc+duiorOkJGRRmhoaNvH7KSFXFV31Kl+Qo0xrxtjCo0xOz0di1Kqa/n++CneWPoe76/4hMrKqnrnRITC08WcL7nQ5u2GR4RSUVGJn78vvn6O1Y2l58s5deIMEREh7N1x2HWtl5eVyTdlM/uuGxkxcni956z/fAvnzp5n05fbEXFcW1trIzS0hZt7X47dDmWFP6xUrRuetHi1yfDk6dOFrF+fw8GDh9iwYWMbBOxeXemKye9OZsGnC7CL3dUbJmJxW8hVkzHVFXS2HrKlwCvAf3s4DqVUF7Nr1z58fbwpLCrm9Oki4i+ppbVr53425mzF29uLmbdOJjIqvM3aHTtpBENOxRESGoS/v2MoLDg0kL6x0Zw8cYaM6xLrXW+1WgkIbLzCNCwsmJMniggM9qdvbDQ33zaB6poaevdp/dBuo0UDHTA86evrg5eXlYsXLxIc3DZJZMOeMGiidIUWclXdQKdKyERkvTEm3tNxKKU6v8LTZzhy9AQDE/oTGRXONYMTOHb0BCHBQURG1k+4iorO4uPjTfXFasrKyts0IfP29qJf/171jnl5Wbl++khqampbXFdswpRMik6fIyw8GF9fH3yjW1ZLrKHDh4+x7ouN9OodzY1TxuHt7X3Fw5M2m43S0jKCg4MuuyNBeHg4d9xxK6WlpfTvH3tFsV/KXRFXi3FfugK0kKvq+jpVQqaU6t4qKyvZsuU7/Px8SEtLwcvryv4XVF1dzcer12K3C3v3HOSuu29l4MAB1NbUUlR4Fltt/c3J09OTqCivJCQ0mL79ejXx1LbVVJFXm81G3rf7OX+ujIxRiYSGB3Ho4HE25+wiNq4Xfcdf3dDh9q07iPCt4ftjJzhTdJY+fXtd0epJEeHTT7/gyJFjxMcPYNq0Gy47Ny86OqrNFms01RPWVOkKpbq6Fv3f0Dh+C2NF5Fg7x9OSWBYBiwAGDBjg4WiUUq2Rl7eTHTv2YKutJTw8nEGD4q/oOcYYLBYrtTXVWH0tGGO4cKGMr9ZvwWq1cPrUGe6YM811fVh4CDNuub6NXkV9ItKqRQSFJ8+xe/thfP28yft2HxOmZpD37T4CA/05tP84w1MGEh4ZcmXB2O3cePK3+J/Zzhn/IQSH3eE4bgz2H60if8cWKgkisbbW0XPWjOrqao4cOUbvXjEUFBylpqYGH58r67VriZYUcXW8FC3kqrqnFiVkIiLGmPeBjHaOpyWxvAq8CpCZmenZfVSUUq0SEBCA3WbDYrG0eHsfd7y9vbnp5us5ceIUsbF9sFgsWK1WLFaLM3G4+u2HWmLv9gK+23yQ+CF9yBo3vEXJgX+ALz6+XlRX1RAR5Ui84gf1Ydf2Q4RFBBMYfBUbp1ecIfDsDsBO9MWDGHsZ4CiZcfToSdZ8tRtjoLq2lszM5ldu+vr6kpWZzra8HYzMSm/3ZKylRVxBS1eo7qk14wVfG2OyRGRzu0WjlOrWUlISCQ0Nccy76nd1+yBGRoYRGRnm+jow0J8ZN0+i+Mw5+se1/1wiEeG7zQeJiAnh0N7vSUofSHVVDccOFRIcFsCFknJ69Yugd2xkvfvCIoKZfvsYKisvEt3LEX/6yESuGRaHf4Av3t5XMZPkkqFJ02Bo0pErCohp8fz9zKx0MrPSrzyeJmgRV6Uaa81v/iTgH40xR4BywODoPEttq2CMMe8AE4EoY8xx4GkRea2tnq+U8iyLxVJv9WNrXbxYjbe3l9tVdMVnSti3p4DY/r0IdLOKsY6IcOJ4EcYY+vSLuuI/9MYYEob2JX/v9/TqG4GPnzefv7+Z2lo7OzcfZFhaPPt3HOXmeWPwD/Srd29IWCAhYYH1nhUSegW7FjSstG9MkysnB8TFMmXqRGpqahk8OOGKXnNb0CKuSrnXmoRsertF4SQi89q7DaVU17Rj+35yv9lBn37RTJ46utGCgLWffUNNdS35B44SFR3eZHX7QweOs+GLbRhxrGyMH9R8b1ptrQ0vL/crDDPHJpJ4bTz+gY7tkyxWC7aqGry8rNhsNny9fNqv2n1TpSyaWDlpjGHw4I7fqkmLuCrVMi1OyETkiDHmWmCc89AGEdnePmEppVR9u3bsJyIqjBPfF3LhfDkRkfUrwQcE+HHq/Bl8fX2wNpFAAVRVVmMAjKPHrTlbc/aRv+s4cYN7M3xEAkGhPyR5drudrev3cTy/kNTR1zAwsR8Tbkrn1PdnGTPlWsrLKomMDsE/oJ16eJoqZdGJuCtd0VRvmJatUD1dixMyY8xPgIXACueht4wxr4rIy+0SmVJKXSIpZQi53+6gb78Yt8N7Eydfx6kTRYRHhLoKtLpzzbABXKy6iDEWBg5uul7WxapqDu46TnBYAB++nUPB7hNkTExkUJLjnrLzlRTsO0l4dDA7vs5nYGI/gsMCCQ67/NDjuTOllJdV0qd/FFZrC3uDusBG4A17w7SIq1It15ohyweA60SkHMAYUVP63wAAIABJREFU8xtgE6AJmVKq3aVcO4ShiQl4e3u5nfcVEODHwGsuPz/N19ebEdcNv+x1Pr7eDLimFzu+zSckNIDAEH9OFJxxJWQBwX5ExIRwtvACg5NbXgj1+4JC/vib5VysrOGGWzKZNmv05W/qAhuBu+sN0yKuSrVcaxIyA9gu+drmPKaUUh2io8pZgGPO1XWTkkgakcD2TQe5cLacYelxrvNeXlbG35LOxYpqAoL9mnlSfUcPn6aqsgZfX28O7f++ZTe18Ubg7cFtb1hwpBZxVaqFWpOQLQG+McasdH59G6ArIJVSbokI323fR+GpIkZkJrvdrshut1N6oZzAIP8rrtrfnowxBIcFMna6+5pdXl5WvEIcKzptNrtjYn+DIbiKsipstXaCwxzzz4anJbD9m/2cKy5l8syR7htuMDwpAVFI7Egsx79t1fCkiFBYeAYfHx/Cw0Mvf0MrXK6Qa3WVDx9+8TFTrEX8v3vGkzokXktXKNWM1kzq/50xZh0wFkfP2AIR2dZegSmluo6SkguUXiijT98YV2J1pugc336Th7+fHzkbtjDz9smN7tu4YRsH9x0lpnckU2eMaXa/xMLTZ/n2qx1E94ogc9Twy+6t2BI2m52TBWfw9rESExtxxQnDucILfP3JDqxeVkbPuJagUEeSdq7oAutWbcVWa+e6yUn0H9SL0PAgHnx8ltvn2O12tn6zk4E5DxFevhcz4Doq577Hmk9yOC8PcP0//IbYoSktHp7cu+cA67/chMXLyq23TiMmpm22NWpJIVdb+XmOHj1OaGgIBXt3c+1Qz5XaUKoraO3WSVuBre0bklKqKyktLedvKz+lqqqaYYnXMGHidQD4+fvi6+NDZWUVcfH9Gt0nIhw6cJyomHAKT5+lsuIip08Vs/u7/5+99w6O807vPD/v+/bbOTeAbuQcCDBnUVQWR2E0QSNrZsf2ena99p3t3TrX/XHn3S1f3Z6rfFtbtV5XnX1Xd649h72zz+txmPFIGs1oNDMKFEkxJxA5ZzTQOb/v+7s/GgIJAiAAStRQo/dTpRLR/YanGwT7iyd8n2Hauxrp6ln7AX7xbC/5fJG+m2M0t9VSFQmuPhdfThNfThGuCd5zqjEZy2BzWLHZy6XPoWuTXPtgCFmWOPml/YTrgpueey+mhhcwDEEhXWBxOrYqyFLxLKWihtWmEp1LUN967z2aC/PLDF6+xMF0LxIGTJ4jNjVCNBrD43FxYzhOXdf2RePi4hKKxUKxWCKVTN+3ILsfI9dsNovX6yGVSrN//577uq+JyeeJz9zqJBMTk4eLfC5PoVDC6bATj8VXH/d4XHzl5VOkUmki1etLbJIkcfj4bi6f72VXTws2u5Uz717F63Vy/swNmlprsdtvr+uJ1FRw/dIgTqcNl/u28Ws+V+RH3/uQQq5AVXWQU185tmGcA1cnuH52CIfLxtFnepgcmGd+cglZglK+SDqWuW9BVtNUyUTfHHaHSihyuzRYVRekurGCYq5Ea/d6UQqsKU+6XA5wVLBgbSdcGkKqP4a/thW/f4pUMs3hozvz4d63v4dUKo3T5aS+4f6a6O/XyNXlcvGNb7xCoVDA4/Hc171NTD5PmKuTTExMPhYVlUGOHd/P/HyUQ4fWZkJ8fg8+/+Yfxh1dTagWS3kPpSxRVRVkbjZKsNKHqq4tSe471EF9UwSn047zDud7XTfQSho2h5VsNr/pveYmlnC6bKTTeS7+pI9CrkghWyQQ9jA9sEDvmRHsThu1rTtvkg9V+/jCLx1HkiQsd8Rtd1h57MX9m5941/Sk51uv8dIrT5HNHEO4dCRPGKck8dVXTlEqadjtO2uK9/m8fPGlUzs655M0crVarQ90B6aJyc8TD9XqJBMTk88ekiSxb//WNhIbMdA7xrnTNwDBU184ylPPHyW2nMTnd6/rEZNlmYpK/7pruNx2Hn1mL7NTS7TvqicZy/Dh2zex2lSOPN2Nw1UWMV2Hmrjwk1s0tIax2lRGb05js6vUt4bJxvLks0WuvdOPqipYrBYCYe+6nrJ8pkCpoOHw2IC14ku13sdQwgbTkx5vFR7vbS+zubkoS4vLNDZv31rjfvm4Rq6ZTAYhBJcuXWF8fIJHH32Elhazd8zEZDvspIfsN4DxBxuOiYnJ5wlDiJU/SQghUFULVeGty4a6bhBbTOLyOnA4bdQ3R6hvLguFqx8MkknkiJfSzE8u0dRVFg1VNQFe/KWy55eu6YTrgwjdwKJacPnsDF8ap6LGz9/94Vs07qphzxMd1HdGVu+ZSeQ4849XSC9nKRSKBMM+Dj+/G6tdRQiB27/xqqa1L3hn5q6pZJo3X38HQzcYH5vhxS89ufU9PgYfx8h1enqG119/k0wmS6FQoLGxntOnz5iCzMRkm+ykh+wPhRBmD5mJicknRmd3E/JKma+xpXrb51187xZj/bM4PXZOfe0otjt6zSpr/AzfmEJVFbxB94bnKxYFt9fBme9eQdcMGnfXUDjcRHwhhdANZFkiE8+uOSeTyJFN5pgcmCO9nMH7jJv+82MszycQAg5/oZtwQ2jzoO/D3FWI8vCDJEtomr7Jhe+frawrdmLkOjMzixACRVEQQhCLxdm9+/4ypyYmn0fMHjITE5NPnKXFBH03RqltqLrn8m5VtdC9t3XH11+YieP2OkincuSzxTWCrKapkuf+yXFkRV4tV25ENplHK2qoNhW9pHP4uR6W5xJk4jlkWaJpdy2lgsZ0/xxWp0plQwirXaWQKWAYgth8gpr2SowZA0mSSCym7i3I7sPc1etzc+q5kywuLNHW3rjhMffLdqwrdmLk2t7eytDQCIoi89RTjyPLMoHAeu85ExOTjdlpD9lvSJI0htlDZmJicg/e+dEF9JLO2PA0FVV+3J5tlPN2wOHHu7j+4RC72prwBtbvjnR5HRuctZaKugCNPbXk0nla99Xj8jupuktQ3fpgiPHr0xRzJR555SC7Hmlh4MMxhCGo64jQebiZXLq4+vVHCCGYHpnHSC1Q09ONRbXc9+7JuvoIdfWRrQ/cgvuxrtiJL5vf7+eb33z1Y8dpYvJ5ZSeC7IUHFoWJicnPFW63g7mZJWx2KxbLxzdwvZtIXYhI3T2yUXchhKCUL6Ha1VWRYVEVdj/WvuW5k72zZBI5gtU+ep7soKatEofXDgLsLhvHv7j+d9LZsQWsf/0yFaV+8u/tx/Ivf7Tj3ZOGYbCwsIzb5cDt2Xph+b24X+sKExOTT4+dCLIJ4JeAFiHE70mS1ABEMBv9TUw+N+i6TiKWxu113nOv5OPPHqL/xjgWi7JpE/hGFAslLr/XTy5b4NDju1bXDX1EIVfk8k/7KRU1Dj7Zhcu3dSZMCMHNdweZGZyntiNM92Pt2878NPbUcDXkoqG7hmwqj8vvZNcjrUSnYnQd37xZXWSiVJT6kdFxLF+5r92TZz+4ysXz1/D5PXzt1edxu7eXZbw7EwZ8LOsKExOTT4ed/AT+H8AjwDdXvk4B//snHpGJiclDSSqZ5Xvf/inf/Zuf8NZrZyiVtE2PLRV1Bq5NcPXcIOffu7Xte8xPLTM2MEdsMcXAtYl1z8+NLzE/HiURTTHaO7Ota2pFnZnBeQLVPmYG5tGK22+Od/qcHHpxD6pDpeNoM1abSs/Jdp74J0fXljcNA9IL5S58oHpXF4XKAwhJQdRtvzx5Jz95+wy9N4e5fKGXVCq9rXM+yoS98voLPPLnv4Cml1/rR9kwIeQNrStMMWZi8rNnJxmyY0KIg5IkXQYQQsQkSTId/0xMPgcUiyXeeu0M77x1kapIAIREdCFBde3GZcNSUUPTdVSrhXyusO37uL0OVKsFXdMJVK43lPX4nSgWBUMXBMNrn4/NJdCKGqHaALJyW2CoNgt1XRGm++ao665Btd3+Zy+xkCSfzhOqC1IqlOh7f4B8ukj78VYq6sv2G+2Hm2g/3LR50BtMT8qKguM334JsFGkb5cm70XUdj8dFVVU5Bo9n42nRrUxch5bmqHcFcDjsZjbMxOQhZyeCrCRJkgIIAEmSKgHjgURlYmLyUKGVdHKZAt17mhnoncBpd/DTNy5w/Ik9NHesn6IMVno5+ngPy4sJOvc0bfs+gUovX3j1KKWiRqDSu/66ER9Pff0IumbgDd7uq4rNJTj/2jUM3aD9aDOtBxrWnNd9sp2OYy1rjFzTyxmuvH4VQxeE26u48XYvA2dHCFb7ic8mOPbKQfwR/xpxtyF3TE+KibOc/vaP2P3MI/grPNsuT96Noig8+9yjXLnUS9eulg3LlYVigW+9/s/oS93a1MR1eXCGd669TU1dhBdffGaNdYUQgrGxSbLZLO3tLaajvonJz5idCLL/DfgHoEqSpN8HfgH43QcSlYmJyX0xP7fI8nKcxqY6nM6t+6u2i9Nl58RTe5kYmefYyb1cuzCMLMlMjS1sKMgAWrvqaO3a2l3eMAy0oo51ZeG327dxr1RqOcPcaJTK+gD+qrViTStqGLqBYpEpZoobnm+5axWTrukYhkC2yKQWU2TiOVRVYeLGNNODcwxfHOXoVw9y5KsH791ztjI9KSbOErV0Es86uHVxjNq2Spbm47R21+P177wpv7unje6etk2ff+v0O9xM9N7TxPXP/vSvCUcqmJmeI5VK4/ff3rM5MzPH99/4EUIYJBJJTpw4uuMYTUxMPjm2LciEEH8pSdJF4BnKlhdfFUJsvznExMTkgZJMpnntez9G13XGxqZ44cWntnVefDlFJp0jXBO650Rkc1sdzW11pBIZ3v7ueZbmEzS2RIgtppgaW6CmvmLNYu3toJV0zr5xndh8gq6jzbTvb9jwOMMwuPj9G5RKGuM3pnns64dYGF2imC9R2RDE0Aya99Zh6ILmA/Xbure30kPno+1kYhkCNX4GzwwjSRL+Gh9aUaOYK632nN1Z5lznti9J8K3XSM9McPaH4xSLJWxOK2fevoGiSCzNJ3n25a3FTi5XoPfGEC6XnY6u5nVlxbub9dNxBT3biOzc3MT18OG9fHjuMm1tTXi9a0u8hmEgECCBYXzyprMmJiY7Y0fL14QQfUDfA4rFxMTkPigWS1itKrquYxgGiiJTKm7ecH8nqUSG73/nfbSSTmdPE4ce6WZ8aBaAxrZqlA3KdcW8Rl1jhJ79rUyPLPDuP14hsZSidXc9X//NZ3FvwwPsIzKJHMvzCXwVbsZ6ZzYVZACSImHkDSxWC8szCfreH8QQgms/uIGvyoO30sPhLx/Y9r0lSaKmq7wdYH54gZpdNdR0RlgYizI/uoTNZWXX453rxdhKv1ih8iDnwv+euvYILXvq8NQ18cyrEQr5EharwsjAFKWShtW2+TTqnVy+2Etf7wiGbuD2uNZ4j21kW/H8U0f40//rNxmeSXCwvmFDq4p9+3eze8+udXtBAerqanj22cfJZHJ0d3ds+30zMTF5MNzHNlwTE5OHASEE7793nv6+Ebp2tXLysSMcf+QAQ4PjHD2+f1vXyOeLaCUdq81KIp5mbHCGMz++DlJ5t2RrVx3ZdJ6JwTn8FW4i9RV4gy6q60IszC5T3VDJrQvjKKqFVCyDMMTWN70Dt99BVV2Q6HSMnhObO/bLsszh53ezOLlMoNqHVtDKmZ2ijq7p2Fw2xq+Mk49naTnSTM2uzbcDlHJFkCRU+22h5K3y4vTa0Qoaz/y3T+IJubG77etPvqNfTJ2/iORbpvdslurmChxuO05P+T+Ap790mEQsQ3VDxbbeC6tVRdf0cmZMhv7FmS1NXN/8H57f0sR1IzEGZUHa2bm1D5uJicmngynITEw+oxQKRfr7RqiOVNF3a5j9B3q4eW2IbCbPmfev8NVXnt3Sb6uiyk/3vhbGB+fo2ddKNp1f2cFhIFYsHM7/tJfF2ThCCJ579TjegIvHXzyAYRgU8yVSsQxTwwucfHHfOt+wrVAsCsde2I2uGet6vO4kn84Tn0tQUePHHXIjhODA83soFTQQBtO3ZrHZVZwBJ6MXxzYVZPGZGLd+3Issy/Q8vwf3yq5Lh8fOka8dQhgCi/Ue5ck73PbTrh7iKSvugAN1gyxYsMpHsGr7Jdx9B7oIBLwoVoVXfvBbpomricnnDFOQmZh8RrHZrLR3NDM4MEpnVwsWi0KhUMLhtJHN5MpLqbcQZEII5ifiFLMal0/38+zLxzBWslzNHbXlg1ayZRLSGvcGWZaxO208/41HPtbrkFaWi9+L6z/qJRPLYLFaOPbKYVS7umpLIYQgMbVMZjHFWGKYPS/t2/Q6sekYIKEVNVKLqVVBNj80z8zAHLXdNVQ1rXiGbbEM3GkNcmIpjdvv3DL+TeNZTjIzu0DBCfsbW2htb6B/cWZTE9cb0+O4izKZTA7Px3Tvf9BMTEyQSCRpb2/Dbt8g22hiYrKGLQWZJEkpVqwu7n6K8i7L9bPpJiYmDxxJknj8iaMcO74fm61csnr61HFGh6fo7G7ZlteUYQhy6TxOl51cpoAsSXT0rO3jOvpkNxNDc/hCbjz3MS24U6LjUeYGF4h0hKlYMV/Vi1rZf0zT15VF9aLO0vgSXU92EZtcpulA04bXNXSDXCLDxOVRDEPgCjipbKpECEH/+wM4PA763x3A0AXTvbNEaiVq71gGLjKL3LiSZGpoge7jzTTushCq9t/36yyVNN743jv8x9yfULJPbJ0NkyQGz9wiFkvg9br5ha+/iMXycP5Ovbi4yGvfewPD0FlYWOCZZ57+WYdkYvLQs+VPsxBivTujiYnJQ4EkSdjtt0tWdfURjBLEFlMEAt57rjcCsFgUHv3CPkb6pmnqqEa1rv8nweGy0bmvcd3jQghmRxcpZIrUdYQ3LNvtFL2kc+udflSbyq2fxjjxzeMoqsLuZ3uYH5onUBvA6lzrl2WxWajurmHu1gwNBxtXe8OSc3GmrozjrfZTu7eB1EKS2GQMu9uO0AWZ5SzJ+QT+2gBOn53i0gx5zc07f/4+4bYIiQWd6pojyDPnof4YWd3D+K1+/FUees+O0niPPrXNuNPIVQjBfDFFyT6xrZVGQggymSwup4NsNoem6cxMz1MoFmlurn+oxNlHE5yyLKNp2xswMTH5vLOjn2BJkgJAO7CafxZCvPtJB2ViYnJ/zM8s8e5blwHIpvMcPN615Tk7XdT9EcuzCS69dQsEZJN5eh7d3DPrXsRmYoxdGiNYF6JuTy12t51MPIvL70RSyjVSd9CF+2jLptdoOdpK48EmlDtsO0bPDqFrOskr4wTqQ9jcdlSHis1lp1QooTpUHH4nsgQHl/8npOkPialdvJ7/7xi7Mk7no20M1P0xUcsgDUf3Ueu2EQx7WZ5P0riresev0xAGv/rmr3Jl8cqqkes3v3iKv3z9byiooxuuNLoTRVE49YXH6O8fob2jiejiMq+/9jYCwfHjBzh4aP2S858V4XCY5547RSwWp6en+2cdjonJZ4JtCzJJkn4N+G2gDrgCHAfOAGYu2uQzi2EYzMzMYLPZqKzc+b7BhxIhkGRptSn/QbPDrUDrGDw9CJLExOVxKhpD7H1uN+mlNA6vg4Ef95KOpmh7vAt/TeCe11Hu8lBzV3pYHJrH6rCiFzWsTit7XzpAKVtEsVlQbWo5m5ZeQJ4+D0LHX+yjodmOLVxH9xOdnPnOZbwVEfrPjVLXFeHYF/eQzxRx3Ecj/VJ2mYvzl9cYuVbXVHLuV/9u2yuNausi1NaVRdvY6CRCCBRFpniPvaI/K9ra7k+gm5h8XtlJhuy3gSPAWSHEU5IkdQH/y4MJy8Tk0+H69Ru8995pZFnma1/7CpFIZOuTHmLCNSFOPrufXLZAW9f2DFLvl2C1j4PP7qKQLZcst0tyIUlqIUmosQK7x4437GNhaB67247VYUW1q9hcNhKzMZYmojj9TmauTWwpyO6m6VgbFa1hErNxen9wHdWh0vPCPjwV7vLkpG1FgN8xOWlEDrPrmRME6oIoFhl/2EtsPkl1c+WqHYXLtz2ftbuNXIXuRs81Ijs2N3LdCQ2NtTz+xDEKhQI9u7fOhJqYmDzc7ESQ5YUQeUmSkCTJJoTokySp84FFZmLyKRCPJ1AUBU3TyGZzP+twPjaSJNHcXrvmMV3TGbkxjWEIWvfU3fdE4Eb3qmmtopQvMd07i81pJdIRXjPZOXl1krn+GWr31FOzq4ZitkDvD69j6ILFkUX2f/kA7SfaqO6MYPfY13iDpebizN+cwmJXOfzNRwEopvNoJQ1noCxmhBAYmoGiKhi6wdzNSUr5EjV7GlAdVnwRP5OXxijlimhFjVw8g/1vX1kzOVnIa0zv/mMc+9NE9u2m6o4s1aHn95BP53HuwOwWNjZyrfTY2C3/DpeGpzhYV/+x7SpkWWb3HlOImZj8vLATQTYlSZIf+A7wliRJMWDmwYRlYvLpcOjQAYrFIi6Xi4aGB5tRelBoJY1zb/cSX0px5Kluqu7KJE0NLXD9g2EkqVzWa9u79X7JnTB2eZzp3hmEgGImj8PnIFgfQhiCiStjuIJuxs6PEG4LIwTlkuqK1xmUY/KF1/t1RYfnaX+8i/RCufE+Mb3M6T96Ey1fZO83TtBwtI2Rd3tJTC9Ts7+ZpZF5ht+5RaCpElmWqD/cil7SSc8nmO+bwVfjx+Mqrhq7MnkOslHGriaY6Z/F0AX2cJJAze3JSYuq4A5sPVl6dzZsMyPXv/71E1sauZqYmHw+2ckuy5dX/vjvJEn6CeADvv9AojIx+ZRwu92cOvXMzzqMj8XSfJLZsShOt42+S+PrBJlikQGBEKCoW1th7BTFoqyKscH3BrB7bFTvqqX5WAueKi+p+ST+2gCyRcam2uh8upuJCyMEavz39Eqr6qhm5uoEgcZK7B47s9fGKWbzqA4rM1fH8dUFmb81ja8uyI1/OIdW0DB0jdj4IjV76snFMwy/f4uRt07jbGjEG/Gj+COr5Unqj4GrEkVNY+jlOOQNVkVtxUbZsLutK1oDVYwNTyPLMvVNEVOMmZiYrGMnTf024BWg6Y7z9gO/98mHZWLy84dhGFy7MkB0IcbBI90EQztbxL0ZHr8Th9tGLlOgY4NdkDUtlTzy4l4M3aC6eXtrfLYiOrrAzI1pfDU+artrcfgcJOfiTFwcQ5LLxquyLNPz7G5yqRwOr2NVhMSGZxn6/iUkRaKUydP6ZM+G96jZ20hVZw2KqiDJMuHuOsbe85FP5qjd38DoO70kJqPExhaxumwr2TkXjpCb5dFFFgdm6Zj+N3S3D7GQayDT8tdIdxi7fuS+33SgEXfQhc1pwxfe2lbxzmwYQP/89KZGrh8dN3BrnDPvXkEAzzx3jMaWzXvGcrk8szMLBIN+/AHT5tHE5PPCTkqW3wUSwEWg8GDCMTH57LNZ1ie6GOPS+V7sdisfnrnG8y89tvpcOpmlWNAIVHh2nj0xBE2tEVx+O027atc9Lcsy1U2fjBCDssHq8OkBcskcN9+8QvvJTtqf7Gb6fBSRL2BR3TQfaQZAUZVVN3woZ9H6f3CVpeE5XCEPqfnEhtfPLiaxuu1Y79gn6a708vS/LSfqU3MJov2z1OxtRNc0hA5ajZ/aAy0k5xLEJqJkp8cJWIaQJYMq5wTZWvWjNwTcVavXtagKkbbtDSXcnQ3795X/luhsHLvUTP4e1hW6poMkIQlB6R6+XKlUhj/8j/+ZZCLFru52fvGffgWHw3S5NzH5PLATQVYnhHj+gUViYvIZJ5cr0HdziGtX+2nraOLEyQNrxJXDYcdmVcnni/j9t/2W48tpfvids+iaxsETu+jcvd6E9V5c+nEfiWgagKra4D0b0JMLSUavTBCsDVDXXbOl+DMMg1K2iNVlWz1WkiXclV5mbkzhDLrQ8iXSCwmWR+bILaVwem2oDuuG1ytmCigYWJ1W9HyRuoPN646ZuTDE0uAMFruVjhcPoTrvaH6XJErZAq5KD+GeenKJLLUHmylmCmDoWOU0831pJi4MoxU1lptbCSkjiNojuJtuLy/PxDIUcyV8Ee89rSbuNHKVJGldb9j18THkBYPnZp/n1G+c4PEDuze8Xkd3E7phoCgKTS3rRfNH9PcNMzezSKmkMTcXRdP0TY8tlUqcPv0hiXiSxx4/TjC4sylUExOTh4udCLIPJEnaI4S4/sCiMTH5jDIzvcAP3zzN+TPXeOzJwwz0jbJ3Xyce7+2GcI/XxUsvP0k6nSNSfduINZ3MUiyWsNutLM0nYPe977UwuczCxDINXRGcXgeSDAiBrEhbmoLden8QraCxPBUjWOPHdY+GdcMwGHj7Rtlyoi7E/leOIlsUJEmi86lufNV+Jj8cRpSKyHLZ9d9fX4GqKmj50oaizBnyEGisQugCb7Ufxwb3zy2nUJ02StkCpVxhjSCbuThMtG8ad8RP81N7Vnu+nD4n/MVLiImzdKidDEr/FEVVOW/5HdoOVdL+xSdW35tsPMvl165glHTq9tbTcri5vA9zPolqV3GtLEjfyMj17t6wFn+Y0x9eo2NPA/nhDPKhjcWdqlrYe6Djnt8bgFAoQGdXCzOzCzx76sQ991XOzMxz82YfDoedixeucuoLT255fRMTk4eXnQiyk8A/kyRplHLJ8qNdlg+PPbSJyc+IyYlZLIpCIOhjdGSKffu7cLrWl5p8fg8+/9ptZOHaIC0dtaSTWboPbO5GD5DPFLj0Vi+yRebm+4P4gi78VV46DjcRCHtBCLSihmWDFUgAroCTheFFbE4rli1WHWn5ErPXJ0kvxFkenifSXUvNnnKPmsVqIVDtY2QxSiGRYwqD+sMtpOcTBJoqsdg3vrasyHS/fIxLf/IDjHyB5OQCNo9jTSw1R9qZuzxCsK0aR/D2eyWEYGlwFlell/RcnFK2gM2zkg3MRmHyHJLQcRf7qWl14KhvxRvxU3ukdY1QLWSL6CUdi81CLp4FYPz6FIPnRpEtMke/vB9PyL2hkWulq4LT3/o2Z2/2kRtIU91QgaLIpJM5mjp27t5/N80t9fxYWraIAAAgAElEQVTyt15GUZQt+8c8Hhd2q41CvkhV1SdXkjYxMfnZsBNB9sIDi8LE5DNOW3sjYyPTHDzczSMnD1AVDqIo2/P7UlULJ57e3u81siKXndlzGkszcRq7IsQXkux+ooPo2BI3fnADh8fOgS/uxbpBhqrrZAfV7WGcPic258ZlxdW4HFZCzVVEh+bw1/rXTCCWMnn6/u4DFq6PIckyqsvG7lcfRXXaUKwWSpk88xeHsDishA+0sjw4TWxgitCuBhITixQWY0gWhb6/fpfE4Tbqn9hLIZWjlM4S6mqg9dT+dfFIkkRkXxOzV0YJtFRiFQkQ9rLYWjF3FZPnSFk6sPhr8Ub8dJ1a/776Il4a9zeQiWVpPtQEQHwpxZycprLoJJ8p4Am572nkunRpCZtdpe/yOM++ehSr1YLT/cn0eoUqtld6DAYDvPqNr5DL5U1BZmLyc8BObC/GJUnaB3zUifyeEOLqgwnLxOSzRajCz9d/8YUHYmegFTUkWUKxKFjtKse/tI94NEVTTzVTfXN4Q27GLowyenGciqYKssks2WRujSAThoEwBBZVIVQX3NZ9JUliz1cOUdUZIdY/RWF+iWJ9EKvHSTGdBwm8NSGKuSL+2gDT714jcrQTd3WIpd4JMnPL6CUNe9DD4tUR7AEP85eGsYW8OCp8JMbmCHbUIAQsXh9l8r2bpGeX8NRWsvtXnsHftL7Rvqq7nsrOaqT/8mX40W1zV1amJ4uLUwz8YAyXy0YultnwdcmyTNPBptvvr67z34z8LlllGLvRzOnw3wDc08i1IuJjZiyK2+fA5bZvuJT908Dr9eD1erY+0MTE5KFnJ7YXvw38OvD3Kw/9v5Ik/YkQ4o8eSGQmJp8xHoQYi04tc/VHt7A5rBx6cQ8Ojx1P0IUn6IKOCO2Hmxj8YJCr37tCajFJIVug68kuPKE7JxsL9L91jVKuQNuTPXirt9/8LckyLp+TaCZHtlhk8foYgfYaZt69iqRpND7Wja++gnjfBJIkEb06grs6hM3vwtANjGKJ9NQCskUhH0vhigQJH2rH5nMiWxRSU4tIAuxBL7nlFMVkjrQUZeZsH56aIIp1felTyi2vM3fFXQWyjC3cQNMJK7HJJap7NjbAXZyKcuFqH/u72rAoFoaTC2SVcqN+Xh1lLBmls7I88LCZkeuxZ3q48F4fo30zXDs3yMGTXaa3mImJycdiJ7/W/QvgmBAiAyBJ0n+gvFzcFGQmJjsgm8ozcGkcl9dO6776e075zQ4tYLFayCbzJBZTODxry2JWu4oEFDIFXEEPdV0Rdj+1a80x6cUkhWQO1WElOjiHM+DCYr+dPYuPzbPcP4m/OUKwY72IUZ1WZIuCUdKx+lykp5fQSxqqBUJtEfwt1aQnFyhlcviay1OTgfZa7AE3U29fIh9NgKYR3t+OPeTB5nVSe6y88idysLyAWhiC2ke7mT7di6c2hNXjQNqs5HvH7knqj1Ew3EiZPNaVnr3KtgiVbWt3khqGweTVSeILCX519Hcp2MexTjTye/q/wqqqOJQWcpaRNbYVALIsbbjiSLEoTI0sUFXrZ/jWFJ37mnDvcL2SiYmJyZ3sRJBJwJ0z2PrKYyYmPxfkcgUURcZqVSkWS8zNRPH53PgC9y4JaSWNscE5rFYL9a3hLTMlAxfGmB5eRC/p+Co8VNWvLSHeuZ+xpj1MdGIZd8CJv2rjJu+2R9pIzMTIpwu0Pdq+7nlXhQebx04hkyc7u0j/P8wT3tdCRXcDhm4we64P1W1n7sIAWjqDKGoEd7egussCwx7w0PL8YfRCEWelj/xSkpHvvIso6WTGK6noaaL5+SNouQJWX3kq0CiWsLrs2AJuCrEUpUyOhYu3UCwWqk/uwV1X9gFbtdJQJLpffYzW5w6hZQvYA+7bPWuGscbIFUlaNXdNLEuMfu8CkizRdmofroq179FHJq6VRTsTV8aZlVIU7ONIkkHRMc7w2DydVTX87WN/RL5SXl19tBWSJNHcWc3wrWkqIgEcro+3l9LExMRkJ4Lsz4BzkiT9w8rXXwX+708+JBOTT5+piTl+8qNzWK1Wnn/pJFcu9DM6PIXdZuPLrz6J03U7+2EYBnOTS0iyRKQuRN+VcW5eGEEAT9pUIvWhzW8E2N02tJKOYpGx3jXpaBgGfe8NsDiySOO+BpoONvL4Lx5DkqVVoWDoBtnlNDaPHdVuBcPg0NcOY7GrG4oJm9tOz5cPszw4xa2//CmumhCzH/bhqvSydHOEeN8Ytqogdp+LWO8YilVFCIg8cttB3+53AWWxpbrsVHTVozht6IUCQggUm4qy8lpKqSxDf/UD4rdGqTyxh6rDuyjEkiSHy6tvi6nsuhiFEGTn4whh4IoEy4765TcE/uKl1WyY+Nb3kGQFXRdEx/IsDkwjhEBoBrnl9KogyyezDL7fxz+f+j3y1lGceit/oP73hEsu7EbZxNWSrmf53RmiRx0EKr14K73ourHh92xhepmbZ0eoqgvQfbQFSZI4eLKLzn1NOFw2lPtYuWRiYmJyJztp6v9PkiS9AzxKOTP2z4UQlx9YZCYmD5hcrkBf7wgej5O5mSgWi4VMJsdSNEEynsbhsFHIlyjkS2sE2djAHOd+fAMkwaNf2IcQApBAiJU/Q2whSe/ZESqq/bQfalgjlNoPNhKo8mK1q/irPMRm40xemyJUHyTUEGRxeBFv2MfEtUkaDzSgWG6X7nLxDNNXxohPRLG57dQeaGLqTD+SItP67D6coY2zebIis3xjhFIqzewHU1R1NzL8tz8lOTSBbLWgaC4anzrB7LtXMTQddWViUMvkyE7NYwv5sVX40XN5jHyBikOdZGei+DobwBCg3M4K5pcSzH9wDUmRmHvrHHVPH8FdV4VR1EEIvI3r7SHSU4tMvXsNCYgc78bfWna4F5nFsp2FoSEmzjH4N99H9kVw14SYvTqKli8hKTK++kp8dWUhnE/mOPtn73B9bIT8vlEkySCrDON5tIZGe5APKr/Nf/3T7zPz9hgFqYBikckm8izPpxg4N0pVU4i9T3Wu+Z5dfX8QQzcYuDJBbWsV/pWNCjstUxqGQamkYbPde8LVxMTk88eORoOEEBcpr04yMfnMc+l8LwO3xhAIjj6yh8mJOUIhH5HqEH6/hxtXBqmqDhEIrS2DFQtFJAkEEqWiRtf+Jmx2Favdupodu/H+IIVsiYHZccJNIfyVt4WSosiEG29n0W79pI/EQpKJqxM88WuPEWoIsjS5TF1P7Zry52L/DFPnB5m9PklkXxPZ5TSzF4bQNR3JEOSWU5sKMmEY5KYWsdkksMl4aoMUYikQAklWsPtduKpD1J06jJ4vojpt5OejxK4NUEqky7sknzzC4geXMXJ5PJ3NhI/3EH3/EsvJNBXH9uKoKZchHVUB7CEvufllXI1hFJsVWZFxVweRbSrKBnYcevGjdUICIzEHoprMfIyp9weosbThLg6SdXRhqH6Ky6lyOVWAalNpfKybQEsETdfpX5whmJRBElTqTqzZBorOCVxGK3ubm1dF1uOP7OfMZInoVIzq9jD+iI/3/vYCdo+N2eEF2g81rhrEAlTU+BntncHhtt13ebJUKvHDN99nbi7K0WN7CIUC5b8Lkcr7up6JicnPF1sKMkmS3hdCnJQkKQWIO5+ibAxrbr81+UxiUWSEMECSqAoH+cYvl20rJEnC6XLw+LOHNzyvdVcdxUIJWZZpaIugqhY69q5ddxSo8jJ2cxab04r9Dr+vVDTN9K1pQvUhKlf2SxZSeaZvTKFaLWSWsnQ/vQutoK3zEUvPx1GsKt7aAFqhCLkcRUokppapPtKBpyaIni9ilEqodzu8SxK+9lpUtw3REsZIp1H0IhX7WlA9HiKPl32/7EEvWibLwo9Ok5ueJTMxi6u1CWsoiJbNoefyWJx2CtEYtqoQhVgci9NBanhiVZBZnHYO/rtfJzEwiauuEtXjZPnaILGbI0iSRPVTh3CEy4JU6AbIEt6GKrR0Fu+7v4762jW08wfpL/wmibEFpvRfoaLZjaYGsOaKqE474b1NeBsqkSQJX11ozY5Jp9HK/1n3P5KYSfC/Zn6dgt/GCy8/uSbj1bC3nkC1H8Wq4PK7EEKQSxW4/s4AtZ1hbK617/3eE+00tEdwee3YNlkLtRWJeIqZmQUqKwL8+K0PsDusSLLMCy8+SX3D5svGTUxMPh9sKciEECdX/m+a3Zj83JBKZGjvbCIQ8uF02qkK37vv605Uq4W9R9c3z9/JrkdaqW6tpJQrMT80T1VzJQ6vg0vfvcjUtUkE8KV/8xK+iJ+mg40UMnksqsL8tVFmLwzScLSNUOvaScFQcxW55RS1+5upO9TC0OsfIqsW7F4nrU/vxihqTL99Cb1QILS/E297A4amoWdyWDwuap88wNKlW2QHR8lMThE8vg8jX6L2yyeRLbf/KdDzBbRsjsLiEvaKAJSKhI7vxxEJ4WlrIB+N49/bicXlQHW70DI5fD1r3w+r103l4V1kZxdZOH2JUqbw0a9wCKP8e11yeJropX4cVX7Cj+6jotUL370GhoYydxFHbZGkoiAJ0O0h/A1h6h/fg2K1IBSJhWKCiqTE0A+vEK9UVndMZuVhnI/WUVsSZRPdbBFDW9sbJkkS3juGJEoFDYtN4cgX95BaziLEmsNRFJlQxLfmsVJJ48blIRKxNIV8kcpIgP1HOjcdCvD5PdTUVDE3F6WmLszychzDMMhk1vfUfdJ8VEo3rTlMTB5eduJD9h+EEL+z1WMmJg8bsaUk01Pz1NaFCYS8zE5F+embF0CSePrFI4Srt2eUuhMURcbjc3L2rfNgCOaHFzn6tUPkEln0kg5SOVvmi/hp2N+AzWWllC+yeGMcd8jL7LWxNYIsMTrL/Ie3sNlt1B1qRnXZqX9sN/GRWWxuKzNvnkbLFTB0gdXvITu7hKPCz9h//iv0YpGKJx6h4uQR7F4Hmt9F0eciN7NI8NDuNWIMwBrw4dvbhRZLYPG6cTbV4awpl9UCB7rXHBt+9gSleJLElRukegdAklDsNtwdLaSHJ4jfHMJRX42WzuHvasHqceEIl9/v+K0R7PYi2bkliskM9sBtOwtRcxhHfStN9RKVB9pACGx+NxabuiYbZi808eeRf43aV1izY7KjsobUE25mr09Svbse+8qKpcXxKCMfjlLRFKLlcPOqQLHaVZr31jN+c5rWA/XbMnodH57lxqVhBnrHCVZ6CM0FqKmvIlKzsbhXVZUXX3qSUkljaGiU/+fP/56qcIiGxgebHUsmk7z++hsUiyW++MUXqKgwXf1NTB5GdtJDdgq4W3y9sMFjJiYPDbqu86Pvn6GQL3Lr2ggvf/NZovMxBOW+qlg0uSNBZqw43t/ZaL/RMWMXx4hNxSik89icttUMxaGXD3PpO5dw+hwEVxzzFVWhprsWvaiRnV0mG0sR2d2w5prpyUUUhw0tU6AQz6C6HLirg7irg0Q/vI60svT7I6sKR9DJzHfeIN3Xj6SqxC/fwBkJIul5rAEflU8cxburHYvbyd1IsoyvpwNPRzNaOoPq2Tw5LlsUCvOLaOksuZl5JFnGWlVB9idnUNxu8gvLyHYHjkiI4J42pDusLKrH/2csi1coentQ3W+vsbOQXZU0rYilTCxB/+Qku91tYFO51tu3mg3L28YYjS3QGa7j/Wf/K5eu36Jad1LKFPBF/Pgi/jXxDp8ZRrFamLo+TaQtvGa5+q7jLXQebdqW7QWAzW4FpNWBD6vVgtN57/4ySZKwWlV6bwxw8HAPy0txUskMTuf678MnxeTkFMvLMWw2KwMDg6YgMzF5SNlOD9lvAr8FtEiSdO2OpzzA6QcVmInJVvT3DXPu7FVa2xo58ejBTcsxwhBIsoSxMgXZ3F7LzFQUWZKob16/nmczivkSF9+8QSaWZc9TnYSb1n+wGYbB1LVJBt/vx1cdwOV3UNtTt9ovVtlcyTP/8hkkSUJR14o6xWqh87n9lPIlrHc1jvs765g9fQNHpQ9HxdrSmauxhtz0AooqU3mkE8VmZfndMxRnZ5BkCXQDRyRI+tp1JEXG0dyCZ+/uDV+jns2CrqF4vMiqijXg3/C4O7FWBGBgBIvHBchIkoQ9UklxOYF/Vwv+g904aqpuizGAbBR16SqgY033IhXjYC277eOuWj0sn8nxxN/8CnnbGI6zTZz5F3+PaySJvdhE3jqGU2/hiRcewxnyUEzmsdyIEVUSFFM52p7esy7WQH2Q2f45XD4Htg2a87crxgDqGqs49aWjaJqORVVwOu14/e6tTwTaOpo5f+4KwaAfn//BtuFGImHsdju6rtPQUP9A72ViYnL/bCdD9lfA94F/D/zrOx5PCSGWH0hUJibb4NzZq/h8Hm71DrFnTwde3/pMjqIoPPviI0yMz1LfUG7AV1ULz33lkR3fLxlNk4ymcHqcTNyc2VCQRYcXGD07RHRoHqEJOp7oonHf2myX5R7lMNmiYHPfFmqGpiE0HZvHTsuXT6yWF4Wuo8XjpG8NIFlVggdaSV++SurCBezNzSCBq7kRW1UVzvZW3O1NJD/8EKEbyHesIyrOzRD/8Zug6zh27aa4sIi2HMVWXYPn2KMo7tvvqTAMSvPzIIFaFV71CrOHK6l48hG0ZBLF7UK2WsnPLCApEt6eTuyVwbKfWHrhtrnrHW77Uv2x8tfcNnL9yKB1ZHmOvG0MSTLIWccYXp7HU1vBH0/+KjGnxDPfeA49X2JpYAbVbS8L75KOssl73P5IK9UdEWRFQrbcFl9CCBLRNFabBec2rSwkSSJSe3/Zpv37e2htbcRut6Gq69dDfZKEQiF++Zd/EcMwcDjMbQImJg8r22nqTwAJ4JsPPhwTk+3T0tpI360hqipDa3zC7iZY4SN4V1bpbnKpPEuzcfyVXtyBjctHnqCTQiLH1NVJjn3t4IbHaAUN1aZSu7uOun0NNB1u2vbrWXetdIbou+fIjE6iuuy4mhoInjyKMHSib7xB5tYAllAF1ooK9FwWhABZRrbb8B3aj14o4GxsQF7xvJKOHqEw3IesZxGlIpJqJf7a35EbuAWajpHNITlcaPMziHwe2eHEe+Lx1XJrYXKC9OVLICTcR45gr6sjPz1DfnKSwuISomQg26y4e7pIXe8FSSY3MY095F9j7mr88ndJDU4gjvwh3q96kP3VIElresNcRiunv/VtumobcZSayamj2PON1EtOoulFHA4bPtWB0AxG3r6GXtKQVYW2Z/ZQyhXx1QYp5UvkkzmcQddqiVmWZWb655jpn6OiMcTup7uQZZmxmzP0nh5CVhUe/cp+vKHtZbo+Dh7Pg7/HR9hs5iYBE5OHnZ009f8F8NtCiPjK1wHgD4QQv/qggjMxuRcnHj3Anj0duNwOLJYdWeqtQQjB+TdvkFrOYndZefzrhzds6tZKOh6fnfBjHcSnYwAYms7kxREKqTz1R1qp6oigFTUkWaKmp25HJbC7KcWT6Nk8eiKBYrNQXF6mtLRE5vplUuc+QOTSlMb6kfYfQS7EoaihtnVi9dixhCqRbWv3XqLlEckliqlyX5ettQvZ4QRZwRAalsoqLIFKjEQMi8+PbLNj5LKkz3+AKBZRKsvCqXwtDaNYJHX5MpKqkr7ei7W6msS5CyQuXsbW0ITF6US2Wsprj1aWgYvJc8x99zUWLo3hrA0jP3McS26R7PQCcwF1tTcsIw8zvDxPZ2UN/7D397k1NESt4kDPFihm8tj8boxiCaOk3Y4JcFV4UVQFvaRz840rZOMZgvUhOp8ubx0wdIOZwTn8ER/R8SVKuRI2l43EQgqLzUKpUCKbyn8qgszExMTkTnbyKbb3IzEGIISISZJ04AHEZGKyhmKxhBBinbu5LMv4/B/fjUUIUe7bcqpoJW3VluFOFkcWGHyvf1WIhVvLfU7JuQTzt6ax2FRmro3T+tguGg42fbx4DAOhaVhDAVS/B2u4Eovdir2+lvxwP/pyFJFJgFbC0daCatWx1VSjpZKo+SiF6zOUXB6cjzyLpNz+EZesNhAGemIZbWkWa2Mr/i+/iq2zB8XhwN7aiWy34+xsJ99/HYvfSzG6gJ5KIqlWJAycXd0gS9jqy71Iis2Ons3g3tVBenAUa0UAxUjhCIdw9ezCXhMGRVkzPZldLiHLCks3BlhsCFCTU7DYrXimjDWTkh8t+a7a1YyRymNxWHFGgtS6nSz1TeIK+3EEPbQ8vYfk9DLemuBqX55WKJFLZHH6nSTn4gghkCQJWZFp2lvP2LVJajojWFc84lr315PLFHB47FTUBtZ8P4qFEulkDl/Qba5IMjExeWBI4m7Dnc0OlKSrwJNCiNjK10HgHSHE+s7ZT4nDhw+LCxcu/Kxub/IpEFtO8P3X3kHXdU698BiRyM57dhanYpSKGuHG0JoPVCEE6eUMqk0lnysy1T9HuClEZd36qcsr/3gJoQtS0RRtj7YT6axGVmSysQy3vn8ZvaRTf6iF6t07b5oWhoGRyVCMLqIGAmR7b1JaXsbV3YOtuYWPTLEkWSb14WmKc3No8RgUCygOFWtjM/riHEpFBCmXRHY4MHJZXE+8tCZLJoSgMHCN7Ic/hOQi1va9uJ7+BigWRDqOZLUh2Zxkzv4YI51EaCXse4+RvXkddA3HvsNIho7sdGEJlK0d9FwOLZ5ADQbIT04i/eXL2MUUWmA32st/ib2+vjxssbIgPD2TZuYH7xMfmeK3Oj4g75jEUWjk//P9Bo5ggMqnDtM/NkxbMIIjtPVAwb2YvjHJ0sgCtfsaCDWudcM3dOP28vJ7oGk6P/ruh8SiKRpaw+w53MrIwBRV1UFq6qu2PN/ExMTkTiRJuiiE2NB1fCcZsj8APpAk6W9Xvn4V+P2PG5yJyb2Yn4+SzxdQrRbGx6Z3JMh03SA6HePsG9cRhijbGhy87ag/2TvL4NlhLFYLh7+0j90nNzd7DbdHGP1wBG+Vh8qWqtUPc2fARc9LB9EKGq6KcrZO6Aap0WmKsTiSLONursMW9JGbnqUwu4CrtRF1ZXoxNzJM5voNSovzWMNVYAAILAE/udER7C2tqyU5bWkOKTmJKhfxfuF59OkBSvMTiPHzqMEIipJF6TmENj2KrWXXupKlJElYghVI+SRCEujTg5RGr6LNjqGn4iieEPYjp5CdLvRYFMmiYvEH8T55CqHppN9/i+y1CyhON76v/iK26joUhwNlpVHcGfEipBkkYWCJ3SB+5qcojhexVlagCcFQIovreh+etnqGM0vkHZPlZn3bOOmeWpraOslPLeK+NM6sNkLwUDe+9oY105nCMFi4Nkp+OUX4QCv2wOYZ0trd9dRuIpC3EmPFQomB6xNoJZ3laJJAyMPsRJR4Ikkinqb3+ihfevUJPN4HZ1dhYmLy+WIny8X/iyRJF4CnKXtuf00I0fvAIjP53KJpGol4Gq/PTU1NGI/XRamk0drasPXJK2STOc6+cZ3odAxN03EHXJQK2ppj4nNxLDaVYr5INplbs7vwbqp31RBqqkBRlXUeZPa7PpTTE7NEz10ncXMIV32Y3OQckWePkzh/BUm1UFyMUvXCM+U4b93C4veRvXUTtaISSZGQJIPSwhyu/Qcpjd9EslhRqlvRZ0aQbQ4kQJIEwtBQXG5K0ynk6hZEPoslEMJa27Tp61BC1dj2naR49jtQKJH5xz/CyGSRXX5oPYi+MIm9+yCWcB2y043sLPdSCYqUFuaQreUSpZGIQbim3B92x+SkVH8MMXGWglxPZmIJ+foN7F0dPP3mvyIjD+MoNvFt/dfoqm7AkWsgZ5/Aqbeyt2cPsixTTGUQukH81hiFZAYtlaXiyG0z2lw0yVLvOBablflLQzQ+s/OuiWwihyEE7nt8vwdvTHLj/AiGYVBVGyCfL3L4sW76b41h6DqKRUGWP33X+0wmw+JilHC4ypyYNDH5OWOnndCzwIeAHaiQJOlxIcS7n3xYJp9XhBD85K1zTE7MUfX/s/eeQXKk553n701X3ne19w5AN7wdjzEczgxFiUMjQ2p13D0pdLfajWXcfbu4iLvd2C/nI7QRG6vbo06rlXQyq13Rj8gZkuMHY4CBR6PRFu27q8u7rMx83/tQIDAYAMRAJEYiWb8vqCpUZr2VlV35r8f8n84Un/rlx/j8rz0L3JtHVHa9SLVQI9YWRino39nJyL6boyVD+/upl6ZJ9cZJdH0Ev627zDD0bBtks1ZJoUApavMLyO0tGvtG0UwDz25gpW7UKPn7+6nPLxA+eAhfVzeqtIoqZcAEufg29tYSWqILn+VH7xrCy6yiBSNosRS+XcdwlqbROgYQ1QJaWy/C50dmFxG+MCJ0q2O80DQCBx5HlDbw6iXkia+jGRayUMFb8eME/AjLh9k1fPN2pkXoyCNU3vw+VnocX/8Q6o+eg5X3mrYVX/4WaBrub32d8698k9RCAWd+kfrKGlNX564X69esBcr7R+jaqvKfN/8Zi9U8h56+MWcyOtZHbWMbPbSGbhpsvH0OMxEhOtKLcj0y5+bZPjeP63q07R7Ca7h3tLi4Hdm1AidfOA9Ksf+TE6T7bm8KbJh6079OCCYPDtPV34zMtncnWFpYJ5WOsby0xtTFBXbvG2Vk9KP/WPi74rouX/vaNykUiqTTab7whedbo5BatPg54l66LH8H+ArQC5wGHgDeohkxa9Hip4LneaysbNKWTrC1mcW2HQKBO7fse56kVqoTjPpvEmyJjiiBiB+n4XLkmUlStxFckVSYo8/f3r4CoLpVID+/TnSgnXBHgsr6No1cichAJ0bw5nSgUyiy/eoJlOcRP3qAjocPEO5JUb08TbArjb2+TvKxB3EKRay2G0IpuHsPvoF+1PZVRCBIo26gLB/e5gLu1kVUrYJxzc7CSHWhP/oZ0DSE1ozS+XYdufl4zL2B3JwC3cTY8zzCf6vpqDB9WAeexpk/g+zqR2ZX0Qyj6eGV30CVc7c9HoHxCeneV78AACAASURBVPxDo1RPn6DwrT8mvvQOAom6eoLit/8cfeIwT73yPzQjYd4AfxE7jlso0J4rEEg3o2GBxgDDwRjmnn7kmUvsCffh77hR32UE/HQeP8TmG2dY/OZr133NrGgIz5FU1rPoQT84LkLXqGzkiPZd8zBruKyeXwKl6N7Tf1u/t3K2jOd56JpGYat8R0E2OtlHMOTHMHU6+z7weYX87JgcpF63+fY3XiYai/DGK6cYGOz+iTp9Pwqu61IuV4lEwuTzzTmYun7niREtWrT42eJevkG+AhwBTiilnhBC7AT+1f1ZVotfVAzD4NiDezl7+jIHD0/8WDGmlOK9711kYylL50CSI5+cZGspy9QbMyQ64zz2hUPNuinz3i9a0vW4+vJZ0ASFxQ2GntrP+qunUQqq61l6nrgh5JxcnsLZ87jFMsLUqC9eJX70IIHOJHmvjlep4O/tRm4voTs2mpZqent5DsKwUBtXcFemQIG140G8Yhyh28jqLFLz0HqG0JLNeYfCuNlEVEkPoenXvcKUXQTdB14DXPuO709PdiECEeTiKWQ0ibu1DLIO0kHrGb/NAWkW5TvZEtV3XsYt5KnJNqpGljAdaMlups68+4FI2CK1X3mW7vU81fkF/vjyIa6qPewcGqe+uEzw4R7Sjx655WXsTJ7tk5eobecxgkHsfInizDLSk5jhALrPxBcN4EkwfBaVbIXV04skRzuRCFbOXEUApt+ia7L3lv23D7axeTWLkoqesTsX5eu6Rt/Inac4mKZBMhUjk8nT0ZH6WISR3+/nqaeOMz19hd27J1tirEWLnzPuRZDVlVJ1IQRCCJ9SakoIseO+razFLyy7JkfYNTly1+c5DZfNpSzJzigbV7O4jsfse4tous7azCa9OzvRdYE/4r9ruvHDCE1g+A3sUg3zWjRMQbN6snkLr16nMjVF5ex5tFAIe2EGw1A0tufILV8ksHM3ieOPgFTI3Dr2mVOg6ShAk2Xk1jx690RzXBAKlItw81jDO5HtHTiNpsuMue8p8Oqo0jL4E4hAG0op1MobqOxFlBWH3GVEuBPR9ywiMw+hFMr0IZfeBBQitQMteKMhQkkJbhUt3Y06exoh6+iduzBSvQjPpjkZ7RpSXjd21VOTeJlJGpUyxwdHqAeD+Ou9fDuTYbx/lNDZG7YVE2O7YMhFGDpuqcR4zUaWywQG75ze2zpxBrdSxzB1nKBFtKOPyHAPmmHgi4Vo2zeCHgpgJcLE+tLMv3oJX8TP6qk5Og8OIwCFwgjc3v3eH/Jx+LmfvDFc13U++alHyOeKJJKxjy11ODo6wujo3f82WrRo8bPHvQiyZSFEHPga8KIQIges3p9ltWhxZzxPsrGQwTB0xg70MXduhfFDA5iWQXogxfzpq7i2w1t/+jq6ppHsT7L/0wcwP4IoKy9tUJi+SmSwm95Hd5M9e4VAWwxfPEzXY/uvpyyVUmz+xZ9RvXQBryGJHDlGqL8DMxbGvnwGq7cbZ3kB39gkmj+AMsxm4buSCARycx4Ra8dbvYR59PPNaNXK66jN95GFGbSJz+N7+LdQ0kEEk8i5b6I23wEF2oGvIMwwavsCKtiBOv9V8KdQa69DYQZt/Ivo7ZN4s3+LXH0XctOIjv2Iyd9EhJveXnLhLeTWZeTyuxBJoJFFw0VYATAsnIVzqOIWxtB+NOGirp5AKA8tcx4jfIiFaIJa8GwzGuZfZnvfPsbiaV7b9R+Zrxavjz7Csog/dAyrPY2znQVDpzozj5MvYEQimPEY9lYGKxnHSsQRhk7uzGUMv8XIJx+iVqiSOz/H3N+8yuCnH2Lj1AzVTJHc3BrtB8cwQyFquQqBZJj0WBeBWAilFLHuxF0+6Z8cn8+i4+9gw9KiRYsWt+MjCTLR/Pn3L64Zw/5LIcQPgRjwt/dzcS1+PlBKUa3W8Pt9P5U0y9WLq1x4fQYh4Mhze9j5Xw81PcW2y/SMt5PuTXD22++zvlTGbbgEE0EaNeeugkx5ks23L2AEA2ROTREbTGPPXMFdDuCPhQn1dBDqbNYTOdsZ7MvnUYUMwnbQi/P4h0cQkTaEuxNNCIzOnqYZK6Al0vhGdyBLq4jiKZQsIQseRvcEmhWAeAymL0OwE+VoIB1UeRoyJ1GRIVR5CVVaBCVRm+8i+p9DxEYgfwUVHYLqOpSvIHwmavbPUel9YAagUUKhIZQCp3z9vXrbMyA0RDAGtRp61xjWoefR0sPgOrgLZxCWH+fKO1h7nqQR6KVUXyFqdaMPTDJaqRB0hqga84TkCAOOovTGywjLx+jDx2+q5xNCEBobwe3qZPull/Ecl63vvUJoYhzpSoxIGM3Qaf/kceJ7xinOLlO4fJXFr7+MFo2hmRaF2RWcmo0RsKjlShgBH57jEUtHSI520jbWhW7oH4sQa9GiRYv7wUcSZEopJYT4GnDo2v1X7sdihBDPAr8P6MBXlVL/y/14nRYfLyffO8eZUxdp72jj2V86/hMPU/7RaCIlFZ7nAbB6cZW5d+fQTZ09z+whlAwT64pRzVXp3dtPMBGkni9TWc8R7krii4Vu3bEm8CWi1DN5zLCf0tnz1OaX0cMRZLVC8fUfIDSd0IEjaJaFr6MdWdjCSoKWvYIncwQe+mXCn/0iqmE3xVi9gLc9jSpvoUorsPo+qm0EoaoYu59HT1xL3y29CNEuKC7A+JeQhQuw9B1I7EGU5hBdx6A0i/JFEP5kM0U28BSi50FwaqjZPwdnCdw8OPmmK33Pg2CGkfPfAdNC+mJoSkJ5A2FnkNl59OEn0LsPo/kjEIjhrV9GVQvgVprRvFQvlSuneDLSTa1d4K/38ILQsOJxvpf6b1lt62DHyG6qp95B8/nw6nVkpYIevPX4apaFFghQunKRRi4PM/OYbW2Y8RjV9Qwr33oZX0cbXq1BbStHZKSPWqZEoLcTf0eCtVNzKOkx+uljlNfzVIs11qdW0U2DYCpCtKslxlq0aPGzy72kLE8IIY4opd69HwsRQujAvwWeBpaBd4UQ32h5nf3sM3VpllQ6ycZGhnKpSiL54wd9/ziqxRodA800kekzab92O7+SRToe0vVo1BrsfmYPlWyZcCqC6TeRjsviD87gNRyyU0uM/soDiA/ZaAgh6Hx0H9Wrq9QunKWS3SA03NfsanQryHIJ5Ukaq0v4hsZI/PLnME8kEIUlqOWadVm+AEIIxDVTVm/uJVSjhNy6jIj1o0wL1k4gQm1QmUcF/KiNl5GVBYQRR3TsQxk2In8JRR2KU5A4gJY+CKEucGsoXxxZOIcI9CCsJCL/PogKKtoFygeDn0W5FdAstGAMIglkLQfv/1/IjsMQHkX4I+i9BxDJAfRU0yzX25rHm3kT7dS/pVJaItm5D3XwL5n+69+nGli7lp5c4aoGI1LiXT5Pb7GAa/gIjO+icvYUVls7RuL2nYuaZZJ87CGklBiJOLJuk37yEdxGg1qujJWMsf7SO4RH+zH8PtyaTe8zD9D+wG6WT0wx98JJKlsFeh6Z4Mg/+2XWLyyzcXEZ6Xp4TlOYL51bZmNmk/59vbQPN4v2c+sF3n/pEuF4gP2fmMDy/2Q/CFq0aNHifnAvguwJ4L8RQiwCFZrlzUoptfentJajwIxSag5ACPEXwGeAliD7GefgoUlOvHWaoZH+e549KaWkkq/hD/koZkqc+d4FAA48u4dEV1PYOfUG5fU8mek1OnZ0Eu+Mo5s6Vs8NYVCYWyV3YR5/ZwLDMlDqWn0+4GRzoGmY8Ri6ZeKuzOMszaFrLlYyTPzBBxBeDWXXmgO9p15DFK/i23McMxbAy63glStowTjmWLP7Urp1yF1COUXwPES0B4JRtPjjiNIsmD7wysiZfwdSIgJJRHwfJCahcgUlJSIyCB1PQagPVb4AwkCFh1ELX21GwQK90PEcbL0J0VGEpiO6PoUSGmr+z8EIQeIwQmhQXkFFBmD9HWhrQLSnOZLJDKGKq4hod9NHzC7ze/4KZ+Kd7Ksv8VW3zCAQqPdQ868QksNMHn0Kb2MJDKs5mNyu40skiR3/xO0/Q8dBuxYV1QN+kg8epXD6AsLUqSysIHwWoYFeGpkc/q42NMOg97mHSB2eIDLQTXW7yNa5BQpLmxgBH07NoZop0nGti9LwmcR6ktgVm/mTCwTjQS6/foW2wTY0TWPh/AqaJsiuFcitF+kYbKadV+Y3qRRq9I934g/euZu3RYsWLT4O7irIhBB/opT6LeDfA39zH9fSAyx94P4ycOw26/ld4HcB+vvvvxlji5+ciclxdu4a/cjGrvmtEp7jkeyKMfXmLMtT64TiQToGks2xjkpRzJSuCzK7bKOUYuShUYSA3JUVqlsF2vcO4k9EcOsNMmdmSIx2Ut3M0fe5R66Pzqktr1B8730A4g8eRXgNKm/+ADdfRE+kSBw9iBkN0Dj1OpZVw8leQTgKp76J0TeOXHgN4dqY0U6MHc3xZEpJ5Jn/AzbeBl8aRv8xWmMeoSooQ4Ph5xBeA+WsgR5Alc9DxEQkxsFeBHsGQnGIP4AIDqDKF1DF0819O2WoXgGlULIBWy8CNmL7dUTP5xHxCVh9AYwwOEWE6Yfhz6El9iCXf4gqr4HrIPoeR4SHacz9kMVCnrGjv4mW7Gdp4BFOr/whUsBpv48rVxfoiyf5nv0oK5OPMrHnITRNQ3b0ICw/qtHANzpxy2fYPA6K0plz1BcX8Q8MENm3h/LUDPbWNtE9O6mubFDfKqAqVWL7JkgdnED4TJxcCT0cwIo0057bU8u0TfTTqNZAN2ibGMCfCGP6LXoP3TCwNXwGwUSQynaZZG/y+vnWPpBic2EbX9BHJNl0589tlTjx3fMIIchtlTn29OQ9nNE/fQqFAuvrm3R1dRCN3uod16JFi59/PkqE7JAQYgD4J8AfcyOw8NPmdvu9ZfK5Uurf0xSHHD58+KNNRm/x984HxVjDdtAN/aZB3z9ie63AiW+eQSrFnodH2VzKEooHKeer7Dg2RH6jiBCCjqEbZqLBZIjOnd1kr2awlMOVb5wgPtTJas1m+NnDaIaOGQrglKq0TQ7hT9644Hmla8FeJfEqVbyNBXw93SA9AmMjmKk2VDmDsqsIvw+tso5ys4icjqo/B9IBw0K5jev7VKU5WH+16etlK0Q4icjPgRZFuBVEdBhhBJAFHVWeQhkNlNhEZb+PUHXQgyinAPULCFlGoPOjPwWhB1DBfnDyEOyH0kmUEYPgJMQmIPsOSijwqohgN7K2AVsnEPHdaKO/hjz5f0JtC7X1Pq7y8+Uzf8C0TzL+V3/F//fb7zI2cgD/ayNU9Xn83jDdp19EAXogwo5EGiEEsl6j8uoL1C6dwegewOgewOrsueWzVI5DffEqZipFffEqvt4eypeuoAV8FN4/R3j3LiqziwjTwNcWx4yFUUqRXdmmMLdKau8wyZ0DRPvSlFcy9D4wQe+ju/HHQmjGrc0huqGz79m9VAtVwokbNWw9Yx0ku+IYpobpu5GuFEKglOLv2+zedV2+8Y3vUCyWicdjfPGLX7inqRQtWrT4+eCjCLI/oNlNOQyc5GbhpK49/tNgGfjgbJteWrYaP3csz2/w1vfPE4r4eeLThwiEbna8t6sNpCfRDZ1qqc7OB4aZPjFP344OGuUaA5NdBMJ+nGodX8hqCgTHQ2/U0UsFHNuhlsmjWTpxN8Lif/k+RsDE9BzCIx0k9u24yTMqMNiPWy6haTr+3m4cC9ztDGZbB+GHH0fz+VB6Gq2tB2/5PHrQhe0VRKIHtXkWrXcPbF+EQB1ZWkCLDIJ0Ee2HkVvvQXoPIjYK/gQULkDbMYTRnEEoonvwqpdQThR0E9XYAk1A9TKes4qq6ihNoUefQo/uRzdTSFlDmTrSLaI1FsGKQ3UVpYdg+Y9R+BAIMKIoXxym/x8QOqq+idzxL5iJHmDYXUU3Iyx6AaZ9Ek8Ipn0us9OvM9o5yg9GPsNcrcpo5yjezHm8zQVkLoN98d2mZ5oVwslughDIQhYvvw3XBJlyXaozM1QuXgTTQimJvbJGcMcoRiiE5reQ1Tq+oTSBzjQdn3wMoWvo/mbK0K3WyV9Zxp+Os312jsSOfuJDHYQ64miGftcxSabPINZ+a4QpEL45JZlIR3jouT2UCjX6R+9sAHs/aIpAcdN9u94gEPBTr9eRUrYEWYsWv4DcVZAppf4N8G+EEP9OKfVP7+Na3gXGhBBDwArwG8CX7uPrtfh7YG5qDX/Qopivks2U6PmQIGvvTzKyvw+n7jC8txd/yEfnUJqrpxaYPzFDPV/BMgSBWJChR3aSGu6gtJKhsLCBW2/gFCq07ewn2hvHXVtHT7aRef09Oo4fxF5ZRTt0c3pND/iJHzl0/b6vdxCzvQuhG4hrFh3CsPDtfRwvFcXz5fG8dYglEdUZyGxC9hT0fALWf4AKfRkpsygtCx0DiPYdiMKbEDuGSu5AMz9Q8C5rYCgIdEMjgxY/inI3IdCDyn8HiY2QNrJxGc2MQGgMVTqPtOdBFpBuAU2LgKYQVgIaBYSsQ327mSqtr4NmgNfA9Rwe+4vfparNEnB6eHXv44wkU4w3DKYtl3FbZzA7i1QOhoDxcBhnexWvsIlI9mCEkgjTQFXLGG29mB29yFIBo6cfq28IJSX1+TnKZ89QPPk+brGIkUxjplL4h4YIT06gmSapxx/Cq9SwEs1RVkYogFuzKc6v4otHMKMhAh0Japt5YsPd14VLNVemtFEgNdKB6bcwfCbFjQJXzyyR7EnQPXlrhO5uhKJB/EEfvnswDf6wmLoXbNvmhRdeYns7y9NPP0F/f7MGzjRNnvvU08zMzLFjx9h9H8HUokWLf5h85L/8+yzGUEq5Qoh/DnyXpu3F/6uUunA/X7PFx8/IRDdvvXSORCpMMn1rJMMwdSYevNWJ/EejgTzHRYrmaWuXagD4oiE008AfD9N9dAeaa7P9/VeoLKwQGhsj2NeJV6rg7+m4pbPydmjW7Qu8tY5JlGsjglHwBRFGBWpXoLYGm29C76dRCNTWC6hgElU7h1AVsDeg/CZKVpHCRI89jqYFQTMRRgpi+xFmGiP6IJ69ilu/iBceQtlzoASmEQehg5Jo/m48IwZCazroh3aD0kEJCI8jwpOo8gxUFgANOgfA3mbemKSufQsE2OYSC46PsXqGP/3Si8y985cMFJYRugaGiT72IF52nca3vwoNG+EPEXj2d0GAiLWB5xI+/inCjz6LrFZAaLjb21TPn6M6PY1XLoPr4pZKBHfsBNkctA5gBIMYwWYdl1utY2eLZM5coVGqoVsGA596iJ7j+ymvbrNxfhHnrSlSu/qYffkioLj84jl8yQiJvhSlbBXd0JlbzRHvSVCvNrh6foX2oTa6x3581Gt7vcDL3zyFkpKjT03SP9p51/NiZnqRN18/RW9fJ8efPHrPnnobG1usrW4QjUY4ffrcdUEG0NPTTU9P9z3tr0WLFj9f/IP6KaaU+g7wnb/vdbS4f/QMtPPpLz1KcbvcTK191O329GH6TYQmsPMVlCdJjzcvYMG2KKO/dATpSvyJMOvffY3a/CK6EOiiQd8vPYl0JIGBgdvu29uYQZUzaKk+pF1ASBstmIRo/03REGH4MAYehIEHm4X7xRm4NA1dx8GXgJ5nmwXvwRFk4XWwIuCuQ/QISmVRysOtn6ahZtCtg/hCD6BFH0R5ZTSjGTmTbKMMhdI1RKCvaQTr6wL/KK59HqG3oaeeQ9nLiOBudD2ErK+jCm+gClMoK4pIP4kXWma2WGEs1YdY+RajhbfZX7c547fYV28wEo6itpfg8msMeQrplJGlLay9n0ULJRDhNEI1axKEpmMOTeBurFE9+Sbe9hZm/xh6ezf23AxC0/Hv3geajtXRCZqB1d5O5MhRGrkCgd4eNOvmKJTyJGuvnMIpVsjPrhAb70d5EiUluq6xPbOOU7GpZUoE2+MIIbArNpVMmUrVYfn0VaJ9bUQ7olhBH4bP4Ny3z6LpGpnlLInOGIHIzdHXD1IqVPFcD8PQyW+VPpIge//URaKxMPNzy+zdv5O29L35nqVSCaLRCKVSiUOH993Tti1atPj55x+UIGvxi8GZl6fZWtomGA3w6OcOYt6lLgjAsAy6bzMs+kdYkeD126H+TsxwCCUlhmiQ+8s/QpgWxhf+K6yevpu2k5Uc3swbKM3AufBNNHcZiguIoScw9vwmxPpRubOgWRCbROVPQv49iO9HTz2MN/kVRHkRYpMI4TYL/ru/hBZoQzorIByEP4VujNEovojUBagq0pnCdbpRZAELTSSb8ylVCU2Po5mD4C2j6QkM/w6QW4COdOYwww9B5Nj1onRVX0XVV0HzoYrnkKH9PPJX/x1VbZagN8RrDzyDEeniD1Wc/PI8yZ7DiKFP4k6/gAomkJdfBkxktB9VK0AogR5NEfr8f0/j4luYO4+ih+PYl8/jLM3TWJwFM4CzsY4WS+LZNkhJ9OFHUHYd/AGqs4tU5pZxKzUauTJmMoERCV8/7kpK3EodPeAj0tdBZKCLUHcbxrW5oaH2GKWVbXS/Sag9xuhTu5l7YxozUWZ7PkP7zm6iHTHGH99FMB7EabisTK1RzFUY2d+PcZdzqmugjb6RDpyGy/CPOa8+yOjYAKdPXSSVThCNhe++wYcIhUL82q8/T6PRIBS6jTFxixYtfqH5yIJMCDHxYZNWIcTjSqmXf+qravFzQz5T4vzbsyQ7Yuw8OICmaeQ2i4RiQSrFKo7tohsa1VwVX8iH+VMw7QyNDNL7q7+EUywh8lfxNorIeg17eQays+idw2jRZkRK6AZKM8C1wS1DPdv0+yqtoCprKHsJUZoGpZAI1Pp/BreCKF3ElWVQZYhOIEwfTv7bIHT00FG02EN4pW+DFsF1VzDMOATHELUtlMw3U5VUEEJHqSpKVdC0BLqxE8+9ghnaj+BxBC660YFrT6G8DYQIgGg2Myivgiy+iWvnmbPbGNG30OsXmVn/36lrV0BAXZ9lrlhkPOVD+0d/SZsIQSiN8hpo4Q7U5hTKn4ZaESElslpEFDYR0TTW2EGsa75qAHqqE+k44A/h5rcJHTuOW67ibucpnjxNaNcuAqMjVK7MUZ1bpLayjrB8+HUdt1i+SZBppkH7w3spz6/SdmSCUNfNMyHTE31EuhLoPhMr5KdWqlMp1Ej2txHrTWKFgwTjQQLRAP6wn5n3FvBHAyzPbLK1mqdesTF9N77eFqbWmHpvgVR3lN3HRgmEfBx8bAcX3p9n7vIyu/YPYZo//utw/8FdjI0P4A/4/s51XqZp/sSTKlq0aPHzyb18q/yVEOJPgP8N8F/79zDw4P1YWIufDaSUvP36OVaWNjn28B76Bm9O/Zx+Y5pyvsrGcpaO3iSpzhj7Hx9n5vQSExMjBCN+Zt+eY+nCMoahcej5QwSigbu+rmc3yJ26iGw0SB7ejVso4Gxv4+vpRhWzhEe6sTp7sJcXKHz3G2jpTsT8G9iVDCiJOb4bzfKj7/wE5p5nUflFpC+DWl5ERQYQHRNQOQ/1LZThR5hRVPkUVC6AV0EFJ5CVM81Ows3TyGAnuMugxZG6QFjtSDOEwEWqPNI9AyKAGXwUTUTRzU6krOJ6M4BAKYFUeRQuSpN43nmUUuj6DrxGFimz6Hoc3RxHiOYFXTW2cBp5Hvv2f6SqXyXk9vLKkVFGym/enJ7UStD/22j+G6JHGD7E6NOIQCe6dgZV2oTUEM7cBVx1DmPsEGbvzpuOuZFqxz+2B69Wxdc/TGDfEbxqlfLleagXKZ05S3Vti/rqOvWlNRqVOsqThIYHsNpude8PdbXdIsSur08IAskbJsJWwEI3DDzHpWNHNyszm1SLdcr5Gkc/d4h4Z4xKsUYgGiAQ9pPbKBBJNqNQdq3Bu9+/yOz5ZepVm2K2ylNfOMKVC0tcPrOAVIpINMjQjhuNAUopzp+9wvpqhoOHJ0ilm2nTcKQV2WrRosX94V4E2THgfwXeBCLAnwEP349FtfjZIbdd5MqlRWKJCCffvnSLIIulImTWCpg+A3+oWSzfOdBG58CNC3F2OUt9u8zW7AaGEBz+taMY1/yinEqd/Nwa/mSESM+NbWprW1QWlnELBWrTl1D5DL6uTirvn8SfDKMA7aHj+HoHSX/591BA9a/+ddMzrJQBtwGWBeUMWu9elJtFCQ8S7Yj4KFrnAUR5BuVvQ8QnEZFhyHwHwjvBXoXIKGhVZHUGzDR4hWbhvaY3OxsxkCqL0E0kBYR0EKKK0iVSs0E2ELQhNIlUJRzvHTSVBuWgsFGqBATx3PMoz27WV6k6rlvganWE8fQgCo3ZrWWq+lWEkFSMZeZL/YxFUvxh4yr5rVUS0STEuhH6zY0Ksl7Gu/gCslZEhNPoAwfBiuNcfLNpwVEp3PJZ65Eo4Uc+gWzY6PEkslbDLVdwKzVqq2s4xTq+/l4SRw5ibxcIdnZhJeP4ervRfLd2Miql2Dg7j52t0L53gEDqzoaowUSIPZ/ej1Nv4IsEWJnZvOn/23oTPPM7j3HmB1MEIn7aem7Ud+mmTjDso1axicaDNGwHAF/AQl7zIfvwOKVspsDJty/gD/h447X3+ZXPPXHHtbVo0aLFT4N7EWQOUAMCNCNk80opeV9W1eJnhlAkSDQeppAvM7nv1u7IvQ+O0jPYRjDiJ3SHIuuhI0MsvDNLeqQd6bnYFfu6IFt79zLV9SxKKQafPoQZ9GEE/ZiRINXLl6kvzGFZCl2HxuoKofERSIURiuu2wsIwEID/iX9E49yr6PufRmg2AtDahq69kR6QFYThR5g6ItgNqoHQg4j0MfCKiNhBlFtGRCZR8UOIxjRC01BaCM0XA01D9+1DigZSLqK0BggfAg2EH7QQQsSADSCIYhZFGYGJIn/9eTptKFFGKhvw0DQ/nnOJhmfyyb/5far6EiE5zA+PH2FEzTBhK6Z9inEbRvf8c1Au2u4EiUqx+V4C7QjzRrRJVXM4p/4Tcu0iev8hLMmSzwAAIABJREFUNF8Ao/8gynNQvTuQdhWjv+lcr6REVitogQBCN9BCYbRQmPrKCsWT74NS+Hp6yF+ax4xGaGxlqSwuoww/9Y0sRjhMoLv9tp/70msXuPw3bxJIRWmUKvQ/uZ+lt6fRTJP+Y6PXz4EfEUyEgGaEat+ze8iv5UkP3hDp7QMpPvGPH2p+5h9oxjAMnad+9SgDO7uo1xqM7WnWEY7s7CEU9qPpGh3dN0fw/AELy2dRrdbp7ft4fcpatGjxi8m9CLJ3ga8DR4AU8H8LIb6glPrCfVlZi48NKSUrK+tYlklHR/ruG3wAv9/iuecfoVaxiSVuLXTWdY323hsXu3KuAnCTk3pbf4on/umTLLw9S6IvRSAepLZdpJ4v49Ua2PkSlZVNnIV5IoOdtB3bR6AjgekX6AO9NOamIGBgtXURObAfK51G8wfQk6mb19LWQ+DI4yh/EuFVmp2SpWmYfhHMKKJtJ9S3EP42RLAbERsHQLk5vPwrgIfW8Qx6eA9S2rhsgbEL3XcA00yiMEFz0aSNK8GUPbhyAU2Lo2txdDGAEiWav2e2UHgIUUdhIBhDiACaSKNpEQxjEM8rkykXiVsrKN1mLl+lqi81o2HaHPNbccbMBn++fpWcECSVQBCFWC9q611EeQHSxxC+m4+Dl5lH6BbC8CFLm+g7P4FybEBgjh+56bm1sydprC6hJ5KEjz563Zutsb6JZpp41RqBkSEiaxnsjQxm1I+eSGOaBm6lTmT3jqYxrVLUMgVkwyXQHic/t87q25exokGqmQKa32JrepXiegHpekS74rSNdd3xvIu1R29rAPthjzApJZsrOQxDZ/exm38waJpGd//tz/dQOMinnz9OqVSlveP2w9IBMpksmUyWvr5uQqHgHZ/XokWLFnfjXgTZbyul3rt2ex34jBDit+7Dmlp8zFw4P8Ubr78DmsZnPvMMXV03IgKNhkOtWicaC9/RENPns/DdJiX1YTJLWc5+r9kXsu+ZCVIfEGptg2naBtN4jkfuyiqrb11EM3TszS28XBGtXqeeK6FqFYyQH2dRRzc0pHIIjw9ixSPIYgYzGcU3PHbbtcrZF1GVTShOg6iBkwNns+mv5W5CfCe0Pwx9n0GYN8SlrC/i1S4i9BAIAy0w2Jy2ZJggA3ju22jGYyB0pLcESkOIIEK3sfT96JoN5IB1hOYDFQAKIAVCRFAqhBI2zRk+zbCelHW++IdneX95hQM93fzJb8QZi9UIef1U9asEvX5G2ndA8SQilSK1vQ3xBHLpP0BoF2rlFZAOavMUqu9zgEB07EUoCdFOxNoF9J69GBPPIl1J7Y1vgtDwH3oSLdw0bVVS0lhbQY8l8XJZVMNGBJqiIzA8hLO9jZ0v40wvEhwfJXZwP8WZJerbeZTrYsbjbJ28gjDnCA90kZ/fQElJsD1BcS2PEgoj4KPr0BgDx/eweOIKmdl1ol0JfB+hjvCDuI7H9mqeYMR/vXYMYP7iCu+/dgWE4rFPH0BpcPHkHF0DaXbuvb0Nyo+IxsI/tpuyWq3xza9/l7rdoKu7neeff+6e1tyiRYsWH+RejGHfE0IkgDGaP/EBFu/Lqlp8rBSKJTRNw3U9atXa9cdtu8G3v/FD8rki+w7s4tCR3df/r1So0LBdkunoR3YuL+cqKJq5xHKuepMg+xFr702zdX6R/OUlUhM91DeyxIc7KUzNI+s1hBfEy+Xw8BE7uI/GdpZAOoo9fRatPYm3cBHZ3oUeb6ayVCWDe+UlUC5q8z0wAojChaawqK9BpAsqsyjNA7cI9iaa0Ty9lVtC2ldxqxcQ/kG82lm0QD9u7SR68EEEJo43i9B78LzFZncmm4CFLlII4bvmtLYOOM0aM7xm+pIwQkiUMpGqBDhIL4bQqzTsNdYKl7kgv4p/ZJELtQEy1d+jI9zPGypPfmmZRGcA0f97yM2/RT7zAGLxW5A6CFtvgNmJ2ngHpfxgRJAqjTCCeCvnwNPQOnZgHPwCIBCmH+/K6eZANK+Bl9+8LsiEpuEb3YU9exnf0DjCf0MkmYk4yU88if2N72GEQtjbOUKjQ2jLW/jCOq7tUS3UqW3kSE4OUd3I4lTqGD4Tt+GCgHBHks6Do6Qn+8kvb7N0aoFAWxQrGiTSEf+IZ2+Ti2/NMn1ykdX5LQ48sZNjz+3B8ptUinVqFRvdENRrDc68ewUUnD4xTXd/G9H4371I3/M8XM/D57Oo1xt336BFixYtfgz3YnvxO8BXaM6YPA08ALwFPHl/ltbiflGpVJmfX6StLUVnZzsHDuzBcVwCfj/9Azc8mUrFCrlskUQyyvzs0nVBlssU+d7X38Z1XY48Osn4RD/QLNIuZMr4ghaB0K1u910j7RTWm8XincO3TxU55Tq+WIjIYCemoSHzObbfydD5+CGCIR3peQR7OvEnQtjLy8SPHcVMJ9FNiXPlFG5hCyWabvyqUcad/i7US6jcJUQogbKzkN7bHPxtBiAYhfg42NOg+8AKIEvn0YKDyPIplKwgnCxYaTR/X3Pwt1JIbxspfM3XUvO4shdd6wQtiZIZpMqhiSBClFCiBiiEyNMc/ZoAlQB0hAjgyXnmsusMJ7dQSsN1ZxFaFT2wCEKiBxbRjTqqXMVYOU+bkqjVy1DJonf8MrI4Ba4L9U2I7gM7h3Jk08bDbI5OQrNQ5QJa5z7U5jQMHkVozfSj0TmAuzaPk9vGm5vD3shidfehJFQvT6OHQviGRm4R3kLTiEzuYOVvXkIL+AlXbaI7R/DqdQrz60SGurBzJYRpYLWnyMxsIHSN3c8dpVGxkZ5HbKADz/GYeeUSmflNdEOnfce9O9ZXCjUKW2VqRZuVmU22lnP0jLZTq9pkNvKEIn6SHTGS6RhLs+sEw358P6HFSiQS5umnj7O6us7OXWM/0b5atGjR4l5Sll+hWT92Qin1hBBiJ/Cv7s+yWtxPvv/9V1leXsM0DH7ji58lEgnzxBO3NswmklHGxgdYurrGQ4/emPdYLtVwHAefzyK7WaDYWaFUqJLfLDJzegl/0OLR5w8S/FARvy/kY98nd2OX62xOrxNKhUj232x70HVknK2LV+nYN0zp/BShjiTScQi2xeg8fginVMFKxdEMg9CundSnTlF7/S2chVO4C+fRwlHUw8+gogm8mR+giiuozCyEYwg3jxYfQIw8Cxs/gEIN4qNQuYQKdqHMMDirqPJ5qC+grCgoibB6UP52hDaIpicQegRXziO9NRQOQreACkrVQW2DVgdhoSij0Gn2vkiUCqEJgVIGqDIKF8/18cSf/Wsq2jxB2c9Lv/ZP0JRLwqiwL5XkfG6bfW1DtMcfReVfRrV3w+YqqnMUEYgBGiJ/CaXFQNebotKpQNtRqG2Dvw19x2fACqM2F2F7DtG9+7oYA9AiCYyxIzRKb1I9cwotHMVZWUYqHSwfXrmMWyhi+W9NI1qpJMGhfsx4hPrKBl3PPgqAkYizffoK3ccP0PHAJPPfO0VivBe7WEVKRWzgRqG/4ziAoPfAII2KzfCD4/d8Tu9+eJRitoJmakSSIUKx5loL22V2HhigUqrj2C5Hju9idKKHSCyEz//RZ1jeicGhPgaH+u7+xBYtWrS4C/ciyOpKqboQAiGETyk1JYTYcd9W1uK+4bouhqEjpYeUd26U1XWdx544esvjHT1JRnb0Ui3XGRzt5pWvn8SuORQzZXqG26lXbKql+i2C7EfMvjnN5pV1lJQc/uJDKNvBDFj44yGEUHQfGUM3DUxDUVvPoGkabcf2oAcD6MHmhbaxOIs9fxlvYxFrZCfuqzPo0TjUSzinvgbdgyBraKEOlC+KCgiEWwFNg+oC4DUtKsqzYARQ4UFw1gEL7DUwxtDCR1HuFqgK0plBuTbKqKKJdFOoaSE0VW3uCw9FCQ2JEMFmp6PYgcKlmQ9spittZ5m57DIjcT9Cc5nOnKGizSOEpKpdZW47w3iyCxT80XqewvoKiUYMTdaQykN+9n9EVTJo/n7U3H+AyCSiUUZYceTGSUgeBUOg7fwioryK6DqKFhsEQIv1o4YfaFpxVMu422tokQReqYyslBBCIHQBCGqLC4hwEieTITC2A3GH+Z5mNEygO019Y5vkwcnrj8fH+4mN9l6fHdq+b5iVE5eI9bcT+FDzh+k3GXtiF9sLW6RHuzCDPpRSLJ5ZorBRZPjQIJG2H++MH0mGeObLD1HKVpo2F9fOvf2PjHPmzRnG9vYxc3mJuall9hweo6Mn9WP316JFixYfN/ciyJaFEHHga8CLQogcsHp/ltXifvLUU48xNXWFzs4OYrE7ez/dCcsyefCJvQAUsxWchoc/6MPsNrB8Jh19SRLtkTtuX8tX2Di/BEIw9/2zYDtopk68K0ZtLYMVC9H3iUNER3oJ/fZnEYaOZtyI6CinQX3qNCIUQdZqeJk1fIeexFt4Hy2VRkSiKNdGi/ciAiG0SA9y6wQUC1BeAVGF6jzEJyF1FAwNzc1DI4HCQ6EQ0YNoZhTMKK49h6wsolQZZAGhKTSjF8PYgTSCSJXB8c6iVAElwdAiCNGNJjppCjUAnYZb4fE//Z+oagsE5QAv/vpvMRitEpT9VLWrBOUgo5EAmutAJY+xtkCblKjVi6hKCaVHQWhoPU/A6f8ZdBMKl1EDX4LaGsoaRCy/A+nd6D0PI4TAXZ3Cmfpr9K5xjP69CN1EKUX99Ot45RJebhunbOMV8gQPP0z8M19COh6lk6fQIlEaxRqOLcm99R6pJx9B998ssjVDJ/3wwWYDQKlKdSNHIB1DaBpC05CepLyew/Cb7PjsnW0LY91JIh1x1q+sU9gsEUqGmD+5iBkwuXJihoOf3v+Rzs0PFvQDtPckefpXj1Kt1Pnan71MujPB2XevsGPPALp+90HzLVq0aPFxcS9F/Z+9dvNfCiF+CMSAv70vq2pxX4nFohw7dujuT7wNTsOlkC0TS4YxLYNoMsT+x8bJrBYY39dHvO2GEJNSIl2JZmho2o2LX/dED7n5LayQD7fWwOc3ka5L6eoGwXSMRr6MW7XRLRP9A2klZztDfX4Gq6cPPZrAy2exdh0kuP8YwvKj3AbUinhTL6KUh2jfiR5v1iMpexCVOwduAaxR0HdCZBDsJYTnh+RDIMuo6gw0NpDFd5oeZFY7mpFEMwdQsoKijucsIaSLshRSXkSIBKgaQtigfGhqDEWGWv0k84Uyo8k0hjHKQs6hqi1ci4YtsljwMxK3eelXf53FfJhdXU+j6qdANVBhP/QegeWT0HMAlXsJSlMQ2Y0IH0KZUWhsg5VApB9AeA3k2h8goxNoygIUyvPw5k4iwgm8xTNobcOoRh2lBPbCDF65SGN9FbemsDq6aawuEXn4CYSuI4Jh7IUFrK4ejEgEr15HNRzw3z7qaRcqLL34Hsr1SO0fJTUxCMDWhassv3sF6XhMfP4BQuk7F+tvzW8x/fo0IOjb24fhM2jUGrQPtuE0XM7+cIrSdoV9T+4k0Rm7p/PWH7Do6k2ztpxhaKy7JcZatGjxD46/00A2pdQrP+2FtPiHj1KKV194n631PG0dMR7+5D5yG0XSXQmGd/Xg2A6X3ppDaNC3s4vz37/I0oVVfH6TnQ+PMvpgszC8fUcPru3iOR7p0Q62p1fwRQIEIj4yZ2aJjfZgRZv2Ck42R21lFTMaIf+tv8bNZjDicdJf/v/Ze9Mguc4rTe+5a+bNfc/a9wWFfQdIggBBSuImsiVqpJbUPVZHONqOmHDMjxmPJxwTDvuHHTEO//B0jD1ept3R3dOeVrvdmna3piW1SImkQJHYd6CAWlB7VWZVVu7rXT7/SLDAIgoEQJESReUTAaBu5b03P2TezDx5znve858hOTYoCub4u6C50YcPIgXiSPteu6v9uucLJTk18HWCaoDsBkWFwi0o30ZEjyDlLyEnvwhOCcfONS0jrAKSnkCSg6ieQwi7iO1UsCrvIKwi2NPIcghJWgG56aSPJLCseSynznN/8QdU5Fk8Th8/+e1/TJ8XvM4AZXkarzPI9sQxcCpY1bcZlXLQmENRe7HtNIoegd/7AVQyCJFFzP0ZSDIUJhGzf4vo+joSZfCPISs6wmogqjVEaQWR3I0kyQhZQgp3INYXkIJJajfP42TSNNLLSL4Qjdvj6DsOISZvoQTDuAZGN3zGXIkErkQC92CW0vhtjKE+FP+Dy4Z2tY5jWsi6RiNf3vh9ea1A+uYCdt0i1J9k+Pl9DzyHrMhISAjA7XVx4NW91Et1gskAmaUcq3PruL0upi/Pc+AxAzJZljn+/D6q5Roe39ZBZYsWLVr8KnloQCZJUpENz/PNNwFCCPH4Na8Wv5ZYlk0mXSAU8bG+WuT0j66RWcnj9rj4wjcOsTiRZurSHPnVIunpVeqlGoV0nmAiyNL4Mj17utENjWquTHKsE93T1CV5YwEahTLlxVU6nt6NO9K8pJyGSebtd6hMTGIX8khrd5BlCeE41McvQKWAbGhQK4Jl4kTbUZL9SNpd24pGCcexkKtrYHQiNYoQHIHkUcTt/wVyVwETRB3cTRNS4epDrP4Q7AKOMYwQN8DK4wBO5TI2JRApJFnHwYfkao7okaVBMuUsIVcW5BUmV+eoyLN3s2EzTKavMRzy8vrX/iGL9YMMR9ubDQTmGvr3/hXS8m1Esg/x6j9DcfciewcQVrnZoanFIbgPsmehtIoQy7B2C+HbibS8iBj6Img+JH9X8483gjAbWKkZpOgASu8eJJePxtt/i+QLwPIcsiyj9wwjqxqBE89jbN+F4r8/yNGjYSJPHXnotWEkwoTHejHLNaI7+zd+H+5vwxXw4Ap4cJzNbyOFVJ7l8WWifTFivTGivVG2ndyGcASJgQSyIuO560fmC3lweV3UKg0G9m0W0QshmLq2QGG9zOi+XrxbeJiZptWcRRlombe2aNHis8lDAzIhxIPFQC1+o9A0lQNPb+P2lVn2PTnM5IUFFEXGrJlYpo3L0FhfypGezSAJQaIjhCfkweVSifRE0AyNxUszrFyfR3PrjL28H93jQjgOS29dwqrWkW/O0vvlJ1F0rWm+2jBxqjVQFISsgeIgGy7q106jeAOgOGgeHTx+JPe9DI69dBH7+vcQa9eRon1IwQ7kUCeE4s0uRMWA8EEoLyIlX0LyDTQPrExBbQkUHyL/DhgdCAF28RRCpjnvUvMiayFkbRuS7EGSO/ndP0lzYTHH3jY3f/zNeQZ9Jp4NE9dehoI+RO0WSsNiQF9FVA4hatOI0jrK0u2mYevKDMJUEPYkdnEN8pfBlUByxVF6vopoewnnxr/FufkXYDUQnmWUwS/ipK6jDD6H1HEQUVhB7juEeecq5uwtnEYdbWAPeu8Iru0HaUzfxHvsRWRfEMllIOtuJJdrIzP2cRCOw/ypa6QuTNJ2aATNZ2DVTYQjCPXGGH3pIOW1PF2H7llDOI7D+E9uIMky67NrBL9+GM3QSQ5uPabI8Lt56rX9mHULzaVSWC/jD3uQJInMcp5Lp26jair1uskTX9q16di1dI6f/N1ZVE3muZeObDlRokWLFi1+1XyskmWL31wGt3UyuK2TRt3k5nszzN5aYe/TI3gDBh6/m+1PDuHxufAG3ex4boxYVxjbtNENDVmWKa7k0D0uGuU6jXJ9I0smACTprnFsE1nTiD53AllVcOoVHL+M4vWiuBWcSgpreRbZUJE6unF1jgIOTm4FKZhEpG5CLQfCglIanHWEJsPsj6D9KPiTSEs/BM2PWPkZIl5HUnSEYyGpIYSZBc8oopZGvF/mlBrIKMj6DiStG8X7JLKiky7WuS7+K4zBWW5We8lU/iFx+SKvP9vPncoTjMTiUKlA9gag4EhVJCUMsozk0hHxLlhdQCR6we1G1Eyk4jQsvw2RfYiQjiQcZNWNiOwH9acIl7vpL2bVkML92NkU5uRlcGyk4DIIAcKmPn0bq2JhraXwPvU8Wvtmd3qrWKJ4+jyK14N/xxiS+uDATAgBQmx0Tr5PLVdm7q0rOA2bqf94Fm8ywtLFOyAEfc/spPNgc2RRo9rAaliouopVM1mbWaNaqNKxvXNT08aD0N0ajiN463vnqZbqjB7sZXR/H4oms54uUK826NzC3252ehmBoFKuk15ZbwVkLVq0+EzyOCXLrezYWyXL31BKuSqO7bDr6CBm3QSacwT3PreNWGcIRZNJ9kWRZRlNv3eZdR8aYv7sJOHeON5o84NRkmU6ju+hNJ/G2x5tZsfuokcjJF97FYDGagortYzs0ij++C9wcqvYmRqypgDvIvKzTYOJ0aeRug8i0leRAr1I0X7whyB3E1StKcjXEuAIqOURa6eRrBwobqTEkxD9EqK2Apl3wc4iudtROn8X6tOgRrCLE0ytnGO4Q0KJnURRy5tMXPXGOIrRiyxNM2IsIZkeZLOIY2tob59BzpYRnTcR3/4/ENYEztHjUKshDX0bJfEcTvYyYvF/B3cS6gUI7UOSm4+h5O9HeLcDDeQdv42dLyBKNYRVRNgWkqIiahW0gV1Y5QrWhUvYy8soHh9bKQ9KtyZoZDKI5RSuRBxX++YMld0wyVwYxyxXMct1hG3TdmwvxgfE+ZrXjTvoY31iEU8yRC1XwbFsZEWmlMrhbwuzdifN5Js3EQJ2f+UAueU83qgPWVeJDyZRtEfL0JXzVSrFGt6AQWpmndH9fVQrDTS3SqVa58q5CXwRD9v29G4Y2fYOtDN9awGP102y/cFzKVu0aNHiV0mrZNniYxGMemnvi7O6sM6e4/fs6FRdpW931wOP88UDjL20H9u0WT4/iVVp0HZgEFfQh+sDcwOF41C4coNGehX/ru2425NosQSiUsYuFVF0Hdq6sZemQFGRAxFEow6ajqhkoZSC4E7kwaMosQFwLMT6dcTKu0iaF8nlQwRGEMVpqGTAuojQfaBFIHoAufAuIncVfN1gVVHc3Uj+3dTL0xz/0b+koi7iOfMWb3+ji1DpCvujg1zOTrEn1E1cT4AaxSlewXFsJOpIegdy4afI2RKSAJauIDUMnMIyTrkIpXnE0jkkYxu4u6H9BShOI7miSMERhG1h3zmPef2HyOE+JFXHXllCVErUzr6BHO1FNlxoXYOoXdtA0RDoaEO7EcUsas8Iknx3yPfMHGY2h2NaVFfS2NkcWiiAbNwvdq8srlK6s0SjVKGerxAc6SE/ubARkAkhqKzmSOwfpFG3cQU9qIaOK+BB2A7huwawmak06ak05UwRWVMYemYMRVfxRX2EOh99TFIo7qNrOEl2pcC2w31Ac4C9N2BwZ3IZl1fl8ukJ2rujhKLNt65YIsRXf+dZJKnprfeorKykef3HbxMKBfnCF5/G/YAO0xYtWrT4JHiskuUWsywRQrz9SS+qxS+OaZqsra0TDgc/lQ8SRVU48qUdCCEeeZblBymvrJO5uYCsKyjXNDqPbvYYtgpFqtOzKD4v+bMXKftdmKklnLUUSjSMLHsQNsjRLpS+PSjhMPbcVZR4J7IvgnnrDUSlgOTYKLEB7Mm3sKfeQu7cgzL45aZmyswjGhWk0F5E+uegykhLp2D5FMIpgtqOZUrM+J5mWA4gWyWmJ1+noi42xfrqAneu/huGQ17+cNfLZG1BpHgBKTOOaP8KijqMYklIrgRS9BlE6jQiMgfraxDpRKy+DfUilFagtAZLF7ArJpI7iaNFoehC9g2gqB5Ebhl7eRxhmtiLN5oWFr4ATrWMqNdRInEwLdSRI0iSROnSeerTd7DW1lDj7TSKNbRsDsc0KVy8QnVuEdu0MQtlXG1x/Ht2oYXuF/VrPgMUGcWl44qo2HUTX/c9l/1yKsfsm9cop3MIIXAFvTiWxbZXDm26NmIjbVz+mwsEkiEs0yLUFmLvK82OS1/00UuIiqqw5/gIjaqJ4WuWuxOdYZ5+eS8un065WMXw6LiMzS786iOURN/n9u1pbo1Pkc3lkBAszC+xspymr7/nkc/RokWLFo9La5bl5xAhBD/8wRssLq4QiYR57Wsvo6qfjlzw4wRjAKrhQtYUhOXg+tCAZ6tcBVlG8XmwymXs1RWK703RmJlGkgWumB9FtlCcBv4vvYqiANUi6vBhRH4V3H6c3ArIMnYxg1pKY13/W4TjYN/4PlSzyG27kHtOIPuHETN/A+5OKC9DIw16EOwKVr3EiZSbsvbf4P3ZH3PqG/8zwx4Jr9VNWZ3Ha/UwGOuB6m1kaYCoHoJyAawqUvEPkS+ehWwKug7C7zyP8D2Nc7IXkUuDFESkryNJBjTcoHeBkMABVA9i9hRy37OI9CR07kNyeUHVMQtVzJUU0nINfSyAnBhEwYtTKuPa/cTG82GuLKEm2hCyjOmoUChROHsO//5mECSpCqJWBwGK10v2wg3yd1aQVQ1fXwehXUNIkoQ7Hqbr+ScQto3m9yJsZ5M3nLAdEAIj4gMk/G0RosOd910b0Z4YT/+j50jfWqFteyeKpjwwEMutFlmaTJPsjRLt2Jw9s0yLU9+/RCZdZGRPN7uONtfZ3hPj5W89RSaVwxfwYHi2niwAUKlUOfPuZWRV4fCR3bjd9/at1eq8/da7+Hxe5ueXiEZCeLwGkWj4odd0ixYtWvwitGZZfg4RQpBKrRIKB8lmszQajU8tIHsYZrXB7MVZFE2hZ2/vhlbIEwsw+MIBbNPGE79rc2HZLP34XTLnbuAf6KT9C0dQ3Tr502conXkXYZpIhgvMBrhlbNOifusqwdd+D6mWxV6aQu3bheyNoIycQOTTyNFuhO1gppdhfREp6IcRL07qBnJiBMnbgeNEQFVo1FLcqcUZKiwguxzu6AOUtfNIkkNZnmKqLBjxtPOzZ7/BtLabQb0GCz8AVz/C/yRS6k2wTDAr4DiQXUESArFwDnv8eyALRN2Dk15DVK4jbBvJtx2pbiAPnWhaciBDPYcjt2FdO4U6tA/hSMieINrel6mcP4fk68BOzyPqNRqzcziOjKwoeKKd2OUyldu3kXwhnFoJ99BCvtbeAAAgAElEQVQotYUV7FoNPRZDj0UJHjkIV8fRTQvN66GeLeDUbHKXb2N0t2HX6nh72tBDzZKf/oFSMtq957WWKeAKeek8ug2rVicy0oXqevDA7vZtnbRv6/zI68VxHM7/8BpCCBZurXDyW4fRXBqrS1kaNQuPz0UmXSAcCzB3e4VdR4c2jlVV5ZFGIt0av8PU1BzCEcTjYca2bz6H3+8jlyuwY/sIJ599CpdLb5UrW7Ro8anTmmX5OUSWZU6ePMbFi1d56tgRPJ6P5700OT7P5bO3GRjpZO/h0Y+VDVu6uUR6YgXHcvCEPCSH2zZuc3+o262+liN3YxrHsinNLGNVahjJGKEnj1KbnqCxuIisqfj27qD68zeQA2E8J17B1du0UxDDBzc6APXdLyAqeSRPCCczj6RHoS0MwsapFhCmCfPXUbp3IzkNTNXgmaU0FX0Bj9nFm52HGXTSeJe6KGsLeJ1BRuI9yHIfqm0ytHIFMfE6wjZh5SZUDSTFhPBhMLOghhGun0OthnB5EI0yztw5nFwK3D5kfx8ivwJWFaFFaNxZR5inUfp2ow0dxUmdwsKhfu4qatrGPbIbfWgn2rZDNG5dQusaRh/eQ+nqDeqzd5ozOt95h8r0HRSfD8XtJvjUk+jxOO6BEnahgBZtBivCATNfQVJVtJ4oajLJyo/fQ3ZrG507i29dRA/6aXtiB4qrmRGzGxYr529jVepUsxXsegM96GXwxYPIn6DzvepSqeSr6IbetMVYyfPO9y9jmzYj+3vpGW5j6c4qu58cfvjJtiAQ8CEEIEv4fJuzs6qq8sqrX2I9kyUWj27KnrVo0aLFp0lrluXnlMGhfgaH+h++4wMQQnDu5zcIhnzcuHKH4bGej2Wq6fa7EbaDJMu4vPd/uNXzZRxHYIR9qF4Doz2BVZzB053EaIsBoPp8JH/7WzRWVnC1t6EEAtT3HgTLxNXT9A9zqhUaqWXUYBg1HEFSXUiBptZJCnUgR3tw8imEGsAqqwjLJHXlLPHlWdz7v8DMzAUq+kJTG6YtMNf+Lxht7+fUER/TxSLD0baN8U8iM4Uz9x6sT4GqgaSgvPuHSNk5RLAH5+t/ihzuwpw8DblZ8MaRfIM4pdNg9CAaBTDaIXEcqZzGzqQwUyvIngBSZhEG9yMaDazlZZyaiZys0pi9jT60E++J13DvPYHsCyK7PZhlB6du4dgOtYVFUBTqC4t4RoeRFBXHslB9PlTfveBXcTd9x4TtICkK+fFZXMkYhqrQdvIQ2Rsz1DJ5qitrVNNZfN3Nzsvy8jq5yWUkWSa/sEpktBuzXGuWLe8GZLZpk19aR/e48MUfvwFblmUOvbCTzHKeUNyPqilYlo1jOyiagtmwOPTs9o+tXQQYHOrB5/MgyzLxxP1dlx6Pgcdzv7lsixYtWnyaPFJAJjXf+f6xECJHa5blbwSSJNHT38707QXiyRDuj9DkPAghBC6fm97DgwQTAfyJzR/Q5XSemdcvAoKup7YT7E3S+5VnsGt19HBg0weuFg6hhe/pidw9m4PN8oUzWPkskqwQeOaLyO57H6iyy8B46Z9gTV+iMXMTR0h856yLy6bCHrfEd0frjOx8Ce+5P6IsT+F1BhgZOIoky2jAqNuPEAKnuI5TLUM5jySriPAOpHAXkgTS2e81zV3zc4jZ883mgRP/Pc7iOyjJfeDrwh7/GU5+DannBLaWhLrANKM4ihshV7FzGfQ9z6EkenHt/yK2pWCvLkO9ht63DYB6eo3q5CTunm6M/n6URAfW7RlcnYmmiW69jmd4GCWaYP57PwIB7a88h9F2z5/LFY+QePaJZrAW8JGbWEBWFDS/F3cshK+njfJyBknXQJap5cvkJhabo5FUGSEE3ce2Y5uC8GAbygdsTebPT5MaX0RWFXZ+eT9GyIvjODQqDXSPvmmm6YPwBIwNh36AWEeIPcdGqJRqDO1uuvR/3GDsfZJ3g/0WLVq0+KzwSAGZEEJIkvTXwIG7261Zlr8BHD2xk+17+vH6jcfqUnuf1GSK22/fQpJldj2/677bG4VmdkxWJKrZEsHeJKrHjep5fL2OsC2EZVFfXkC5dRvP6ChWZg3ZbaBFo0iaC6V9GGl5jkzFYjzx5xieWcYrvazVDtEhy7zznb9kaj21KRv2PtbiBPVLP8VemkDtHELxqKD3oHY+gxqKI7r/GDF/GhHqR2rbCYAaG4HYyL01Dr6CM3UR7CiyCpJjI6k6ctBAch9AbevFfbDZI6O19+E7/iqO2UAJRZH15kSD4sVLICB/7iK43Cz++/8AkgSyi/hLzyFJUJpPsfjXr1OamsVIxslfvIH+7BPUV7NoQR+a34seaXZU1rNF1KAfYTvIbp3s+CyhkW7c0QDZqUUWf3aV8so67mgQZJn2Q6O4owHcEf+WQZFZbaCqCo4tsBoWjuNw8yc3WV9YJzEQZ/jYCCsTaRrVBh3b2qmV62i6iuF/8HMuyzKDux5spdKiRYsWnwcep2T5niRJh4QQZz+11bT4TCHLMqHIx7ehqxVqyIqMYzvUy7X7bvd3xwkur+OYNpGhpti7UariWDbu0KNZITimSWMti2tkJ+aZnyMFotTuzGCuZ7CzWexKDd+J4yy6FYajbbiPvoxRXEZJ/8umkatnFi3RDE5URWE03nHffQjbwslnwLGaZdIb/walPI8TGqZmqSjHv4r0e3+HKCwiaV4U4wG+Wo0GUrgH0aijjxwCs4oSSiAAUSmiRNo27a6EY3wwDJZkGccSZN49hzAthCeArKlNA9hGHVSV4tQ82TNX0CIhmJjBsUzUSIiVN8/TyBVQ3Drxo3twbBsjHib13lWcmsn6+Ay+ziSlhVVcYT+eZIRKKovuNyjO25jlOq6AB3fEjzvix6zUUd36fdqxnoMDLLs1PBEfvngAs2aSXVgnmAiyemeNcHeM62/dRpZhYXyZcrGB6lI58spufOHNeq4WLVq0+E3icQKyk8B/LknSLFDm3nDx3Z/Kylp8prFth1y6iCfgxthCGwbQPtZONV9BcSlEe+8vEakujZ6nd25s19aLzL5xAce0aT86RrAvyfqNGcxileiugaYn1ofInbtKZXEFxa3j7RvGmZoCRUYC6itpKukMr5S/S9U1h9cZ5J3v/CVh/OzWurluzbPLM0jM8+DyVeXWDeqTt9FiEZS2fiQslIv/DgkHOT8BjTLly5fQ4nFcnc1ymlUoUJ2aQotGcffc865yje6jPnEFJRBBTXZvHkEUuKdlqs4tUrh6A1d7kuDenZv209raqK0VEJbN2qnzRI/uRVQqxJ59isp8ivXzNyjPp7BKZXw7Rwkd3E1pLk3uxjTBbb2YhQqLb5xFkiX8A52ohotqrozqcVPNl6gsZ9CCPrq/eIjYzn5WTo/TdngUX08S3WtgxIIsX5hi9eYC3kSQ/pO7NsYeOY7DwuU51mdW6bmbQdMNnY7tnSyPL9GzuwdVV5AQOA6Uc1U0j4tGzaRSrLUCshYtWvxG8zgB2Yuf2ipa/Npx5dRtZm8uY/hcnHjtIG6Pft8+5fUymYUsuqFvzDB8EEII6vky9t39apkCukcnc2UKWVWwLYv2J3ZumnlYmJhj5Wfn0QJePNEQ7t5e1ESMmXKe4WQXtcUUaUOlKs1tWFdMLM4yEo7zB+HfZ620SjTUj1UsoQXuzwQK26Y+eQvVq2Cm1/B88UXkQy9C5kfN8mRyLw1iiOVl6vPzqMEQis9H8eJF7HK5+btQCDXQ1M4pgTCeAyce+tgWro8ju91UZxbwDvahBQMbInZPfzey7gKvimoYtL34LJKqIMky1bUCxYk5KisZPH2dGF1diJqJrGl4u9tQPQae0TZy43PIuopVrpF8YhfV1Dqqz2D+JxcwYiHq+TK1TB5fZ5yh1+6fDZmZWMIT81NO5Vi+MkutWKVtRw+SKrM2lcIb9bNwcYbkaDsAA4cH6D/UjyRJCCHY8/wOzLqFEfRw671pYt0RIm33m9J+ENt2UD7BTs4PYlkWi4sreL0GsdjDbTNatGjR4tPgkQMyIcTsVk79wOwnvqoWn1kcx+Hi27f5yXdP09EfR5Il6pXGlgFZaiqNoqtUizUKq0Xcvq11QmatwZ2fXqOaK2H4vOiGRnikC2HbyKpCdb1AYXGd6nqZnmf3ovs92LUGq+dvUK865Ccn6Hj+SWSfl5N/9Xt3hfmDvPXV/4sdtyYwrvRR1WcwGr10lCyUHj+hp07Q+PHPaBRqZN4+TeL5E8jaZg8txzTxXP0f0KtTNDxD8MKXaWQLrCf/KfjWCB59Gnn+DvWlJVSvF7NUobqSAUlGNBrImoakbe3LZZUqrL17GSEcYk/uQ/Pd62B1d3ZQmbqDGvAjkFj8+3dx6g0Sx/bhTibo/y9+j8L1CcKHdiN/YO6np7sN33AvSjiI07BQvG5Cu4dZv3Qb/1A38SM7kXUNxXBTzxbQI0FSZ27i72/DHQ0S3zNE6uw4lmnhmPaW6xZCEOiMkbo6gxYwuPbXZwn3xalmK4y9vB9fIkBptUhipI3VmTXcPjf+mG9DbyZJEvEPZEuP/tbeB1xp9+7v3Fs3mbm9zNj+PnbeHVT+SXLm9AUuXrqKrmp87euvEIm0TGBbtGjxy6fl1P8ZxXEcpqfvIEkS/f19j9Sd9sugUqwzfm4GIUlceW+S3/1nLxGI3l9qqpfrNOoWuZU8sZ4ogcSDLRDK6QKVtSKaV0cL++k7vmPjtvbje5l/+yq6BFa5RjVTQPd7cGSJebmOUanjGx3EkTWm1lOU5amNbNisVWX06GHe7P9DLr75Jn1+L65oszSo+ANIhgfJdhCOs9XcbWoTN/DUmufTq5OUb15l7fICxZuT+IZ64PoEjqxSyzoEutrJnLmKY1ooLo3IwYOofj+KsbV9QmUxRSNfRJIlKrNLBHfcMycN7NqGt78b2XBTWUhj5goIJNKnr9F2bB/BHSMEd4zcd0494KPjxWPU1nIYsRB6JIji0vG8EKOeL1FJZTESYUKjvTi2w/R/eBtF16i8ewNPIkJopJvSSo7c9BJzP72MFvKhunS6nhxD9zcDxvz8GuvTKwhFIb9cwKw1WL4yy45XD6FoCmNf2o1ZbXDnwgxzb1xH0VT2/9Y+PMGP54VXLde5c2uJeHuImxdn2L6//xN/LRSKRXRdxzQtqtX7tY4tWrRo8cug5dT/GWV8/DZvvPEmQgheeOELjIx8PBPMTxq3V6daqdNoWHQPtRHvDG3ZbTf+zgRr81lUj4vR4yO4H6AzAzDCXjSvC7PWINx7r0RmNywWzk5Rylaw8iXi27vxxENYts2xP/ttyvIUxlAff5H8J8T3b8MIR/E6gxsZsuFoUyTvTcY58tKLmNUGrlhTcC/JMtEnD1KdX8LdkWxmmhwHKmvgjYMkIUc7qakDuM1paq4hHFcYlGUUn4f6eo7grlGKMysYfT1U0znku75ekiTj6uz8SGsGVzTc1IYJgR7bnJGRJAnV32xq0MMBHEli/fosnvY4VuM8vS8eBUkiN7EAQGioE1lrvpQ97XE87ZvLjFa1zuIb57HrJkZbhK6T+5FkCS3gob5eRPcZSO+XAyXQ3DrF5QxmtWn8mr2zQnJ30+/NqpkIJFRNQdEVYkPt6B6d/mNNWw5ZkTHrFqnJNCDh2Db2B7Jttu1w6/Qd8qtFxp4cJBT/6KYRt0enozfG0uwag9u7PpUvJk88cQhNu0QkHKK9PfmJn79FixYtHoWWU/9nFNNsAE1HA9t2fsWruYeqKpx87QAXfjKOJ+DGF/RQK9cpZMqEEn50d7OE1gw2mvs/zMVdVhVCo114/G5CPffKWdn5NbLzGQJdEdb9PvpfPISsKNxaXdrIhFW1GRqH+kldW6b00xv8cdt/TSGhcnDf7ntGrkKQujJLfjaNvzNG9/GdSJKE4vWgd3WhBb3NYOxPvgzzp6H7CHzn+7iSceYP/GvKEzeJH3+a2FAfTt3C092Gf6QPVzSMVTOpra4T3juG5jOopdbw9nQ81CfLFQvR/uKx5mNqPNjyobKap14Hy5bQI0HseqNpfzGXZvXCbWrrBVYvTtB5ch++9q31T8J2cEwb2aVhVeoIx6EwmwJNo7yax7IcKqs5NMNFaKgD1a0T6GsjO5sCBzzRe9nNcF+CerEKjkOwL4lZqeNLBDe8yBrVBld+eAWz2qBRNdn75T2bZlbm00Vmri3i9urcOj1N+3CCycsL9G3vYGDn/WOVZFnmyS/tpl41N8riK0trLM6l6R/qJBL7aO3ZoxAMBnjuueO/8HlatGjR4heh5dT/GWX79jFs20GWJYaHP3ndzIdxHIc7UwuYpsXgcA+a9uBLY3BnF7H2IDfOzvCTvzxHvVLHcOsEE36OfWUfkiQx+uQQobYg3rDngd1zy+PLLN1YpF6qgi2QVJl9v3UAd8Agt5Bh+tQtcpky/13aYsIqceAPT/Pd33+C4WjbpkxYh/Axk5qmlC5QHV8ktq2TSlcBf1sz8yQsm/zsKp5EkOJSBrthIckyU39/iVquRKg/Sc+eWDMYc6zmv5U1GqZBJVvDGNpFfi5DfO8Iod2bS4XxY/vBERsZJnfi0UXhWwViQgismonq1pAkicLMCu6wH6sniep1E93ZT2F+jdLiGla9QX4mheIxWH7nGkOvPb25c/Mums8gcXQ71VQWVyzI+Hd/SnFmmfJKFse2cYcDWFUTxa3jNEz6XzyMryNKdGcfCIHidrE+naJRqRFoj9B54MHXo3AEju1ghDwEkhod2zbbiBg+F7qhUa80aBuIc/lnE/hCHq6/O0XXUGIjoP8gsixvdPLWaw1++sNml+jM1BKvffu5LYPfcrmCYbg/M6X+Fi1atHgYjyPq/+rdH1tO/b8ENE1j//6PFjx/kszPrvDm62cBiUbDYvfe+zVKm5FIz2XwBgzGz97h4MkxStkKjiNQFAmXR6dni4zH+1gNi6nTU3hCHhavL9I51oFwHJy72cB6ud6cN9gZZq72rzA8s1yr9rJa+guSAWOTiWujWKW4Xia3sE6gPQASG1k5IQTlbAV/b5LSfJroaHMAdr1YpZav4A77KC6tw5NjzczY+xkybxzNtHGFfdRyJaI7+u77P1TzFRACI+SlsJylsLhOZCCJJ9LMCFUyRRzLxpsIbgQNVt2kmi1jhL33DeIWjsP8OzcpzK8SGeqg4/AI4dFuVt67QbC/g84TeygurLLwznXMcpXQQBtRSUHRVfSAt5lO/QBmpU6jWMGI+An0thHobWPujQtYlRqV1dxd35rmX7Iik7k5h1VtoAW9bPsHx7EbFunrc+QWMqxcnsWxbdr3DjDy0gGquTLuoAdvZLNfnMvrYuzkdnJLWdqGN/uqARh+N0+8uofCeoV4d4jsWpHMco5QPICqP4L5sCTdLYuauI2ty+Bnz1zm0sWbtLfHeeGlE6jq43zvbNGiRYtfDR/rnarl1P95RUKSmkHMw/AGDIJRH/lMmSPP78BtuNjx1OAjWRPk0wVqlQbeqJfSWon+w4NEe8L44wH0gJtbq0v090Sp5spotXWUO7NNE1djFkUtA8YmE9fMXAbZ6yEw3EX7WDuaz83tUxPEBhKomsLsmSlkVWbs+X34785X1L06bUNesimLriMjzWDmO9/fpCFTdJW+L+zHqpto3s3ZrMJylonXrwLQ8+Qwi6cnkRSZ3NwqO756hHI6z+0fXwHHoefoCLGRZsA59cYVKpkS3pifnidHyUwsY0T9RPqTWDWTlYtTqB43azfnaDswhL87gbcjhiRLG0FdfnqZWr6CrKhs/+YzNMoVjGhwU6bIbpjM/vg8ZrmGvztO19O7EEKg+T2ohgtPW5xAf5LIaDeq28XymVvk51cJD7bjmM2geO7UzeZA8XNT1OomxXQBV9jP9M9vU1otoGgqu79y8L4ZpdHuCNHu+2dEQjMTe/WdKVYX1unb0cmRF3ZRXC/jC3seKZvlcml86ctPkE6t09GV2DI7dvPmJIl4hOXlNMVimXD4Fy9rtmjRosWnzeN0WbqBfwQco9mTdgr434QQrbakzwHdvW0cf/YAlmkzNNpDIVfizuQSifYI7Z1bmLpqCtsO9pFfLzOwowNN39re4cMUVouc/dsrOLZN/+5uho4M4gl5UTQFy7Z56k++TlmewuMM8vPv/CW98hAHKvu4tHqJvcm9RI37S4KaqzlzUTV0Qv0JJk9N4va7mb80S6QzjKzK2KaNWWnq8nAcpD95hcT8aRLdR6Dr+83fyzL4EpvOLWsq+hbl22qu3PxBglq2gqwoWA0T/e7Mz0alDndtO+rFavNuLYdaroI7aJCfX+Odfz0NQhDujWGEvNiWTTVfpTKdom3f4EaW74MavGBvEiMZxtsZR/W4QJHxddz//Fg1E6tSR/cZVNcKCMdh8dR1CvOrCBss0yY7uYw7EiAy2g2yRNuhUYpLWcrZEvPvjqN5XdTyFaKjHayMLxMf7sAd8GBVmu76juXgWFvbY9iWjSRL9wVZ5XyV6+9O4Qt7mLoyz44nBggnH28IeTgaIBx98DEHDuzkvXcvMTDYQzD48SdNtGjRosUvk8fJkP0pUAT+9d3tbwH/Dvj6J72oFr98ZFlmeLR3Y/tHr1+kkC9z48o0r37jBN4PueRn0wXe+cEVhCOoVursfephJc4mtUqDUq6My+uiUq2xRIlhpVn2+qBtRUWe4vLEFAe2jfBHL/wR67V1ou7olhmR2FCyGQhJEOwIs3Ynw/rcGkbQQ/f+PhYuzqB5XAQ77nYzVtbu04t9OBB7GJG+BIWVPMKxSY51ERtMUl4t0KhbnPn3PyfcESY22oFjOcS3NUu3iq7SfXSEzMQSqseNJBUprmTxxgLIqoJwBKrPgHwNxbV1OU6SZUZefYLVG3MEehLoD/B2cwU8xPcOUpxfJbmrD6vaoLCwimPbzJ+6TnU1j78rRubmPJ1PbKdRbVAv1jGSQcKDHWSnVxh6YT/R4Q7cIS+h89PkFzLoXjfC5SI7nmH05BjGFnYWuVSBCz+6ju7W2P/CTjyBe2vMrRaplmuszK5x+IUdn4rGa8fOUbaNDaEojz9/tUWLFi1+VTxOQDYqhNjzge2fSpJ0+ZNeUIvPBrIsIRyBrCpIkoRl2dQqdbx+o7lt2oi72iOrYT3yeVMzGYr5CoV8mf9W+wMqs9MbI42Go20YZj9V7Q6uWh+hik5+rYg/4iVmPHi8kSzLhLrulciGnx6hmuvC7TdQXSqjJ7dTXppj7voise4I/kj8Pr3Y46IZOsMn7/ml4XVhhH2c+8vTSIrMjZ/cYNcr+xh4amDDoX7l5hKFVJ6uwyMUFtYwGxbukIfRF/fh8htNewhdIzzcTr3awKqb9+nMAPxdMfxdWz8eZqVOcXENd8hHdKyH6FhzdJMQglB/O3NvXibYl0SWJdwhH7HtPdiWjexyERxoo7La9ITzJkK4g96NDsv+Y2NUsyVq5Tq33hwn1BWhvF7ecg1LEykkSaKcr5BL5TcFZKqu0jmcpH0gztCeni2P/yD1eoPX/+5dLl24xe59Izz7pSMbXw4cx6FcruL1GvcFdq1grEWLFr9uPE5AdlGSpKNCiPcAJEk6Arzz6Szr80E2m8XlcuHxfDxTzF8lx794gPmZFWKJEJqu8vrfnCG7VmBsdz97j44Q6wix/5ltlPNVhnZ1P/R8jiPIlBtk0wW6xjqYzqWoKNMbJq5T6ylG4x288fU/48d/f5qOYIiZG8vcPj9H12g7u44/ug+boir4Yv737xjxxy9jzJ0m5BrjfPf/xLHfPoL6Ib3Yw7Atm3rFxPC7PtLSIt4f5+z/cwYELF6eJzGQwB/zU14vMXN2CsWl0XjnNjtf3kuwI4Jq6BtlTlmVifQlqKyX8EQDKNrmoMKsNVifTuMKGIS6tu7mnP/5TcorWSRVYeTLhzcyaJIk0fHEGJHtPaxensY2LSRVITOVIjO7hmPZaIaLxK5eOg+P3Dc4XNGUpr1FoYpmaJhVE3/yfm1WpVDF5dGxLQvD5yb0IUPgtt4oT315D7Zlk+y9//+wNL/KymKGgZFOQhE/N65O81d//jqplTVu3bxDIODhxBcOA/D2m2eYnJihp7eDL3zpWKujskWLFr/WPE5AdgT4TyRJmru73QPclCTpKq0h4/dx7dp13n77FIbh4rXXvkow+HjC4lqtRqFQJBqN/Eq+7fv8BmO7+gHIZYpk14pEYgFmJpfYe3QESZIYGHtwF+UHcRzBN//tz7mwsMCuRDv/ZY+fY0M7+T+v3m/iGgj5+No3nqO4XubUX13AF/KwNr/+kedfmkpTylXo2daObTlUijUibQEUVWkGXQtnkLEJ1m+iWfnmQVvoxR6EZdqc/8FVCqslenZ0MHp04IH79hzop7ReZm0mg+rWNuZ3ai4NRVOxqibuzjC2aeOJbtY3zV+4QzZdwh/1Mnhy+30WFgvnpsjeSSMkGHtxP+6gh8LiOopLw9/WNLx1zKZurdmYcX9zhjvopft4U+B/+U/fYP7MbYpLWSJD7XQdGUHIKpIsP9A7zggY7H11P42qiTdyz86ksFaiUWtw5c3b1Ct12gfi7HpmFFmRKWbLGD43qtbMtiYeIPgvl6q89fcXkGWJxbk0r3zjOF6vG01XsS0HXdPw3B0xZVkWU5OzJNvizM0uUa83MD7Cz61FixYtPus8TkD2wqe2is8h8/PzGIabcrlMNpt9rICs0Wjwve/9f2SzOcbGRnn22Wc+rWU+EoGwl/7hdubvpDlw15H9o3g/Gxbz6UiSxGqpxjXnf8Q9OMutai9DJ+9aV+y/Z13x4eyGL+yhf3cnqTtrjD314AAomypw/vWbIMHaUo5CpohUzpDYvo19J7eBN47UfQQxd5p6ZA+7Xj6Gqj1egFsv18mnCgQTAZYnU5sCskbNRJaljcBLkiRGnxmjbTmHy+fGCDTLay6fm50v7aWar7B0c5n3/vw9evf20r2n++5j5rB8fZFQe4hiKo/Yyj6FDpQAACAASURBVAtYQNOromlXsXx1ltSVWSRZYuSFfXjjQbqPbSc7uYQnEUL/kO6vlM6xdHYSTzxI58FBVLeb9ak0CId6qUZhOY/VcHAF3HTue/BjrntcG1k9gOXpNFd+cotqqY5lWkQ7QpTzNRRV4erPJ5m+tkgg7OXYb+1F+4gB87IsoygyZsNCv7vf8LZe/um/+A53phbp7mtjZFsfAKqqsm//Di5dvM6OnSO43Q+eBNGiRYsWvw481nDxT3MhnzcOHNjP66+/QXt7Gx0dHQ8/4AOUy2VyuTzhcJi5uYVPaYWPjizLHD25i6Mnm9v1WoPLZyaQZIk9h4bRP6Bz+mA2bH9XN9/9/SdQ1DKK8dHWFQDZ1SLnfnIDT8Dg0LNjbDsywLYjDw4MmmuT7mq0mh1/B5f+OZHGOIVzO+DEW81M2He+j1RZw/DGMR6hPPlhjICbztE2UtOrjDxxbz2ZxSwX//4GyBL9uzoJt4eItAdRdZVo7/0aL0+omd3JreTwx/wsXFvYCMhkWaZ9RydL1xeJ9sXRjA95lAlB18FBjLAPd9DAG/OTmVhqGtI6YmM8kctv0LZva+PW5QvTWA2LzO1Fwv0JQgNJBk7uIr+QoW1vH7KuIxyB7rmXaSqkCzQqDcKd4ftKqO9TWq8gSeDyaMSjYXRDY/hgHwBzt1ao102WZ9aolupokQe/5RgeF194+TCZtTwd3U1dnyRJjIz1MTLWd9/++w/uZN+BHQ+ditCiRYsWvw60HBM/JRKJBN/+9rc+1rGhUIj9+/cyPX2HEyeOfcIr+8WZGl9g4sY8AkEw7GNkR1OcXS7VmF7MbGTD3jdyTfijHEh+tHUFwMSVeepVk/x6idWldjr7Hy62D8b9HH5xJ5VijfaEg35lHAmbYOXGve7JxyhPboUsy+w4PsL2p4c3ffivzq4jKzJzN5dYm8sQbg/xxFf2EYj5sC2bUraCJ2Cgue69zNx+N+HOMLnFLD17ezfdT8+BATp2dqPo6sb9mDWT2z+9Ti1fZeiZMdp23tPrte/pQ9FUNK9ro2QJd0dFXZujlMrRvrcfb6yp4/IlQ6SvzzV1a143kYE2ssOrxMa6GHxuN1bdxDEd/O3Nc5UyJa783RVs26ZrZyeDR4bYiu6xdkq5Cooss+3JwU1u+w6CC2/eRPe6eLZcJRDZemrD+/iCHs6dvcbZM1c48dwhOrs+erZkKxhr0aLF54VWQPYZRJIkjh49zNGjh3/VS9kSj88NNEfklCplri3NMRhK8IP/9xQTi7MonZuzYZJkPNS6AiDZFWZhMoXL0PGHHtII8YFB4BuaJCGg5yjMn0b6mN2TH8WH190xkmRlZhXdreOP+hCOwLqbqbr+9m1Wplfxhb0cfnXvRplUVmR2fGEHdsNGdd3/8nu/q7K0VmTm3B1wBKVUHpffzeKlWRbFDPVyneFntuOL+ek8eH82LD2+yM3vnyPYFcWsmoy9chCA5K4evMkgRsiH5nGheVzseO0oksSWI5eshoUjHBRVoVE177tdCIHjCDSXyu6T27Y0BVZUGc2nI4TDpXcmeOGbD+6WBVhNZ1lcSOMPeLh6eeKhAVmLFi1afF5oBWQtHpvewXY8XjdvvXGe//T8P8e8PovHHuSlGy9SypeJ+JPkQ+lN2TBZkj/SugKgd7SdSDKIpiu4PR+hCdpiEDiyvKXb/i9KZiXP5VMTRNoC7HpiaFPQEYj5OP7Nw9TLDaYuzdOomShaU1C/Np/FH/FRypZpVM1NujVJkrYMxj7IndNT1Mp1qtkyqibTqDQIJIOsTaXQPTrp8SW0vb2kby1hhLzEBpuBi1ltMH9mkkqmRDldZOgLu6iXaqgujYk3rlNcLdB9oJ/kWCfS3TFEQggWri2QX8nRs7cX/90O1WBbkKEjQ1QKFbp2dm1aX73a4OyPrpO6s4btCKKdIY6+tAtvYLNubf+JUSZvLOAydIIfGrO0FeGwH5/fQ6lUZceuR++sbdGiRYtfdx47IJMk6dvAq4BNU2L8t0KIP/+kF9bis4dl2xsi/FgyxGJ5HdM92zRyVabw9vlgWvDN+u/zxecOMdjR+9glpa0yY5VyjYnxOcIRPz397R9t7PoLlic/zNV3J6nXGkxfW6B7MEm0fXNzhizLGH43lmWzOLVKeiHL8a/tZ/vTQ0ydn2Nwfy+G/9EE59mlLPlUkeRQAl/MRyFdwB002PGlXWhuDdu0yS9nseoWwa4ws6cnKSxnEY6DEfTgjfmRZAnVrREd6aCUylNMF7n5Hy/Qc3SY0moed8DDpb86Q3SojdhgkuxiFrfPzfrCOrqhM/nzCfa9uh+4a5WxfWv9Y361RD5dpJCrUK82cPtcZFOFjYCsVm3w7utXqZZrvPy7TyHJEp39D39ePF6D3/raszTqJj7/r59dTIsWLVp8XD5OhuyEEOKb729IkvS/Aq2A7HNOpVrjxP/9LarqPSPXV04+wZ/+tJeGaxavM8jv/86XuX1jlmgixGBn18NP+oicfvsy67NTVCU/L/+D/7+9Ow+O87rPfP89vS/Y940ESICruImrJErULpOiqDW244krznJH5Vnqzq1UajwpVZKpO5OayWQqNeudG93EcapiexwvkmzTsXZZEmVSC0VRpLiCG8ANxA50A+jt3D8aJLGjAQJ4G8TzqVIV3u633/4BLZIPzjnv79xP4Qw0ds1UaVUBJw9dIBAOTBisot39+IIe4gMJ4rEEFUvLqFiaeTDsjwxw5I0vwFramtq4c/d6impL8Yf9BHLTi+wj7b0kkxZ30EduWT5dze2kEimMx4XLkx658/i9VG9cytG9B+mPxsgjvY2Sx+smt7KAlhNXcPu9eANePvnRAaxxE+2IUNpQTl5JLgU1hRnVm1ccJpwfINwTIBDyEcoLDNsCqeVSBy0X2/EHvbRd62LrA3eMe614PIEx3NgE3Ofz4stwKy4RkdvFdAKZ3xizG2gCaoDgJOfLPDSydcXLb71Ln2dEI9fli/mw/qVhrSu23rtmpgvhzi/+kLyeI1zzLcewY1amJsezassSqpaUEgj7CYbHD2Rr71vGmcPNFJTlkl8yvL9YMpEklUyvxbp0ugWXy1BRXzq6kam1WJv+dlxuF/kVN0fjop1R3v/2r4i09VK6pJSuK10s3lJPXmUB/twgwYKbi+UHIgPklBXgCfhIJpJUblxCbkUBuZWFhEoLOPzKJ7Q3tVNYVcTFY5cJFYYoqy+n/q56QoVhTn98DoC6dTUYt4vejkj65oQhLSsCYT/3PbeJZCKFy+3CuMyw6dz8wjC+gJf4QIKKRWPfxAFw5Uorr//je3h9Xh5/4gHy8ief1hQRuR1NJ5D9c+BZYC3QDPyLGa1Ihunr68PtduPz+ebsPcdqXZGf9OPtryUeOE8wufRGI9eRrStmXLSV/MgXGFKUxU9h/APpx2d4arLxRDMnjp5nxZpa6pffHN1zuVwUlk2++XVuUZj1D6wY9Xh/ZIAP9x6mr3eA0kWFtDS2gkk3bK1adnPBeiDsZ93OtXS39FC6ZPRau6unruDxeYl2RhmIxAgXhvH4vZTUV4w6t3BxCddOXianJI8Vj669sd9kLBrjwmcXKF1eyUB0gE2/sYXP935GMp6k/u56XF4PF45e5MzBdO9nb8BL66Uurp5rJb80h7v2rE832x3k9riHHQ+VX5TDrq/eQyKeJCdv/N/Zzpy+gMvtIhrp4+qVVgUyEVmwphzIrLVR4O+vHxtjvgX8+UwWJWnnzp3n1VffxO/38/TTuykoKJjw/FgsRmPjOYKBAHVLJt8n8LqJGrleb11x746N/NfP/oT+QIpHtmyevW1qhtw9iTE3GrtO987J1msdvPPmR+Tn57Djoc34/aODbSwW58B7R8jNC/Hhe0dYVFc+Y1Nm3a29RDr7COT6uXqmLT2YZxnspD9cfnk++WNsRwSQX1lAKD/Ekq31rH5sLaHC8dtHhItyWP/cNoBR2x/5Q376e/rJKy8gmBtk29fuxlpL48ELnDl4gWhPHy63C3/Qi9vn4lpTO7kl4cFO/AmCOZk31Q0EfZOOn9cvW0zj6Qvk5IYor5j4pg8RkdvZdBb1/8PQQ2ADCmSz4syZc/h8PiKRKNeutU0ayA5+cpiDBw8Dhqee3kl1deWk75FpI9f8UAk77t88Q9/ZuMWMfffkLUxPHv70JMlEgqYLV7h6uY3FdaN/Jh6Pm+KSPK61dFJaVoBnnFGf6cgvzSW3JIe+7n7ufGw1segAxmWorJ94dM9ay9UzLQz0pkcEA7kBNjy7CZfLEOtLEO2KEsq/ueg9GU9y/uB5EvEEdRvr8IVuBs9UKkXPtV78YT9rd60j0hEhtyT3xg0Xxhi6Wrrxh9PtKeo31ZJflkdJTSEWQ+PBCyzbVEswZ+a74ZeXl/C1rz+BMUYbgovIgjadKctua+3/cf3AGPO/ZrAeGWL16pWcO3ee0tJiqqpGT02NlEgmMcaQGuwPlYmxRsMybeQ648a7e/IWpidrFpdx4fwlgkE/BYW5Y57jcrl4cNcWOtp7KCzKHTb6FxuI88WnZ3G5Das2LMHrndofGX/Ixz1Pb8Cm7KjpvVQqRVtzB2AoWVQ47I7UjosdfPH2cdrOt4ExlCwuYv2udfT39nPqg9O43S7WP76e3JL0FF/r+VaajjRjXOAN+liyqe7GtRo/Osep/Wfoae9h23ObqVs3ejP4hs11HP+gkbLaYpZuWHxjZG3R8goWLZ/8/71bcX0xv4jIQjadvwn/bMTxCzNRiIxWUVHO7/zO1zHGZNQ+YvPm9YRCAUKhEDU16ZGg9vZOrlxpobq6gnBOeNTekWONhmXayPWWjTE9OdN3Ty5fuYTyihJ8fh/B4PgjPD6/l/LK0ZteNx5v5uihM0C6IW7DqtFhBiDa08/pz5vobO2lpqGMJauqbvzcXC4XPV0R3v7fH9HX2899z22kamkZZz9r4vCbx4kNJNjyxDqWrr957f7eAZqPXSbS3ktR1c07HyNtvXg8bhKxBP09fTcCmS/kBwM2ZQmMGMnqutpF64VWBiIxjr51nLK6EkIj1nXll+ay7akNE/0oRURkFk1nDdnZEcftM1eOjDSVtVqBQICNG9ffOI7H4/z8Z6/R19dHMBTifya+T8TVeKNthcftpjg49mhYJo1cb8ksTE+OJ79g7JGxTPgCPpLJJAYzbM/OkQ68fpRPf3Wc3s4oy++sJb8oh+Ihd0keeus4Jz8+h8fn5sDPD7Nl51r2v3yIY/saKSjLxR/yUbe2+sbn3dMeIb8iH39OgIYtddSsqqSwqoBAjp9oVz/+sI/C6nRQSyVT9LRHKK4rpby+lJLFw0c0l22r59yhJjxBP+Gi8LgL8UVExDkZBzJjzB+M8XAX8Im19tDMlSQzIZFMcrL1ErFYHK/XS0ush4incXjbitL0KM6cjIaNNAvTk7OhqCSXVDJFyqYI5wTGPc+mUnj9XpIpi8vtGtaZHyC/JAeP102sP0HZ4hJam9opWVxE8HAzhdUFhPOD2JSFwfydUxwmpzBMbnEuDVuWkj/Y4yuUH2L9rrXDrn3tfBsnPjiFwRAqCFM6YmPz/PI8nvzXu+i83EW4MIQ/lNkdu9HefpKJJLkFE+8/KSIit24qI2SbB//72eDxbuAj4JvGmB9aa//TTBcn05NIJtn+d18m4mok6FrKX674NyxftpQf7v35jRGy620rYA5Gw2BOpidnw9VL7fiDPjweN01nr1JcNvaNFVsfvYPS6kJSNkXN0nLyi4e3b7hjewPF1YWkkimqGsroaeuls6Wbe57bSGFlAbV3VA0buapaXkFOYRi3103OiDsqo939HPnVCVxuw5r7VxDrixHt6ieQG8DjG3v0yxfwUjZGO43xdLT28PZPPyaRSHLXw2tYPEZ7DRERmTlTCWTFwEZrbS+AMeZPgR8BO4BPAAUyh4xsW9HYfpWIKz0a1uc+Q9mKRZSXlrLvGz8ctYZsjgqcs+nJW5FMJtObZQ9ZuF9RXYw/4CWZTFFTN/5G1zn5Idbe3TDu826Pm+qGmyN/BWV5PPC1beOeb4whf5z+Z5dOXaX7Wg+pVIpzn1+k+cQVYokUpaW51Kya/M7aTPR0RogNxPEGPFy71KFAJiIyy6YSyBYDsSHHcaDWWttnjBmY2bIkU2O1rVhWXEE4VT9qNGzWm7iOZx5MT3Z39fLa3n3EYgke3nkX5RXpdVgFRbns+c0dAFO+wzIT1lraLnWCMRRX5mc0ZZxflksiniSZTOIPprvhF9cU4g14cblddLf10tHSTWlNEaHBbZestVy50IZNWSpqi8cM5E1nr3L+1BUa7qihrLqIqtpS+qIDNNwx9o0MIiIyc6byL8z3gP3GmFdI9x97Avi+MSYMfDEbxclomTRxLc8LOjcaNpZ5MD3ZcrWdSG8f/oCPM6ebbwQymJ0gdt3F01f59M0TYGDzY6upXHLzZzPQF+Ps580EQn4Wr6688TmGC0JYt4t4LIl1uWjYuJiu1h6Wb1lCrD/Or39+mPhAnFBekAe/ugVjDM2NLXz42lGstWx6aBVLVg0P5gP9MX791hH8AQ9XX2vj6d9+gB2P3zlr37eIiAyX8b801tp/Z4z5BXAv6UD2TWvtx4NP/9ZsFCfDZdrEFYLOjYalC70xFRmLxznTeJ6cR16kptCXNdOTI5WVFxHOCRKLJVjaMHMbo0+mLxLDYsHCQF982HOnD17g3NFLJJMpQnlByhan23JEOqOkUinySsK0Xexgy86b+4cO9MVIJpJ0tfXyxUdn8eX4uOtLa0nGk0B6KjQRS46qw+1xEwr56e2JUlCci8t18zO61NzCZwdPsLiukjvWjT8tKyIi0zfVX/0TQAqwpKcsZQ5lVRPX8YxYL7Z/6Qt8/vlxXC4Xz/3GHspyxg9jyWSSAwcO0nqtjXu2b6WkZHRfsNmSl5/DM199ZNQastlWu7KSgUgM4zLD1pgBeHweUskULpfB7bk5yllQnkcwN0BvVx8bHlw57DX+oI8tO9fwi799j9X3NNB6qZOejgg1y8oZ6I+TSqaoG2Odmcfj5qE9m2k6e4Vz5y7z0QdHuXPrSrxeD++9/Qker4ePDxxlUW2F9psUEZkFU2l78a+Afwr8mPQI2d8bY1601v732SouG/T19dHe3k5paemcbvAN6bslh047jhwN++zwPpZVL7vlthW9vb10dXVTXl52613TR64XK7+G2+MmlUyRTKZHZnp6ejlx4hQlJSXU1S2iq6ubi82XwcChQ0cIBYMcOPAJu3c/emu1TJHb7WY2d+/puNZDT2eE8kXpGwUgfffjmu1jjzo13LmInMIgvoCP4qqbd3e2NLXT3d2HtZZL567h8rgoKLnZa620upB7n9rIkf2NFJXlkVMQwuNxs+LO2jHfp721i4/3H6OkNI++6ADXrrZz+WILFVXFLF5SSWlZEefPXyYvN4Q/MLd/BkREFoqp/Ov7+8A2a20EwBjz58CvgVsOZMaYLwP/FlgFbB0yFeqoRCLBSy+9TEdHJzXV1Tz19JNz995DWldcb+Q6tIlrjXsRjUfOc+bz83z1N5+jpHB6bSui0Sg//vFP6e2NsGrVch566P6pXWCSdhabdjyK/+hxCgryqahIjwC98/b7XLp8FZuy/MaX9/DLX75FT08vxhi8Hg99fX2Uljo80jcOay2ffniMc42XuXPbSpbUV2f0ukh3H7/66SfEY0mqlpSyfee6SV+TvjNz9J2dke5+jIFLzW20XO6gfFER9z+9icLSm6Gsfm0Ni5aV4/G5J11D+OmHx+ls7+bKxWvULasmmUzi9rgJhtM3BNz30CZWXesgPz9nzM3ZM3HtWitNTRepq1tMUVHh5C8QEVlgphLIDDB08Uly8LGZcAR4FvirGbrejBgYGKCrq4vCwgJaWlpIpVKztkB+5GjY0NYVQxu5Xh8N++D1D2nuvoTL7cLtnn5NfX39RCJRcnNzuHq1ZWovzqCdRdgYtm3bNOxlLrebVMridqW3hIrHE/j9PqyFp57aSTyeoLw8+xb+A/R0RTj62RkKi/L48P0jGQeyRCJJIpHC6/MQ64vRcqmdK03tLKovw+12E8oNZLypee3KCno6I0SjMXwBD4lEkoH+2KjzfIHxdxYYqqgkn4sXWvAFvGzYuJwVq2rx+bwUFqfbbni9HiqrJv88Ll26QkdHJ0uW1BIK3dyaKRaL8bOf/ZJEPMGRI8f4+te/4vyNJiIiWWYqgexvgQPGmJdIB7GngW/PRBHW2mPA3HWJz1A4HObee+/l5MmT3H33XbMaxkaOho3XuuJ6E9dHHnmAM43nKC4pIi9v7H5VmSgqKmTbts00NTWzdeumyV8w1JDpSdt0ANvbgiuvYtJ2Fg8+uJ0zZ85TVFRIcXERu3c/yulTZ1haX0dJifMjY12dPfT0RKioLBk1hRsMBygoyqWjvZvFSyo5eOALEokU6zctn3A6L78oh60PrabtaheL6sv41d5DGBe8/crHVC4upqy6mB27N2T0/5g/6GPTg6tYuamOIwfOEM4PUlo1/VGn9ZuXU7WolGAoQF5+mLyCqa0RS6VSNDVd5Bd738BguHC+mV2PPzLqvCz74y0iklWMtTbzk43ZCGwnHcjenektk4wx7wB/mOmU5ebNm+3HH2fF7OaUjGxdceLaJZ7buwtjUljr4se7/5EVpVWjRs0cN3J60lr4zm7shf1c9tSyf+W/5Yk9u+Z8rd1YotE+4vEE+flT28eypzvCKz9+g4GBGCtXL2X7jtEhdWAgTqQnSsvVdg689zkAG+9axdoNywCIxxP0dEXJKwiPOeo10B/jF9//gNhAnBOHLrB95zo6Wrp54uv3EgiNvwF6tnrzzXf57NOjNJ45x9q1q6iuqWLPnseGndPSco2mC80sWVqnKUsRWbCMMZ9YazeP9dykI2TGmB7Sd1XeeGjIc9Zam9HwjDHmDWCsdt8vWGtfyeQag9d5HngeYPHixZm+LGuM1bqi0Hrw9C8iEWjCF6t1vpHrWCaYnnzle9+h351H+9VrtLd3UFExfkf72Wat5f33DvDTl1+jsqqcPU89xrJlSzJ+fV9fP/0DMYIhPx0d3WOe4/d78fvzifT20Rftp7mphZKKAu5YVw/AO7/8mKuX2qlcVMJDu7aMGvn1B3w88MRG2lq6WLm+jnMnLrHyzrp5GcZSqRRnGs+zZGktff39rFq9nI0bR6+PKysrpawsO6ehRUSywaSBzFo7tSGG8a8zeg5jetd5EXgR0iNkM3HN2ZRJI9eA38/z9klauiNsa1idHaNhI03QbX/Fxu28++4+KivLHR/9aG1t51fv/JrWtnYG4jGamy5PKZCVlhWx9a51tFxtY+PmOyY8t6a2nJLyAlLGcu1KB9eudlBQmEvLlXaKSvO4cqmNRCKJ1+shFotz9NNGAO7YUE9haR6FpenfZdbfvWz637DDXC4Xd921iY8++pSHH76PbXdtyrqlByIi88HcNVxagDJt5JofKuG5Z5+is7OL2tosGfWbwmbgq1avoL5hCR6Px/EwGQwGKC8v4erVVgoL81m7buXkLxrCGMO6DSsyPrd2aRW9vVG8Xg+BgA9/wMed21Zy/Mg5Nt216kZPszMnL/L5p424gEDQz6p1mYfEkVKpFB9/cIwrl1rZsv0OKqtneWP4Saxdt5q161Y7WoOIyHyXFYHMGPMM6fYZpcBeY8wha+2XHC7rlk2lkWt5eTnl5c5N9Q0zjc3AnVo3duVKC8aYG3dl5uSE+fJXn2TnroeoqCzD683sTsPp2rh1FVU1ZYRCAfIL04PJq9ctZfW6pcPOCwb9GAvWQCB4az+r9tZuTh49RzgvxKcHTlD57NQDWTwex+2evCWGiIjMjawIZNbal4CXnK5jIk1NTRw69BnLly9nxYrlY54zWSNXtyeCMcFbbuQ66+bBZuAAjafP8uqrbwPw+O5HqatLb4JdUJBPQUH+nNTgdrupXjT5z2Tx0goe2bMNay2VNTcDVDKZpLWlk3BOkJzcUEbvGc4JEsoNEu3po2ZxGZ0dPeTlhycNV9ZaIpE+LjZfYd97ByktLeSxXfdNu7eYiIjMnKwIZNkulUrx6quv4/f7eeutt6mpqSYcDg87Z7JGrkNHw663rsgaU5iezCZdXd0YlwtrU/T29jpdzoSMMcOC2HUffXCUE1+cIxgK8MSzOwgNNmPt6ujh7JmLVNWUUVY+fAupYMjP489sp7cnyke/PsLRfzhF1aIytu/YQDhn/FD3632fcuzoaZqaLnPHmmW0XG2jvb2Lysrs/HxFRBYSBbIMuFwuiouLuHTpMvn5efh8vlGL9Sdr5Jq1o2HTmJ7MFqtWL6ezsxuXy0VDw/TXZDmptaWDcDhINNJPX7SfUDiAtZY3frmf/r4Bjn52huf+ySMERvQ4CwT9WGu51tJBTm6In7/0DhebrrDj4c3UN4xeh2it5cTxM5RXltJytZXWax1UVZdTVDQ3I4kiIjIxBbIM7dq1k5aWFoqLi3G7PaMW60/WyDVrzZPpybEEg0Eeevg+p8u4JVvvXcvBD4/TsHIxRSU3w5Hb5cKmLO4J/oQGQwHWbFjGB+8eoqKqhFA4SNO5K2MGMmMMmzav4aMPP2f7ji1su3s9Xq/zN2GIiEjalBrDZpu5aAw7ciQM4Gp3Hw9+96u4gudJ9dXy9m/9gPK8YPY1ch1p5NQk3GjuemOE7Hf2Zu2I2ELS1dlL8/krlFcVU1I6cSuR/v4B3nrtAN1dvTz02DbKysff7WA2t/8SEZGJ3VJj2IVsrLYVLpcZc7E+BLOrketI401NGuPo9OTAwABer1chYYT8ghxy85bS3dVLPJ640T5jLIGAn8ef3JHRdfVzFhHJTgpkExirbUV5XnDcxfpZbbypSXBsevLEiVO8/fa7FBcXsWfPLgKBwJzXkM32f/AZx784Q3FJAY/vuX/CUCYiIvOb/oafwHgjYcaY+bFYP8vvqTipiQAAEztJREFUnDxy5Avy8vJoablGW1s71dVZOrrokLONzRSXFNDW2kmkN0pB4fQ3kRcRkeym+YsJXB8Jcxs3myruHDYSdn2xftaGsb97Av5yVXp9WCp1c2ryD45lzTqxtWvvoKenh4qKckpK5sEo4xzo7x8glUoBsO3udfT2RFm5eil5+Tljnh+Lxdn/wUH2vf8x/f0Dc1mqiIjMII2QTWBejISNZZ7cObl8eQNLltQuiI7x/f0DxOMJcnPD455z9MhJDnxwiNKyYr70+A4altfSsLx2wus2njrH4c+OA5CTE2L9hsm3MLLWEo/HHdtdQURERru9/xWcAVk9Ejae69OTLk/WTE+OZyEs6O/s7OYffrCXH3z/Z5xpvDDueceONlJQVEBLSxudHd0ZXTsYCtwY7QyHJ+/0n0qleOvN9/jbv/ke+/fP7h3KIiKSOY2Q3Q5Grhdz+M5JGa69vZP+vn5CoSDnzjWztH7sDeTXrl/BvvcOUllZSmFRZuvFautqeGLPQ1hrqaqefC/UaLSPUycbqayu4NChI2zduvG2D8QiIvOBAtl8N147iyybnrwdpFIp9u37iPPnmti+fQtLlk48nXhdZWUZVVXl9PREWLt2xbjnrVi5lKX1i/B4PBmNyPb09NLfP0BlVVnGI7ihUJClDXWcaTzPunWrFMZERLKEAtl8N1E7C5lRHR1dHD16nMKCfPZ98FHGgSwYDPDEkw9ndK7X6824lpdf+iWxgTj33LuJtWtXZfQ6l8vFo48+wMCOAbUZERHJIvr1eL5JpaC3Jd1hH+bVerH5LicnREF+Ph2dXdTVLXK0lp7uXmL9MYJBP1cuX5vSa40xCmMiIllGI2TzyTzeCPx24Pf7eebZXfT2RiksdHZT7sqqMlasqqejo4uNm9beeDwej5NMJhW4RETmGQWy+WSetLO4nfn9fvx+v9Nl4PV6eeDBe4Y91tXVzcsv/4KBgQF27nyYxYtrHKpORESmSlOW2WyBTU+ePXuOH/3oJxw+fMTpUrLKwMAA77zzAa+9+g69vZFxz2tpaSUSieDz+WhsPDuHFYqIyK3SCFm2WmDTk9Za3nzzbYLBIO+/v4+lS+vIyRm7O/1Cc/58M18cPYHX4yUvL5e77t405nmVleUUFxcRjfaxatX4d3OKiEj2USDLVgtsetIYQ3l5GRcuNFFYmJ/RtGBLSwsnTpyivn4JVVW37z6YOTk5uN0eUqkUhUXjr13LyQnzla88jbVW7SxEROYZBbJsMQ82A59tO3c+RktLC0VFRZO2f0gmk+zd+4+kUpZjx47zjW98PSvWdo00MJDeMiknZ/wtkyZTVVXOc7+xm0QiQXn5xP8fGGPm164SIiICKJBlhwU2PTker9dLdXV1RucaY/D5fHR2dhEOh2d8RCgej3Po0Ofk5IRZuXL5tEJOV1c3r7z8S/r7B3jo4XtpaFgy7XpKSoqm/VoREcl+CmTZYIFNT84El8vFnj27uXjxEhUV5Rk3VM3U97/3Q/bufY1gKMS3vvWvprUmq72tg2gkSigc4uyZC8MCWTKZxOVyaTRLREQABTJnaHpyRuTl5ZGXl9mej1N1/sJFwuEQkUiU7u6eaV2jorKcispyuru6WbvuZif906fP8s7b+ygrL2XXrodmPEyKiMj8o0A21zQ9OS98+ctP88MfvkRNdRUbN66f1jWCwQBPP7Nr1OOffvo5ubk5XLp0mdbWdiorJ98UXEREbm8KZHNN05PzwsqVy/jjP/7Xs3LtVauWs+/9AxQXFTne8V9ERLKDAtls0/SkjLBmzUrq62vx+Xy43W6nyxERkSygQDabND0p4wgGg06XICIiWUTdI2fTWNOTcHN6UmFMREREUCCbWfNs78lIJEI8Hne6DBERkQVPU5YzZZ5NT544cZK33nqLnJwcnnnmae0bKSIi4iCNkM2UeTY9eerUKcLhHLq7u2lra3O6nHnNWktbWzv9/f1OlyIiIvOUAtlMyfLpyZE2bFhPPB6jqqqK8nL1wboVH374Cf/wg5/wwx++QjQadbocERGZhzRlOV0j21kYk7XTk2Opqanh937vd7V1zww4f+4CeXl5dHV309PTSygUcrokERGZZzRCNh3X14v95Sr4zu70MWTt9OR4FMZmxt33bMMYw+rVKygpKXa6HBERmYc0QjYd43XblwVp0aJq/slvfdnpMkREZB7TCNlkRraygHm3XkxERESym0bIJjJeK4t5tl5MREREspsC2UQmmprUZuCSoWg0ymuvvUFftI/HvvQIxcVaZyYiIsNpynIimppckPr6+njttTd49dXXZ6SNRXPzRZqbLxGJ9nHk86MzUKGIiNxuNEI2EU1NLkinTjVy6tRZjIHS0lI2btxwS9crLi4iGAwQj8epWVQzQ1WKiMjtRIFsMpqaXHDy8/NuZO+CgoJbvl5xcTFf+9pXSCQS5OXl3fL1RETk9qNAJjJCbe1ivvKVZ7HWUlpaMiPXVLNYERGZiAKZyBgma/CaSCQ4efI0Ho+bhoZ6XC4txxQRkelTIJMFw1rLwMAAfr//lncpOHr0C959932shccfd9HQUD9DVYqIyEKkQCYLxjvvvMuxYydZtWo5Dzyw45ZCWSqVgsFewXZo02AREZFpUCCTBSEWi3H8+Emqqio5fvwkd9+9jUAgMO3rrVlzBy6XC4/HS3390hmsVEREFiIFMlkQfD4fa9as5siRL1i9euUthTEAr9fL+vXrZqg6ERFZ6BTIZMG4777tbNu2BZ/P53QpIiIiw+jWMFlQFMZERCQbKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkMm8Yq3l2LHjfPjhR/T19TldjoiIyIzQ1kky586ePUtTUzOrV6+ipKRkSq+9ePEib775Fi6XIRqN8sAD989SlSIiInNHI2Qyp3p7e3n11dc5efIUr7762pRf73a7AUgkkni93pkuT0RExBEaIZM55Xa78Xo99PX1U1RUNOXXV1ZW8uSTTxCJRGloqJ+FCkVEROaeApnMqWAwyNNPP0VbWxvV1dXTusbixYtnuCoRERFnKZDJnCsuLqa4uNjpMkRERLKG1pBJRiKRCBcvXiQejztdioiIyG0nK0bIjDF/AewBYkAj8LvW2k5nq5LrYrEYP/nJS3R391BXV8vu3Y87XZKIiMhtJVtGyF4H1lhr1wEngT9yuB4Zor+/n56eXvLz87h65arT5YiIiNx2siKQWWtfs9YmBg/3AzVO1iPD5eXlce/2ewiHwjz62CNOlyMiInLbyYopyxF+D/jBeE8aY54HngfdbTeX1q1fx7r165wuQ0RE5LY0Z4HMGPMGUDHGUy9Ya18ZPOcFIAF8d7zrWGtfBF4E2Lx5s52FUkVERETm1JwFMmvthHNdxphvAE8AD1trFbRERERkwciKKUtjzE7gW8D91tqo0/WIiIiIzKWsWNQP/A8gF3jdGHPIGPP/Ol2QiIiIyFzJihEya22D0zWIiIiIOCVbRshEREREFiwFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhMgUxERETEYQpkIiIiIg5TIBMRERFxmAKZiIiIiMMUyEREREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRERERhymQiYiIiDhMgUxERETEYQpkIiIiIg5TIBMRERFxmAKZiIiIiMMUyEREREQcpkAmIiIi4jAFMhERERGHKZCJiIiIOEyBTERERMRhCmQiIiIiDlMgExEREXGYApmIiIiIwxTIRERERBymQCYiIiLiMAUyEREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDsiKQGWP+nTHmsDHmkDHmNWNMldM1iYiIiMyVrAhkwF9Ya9dZazcAPwf+xOmCREREROZKVgQya233kMMwYJ2qRURERGSueZwu4DpjzJ8Bvw10AQ86XI6IiIjInDHWzs1glDHmDaBijKdesNa+MuS8PwIC1to/Hec6zwPPDx6uAE7MdK0OKAFanS5Cpk2f3/ylz27+0mc3fy3kz67WWls61hNzFsgyZYypBfZaa9c4XctcMcZ8bK3d7HQdMj36/OYvfXbzlz67+Uuf3diyYg2ZMWbZkMMngeNO1SIiIiIy17JlDdl/NMasAFLAeeCbDtcjIiIiMmeyIpBZa59zugaHveh0AXJL9PnNX/rs5i99dvOXPrsxZN0aMhEREZGFJivWkImIiIgsZApkDjLGfNsY02KMOeJ0LTJ1xpidxpgTxpjTxph/43Q9Mj3GmC8bY44aY1LGGN35NY8YY/7CGHN8cOu9l4wxBU7XJJnRlomjKZA56zvATqeLkKkzxriB/wnsAlYDXzPGrHa2KpmmI8CzwLtOFyJT9jqwxlq7DjgJ/JHD9UjmtGXiCApkDrLWvgu0O12HTMtW4LS19oy1Ngb8b+Aph2uSabDWHrPW3g4Nphcca+1r1trE4OF+oMbJeiRz2jJxtKy4y1JkHqoGmoYcNwPbHKpFROD3gB84XYRkTlsmDqdAJjI9ZozHFvxveNkq063bJPtk8tkZY14AEsB357I2mdhkn5219gXghcEtE/8lMOaWiQuFApnI9DQDi4Yc1wCXHKpFJmGtfcTpGmR6JvvsjDHfAJ4AHrbq45RVpvDn7nvAXhZ4INMaMpHp+QhYZoxZYozxAb8J/NThmkQWFGPMTuBbwJPW2qjT9UjmtGXiaGoM6yBjzPeBB0jvfH8V+FNr7d84WpRkzBjzOPBfADfwbWvtnzlckkyDMeYZ4L8DpUAncMha+yVnq5JMGGNOA36gbfCh/dZabb03DxhjfgwM2zLRWnvR2aqcpUAmIiIi4jBNWYqIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuIwBTIRmVHGmF6na5gJQ7+PmfiejDF1xpg+Y8yhW73WBO8RNMYcMsbEjDEls/U+IjLzFMhEZEEyaXP9d2CjtXbDbF3cWts3eH3tqyoyzyiQicisMMb8gTHmyOB//9eQx//YGHPcGPO6Meb7xpg/nOb16wav83fGmMPGmB8ZY0JDnn/ZGPOJMeaoMeb5Ia85Zoz5f4CDwKKxzpvkfce67pbBGgLGmPDgc2syrP+vB39G3zXGPGKM2WeMOWWM2Tre+w0+HjbG7DXGfDb4+q9O5+coItlBWyeJyIwanN67H/gOcBdggAPA10nv+/nXwN2Ah3Qo+itr7X+exvvUAWeBe621+4wx3wa+uH4tY0yRtbbdGBMkvRn8/UAucAa4x1q7f7zzrLVtxphea23O9e9pyNfjnf/vgQAQBJqttf9hjHp/bq1dM+T4NHAncHTwWp8Bv096s+XftdY+PcH7PQfstNb+08Hr5Vtruwa/Pgdstta2TvXnKiLO0AiZiMyGe4GXrLURa20v8BPgvsHHXxmcWusBfnb9BcaYpcaYvzHG/GjwODw4+vX/GWN+a5z3abLW7hv8+u8Hr3/d/2mM+QzYDywClg0+fv56GJvkvPGMd/7/DTwKbAb+0yTXuO6stfZza22KdCh706Z/S/4cqJvk/T4HHjHG/Lkx5r7rYUxE5icFMhGZDWaKj2OtPWOt/f0hDz0L/GhwBOjJ8V421rEx5gHgEeBua+164FPSo1cAkRvFTHze6OInPr8IyCE9CjfuNUYYGPJ1ashxCvBM9H7W2pPAJtLB7D8YY/4kw/cUkSykQCYis+Fd4GljTMgYEwaeAd4D3gf2DK61ygF2T3CNGqBp8OvkOOcsNsbcPfj11wavD5APdFhro8aYlaSnTseS6XmZnP8i8MfAd4E/n+Q6mRr3/YwxVUDUWvv3wH8GNs7Qe4qIAzxOFyAitx9r7UFjzHeADwcf+mtr7acAxpifkl4rdR74GBhvqq2ZdCg7xPi/PB4DvmGM+SvgFPC/Bh//JfBNY8xh4ATp6b6xZHrehOcbY34bSFhrv2eMcQMfGGMesta+Ncn1JjNRfWuBvzDGpIA48M9u8b1ExEFa1C8ic8oYk2Ot7R28I/Jd4PnBAFcM/BnpdVh/Dfw34H8A/cD71trvjrhOHUMWyWe7uaxXi/pF5h+NkInIXHvRGLOa9Fqov7PWHgSw1rYB3xxx7u/OdXGzKAnkG2MOzVYvssE7MX8NeEmvQxOReUIjZCIiIiIO06J+EREREYcpkImIiIg4TIFMRERExGEKZCIiIiIOUyATERERcZgCmYiIiIjDFMhEREREHKZAJiIiIuKw/x9DjQLJsorW2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAITCAYAAACzCuBLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXiV1bn///fameeEDAyCISBjSAwJQeZBkUErYpGvcx1aOE7fek7PwW/rr4Nt9aqtXh6rdrIq9lQrPS2gCFSpFYSiaIKEeRIIsyQMCZmnvX5/ZGeXQBJ2kh32TvJ5XRcXybOf51n3s0PInTXcy1hrERERERH/4fB1ACIiIiLSmBI0ERERET+jBE1ERETEzyhBExEREfEzStBERERE/IwSNBERERE/owRNRERExM8oQRORbsMY098Ys8oYc9YY85Ux5mVjTKDrtVeMMXuMMU5jzH0XXHevMWaTMeacMeaoMeYXDdeJiHQEJWgi0p38GigAegMZwGTgYddrW1wff9HEdeHAvwMJwDXAdcB/dXSwItJ96TdAEelOUoCXrbWVwFfGmPeBVABr7a8AjDGVF15krf3NeZ8eM8a8BUy9DPGKSDelHjQR6U5+CdxujAk3xlwBzALeb8N9JgE7vBqZiMh5lKCJSHfyMfU9ZueAo0Au8E5rbmCMuR8YBTzn9ehERFyUoIlIt2CMcQAfAEuBCOrnk8UBP2/FPeYAzwCzrLWnOiJOERFQgiYi3UcPoB/1c9CqrLWngUXADZ5cbIyZCfweuMlau63jwhQRUYImIt2Eq8frIPCQMSbQGBML3Ev96k2MMcHGmFDAAEHGmFBXrxvGmGuBt4C51trPffMEItKdGGutr2MQEbksjDEZwAvA1UAdsAZ4xFpbYIxZS33ZjfNNtdauNcasASYC56/wXG+tnXUZwhaRbkgJmoiIiIif0RCniIiIiJ9RgiYiIiLiZ5SgiYiIiPgZJWgiIiIifkYJmoiIiIifUYImIiIi4meUoImIiIj4GSVoIuJVxpjSy9hWnTEmzxizwxizxRjznYbq/67XP2nh2lhjzMOXJ9KL2u5vjKkwxuSd9/l2L9w3zPV+VBtjEtofqYj4ihI0EenMKqy1GdbaVOB66vfV/FHDi9bacS1cGwv4JEFz2W+tzfDmDa21Fa57HvfmfUXk8lOCJiIdwtWbtd3159/PO/4DY8xuY8zfjTFvG2P+yxvtWWsLgAXAo8YY42qr1PV3hDFmpauXbbsx5jbgGWCgq8fpWdd57xhjNrl65Ba4jvU3xuwyxvzedXy1MSbM9do3jDFbXff943nPeLcx5nPXvX9njAnw9DmMMQOMMZuNMdmutncbY/7gauevxpjwltoWka4h0NcBiEjXY4zJAu4HrqF+8/HPjDEfAwHAXGAk9f//fAFs8la71toDriHOJODkeS/NBI5ba290xRcDfAaMuKAX6wFr7RlXApZjjFniOj4IuMNaO98Y87/AXGPMZuD/A8Zba08ZY3q47j0MuM11vMYY82vgLuB/LhW/MWYIsBi431qbZ4zpDwwBvmmt3WCMeR142Bjzt6baFpGuQwmaiHSECcAya20ZgDFmKfWbjTuAd621Fa7j7zVcYIwZQH3SEWOtvdUYEwH8GqgG1lpr3/KwbdPEsW3Ac8aYnwMrrLXrjTFxTZz3bWPMLa6P+1GfmH0FHLTW5rmObwL6A3HAX621pwCstWdcr18HZFGf4AGEAQUexJ0IvAvMtdbuOO/4EWvtBtfHbwLfBqqaaVtEuggNcYpIR2gqSWrpONbaA9bab5536OvUJyHzgdkeNVqf5NVxQUJkrd1LfdK0DfiZMeaHTVw7BZgGjLXWXg1sBkJdL1edd2od9b/cGsA2FQbwB9fcuAxr7RBr7ZMehF8MHAHGX3D8wjZsC22LSBehBE1EOsI6YI4xJtzVE3YLsB74J3CTMSbUGBMJ3NjCPfpSn7BAfVLUImNMIvBb4GVrrb3gtT5AubX2TeA5IBMoAaLOOy0GOGutLTfGDAXGXKLJfwD/xxgT72qjx3nHbzXGJDUcN8YkXyp+6nsK5wDfMMbced7xK40xY10f30H9e9hc2yLSRWiIU0S8zlr7hTHmDeBz16FXrbWbAYwxy4EtwCEgl/qeo6YcpT5Jy6P5XybDXKUqgoBa4I/A802clwY8a4xxAjXAQ9ba08aYDa7yFn8Dvg88aIzZCuwBNl7iGXcYY54GPjbG1FHf43aftXanMeb7wGrXfLga4BHX87bIWltmjPka8HdjTBn179Mu4F5jzO+AfcBvXEnkRW1f6v4i0nmYC37RFBHpUMaYSGttqWs14jpggSuhiweepr5cxqvAi8DLQCXwz1bMQfN7rsn/K6y1I7xxXhPX5QOjGuaoiUjnox40EbncXjHGDKd+ftcfrLVfAFhrTwMPXnDu/Zc7uMukDogxxuR5sxaaa/Xpp9T3KDq9dV8RufzUgyYiIiLiZ7RIQERERMTPKEETAIwx/Ywxa1wV03cYYx7zdUzSPq6Vkp+7Ks3vMMb82NcxifcYYwJcOw6s8HUs0n7GmHxjzDbX7hO5vo5HvMPU7/n7V9eOILvOW5F9SZqDJg1qgf90TdaOAjYZY/5urd3p68CkzaqAa10T8oOAfxpj/matbXF1onQaj1G/wjPa14GI10zVwo4u55fA+67i28FAuKcXqgdNALDWnjhvsnYJ9f/xX+HbqKQ9bL1S16dBrj+adNoFGGP6Ul9D7lVfxyIiTTPGRAOTgNcArLXV1toiT69XgiYXcS3tH0n9XoXSibmGwfKor6z/d2utvqZdwwvA42ilZldiqa+dt8kYs8DXwYhXDAAKgUWu6Qivugp3e0QJmjTiqu6+BPh3a+05X8cj7WOtrXOVcegLjDbGtKqelvgfVyHbAmut1zaZF78w3lqbCcwCHjHGTPJ1QNJugdTvWvIba+1IoAz4rqcXK0ETN9c8pSXAW9bapb6OR7zH1a2+Fpjp41Ck/cYDs13FaBcD1xpj3vRtSNJe1trjrr8LgGXAaN9GJF5wFDh63sjFX6lP2DyiBE0AMMYY6sfJd1lrm9oqRzoZY0yiMSbW9XEY9RuB7/ZtVNJe1trvWWv7Wmv7A7cDH1lr7/ZxWNIOxpgI1+IsXENg04Htvo1K2sta+xVwxBgzxHXoOsDjhXdaxSkNxgP3ANtcc5YAnrDWrvJhTNI+vYE/GGMCqP9l7H+ttSrJIOJ/egLL6n9PJhD4k7X2fd+GJF7yf4G3XCs4D9CK3VG0k4CIiIiIn9EQp4iIiIifUYImIiIi4meUoImIiIj4GSVoIiIiIn7GbxI0bewsIiIiUs9vEjT+tbHz1UAGMNMYM8bHMXU72mKka9LXtevR17Rr0te162nr19RvEjRt7Ow39J9D16Sva9ejr2nXpK9r19O5EzTQxs4iIiIi4KeFal3b0ywD/q+1dvsFry3AlY0GBARkhYSE+CDCrqu2tpbAQG0w0dXo69r16GvaNenr2vWc/zUtLy+vsdYGe3KdXyZoAMaYHwFl1trnmjtn1KhRNjc39zJGJSIiItI2xphN1tpRnpzrN0Oc2thZREREpJ4/9aNqY2cRERER/ChBs9ZuBUb6Og4RERERX/ObBM1bampqOHr0KJWVlb4ORcRnQkND6du3L0FBQb4ORURE2qDLJWhHjx4lKiqK/v37Y4zxdTgil521ltOnT3P06FFSUlJ8HY6IiLSB3ywS8JbKykri4+OVnEm3ZYwhPj5evcgiIp1Yl0vQACVn0u3pe0BEpHPrkgmaP3nyySd57rlmS7nxzjvvsHPnzssYkYiIiPg7JWg+pgRNRERELqQErQM8/fTTDBkyhGnTprFnzx4Afv/735Odnc3VV1/N3LlzKS8v55NPPmH58uUsXLiQjIwM9u/f3+R5IiIi0r0oQaN+1VtVbZ1X7rVp0yYWL17M5s2bWbp0KTk5OQB8/etfJycnhy1btjBs2DBee+01xo0bx+zZs3n22WfJy8tj4MCBTZ4nIiIi3UuXK7PRWtZaNh44zb6CUgYlRTJmQPtWgK5fv55bbrmF8PBwAGbPng3A9u3b+f73v09RURGlpaXMmDGjyes9PU9ERES6rm7fg1Zd52RfQSm9okLZV1BKdZ2z3fdsKsG77777ePnll9m2bRs/+tGPmi2B4Ol5IiIi0nV1+wQtJDCAQUmRfFVSyaCkSEICA9p1v0mTJrFs2TIqKiooKSnhvffeA6CkpITevXtTU1PDW2+95T4/KiqKkpIS9+fNnSciIiLdR7cf4gQYMyCezOS4didnAJmZmdx2221kZGSQnJzMxIkTAfjpT3/KNddcQ3JyMmlpae6k7Pbbb2f+/Pm8+OKL/PWvf232PBEREek+jLXW1zG02ahRo2xubm6jY7t27WLYsGE+ikjEf+h7QUTEvxhjNllrR3lybrcf4hQRERHxN0rQRERERPyMEjQRERERP6METURERMTPKEETERER8TNK0ERERET8jBK0DpCfn8+IESMuW3tPPvkkzz33nEfn3nDDDRQVFbXrHiIiItKxVKjWj9TV1REQ0P5iuU2x1mKtZdWqVR1yfxEREfEe9aB1sAMHDjBy5Eg+++wzFi5cSHZ2Nunp6fzud78DYO3atUydOpU777yTtLQ08vPzGTZsGPPnzyc1NZXp06dTUVEBwP79+5k5cyZZWVlMnDiR3bt3t9h2w70efvhhMjMzOXLkCP379+fUqVMAPP300wwZMoRp06axZ88e93U5OTmkp6czduxYFi5c6O4NrKura/IZRERExLuUoAFOp6WwpApv76qwZ88e5s6dy6JFi9iyZQsxMTHk5OSQk5PD73//ew4ePAjA559/ztNPP83OnTsB2LdvH4888gg7duwgNjaWJUuWALBgwQJeeuklNm3axHPPPcfDDz/sUQzf+MY32Lx5M8nJye7jmzZtYvHixWzevJmlS5eSk5Pjfu3+++/nt7/9LZ9++mmjHr3XXnut2WcQERER7+n2Q5xOp+WO329k06GzZCXH8fb8MTgcpt33LSws5Oabb2bJkiWkpqby1FNPsXXrVv76178CUFxczL59+wgODmb06NGkpKS4r01JSSEjIwOArKws8vPzKS0t5ZNPPmHevHnu86qqqi4ZR3JyMmPGjLno+Pr167nlllsIDw8HYPbs2QAUFRVRUlLCuHHjALjzzjtZsWIFAKtXr27yGc6PXURERNqv2ydop8uq2XToLLVOy6ZDZzldVk1iVEi77xsTE0O/fv3YsGEDqampWGt56aWXmDFjRqPz1q5dS0RERKNjISH/aj8gIICKigqcTiexsbHk5eU12+aRI0e46aabAHjwwQeZOXPmRfc+nzEXJ6It9SI29wwiIiLiXd1+iDMhMpis5DgCHYas5DgSIoO9ct/g4GDeeecd/ud//oc//elPzJgxg9/85jfU1NQAsHfvXsrKyjy+X3R0NCkpKfzlL38B6pOlLVu2NDqnX79+5OXlkZeXx4MPPtji/SZNmsSyZcuoqKigpKSE9957D4C4uDiioqLYuHEjAIsXL3Zf095nEBEREc90+x40Ywxvzx/D6bJqEiKDm+xVaquIiAhWrFjB9ddfz/e//32GDx9OZmYm1loSExN55513WnW/t956i4ceeoinnnqKmpoabr/9dq6++uo2xZaZmcltt91GRkYGycnJTJw40f3aa6+9xvz584mIiGDKlCnExMQA8K1vfYv8/Px2PYOIiIhcmvH2xPjLadSoUTY3N7fRsV27djFs2DAfRdQ1lJaWEhkZCcAzzzzDiRMn+OUvf+njqKS19L0gIuJfjDGbrLWjPDm32/egycVWrlzJz372M2pra0lOTuaNN97wdUgiIiLdihI0uchtt93Gbbfd5uswREREuq1uv0hARERExN8oQRMRERHxM0rQRERERPyMEjQRERERP6MErQM0lKg4fvw4t956q4+jabu1a9fyta99rd3nXOjJJ5/kueeea09oF7nhhhsoKiqiqKiIX//61169d0uWL1/OM8880+I5Lb1HL7zwAuXl5e7PG55DRES6NyVoHahPnz7ufSs7Sm1tbYfev7NYtWoVsbGxlz1Bmz17Nt/97nfbfP2FCVrDc4iISPemBK0D5efnM2LECADeeOMNvv71rzNz5kwGDRrE448/7j5v9erVjB07lszMTObNm0dpaSkAP/nJT8jOzmbEiBEsWLDAvU/mlClTeOKJJ5g8efJFBWSffPJJ7r33XqZPn07//v1ZunQpjz/+OGlpacycOdO9TdM//vEPRo4cSVpaGg888IB74/X333+foUOHMmHCBJYuXeq+b1lZGQ888ADZ2dmMHDmSd999t1XvxdNPP82QIUOYNm0ae/bscR/fv38/M2fOJCsri4kTJ7J7924A7rvvPr797W8zbtw4BgwY4E50T5w4waRJk8jIyGDEiBGsX78egP79+3Pq1Cm++93vsn//fjIyMli4cCH33HNPo1jvuusuli9f3ii2goICsrKyANiyZQvGGA4fPgzAwIEDKS8vp7CwkLlz55KdnU12djYbNmxwf10fffRR97OMGTOG7OxsfvjDH7p7UqG++O+tt97K0KFDueuuu7DW8uKLL3L8+HGmTp3K1KlTGz1Hfn4+w4YNY/78+aSmpjJ9+nQqKioAyMnJIT09nbFjx7Jw4UL3vzEREelCrLWd9k9WVpa90M6dOy86dkl1ddaWnLTW6Wz9tU2IiIiw1lp78OBBm5qaaq21dtGiRTYlJcUWFRXZiooKe+WVV9rDhw/bwsJCO3HiRFtaWmqttfaZZ56xP/7xj6211p4+fdp9z7vvvtsuX77cWmvt5MmT7UMPPdRk2z/60Y/s+PHjbXV1tc3Ly7NhYWF21apV1lpr58yZY5ctW2YrKips37597Z49e6y11t5zzz32v//7v93H9+7da51Op503b5698cYbrbXWfu9737N//OMfrbXWnj171g4aNMiWlpbaNWvWuM/Jycmx3/zmNy+KKTc3144YMcKWlZXZ4uJiO3DgQPvss89aa6299tpr7d69e6211m7cuNFOnTrVWmvtvffea2+99VZbV1dnd+zYYQcOHGittfa5556zTz31lLXW2traWnvu3DlrrbXJycm2sLCw0XturbVr1661N998s7XW2qKiItu/f39bU1NzUYzDhw+3xcXF9qWXXrKjRo2yb775ps3Pz7djxoyx1lp7xx132PXr11trrT106JAdOnSo++v6yCOPWGutvfHGG+2f/vQna621v/nNb9z/DtasWWOjo6PtkSNHbF1dnR0zZoz7Xg1xNzj/OQICAuzmzZuttdbOmzfP/f6npqbaDRs2WGut/X//7/81et7ztel7QUREOgyQaz3McVSo1umEP3wNjnwG/a6Be1eAo2M6Fq+77jr3vpbDhw/n0KFDFBUVsXPnTsaPHw9AdXU1Y8eOBWDNmjX84he/oLy8nDNnzpCamspNN90E0GIh2VmzZhEUFERaWhp1dXXMnDkTgLS0NPLz89mzZw8pKSkMHjwYgHvvvZdf/epXTJkyhZSUFAYNGgTA3XffzSuvvALU9/ItX77cPXessrLS3cvUYNSoUbz66qsXxbN+/XpuueUWwsPDgfphQajvVfrkk0+YN2+e+9yGnjyAOXPm4HA4GD58OCdPngQgOzubBx54gJqaGubMmUNGRkaL7/nkyZN55JFHKCgoYOnSpcydO5fAwIv/2Y8bN44NGzawbt06nnjiCd5//32ste49Sj/88EN27tzpPv/cuXOUlJQ0usenn37q3pv0zjvv5L/+67/cr40ePZq+ffsCkJGRQX5+PhMmTGgx9pSUFPfzZWVlkZ+fT1FRESUlJYwbN87dzooVK1q8j4iIdD5K0MpP1Sdnztr6v8tPQWRShzQVEhLi/jggIIDa2lqstVx//fW8/fbbjc6trKzk4YcfJjc3l379+vHkk09SWVnpfj0iIuKS7TgcDoKCgtwbwDscDnebzWlus3hrLUuWLGHIkCGNjjckTpfS1H2dTiexsbHk5eW1+BwN7QNMmjSJdevWsXLlSu655x4WLlzIN77xjRbbvueee3jrrbdYvHgxr7/+OgD3338/mzdvpk+fPqxatYqJEyeyfv16Dh06xM0338zPf/5zjDHuyf1Op5NPP/2UsLAwj563pWdp+Nq39pqKiooWv3YiItJ1aA5aRGJ9z5kjsP7viMTL2vyYMWPYsGEDX375JQDl5eXs3bvXnYwlJCRQWlrq1cUGQ4cOJT8/393mH//4RyZPnszQoUM5ePAg+/fvB2iUNM6YMYOXXnrJnSBs3rzZ4/YmTZrEsmXLqKiooKSkhPfeew+A6OhoUlJS+Mtf/gLUJ2Fbtmxp8V6HDh0iKSmJ+fPn881vfpMvvvii0etRUVEX9Wzdd999vPDCCwCkpqYCsGjRIvLy8li1apU7xjfffJNBgwbhcDjo0aMHq1atcvdsTp8+nZdfftl9z6aSyjFjxrBkyRIAFi9e7NF701S8LYmLiyMqKoqNGze2qh0REelclKAZUz+s+Z1dcN/K+s8vo8TERN544w3uuOMO0tPTGTNmDLt37yY2Npb58+eTlpbGnDlzyM7O9lqboaGhLFq0iHnz5pGWlobD4eDBBx8kNDSUV155hRtvvJEJEyaQnJzsvuYHP/gBNTU1pKenM2LECH7wgx9cdN/c3Fy+9a1vXXQ8MzOT2267jYyMDObOneseNgR46623eO2117j66qtJTU295OKDtWvXkpGRwciRI1myZAmPPfZYo9fj4+MZP348I0aMYOHChQD07NmTYcOGcf/99zd73/79+wP1iRrAhAkTiI2NJS4uDoAXX3yR3Nxc0tPTGT58OL/97W8vuscLL7zA888/z+jRozlx4oR7OLslCxYsYNasWe5FAp547bXXWLBgAWPHjsVa61E7IiLSuZjOPGQyatQom5ub2+jYrl27GDZsmI8iEn9UXl5OWloaX3zxRYcmM+Xl5YSFhWGMYfHixbz99tutXu3qidLSUvcK0WeeeYYTJ05ctJoX9L0gIuJvjDGbrLWjPDlXc9CkS/vwww954IEH+M53vtPhPU2bNm3i0UcfxVpLbGyse76bt61cuZKf/exn1NbWkpyczBtvvNEh7YiIdHlOZ/3c84jEyz6CdinqQRPpovS9ICLSgstYxaFBa3rQNAdNREREup+mqjj4ESVoIiIi0vU5nVBaAA0jhz6u4nApmoMmIiIiXVtzw5n3rvDbOWjqQRMREZGurZnhzMLTp9m05whnzp71cYAXU4LWARpKIBw/fpxbb73Vx9G03dq1a92V9Ntzjredvwm5NyxfvpxnnnkGgHfeeafRlk4d6fx2m9PS+/vCCy9QXl7eEaGJiHRuHgxn1tTU8N57K8jN3cR7763A6XT6NuYLKEHrQH369PHqDgBN8WTLIGnZ7Nmz+e53vwtc3gTt/HbbQgmaiEgTGoYznx8Gb9xY/7mPi9K3hRK0DpSfn8+IESMAeOONN/j617/OzJkzGTRoEI8//rj7vNWrVzN27FgyMzOZN28epaWlAPzkJz8hOzubESNGsGDBAvc2S1OmTOGJJ55g8uTJFxUoffLJJ7n33nuZPn06/fv3Z+nSpTz++OOkpaUxc+ZMampqAPjHP/7ByJEjSUtL44EHHnBvUv7+++8zdOhQJkyYwNKlS933LSsr44EHHiA7O5uRI0e2qgBrfn4+w4YNY/78+aSmpjJ9+nQqKiqA+i2TxowZQ3p6Orfccgtnm+hmPnjwIGPHjiU7O/uiHQyeffZZsrOzSU9P50c/+tEl23vxxRcZPnw46enp3H777e6vzaOPPsonn3zC8uXLWbhwIRkZGezfv5/MzEx3W/v27SMrK6tR+wUFBe5jW7ZswRjj3kR+4MCBlJeXU1hYyNy5c8nOziY7O5sNGzY0ahdg//79jBkzhuzsbH74wx826iUsLS3l1ltvZejQodx1111Ya3nxxRc5fvw4U6dObdUuBCIiXV5zqzMdjvq9tl3JWVBQEDfd9DVGjcrippu+hqODS2y0ln9F4yNO6+RUxakO34g6Ly+PP//5z2zbto0///nPHDlyhFOnTvHUU0/x4Ycf8sUXXzBq1Cief/55AB599FFycnLYvn07FRUVrFixwn2voqIiPv74Y/7zP//zonb279/PypUreffdd7n77ruZOnUq27ZtIywsjJUrV1JZWcl9993njqW2tpbf/OY3VFZWMn/+fN577z3Wr1/PV1995b7n008/zbXXXktOTg5r1qxh4cKFlJWVNWq3ua2eoD65eeSRR9ixYwexsbHuPSu/8Y1v8POf/5ytW7eSlpbGj3/844uufeyxx3jooYfIycmhV69e7uOrV69m3759fP755+Tl5bFp0ybWrVvXYnvPPPMMmzdvZuvWrRdt1zRu3Dhmz57Ns88+S15eHgMHDiQmJsa97+aiRYu47777Gl2TlJREZWUl586dY/369YwaNcq96XpSUhLh4eE89thj/Md//Ac5OTksWbKkyffoscce47HHHiMnJ4c+ffo0em3z5s288MIL7Ny5kwMHDrBhwwa+/e1v06dPH9asWcOaNWuafM9FRLqFdqzOTExMJCsrix49elymYD3X7RM0p3XywAcPMO0v07j/g/tx2o4bg77uuuuIiYkhNDSU4cOHc+jQITZu3MjOnTsZP348GRkZ/OEPf+DQoUMArFmzhmuuuYa0tDQ++ugjduzY4b7Xbbfd1mw7s2bNIigoiLS0NOrq6pg5cyYAaWlp5Ofns2fPHlJSUhg8eDAA9957L+vWrWP37t2kpKQwaNAgjDHcfffd7nuuXr2aZ555hoyMDKZMmUJlZaW7p6jBqFGjePXVV5uMKSUlhYyMDACysrLIz8+nuLiYoqIiJk+e3CiOC23YsIE77rgDgHvuuadRTKtXr2bkyJFkZmaye/du9u3b12x7AOnp6dx11128+eabBAZeehHzt771LRYtWkRdXR1//vOfufPOOy86Z9y4cWzYsIF169bxxBNPsG7dOtavX+/ec/TDDz/k0UcfJSMjg9mzZ3Pu3LmLNkj/9NNPmTdvHsBFbYwePZq+ffvicDjIyMhwP6V+0FIAACAASURBVIuISLfXRYYzm9Lty2ycqTxDXkEedbaOvII8zlSeISEsoUPaCgkJcX8cEBBAbW0t1lquv/563n777UbnVlZW8vDDD5Obm0u/fv148sknqaysdL8eERFxyXYcDgdBQUEY1z9Oh8PhbrM5ppl/yNZalixZwpAhQxodP3nyZLP3aiomqH/2hiFHTzUVl7WW733ve/zbv/1bo+P5+fnNtrdy5UrWrVvH8uXL+elPf9oo6W3K3Llz+fGPf8y1115LVlYW8fHxF50zceJEd6/ZzTffzM9//nOMMe7J/U6nk08//ZSwsLBWPXODpv7diIgITQ9nRib9azizE+v2PWjxofFkJGUQYALISMogPvTiH8AdacyYMWzYsIEvv/wSqN9we+/eve5kLCEhgdLSUq8uNhg6dCj5+fnuNv/4xz8yefJkhg4dysGDB9m/fz9Ao6RxxowZvPTSS+7kbvPmze2OIyYmhri4ONavX98ojguNHz+exYsXA/DWW281iun11193z9k7duwYBQUFzbbndDo5cuQIU6dO5Re/+AVFRUXuaxtERUU16t0KDQ1lxowZPPTQQ9x///1N3nfSpEm8+eabDBo0CIfDQY8ePVi1ahXjx48HYPr06bz88svu8xuGTM83ZswY9zBsw7NeyoWxioh0eZ2s2Gx7dPsEzRjD6zNe58N5H7JoxqJme5A6SmJiIm+88QZ33HEH6enpjBkzht27dxMbG8v8+fNJS0tjzpw5ZGdne63N0NBQFi1axLx580hLS8PhcPDggw8SGhrKK6+8wo033siECRNITk52X/ODH/yAmpoa0tPTGTFixEWT9aHlOWjN+cMf/sDChQtJT08nLy+PH/7whxed88tf/pJf/epXZGdnU1xc7D4+ffp07rzzTsaOHUtaWhq33npriwlLXV0dd999N2lpaYwcOZL/+I//IDY2ttE5t99+O88++ywjR450J6p33XUXxhimT5/e5H379+8P1CdqABMmTCA2Npa4uDigfmFCbm4u6enpDB8+/KK5b1C/IvP5559n9OjRnDhxwqON3RcsWMCsWbO0SEBEuocuPJzZFG2WLnIJzz33HMXFxfz0pz/tsDbKy8sJCwvDGMPixYt5++23W7VStin6XhCRLqW0oD45c9bW95h9Z1enG8ZszWbp3X4OmkhLbrnlFvbv389HH33Uoe1s2rSJRx99FGstsbGxvP766x3anohIp9MwnNmwXVMXGs5sihI0kRYsW7bssrQzceJEtmzZclnaEhHpFJzOxvtkNgxn+unemd7W7eegiYiIiJ9par4ZXFRstivrkglaZ55XJ+IN+h4QkU6tud0AupEul6CFhoZy+vRp/YCSbstay+nTpwkNDfV1KCIinulG5TM81eXmoPXt25ejR49SWFjo61BEfCY0NJS+ffv6OgwRkUtrGM5smPx/74r6ocxuNN+sKX6ToBlj+gH/A/QCnMAr1tpftnzVxYKCgkhJSfF2eCIiItIRuvBuAO3hT0OctcB/WmuHAWOAR4wxw30ck4iISIf56quv2Lw5j3Pnzvk6lMtHw5ke8ZseNGvtCeCE6+MSY8wu4Apgp08DExER6QBlZWUsX76Cujone/fu47bb5vk6pI6n4UyP+VMPmpsxpj8wEvisidcWGGNyjTG5mmcmIiKdXf0Wg91kYVtzqzO7UfkMT/ldgmaMiQSWAP9urb2oz9da+4q1dpS1dlRiorpBRUSkc4qIiOCmm24kOzuLmTNn+DqcjqHhzDbzmyFOAGNMEPXJ2VvW2qW+jkdERKQj9e7dm969e/s6jI6h4cx28ZseNFPfx/sasMta+7yv4xEREZF20HBmu/hNggaMB+4BrjXG5Ln+3ODroERERMQDGs70Kr8Z4rTW/hNQOi0iItLZaDjT6/ypB01EROQiNTU1HD58mOLiYl+HIs3RcKbXKUETERG/9tFHa1i+fAVLliylvLzc1+G0ibWWysrKrrtPtIYzvc5vhjhFRESacvr0aSIjIygvL6eyspLw8HBfh9Rqa9d8zK7dexgyZDDXXjvFVfusk3I6Lx62NEbDmV6mHjQREfFr06ZdR1JSEhMmTKBHjx6+DqfVqqur2b1nL3369GHPnr1UVVX5OqS2a5hr9vwweOPG+s8baDjTq9SDJiIifi0pKYkbbpjl6zDaLDg4mBEjUtm+fQepqcMJDQ31dUht19zG5uJ1StBERETOc+LECcrLK7jyyn4EBQV55Z4TJ45nzJjRXrvfZXPhcGbDXLOG1Zqaa9ZhlKCJiIi4FBYWsmzZcmpr68jKymD8+HFeu3enTM5UOsNnNAdNRETEpbq6GqfTSXBwIOXlFb4Ox7dUOsOnlKCJiIi49OnTh0mTJpKaOpyxY6/xdTiXl3YC8Csa4hQREXExxpCePsLXYVx+Gs70O+pBExER6e40nOl3lKCJiIh0NxrO9Hsa4hQREelONJzZKagHTUREpDvRcGanoARNRESkO9FwZqegIU4REZGu7MLdALSxeaegHjQREZGuqrnNzTWc6feUoImIiHRVzc03E7+nBE1ERKSrUPmMLkNz0ERERLoClc/oUtSDJiIi0hWofEaXogRNRESkM9JwZrs5rZNTFaewDe+hH9EQp4iISGfjx8OZNTU1HD58mIiICHr16uWTGDzhtE4e+OAB8gryyEjK4PUZr+Mw/tNv5T+RiIiIiGf8eDhz48bPWLnybyxb9g6nTvnPqtELe8vOVJ4hryCPOltHXkEeZyrP+DjCxpSgiYiI+LtONJxZVlZGcHAQdXVOqqurfR0O8K/esml/mcb9H9yP0zqJD40nIymDABNARlIG8aHxvg6zEQ1xioiI+DM/Hs5syvjx4wgLCyMuLo7evXv7JAandXKm8gzxofEYY5rsLUsIS+DV619j/5mTDIrvhfGj9xCUoImIiPi3poYzI5P+NZzpZ6Kiopg8eZLP2m9qbllDb1nDsfjQeJxOy12vfs6mQ2fJSo7j7fljcDj8J0lTgiYiIuJPLtw7s2E4s6EHzY+GM/2Rp71lp0qr2HToLLVOy6ZDZzldVk1iVIivw3dTgiYiIuIvOtlwpj+4cDjT096yhMhgspLj3McSIoN9/SiNKEETERHxF51sONPXmiuV8fqM1xslbc31lr09fwyny6pJiAz2uzloWsUpIiLiL/x4daY/8LhUhjXY2ij3dQ29ZYEO06i3zOEwJEaF+F1yBupBExER8Z0L55sZo+HMZrRm8v8dv9940eR/f+4ta4oSNBER6fbOni3i5MkC+vTpRXR09OVptLn5ZhrOBNpeKqO54cyG3rLOQkOcIiLSrdXU1LB8+SrWfLSeFSs+wOl0Xp6Gm9sNQDwuLNsw+f/G/87jjt9/htNpmx3O7GzUgyYiIt2a0+mkurqG0NAQqqo6qPL9hUOZoPIZLWhvb1lnG85sihI0ERHp1kJCQpg163oOHsxn8OCrcDi8PLjU3FCm5pu5ebtURmcbzmyKEjQREen2+vbtQ9++fTrm5s2VzgDNN6P5UhndqbesKZqDJiIi4k2daGNzX/CkVEZr5pb5c6mM9lAPmoiIyCVYazl8+Ch1dU769+/X/DCodgJoUbOlMhIzyCv813DmqdLqbtVb1hQlaCIiIpdw4MAh3v/bh1gLU6+dQGrq0KZP1E4AjXhSKqNHSDzlh+dTevQo5RX9sJYuPbfMU0rQRES6qJqaGgICArw/6b0bqq2pwWktDmMar/TUxubN8rSw7KnSar44VEytM5IvDhV1y96ypihBExHpgvbu/ZI1a9aTmBjPjTfOICSka/Y6WGvZ/+VBSsvKGTr0KkJDQzuknYFXpTC+vIK6ulpGjHD1nmk4s5G2FpZVb1nTlKCJiHRB27buICoqkhMnTnLq1GmuuKKDVij62PHjX7H6gzVYYzh3roRJk8Z67d5Op5O1azdw8MBhJk4aQ2ZmeuMTNJzp1pptmC4sldEZt2G6HNTvLSLSBaWOGEbJuRKSkhKJj+/h63Da5fTpM7z77vts+Odn1NXVNXrt/B/m3h7KPXu2mL17DxATE8Xnn2/W6swWNNVbZozh1etf48+zVvH69NcxxnC67OLJ/9B1V2K2h3rQRES6oKFDB5OSkkxQUFCnn4P22cZNnDlzlmPHjpPcv1+jemW9e/dk5g3TKCsrY/DggV5tNyoqgoT4Hpw6dZqRGcM1nOly4VAm0O7CsnIxJWgiIl2U0+nkvfc+oORcKdNnTCUpKcHXIbVJYlIChw4dJSQkhMjIiEavGWMYMCC5Q9oNDg7m5jkzqaioJMqUw981nNlcUdmG3rLuXFjW2zr3r1UiItKs48dPcuzYV9TV1bF16w5fh9NmWVlXc8vXb2TevNnExsZc1raDgoKIjo7CRCZ1y+FMT4rKAios2wHUgyYi0kXFx8cRHh5GZWUlKf2v9HU4beZwOOjV6zL3Ul1YPqMb7pvpaVFZoMm5Zeotax8laCIiXVRsbAy33z6HmppaoqIifR1O59Fc+YwuPpzZ1qKyxqiwbEdQgiYi0oWFhobSQaXBuq6WNjfvolqzBVNTRWWNUakMb9McNBER6d66YfkMT+aWWUt9b9m+71F+aEGjLZgunFcGmlvmbepBExGR7qsb7gagLZg6ByVoIiLSffnZbgCFhYWUlJTSt+8VBAd3TI0wbcHUOShBExGR7sOPNzcvLi5m6dJ3qa6uITV1GNdeO8Ur971w8r+2YOoclKCJiHRhTqeTQ/lHcTotKQP6dZpdBQ4ePMLhQ8cYnjqYxEQvbVXl58OZVVVV1NbWERoaSklJiVfu2VxhWU+Lyqq3zHc6x3eqiIi0ycEDR3j/b+tY/cF6du/e7+twPFJaWsY//v5PDuUf5e8frPPejZsazoR/DWcag7X2ov0+nU4nRw4fp+DkKe/F0oTExEQmT5rAwIEpTJ48sU338GTyf2uKyorvqAdNRKQLq62tra+ziqGutu7SF/iBwMBAgoIDqaiopFfvdswDa+VwZkVFJe+vWktxcQnTpk+gb9/eAGzdspONGzcT4HAw++bp9OzVMcOgxhhGpKW2+frWlMpQUVn/pwRNRKQLG3hVMtXVNdTVORk6zLubiXeU0NAQbpp9PWfOFNGnT8+23aQNw5kFBacpPHWWqIgIdmzb607QSkrKCAwIpKa2lorKyvY+nte0tbCsJv93DkrQRES6sMDAQNLSh/o6jFbr0SOWHj1i236DNqzOjI+PIzo6grLSCq4ZnOE+PjJzBHV1TiIiw+nXr0/bY/Ki9haWVW+Z/1OCJiIinZ8XVmdGRoZz67wbXBP1Q847HsGUqWM7MvpLUm9Z96METUSkizl+7CSHD53gqkHJJCTG+TqcJhUXl7ApdztxsdFcPXJY+1aXenF1ZmBgIIGB/vWjUb1l3ZN//SsUEZE2czqdVFZW8eEHn+BwODh44Ci33XmDX5bWyP1sK4cPH+fLmhqSesZzRd9ebb+ZnxWb9Tb1lnVPStBERLqAc8WlrP7bBqoqq6msrCYwMICY8FC/7TGJiomktraGwMBAwsLauZu7F4vNfrnvENu27mHI0BSGpw5qX1xt5ElhWfWWdX1+laAZY14HvgYUWGtH+DoeERFPWWspOHkKR0CA9wqrtsKxoycpLSknMDCAqwYl07dfT3r3SfLbH9JZo0bQu08S4WGh9Ihv5WKAC+ebGeOVYrN1dXWsX5dDdHQEGzdsJmVAv/Ynj63kaWFZ9ZZ1fX6VoAFvAC8D/+PjOEREWmXf3gOs+ehTjDFMnzmZiPAw4nrEXLb5TD17JRASEkRdnZPhIwYSHR1JWPjlTS48UVZWwaH8Y/SIj6Vfv96tv0Fz8828MJzpcDhISornxPGT9IiPIzg4qMnzqqqqCAoK8srQsaeT/7UNU/fjVwmatXadMaa/r+MQEWmtouISHAEOqqtrWLn8H4SEhJDc/wqun9G2ivCt1SM+hrm3z8DpdPLZhq0c3H+MAVf1Y+LUzBZ/eBcWnGFr3l76XJHIsNSOr5P2z49zOHrkKxwBDubOm0l0TGTrbtDcfDMvqE+uJ3D6VBFxPWIICAi46JwtW3bw2cbN9OnTk5mzprYrAW9vYVn1lnVt/jdzVESkE0pNHcyAAVcyeFAKgYGB9IiP5eiRr3A6nZcthvoeH8PBA8fo1Tueg/uPUFNT2+I169fmUnDyFJ9uyKPo7LkOj7GuzokjwIG1XPq9cTqhtABc2xYB/5pv5ghscr7ZqcKzHDt6ss3ve1BQEL16JxIS0vRWR9u27iYhoQfHjn5FUZHn79eFWzBB05P/raV+8v++71F+aEGjyf/ahql78Sj1N/W/fvW11h7p4Hg8iWUBsADgyiuv9HE0IiL1IiLCuW7aBADyvtjJ3r0HmDBp1GVfQRkaGszw1AHs3nGQ1PRBzQ7TNYiJjSL/4DFCQ0MIbiYp8aaJk0exd08+CYlxxMZFN39ic0OZLcw3Kyw4w4p3P8bWOckem0ba1YO9Hv/VGcPZ+Okm+vbrTWxsC/Gf/yjNzCtTqQxpiUcJmrXWGmPeAbI6OB5PYnkFeAVg1KhR9hKni4hcdhmZw8nIHO6z9kePSydj1DCOHjrJ4fwT9Evu1ewP9YlTRjFoSH9iY6MIvwxz1qKiI8nK9mANWEtDmRfMNzt9qohdOw5gceKscxIYGMC54tIOiT8tbRhDhgwkKCio2ffUk3llCWEJ/+otU6kMaUJrBs83GmOyrbU5HRaNiIh4xZ6d+eR+uh0LTL9xHH2vbHpPy+DgIK5MbsNkfW9rx04A69bkUFFeRXlFJYMGJWMMXD2y47a3Cg5uvqfR03llAKfL1FsmzWtNgjYV+DdjzCGgDDDUd66leysYY8zbwBQgwRhzFPiRtfY1b91fRKS7qK2pwxgH2PpepY5UXV1DUFBg25OJ84YznX1HU3zz20THRhHgYemM8PAwzp4+R1hoKNlj0y5LT2BzPC0qa4x6y6RlrUnQZnVYFC7W2js6ug0REX9kraXgqzMYY0jq9a86auVllZwrLiU+MZagIM//yx6ePgDjqO/t6ZvcdO+ZN+zafoCcjdvo2TOea2eOaVWMbucPZx7+jA/+9116Dx7O5OuyPVqhOfm6bE4cKyQ2LvqyJ2dNFpX1cF6ZMSqVIc3z+DvJWnvIGHM10LBmfL21dkvHhCUi0rlUVVVTXlZJTGxkmxYG5O8/zrp/bALg2hmj6de/F1WV1bz/7gZKS8tJHtCHydM8nwYcEhJMRlbHDfM12LntS+J6RHPi+CnOFdUnkpfUzHCmPfIZBYEDiex5JYcPnsDpdHr0XoaGhpAysK8XnqZ1mhrOxBqP55WBesukeR4naMaYx4D5wFLXoTeNMa9Ya1/qkMhERDqJqqpqFv1uGYfzTzBxahazbmp97bOysor6D6yltLT+46rKaspKK4iKDOd0QZE3Q/aaYSMGkvvZdnr3SSA61oOaZi1tbF5WyPFdpynbc4jR49P9bg9RTyb/29oozSsTr2hNX/Q3gWustWUAxpifA58CStBEpFsrLDjLli/2EBMTyYfvb2TGjeNbnVxcNeRKSs6V4zCGAYOuACA6NpLMMfWrMdMzfbMv5KUMTxvIwMH9CAoK9OyZW9jY3ET1JHN0TzJH+24FbHNaM/lf88rEG1qToBmg7rzP61zHRES6tcSkOJKTe3P8WCGZo4e1qecnNDSYsRMvXnOVmj6Q1PT2V/ivra1j66a9lJVUkDF6KFHR4e2+Z4PmiroC7Vqd6UuebsF04XCmtmASb2lNgrYI+MwYs8z1+RxAKyxFxK8VF5dQV1dHjx6t3JC7FUJCgnn0v+7izOliEnte/o3SPXHiaCHbN39JYFAgAYEBjJtydcc32tJwZjs3Nm8tay3WWo+S59ZswdTUcKZ6y8QbWrNI4HljzFpgAvU9Z/dbazd3VGAiIu118qtCVrz3d+rqnFx3/UQGDkzusLYio8KJjPJer1RznE4ntbVOgoNbt1oyPCKUgMAAamtqiYmL6KDoLtDCcKa39s+8FKfTycdrPmfd2s8ICg5m6nXXMHZcZuNz2thb1tLkf5H2au1WT18AX3RsSCIi3lFUfI6amlqCggIpLDjV5gStqqqanE+2U1FRyZgJVxMVfZkSnAtUlFfx0YocSs+VM37a1fTt73n5jPjEWGbNGU9VVQ09e1+mXj4/GM4sOnuOfXsPcvpUMWHhIaxb8zkl50oZmZlKYlJ8u3vLNJwpHcWjiRK2fnfXdzo4FhERr7ryyitIGZBMUs8Ehg1vvC9jXV0d+/cd5uCBo5fcWHvdPzbxpz+s4vNPtrNj65cdGXKLzhQWU1xURmh4CF/uOtrq63skxND7ioSOWx154ebmDftmfmcX3Lfysg1nni8qOoJevRIJCw8BYyg8dZqTJ0+xevV6oP0bljcMZyo5E2/TVk8i0mWFhYUyY+bkJl/bu/sg6z/ehAGmzRxPyoCm62g5nU6+3HOY6Khwjh05SUSE76rU90iMIbZHJCXF5WSNu/x1v1rU3Hyzyzic2ZSgoCBuuGkKU669hqrqGlat/Aeny0/Tv+eVAOotE7/lV1s9iYhcLjU1dTiMwWktdbV1zZ7ncDgYcfUgHA5DfHwsw9OvuoxRNhYWHsLMr4+lrs7Ztor9HqqtraO6qobw1iSjLW1u7mOBgYFEx0ThtE7+nrCc7We2kR6Szmx7fasKy2ryv1xOrZmD9iBwqGPDEZGuwlrr170Mw1IHYrEEOByXrEI/fkoG6ZmDiYwKIyAg4DJF2DSHw+G1Icqj+QXs3X6YlMF9SBncB6gvjvvRilyKz5aSMXowQ6/u3/TFnaB8RlOT/7ef2UadrWPr6a0qLCt+zaMEzVprjTH/ba31fJ8REem29u79ko/X/pMrk/sxbdoUnyc1TQkKCuTqDM+2QnI4HMR4UiW/E6mrc/LpR9sIDQ/m84930OfKBEJCgykpLqfoTAkxcZEc3He86QStA8tnFBeV8vmGbUREhZE9dkSbewqbmvwfF9yDkNoBlDn2E1I3gLjgHjhCjXrLxC9pDpqIeF1uzmZiYqI5sD+fM5lnSUxM8HVIcgGHwxDbI4rTJ4uIiosgILA+iY7pEUnvvgkUfnWWayanNn1xK8pnWGs5eeIMAD1796Cuzsnn/9zG8SOF9L+qD4OHJTfaImp73j4KT57h2JEa+vbryZUpvT16Hk+3YTr95QPUmVIqbRRnymvUWyZ+q7Vz0B40xuSjOWgi0oIhQ64iJ3czCYk9iImJ9nU4nVZtTS3Fp8uIigsnOCTIq/c2xjBpZgZnT5UQ0yOSQFeCFhQUyJQbshpvVN6O4czDB07w8d/rqzNNvj6ToJAg9u06wp6dB8nL3cPI0UO5+bap7vZ7JMSwb89hAoMCiYgM8+hZWrcNUzybDjnUWyZ+rzUJ2qwOi0JEupSsUSMZPOQqwsLCCAzsuMnsXZm1lk8/2EbBsbPEJUQxeU4WAQHeLY8REhpMr77xTb7WKDlrx3BmWVkVxhistZSXV9E3MZaQsGAqyqu4MqUXNdW1rjIn9Qna0NQUEpLiCA4KJCYuyqPn0DZM0hW15n/Ow8BdwABr7U+MMVcCvdDCARFpQlSUZz9cu4qKsioqSiuJTYzyyiR+p9Ny6qtzRMdFUHS6lNrqWgLCfFCp/rzhTOehjRz8Io+BozI9Lp8xcEhfykrKARgwuC8hIUHMnjeZrDHDOHOqmJSrriA4+F+9g8YYEpPiWrznhcOZ2oZJuqLWJGi/BpzAtcBPgBJgCZDdAXGJiHQaFWVVfLQ0l8ryKgal9SN93KB23zMgwEHmpCHs3XyI9LEDCWllcmatpehUKaHhwYRFtCIhaWI4syopk8ATuXxlBpKbe4reQysJj/SsBEdISBDZ4xvPZQuPCGXQ0Ctb8zj/Cq+J4czWlMoQ6Sxak6BdY63NNMZsBrDWnjXG6F+8iHR7FaWVVJRXERERQuGJIq/dN3lwL5IH92rTtTtzD7Lni0OEhAcz9ZYszxKq84YznVdkUzb3r0TFRvJRjyc5cDCP/GO1ZF/hICgkEGst+3YeofhMCUPTU4iK8d4+pKdPFbF+bQ5RMZEMH51Cr+ie7uHI5ib/q1SGdDWt6YevMcYEABbAGJNIfY+aiEi3FpsYxeC0fgSHBZM+1vuFbIsKS9i2YR+Fx856fE3hsbOERoRQWV5FeUmlZxc1Wp35OR+9/T57tx0mqU8PYpMHkn7NYK6/ZTRBQYGcLigmd/0u8ved4ItPdrXxyZq2NW83pWXlPHvkKWa9O5P7P7gfp63/cdNQKsNaByG19aUytA2TdEWt6UF7EVgGJBljngZuBb7fIVGJiHQiDofDK8OaTbHW8vkH26mrc3J491dMu/Maj4Y7R1wzkE/f30rJ6TK+3HqU6B4RF68EbWZ1pj28kVNBQwiM6cWxgwVM/lomyVf1JiIqlDDX7gJBQYEEBDmorq4lPMKz1ZYtOX9eWe8+iWw/sIcTwUdxWqe7pywhLIEz5TV+WSrj4MGDfPnlfkaMSKV3b89Kg4i0xOMEzVr7ljFmE3Ad9SU25lhrvftrk4iIXCQoOJDKonKCQ4MwDs+Sj4TesfQd2BMsHNtfQN+rkug78LxJ/S2szqwt/op9nxfgLCxheNYAHA4HCb1iG90/pkck024aTVlpBb37ta/OXVPzyhKS4vnj8ncpP6+oLDTMLfOvUhkVFRWsXv13QkJCOHz4CPfff2/HbUgv3Uar1r9ba3cDuzsoFhGRdis9V8GOnP1ERIczLLO/10tTtIe1lt2fHeDwzhMMGpXMgPR+F51TU1XD/i1HCAgMYEB6XwICA7hmVhqFx84SlxTdqnpocUnRHNx5nKCQQCKjL+jlaqHYbFBcH8bP6HPJ+8cnxRCfFONxPA08KiobEsWZJnrKjPG/UhmBgYGEhoZSWlpGQkK8X8QknZ8KFIlIl7Jz00GOHTxFbU0t8T2j6X2l/+xiUFVezcFtx4jtGc2eNjzrUQAAIABJREFUnHySU6+4KIHM33Gc3Z/nU1laSUBQAAPS+hIeFUry0NYPm/Uf2pvYhCiCggOIuDBB89Hema3bguninjLwv8KyQUFB3HLLHAoKCujdu7cSNPEKJWgi0qVERodRU11DYGAAob6oG9aC4LAgEvrEUnjsLL1SEpvs3QsMCeDQjmNUllYTFRdO/9Q+7Roui01wbaN04XwzY7yyd2ZrddUtmKKjo4mO1q4Z4j1K0ESkSxk6Mpn4njEEhwQSl+j5D8ziUyU4a53E9ozusGTA4XCQPnUony/fwpnDpznxZQG9r2pc7LXPwCT6DEgkNCKEgKAAnHWWdk9nam6+mYfFZtvV9AXDma3pLfO3njKRy+mSCZoxpgRXaY0LX6J+L079yiAizSo4cYYvPtlNQs9YRo4d2uFzwhwOBz379mjVNWdOFPP5yq0465ykTRpMv2FNDydWlVVx8uApInqEE9+n5Wr3zakorqCytJLwmDAO7zh2UYIWEhrMuFsyObrrBFeO6ENgUECb2mmkuflmHayp4Ux/XYUp4m8u+T+ltTbKWhvdxJ8oJWciXd+54lIO7DtKqWu7ngtVVVZzYM8xCr9qukbXls/2UV1Vw74dRzh76lxHhtpmVeVVOGudBAYGUFZc0ex5O9bvY89n+8n7YAdlxU2/H5cSERdOdEIklSWV9G1mXtkVVyVxzU1X0zulDfPCnE4oLQB73u/VDfPNHIEdOt/MaZ2cqjiFdbXd1HBmwyrMABtNVnIP1SwTaUarhjiNMXHAIMBdktpau87bQYmIf6itreODFZ9QWlpOTEwkc/7PtTgcDpxOJ3t3HKairIqis6X8/+y9eXRc6Xnm9/u+u9W+AVXYF4Lgvm/NZpPdYkutrSVLlmRNYmWc8ViSc5w445wkx/aZ/DOTnEzGOcfJiSfLxBkpXmJZHmu8SLIWa2211N1sNvcNXABi32sBCrXfe7/8UWiCaIAEQBLt7tb9ncNDoKruvV8BB1VPve/7Pc/Y0DSaJvnoZ04SS4SWnSPZEuf6xbsEgta644HepDBf4ubZQYJRP9sOd26adUFjR4KuvW3UKjU6dz9kGF+puoBQrN5XWAemz+CpTxzAqbkY1hOeMnlQK/NtmDdb7/D/o+zCtG2bcrlCKBR84uv28Hinsu5XByHEF4DfAtqBi8DTwKvUszk9PDzeg7iuS7VSJeD3US5Xcd36PNTEaJo3fnoDqUkKC0XCkQCuo3CdleEi+4/10rGlCX/QIhDcmEDrO3uXycE0dtUh3hQh1bGx1uV6MUyd3Se3cvu1AV7/q3N0Hehky6GVWZG7n93OxJ0pwg0hgrHVo42cmoPU5UOFh5QSaT1ZsWnXHLTyLOJBrcwnPG+2LquMBwz/b2S2rFqt8o2vf5fZmQzHjh/i8OH9T+w5eHi8k9nIK8RvUQ9GH1JKPQ8cAmY2ZVUeHh7vCEzT4P0fPk5HdzMf+MhxdL0+D2UYGkIIXMdh/9Ft7NjbzYnn95NYZShfSklDKrphcQYQjPixqw6aITccFr5RqqUa4zfGiSQjDF0cwrGdFY/xhSy2HOwk0hgiO5bFrtjL7p+8NcGrf/4qV797Bae2dHxpvkRmJLPstkdF3d+6XGxnjvRN8L0/fZXXfjSB2/YUSupUm45QUuHHvt5qvFkte+EvX7gXw/TgCKaV7cyNMDeXZ2Y2Q0NjnL4btzfh2Xh4vDPZSH29rJQqCyEQQlhKqT4hxI5NW5mHh8c7gpa2JC1ty2eWUi0JPvALx6iUa7R1Je8JtyfNtsNdJJqjmD4Df9CklC/jD68t9Iq5InbNJtwYXvdMk+HTaehIMDuaobm3Ce0Bz8mxHa5+5zLFuRKRpgj7PrL/3jXGro4RiAbITc5RzBUIJyNUihUu/t1FaqUayS1Jdj2/a/0/gLeQnZzjwveuE4wGOPTCDsy/+DSMnCHs201wy++TmZpn7hf+nJELVxkctPH/7SWe+8zhxxa3j1Mte9zh/3g8Snd3B6PD4zx3+sRjPQ8Pj3cTGxFoo0KIGPA3wPeEEFlgfHOW5eHh8U6nua1h06+haZJUR4KFbIHXvnYOx3bYfXoHTQ8Zns/P5Ln4rfqOzG0ne2ndsT6DVyklez6wi2qxhhV8sKBxag7l+TL+sJ9CegH15lwa0LKzlYHX+4kkI/ij9RaoXbGxyzZGwKSQe7SNBW8yfG0cTZPkpuaZGxokudjOjJauUZoaJ9beRSgeZHbOJBg1KC2UqZZqjyXQVpsts+wARnULtj6w6VYZuq7zkY+8H9d1vfgkj58rNpLF+anFL/+FEOJHQBT49qasysPDw+M+CpkC1XIN02+QHcutEGiFTIG5yRzx9gSlhTJ2zcGwNBYyhQ1dR0qJL/RwMWH6TXqe6WXmzhTdT21ZJhpad7eS7Emimdq924PxIFuPbyU7nqPz4Mpop3XjujQ3K6buVrFCJsHWrnqw+dBrZIxdmPFmjn10L4ZlcOB927n1xhBdu1sIxVeflVsvq1XLvv/tG6Tv/BpKK1B6m6wyPHHm8fPGRjYJWMBngO77jjsI/PdPflkeHh4eS8RaYsRbYlRLVdre4lFmV22ufvcKdtVm/Po4+z9+gNYdTVSKVTr2tG3oOtN940zfGqdpVxvJbcuv49QctEVPsuZtzTRva171HIZvZVZm6+5WWnevnW35QBZ3ZzaNnOEDrcdQn/46umWi/sk3eOnL30aLNFGZL+NUHbAMGlpinPiF2NrnXe1SaxjLxow4RrVCd0BjsBjmUGfMM5b18NgENtLi/FtgDjgHVDZnOR4eHu9lnJrD4MVhXNuh+1DXqmJmNayAyZGPP2D3nqrvNpWaxHUcdFNnx7Nrj8dW8iVqpSrBxjBCSuxKjZE3+vFF/Iy83k+iO3VPkI2e62f6xigNvS10Ht/29nt13Wc0q42fhVoOrBRCaux84Th3zg2z/akt65rPexiucvm17/waF2cebCybLdmc/vAxWq4PEUzG2b+r3fMu8/DYBDYi0NqVUh/ZtJV4eHi865kZmmX85hStO5tJdq6cUZu+O8PQxWGkJtF95qpWFhtFt3T2fHAvmeE0jT1JhBDMjaZRShFtSyBWaY1V8iVufus8TtUmtbeDtkM9aIZGIBGiMJsnlIog9fpxTs1h+sYooVSM9J0JWg92Y/g2OePzrbmZDwk2b+5O0tz9aMazb62WpYsZzk1dAOFybvIC6WKGxlDDitkyEbZ45n2e3YWHx2ayEYH2ihBin1LqyqatxsPD412LXbW59uObmD6Daz/q49Tnnl4RU2T6TZAC13Wx/Ournq2HSCpCJFW3+MjenWLgpesAdJ3cSeO2lZsEasUKhfQ85XQe5bq0HepBSMn2F/ZRmivijwXvVYU0Q6Oht4X0nQninUl068mtG6A4V8Sp2oTftCh5kNnsEzCaVUrV5/NMfdXhf+WEcEpdSP8QbqkL5YQeyVjWw8Pj8dmIQDsF/KoQ4i71FuebWZzexygPDw+kJvGFfBRyRULxAFJb+Ube0JHg0Iv7UY5LrPXBM1L374zcKPabXmNCPNB3LJiM4FZqKAWqUqWSL2GF/WimTmgVL7fO49toPdiNbhlPVKBkxzL86N/8PeV8mSOfPc6O07senJv5mEaztVqNH333NUrjDnuObyW23b9s+H9ochSjZLGb3+Zi/xiH2zvuzZN5s2UeHm8/GxFoH920VXh4eLxjKM6Xufj966AUB1/YTSDqX9dxUpMc+she8ukFwo3hB+66i7c8fHh94uJdpq+PkNzdQevBLRtef2JLE3a5BkrR2Lv6IL+QktaD3WRuj1GeyZK9PUrTwa1U80WEkNSKZaYu3CHUnCB5oF5d24y2ZnY4TTlXxAr7GLkwWBdoD2lnrgelFLnpPLqhEU7Uo5Hqs2Wf53L6Ej2BbXzx0n/Fh/c+c2/433R6OP+tfpyKw3/dm2LbPz7mVcs8PP6B2YjNxpAQ4gDw7OJNLyulLm3Osjw8PB6Vx6k+AUwNzrKQKSIkjPfP0Ht4/XNiVtDCCj56pcWp2kxdGyGYDDN9bZjUrvYNtxQ1Q6Nlf9eaj+s8uZvydIZAyCLXN4ImBZm+YRAC11WYQR/TF/vRdEl0axt6YO3npVwXp+ase83Nu9tIdMaxc9Nsf+7p+o2PmZs5dGOMMz+9SFhEOPGJg8SbImTKGa5kL+MKlwH7No27w8uG/0sqzHy7QyJgUspXHrlaNnh3jIE7w+zc3UNrW9MjncPDw6POuo1lhBC/BfwZkFr89/8JIf7LzVqYh4fHxpkcSfPNP3qZn37zIrWqvfYBi9hVm5FrY0z2TxNLhdF0iRBg+XWGLw2Tn11Y97lcxyU/maOSL624b2Eqx61vvsHomZur5nZKQyPa0UBhep5IWwOa+YTDxO9DM3XiPa2gQJo6drmKEALlOhh+k2q+SGFkgpmLtxn78XmUu3K99+NUawz+/Xlu//XPyNwaXdcaAmEfH27+Qz4W+ud0Xv7N+vwZLLUzNyjOXOXy21f+G/6V+d/xb7X/lUK+boy7LIbJ3cqhQ3uWxTAd7Urw7OmdNHc0cPT0oyUdlMsVXvrh68xMZ/jh917DXePn5eHh8XA28ur3eeC4UqoAIIT4Peph6f9mMxbm4eGxcW6dH8b0mUyNZshOz5NqX1+4+OClEQYvDoOCQy/u4+Rnj+C6Lle+fYVaucbotTGe+qVj6OsQTKPnB5i5MYbu09n54hGs0JL1w+SFAZyaTeb2BPEtzQRT0WXHCiHoPrWLSr6EuVixKk1nkbqGlVg5G/a4pA73Eu5oxAj6EFJglypITSN1dDuVXIFxodCDPuxSBeUqxEM+0lbmipSzeaxokNydcRLb26nMFylnFwimouj+5VWp9J0JMteu0TtyBqGcleHmj0CmnOFW5SaucBnS7qIn6wJvWbXMDfEX/8/L7N3Xxle+cJxMsXavndm7u/2Rr61pGv6Aj/z8AonGuNce9fB4TDYi0ARw/8Sts3ibh4fHO4S23iSXf3abUCxAZHH+aP0IoB7E7QtayyogruMyeOYOQkHH0S33xNNqFNPzmAGTarGKXa4uE2ihljjTV4fR/SZmaHXPrtpCiamX6hWrYEcTc7dGEFLQ+vwR/Kn4Bp/Tw5GaJNi8JGI7nj9072sj4KP19CEWhiYJb2lFrpE36osFCaRiFGfnaDm2o15R+/4F7FKFQGOELR8+es8+wzHiDJ25jS8UZcHaRajah3iEebOHmcr63B6Sofr53qyWvTEk6bYknW1RBq9PsONw1xMb/jcMnRc//hyzszlSTQ2eQPPweEw2ItD+X+CMEOKvF7//ReBLT35JHh4eb+I4LlOjaUzLoLF5bWf4rXvaaelqxLR0dGP9f97dBzow/SaGTyfRVhdBUkr2fnAP6ZEMTqXK9NURhKZhhiw6Dj94eL/j6DbGzg/Q0NtMIBFadl/T/m6iHY3ofgvjAfmQxYk0TrmK0CT5wXGkLnFrDk7pwf7Ytbk8mTOXkH6LxLH9aL4nIzpCrY2EWhvXfFwtXyR7/S6Rtjjtz+1DM/S6lcd0lvJUlnJmnq4XDiL/5BMwcgbZ/hSBpv+BYqbA2P4/YMepNgg3bailuR5T2TcjmO63yhg9f5ehvklauhqeqNUJQCgcJBTe6AcDDw+P1djIJoH/RQjxEnCS+kftf6qUurBpK/Pw8ODGhbtcfX0ATZe8/5NHaWiKrnlM4AGVqdVQSjFzZ4pqqUrL9pYVzv7BeJBgPMjcRJaZG2MoV+ELr76rs7pQopLN40/G2P6hA6s+RgiBPxF++PqbE+T6DJSrSD21m8LwFNLU8TcnKA7VZ7v87S0IbamilbvUx0L/INIwCHa3E+hYX0D641AYniB/e4jglnYWRmcoT2dx7zr4G2NojTGMgIWuSYxIAMNnYs+MYS7aZ4jR1+n9xRZKtWDdc20dmwoe1VT2Td60ymh8bgc7j3RjBUyklBTyJQZvThBrCNG25dHbqx4eHk+WDU3gKqXOUY968vDweBsoFSpopoZdtaluYOh/vcyNZ7n905sIBHbFpvtYD3alhmbqCCEopvNMXx0m3Jpg94uHUI5LKLVyFsyp2Yx8/xx2qYKvMUrXB48+8prMaIjOj50EpZCGTqgtiVMqM/X175Lvu42/s53EiSOEtm+9d0x1aorK5DRCCIT2ZEK1XdumPD6J5rPQ/H7y12+hh0OEdvaiXEXmjatoQT/ZC9exWppxajZS15DmothyXZI9IXKTFmY0iBZvXWafocdbCa+zYrZatexRTWWFEPjvE/HnX+pjeiILLrzw2aeIvqXq6eHh8Q/DmgJNCPFTpdQpIUSeNwdUFu+iblT75Cd3PTw8ANhzpAchBIGwj6a2Jzt/BSCkePMPGSEFE5cGmbwyTKQtwZbndjP00xu4NZu50Vl2/MIxfJHVq1+q5uBUauA6FAYnsCtVdOvhvmFutYY9N4ceiSDf8ti3zntVpmeoZbO4lQqFK1eQThkjEsJqrls5+Jobwa4hDR0zVl9j8fZtirdu4e/qIrBnzwqxohyHyvg4SIHV0roiEmrhxi2Kt/pBCmQwhFuuUBqdwGxMYCYbMOMRKrM5jGiYxiM7CXU2owd8mJHgvTSA5pEzpJqPoD79dTTLWLd9hqtcZhdmyZ2fpZAuEDmcWFEtS4Yb2Ct/h/P9o49lKit1iesopBTe3JiHxzuINQWaUurU4v8P70t4eHg8cQIhH0efezTbg/UQaY6x8wN7qJZrJLekuPq1VwkmI8yNZagWyviiAeaGZ9D9JtpDZtr0gEXj/i2MfOMn+BsipN+4Rqg9SS2dxYhFCHS1L2tJKqXIvvo6tUwWPRqh4fSpVTMz38SIRrCakzjFAqgIVnMT5eHRewItdvQglfYW9GgELRBAOQ7Fvj6k30f+4nnM9jaM2HKBWxkeZuHS4pTG0WP42juW3a9su2534Tpofj92fgGh60hffaYreeoI1ew8RjSEZpkE21Mo16U0OYtm5zBHziBcG23yHDjzgG/VNIBqoczEhbvolk7zwR6ELu5FMPWoLfzzwG8zdim3VC0rdpGfUiR7BF/94jOPHcF05LmdNHXMEIkFicS9+TEPj3cK625xCiF+Tyn1O2vd5uHh8e5BCEGic2kIPrWng8nLQ0TbE1ghHx0ndpDY2owVDTxwqP9Ngs0Jot3NCE2ycHOAwqUrVMYnCe7oQWgaga4lCwflONhz8+jhEE5+AWU7CPMhAi0WJfXh92MXiuQvXMItlfB1Lxnoan4fgS1duOUSpRuXkL4ARlOK/E9+gLRMSlfOo596/zIRo1wHBAgEuGrFNcO7d6BZFtLvw9fRRi2dRfosjMUqojR0fKkETqGIi0LW5siPLpC71AdS0t58BDl5bs00gKlrQwwN9ROy/QRTUeyUvBfB1M8A6UKGPTv2sXfydzh3Z4QeGebqvz9D7FdOkmiLP/IuTKUUC3MlLL9B755Ht9dYDcdxePknZxgbneTUc0/R1fVkz+/h8fPARmbQPgi8VYx9dJXbPDw81kApxfCtSeazBXr3deB/DPf9J0nL/i5SO9uQhoYQAt2SRDvW3sUIYMUjNB7bS2VuHnvWR/HuMEoBjotbrTL305dxyyXCR59Cj8WIHNpHsX+QyIF9S3NbD0FaFqZlkXj+OVBqWUXuTSp3blAbvYtyHHz7n8LZ1osMBHHLZVBqWVvR19UNgJAaVlvbqtcL7d6x9PyaVoqs0tAw8xcuEe//VxiFW/jj+5hr/V2Urah87E/wR+VD25mucvnd0X/JVfsa2+nhy74vEzaj96wyLHcrz3zyOUKJEF/d28GP/+oNRl7qIz3lcO371zj5K888MFJrLfrOD3LtjbuEon5Of/IIvjUE+EaYnc1ys6+fWDzCmdfOewLNw+MRWM8M2m8A/znQI4S4fN9dYeBnm7UwD4/3Mpmpec7+6AZSCor5Csc/uGddx5UXyuTGc4STYYKb1I56HPf+0JZWgrUklYkAesBHeOdW/B2taBpUMmmEaVEa6Cd06DD+jnb8HRt/435YK1SYJspxQEq0UJjQUyepTYxhdfesOE7oOv6tvQ88l7swh6rVkLEHe3pVJqbQZQUj34fARc9eIXjQh4y34WtOwRobFjLlDNcWruPiclvcpRJxKL/FKqNsmoSFQAg4dnon+ZsTWCEfhu/xUhZGB2YIRf0szJUozJUwLf2Rxd5biURCRKNh5nJ5Dh3eu+pjyuUy+fwCDQ2JJ3ZdD4/3Euv5C/8K8G3gfwJ+977b80qpzKasysPjPY7UJJoQ2LaLYS2vBJULFfpeuYMQgp3P9GIF6pUNpRRXv3eNYq6A4TM5+umjGNbKP2Gn5lBdKGFFAkhN1q00rg1TmM7RdGALgYbN2dejXBfluiycPYOdmUULR4ieeh9C03DyeYRpYs9OIvLjlFQB/4FnEPqTjXKytu5Ei8QQhokebwDAbFlZHXsrbmGOyrVXEbqJtecEbqVM6fUfohwHa8dBzO7t9z3YvTfoH9i2lblsFju2B33+BqLjOIlT73toxexBxrKW00PcTCB94oFWGeHGMM9/8TSzw2lSW5KPJWz2PLWFCz+5SXtPipvXhhj55hQHjm9n5761c0zXwu/38anPfJRCoUQ8vtIaplwu81f/4Rvk5ubYt3c3zz73zGNf08PjvcZ6NgnMAXPAL2/+cjw8fj6IJ8Oc+vhBioUKrd3LW4gj18cZujKKFbCIN0fp3LskMOxqDd0ycGrOqtmQruPS/4PLFGbniXcl6X52N+XsApOX7mL4TcZev822jx5ZdkxxMk322gDB9hSxHY/25uwWi+TP/gy3VMJZKKDsKqW+y1jJBny79mNPDGCaZURAYTR3Ys9O4Rbm0aLri6JaL0LTMZo3XpWzx+6ginmUXcPOTCA0C+XUEJqBu5BbeqDrov7oYzD6OrQ/hfmrf0fyox+CD7+w5u7MjRjLPswqI5KKEFnF6mSjtHYlaf2VJPm5It/8i5/S2BTlytk7awq0SqWK67r4/Q/327MsC8tavXW/sFAgNzdHLBpleGR9uaUeHj9vbCQs/Y+FELH7vo8LIb68Ocvy8Hjvk2yL07W9GeO+lqLrutw9P8iVH9zg0rcuLwsUF0Kw5wN7adqaYvcHdmOuMjNkl6sUZucJJELMjaRRrotmGeiWQa1Ywb9KW3T6tas45QrpS7epLawMOF8PdjaNu7CA1DS0aARnZpLAjp3URu7g5nPUhm4iA0GEXcGdz0GtgDNyFVVafwj7WqjSHG5uDOWs9ItTSuFmR3Fm+le9X8ZS4DqgG2jBGFqiCaNzO1pDE2bP7qXzLEzB4u5MRs5QHbyMW1hYNdzcVS6zpVmUqm9AeNNY1lHOfcayS4HlR7oS96plb1plvB22F4GQj1RzjPT0HD07H15tzKRz/OVXv8VffOWbjI1NPfI1E4k4Bw7sBSE4efLpRz6Ph8d7mY30F/Yrpe59lFRKZYUQhx52gIfHzxPZmXnO/uQ6kXiII8/uxNhA1FK1VOXqD25QyBWZG58j2Rqtd9KyywVMuDFEuPHBRqJGwKJ5byfp/knajm5FSIkZ9NH7kcNUF8oEGldWXnyNUQpjMxhBP/IR5s+UUjjZSZyJO7jxFsLPfRAzEcWZmUJPtiD8QWQ4hjOfxbf7MEaqmcqVH+NmxqhJMHc/t+FrrlhDOY995ZvgVBBNu9B7Tiy73x56A/vMl8GKoh/8NNIXAimRjdsQUkNPdSCf/hiqVkSYBkLX8e06vPI6Zgw3tBVtoR/baKV4vQ9tcJTQsx9CGEuCebVqmVP1b8hYtlaqolyFuckbSDRNcvpjR6mUqmtuVpmeSlMuVzBNg5HhCdramh7pmlJKTp58mpMnH+lwD4+fCzbyaiyFEHGlVBZACJHY4PEeHu9prp0boFiokJnJ07WtmZZ17n4EmJuaJzc1jxUwSXTEqRYrhBtDNHavfg5nMVXgrQP9QghaDm6h5eDyrEwz5McMrR7RlDq+l0p2HiMcQDMN7HyeytgYZiqFkXh4C9Kdz1C5eZ7q0C38vTtQAsxkE0aiEbdcRPqDCCnxH30eZ3oIN30LN1erz545NYS1Mdd6Vcnjjp0FI4hsO4KQi8+/VganCoYfitmVx01eAqFBMY07fgWks/gD09CS2+pf2wXcvr/HQaHteAEt1rZs3gwhkD4/tU/9CZWBi1RzJfRgCFWt4tSq5Oz5B8YwTecmcV8foDf9Ra6VCxzp6FzVWNap2mimTiGd59b3LqMcl62n9xBte7Kt4LeiaXJdEWFtHc3E4hFq1Rrbtj3+rJqHh8eD2YjA+n3gFSHE1xa//yzwPz75JXl4vDtJtsYZG5rB5zcIRQIbOjaYCGIFDGrlGns/sItnP3cCx3Hxh1e+aRbT89z94RUQ0PP+/WtmW66FNHT8qSUBkH/9dZxSifLAAPEPfAD5gDkigMqVV3ArRZzZcYQ/hNlVt6UQmoYWXFqX0A3U5FWEW0PlZzB3Pgu6iYw1r7k+ZZdBOQgjiDt5CZW9i3IdRKgJEe+uPyjUiOw8jMpPo3UcRpXTUM1DsA2hGcj2w6j5KZTuQ7bthYnLKOWg7rM/UwuzKLXYUl6YhUgL/PHH70Uz8U++CVJi9ezC6tmFL5emMngHmWrmCy/95kNjmOw5iTtf4P88FmeuFmf3x06saF+Onb1F5vY48a0tmLHQPbGWvjtNqVAmlAgTagxTypfpe6kPISQ7T+/A9zZatITDQT7z2Y8AeKkDHh6bzEbC0v9ECPEG8H7qMU+fVkpd37SVeXi8y9i+r5NUawKf38AfXH9gOUAg4uepTx/FtR2sNd5w82MZlONiV2rc/sZrRNsaaHl616oVMqdSpTQxgx7040sur8Io10XZNtJcxf9KrTRuXQ0RCEExj9W7F2vfSbTGB4eUi1ADznQ/wvQj4y0Ic+V6VTmDe/fvQTOR3R8Cp4Lb//V6wHj3R8CKgusghIYwlkSwEAKtrR7QripzuLc/L8PeAAAgAElEQVS/Bm4ZkdiHaH8Ore0QWsNWMHwgdZxqGmYuIBb6UI1bEFJHNmxBZYYBhWzsqVfOFsPNGTlT/z6UWtqJGW0gcPA4M4XZZdWyqck7NDdvWxbD1NLWQHq4gcpslu6je1eIG6dqk741TqgpRubOBL0fPUqwMYJbs8lN5Jjun0bTNQ586ihTd6bJzy6glGJ2cJb2PWvvUn2SeMLMw+PtYaMtygngdcAHNAohnlNK/eTJL8vD492HEIJ446NXswxLh1VsM95KpKORTP8E5Uwe05KUZueYuztJct+WFY/NXexjYWgMKSXNHzyJEa23FJVtM/faGWqZLKG9u/H39Cyd/+mnqU5MoDc0PLR6BmDtOYGTnUaGosjgw3cWaltPIJt6EVZ4VXEGoNI3oVaEyhwqPwIIcCqgWZAfRraegEACNAsRfEAL2SmDWwXND9X62KwQAvxLdg/CnUMkd0BhDMoZ8DUiagX0PR9dGvRXoWXh5gST9dmyxRimVatlxS5K5/rgxd4VMUyp546iXHdVHzfN1En0tpC5M0G8pxl/PMiuF+sjvpf+9hyy6uC6CuUqIsnQvef0sHlEDw+PdzcbiXr6AvBbQDtwEXgaeJV6Rc3D411NqVTmyqWb+HwWe/ZtQ1vFpf6dgj8eYucnj1OczjHy48ugFL6G1YWha9tITatXyxzn3u12foFaOoMejVAauHtPoLnlEtIy8fcuN3C1pwZwhq+iNfeidyztahSmhd5Uz7BUC5O42UFkYitilWgjoekQaarPii1bYxk1cxbhVlD+dpRyEJqB8DeC7kf5GsCtIhI7EUJCZI2KkT+FaDkJpWlE6giqNg9CQ+hLO1hFYjdq7McQaAYzsmorEyFWhJtnSmkuTl/AUS4Xpy+QKddDy/eI3+b8nVEOBP00Rnz1eTWxMrT8YSa7bU9tp/lgD5qpI4TALtcA2P6+XUzfmSTSEkP3GZTyZVr3tNLc20ToAWbFlVKV0kKFSEPQM4H18HiXspEK2m8Bx4DXlFLPCyF2Av9yc5bl4fH2cvliH1cu38R1FJFoiO4tG/PSmk8vcOXl24RjAXaf7KU4V2Lo6iiNbXFatj3aTrc3Ua4LQixrLQkpCTYn6PnYUygF1gNm3uIHd7HQP4wRDWMmlipIejiE0diAnckQ3FtPMagO3aR66zIyGMZ/9HmEad27vn3rDCIQxr57AS3VjbCWX085VZzb3wEhcdO3kfs/h5DLRa5ya6ihv4PSFCr1NLLxAO7CEGrgz1HzAxA/gNADyF2/DELea2FqOz6Lckog1o6DgnplSST3A+AWBmH8hyB0aH0RYS1W3XwBCJigV2B+ZNVWpnIdlBBkNEkD9bmOmAxhVjopGsOY1U5iIoAQgr/49ZPMzGSI2wX0ROMjtQHr0Vr151iYzdP3vSu4joN/UXw3bm1i6s40N392G6UU/pBvVYFWKVX50V+do7RQpndfB/ueeXBagoeHxzuXjQi0slKqLOpvFJZSqk8IsWPtwzw83vn4fBaO7SKlwFhHLuRbuX1uiPzsArfO3MWp2hSyBVzbZXpglmhThEBk9ZbeWuTHZph45TpWPEz7c/vQ3rI2M7xSmDnFIsW7Q+jRKP72VmL7V/6ZCl0n+syJ+gyaUT+nPTGMCIZw5jPUhq6iJ9uQsWaElIhgDDU3hYykwFheFVKujTP6U9yp83VhFWlHUBc0ynVQ069CNQORnVCcRPkaENmrqFgvauTr9cH8WhFq82BEEeZiG7Y8ibKLKKeEyL0BRhSaPozQNvCzLE+CNMCtoKrZukBzXZi5gtBD4JbA0Je1MlWgETX+Mm7mGp8f+Hsu5QY42LifL53+fdK1IOmBX8eVBUpuiHQmS6rFj5SCpqYGoGH9a3sI81NzuI5Dea7E7NAsDVubGbkwSLS9ARbHAx9UGSvmy5QWygTCfqZHvbAXD493KxsRaKOLRrV/A3xPCJEFxjdnWR4eby97928nGgtjGPojeTvFmyNc/GEf+Zk8Q9fGiTQEcSo2pt9A0x+9XZq5MYLmMylN5yin8wRb6oP+drGM0CSatXLAf+7iFWozsyhXoYeCGLGVUTuwWGkylgSf0b2T6vXXEW4BZ+QS7sQNzEMfRRVnEJUJMEHfdWJFZYzCJCJzC0wNVZpFmp2I4gSE2qE0DtnLoPlR6hZoJsxdRnV8AmZeAWcesXAblTqK6Pg4IrwVAFWZxZ38Zr1y5tgQ7IJaFlHL1WfLHoJya1CdBGkhwjtxFm6jilchXQQzivzKryJGXoNkD+oX/gUEWnD/06+Tyd6hIbEd3ApkrzGrhzmf6a8P/09fYvrKn5FsOcKR7kbODUkOx2tEb38fh+PorTs38Ftdm1h7guGz/SilCDXFsMs1QskwTb0phKxX51JbVraRAaKNIbbsaWNmLMder3rm4fGuZV0CTdTr9f9s0aj2XwghfgREge9s5uI8PN4uNE3bcFuzkCty8+wgoXiAnoMdHPvIXgYvDmMFLPY8ux0hIBgL3MvSdF13RdXDtR2cqo0RWH0YP7qlmcmzNzEiAaxYvZ1VHJ0kfeYy0tRJnT6OEV7e5pKajnJchCYfOvP0VozmDvRUG/atV3FnBuvO+k4Nlb6L8EcQpXlUKQuB+PIDzTDoPoRuIiNtCDNQr1oB6GFUJQvpb0N0B0R7IdKBcLKAQPibUGYc2fFLSH/q3imVnUcVb6CUjbA6EU4RrBYw165QqcL1+j8h0eIfQPiiqLIF5WHU2LcWkwAc1MxdCO/HtfN8/of/LRdnLnEwdZAvfehLiMhWmBzAKXYhA/Xhf6G3IOaH+eoXP8fMyACRwZcRugHF3JprWo3STA67XCXYnEC+xdS4PF/CVaAHLDoOdRNrTxBqDCOEoLn34R8gpJQcPLX9oY/x8PB457MugaaUUkKIvwGOLH7/0mYsRgjxEeB/AzTg3yml/vVmXMfD40lw640hZkezTAzMkGiOsvfZbTR1N2CYOonWe6loOLZD/0s3mJ/MseWZ7TRsqQsRp1qj//sXqeSKNB/qIbmrY8U1YltbCbU2oFwXadQrV6WJGaRpYOcXKNwZJLJ7G/K+Slrk4D7MpiR6KIgeqc8vuZUSQjfqg/pvQZXmqPW9jFIKLdaI8FvIlm2IQAwRbUKyH+f2D6A6BsPfwXWeQaYO3jteWFHkjs8gqvNQKyKMACKwKCI0E8p9IItQGgAriAh0ABoieQK10IQw4gjdwMn9DGE0IgLbQQ+Bvx2BQAR6EKmPA/U5PKVccBdA+hH3zaUpZwHlLuC6RQQaQrn13ZxOoD5fJgXEenHaD5MdO0881Y2b+RvSro9zUxfv2WRkSlka21+gMXCDPS8nOD9e43CoSoOaQbR/DCkFqfZOnNpO3EoJrb0+w6dsGyc3iwyEkIGH764sZ+YZ+cF5XMchsauL1OHlgqpWrtbbxFLWd2smNyfg3sPD453LRlqcrwkhjimlzm7GQoQQGvB/AB8ERoGzQoive15rHu9UgjE/E/02uq5hBUykJmlaxfm/mCmQG8vgjwUZvzJ8T6CV54qUswV8sSDZgclVBRpANZMj/dplNL9F6rmjhLd2UpqYwZ6donTbxpnLknjfyXuD6dIyCXR33ju+NtpP5cZ5ZCCE/9jzCHO5R5sz2Y8qz+FmhlBTAukPIbe/H721LhpErA32vIi6/TXwp1AzV+A+gQYgzDDCXGUnaTUNRgwqU/Xk3+YPgxFBhHpA6ihpgzOFO38N4VRwy2NoZgphNiAbTqOqM8jIofruzUXc0lXc6ghCC6OFTiCEgXLL2AuvgFtBaA2I4HYQPvjzz6ONvI5sO4j65T/EQfGFRoNLWhsHYk38YWkAZZxcqpSVunCmLkDbIaQUfOV9N0lPDtCQ6kFrPIiM1a1MhGag9y7PkCxfP4c9PoSwLAInPoT0PbgV6y6G3Wu6hlOurri/oTtFOV/GrTk07Wx94Hk8PDzeu2xEoD0P/GdCiCGgwOIMsFJq/xNay1PAHaXUAIAQ4qvAJwFPoHm8I+k93ElDSxTTbxJOrNxNN9U3zuilIeKdjfiiAUq5Ah1HlrzKfLEQ4dYEC1M52p9efYapODbF5PdeRRoalekZ5m/GiR/eS+uHTzHznTLS78POL9QH3zUNOzNL8fwraIEQ/kPHkf4gtfFBRCCIW8jjLsyjJZYLNBFtgvHr9WpXNY07dwehK1RDB8KqV26ELwbhDtTCGKL5+Pp/SFYDNJ2GQDsk34fWuCRq3OJtVPH2orDUUG4V5cxQW3gFLXgULbJ61K9rT6FkCGXn0NwKaAaoWv2f5kMJGwJbcNI/Qo6cIYuiYewi0g0znX+N85kxEIrz2TFm3d0k1RX2qN/g/J0chxtcGuQkKv0youljyOanabSLgKrbfTwAt1SgOnANafpQVVDVCjxEoPlTMVJHdlBbKBHf1bnifs3Q6Dy80tfOw8Pj54c1BZoQ4k+VUr8C/CHw15u4ljZg5L7vR4EV7wRCiF8Hfh2gs3PlC5uHx9uFlJKGtviq97muy9DZfgINIWZuT7L/k0eQurYsJUAzNLY8v/+B5qVOuUr6zCWEqZE5cwlfQ4TirQGCna1YyQYih/dTGholvHc3QtNwFuaZ//ZfYk+No7d2oLd2YHVvqw//Xz2DTCSRkfp63fw07sQ1RLwDLdmLPPKL9dDzq1+DWivoJpTn4E2BJnXcaBvUxkGurPgop4ibPQtKIRInkFr9eQotgGz7FG55FNwCyikitABKOTiVu7iVPqTejEx8COFWsMuXEVoAt9yHZq4+ayWsXpzij0AGqNl5pDOC684hjDZEYRYtsR+nNozri/DFjg4uCoeDWHzJn8Cdj+IUO5GBYdxiFxjtaNE2vvJZl/ScoKF8FlHrgGBH3cusYT+O4yIyVxGZ66jEboS5ctNF5corSF1gTw3hf+ZFZHj1jRlKKRZ3whPfsXrF1MPDwwPWV0E7IoToAv4p8MfUK2ebwWrnXZE3o5T6Q+pikaNHj64vj8bD421GSkmiq5H04CzhZBgr5ENqqw/s3y/Oqrk8TqmMlUzUd2maJsp2iO3ZhhkPQrVCdWoSIxrG39GOv2NpY4O7MA+mCZqGKhbRY/WKj5FqQz/9i3Xj1UoehcK59aP6MZkhZKQZ4QvVZ552vYh798d1t/7QUk6mcm3E7OvgS0L6PCq2F6EvVYjc3HnU5DfrIqw6i2j99FJb0smjFuqTEW5tFi32LLgFoIwMH6mb0FqtOKULuG4GzRZI/75lPyPHmUE5aYTWgtTDKCOGUkWU/TquiCGFD+2r/ww5dg06jiP+k3/HbPk25wQgBOeUTbo4QYN/jl3OP+biHYeDKWgMFxHBPUgRIGm/irL2IiLHILwTNfE9KI5B7i4Et4Cqoopp3JHzIDVkx3GEbqGqZeyJu7jVMkZnL2Zn76o+aMXJNFOvXMaKh2k6eQDNNHCqNaSubWgzh4eHx88H6xFo/5b6bs0e4BzLhZRavP1JMArc/5GyHc/Gw+MdzkJ6gds/vUUwHmTriV40Y8mCoufUDtoOdGEGrQeKMwC7UGL2fB+ubVOdzSCUItTbScPh3SRPP0UtO48RDlAcG6d08QLl/tu4+TmiJ55Zdh4tkcTq3o6RSOLbdwwttpS9KaTEGbuEM3Ie4YuA7kMV04s7LpdeBkSoCW3ff4RSCipplArWhZjQINQNCwP1dqX2Fi80FJQGUUhE7mVcXSBip5BWE0svGWrpaxlAaDFwcojALnBzKJVH+LZiKxshFsCeRNObUaqKbd9BYIB9E03fh1JVwAThQwgNtzCMGrvKLIqGkTNoVR3dfD9O6Y/uBZa7tkToAf70Hw2RWYBkrBMj9inkom2H4+Zh7gKU79RtPUqTYCYQwSIEWiDYjruQhswAKAc31ISW3EH17jWE6UMUFzA6tyP9q7v7z/UNolkGpekclfQchWyJyYsDBJJRtjy/D/kYdiweHh7vPdYUaEqpPwD+QAjxfymlfmMT13IW2CaE2AKMAf8x8LlNvJ6Hx2MzfGGYWqnKVHqBZE+SePuSKJJS4o+u7vB/P/N3RihNpanm8qhqhWBrEnuhCIARCmCE6ucIGRr2wG2EaeAWCivOI02L4LFnH3gdNz2E8EWhlEPb8UFA1XdqGiuD3VX6HKTPoTQ/ovOTSDMKrS9Ada4+5C+WC07ha0NFdkA1jdJDCGmiirfAakLoEWTkFMqZQ1odKKXqc2RWCk3bi9DioAqAgaMmULKEVA41u4rUkoBECBPcMsgwmubH8J3AccbQtDiuUrhBl893dHFR1O61MxPuGLv5L7jQn+VwW5K4eRMldKz4p2hN+FGqiirfxDXbkUYjopYFPQxuEeEsoJInIXcJ0fJ+ZLxe0VOzt+tiVEqktZiJaVgITUNrbEFvaOZBBDuamT13A6FrzNwcY/zcAIntbRSm56jMl/AnvFxNDw+PJda9SWCTxRlKKVsI8ZvAd6nbbHxZKXVtM6/p8d5lLpfHMA0CgZXi40kSa4mSHp7F8Bn4In6cqs3U9RGkrpHa2fbQqkh5Nkfu+t16TqbrYkSChDq3IlFEd29d8XgtGCR48CC1qSn8vcvvV3YVNOOhEUOy/RBu/8uIhm5EtGWZ5YZybahkwIwhNBMKIyipw+wrKDuL2/lLyEAbWKvP3EkzgRs9CE4RcFBuCek7cO9+YQRBEyANlDuHXe1DIHCVja4nQITQA8dR1bM47jyuO4+ud1Df+qnQ9U6UW1sUbKDJNnLZPNEYKDFOujLPOeEutTNLk8TMSf7s11pIF+IkA36UytV91bQQQgZx5n8AQkfl+5F6O8JIQC2HsFrBTCF9Zt277T5EtBNaDiJ8UcRiJqjRtRMZjCIMEy3xYI+yyNY2Aq0NzFwbIXNrDFxFdmCSpn3dWI+YNOHh4fHeZSO7ODcdpdS3gG/9Q6/D493Nzb67vPLyeUzT5GOfeB+x+Po8pCYGZ7lx5i7NXQl2He9ZV56iEKCqVaKdCayQxfT1USYvDaGUwvCbNGx9cEVl9vWruI6LXSqTPL4PKxbGjD68iuLr6EAPWlAtodwoQkpqt89jj95ENndj7nx6xbrd7CBq7BwktqIf/eV797tzd6GSRsR3oiZ+AgtD4E9B1y9C43EY/g91E1ojAfO3IPDgkHJhxJDJF0E5IH2Ag5B1cazcMnbxLErVkEYz0uhGKACnnpG5iJR+NH0bOKNIuQNdr/8OHHcKpWbrAeYkcB3Br/3pcS5S4SAG//fnvoRwwSl13WtnKieOEFmUypEMx9G1rdjVfoSwUQgEEoSJcgqowh2UT9bXZ3XXq35yZUIDgBp6DTd9C6GZiFAzwhdGaPq9wPi10P0+rHgI11VE2uJ0nNpLuOPRsjs3guu6lMsVAgFPCHp4vFt4Rwk0D48nwfjoFJZlUSqWyOXy6xZoV356B8PUuXNplI7tzataZ7yV0UtDJDobmBvLUsmX0Qy9Pr8lxJozRXrIT/7uGG6hiKbLNcUZgJ2eonT2JVAu1q7DGB092KM3EbEk7uRd6DkI1vI3YXfwZTACMH4OGnrAiqDKaRj5LgqBKkxAoR9VGIW5mxDegnDy0Pw8TH4bqrPQfHrNtQktgHJruOVbIDSkrxchdFC1euVKmPXKmhZB9x9GuRWk3lg3nl00odX1FnS9Bcet4qpZhPLjqjKZ0jwJfxiEQzo9yEUqOEJwUdVIp8doSh1hj/wdLvSPcri9g1QkgKvacdUCrirhqhJC6jhOGrd6FdM6jB56Gqd4B0ddRRUvI5SJqlWgeAelhRFmYsVzVNV5hO4DuwpOBVjF+20N4j3NWCE/Upf4GzbfgLZWq/Hdb/2EqalZDh3ew+Gjezf9mh4eHo/PugWaEGL3W01jhRCnlVI/fuKr8vB4DPYd2EE2myeVStDSunpe4Wo0dcYZ7psiFPNjBVevoLyV1LZmxq+NEmmKYgYtGrc1Y/hNhCaItK58g3+TzMU+SmPT1CYmCXa3kT17Basxvmq25jJqtXueZ261VK/etG3DHruFTHWBubKlK8KtqNwgworCvZ2XixUb5SKkgWsmIHcTDB9i7K+hNAHFAQi2Q2w/wlifEHGrg7iVAZRy61FLVm/dUNbagXJzaEbd20tqcdDAcedw3SGE8KHJHoTQUaqEyzkgi6t8/Pp3v8yl2escSO7lyx/+E5TVxdayRr/PYWtZQ/o6kWKOr35hP5niURpDZr0i5TqLSQMCRbm+sUDooBwUNlKGEQJkYBfYGcCPcJ36z+YBFS2t+xTuxBUIJSGw/mD0ar6IXa7ib4ggpCTYFFv7oCdEfr7A5OQMjckEfTfueALNw+NdwkYqaP9eCPGnwP8M+Bb/Pwqc2IyFeXg8Ko3JOJ/+7Ac3fNy+U9vo2tVKIOzDtIy1DwA6j2yheVcbhs+4t1Mz1rkyTeB+XNsmf3sYf3MDhVsDCKEQmlhXm0tLNmNu34eqVTG76/NRxvaj6Fv2gW6ueg7Z8z4o7gVfFKEZKKeCyl5D+ZP1nZmhJsTUyxDpBiMIlXGwF+qh4a5dF2uL51W1XF3UrVJdAkBYgMJ1Z1DlGo49hDS60Y0OhFzpW6jULAoNpeYQKo8m4ii1ANQARbowwcXpq7gCLk1dJlNMk4wk0fnfMfv7kK3baIzUf1dSQjK8tLtUyhiKRlAummwEI4ZtjyKEHyFCOJUx3OI1lJNF+nYgQ0ehMg3o4FRQuoMQGsqpoXIDoPmQsS60rc+t+Xu6n+p8kcHvnqWUXSCxs5OO5/atfdATJBoL09XdxsjwBMdP1BMgHMchm50jEglhmuv7MOLh4fH2shGBdhz4PeAV6nX9PwNObsaiPDz+IZBSEkturGUlhFhmPruu6+g6oa3tFPpHSL7vGIG2FFYygTTXFoVC07F696y83XjwGoTUIbQ0vK5yN1GZK4CCaA9M/Rjh2ijDh9jyj6A2jxr9BhQawUpA6jTCiKIq07jpH9QFWuIU0t+18rmZ7SAETuEllAzjVm8CCocyurUkTJRSKBZQykCpURA1lJqiZgfozxToSTQipI3M1zhYrnDJZ3KgXIV8GRES/PmvnyJdeIqGoAZkAQ2lTCAP+BFCRwgdTXYBVUAHIcEt4LrjCATO3I9R9iQohQzsQ+pRFAZq7G9QdhEiOxDJZ3EnL6AmzoEQiO2fQISXopec/DyqXERLJBHa6i3tWrFMfjJLbmiWubEs0Z4WIu0PF/Gr4boupUIFf9BCbsA3TdP+f/beO7iuLL/z+5xzw8sBeMiJAAEwgDk1m52nw/T0BEkTejSjMKO1JO965bLW5S3rD7scast2ydracpXslV2qml15pZVWcilM1Ez3dM90zuxusplBAEROD+nle+85/uMCBEFkNtjdM3M/LBbx3rvh3PeI937vF75fgyeefBDXdTFN/y3/+ede4lpvPzWZan7li0/dvD8gIOCTw3Z+Kx2gCETwM2h92m8eCQj4uaaUKwEQju/cRGj1sf2kD3Qh7eXJS29hAaTEiG3e+7Ye2nNAGqtkMFZgxRcLnAJtJkDa4BYQVhphpRDhOtj/X6OV32e1VN7U7jx+Y78BziysEaAJIfEq/WhVQrvnwarxt2flepSeQ+kBFDkQJQQRXK/Iw3/+NQryOlHVyYvf+I/UNk7yL7MZat0rTJv7qKn3hXmlFLdky2rRWqF03019NMnigIE3gFJTCJlAinqUmkXKOModWjKrY/EH/1BeEdyCL7dRGl9crOOn57T2hyAW8XLz5F95Hu052B17iOxf2/UuUpsm1lRDbmKBeHOGSq64/muzDlprXn3mHMMDk7R1NnD60QPbHixYCsK01gz0D1GTqWZ6eoZisUQiEUh8BAR80thOgPYm8A/AKSAD/D9CiK9orb9yV1YWEPAJYGZkhgvPfgBCcPCJg6Qa1rbw2S5CiBX9ZuWxUXJvvYEQgsSZ+7Gqt97ftISa7kUNvICIZJDdTyLMtbNqMrkb3fFF35Yp2gixenRhGBGuRdwiQCuk7QdvS7cjrVAZB+UgYl1rHltrjar0AhWQEezYowgk0qy7bUsXxy1yPTtCZyaBlDn6pg1K8hoIKMmr9GWn2FvXyoE/eIns5Ag9dc2bKO47gOkL2+oh32lATSNFFVrNI8wWpEyh1TyG1QnJNryZH6JFFOSiXp1dDVVHoTgMVaf856vxBMoMI6woJJadG3SljPYchGX7Lg7rIA1J1+fuId6UAQTpjvUne9ejXHIYGZiitiHNYO8YJx7ah2XdWdZLCMGDD9/LG2+c5fjxg8Tjd/6FICAg4O6xnd/w39Zav7X48xjwy0KI37wLawoI+MjoPz/M5GCWruO7qKpfPVG3MLmAUprSfIGxyyM7FqDdinZdSteuogoFZCSCNz9/ZwHa2Fm0W0bPDyIL05BsWndbEW1cvmElINrk95ttgJAhRNXGXQ1CCKTdjOdOImUUKTMIGb6Z0dPaAcBx4ZG/+N8oyH6iahc//fX/hu5IZkU5szvsvz1Jw6CmYWMZCyEkQjejmQVstBpBCBOlJVoUkLIOIaKYoaOAPzygyuOIwjDCK6BEGFn3y75PZvVJ/PbaxWObYYzGE6vOaaQzhPccwF2YI9zdc/P+UnaesVfOYcUiNNx3ECNkY4ZtWs7s3/AaNiIcsek+1MbV8zfYd6z9joOzJfbs6WTPntVaewEBAZ8ctiNU+5YQogroxi9xAgzclVUFBHwE5GYKXHq1l1AsxPvPX+bhr51atU3d7jr63uxlZmAK2zao66yjqmX7wdNGFC5fpDI6QnlkhPihI9gNjWtupz0XpAFuGZUdBMNEVu9CSOn3dOWm0CNvQCSDDiVWerI5BShNQaTOl4m49bHiOHrou6AVuvExZOLDubdZ0XuRzihaGDiV1wEbYR7k+swk7ak5pBD0ZgsUZD9CKApygP5Zg321LXzL7mRm6C2qm08iE+uLvq6FlAkggdYVlBrCdUeRsh5D9oCaxHNGkDKGMBbLed6C/1eG0OXh7V+oEMDxfjcAACAASURBVIS69nN7nnL28g2041EYn6Y4MUO8dXvXsR5Hz3Rz+HTntvrPAgICfnbZjszG7wC/j++R+S5wL/Aq8OjdWVpAwN3FCpvYUZtSrkzD7rXlOMKJMLtP7sa2TJRSlAuVHV+HKpXQnotdX0f08BFkeHWvmztyGbf3bWRVI+gS3sVn0G4Z69gXsfY/DmiEHYbdj4JTQMjlhnWtPHT/t9HlGb+/rPNLK/qXdGUGlIsWEvKDsM0ATSv/OVkSd1XePMoZw1UjaFHCUzaP/+UfUZB9RFU7z33tX9CRcumpwBVbs6ci2JM5DEIif+svyeRLiHj9CqkLpWbQTCNIIeXar5XWJVxvFCnCoMMIEQG9gFs+i3anUOULSJHACB/BjJ1GhFsQieOo8iQGNajBv4XqU8jYxtk6VS6Te+s1VCFP/MRpjFQar1zBiIQRQhBtrCF3YxzDtrekbbcdguAsIOAXh+3kyX8fv//sNa31p4QQ+4D/+e4sKyDg7hOK2Jz5paPk54qk1yhvLtGwt5FKsYJhGtS0b11XDUA5LnKTcpSZSKDmsgg75Fs2rYHb/z4qn8Ubu4pR04D2ymDaqKledOke1OQldGoX3HgBojW+iKoVXVoElOfBSvp2TlotNu77iNguVLQFJl8Br4iyksjMsVVr0F4eXRxC2DUI288iamcab+FVQGIk70fJOJPzb1IVrkd7swgzTl92gYLsW8yW9dM/V6I7LPnLsUFm0FQjULl+nHgWsDGiHRi3BpBao5nwJz4ZRnsRDGNl4KO1xvEu4LlDIDSCegQGnjuEcBXKHQc3i5IgKn0QO4WQYYz6LyNLEzDyfTCTvrVV9GmWdOLWasR3Z6bxZqaRkQjFa5cp5gWV7ByJvbtJHdxDsr2BSE0KYRqY4UDCIiAg4M7YToBW0lqXhBAIIUJa60tCiL2b7xYQ8MklkggTSWw8nWlFbDrPdANQyZdRcnOXAIDs2UvMXxsk3tFM5sT+dafuhIBQ06KNkrN2gCYTVTiXfoqMpBDVuxDlaZi4gjAMvGs/hvIcemEYGUqBFUVNXcZouffm/rr6IBTHofG+Fdk1AGFGkLX3oIvDEK6B+YuwRoCmpl8AJ4sWFrL+CwgjgqqMLZ7Awa1M8Ls//X3enTzLkUw7//dD/yXSqmV/Uy0x9UMKspeY6mRf7YMoPQzN+8gMX0K37MONjCK0iRAFNCunHIUQCB1H6QE8vYBgGs0eDNmyMhOoPfxpTIkU1RhGErw8wo6jlQOmhdAOMrTH1zdbnOAUdjXKiPlG8KEG9Ad/gZofQ4s4RsNhZPt9K85jJFOIcARVrmC2ZKgM9mGnk+T7h0gd3AOAFd+6pZLWmnKhgh2xggxZQEDATbYToA0JIdLA3wPPCCFmgJG7s6yAgI+XUq7EpecuoDzFvk/1EE1HGftgkOGz/URSUfZ8+jDmopitcj2EIVd8iCvHZe7qDQzbJPvOJdI9uzHXMW63d3WgnApCGthNa5fXzF1HUJN9qMI8wo5iNvagUo2okXNQakTEU4hQEm0aCO0h4v6koFYu6tp3oJiFZCsy2bH2BdtVEGuDwhDUPbD2Ntr1s1mFq5B9AVn9ADLUglcZRMgQWdfm7fGzIBTvTPazIA5RF24ApXiFIjNDI6Qbk1TKLyONKvRv/DE6fwUR70AIB42BwECK1T14QjQCcwiKIAw0k0ADYC0+LrCMA7hEEcLCNHYhRAhtOriF1zFEEiN+CmllEEYNWlVQo99Gz7wL4V0I1/GfA1Jobwo9eREaTqEnL0PTEQgtZ+yMaIzUw4+jPRdh2ZRmi5RGJkgdWXsIwHM8+t7qwylW6Lhn9wq5Fq017zx3ieHeCZp313L8sfUD+YCAgF8stjMk8MXFH/8nIcTzQAr4x7uyqoBfCLTWXLnSSy6X58CBvYTX6L36uMjemKaQzSMNyeT1CXYdbyfbN0E4FaEwm6c0XyRea5G9MsTYO73E6tO0PnjwZmZNWiZ2Ks74829gpxPkh8dJda/WDQOQdohoz9oaWlprvOFLqPlJRLIOUcmjp64jm/ajrz6PsGNgRRGNxzCq2sCO+RZH4cVpU6+MLs0gwtWQG0VrtUojTWuNN/gMZN+H5icxU/vWXmf1Q3jTLyDsNDhZnPlL9LmNdFU/4Wd+FsorDMtRvp2Rzg0ih16nRnno4fOo+bN48RSh0ONY6SfRugAkkNICrEV7ppUIITGNdhyvBDgIqtBaAgXARggTKaPY0hfx1aqAW74IWiFFBCFjaG8SGfGvTZez6OnX/IMP/j20fBnhzEPqEMxcQySbwXUh0w7W6myYsCyE5a+z6vhB9FG1rk1XdijLyIVhTMvAjtl0nl6WKHEqLiO9k2Qa04xcn+TQg91bdrEICAj4+eaOZrW11j/d6YUE/OIxPDzGcz9+CRAUCyXO3HeScrlCNLr18tBOkZvOMdE3SU1bhmRdkmRdEmn64qRL0hoNB1sZeOUKqaYqImlfO2rqwiChdIz86AyVhQLhqmUnguTeXZQnp5GWBRXnjtalczM4V9/CmxlDDZ5FpmsRTXuQmV2Yh76Amh5AROIYDYcQ1ho+nFYM2XQanb2KaH14TQFbnRuEq38BRhjyI+iaf42QawQJwkQmD6Fnc7jK46G/+1fkZR8x1clL3/graiJlDsj/lrO9wxxvaaU2EULrMo7Rj9HYiRy9htfYhgorhM6DziFlN7C+Z+mK04solnGMJb0zz+tHqUlfPsPc7xuzL+KVL6G8GbQq+zK0XgGtTZyBPwVdQVQ9CKFayF2H1B5w8xBtQaT3IFJdCATCrYAdXVUSvpWp873c+PbLROqr6Hz6Uezkak2xUCyEYUiUq4imoises0MWnYebuX5umN2HW4LgLCAg4CabBmhCiAVuymyvfAjQWuv1u6sDAjZgqd/GV4HXfPfbzzE5Oc3JU4c5eqxnk73Xp1xyyM0WSNXEMbfQK6aU4v0fncdzFSOXx7j36VPEaxIc//Ip0Bo76gspVLfXUdVWs0Istbq7mfH3rxOtTWLf1ncUa2lAHe/BLRapTE0x8ewY8a42wo0NyJCN1hp3YgytNUYqjZASGVoZZAnLRpdyqOGLaM8DYUE0g0jVYyRqMJqmIRRfMzhThRncs38BSmOe+E1kdNmgW2uFGnwJ5vrQNT1gRsFZgETrigGCJZzCKL3Xvk1X3EbU3EtfXpOXf4QQirzs5Vr/39IVK/Mfv9rObOkMNfV+f5hWHuBRefr30IUiXjQMsojWAs8ro3UFIbbeSO+X/xanRdUsQkQXM3AOWsvlAFSEQTsIaWOGj6NLQ3gD/xbyV8BqBjeH6PhdRHkaEar1BXll6GYwJgDWEfq9+RwqxfAzb+JVHOYu3yA3NImRLHLjjV6SjVW0ne5CSEmyLsnRXzqO57gk6la/Xfbc28m+ezqC/rOAgIAVbBqgaa23Z04YELBFmprq+exnH6NQLJFKJfnexR9Tk8lw6eK1Ow7QnIrLC3//Drm5Is27a7nnidW+lWshDYlTdrFM82YPkB1ZHTjcrmRfc6CNdGcDynEZ+um7CMOg4fR+rGgYaRqkejrJ9w8ye72fQt8AhUuXifd0k3nkASqjwxTeeQOvsIBQHlamhug9D2KmlzNKIhzHPvIYupJHTw8hqxqxuu/FG78O+RmMpr1+mXMNvGs/QQ2dBQ1eqgV5+It+Y7zngLOAnr6EiFQjpi8jTvz3kBuAzOFVWTankueBv/yn5I0BYm4rL37xIHvqTxBTneRlLzGvnY7y82idxvz2/0HN+A1E62n45ncRMoph7/PLkckSppFAqQKeO4RUc3iVK5ihg2jtAsaG/Vdal/DcQRARDKMJw2jD8waRsh7PmUE5V5BGNUboAEZoD9LMgOcgRAi8in9dwgJvHswk0oyvb/q+BYSUJDuamHj9AlYySqwxw7UXLyMMydTVUWq6G4lm4uRnC9gRi1j1+or9QXAWEBBwO4FDbsDHyq52vynedV1a25oZHhrj/gdObrLXMtmJefK5Ig0tGSzbpFx0yM0ViaciTAzPbLp/39kb3Dg3RF1HDfHqGFWNaQxr86zbrZhhm6s/eI2xl88hpIH2FG2PLyvPW4k4CHCzM9iZdtz5BbTrgeehXRcvt4AZstFK4WWnVgRoAGbTHuTDv4kuFxDJGnArOO98H2EYqMIc9qHH1l5YvB6h8cdE43X+8Xt/gs4OIOp7EOFqdHEGWXsQmWiDRBsArufRmx2nO9OAQNN76f8jbwz42TJzkOvjveytOsLL3/wberPjdBS/B/n3YO46YqwfoRUMvg6FKYjXYVhNGFbToouAgVY5nNKSX6jGrfSinAGkUY8R6lk3SPOcfjyVBe0hZRzDqMEwfNPxSuEVhIzieVOIygg4o74vaXkMhIFInob0fRBqQyRPINOnb+q2fRjanrqXupP7saviWLEIqZZqJj4YIpSMEkqEGTw/zNU3+ghFbU58/simE8MBAQEBS2ynxLnWu2ZQ4gzYEUzT5DNPPYzneRjG1gKkhdk8z337LVzHo765Gts0iaci7D2xi9G+KY4/srEKjFtx6Ts7QKouydjVcR749TNYoZW/EoWZPFd/cgErbNH1SM+aWTUAoQVCSLTyMOyVx7AzVSR7uqmMjeNOTpE83IO0LZTr4cwugB3Dqq9FhMNYDb7chjczhSoVMGsbEaaFTC+r0avCnB8Iui7SCqHLBXQph0hkVvRLmR1nUNE0Witk3X6o5NHZfkjUoycvIY99HekWILRsX+V6Hvf/2dN+Zkx18tJv/Ae6QhVibht58wYxt5Uuax6KI5iRNvZGTFxa0F4WIruhdQ6G3obW0xC7TTNOu6ByCCPlZ81UHmk24BRfRco0yhvH0F3+0ELlGkgbw9q93FsmQoCLEAZLb13Km0M5Q0AYvWiErouXQbt4xWtIowaBh9AOVtNvbPj/4U4wQjaxluXrbD7WQWZ3PVbExgxZTA9mCUdDlHIligulIEALCAjYMkGJM+ATxVaDMwCn4qE8hWWbXHt/kLqmasZuTHH/547Sc3IdOYlbz2UZ1LRWMzWYJdNSjWmvPvf4pRGcskNxrsj86Cw1u283/fZp+/RJwpkkZtSm7mj3qseFlIQb69G6jlCt/4FeGRok3N6Bm8sROXHfTf9Nb2GWwpvPg+dhtXYSPrjSgkpGU1hHnkCX8ohYmvLbP0SXCxiNXdj7Ti+fUwhEshnv3HN4A5cxDzyCqGpDzw4iGw4hTRtXGPROjdKdaUBKSW92nLzsvdlbdn1uju6GB3nxsWquFzy67DmkaYMRhz/7PAy+jtFyCr72J2BVIX7rX/iZs1jtSicAL4eafwmtyyCTQBlpNyKsXRhWC8oZQhp1ICy8yjWUNwGeQso0YtFo3TDbkDIJwvYDMa3xSmdBC8DBjNyDkDGU+w6qMowMNSGIIMwkwt4Zu6XNEELcHCAB2H2inQsvXKa+q45kbfBWGhAQsHW2VeJcw4sTrfULO72ogICtUFWb4MRD+5iZXKC9q5H+iyOYlkkkunFz9xJCCHYdbiU7PINTcnBKzooMWaVYwdOK0nyJcCJMtGr9HiI7HqHl4SPrPh7d3Y5yXYQ0CLf4Ol/h3Z3k33sXszqDkUhSmRyndOEcMhJCK4UwTZRTXvN4MlkLyVpUbgZdKUI4hpqfXLWdyg75j0uJnh7C6H7M78cyQ6uyZS9/82/ozjQs95apTroScYQnMRsfZY+T98VezQiiXPLLmMpFDL0JKgbW4hBCfDmI1Vqh5t9EF6+gdBEZaccrnkPGjqHKN5Ch3Zj2HrTVAZjgzaHcWX/6UthwywCBEAbCuM0HVYTQasE3cpdRhDCQ8aMIpxVhxJd9Nz8mUvVJzjy92uM1ICAgYDMCL86Ajw1fyX1tO52tIISgc38L7PcnMXd1N2BHLJIbBFK3M3x5FNM2mZ+cZ3Z0jrpbPDkv/+QCC+PzGCGL/U8dIZre/LjK9Zh+7xrl2QVqj+8ltCi7IW2L5MGVQqahllbsxiaQvsht6cL7qEqFhffPYmWqiO3dS3ifr+ivnQqVsWGMSBSzZjkbJGJpzF0HUdlRzM7V6v8y3YjLe6iFWYxIyn+uF6cTb8+W9WbH2VvbdLO3rCuZgGt/hyrPoAvjiFAK0XQG6k+h1SQ0n0AMr1POXMIroMuDYDdD8QIIGyN2Eq2yCCMN0p98FcJCqyJu4TW08pBGGCNyCmms30EhhMAMH/MtpYzEzVKoEBbCbtj0tdop3IqLU6wQTkYCkdmAgIAdI/DiDPhYmJ6a4Yf/+AIh2+bTTz1EIrH1oGotpJTUNKU33/A2alqrGe+dwA7bq6bsyrkyVsTCrXiYm/hpLlGamvUdBEI20+d6aXro6Ibbi1tKumZNHfMvPEelrxedq8NMVhM74a+pdOl9Kjf6QEriZx7FSFf5+wuB1XEYOtYWupXxaojWoYsehQtvMaI0e+p3IaVclS3rzvhBjWkY7KlpxLv6ffTI24h0G/KNv0YsTENtF/qpP4DyFDz061D3LV/Udb3AxIggrDq0M4GZehAZP+IH5qrgy1qIW59Xjdba7zET4Q2Ds5vPnwwj5MpgTHtlEHJtLbcdxi07nP/BexTnijQfbKHtxOal9YCAgICtEHhxBnwsXL3Sh1NxKeSLDA2Osr+na/Od7pD56TwzE3PUtlQTva1Ju66jlmRtAsM0sMIrP9D3faqHsUsjpFuqCcW2VjY1o2GkbeGVHcIZP8AoTmbJvnUBuzpJ5sSBdX08I/sP4czP48zMgNJUhkfI/uR57JpadK4A0hfO1Vpt6/p1uYSyIzx+5c8oDPyrm+VM0zBuZsuWetCW8AZeRp37a6jMQqWCWJhGaIWe6oWFUYimwCtBtGr94Ay/LCnTD4Aqgwwv3ifAWB2QCxlF2p3o/Dmk1b75dbkzqPKI32tmVvn2TbNvQ+4DhF0DNY8jzPhi0Lf2GrVSvvOCeWfBXClXojBbIFYVZfrGdBCgBQQE7BiBF2fAx0LrriYuXuwlFLKpr6+5a+eplBxe/+57OBWPeNUID31ltYTHrd6ItxKvSdD1wPa+g9jJGK2fPo1XKhPK+NORc+evoT1F/sYYiY4WwnVra28JKUmeOoOZTFG6dhUnX2Th5ZcJtbZgNzcT7dqPjMYx0ptrd90qlRE6eB+9F16nYN9YVc403DJdKIRTglAUXZjFG3gHb/wsYIKVQtadhKYr6JGz0HIPousr6JkPILEbYS0HWlor9EKv35eW7EbIpZKjBGO1O4TWLngFMOLL2mul674tU/EyOtSGMKKr9lvaV8295Pe4la4j0k+gsy+isy+jVRGBRlamUQPfQ4/+FJ3cj6y9F1l7EGH6a9GVEqWzz6ML89gH7sOsW9sHdSOi6Rh1XfXMDmVpv/fufckICAj4xWNLAZrwv37+V1rrWQIvzoAdoLm5ga/92heQUhJax8NwJ9BK43kKw5a4FW/DbMpOYcUjWLe4CoQbapg7fw0jbOM5DsWpGYTShGrSq4RvhWkSO3AYI1XF/GuvghAI08IrlCmMZLHrLTbL9ZSyUzz0t79Nwey/mS3ruedJYhf+dEU5UyuP8tnn0IV5RCxF6NRTONdewXz+f8CY7UVXdeAc+wZeYQ5VuwfZ/Sg0nUDO3IBQEyKxnC3SXgWVu4EYf9a/rSqI6vWHJrT2UNmfQGUKEWlHpO/1r1/G0c4kWlpoxJraPv7xy6jKnJ+9MxMw+SP0zOtoM4rwFhBmCo0Fg98BGYUrf4V2FNorIVoeBEAtzKBzs4hIHG/42h0FaNKQ2w7iAwICArbClgI0rbUWQvw9cGLxduDFGfChiUTuviZUKGpz8skDTNzI0rKn/mNp4k7t6yDaWEt+aILRZ99g8rX3sGIR6u4/RuuvfGrNNYWaW6h69HGSJ0+hPcXChSuocoX8pcuEmxowk8uSDY7jcOVGL3vqWzGjEc6/+GMKZv+6zf9L5UztVtDlAoRi6FIelIcUGjHb64vNzg5gJptxZwdQ09fQ0kSYZxGxDGgPEUpBohm1MABDz/gDAYZCGCHWdofz0cpB5a6g872IaAe6dAOtTyOEQCbuwStcQeTPo2d/gk4/iDDiaO2BqiAWM3Fq5hXI94Izha5+DOnm0KnDiNIIoulXkdFO8MqoeDtMvA0yiq7kUfkslIsIaSATVYhEFTo/h9G1ca9gQEBAwEfNdkqcrwkhTmmt37xrqwkI2EHms3kGL49R21pFz5nOj20dQgjsdIK5S/3oioM7nyNcW8X8tQFUxcFYI4MohMCqrsaq9suZlZl5ijeGMGNRZHi5H25JKqNg9hGp7OLFr/85u2PVRMbbKNo3VjX/761tWj6HaWP13I83dh2jqRNhWhj7n4Cm4+jRdxGtp5EdD6B/8iYi3QFGGFHVCeVpNAIWS5jMXkYbIXBLkOqBaAMiuX5WSc+dhYULUM6ijQgyfe/NIFVIG6GKftbLXQAni5Zh1MwLaGcKGduPiB0AZxp0GawahDOLDjUhK1lo+CIy2u6fyAxD5z+BcghCBdT4CBQiVK78MbKqA/vwo4RPfnrNHrTS1CzK9YjUVa3Kcn4YtNbk5guEoyGsLQ6eBAQE/GKynXeITwH/VAgxAORZNktfe3wsIOBj5o0fnqdccuj7YITHvn4PkS02+t8tUj27qczlSO7vRFcq1J45umZwthbJY4eJdOxCh0NcHOynzYgRbayld36KgtmHEIqiPUDv+Aj77ruf57u7GNIue9o6N/R5NDONmBHrpkyGMG347Wduis0KIbCOfx01fBasCEbHE1CaQlpRRGxR7iO9D5G7AZEaRO2ZFX1pa6IdkIbf3J/5NCK8cgpThHahy8N+6dKqBi+PdqbASONlX8TwFKTuA2cWgYtMHESmTqK1WuUjKs0IXqgO1ALaFOhyGSplUB7ezChWMuMPX9xCYTzLyPNvg4baU/tJdbVs6TXaCm+/eoFL5/uork3xxOfPBEFaQEDAumzn3eGpu7aKgIBtspVeMtMyKCyUMC0TKe9uaXNhfJbyXJFkczX2OoGgnYzR/OQZmp88s+1eOGEYyHTqprBspLyLv6r+PRrvOUTU203BuE7U6WBfexeGaRLf1cG+dY6ltcabn0faFvKvvuILzi6amyOl//cWsVnZfBRZ1QZWBGFH/cnNW5CJNvTeb6KLWSjPos3IqkDp5rlLE2gR922hQrUQWq3wL0N16Mzn/f47YfiBV6gFNfMyzLyFN/4sZB7H7PgvQDs3PTXXPGe8EbnrIVRpDtMT6NwM7swMWGGMmrV7ztxiGa00wpC4ueI6z+Kdcf3aCFU1abKTcxRyJVJVdyakOzo6zptvnOXAwb10dgaTowEBP49sOUDTWg+s5SQADOz4qgICNmB6fI6XnnmPWCzE/U8eXdc54J4nDzIxmCVdmyC0jofmTjDVO8ar//ZHKKVov7ebw0+f2bQstpXgTCnNdL5CTdxGCLFCWLYYGuCNH7/I0bEZfvD4v2aqJrJKKmM9ipcvUbxyBcMokRp8HaHcFebma641llnjSIvrHD+PGnsXVRjGiCQRTQ8g6g6t2k67OfTI9xHKgUgzMnP/6m20XpTkCC2XPYXESN+HqizA5IuAgPmzoEo3e9J0YRyceYi3QXEWNfIWJFuR9YeQtfu59VkxlS9Tst5rFG+uxenpwHMcUnvb1r3uO+H46X28/eoFOve1kkitPaG6GVpr/s2/+RMmxif5wQ9+zP/+R/8jicTH65gQEBCw8wROAgEfG2rxg3IrQcWtXL0wCFozOT7H5OgMbZ1rq8ZHE2Hae5rWfOxOcUoO+Zk8sarYTd20bP8US+OG+ekcWrPu9OFWUUrztT99hXeGhjje0spf/e6ZFcKyoUIrnakaKnN5pGJFb9laVKZnmH//A0IJqGQLKNdDeRa68Thi9J2N3QA2QJfmUEOvgVtATF2BtnvRlfl1Nlb+X2GBrqx+WGt09mXIXYf4bqi+f0Uga1Q/iDfyHSj0gh1GV7KISDO6PIvu/we05yCq9qBns2jl+XptqVaI+Bk/7Xm4U+MI08LMLF+rV6rg5ovY6QTCkEjLJLOGn+pO0LW3la69258WvRWlFAvzOeyQTbFQpFJZ/VwGBAT87BM4CQR8LMxk5/jhD15ECMGTTz1Iumpz1fglWtpruXFtjEg0RDrz0RlQK6U498x5FqYWSNQkOPq5I0gpaTrcxtS1EdyCw/4vnEAaH76pfDJX4rz6Q8KdA5wv7mIy95+oT0Z4+Zt/w7WJYeIXRsmJIVI97SS7N8/yzL97juS7f4C1cIlKuJMx+VVCbe2If/J9KM2sMjffMmYIYUX94KjuMKR3I+uOoKYv4t34CRTHEBKo6kK2PAENj6ELQ8jUwdXH0hXIX0eH6xH561B1CsRydlQYYWTz12DuXZCmP2kKoBxQHhgW2ingLcyih95B1HVjmGFUIYfKz+NmZyhdvQBCED/zCGZ1DV65wuizr+Pmi8R3t1Bzqmf7z8FHjGEY/LN/9g1+/NxLHD9+iExmc128gICAnz0CJ4GAj4X+viHK5QpaaW4MjGwvQOuo5wu/lsIwDezQ3bfzWUJ7mnw2TzQVJZ/No1yFtCXx2iRn/vMn7ljC41ZR2aVsomHmMSIDIBRGZADDzAMRTMNgX2MbNLbBY6e3fA47IbEWLiFQ2KVe4ie70GbKn15co6y5Ed7UEN7YNYyGLoyaFkTXk+irz6GljVF3AowQeuglyN2A2Wto4cDsRVT2IqLxNKI4hnYdaHh4xXMmZAgV60bkr0J8L0IuB2dq9gOYeg0iTVB1EmHGIdLs7xepRdXf70uBTEyjJgcQrfeC56A9TfGN51DlIm6x4vfQKYV2/KyTVyzjFIpYiSil8emtXb/rcen16+Tmihw400W86s5KlR+Go8cOc/RYMJ8VEPDzzHa+6t/uJPAPBE4CAXdIS2sjhpSYlklT8+pG8c2IxMLYIQutNU7FvQsrXI1hGex9YA9WyGLvA3swaxIzZAAAIABJREFU7eXvNxsFZ07JwSmuXYZaksn48vee4sy//wqu5wGQiWQ4UX8MQxicaDhGJrJ+D9iaKAW5CVg0pE+cOINuOoWWJqruKDJZT+L4+h/wqlzCGRtGFfIr7vdys5Tf+AdUdgTn0ktoz4HiPLowD6UF1Mh5X34j1gBGCOw4SAMQYMVh/BWINcLsJfD8Bnytta+NNvx9xMwFdOoeRPokynPR5Wm0W4Ds22BnEIVBZHwPMnXw5lCAmhtB3ziLuvhTvMIc3uQQ7sWX0DIKnod2yohQBCuVILSrk/D+wzcN561UnNS+DoRhUH1ipZn9ekyPzNF/foS5yQWuvNW/vddlHfL5AhcvXGVyYmtBYkBAwM8/2xkS+OLij4GTQMCHpraumqe//llfI8y+syyY63q89KN3GRue5ug9e9h3pH1nF7kGdZ111HVuPeOUm1rgwo/Ogdbsf+IQkUxsRbbs1sb/W0VlhRB86zPfIlvKkglntpedUwr+7PMrpjOFYSB+5x+hMIURq6Vqg+Nprcm/9Qre3AwyHCXx0BMI00QrRfnci3jjg3hj/dgH7scdvUblxX+HKE9idt0L8TpfcLbjM8im02gh0ZUFGPmJP5EZOQz5IUh2opWL7v1PoCpQe9K/P1QNU6+jp95C5/r9idBwHTrWhli4CuEGsFZmW9XkJZzrb6JGLsL4EMpIYe55DOUIZCyBvf843tQYVls3MlmNNFcG1tWHu+Hw+j1nuZk8uWyeqsY0oahNJB7CtE2cskuqbmdK7M8+8xJjYxPYlsVXv/YFYrGPPisXEBDwyeKORHgCJ4GAneDDWjzl5gqMDk2RqU1x6Vz/RxKgbUQpX2b82jjx6jiZVr8vaH5sDuV6CCmYGpria9/9rZt2Sy9/829WNP4vicp6jkffq1coZHN03LcXEVkOppxSBadQIVIVWz9oK0z5wdnt05m3yWesi9boYgEZjqAqJbTnIUwT0OBUMNqPoQszWAceofzCvwMk2rMQ1Xsw6vcAIAwLonX+sESkBp1s9+8H8Mp+GXT2Ero842faCuOIUAYqM2CmwJmD4jhEGsDJIxLdiMxJMCIIady2XIkuzoERQtR1Y8ZaEFpjNPremHZLJ266gekX30A7DtX3ncSu2VrfVqXk8Pb33qdSdEjXJzn1S0dJVMe4/4vHcMou6R0K0JyKg2WaeJ7C89SOHDMgIOBnm+1McYaBfw48gO/j8hLwJ1rr0l1aW0DAhsRTURqaM4wPZzlyz92ZutsOl1+6yszIDCA49SvHCCXDTMccrKgvk7GQZs1s2e0WTHPjM2T7JrFjIYbf7Wffp/1SZKVQ5tIPzlIpVGg81Ebz0Xb/xErdFJZFCP/f1tPLGbRtTmcKKYkcO03lxnXCjS3IUGjxfgNZ3Uz5/Zex955AxtPIxr2oiV4IpzCa1m5J1cpFDbwI+QnEroeQiUa0VhDKIIywL1yb7EREHwBVRk+8gx78EdgJCNehE50IbQLGquAMQNZ0IzseQk3ewGjqwTz8WaQwILwsmFuensErFMEwyPcPbTlAU67CdTzsiE35ljJ1PO1nuAq5EqVihaqaxIeyEXvsiQe4cvk6jU11JJOBZEZAQMD2Mmj/L7AA/PHi7a8D/wF4eqcXFRCwFUzT4JHPnsCpuHdtWECpxQ/oLRxfSkBrhBS4WvHooqhsTHXy0jf+GkNKYj9ZmS2D1RZM4UQEK2pRKZSp3798fyVfppIvY8fDzI1k/QBtjXImUvr/3hq0bfV6XRdVKmNW12BlVgZ22nNxx4awOo/iTk+iKyXsI5/BbDmAiCQQ0TRaqRX6YrqcR2V70VNXIJyEkbfRu+5H9f7At1hqfxwRySDMRT0zIRHZi+jGx6E4hdz9ddTkRdSVf0DYceSeX0YX5vGyw8hkHbK6BaOqGXHiaUrvv0llbhZ16RzhYyslOkKZKryKy+ylXmJlSPTswYxu7gUbjoc4+Kl9ZIdmaN7XuOKxhbkCz/79G5RLDkdOd7N/KWC+A6qqUpy+99gd7x8QEPDzx3YCtL1a6yO33H5eCPHeTi8oIGA7CCHuWnDmOh5v/ON5smNz7Lung64j6+tXKaWpPtxGqj5FPBNnzFtYkS27PjOxZrZsLULxMAe/cAKn5BC5Rcw0Wh2npruR3MQcLcd3+3euUc7UsVrK80XMSBXmFoKzpaBKOQ7ZF1/HnZ0jumc3yYO3Nc1LA5mupXjuLWQijVIaQ0qM2l2o+SnKr/wdWDb2kUeR4Ri6UsA99x1UcRbhTCGlAbU96PkhcAr+8MDCKCKxbKUkhESnOhBzvRBvBiMCc4NgJ9CVeVS2H/eD5/EGLyBSDVj3fAWzuQdhRfHmZzHSGdypUXAdsJZL6GY8htnSSiKSwitXKGfntxSgAdS311DfXrPq/tx8gXKxQiQWYnJ05kMFaAEBAQG3s50pzrNCiHuXbgghTgMv7/ySAgLWZnZmganJmY/sfPm5IlMjsyQzcfrOD6+73ZKo7MP/5w/4l68Okm5M3+wt01qumS3bTJzXCttE0yv7zKQhaT/dxcHHdpGsT/l3LpUzpXmznDn+/gCXv/sWV77/9rrTo+AHZsM/eo1zf/hnDD/7Ol6hiDM3h5lOUhocQbkulalpVLkM+MGwrKrDSNchwjHc0aGbx3LH+tCALsyjZsb945dzaKeIjFZD1X6Mni8j6w8jEk1+35kGkVqt4SZaHkN0fRXR/nmENBDNp/1/M/shlEI5FfTiH4oL/mvgODglTf7iB1jt+xDW6v7GVHcb2lPYqQShTGrD538r1DZW0bGviXA0xMGTnR/6eAEBAQG3sp0M2mngG0KIG4u324CLQohzBKbpAXeZifEsP/zOS3ie4oFPHadrz85a8KxFPB2hrqWKqdE5ek4v+x3ebsG0kajsZtmybbFJOVNHa1gYm2Xs/A3sWIhKrkRloYi1js2Vmy8x8dI7mPEoY8+9Se2pHqJtLZRGxkgeOcDcG+9QHp/ATMSpfuQBpGkiowlEOOKXciPL2T1Z04o31ocIRZFJXxJExGqQjQfQC5OY7acQi4r+RDLInq8BGmGsXpsQEsLLPWIy2Qw9XwX8CVPr8Gfw0g3IRANGqy94W7x2FcwwsroZmVi7vyzakGHXLz+EkGJTK66tYJoGpx9ZQ3A3ICAgYAfYToD2mbu2ioCATcjNF3AcF8uyyE7NwZ67f07DNDj92UN4rsK0/Ob0tSyYNhKV3cyCaVtsMp05OzjF1R+fpzSbJxQ2aTy0i8gGTgtmNEykoYb8wBix1nqMUIjUiSOkThxBa83Ce+cxE3G8fB5dqYBpYje2IMOf8vevWtZmM6sbMM78MkjpT3DiDxuY7fesOq87egk91Y9sPoRR3bzhJWulcAc+QOWzWB1HkLE0ZlMPZtNKxX8zkaSiFMIwkZH1JSqkuXrIICAgIOCTyLbM0u/mQgJ+sZmfW+DatRs0NNSsKVzb3FZH995dlEpl9h/c/ZGtSwhxMziDtS2Y6hK+qOy7k+9ytP7o9kVlt8om05le2UED4ao4rcc6aDy8cZZRGJLu/+xXKIxOEqpJY4SXs1lCCJInjpK7dIVwRzvCvqWfq2rt6xPWStN67Tqo2UlENIEwDHSlBKaFuv4mhOJ4V15Cnv7qhtOPemEKt/99MENUKm8i0m2gPOxd3Qhrufcw1N6BmUojLBMjsXVXioCAgIBPKnekgxYQsNP8+NlXmZ2Z5z3gK7/6FIlEbMXjoZDNg4+e+MjXdbsN01rZMiEifOsz3+L6jQH0rEFhoUQsGfnwJ79dPkOIDaczq3bV0ZIrozxF7d7GdQ7qM/lBP7O9o9QcaKeqc+0sVripgdLkDLmrA5QmZ6l9+PQKkdfNKF98A+fGZbTjYCQSSCkwWvZCKIbKZZHVrZtLU9gR32PTLaPLFdyL76EFICShzn03NxNCYFYHnpQBAQE/PwQBWsAnAtMw0Fojfa/Xj3s5wLIN063CsksWTLdny8oFh0vPDuEpxfC1CR758skPd/L1+s02EJs1LGNZG23pGsoOA69dxSlWaL9vD+FkFKdQZvL9fkLpGKNvXiXdUb9uT1ZxcBQzFcednccrFJHJrQuzetNjuEN9qNwsuqYWu/MQeiGLqO7CG38VHSqjnTKYNu6Ny6iFGayOA8jYcgZMRhKETjyJLhdwSxWc7Gv+cME2AsWAgICAn0WCd7mATwSPPHYv/X1D1NZWE49/PDY3t2fL1rNhutWCSSmNYQjQGqU1Qgj0hxCC14vHWLffbJvMj8yQ7ZvAsE0mLo7QdroLI2QRqopTml4g0VKzYcN86tBe5t6/SLS9BTMeW3Mbr1hEGAbSXtnwb3UeptJ/CbNmn595kwZuoYR78R+xmnejizlUfh4QVK6+C4aJdsqEjz2y4jgyloJYCqk10rTQnodVvzrrp5WislDEjIQw7OCtLSAg4Gebbb+LCSF+DfglwMN3bvmO1vovd3phAb9YJBIxDh1eW4n+o2CtbNlaNkwAUkhqIjVcfneA829ep7WzjpOP7OfMU4eYHpujpWub5u+LpcxsLsRbP/qAaCLCyU/3EP4QbgBLhBIRDNtEeYpQMsL4pRFC8RDtjx6lkisSSm4cDEd3NRPdtX4jf2lklPm33kFYFlUPnMFMLGfYrJYuYo98GbUwg737AN78DKX3X4NoFc5oP6HuI5SvX8GdHEWX8pjRCCK6voq+EAKrbu2hC+W4vP/vnyF7ZYi6o53sf/qhIEgLCAj4meZO3sEe1lp/bemGEOL/AoIALeBnitulMtbLlq0nlaG15oO3+qiuTXLj6hg9J3dT21xFbXPVdhdys5RpJQ4hav5XZiYXmBmfp/EO3QBuJVaT4MAXTuC5HuMXR5i8OooQgp7PHiNW8+F9JCvjEwjTQpXKuHPzKwI0IQR2u98npl0XEa4gTAsjlsY+/QRYIQrPfQ8Zi2MkMoQOncSo2mZwu0gxu8DMtWHsZIzs5SGcQnlbAZrnKWYnF4gmwkRioc13CAgICLjL3EmAFhJCfA4YBFqAHeiGDvh5oFQqcfbsOSLhMIcO92AYn0xJg7WkMtbLlq0nlSGEYPf+Jq6eG6ShtfrOP9RvKWXG59+H6BThWC3JTHzr5uabEEos/ooqdbO/T2v9oY8LEOlopzIxiZWpxqpZe7rTnZ1l4fVXQQhiR+/DjMWQsQSFC+coD4+AWyH56FOYtS1r7r8VQsko1XtbyF4epv5YJ+Y62m/r8f6rV+n9YJhILMRjXzpJOOq/no7j0t87TDgSonVXwx2vLyAgIGC73EmA9s+BLwGHgCHg93Z0RQE/s5w9e453z57H8zySqSS7d+/asWMrpZiemiGeiBGJbM2iZ3nfuyMse+S+bvYe3UUoYm1diHYDY3PRepoHn/40hm1i3YXyXMuJ3YSTUULJMPHanZGisNIpap58fMNtKuNjaM8DrfAWcth1fqAjDIPQ7n1op4LZtPr/iqo4lKdnsZJxzNjG3wPNSIiDv/E4030T9L15nfe/c5aeJw8RTmzt++PkyCzReJhCrkQxX7kZoL339mXOnb2CkJKnfukB6hvvkoRKQEBAwG1s+1NAa10A/nzpthDiD4A/3MlFBfxsEgmH8TzP7xWydjbAePWVd7jwwRUSiTi/8qUnCYe3lrG6m8KyQojtZc62YGwevosTrFbE3lQbbStU5vNI28IMby1LZdc3UO7vA2lh1S1nBEMdvj2SsGys2npm3zlHeXSC5OF9RFqbGXv+dRauDBCuraL1S08g7ZWeq06pwtBrV1GuS8vpPYQSEebG5zFtk3K+RH46t+UA7egDezj36jVau+pJZZaHITzXQ0qJ1hrP87Z0rICAgICd4E6GBP761pvAUYIALQA4dLiHZCqJZZm0tm6sEL9dhoZGSSaTzM8vkM8V1g3QtpIt+8iEZW9nEyeAj5rSfJHZ0RmSdSmiVWtPaN7O7NUhJt+5jGFbtDx+Ejux+cStmU6TfvzTgJ81W0KYFuUFl+LwELG8S6FvEDMVZ/78ZSKtzWTfvoRbrlAcy1L/+H2Ea9Irjjs/OMXs4CRCSqavjdJ0bDd1exqYHc4SrYqRqNt6lrCuqYrHvnxq1f1HTu4jFLGJxSM0Nt/ZoEZAQEDAnXAnaY55rfXvLN0QQvzJDq4n4GcYwzB2tKx5K/fdf5LXXnmHw0f2U1W9ttH1VrNlS8KyS1IZ29VduymFsRkblDM/zGTmTqCU4sIz5yjlSthhm2NfOoVhbd4zWBibxgjZuMUSzkJhSwEarAzMlnBzefIDw9hVSXJ9NzBTCdz5BWJdHVTm81Q8QWWuSHpvK2ZsdVk7lIrdzG5Fq/3pz1RDmhO/ei9ih/T0wmGboyf2bb5hQEBAwA5zJwHa/3Lb7f9uJxYSEABQqVR46833cD2PU6eO3uw3a21tpPVXP7fhvtvJli1JZWwH1/V46cfvMDoyxX0PH2HX7g3KoVsoZ97pZOaOoMFzPAzLQHlqy0MD1T3tjL12gXimjnDtyoyW1prS5AzSNAlVb569MqIR7OoUlews8T0dJPZ14cznWBidYeqZN4l1tGDEotTedwxzjb7DeF2KvV84ifYUkapleY4dMaYPCAgI+Ji5kx60vttuZ3duOQG/6PT2DvDuexcwpCQWjXDi5JE1t7u9lAnclWzZrcxMzzE4ME66KsG5s1c3DtA+YeXM25GGZP8TB5nqmyTTVoN5y1DCwsQ8hdkcVS0Z7OjKUnI4k6L9c2fWPObclRtMv3MZpKDp0VOEa1JUZnNI20SaBkZoZc+aNE1qHjzN/9/encfGfZ93Hn8/M8OZIWdIijdF8dBF3Zatw4ccJ7YT2XESX3EbtEVTB21RIwt0DxQLdIug7WK73bTNolhs213UTbIpUCfbblrXiZM0PhrHp2wdpqyLuq3LoijxPodzfPcPUjJFzfAccn4cfl6AAM7x+81DjjR6+H2+v+dJxmLEeofo+fAKI72DdLeeY+hqN/5QAZGGWiINmVtvhKfo4yYislhNO0Ezs99Jc3cPsN8515K9kGQpixQV4TMjlXJEi9M3LU1XyvT5LOMYptmslqVTUhplWXkx3V19bLtrQtlrHsuZseERAgUB/P7srgxFK4qJVtzcCy3WP0zry4dIJZJ0Lr/Gxoe3Tvt8iYFhLOAnlUiQHI7Rc/w81w600ne+jeiKaqru3MiyDStvOsYCfhJ9SS79vAWXcpjfhwNCFaXU7FhHtKF62mVUEZF8MpMVtJ1jf344dvsLwF7gq2b2/5xzf5bt4GTpaWxawRNPPoJLpVheN7pyMt02GWaWtdWydELhII888QliwyNExycNE8qZyV97AX+gICvlzDOtlzjwxnFKyiLc/+g2QtO8cnK2UskUve09JGJJwqUzS4yWbWgiGYvjDwcpqq3gyp5DgDHS2Ydv9Qq6T1y4JUEbfVE3Ol/T7yOyvILixhrM7yNaX+WZuawiIgttJglaBbDdOdcPYGZ/CHwf+BSwH1CCJlmxfPnHJcCZtMmA7K2WZVJQELi1hci4cmbq/B6e/+Y/sHr7DrbftWHG5czBgWFC4eCN1bIPj31EtKSQ7o4+ejoHqK6b3wQtEUuQSkEinpxRs9f4YIzh7kEqd6wnMRzn4ttHMeejoKSIkrX1uGSKsg3pLyAJV5Sw/BNbiPUMsGzNCgJF6uQvIjKTBK0RGBl3Ow40OeeGzCyW3bBkqfJ0m4xMxsqZ7sK7tAfWUly3kiMHT7J1ezOBQPorIz+6cJWWvSeoX1nDbdvWYGYcPnCaQ/tPU15RzIOP3kkwGKB5awPvvXaMqtplLKvIPKcyW8xnRMqjFJY5wiXT6yGWHElw5qX3GRkYJlpbRiAUYKC9m9RInKYH76DxC+W4RBLfJL3xihtrmPvgKRGR/DGTBO27wB4ze4HR/mePAt8zswhwdD6Ck6VlodpkZCHQm0uXZvCVF3H97bTuuUDbh200r2/ImJwB7Hn9EH6/j0P7T9K0qpbSsiinWi+yrCJKx7Ve+nsGKa8qoWFNLcubqvD7fQvyfUYri9nw0BZG+mNUrprevrlUPEF8MEYwEmaos4+K9XX0Hega3VNW4B9teZHlxsUiIvlu2p+azrk/MrMfA/cxmqB91Tm3b+zhX52P4CS/zWW17Hop0zlHPB6noKBgilebm3g8wfFjZwkW+Gh+57exi+/d3D7D58NXUsundlczPDRC4RRluuracs6e+ojiksIbY4Vu27GGfW8eo76pmtLyj1fLJkv05kN5ffmMnl8QCVN3ZzM9569SuakBl3K4QAF+v4/eCx1EJrTjSI4k6L3cRTAaJjLuIgXnHNfOtpOIJaheWzutvmwiIvlqpr/WJoAU4BgtcYrMSjZWyxKJBC/99OdcutTGrl072HLbBs6evcCBfYdYvaaJbds3Zy3eY0dOs3fPYcKJbpo73gWXvLl9xhifz0dRmqaqE91z/22s29xIcUmEUGg0uVyzvp5VzXWLso9XeXMd5c2jbUf6LncSioYBI113tfN7T3Pt5GX8BX42PbbjRquM7ktdnPh5KziIDydo3NZEIp4E525qAyIishRM+38CM/v3wHNAJVAN/J2Z/dv5CkzySyrluNoXu9EQ9ePVsv/G4dSfcLV/+EabDL/52VG77ZbVsoklvu7uXi6cv0xFRRkHW47inOPnP9uDc459ez+gt7c/G4FDfzs+DOdSDPmKGa7eBr7AnNpnBAJ+qmvLb1lp80pyFh+Oc6n1Ml2Xu2d8bLS2jKZPbqLuzmZqttx6YUB8KEYgFCCVTJEcmTDf0rnR9Xnn6Ovo5+1/2Mvbf7+XnvbeWX4nIiKL00x+Lf1N4G7n3ACAmf0p8A7wF3MNwsy+BPxnYCNw17jSqeSBVMrxK3+zh/3nutjRVMb3fuuerOwtKy0tpm5FDW1tV7nr7jswM+pW1HDu7EWWlZVSWDjHqwHHtc/YVH8XwQf/Cr8/QGj1UzDUmftpAPPo5LtnuHzyCj6/jzuf2Ea0fHqzOmF0iHzZqlpGhkawNL3bGu9qpu3IBSLlUYrGXfiwbEUZzfdvJDmSoGpNDR+duEIylsAX8NFxoZPSGczWdM7R1zNIYSR061W3IiKLwEw+uQwY/+tucuy+bDgMPAX8dZbOJx7SMTDC/nMdJK2f/eeu7zube1PZgoICvvDoZxgZid8Ynv7pz9xLx7UuSpeVzH1f2rj2Gb6L77GuPvpxOdMD0wDmUzKexOc3XMqRSqZmfPzlo5c4t+8MRWURNj18G4HQx+9FuKSQlbvW3XKMmVG95uOpAZUNZVw4cgmXSlG1cmatU/a9dZQTx85TVlHCQ4/drSRNRBadmXxq/R/gXTN7ntHE7Eng29kIwjl3DFBTyjwxcfN/eSRAxdpvM+A7TSS1hvLII1lrKuvz+W4kZwCBQICa2ll27ffwcPOF1nzPGiJlRUTKiyipmnkDjPaTbRSWFjHQ0c9QzxDF1emT5b5r/Rx/+ySRsiKa71lLYNyFAUWlRez60k5g5qXfc2cuU1ZRQtfVHgb7hyktm/8WJSIi2TSTqzj/3MxeAz7BaIL2FY14konSbf7vinURC5zBXIpY4AxdsS4qCyvnvansjHh9uPkCC0dDrN6xctbH193WwJm3T1CyvJRQceaLJj5sOc9wf4ze9j6qV1VRMeEK0tnuydu+awMH3mmleVMjxTOciCAi4gVTJmhm1gc3XYxl4x5zzrlpbQwxs1eA2jQPfc0598J0zjF2nmeAZwAaGxune5jMk+m2yrij+g5a2lu4o/oOKsI5biybjseHmy82VaurKa4q4dCrR3jv+/vY9OCGtO07SmtKuHa+g4JwAYWTJHIztbq5ntXN9Tfdl0wmOXb0FM45NmxcM++tWURE5mLKBM05l5UG38653Vk6z7PAswA7d+5MdxW/LJAZtcr4bA4by6YPfkHKmYODQ7S8f4zCwhBbb9+A3790ensNdA0w2DVIOBLio9a2tAlaw5YVlC1fhq/AR0dbD93X+qldVZlx5Sw+kmD/G60M9g+z81MbKSmb/sULp06e4603DnD9983btm6Y/AARkRzSzlmZtmw0lp1vbW1XOXr0BKtXN7JyZUOmb2TBypkfHGzl6JGTJBMpyspKWbmqfuqD8kS0IkpRaSHDfTFWN6dfhTQziiujnD10kaNvnQIH2x/ZzPIMUwyuXOzk3InLBMMFtB48x10PbJp2PH6//3oHDwIBffSJiLd54lPKzL7IaLuOKuBHZtbinPtsjsOScRbDGKZUKsVPf/IzfH4fZ06f41e//BSFhWnKZgtYziwsLCSZSOHzGcFQdgedO+eIxUYIhYLeWJWcIBQJseOJ7SQTKQpCk3/UpJIpMMM5h0tlXhiPlhRSECwgEU9SUVM6o3hWr2nA7F5SKcfqNRmSdxERj/BEguacex54PtdxyMcWw2rZRGZGJFrEtWudRKMR/Nd7cOXw6szbtq6jrKyEgmCA5cuzl/w553jr9QOcOnGedRuauPeT27N27mzy+X340vRCm6hp8wp8fh9+v4/aVTf/3UmlUly93E0g4KeippSHv3Q38Vicsqrp90WD0QsO1qy9tXGuiIgXeSJBE2+Zr8ay2eac4/ChY1xuu8KOHXdQUVHG5z7/adra2qmsrCAYDOb86kyfz0djU13WzxuLjXDqxHlql1dyovUcO+++jWBw8W56DxT4WXVb+vLvqaMXOfBGKz6/jwcf20HV8jKgcGEDFBFZYN6YKyM5NXEM08eNZXvZf66TjoGRGY9hWgjXrnXy5lvvceliG6+//g4AkUgRa9aspLR07NqWdOVM+Lic6cHS4HSEQkHWbWii7fI11m9YuaDJ2YeHL7Hnhwe5eqFzQV5voG8IX8BHMpFkaHBkWsekUila3j/Kaz/bk52RXyIiC0wraEtcutWy+Wwsm02hUJBQQQFDw8OsLM2wp2iW5czh4WHi8QTFxd5scGpm3PvJ7ey4awuhNHvbYrE4fb0DLCsrJhBIf+WNdaiFAAAXPElEQVToSCxOZ3svJWURiqKje/Wcc1y91AVA1YqyW97nwd4hjr1zhqKSEAd/1srup++9+XUHRwgE/fgzvOZsbNjaxMhwglC4gOWN02vR0nb5Ku/taaGgoIBEPMHuh+/LWjwiIgtBCdoSMnFfGaQfw2SBPu83lgVKSop58qnP09vbz4oVYy32Ju43M5txObO3t48X/vmnDA0Ncf8Du1i/fu08fyezly45i8cTvPTDt+nu7KNx1XLuf2hH2mP3vHyYKxc7iRSH2f2LdxEMFXDx1BX2vXIMgDsf2kT92pqbjhntVxZioGeY6sab22acb73M4TdPESkp5J7HthIqzM5FEYWRMHc/uHlGx4TDIQKBACMjcYpLvJlki4hMRgnaEpFupcznSz+GyWeLoLHsmPLyMsrLy0ZvZNpvNsOrM7s6uxkYGCAajXD2zAVPJ2jpxIZH6O7qo6y8hI8utuOcS7vi2dPRT6S4kKGBYeIjCYKhAmJDiRuPjwzHbzmmIBjgnsduZ6BniNIJI6AunWinqCRMx+Ue3v3JYRrW1bByc92CrLZevHCZgy2trFnbwIaNaymvWMbjT+5mcHCIuhU1U59ARMRjlKAtEelWyqqKQxnHMHmusex0ZGqfMUMlpcXE43Har1xl90OfmodA51ckWsjtO9Zz9uRF7vnU1ozv3127N3Oi5RwbtjcRKR7ddN+4vobhgRhm0LAu3eAPCEdChCOhm+6LDY1QWBrmyvkO+rr6GY6NcP54G9HyCFV1y7L7DU7gnONfX32HcCjE228coL6hjmi0iMqqWxvjiogsFkrQ8tR0BpYDVITTr5Z5rZx5i4mlTMha+4z33z9EQSBAoMC/eJLTccyMrdub2bq9edLn1awop2bFzUlMMFTAll1rZvya+14+yrVL3QSLgtStr+GdH32Az+fjo1Pt856gmRmVleV8dOkKxSVRQqHFezWriMh1StDy0EwGlpvZ4lsty1TKnMV+s0wcmiI2E8ODIwSLCkjEkqzdsJyLJ9sJR0OYf2H+Pu1++BO0t3dQVlaqGZsikheUoOWBuQ4s9/xq2USTlTKzMA3g3nvvpLKinJKSYmpq5q+JbT7ZuXsTZ45corq+jNqVlaNTDobirNu2MI1hg8EC6uvTl2RFRBYjJWiL3Iyayi62lbLrFngSQDgcZuvtM7tqcKkrrYyy7f71N26v374yd8GIiOQBJWiLzMTVsnSb/yuj3hrBNCc5ngQgs9PfO8SeVw/hD/i559ObKYykmYkqIiIZKUFbRBZzU9lZW8DB5jIqEU+w97VjdF7t5c4HNlJdN/OrIc8ev0RXRx+pVIqLH16lebOGk4uIzIRGPXnYdEYw3dj8bx9v/ofcjmCak1QK+tth7Hu+Uc70BeZ9sPlCaW+/yp49e2lvv5rrUNLqaO/lwukrOOc4tv/DWZ2joqYUUg6/z09ZRfHUB4iIyE20guZR010tW0xNZae0BMqZiUSCF1/8Kamk4+jR4zz99C8TCHjrn2FxaRFF0TBDA8Os39o4q3PUNVbxyC/di5kRLdFgcxGRmfLW/wxL2HT2lmUawbRoN/9PtETKmQF/gMHYEEVBbyYuRdEwD/3iXYwMxyleFpn1eYpLi7IYlYjI0qIEzQPmulq2KDf/w4JfnekFgUCAxx5/hEuXPmLFijrPrZ5dFwoHCYVvnqXZ2z1Af+8gVcvLKCjwZtwiIvlCn7IesCRXy5ZAOTOTsrJllJXNb3f9bBnoH77xNrz8wrvEhkdYubaOez+zNbeBiYjkOSVoOTCdMUx5t1o20RIpZy5mbZc6+PlPDoDBjk9sZCQWp7AwRE9Xf65DExHJe0rQFli6cmZeDSyfriVQzlzsrrZ14XC4lCM2PML2ezfQfqmTzdtnNqtzeDhGy/tHCQQC3H7HBo1iEhGZBiVo82y6jWXzerUMbt1vlsW5mTI/Vq6t4+K5dnwYTatriZYUsX7LzEc3HT1yikMHT+BSjpLiCOs2rJ6HaEVE8osStHk0o8ay+bxalmm/mcqZWXf29EWOHzvL+o2rWLWmfk7nKi4t4nNP3TvnmIqKwriUw5Hiw3OXGBwaZPOW9VpJExGZhBK0LJpLq4y8Wi2baLLh5pI1IyNx3nxtP0WRQt58bT8rGmoIBnOfBK1bv4potIhzH17k4MGjnDk9+gvIHdu25DgyERHv0iSBLLm+Wrbr66/yy8/uIZVyN1bLIs1fp2Ltt0Zvh0fLmX7zL/7GspksgWkAXhQI+ClZFqW3d4CSZVECAX+uQwLA5/NR37Cc5StqMDOcA79H24uIiHiFPiVnSY1lM1jC7TNyzefz8fDn76Ozo4fyilJ8Pm/9/rVqVQOf/dwDJJNJVq+e3YQCEZGlQgnaLCzZxrLTofYZOVVYGGJFvTd/zmamxExEZJqUoE1h4koZLNHGspkswWkAIiIi800J2iTSrZT5fEu0sWw6KmeKiIjMCyVokxhdKesikXLsP9dFx8AIVcWhpdlYNh2VM0VEROaFt3YRe0xlNMj2plICBf1sb1pGZXR0eHSmKzGvr5blbXKmqzMXlHOO9w8c4Z//6SUuXryc63BERGQBaQVtEg5HUePfEC1soaj6Dhz3YFj+N5ZNR+XMBdfT08e+vR9QUhzltZ+9y5d/7ckZHd/XO8C1q93U1JZTFCmcpyhFRGQ+aAVtEp3DnbRcbSHpkrS0t9A53HnjsbxfLZsoXTkTPi5nLpWfwwIqLAxTXByhp7eP2tr0+xg7rnXzs1fe49iRMzfdH48n+Jcfvslrr7zHSz9+B3d91VNERBYFraBN4nopc+LG/yVBV2fmXCgU5PEnH6Knu4+q6vK0z3nr9QMM9A/x4ekL1NRWUF5RCkAymSIWGyESKWRocIhUKoXf743GtSIiMjUlaJNYkqVMUDnTQ4qKCikqylyeLCmNcvVqF+FQkFDo47FO4XCQ+z+zkw/PfMS6jSuVnImILDJK0KaQ120yMtHVmYvGvZ/cxuo19RSXRIlEi256rKFpOQ1Ny3MUmYiIzIX2oMmtdHXmohEMFtC4so6y8pJchyIiIlmkFTS5db+ZmcqZHhePJ7h04QqRaGHG/WkiIrJ4KUFb6jLtN1M509P27vmAo4fPUFAQ4PGnPj3lCloqlfLc8HQREclMn9hLXab2GeJpg4MxgsECkskk8Xh80uce2HeEv/3W87z95vtqtyEiskgoQVtKJk4CAO03W6Tu3rWV5vWN7Lpv26QlzkQiwcH3W6muqaD16GmGhmILGKWIiMyWSpxLRaZSpvabTSmVSmFmnmqzUlwSYdd926Z8XiAQYO26Jk4e/5DGpjrC4eACRCciInOlBG2pyNQ6A7TfbBJtbW38+Mf/QlFREY8++nmi0WiuQ5qx+z61g207NlFUFNY+NBGRRUKf1vlKg82z4tixVsDo6Ojk8uW2XIeTUfuVDi6cv0wqlbrlMTMjGi1SciYisohoBS0faRJA1qxZs4aTJ08RiUSoqvJOw+JEIsEbr+3n0qUrbNy4moMtx0kmk9y963a23rE+1+GJiMgcKUHLR5oEkDWNjQ08/fSX8fv9FBQUTH3AAuns6OHs6QssKyvhwL6jmI3uNxsYGMp1aCIikgVK0PKBBpvPq3A4nOsQblFSGqW0rISenj6237kZMxgaHNbqmYhInlCCttipnLkkhcMhHnvyQYaHYhSXRDx1hamIiMyddg0vdpkazV4vZ+o/7rwVDBZQUhpVciYikoeUoC02ujpTJujq7OEf/+EnvPjCqwwMDOY6HBERyQKVOBcTlTMljdbW0/T1D9DZ2c3FC22s37A61yGJiMgcaQVtMVE5U9Koq6smlUwRDAapqFiW63BERCQLtIK2mOjqzLzR3z9IR0cXNTWVhMOhOZ2raWU9v/hLn8fv9xGJFGUpQhERySUlaF42sX2G5mbmhXg8zos/eIW+vgGqqyt54osPAdDZ0U1XVw91K2ooLJxZa4+SksU3gkpERDJTguZVmfabqdnsojcyEmdgYJBoJEJ3Ty/OOQYHh3jxB68yPByjoaGOzz36QK7DFBGRHNIeNK/KtN9MFr1IpIj7H7iH8opSdj/0CcyMRCLJcGyEtrarvPteC729/bkOU0REckgJmleofcaSsrZ5JZ/93P2sWFELQGlpMZu3NNPfP0BFxTL27f0gxxGKiEguqcTpBWqfsWQND8c4fvw0kUgR69atYv2GNSQSSUpLi3MdmoiI5JASNC/QcPMla9/eDzh8qBWAx594mCe/+DBDw8PU1dXkODIREckllThzQeVMGWPGjdVRM6ioLKO+fjk+n/5piogsZVpBW2gqZ8o4O++8ndJlxUQiEWqXa7VURERGKUFbaCpnyjihUJAtWzbkOgwREfEY1VHmm8qZIiIiMkNaQZtPKmeKiIjILGgFbT5puLmIiIjMghK0bFI5U0RERLLAEyVOM/sG8BgwApwGft05153bqGZI5UwRERHJEq+soL0MbHHObQVOAL+X43hmTuVMERERyRJPJGjOuZecc4mxm3uA+lzGMysqZ4qIiEiWeKLEOcFvAH+f6UEzewZ4BqCxsXGhYrpVKnVz6dJM5UwRERHJigVbQTOzV8zscJo/T4x7zteABPBcpvM45551zu10zu2sqsrRKtX1/WZ/vhG+84XR26BypoiIiGTFgq2gOed2T/a4mX0FeBT4jHPXL4P0qEzTAERERESywBN70MzsEeB3gcedc4O5jucmE1tngPabiYiIyLzyyh60vwRCwMs2Wh7c45z7am5DInPrDO03ExERkXnkiQTNObc21zGkNVkpU8PNRUREZJ54osTpWSplioiISA54YgXNs1TKFBERkRxQgjYVlTJFRERkganEKSIiIuIxStBEREREPEYJmoiIiIjHKEETERER8RglaCIiIiIeowRNRERExGOUoImIiIh4jBI0EREREY9RgiYiIiLiMUrQRERERDxGCZqIiIiIxyhBExEREfEYJWgiIiIiHqMETURERMRjlKBNYf/+/Tz33Hc5fvxErkMRERGRJUIJ2iQGBgZ49933CAQKeO2110ilUrkOSURERJYAJWiTCIVCVFZW0tFxjYaGBnw+/bhERERk/gVyHYCXBQIBnnzyCbq7uykvL891OCIiIrJEKEGbQjAYpLq6OtdhiIiIyBKimp2IiIiIxyhBExEREfEYJWgiIiIiHqMETURERMRjlKCJiIiIeIwSNBERERGPUYImIiIi4jFK0EREREQ8RgmaiIiIiMcoQRMRERHxGCVoIiIiIh6jBE1ERETEY5SgiYiIiHiMEjQRERERj1GCJiIiIuIxStBEREREPEYJmoiIiIjHKEETERER8RglaCIiIiIeowRNRERExGOUoImIiIh4jBI0EREREY9RgiYiIiLiMUrQRERERDxGCZqIiIiIxyhBExEREfEYJWgiIiIiHqMETURERMRjlKCJiIiIeIwSNBERERGPUYImIiIi4jFK0EREREQ8RgmaiIiIiMcoQRMRERHxGCVoIiIiIh6jBE1ERETEY5SgiYiIiHiMEjQRERERj1GCJiIiIuIxStBEREREPEYJmoiIiIjHeCJBM7M/MrMPzKzFzF4ys7pcxyQiIiKSK55I0IBvOOe2OufuAF4E/iDXAYmIiIjkiicSNOdc77ibEcDlKhYRERGRXAvkOoDrzOyPgaeBHuDBHIcjIiIikjPm3MIsVpnZK0Btmoe+5px7Ydzzfg8IO+f+MMN5ngGeGbu5Hjie7ViXuErgWq6DkKzT+5p/9J7mJ72v+Wf8e9rknKuazkELlqBNl5k1AT9yzm3JdSxLkZntc87tzHUckl16X/OP3tP8pPc1/8z2PfXEHjQzax5383GgNVexiIiIiOSaV/ag/YmZrQdSwDngqzmOR0RERCRnPJGgOed+IdcxyA3P5joAmRd6X/OP3tP8pPc1/8zqPfXcHjQRERGRpc4Te9BERERE5GNK0AQAM/u2mbWb2eFcxyLZY2aPmNlxMztlZv8p1/FIdpnZl8zsiJmlzExX/uUJM/uGmbWOjUB83syW5TommZvZjLRUgibXfQd4JNdBSPaYmR/4K+BzwCbgV8xsU26jkiw7DDwFvJ7rQCSrXga2OOe2AieA38txPDJ3Mx5pqQRNAHDOvQ505joOyaq7gFPOuTPOuRHg/wJP5DgmySLn3DHnnJp15xnn3EvOucTYzT1AfS7jkbmbzUhLT1zFKSLzYgVwYdzti8DdOYpFRGbnN4C/z3UQMnczHWmpBE0kf1ma+3TZ9iIz3TF5srhM5301s68BCeC5hYxNZmeq99Q59zXga2MjLX8bSDvS8jolaCL56yLQMO52PfBRjmKRWXLO7c51DJJ9U72vZvYV4FHgM079sBaFGfxb/S7wI6ZI0LQHTSR/7QWazWyVmQWBXwZ+kOOYRGQKZvYI8LvA4865wVzHI3M3m5GWalQrAJjZ94AHgErgCvCHzrlv5TQomTMz+zzwPwA/8G3n3B/nOCTJIjP7IvAXQBXQDbQ45z6b26hkrszsFBACOsbu2uOc0wjERczM/hG4aaSlc+7SpMcoQRMRERHxFpU4RURERDxGCZqIiIiIxyhBExEREfEYJWgiIiIiHqMETURERMRjlKCJiIiIeIwSNBERERGPUYImIlllZv25jiEbxn8f2fiezGylmQ2ZWctczzXJaxSaWYuZjZhZ5Xy9jojMPyVoIrIk2aiF/gw87Zy7Y75O7pwbGju/Zq6KLHJK0ERkXpjZ75jZ4bE//2Hc/b9vZq1m9rKZfc/M/uMsz79y7Dx/a2YfmNn3zaxo3OP/bGb7zeyImT0z7phjZva/gANAQ7rnTfG66c5751gMYTOLjD22ZZrxf3PsZ/Scme02s7fM7KSZ3ZXp9cbuj5jZj8zs4NjxvzSbn6OIeJNGPYlIVo2VA+8HvgPcAxjwLvBlRmeCfhPYBQQYTZL+2jn332fxOiuBs8B9zrm3zOzbwNHr5zKzcudcp5kVMjo4/n6gGDgD3Ouc25Ppec65DjPrd85Fr39P477O9Pz/CoSBQuCic+7raeJ90Tm3ZdztU8A24MjYuQ4Cv8noMOVfd849Ocnr/QLwiHPut8bOV+qc6xn7+kNgp3Pu2kx/riLiDVpBE5H5cB/wvHNuwDnXD/wT8Mmx+18YK8X1AT+8foCZrTazb5nZ98duR8ZWx/7GzH41w+tccM69Nfb1342d/7p/Z2YHgT1AA9A8dv+568nZFM/LJNPz/wvwELAT+LMpznHdWefcIedcitEk7VU3+lvzIWDlFK93CNhtZn9qZp+8npyJSH5QgiYi88FmeD/OuTPOud8cd9dTwPfHVogez3RYuttm9gCwG9jlnLsdeJ/R1S2AgRvBTP68W4Of/PnlQJTRVbqM55ggNu7r1LjbKSAw2es5504AOxhN1L5uZn8wzdcUkUVACZqIzIfXgSfNrMjMIsAXgTeAN4HHxvZqRYEvTHKOeuDC2NfJDM9pNLNdY1//ytj5AUqBLufcoJltYLTUms50nzed5z8L/D7wHPCnU5xnujK+npnVAYPOub8D/juwPUuvKSIeEMh1ACKSf5xzB8zsO8B7Y3d90zn3PoCZ/YDRvVbngH1AptLcRUaTtBYy/zJ5DPiKmf01cBL432P3/wvwVTP7ADjOaHkwnek+b9Lnm9nTQMI5910z8wNvm9mnnXP/OsX5pjJZfLcB3zCzFBAH/s0cX0tEPEQXCYjIgjKzqHOuf+yKy9eBZ8YSugrgjxndx/VN4H8CfwkMA286556bcJ6VjNt073ULGa8uEhBZ/LSCJiIL7Vkz28ToXqq/dc4dAHDOdQBfnfDcX1/o4OZREig1s5b56oU2dqXnO0ABo/vYRGSR0gqaiIiIiMfoIgERERERj1GCJiIiIuIxStBEREREPEYJmoiIiIjHKEETERER8RglaCIiIiIeowRNRERExGOUoImIiIh4zP8HlRCsfZQLF18AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAFFCAYAAADfBPg6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9ebxtRX3m/dTe59yJey+D4AS8AUHFAVpsaDRGJNFEjHNeQUmMaIKabtMOHTOYT9KiHRMzmGhaTaK+CRpn6KZjR0VjFEckEIwiKvISNUwdIDLd6Zyz96r+Y+86t3adWmtV1e9Xw96nHj7nw7n37lVr7bXXqvXdz/OrKiGlRFVVVVVVVVVVFa8GuQ+gqqqqqqqqqmoRVSGrqqqqqqqqqiqCKmRVVVVVVVVVVUVQhayqqqqqqqqqqgiqkFVVVVVVVVVVFUEVsqqqqqqqqqqqIqhCVlXVJpUQ4sVCiC9pf5ZCiBMdtvtNIcR7Ih/bHiHEQ2Luo6qqqiq2KmRVVc2hhBDfF0KsCiGONP7+n6awdFysfUspf1dKeUGs9qf72Cml/OeY+6BKCHGhEGJtCoR3CyG+IoR4vPbvZwkhbtb+fLkQ4oAQ4ljt754ihPi+0e4LhBBXCiH2CiFun/7+n4QQIskbq6qqYlOFrKqq+dX3AJyn/iCEOBnA9nyHsyn1ESnlTgBHAvgcgIt7Xr8XwG+3/aMQ4lcAvA3AHwJ4IIAHAPglAE8AsIXjgKuqqtKpQlZV1fzqrwG8SPvz+QDep79ACHGoEOJ9Qog7hBA/EEL8lhCi874XQjxOCPF/hBBD7e+eK4T4xvT3C4UQ7zde/5Wpm/N1IcRZ07//cSHEtdrrPiOE+Aftz18SQjyn5RjWo0shxEVCiHcKIT45dY2+LIR4oBDirUKIu4QQ3xFCnKpt+xtCiBuFEPcJIb4lhHiu9m9DIcRbhBB3CiG+J4T45em+lrTz9f8JIW4TQtwihPgd/Ty0SUo5AvABAEcLIY7qeOmfAjjPFssKIQ4F8EYA/0lKeYmU8j450deklD8npVzpO46qqqqyVCGrqmp+9VUAu4UQj5iCwPMBvN94zX8HcCiAhwB4EiZQ9pKuRqWUX8XEcfkJ7a9/FsAHzdcKIY4G8HEAvwPgCACvBfA/pqBxBYAThRBHTiHm0QCOEULsEkJsB/DvAXzR8b2eC+C3MHGMVqZtXzP98yUA/lh77Y0Anjh9328A8H4hxIOm//ZSAE8D8BgAjwVgQt57AYwAnAjgVAA/BaA3GhVCbMHk3P4bgLs6XnoLgHcDuNDyb48HsBXA3/Ttr6qqaj5UIauqar6l3KyfBPAdTB7iACauDSbg9bqpK/J9AG8B8PMO7X4I0yhSCLELwE9P/87UCwF8Qkr5CSllI6X8OwBXA/hpKeWB6e9nAjgNwDcAfAmT6OtxAG6QUv6b4/u8VEr5j9M2LwVwQEr5PinlGMBHMAEiAICU8mIp5a3T4/kIgBsA/IfpP58L4G1SypullHcBeLPaTgjxAEwA7NVSyr1SytsB/AmAF3Qc17lCiLsB7McE4J43dbW69HsAnimEeJTx90cCuFPfXnMI9wshzuxpt6qqqjBVyKqqmm/9NSYu04thRIWYPLS3APiB9nc/AHC0Q7sfBPAzQoitAH4GwDVSyh9YXvcjAM6ZgsDdU+D4MQDKOfo8gLMwAa3PA7gcE0ftSdM/u+pftd/3W/68U/1BCPGi6QAAdTyPxuRcAMCDAdykbav//iMAlgHcpm37FwDu33FcH5VSHoZJ7dQ3MXHnOiWlvAPA2zGJBnX9GwDl+qnX/ui0/X9D7a+rquZO9aatqppjTcHne5g4Tf/T+Oc7AaxhAg9K/w80t6uj3W9hAmRPQ0tUONVNAP5aSnmY9nOIlFI5RCZkfR5hkOUkIcSPYBLH/TKA+00B5ZsA1Mi82wAco21yrPb7TZhEkUdq72W3lNJ0nDZISnkngJcDuFCLJrv0hwB+HLNQdsV0/8922L6qqmoOVCGrqmr+9YsAfkJKuVf/y2mU9lEAb5rWQf0IgP+CjXVbbfoggFdiAkhto+bej0n09dRpUfm26dQFCmS+AuDhmMR1/yClvA4T6DsDwBfc36KzDgEgAdwBAEKIl2DiZCl9FMCrhBBHCyEOA/Dr6h+klLcB+DSAtwghdgshBkKIE4QQT3LZsZTyOwA+BeDXHF57NybR7a8Zf/cGAO8UQjxPCLFzegyPmb6vqqqqOVOFrKqqOZeU8kYp5dUt//yfMSli/2dM6qE+COAvHZv+ECYu1GenTo1t3zdh4rz8JiZgcxOAX8W0b5mC3zUArpNSrk43uwLAD6Y1T6yaOnBvme7jXwGcDODL2kvejQlIfQPA1wB8ApNC9/H031+EScT6LUwK2C/BwejTRX8I4GVCiK6IUelt2n7V8f8BJiD8awBun76Hv8AEBr/icRxVVVUFSEgpcx9DVVVVVRYJIZ4G4M+llD/S++KqqqoqT1Unq6qqatNICLFdCPHTQoil6fQTr8dktGJVVVUVu6qTVVVVtWkkhNiBScH9SZiMSvw4gFdJKe/NemBVVVULqQpZVVVVVVVVVVURVOPCqqqqqqqqqqoIqpBVVVVVVVVVVRVBS/0vATCZd6aqqqqqqqqqqmpWou0fXCGrqqpqk+jf73gRa3v/jG+wtvdL9+Nfwu/G+3jb++jdf8rbYFVV1VzKtfC9OllVVXMubniyiRuobIoBWTZxg5dNFcaqqhZCrU5WhayqqgVRCogylQKqTKWCLFMpoMtUhbCqqrlQhayqqnnTqYf8PABgIFvv32S6Ef+0/rvINF5GogEAvPyIs9b/bpDp1DRaj/i9PXmOwaYKZVVVWVQhq6qqVCmYsiknYOlgZSo2aCmgskmHLJtig1fT0RuWBFy6KnxVVUVVhayqqhLUBVSmcgFWF1yZ4oStLrDS1QdZujiBqwuuTJUKW7oqeFVVsalCVlVVTPnAU5dSg5UPULXJF7RcYapNPpDVJl/48gGsNs0DeNlUYayqqlcVsqqqOMUFVUrzCFe6+kCLCla6OCBLVx9wcQCWrnmFLaUKXVVVG1Qhq6qKIm6o0pUSsLjhSskGWZxgpYsbsnTZgIsbspTmHbaUKnRVVVXIqqrq1CmHnIdhwrl5Y4NVIyRubK4+uD+xHHV/qSTlGC894skAgGH+QZcs0jvXG++TGIrI18Z0hylGZjYSuOSeCmFVC68KWVVVuk455LwNf5cCsmLBVSNmb1EdsID5hiwpxzN/VpCla56By+xcb7xv9m9iQZfp0MWALpsLWKGragFVIatqc8oGU6ZiwxUVrEyAssmEqtZjKRy2TKCyyQZZNpUOXq6dqgldNlFBrC8SpQKYS+Ra4atqjlUhq2pzyAWqdJXoXrlAlS5XwFIqEbRc4ErJFbKUSoQt3w7VBbR0+UKXb91ZCHT57qNCV9UcqUJW1eLKF6yUSnGwfKFKyReulEqCLB+4UvKFLKWSYCu0Q/WFLSVX6Aot8neFrtD2K3BVFa4KWVXzr1CYsikmYNngKhSkTIWClU2pYSsEqGwKhSybUoMXZ0caClymbADGNaIy9mjNCl9VhahCVtV8ihOslFIAFhdU6eIELCAdZHHBlRInZCmlgi3uq4ILtHQp6IoxdYWCrhhtV+CqyqgKWVXzoxhgBaSpv4ohbrhSig1Z3HClFAOylGLDVqyONAZsAYBof3aQNRDx5iCrwFWVWBWyqspULKAyxQlYjTHJ5oBp/T6z3RvH+jxX8RZk5oKtWFBl6oLDZyEr5rRSXNCVqgO94d7ZPXFNy2DCEOe0EtI4O7HAroJXVURVyKoqR6nASokKWCb8KHHAla1tHa5m9lcwaKUCLGAjZCnFgi0qaOXoPE3YAniAq815okKXCVpKFbiq5kQVsqryKzVcAeGA1QZWSqGA1dduG2Ct7zcSaIVCVkq4UmqDLF0xgCsUtnJ1njbQ0hUKXX0RXwhwtUGWrhjAVWGrikkVsqrSKgdQmXIFrD7w0eUKVz5t9oHVhmOIAFo+kJUDrHS5QJau3MBVQufZB1y6YkzH4ApeLrClq4JXVSFqvRDnsxK4qkiVAFZKfYDlA0E+itXuzD5kww5ajVzrBa3ccBUq9T2SE7bG0zb7YKsEwPJVjLUNx9qX+S7gEhBeoKW/lgu4nnfoK9d/r8BVRVV1sqqCVRJUKZlwxQE9NveK2q6ve2VTCkerRLDydbJsSuFuldpp+rhaNsWY+8oGXr6ulqnqclUlVI0Lq/hUIlwBs4DF6SgpyOJqkwOwgPiQVSJgATyQpcQNWzpoldxpUkFLKca8VzpwUUFLiRu4KmxVGaqQVUVTqWClSzBNpaA0wIA9/uMCLKUYoMV9HrnFCVlAHFeLM2qLJS7QUoox7xX3eazuVlUkVciq8tNxu85e/313czhLmwpYuKc+KHWS0TWxuv77DQe+sP771qXDWPfDAVqN1M6noJ9PqX0+XNC21uwHAPz8oc9c/7udS/xdEwd06d3qkOHt6/DCAR4r44ONfPvetfXfDxkO6Y1HkP4pc04YywVdq83B6/1j972dpc2quVKFrCo36XClRIEsmxNEgSyzvdIASwcrJR2wAH7IAmigpQMWQIcsafnMKaCl4EpJhywlbtiigpbZrVJAy+YOUUFLhyxgFrSUSgMu8zRwz85PAS4dspQqbG0qVciq6pYNroBwwOKewLOtvRIgywZWSiZgKZXgZplwpSsEtGxwpRQCWSZcKdkgS6kE2OrqUkNgqy2CCwUtE7CUbKClVAJwtZ3WUmDLBlpAha1NogpZVbNqgypTrpDlUrvEOcdULrjqAipdbXClKxdodcGVkitkdYGVLlfIagMrXV2QpSsXcLl0qa6w5Vrj5ApcbYClqwu2dOUCL5dTkiNSbIMsUxW6FlIVsqomcoUrwA2wOCfy9GkrNWS5whXgBlhKnKDlAlkugKXUB1qugAW4QZYLYAHukAWkBy237nQiF9DyKSTvAy0XwFJyBS0gPWz5fKKpYcsVtIAKWwumClmbVT5QpcsGWKEj7drgKrS92IDlA1S6fOBKVwrQ8oErpTbI8oErpTbIcgUrXT6QpYsTuNpgyweylNpgK3Skng22fABLlw9s6YoNXqGfZIpo0Qe0dFXommu1Xlllj9WuIikUsGzinMqgmf4XopiAtSZWkwNWbDWyCQIsmySaIMCyaa3ZHwRYFO0ZCewZ8TxlpQwDKpvGzeSHS5zTKDxid9ialnvHY+wdx5tnLfRTHMuDs/VziGseLwB41q5fZmurqhxVJ2vBxAFWuotFhSvdxaK2FQuwQsFKiQpYsZwsKlzpThYVrnQniwpXoU6WrliuFhW8dFeLCku6oxXqZCmFOlpKsZwt6qcYK04MdbN0VWdrrlTjwkUWp2MFADubQ1naaUSDgeQxS7kAa0UcYJun68YDXwCnGcwBWxJjCPA80CTGGHosHN2lUbPC0g4AvPDQZ7JOKckFXA0EBkxdZQOBoaC3tdbw5mPX3buKAcPZbyCxa8hzT3M+nLiga6WRrDFRBa7iVSFrEcUNVwAPYDViOuloQYC1Ig4AoE+Eqty4G2fcK573yQVZAMigpdrhgCxOwAImkKXEhRAcoNVMj4YKWqqdEiELmIAWADJsNdPzxAFb3A8oDthamVqRFbY2hWpN1qIpBmBR1Ihm/QcoB7BWxAEWwKLUkblqZXR38LYS43UwokpvZyxpMRE3YJnierhSa7UarY9tmNBvLAXGMrytGIClq5lW6YVKQdp94xHuG49Ix8L9TlXtFkf9VjP94VCt25o/VSdrTpQCqnxdLAVUprgAC/CDLAVTNvkCVhtQ3dhaf5XHzeoCKx83q6sdXzcrNli9sKMmK5ez1QVWPs5WVzu+zlZsyFKOlilfh6sL1HxcrhQPKV+Ha6WlsK66Wwun6mTNs0oDLN2xiilXwNLdKpt8JkENd6x4zoePm8XlXHEqNmD1SYLnYcs1CpFTPq5WbMDqknK4XF2uLijzcblSvGNfd2try+Rl1d3aPKpOVsFKGQm6QJYLWKWMCbvASskFsFygqt3B2rhHqlzdrD7IcnGyXEGtz81KCVddTpZSysJ413jQxdHqa8vVzUoJWW2Olq4+d8sVyFycrZQPKxdnq83N0sXldlRXK5tq4fu8KFetVRtk+ThWsQHLBap0cU2C6g5Yk71yyQZbvu5VG2j5ttMGWTmcKxfI0hU7QvStwWqDLd92bMCVy8FyAS1dbdDlW+PVBl05HlhtwOUCWboqcM2lKmSVrpyF7DbACokDY0GWL1wBdsAKiQH9AOvg3jkUC7JCYkYbZOWKBn0hS4kDP2ygFVLobgOteYYswB+0ADtshRTTm7CV84Flgy1f0AIqbM2ZKmSVqBJGCCrAotZYcQCWgqsQqJo5lmn3RBkNGAZXs0dBlYIsau2VAi1KOzpk5a67CoUsJW7YoowmVLBFHZGogCsnZCmFwJaSgi7KqEXgIHSV8OBS0BUCWkoVuIpXLXwvTSUAllKKInZXlQBYpYgypYMpriL53IDFoZIK47mmewDKACyqFFxR5+CiTgnBqZKmgahF8ulVnazEOnbXU1gm12zQkCfW3CF3kY8D4HGxVsSB6As/u+qG/Z/FoGVxZHfxfH/ZssTzGVE1blYZzgmPqE6WEgeSSACHlHFaWNcspEgC+BbBzeJUIyV2L/GsWsChEcOClxw9SwPgb6urxakaF+bWsbueAoA2uabuzoQClt7GTkmf3T0UsHTHKjdcqXX5/v/9l6//HR9QhHaJBz+nLUs8yxyFaNwcfFhSzom+9qEIPCeqjZ/d/ez1v+OYmZvShN4x5oStNc3mCD0n+nvhOifX3jO5z4cib2jSaM+5UOjS2xiIsDO0oq1pOAxsQxflrKojqbDFohoX5pQCLIqo8VeKGctdRY0EuaRm87GpkTnjhjI+Jx2wQtV1jjna4JiVm2turb2FJFQc8VRoE23bjWWDMXHBci7dO6KtYgDMAleoxlJiTGyH44w+o0aIUVWdrIiywZWva2MDI47ZyzlcLMDPybLBVQ4Xy/bA1l0sXTyOls/ntfHYcjhZbYDlez5s59rHybJtrztZuqiulu/mbZ1iDkdrzfK09TkftvfCdT6Um6Urh7NlAyMfV6sNrHxdLd3NUsrhatkArbpawapxYSr1uVYuUNHnOHFMsJkqKuxzrVJAVp+T0gZYSunqs9qPMyVodTlYLuei73y7QFZXG22QpZQqQuzqFFOClg2wlFzPRdd7oZ4LwA5aulJAV5/75AJcfW24AJcNsnSlAq4+F6wCl5dqXJhCKWLBPsByiQVTAFbfUjdAGYCVRn3HwLnIRrjGzSo5IuQ439Q2csZlSntHZcSHLnFq33tN8Q07RZTYB0D3jtZ6o8S+Nhope0Fs66C776wx4mKpQhaTqIDFUTOVqubKBbD6FBuwXGuB+lysUrQ6uidq+1z1VyW0AZQBWkB80OpysUrSyYdu631NirotF6eJCloAX80WRRxf3Spo0VXjQoJCwMqEC18wMp2sELCiOlkmZPkWsscCLJ8HdAhc8ceG/p8dd2wYAlfmefAFI1tc6NNGX1xoKkZ8GNIhckeIIYBlngvf98FxHvqiQ12xYkRfCDKjRN/tTTDriwxtosaI9N6nRogdqnEht3IAlqkcgGUq90hB5ViVEQv2qaxjLMG9SvHZcY1ApKqE+FBXyHtK/W1buVu5RyZSRySaMWJfZGgTd4QY8vCvzpa/qpPlKUosOMQSCawGGJC256rFooAVl4tFeTBTIkIeNyv82LmcLApgDcQS6fwLDEjb+zpZpjhGIVI6RC5HixIVDgXtPVDPgY+bZYrL3aJEeruXlknbK2crxNFS4nC2KOhaXa0Z1dGFVB2988cxEBsX2/VR6CSMXKJC1hpozgcVsDgcD2oNVu5Zzzkgi+pgicwTS1IhC+CJECniAC1qPdYg8zmggJYSFbiotVM7h7QPco24f46RiBRJKfHxPe/IegyFqMaFFFEBq5FjNJK2dlzuOGwF+WNBqjiK3KmTlEpi7LGydhdp+9GY9jlSj5+6PZeo8SF1CZv7iPNhrhJPI/VbM8cSPicfuo18V+eOEfdkXiORGiFKKeFotFglhMDTd76CdAyLrupkdejonT++/nsIZOlgNRT+SzlwLEWiFOJi6WBFXScR8HeyOMGSexSh96ScxsPA1w0yt9+6fLjX9jpchThR+v4HA/9v7/r2VCeMw8nSFeJq6ZAR4gjp2+/y7BpMwKJOGur7/k3AojpiX79H72do8nW2OEYB6gpxtqhulq4QZ0tnAEHcfhO7WtXJ8pUOWCGaZ+dqBQfYnSsfwJqfQnY3leb++LZX2vFzK7Wrxb2QM7W53K7eTFvE7X2L5EPXIGzTnvEoq7vF4WxRVF2tjaqQZREFsKjRYG7AiBEL+gIWt0qcCysleFAiQttxNo37Q6R0wFLyAQ0bVFBAgxod+qjESOLfGXNoNdpPqHKCFpA3RqROZkqNECtozarGhZq64KovLuwCK5eokGMpkja5RIVdcEWJCl0AKyZUxgSsvsiwDzD6YrO+7fsiwy64consuvbfFxl2bVtaXGiqLz7rAiqX6Kxr+77osK8Wq2/3fR157Pfepa/3FMJTrhqXGJE7OlRyiRA5I0NTLhFiFwf0RYhd226i+LD1JOUdKlWINns02CWOWqwuzXMs2MhRK2jldnD63Cspm07YoRx/37Z9+86tsQwffdjIbtjoc7zuW/Ov0eJU13vvO/a+905Vg3DQGssmy6LUwEFXizoSMVRjKUmjEKWUQbVawEFXaxPB1gaV29PNiVJEg7Gmfsg5YjBFLFpiTOgqCuTkHkG42ZVz5GHuyIHy3s3Y0Np+ePPZJzWd9wixKkybNi70ca9sUaEPXJlxIccyJK4yo0JfsOKMClO6VikBa8MyMx4dueno+Gxriwt9AIuyb2A2MvTdluJkxY4LTenOji9EmM6Oz/Y2R8tn6gbKEjimm+Vz3LFjw5l90Xa1wd2KFRnaZDpbMSNDU6az5QNRNlfLZ/sFdbXq6EJdOePBeQIsTs1zLOijlCP3zDmzuAvcq+jiLIinzI3lexiUEYfcoyc794V0BfLcMp2t5YQTi+Z0tTZbYfymcrJC4Uo5WaFwNRTLwZBBhSwKWFFdrBxglSsiHIilYFARYhC8rXKzQgBLuUmh+x4MaO85VKmdLKWhCAcI5e6EbK8crVDIoiyBQ3nPAM3V8nG0ZvYZvksMxSCpm6Vr53ApqZulNBQiGJyUqxW6/QK5WtXJyj0tQw7lAqwBcW26eVTMQvEurazdFexgSdlUByuRGhkOK/etpXWxdFHn0MohqrMlM3kKuWq26nQPcbUpIOs7z3hSlv1KNKTleCgu1qrcF7xtTlEWwH77owjDsiiwkRFUGrmSbd/jJnzfFLg748jwa5viylDXCqRob8K5tEzlig4vPf9z4fsN3y1ZFEi7j7iuaKgaAKNMDl6u53MqLXRcqD68J1+eliWVixOylI6uEMjS4eoQ+C29osvXydLhaClgZhB9e99963B19tV/573vdUgKibBmlotJO0RbB6zl4WHJ9itx0NUdUK9xz3P+tof85PrvV965w2tbzqVwUi4wPdKI4ZDE0ztwveeQ833hcz65/vtz3xueRIT0/jqkDT0XLtIhS3huu6rdW7sGW7y2BWYL90MmWVXbLyVeePotZ30TAHDS334+6X4ZtfniwpzuVQ6tyn1FAJavmul/oSK5V0B1sOZIOmAB+RytnNqMjhZAd7VIEaKnx6CDla+rtQUHk4/7mlWSs0WpLauuFp8WFrKUUrlYOZfDyRkNUgCJKnI8WAHLW7qLBQCNzPjUJ8rnwW++Nmet0jyDVq74kCpf0NJFrfGiglYobI2kTAZbv3L5o5PsJ4cWKi40KTg2YPVBFSUudIkKu+AqtpPVBVd9cWEfmPXtvwuunOLCNkByia56l8qJGxm2AVaKuNAELF2U2NAlMjRdLF0usSFlOZiubVPEhqOWSy52dNgHRLHjQz0uNEWJD4F+d6HrLneJD7vAqi9CXO24z1wixC6o6osQ+4AsdoyoYkOlOYoPN19cGFs5R8+Z0aApCmC5aG7dK6AbkgofadflYK2N74667y7AIrcd+bzHjAZjO1ptgAXkdbSoyhkfUkVxtYB+Z0uPDE3ljBCBfDHiPGthICuli+UCWNSi9zblHjW4aeuvOLYnaNFrsLpAq8vFArprs1we5vNanwXMb3QIbK46LVOlRoguxfIxQcuMDRehRmvu48K2D4EbsnydK+6o0AeuqE6WLa7zgSNbXOizvbl/X7jaEBn6wJEtuvJaJoc/LvQBLO7Y0MfBijHSsA+wdNliQ+pyMD7bc0eHXS6WqRjRYcr3bp77rqjQJu7Rhz69vS0+9IEoW3zYFRmaskWIPo6VCVa+bhd3hGhGhkqFR4c1LqQoJWDZlLuwvbpX+VRSkXufqEXw3LEh1Snx3X6zFsMD+Sctze1qzWthPLARqnynfqgRYrfm1snqshE5XCxKzRXX/FihcMXlZIXC0RKWSGA1wIAEV2df/Xc0OBID0vZcblYoYHG4WZQaLA5Hy8fBMnXlnTvIS8FQtudwtHxcLF1cjlbO9z8Q/k6WLo6i+NC7X7laoeCkXC0fJ0uXcrVCa68UYFFqtzicrTY3CyjW0VosJyt2Tpt7SZi+wvbY4nCvKCK7VwugeXKwuEUBLIA2fxZAd8A2s6NVgqhF8bldLeqM8bmmfFCK7WzNW53W3EFW3wmWkkbRJQBWFU2XnUZ7SEty7EVbg6yR+0nbr41/SNq+Kq8o6xQCk7UOKcoNma9/9mW0Bqqwl9qHEfdPBa2+5/g8gdZcxYVtJ1b/QJ7yeX/I4gSrkKhQByvKeoVKIXFhI7RlbaT/MejbL8mwuOydj9oatJ1NZ1/1Ke9tdAdHdAyjdlFIZDgLV6HXwcHPYXl4hPfWnC5WSGz4toecvf67ELRu54o7/JbdAQC9O6SmHiGxmQ5Y9CsA2BVgCnOOtgw5B294zkHIol4DodFhoz3yBp5L45jbLwVsv8b8Zf+QgHtRP/PUADAkQvyjJ113cP8t10FB0eH8x4UugFUVJh2QcmwP8AJWiHJHZLvXJGIAACAASURBVBvdq5BzSvsccp8DHbAA+r39+KNorjA19SBPccCwDdXVoop6DqjXAMd8Wg3RYxiV4VHMtdqug3lwtOYCsmIBVs6lcID8tVdAfsB656O2VsAixoPTVkhbxzgH87bkjg2q5hG0TFXQ+hxDndZ8g9ZeuUaKECVocRbHEj3zClrFQ5Z5AqUU6z+mXKJCBVYVrhoSIFG3B8pwr9rgggodrnVZMQHLtTYrN2QCG10spdxu1uQYaNu7QkZbLVZK0Io1MetY0mCrrc/3EQdoUWBrBFlhawpbLsD12s8/auP+W57/JYNW0ZBlAyyKche1A2UUtsd2r0aiGzBSuFeXnf7Uzn8vASz6AcvlcyrPwdLl4ma1AZZSCtCKPdVPCker7zW5HS2g/zzo9Vg2pXC1+kBq3l0tIH9hPMBfHF8qaBULWRWw4oijfqrKTdRRhv3q/yy73KxUoNkFWn2AxaUu0HLp6zkgrAswXEYUxr5z53l5oXlTBa2JNgNoFTm6UJ0oX7CyxYWp4co2utAHrmKNLvSFK3OEoe/2thGGOeJBc5ShL1hQRxkCG0ca+keE1IU/No40TO3k2UYa+gIWdaQZYB9x6NPPc6wgYo64852ygX41bBx1mAOwzPPQ52LZFGP0oa9TZY4+9N3eNvqQe3Rhn2yjD33PbIwRiPoIQ6djmF4PGUYdzs/owlDAMpW77krJ172Kccw53CszMsxdfwWEgQU3jCxqkXufOIrgY4wk9v0iHdvRctEiFMMD+ZfiATbWaVGjwBAtgqsF8MytxeVsleRoFeVkffvpZ5G2f8rnRXawGoplcizI5WZR4Eo5WZQ2luRSdrg6+6pPkaGCa84sGmCpayL881geHpG9Fm0glskRIZejRenPuRwtysSj9CvioKOVOyr8nefSJyDlcLUokKUcLUobSxDJXSybDhHLpIc+x9ehJSG8nSxTj/j45QxH4qTynSwqYAG17koXR3H7vI8eBMoocJdyxOBgUZexBdZGdxKPga5SpnWgOlIcjtZ+opVDvyImjlZuwCpFuUcfAmW4WsBi1GsBPFxBVTGQRVUJk5KWAFilxKR/dtJOjBvaZ9IwfKafPO3p5DaoauSB3IdAWzBbNSEbSGI7b33IsxiOg35dPP4oemzLEx3mf6iWEB02Y/qjiFxiIgX+14vyzyA+whgj4pdD6vqxALCHuH4qx5XdNPOPKGHrnzCKQpocnW2jXcyDwFioFLgqQX920k5yGxxwxdGGksQ4KDLU4UrKMYSgF9EHSQOj0eguLC35L7vECVdjKTAkRjvq3g+JiNS2CrSuuGM74TjCosNVzT4aS4khR/4YIHUYCrQ4luEZBL4VBVqDYfi1RrkulBRoPed9eet6FGgtBT6XdNAaBPopCrR2irBUgmNpHh20BgP/a0MxRsLocEZzi4ncgBUqE7DGLAWEdGDaJ+8it+GrGIAVAkvmNhxulm/saHOvpMwQXTI4WBuaZGhznMl5LsHxtimHo2WLCX1dLY6o8Y3P+vRsmwW4WgCyuFproE/7wuFimW1QXS1g8zpbWY841MWKBVg+0FXCrO1KJbhYi+hgLapGIz8At0HVPIJWLMDy5aPVBS+C4nh7mxm0TFGjQ4AvPpznCDFXfVa20YUhb7jvpnnKF7ovJBeI6osMXcDKNleWr1xGGPbB1Q7hHwv5ygWuhoOeGZQdOsOBg/3f187Trv54bxt96osNXeqvksWGPSDUFxu6gJQQ3depSw0WNTqcHEd3Gy4PXEpsePA4uv+9D7BSxYYuINQXHbq00Rcdmi7Whu0J0aEujusjRXzY52S5RId9QOUSHbpAWWiEqKvvrP/xmd/p/PeQ+DBSbFjW6EJfwOJYt2re1AVQpRS3c8jVeep7XXWwDEWICUvWovQPJRTClyQORwtYnOujryjeBY6a6X+LoKYZeDtbqR2t5E6Wzxv0nvG9xcnyiQFtTlZILBjLzfKBq1hOVkg0aHOzfMHI5mb5thHLzQoZQRjF0fKEK5ubFRIFmo5WyChCqqNlcytCHq6xHC3fmDCGqxUS5dkcLd92bI5Wn4u1oQ0GV4vrGonlavnUZNlcrRB4Mp2tkDaorlbbJ9DnZJnycbaYHa2ynCwXcdVd+Ra3cxTDx1CIe5Wj+L1N5nQO81x/ZRbBFzFFQ6B867NcxDFNQ4i43AqO6R1MzXMdllkMH/JWSq3TKsnh8i1655jqAeCp16JKYnEL45MekauLVdLIwVKK20vRvBe4lzBvVjQFRoQ6aHEUtIeKoxBe7ztyPkD1gCAUsBYtOtRPg6+Ltd5GLYgvUhxF8UBa0EoVGyaLC13eEMfF/xNfoE+hMGK4WACeyJBDHLEhB1xlmgrIKmpsKOUKOL6jsEWGRDgaDg9lOYy3nfAcchschfAc4ogNAWCNCEtcsSGXmXYIcXbF33l2GGCZ4iqKp4ojOuSYugHYuFh1LnEUxf+JZ1Rok0t8yBQblh8XlmLbcgEWh6huXEhcatM7Hr6L3AaHpOSZZbskscydxTGdwvgechscgMUlqlvaSIEzjqTHwCsMZMPhaM1xWtkqrqJ4qi594RfIbXAsycOxuDXHcQA882qxJB4FxIdJjqDLxSpp5OAiAZauPTJ8zToOwGqkQCMFeZkdpdygJdevkwK+STPGexTQ4gQsamyoOmeOTpoCWgqwOACnpOhwL4/pkl2yEes/VFFAawV86xqNmPqkRQOtLtiKHRtGjwvb3kBMsPKNDGPBVUhcaIMr3+V+bG3sFEd6tWGDK5e5qjYci+Vz7ps3y5TtEuVIUEIiQ2m9VjLFhpHqp3yjw5gOlk90aLvWuK7ZK+/c5tVGm4MVuuSMUkh0GMvFCokNuaJCU77RoQ2shGe/1NbOc99/plcbNsjyjf1sULQU0C/Z2uGIIH3jw7c88fqNx8FURtAWIRJjw7LiwlKcK2Dx3KuY8aDvtwqObyExv8D7FsHbASuTCpkHq6SI0Caua5YjOuTQPDtasQALYCqI93S02l7PFR9StYiu1jxGiFH3ZnOxNhNgua5j2Fc75QpOJU0/ERuwuJ41rqAVG7C8arMiAxZHfVZJ4prw1lVddVipo8PYtViuoBUTsJRygFZMucJN1+tGaJxhq6udUkCLSzbQihUbRosLzQNODVddkWFq96orNnQFo67I0LWNrsjQp/aqy7Z1fVB1RYY+AJUiNnQHrMixYWL3qis2TO1gdcWGrtdcX9zg2k5XdOha6E6NDZW64sOUxe590WEKyNLVFR+6glRXfOgDY13xoWs9Vldk5wpAXfGhD0TFjg9tUWHrsTBEiGZ8GBgbpo0LcwNWm0ZyZVPHg5QCeBf5OAFcRfCxVUxEWEg8COSJCNuK4X2uua7X+rTDER1yAVAp8eG8FMP7wFFsV8un4H0R48OSCuN1cTtaxBlPulUKXAHzX3vVYLzBzQppZ4+8c8bRChk92Egx8w0i9EIfN2LG0Qp5XkhJd7NUZKg7WmFw1YD6vUXFhjOOVibAUrGh7mjlrMEaSzHjaIVcd2ob6vV7xpEHZhytkKka1CZUV2ss5YyjlWu6BgVauquV2sFSUtGh7miFQJPaRne1fNtRNVq6oxUyorCB3OAi+QKPAq2Qovi+YwnRHrlCnlPLdk97tzEFrZAFp/sUxckqaVoGYP4By9ZGKfNfcdWxFPKFHEBB7hVQhIOlYKuEInflaHFdd5R2lKPFMRcWVaU4WkBZrhbbAtOZp3lQ4prHisPVKmlOLSDNdA8hYoes1Ctct+mzZ07qoEoALFUAX8rkogAdsDjXDaQ+HzifL3TA4oEiKcdFAJZSCYBVokqLDgvgPQCLCVoAHbY4QAvgARwFWiVMgqpAy6cey3osTM8lTo5hhaxrz34y2cHicsHWRktkwApZlLmtnRJgT+kPH3I/lnY4LugR07cGDtD6m1O5FjbmgKNmw0LUvpLaf1Tdt0avLOAagr3GcM2wHQubo0aHrUbyOFpc18xvP/lL9GNpBpAMn/eY4frlqtG65AVfYWmHQ2sYY1yIq7VHrmD/Ab/56KzHwnBvN80A1579ZPKxABGcrDHhhuCKGNdGkxvq759wWPixcDkSJcwKPtWfnfBw/NkJDwcA7FvbkvloADnN9Mcy/9IHq+NJDdTHHntO5iMBiphJXtPvHf+LAGigxR3vcSwmTZUCrMcftZr5SGZVQnT45qdOAGtlzw6W9iigpbZtxkzrhBI0nj6b/vcLrsL/fsFVmY/moDhAC6C5Wm/9D/8HAFhAC6D1OZxJTf6n21Rc7pUCLE6FgpK5XSPzeegKrkqQhFgHLNZ2A+/vVaPz5QGt0E5rdrtQN4vDiQAOApYSl6PFsV1O0DIdLC7QCnWzzO1CQUu/bkKvIQVYSqGgxeFgmWrGwyJgSyknaJmfLxdocWj/gW1srlZusV3FodZaWzzoC11tcOXjZsl103PjxeYDWlwxI5dKAyybuNws32eLCVi8auAHW/bX+oBWW9QTEgGZgBWiNuve19Jve20JjpYSJ2j5wFbba31Ai/O6sckXtGyAFRIdtr2+gpZd42nlL0Uh0aFysUzljg85IsOsTlYfSLmAViz3KlSlwVUXYKWODGO4V9b9ON7fXYCVPjbsvm6o9VkH23E7OV2AxeFm+aivg0wNWl11WKmjwz4YSx0dmi6WLlfQ6gMpLocrNWiNO55TixgfchTEA/PvarFcrSbtudRllTTFg6vzxAFQOSNDm0qozVJKWZvl4mClAy2u+r84EaFNLqDFMqTasY1UoOVS6J47OjTFVQzfpy7AUkpZoxUjbgxVF2DlEFdf0SeuaR645NKfmK+hulnkZXW6DmBomdjLF65EywRjvu7Vk798t/XvfcFJWLg0BL4GIt5NFxIP7liO9w3c18EaCh7osE1SGhIPPuuaixmOBrB/p/G9/uzH79tpipbPxDci3LW88UtDCFy1TSTo01bX0jsc8h1JeMUdPF9g2iYr9YUw2xI8IQ9b27XjAlimtu7ct/F4PMFItEwe6dvOYBhv3dcQwHrmh0+PcCQThXzmQwY/pm3y0raosE3bt/Es1m7rc7r6m5Mv+/uu5tIuq9Mm7tGDPjJrs3LXTcVytEqqvwLSRYTWfRv3UNz6qxD5X3+22DCk07RtE1KDxRUdttVt+SimmxUyVUNMRyvE5Sph1KEu09UKcZ7mNTrsU6zoMJWDZZPN1fIFLKCM0Yc+iuphjpsBhoOGBFdqWyEkW+0VBa4kGggMiqq9AuhwtW9tC6ubRYErFRtyOVoADbBUbEh3tPRldyjX4BgCQ3KHKSHXXQlKkft9a0vYtTyiz00zXa6J0o4CLU5XizIX1uOPWmVxtPQleCgxor4ET+j1o7YTEEEOlq6VPTuwdec+likaxKAhtaNAi9PVosSECrRiulqu0mu0qK4Wx5I8CrSorpa+JE8s6CKdLZesMqd7Zervn3AY2+SiVe3K6V6ZkrI0B8t3xKFdnIXwXKMIOVTCkGtucRbDc9RpjSXPiEEuV4SrTotLpblai6gGMsjFMpXS1QqtzYoaF3IB1qiwi76RPA84rsjwHSecRG6jgcCeNdpCndziKIRfHS+xXYc8hfASHSWOnu3Q9ebjL2BpZ++I5x7l+vrCFR2uMsRRUgo87kj/BYHtbfG0MWY40e/7tzPwoA/+F3pDTGrGw6IGVI1Wl1lmif/YuVczHA0fFHPNp8X1WXGBVqxrJ7jwvYvqzIO1FcC7KBZc/cSXfxi0nQlXA8FzfKFF8CZcDQJvosZwnnYuhy0BFMvBCo0NV8ez57VtEIWvwmNDc/8h58v2HsKuQy7AMnXIUtiXEP1T5vr2Fxob2uAq9PrR+8Ov3rkc2MbGv7MN7PBtZxh4ot/3b2fM/Pm2n/3jsIYMbdkRFv+Yzxyuez00Ohytzn7OYhB47RiQ9qyPnhbWTqRarNDo8G2n3z7zZ67PKzQ+9Ll+Wgrg8xa+hyy1E9O9+uwTjvDexuZecTlaIbK5VyYsuShkG5tKigiBjYCVXzELTv2vw1iAFSoTo0tztEJldt4hjlbMenUORwsAm6O1uq8sV4IrOgxxtGzbcLlaXApxtUzA4lSIqxXb/WSFLK7FnUtTbJjyjQ054kGgHbB8Y8PYgMU3G3yu2LDtKen79CwrImyTb3TY1k3nAi2OiBBov95yRYdtr/cFLdPFUsoVHbad51ygZbpYSlwLTPuCVuwRhRzxYWnswHk8QXGhLSp0OaC+2DB17ZVLbOgCWCljQxfAcokNXRwsl9gwpYPVFxu6uldpY0OXffWdQ9fj7b8OUzpYLrGhS/ecMjp0ASyX68elP3SJDl1Bqi86dGnHJTpsAyxdXNEh0B8fupznlNFhG2DpcokOXYDMJTpMOWWDS3To4mJxfV5Af3wYev1YIsN4cWFpBOqjrtiwkePkcWCfoxXbwTLV52iVFhG6Kp2jlXpOmu7rNXVE2OdouX7/TeVouTpYHMuBAf2OVupprfocLRfAAvI5Wm1K5Wi5ABaQztFKPSdW37qHrjFhaTxBZZykk5F21WaVNoLQRylgzAewuiBqnmuwumLDXDVY7aDl08F1vXY+IkJf+YLTvNRo+XbGKaJDH1hrAy1XwFJKUaPlc67nqUbLB8JKq9HiUoqRh6lgLhiyQunOBK3ReJgVsEw3K9TBijWtwztOOCnIwTJhqoEIAiybm5XTwRrLwQxsrY6XggArrgMbAka2qR1C2hnDdLRyAtbe0XCDoxUKTLFAa7UZeNdhcV4/JmhJGeZimduEtlNiMbwOW6Hnnuszs4GWq4s1czyN2ABUIS7Xx869egNs5ZzZ3eZohRS7c31etgWmU14/3pB17dlPrvNfRdr+YDsT0OKKB6nSQWteI8KYmnWzuDo3ajuTa3HeHSzu7ZW4HC29L6T0iwq0qBEhV8Sog5avi6WrtOgQ4HEwdNAKAawYUqCVE7BiqMT5tHwmJvUufP/GU58ScFizGo2WMIy4IKev5NQZ+fEv/yu5La4i+Lc/5GQMA+dWiaFGCuzaEjZ/ltlO22LAPlodD9mWTuEqtJRS4Nlf+whLWxx68/EvZ2lHXwyI2k7oHFqmOI5ntRlEX1TaV1fcUcYDGwB+/6lX4JgPv5qlLa5ieClF8Fxapjju+/HqEsSwnBVApBR41sWPzX0Y63rbaZPBZRxLpHH20xyLTJ/yqc/ofyxjgWhdY6KLJeVg/ackcbhZb3/IyQxHwie15MB9q7QZ4bmXTInhRuRsg1NvOu7lGDP0SVyPD9VOKTPDq3gw9zxauhoAZxzFU6PFpZtf8FaWdjgcLe57jNreeHVSpiDHZT2DPnbONeQ2mul/JYkjPszRT3tdHVwulhIVtDgUA9IooKUD1phpFApFMdaSo7YZYy1CjkXMAeBvTn0+x+GQ9KbjDjpYFNBqWn4vRSUeU6j091ICaP3+U69Y/70k0AL4JizlVAmgpfdDFNDS4YoCWsrFAvjmOqRIPz8c0aErD3nFhRTIGrUs8OwbG3ZBkfCwJLva4YgNAf/osM3ByhUbtsGQb2zYBVU+0WEXXHHEPr52dBeY5YoNdcDSNfRkyK47yae77GqHIzr07bq7CtxzRYdt5+jKTNGhDlimOOJD3+iw6z7LFR0qF2tDO5miw7Zz5BsdtkHVwPNO0wHLFEd0CPD115ToUIsM88aFbYAF+LlZpUWDXHr7Q07ujAhzOFpdYOQTG8ZwwmziiH1yDAnnVBtgAX6OVqrHBEd06HOsXDO5c6rr+EtwtExxuFo+jlaq+8xnP22ABeRxtLqO/WPnXMMWH5Ymrv6aqyC+Tc5XRKiL1QVYSqljwz5Y+9wTHsCyn5xrG1LkAkbU+iyffQFxIkKbuDr11LFhF2ApcdRoAeknEU21n9T1WS7HnRq0ulwsTs1rdNgFWEolRIch6gMp1zqtLhcLSB8duvTpoaDlwkXOcWEIZLkAlq626NDXwWqLDX3biR0bhhS4x44OfZ2ntujQt5222NAXrmKPOAyBsNjRoQtg6WqLDn1hpe1u8m0nxYhDXxcrdnToe45iR4chcNUWHd563p+s//7gD72m89+7Ih/fey12dOgCWDPtRI4OQ/qitvjQ16lqiw/7AMtU7OjQ9xyFRIfTyDB9XOgLWG0KiQht24S0s9kcLa5oL6Qdrn2XNOIwhXwBC7A7WiFdHdcjJPaIw9JiwpDzVmJ0aJMOUC6KvbhziLj2PS+OVkgUaNvGF7AAPlertLm0dEW5CkIBy4wNuWqwKO1wgZapUqdp8BVXbGhTaEQYC7RCb+RY0WEIYMVWKHjFAq1QwCppagelWKAVGhGa9Vk2wHKBLq77LGZ06OtiKZUGWhz1WTaFAJZSLNAKvY64QYs1LuRyr4bDMQtgCdGwtMMVGwLAO094DEs7nLEhh4u0a8sKmxs1YnIeSptokjM25ACsoShvGgTO6JDLweK8jjjON2d0yFWD1TdK+MEfeo23y0URZ3QYClgz7TBGh1yuzTMu5nkWDTAgQZYSZ3TIdY5c4sNscSFFXLDGVVAfy82iiGvEIRcYxXS0QlWaG3HpqS9gaee/HfdLLO2sFXZ+AD5H60BhDgLAB7Rcjtabf/JKlnZc5AJYjRTJRiO7arSyhaUdLkerxDIGDsAC+BytprBZCFicrLW12W9WodPfmxfQkED/jQYhA0bXJ9TVevsJp878ecC0vhTF0YrVoR2yvBq0HZeDpYviQpgLaod+ZmY7z/3ah4OPSQcsyjVkHlPoeTK7D8F0SVEcrVXtgTZgvMRDz1Est5DiaJmAJQZhRymNezZ0uTSzL+JYegsId7TGq+YzjcllITzTYgFWqKP130+7m/lIJqI4WubauiKwjzTb2bFtf+troztZJmBxahxI/43h8ph/Ti0TsICND7lQhTpapX1jjKVQN8v2+XB9ZqGOlulghR4P1/uwiWuB4lBHa9XoM5qyEmNWhTpaXA6WCVgAX3pQWv/EVh8c+EyL6WD97Tn/FK3tEIU6WiYYcWrfge3B20bx1UIuCK6LqA2ouECrxOjQV6V1YEAcF0spZ2zYBjS+oNUWEbLBetA9y7LrVvmClglYSlygFXKOYte8+YJWG2DZgCmV2vojjn6qLsETR7FcLCW2YviA/pEb1oLjQhcHyyU2dIEr19iwD6RSx4Y2B8tU6tgwJWC5xIYx4cqUS9zjCi19n5trOy7RoUsNlst15HpMfefJFa5SRodtgKUrZXSYekCBS3To6mD1RYeuQOYSHfb1R1yxIeAWHZoxoU2po8OUdVgu0WFswNLlGh26gJFLdOjSjhkdRokLXSNCrovDJTZ0capyx4Y2pYwNUztYe9d4ika5VFohPNDvaLkWufddRzEjwjalig5dAAvY3NFhyiJ3V7n0Ryn7LBfAAtJGhyUWuqeUi6PF5Ty5tuMbHWb1Lb3Wi+q4IH3gKVVs6OJicasLtDZbRNimLtDyAZGu13IBje8owhTRYeyIsE1toOUKWEoposNc02JwjTrscqp8YsWu+iyf/oir75q36DAHYPXVZ6V0sZS6QMsHsGLWbHXJKy6kFLnr0SHl4jGjw1BoihUdUuAqVnRYAmDp0WEOuDJlxj0UQNE/N0o7ZnQYOlUD1/EMZ+7Z4GYAxIkOfQFLV6zoMPe8Y2ZsSHGw9NiQUrNlxoah/VGs6NDVwbIpVnRYgoOlR4c54MqUGR1SoEmPDint7Ni2ny8upI4ijBEdUlypzRIdlgBYQNnRYY4ozSY9OqTMhZWzGD62lKNFASwgTnSYG7CAWTerlIhQd7Qo/VGMvowCWECc6LAEwCpRuqOVOiJsk0t0mNxS4LiAxuMBCyRxR4c5IsI2jZvyJvYDynCxlLggQkFNrpjQpgaC5Xj4lihiaQYAHbBiqATAUuKODblGHnL0R4seHZYEWCo6LMHFUhrLAQtgpYwOk/ZWbAtvSoGG68ZnAK1Hv+abuOOSO/D83/80/XiYHo4NBMsDUkq+B+RdK9twH4OjxTUzdCMF1riuI6abduWPtuDXfvkvWdriUCOBNaYvI2yF8EyQ1UgeR2utESwrMEgpWPrIV373x/CBu84gtwPwAdZotISmoDm01taWsfeeXQxHM3GzOBwtKQeQHOeoEZMfonZd+FB8/rq9OOW99Lkwua5tKQXGTNdkKtByPtp9hSybon9QJYEWtygPbX3bUpwIrnXk9A6WK3rgWqKIqp/+uf+5/nsJoBUjUqNfR5PPigu0OMV1HVEeRq/87o+t/37sR1/JcThkzfTZBYEWABzYX4ajpUMaCbT0a7CQfk3//CnXtpzps8u4/9ccPiuvRQIVaO3YshJ2RETZPqCmGWAQuCTEbDvCuxj+0a/55oa/U27WR379p+jHBOFdDG+Ds7EU3kuC2B6G6u98iphtcKXcrF2ey+/YOtZGCu+CWFs740awLrrtIx2uSpEJWKPpOVtiKD6WMqwQftV4aOwdD3AIw8K76r36FsPbIDTkOrL1a1KK4OXJdCnQuuncPyW3FSJrnz0eYhC4/M5MOwH3vq22WIHWtu20RaUVKPkWw9tcMDkeQvieIxtUqb/zuCZ3XfjQDX+n3KxvnO8eRbcBVci1bWtr3AwwZHj2h8gFrpTKwEEHdRFwDkfLBli6OKJDgG9aAR9HK9UwfZ/osOubK9dw8FIcLaVcblaXgzXK5IyagKWUy9HqOke5HC3dxSpBnX12Bkcr5hJwunyiw67XejlaTNecDbB0cUSHgN+13fXaUhytLgUdYero0OUD2ezRoctrUkeHMSLC2K9JrT4Xq4TYMJbcr6Puz42zRiu1+vo214dRH2CVEh3q2uzRoQuMOYGWyzMr8XPN5brlek1q0PJxsQCPebK++GPPsf5D7OjQ99scR3Q4aaf9vPS5WKY4okOgfR4t3/qttugwxMGyxT4hcNUWHfp0oF3RgW9HnCI69IkJ/+DtvxDxSCbyhQyO6BDojg77AEsXR3So1BYd+p6jtuvIt1/rild8HKwUYsVDuAAAIABJREFUsaF3n80QHQLt93+Ig0WNDpXaokPfQvnW6NAXnlquxz4Hy1RXbOjz+Xdd177XUezosA2unvil/wVwL6tTsmI7Wr6AxamY8x/lmslbyRYd+oJRzIVmueVbhxXb0QpxcWJHhz6ABcSPDkPOUezo0Dci3GyOVqqIsE3WeiumubVyFra3xYa+YNRVt7UoIn/aMaPD0BNdWnTIVZ9lUyh4lTLqsE2hYGRuF9pOzPqs0EL3zRQd+gKW0jxEh6H9mrldaA1WTNDK/XAs8QuVrlDAYpnaAbCCma+L1Sau6zq0nZixoW9EqIscF+rijA45blbO6JDLweKMDjmcraGQLKAkBF8N1iFL9MkUVXTA0elyRoccIwk5o0MumOCMDkMBSxdndMil4UCy9GtCSJYid87okKW/ZooNAWA88ho43yrO2JDDwRLDMV+R+xtPZGnnG+evsV3XHO1wxoYucDWXcSHXtyEuR+vRr/oGSzucclmd3EVcM7BzARaXuCYs5RTXVA1cjlaOQu8+HWByokqcR4trUleuUYSlRYdcsSGnuIrhm4YpEmWCR05xjTjkcqJKG3HIdjRSCuxd2Ya9K7SLkttu5gItNM3kh7j983/vMjz/9y4LbkafOZd6rtT2VGBb46oxmGrvaBl7R/S1MrlmGR4zzOjNPRcWFbS4AWskBblGa2V6r3LBMRW0GuOH2g4AjIjn/VU3PIHWgCEqaHHdY0pU0BqtLmO0ugzZCEgmqKWCFnd/3TRDErTtvvB47L7weIhmDNHwuYcUqXue696ngtbqaAmroyUeh5bcAjZePKGgFSvPp4DWKa/5OuORHBQFtHRx5eChoMUNWLpCQYsr4zcVClqxJhstsUYrFLRWjHs0N2iVFzbyA5ZSKGhF668DQWtEXOy5S6GgxdUXcZ3r3Rcez9KOqX/3vnCHLVbiEApaq4ZbSD335Cdk2wFQHS1uhYCWFbBC3CyKA+YgNoiICEyptBlGq+gKAa3SYkITsJRyg5apkLvYtk2ImxULsEoVV3TI5WYF7ZttcFHc98DlZoWAVtsqHrlkApYS5TMgF7737fyQrW6Fgykfgi4F8b0O1sCx43YArI+87uze17icH9elCvraGjouCxHTxTLlUgzPeY765FIMn3K5HNdi+JSA5VIM3wZYunyXTmmTSzG8y5XvctW7tLPk2OWlBCyXYvikfbVDMbyLgyWYBq+4FsL3nSOuvhoABoP+c+TiYMkBD9h+/UWj3te4ghTHve9aCN8GWEptnxlb4fu0oRm5XAAujlZql6HP1XKKCF1qtCI7WKbYZtB1gKeUgAWER4emUl1rqdcjdHG0UjtYXPNopfpm63q3ct3VLo5WagertGL4PrlGhCnrs1LOds6pVI5WaqfKJTbsAyzA/nnYuMhU8JPS5wLoAq25j3EYQKqvGD6H7dwFWqkBy0Vca2G5qrR1DoFu0CotIgTcXCwljo451YhDnx6hC7RKjAiTfyGesxGHqfshoHvkoipy3+zqAi0XwFIK+cyCep2QHXGMPORU0ww2OFqnvObrYYXuNtAKgC8baIXMoGsb8RPymdlAKydg2UYdho5uijnqMLWLpcsGWjkByzbqcKUZeAEWp/aOBxtgK2T0YNs2IV+5bKCVE7Bsbhb3KEIfNePhBthSowh9FHvEIUc/FDoq2gZaIXAV080KmVYn5lQ8agShr7yXjfJ5sYs11icdtEpwsVineLD97ikdtEo4PyUWw5cWHeqglROwlHTQKtHBClVp854Bs1BF8bR10CrBwdJBq4R+SBd1FGGMYvgSzpEOWhT3KgZolXDv6m5WCFyZcuUh7yfovIyYyCLqXFpTcU/vQD3XCrRKiwk5rqHc0zvE0q/98l8WBVjKzaI6WNwjDrnqqzjaGckyAEtXSf10adGhcrO45r8qaZqGUubPUipl/iwlr0WwXUcXql++8ITnBhzSrNQJ2+k48rCvLeoIhMe8+qrJL8OCZtNtGnz4N5+e+yjWtTa9OKlLFkgpWEb4qYucYwkegD7q8BnnTb7ViCVa5ySn51kwLA0hmwF+/x0vprUx/T+1i1NL5QyZntkco46a9WuojAfKq797GoYD+lqwjZyM7hoIWn+m2rn53D8jtaPuVeo9NlqbvB+u5dKoIw6VI7ZtB8/SOxw6/PUPgBzyrCdMHW2og9o151OPhueeVw4Wx9I7Z375Uv2P9NGFLQ2TtIdYo8U9SyzG/UNPk2jqhr3gdz+e+UAmWtPon/JNgPsbG6cox6QACwDkiGt+H9o3LrX9r7/iovA2Wn6naMzUEPWeLyG+0PXq754GABg3tPVfFRhRpbdzzEf/Y3A7Jd7rSpTYUN/2wL4yao0Pf/0DAABizLOG8KK5WRwRoZIPByXPf8wTtWdlWxBsme2EFsitu1hK41Fe2DLixhf87sezwtaa5WHPYblSCtb17TiW4NHbZmknALRkM9gAViGgZWuHAlozbcMftlYbsWHB59ygZW63dzTEXiY4DpECLKVxsxIEWyZgNXIUBF1coNZW1O2r0drSuosF2ActpZQNznKC1uGvf8A6YCnlBC3bcj2PfS/L4QTd87YC95TrGya9UrtOENXVctnHPKsUV0vJ9yLlmIm967W5QEt3sWba8Xhod8EU1dFS8gWt2OVcuUCrtP7BBKxQdYGRDzS1vdbXzeL6wqLDlSkO0PJ1s3LOIG+TCVcxVJqj5aMu9yoVaJVVyeyovo7StSPd4GLpyuFo9RTNpwYtm4uly/Ui7etwS4sUXI+nDbDW20nsjvQBmSto9fGPKx+ZDpap1KDV97rUblYfYFGjQ1/1wZgraM3d/e4ITn2vS+1m9QEWl5vlqr4Fp3O6WTnlXfiu5FsA73ti2orifdrpKpTrBCxTKQriPUYlpiiI7wMsXV1FhF6jMDo+L9+OmaMgvut4+gBrpp2Owmofp6qrGN6nna5ieF/uaftU+gBLV4pieJ9+I0UhvI+D1VUM7+NSdRXC+7TTVQjPcb93uVc2pSiE93GwUhTC+zhYKQrhfdwujiJ4oP1+96298i2Cb6nH4it8z6lsE5nFdrQ8p32I7Wj5ABYQf1hsrm++bfv1ASyg3dHyjQJjR4dcEaEPYAHxHS3fPiC2o5UiIvR5vW87bY5WyMTJHIpdn+UbEcZ2tHwjwtiOVq44cV4crSSQFXIyuGq0bPJysZRKGXk41TzUaOWaiR0ob8LSmNFhCHyZoJV7Sq1YoFVaRxwCWDFjw1hF7qHydbE4ZYOpzViD1SYbTIUAFldsaFPICMLYtVnBcSHgFhlydHIqOqS2NRAyDLBMccaHDJOXcsaHvi6WTcNBQ+50VZRAbYd7Hi1fF2tDO9MoiupKiUHD4myp6JDKOAL+DpZNnNEhR9/DGR1yOFjDwVYyGKnYkNqOig057nUOuOKMDTngijM25IArztiQw73inDuLY3oGl9iwY+qG+Y4L96xsY+kwi5tPiwGwAD5Xi2s9Oa6Z2Dm+YXA6WlTAAiaOFgcccUaHHCYSB2AB+ad3MMUVHeaKCNva4GjnmI/+x6JWXeCKDbncq/17t7O0w+VeLeL8WY0UrPNfxRDpquScmLRP+1bpFP7YV32VDWwWVTzLg5RlsXOBFjjelxTAmOFhwBhj/AbTPFolyc2gT9POK69/DFssxxEdSjmGlOU8KMcZ5yizqSRwLFIc17Ic4bEX0dtZSwhYobxDiguB7sgwVj3Eji1hHc1jX/XVg38YMJp4ofFhBOALjQ5NFyv07JjvaClgKQTbdcOxpEJodPhMm4MVcjzm+xoGfv4mYBGXB1F6c+ASPGuR6lZCokOzOxOBh2a2s3M5DEpeef1jZv4cutSNCWmhy++YcCUED+DcdM6fB20XC7BCokMTjEKXATLb2X7I/qB2YtRfBUeGNrAKXbZJa+uaF4e1YYMrjuXauiLDHsia77jQVIirNQNYANtizsGKtG+u6DDk6GzbcLlaHMDO5mhxKcTRsgENE+SEOFqxAAvwjw5t3xe5HK09a/4wYAIWEBb32bYJcbRKcq+Ashwsm/OUc+BOrAL31HNnzUiONsBaiJuV0r3iENnJAuxuVqpRPS6u1gbAMpXa1UoEd66uVl8tlsvZcXlHLq5W33XD4WgB7q6W1cXS5XI8ffeCq6PVBzSJHa2YgKXk42b1dWUurlZfG66Olg2wdLk6Wn1Q5upo9QEWh6Pl6malgisXN8sFilwckr52XN2sVKMHnRytvi8EPk5WT1sujlYfXHE4WYDdzXKICuM6WeYBlDZsulcpXa3CasJcit1THbHLdcNX0NzvavUCFsBTp8VRowUkdbRSABbg7mZxOFYubbg4Wn2A5Sq+6RXSOFjHXvxLva9J6V6lWt/QBdS4iuC5xOJouVyfFveqdJkDrqi153MZF+rat7qVpSieTQXNp9W3uDTXaEJXlRQdAt2g5QRYnOoDrcTz9XSBVirAUuoDLa5I0FVdoOUKWKkK4VNHhF2gVVI8CKQvTu8CLdsiz1nFVNzOobXRklNEWOpgA7anbMqRhja1gVZvVKhLOVpUtynHuocd4qjTamB3tNr+vk1toJVrNn+WOi0p7I5W29+3qQ20fKCmEVlrtGKpDbR8AEvK9rotrlGEPmqbSsF3ioU20PIBrNgjDnMBVpub5bswfVvNFseDvTi48oEj22sD3Ku22izf+itu0OLgmrl3snQV72pljApzFsSbGklR1DQPJmgFu1j6ewp9fyZohQJTJNBK7WLpMkErFIw4gMp0s3JHhCZohQITB2iZblZJDhYXGJVe4O6iDZFhqPMUIQ50da/mQeyQVUI9lgItLxfLFBcQFeZoKdiiRIVcqKhAi3LNcEeHyWNCm7hqtJikQCsnYCkp0CphHiwFWlyAxaUSRhEq0CoBsJSbxbZEFqEdFRkuZDxIbEe5WSXAFedSO6y9+ZlfvjRZsWGf9q1uBe7dS2uEqyB+PALWVuntMOkFr/8f5DZ8Y8I2cSzjwxUdPu0ZnyK34R0Rtmk8oLtRjNEhB2BxuQgjlmOJ42iFSMWD1DqtcbPCAlhckPbAD55HbkNKnufJeEx/cHNdv0e+itwEm8TaPr76K+pyT6v7iwAsYPJZc5VAsRPRT3z1EnIbHBfzj738E5NfqKAF0EFLbU91tWQz+WHQ+W+4mKUdDo0LcD+VRveVMQpINgKyoFGHv/Wy9zMcyOLptdcdnvsQ1iXlCOOGZ708Kmitrd3DchwAHbS4QI1Dx/5m2MSkG9SMJz/UNgCIUX4DYLA6OS+P/8u7yG1xgDAHxyhFufqaZsDiaLEVsXGBFperRRUTbC0aaHFFh6WAFgA+0KIcw8okSqWAFndUUwKYK8Ba3X9z5iOZAFYp4gIsDjhaOMDigCvVTiFSgFWCuNxKXSyTkZr67OOeN/NnnyUO2t6g70Rj606Wrt2HeLXRKt/JS9vgzGc5njaoEp7HsmL/pvve15/j1w6D2j7rIcOkcj6Tlj7vOX/b+m9Lu9J2AG2L04rQJXhMeUxYquDK1O+864Veu+S6p23tcFwrIWpzsLZsPybxkbQD1nCwjdy2zySlXXB1y7kfdW6nDYyE8HmO2NsYDNLDRRtcjQ/zrMlqA6OBR2Td0oZc2uJ3LEyyAdYVv8DjDvv0L2bfEuBkpV1WxzzAYlyte/eWER8qcblarmoBrByKPafJorla8xoddn3OvsPobcrhaJUWEZagktyrLjVN/kJ8peHd/+r+4gV0r0pxsBgAq1NRnCwl09ECul0tn063i1KtLpZNHM5Wn6vlAmQujpYLTHW5Wh6AFdvVcv2cUzlaXU6WUgpHq83FMsXiavU4Wm0ulqk+V4u6bIlPnxDb1XKFqxRulitccbhZQLej5QJYfU6WK1z1uVmu7cR2tHyiwU5HywWMXJwsh3ZSuFmuYJXCzbL1LQTAyrNAtO2ASxl9CCC+q+XqePVNXurqVjEVxZeiFHVaLoAFxHe0XAELYHK1OvbnClh9cgWkUmdqDlXsGi0f94qrEL5Nrg7W0R89l2V/XRBVUv0Vi1ydp67XedRwxS6AL8W5AtgBq1NZrkqu+JAtQqRqXuPDFm2WgnhXwFIqJToEyiiIB9qjQ997s3TQKiUiLCUeBPwjwjbQqgXuFi1gPFiKUvc1UeNCJVtsqKTHh5Q3r2xB56jQJu74kAJfKkKkQJMeHwbWY3FHh5TPmDM+9AUsXdzRoY+LZYo7Ogx1sfTYMPQz1q393NeJrlDA4o4NKYDFXQRPqcFS0WEoGOmRIQWuuCPDULiaiQspYKRiQ0Ib3JEhBa44IkPXPoXBxcoTFyp1vYGipntYNFdLiVDwzulqleBWcBTEL5yjNYU8SkzIMY+Wuj6o1wlnMTzFweKMDUtwsNTcWRxF7hQ44nKtOIvgKe6VVwF8n6p7tUF9qVesmFCpGI914UCLA7ao0d+CzafF9fAsYeknJYqLtd4GA2hx1GH91sveT74HSwBxJY6IkAO0OAArdm2Wj7jiwVIiwmLmv6qAtUEl9CdJ4kKlrtgQAJqp4zb0mA9F1xNfpi2CzHH/UeJDHbJ859WytbEUuNzAKm8xIyU+5LzgKZHQOc+ZXCc+8+6Y0jv45d1hYM4BWLoo0WEzhSzhMY9Wm/7bX/x8+HFM/89x+1Kukddeu+vgHwaB914zgaMthxwXfBzcDlZobLi2dvf670LQlz65+Zxw96DR7psB8XqlRIZss7dPNd59ZNB2QoMr6TNnVosokeHgwJ7pL4Tj0N7PFReEnRPFEoMedGF0sfLGhUqub2jM8Q2FI7XjmldrgTTvrpYCLKCsYlkOhTpajeZicYOf13G0/B6qrLPCNwfhaHXv94OaKCEijKVjLu7+wt2mpoBFygF+wJp3DQ7sOQhYFDG4cU0778wodkyoVOxThg20SpjVgCM6HI0mPz5idrEoimHbcjxEQ0DL3GbtXqaVBDKoYZquQddvv/yvWdrJdevOuFhMCgWtEqS7WEA++IsBWEVNTnrvnV6vF814xsUqSr7HxbRckCtgpVTSuFDJFht2nRzX+HAmLrQpVYTYBVU+0WFbO67RYQLIcokPU+TiLtGQ7mLZ5BIf9kGZS3SYwi1yiQ77ACtVdNh1pFzfAl2uj164cokNm24AcYkOU0CMS2xowpWpVLFhF1xR48KD7fQ/4FO4V66RYRtcccSFgFtk2OtcMUyS6hoXdvGDLTKM4GKVERcq+b7BsRzwOFslyLUovus1Ia7WgquEBYNLUinzaFFVghGdUoscEYaoz70qJT5MpT73qlhnK5IaCG/3KlVMqJTFyVLSHS2fE9XmbPU6Wbqoz6AuR8snHmxztnzaaHO2EsaFbY5W6tEdbY5Fn4ulq83R8okW2xyt1DVPbY6WT0wY09HygSjqLdt2bXjFg21uVo+DpavNzUoNWG1uVp+DpSumm+UDUByOVpublbL+qs3J8oGn2MXvzrVXbcfh8V7anCwfXtCdrIiAVZaTpRT6hosojC9psekCXK15L4jXtWgF8aZ867BigWFql4rF7bTBlAdgAfNdn5VKpThUJRS4l+JOsRS3Z6y7Su1gKc3t06QI0AI2ghYHNHG0kaHovVTQ8nGx2uQLXrZi+Bwj90qNDXPFgNFAi6gcMaFt7iwfFwvgOW5zpGEIYMWAshyA5Vv8bhMHlJnrGM7byMGSlDUu1PWZx9GWbxmKxi8utIkjQqQC0mBAa0NFh5lHFqr4MPdkcEMhWSCLouXde7NOjQAcjA0powm5YkMqYHHNoUUaRahiQwJwqdgwdx3WcLDNG65MUWPDm8+5hAxKXHNm5XavVGRIgSWuyJAEV4MhGayuuOBIMlg95atJvvyXGRfq6ps0rE9FFMaXEB8WUhR//hsuzg5YAI+LRVUJUzywzArPAIpc0ztQRZ6moRmxOFq5AQvwd69iqIR4sGmG2QELKGdqhnmOBpWoXMGhAshkIpa8dEw8oRzzat2b/yYFAIyoSzTIyQ9BL77wI7RjYJAcFXCJNwIjKmg1g8kPQeN99EWCqaDFAWosUeM4/326et8NpO1lM4Ikgt5o9W4043KW3Mmp437jLtL2omkgiF+SqdtzaXAg/yTcHKCZqw5LVzFxoRIlNjzrgo8d/MOQ4ZtRyDPNvEd2Z1hMeHVt9s9LAdaxCViDgPOptXHRhc/339z4c8jH8fxnfmL9d7GUqQPTwGIpZAkeE64G/u+jWTk4WkgMGWo2AqIZE7De+O4Xko4h5Hr49a8b98Iw02LfzcF7dHnn8d6bm3AlApb+Ga0edLAGQxqAh8aFupN30/P+hnQMQFhkqMOVXPKP000wkgHLqJltjHffz7uN2WPw7/NNsAo5FxzS4epLL3tgcDuJYkKl8uNCJbYTM5Y8zhZVJThbVFcrRAakVVdrIrKjBZAdLTlmqNfwdKRi1KTNraPVrPW/pkNU9wqYBSwOhcSeJUSlpnslRrTPJkQx3CtfF6gU54orJk0MWJ0qzslSCnG0ZpwsU6mcra77JZWrZTpZulxcrb6Y0MXV6mjDxdXq63ZcPgrdxTKVzNXqgAsnV6sLqBwdLd3F0pXS0WqDLKqbBbh/U9zgYimldLNaAMvVzeoCLBc3qwuuqG4W4OZodcFVKjerKxp0cXD6wMjFzepqg+pkTY6hv6/vgqtUTlYXWIU4WZkAa36cLCX2E0V1tYDFqNfK4WptVsUu5nVwtNoAC0jnaHW95r++9P3kY3BRK2AB6dysDgdrbc/3ejfncLC6VGuz0qmE2qtS3CtOleRgKRULWUAFrWjiKIon/PuLL/wIOT7s+xi6XCxgTqJDl1iwgOiws30HCKOCVt+10AlYSrFBK0FE2Pca7ogwRH0R4bGXPDvq/o/7jbt6C9z7IsNFKG6vgJVO+Z80PfI5cZe/51n9L1K1WhTgoo5CvHd/ftgajWmwFXH0oeuppX4McjSIB1uOLlbMGq0uF0sXFbQ46q1igZYTYMWWI2C1uVkpa7CoblYbREk5SlaD1TYdRO7RgxyjD6kaHNibFbBU3ZULYPlEhaUCFjAHkAVEPIEVtuK7Wj1K4Wr1KbertQjF8DbQyj0Bq7diuFkLWOTuq9wF7i7uVZ/m3b0qBa5iqGTAAuYEsoDyT+RcKzNoAfTRhwsHWiHQVCBo+YjbzcruYmUALHObClg0uALmH7AWWfPABcWOLmyTy6jDzlGGfaKOQhyA9sTnGIHYNbrQRQHzvHDqLwPm1NI1QH9NVpdYRh4SgGNp914aMA0a56jQJo5RhxRxjDh8HRWwqCMOCYC1vPN4koMlBkskuOKYM4sCVxwjDB/ymz+kNcCwLA1FHPNkUZwrjpGFFOfKJSosDLDmb3Rhm6Kf2Nxza+WODxdAz3/GZaTtya4W0dGhxocUwKrKL5eRhl2iulfUuqzGsvC0j465+Omk7avyF7bHXhaoMMDq1NxBFjAHoCXl5CdU9+yb/ISKWpROLoqnkeYvFDBxaW6N9mSaiRwMIw6Ja1b+1ws+QNr+dV/LbLwTY0KKxiPienMLoIf8xp20Bij9VzNmWbMvVLlrr4AKWKbmLi401RYfkiJDU74RonlOBXH7Q3f4bX9gdfbPvkvi6IAWtCSP1kkRo8eQ6PA83ckSxHoK3+iQudh7aaefs9mshS1vYlNQbGgClvDsOozt3/ien3PedANcBSw1M6OQyJARsJZ2HOv1em7A8o0NzYjQZ6kdc9ubz/Ff2H0GrkL6Hb3fConLdLggxo2+ceGGJXGI+/eNCznBqi0qLByuFicuzCJfZ8uEKoqrBdBcLSC/q0X4Zkh2tSSxGDx3Qfw8OVpEB4u8vSnqyDzf0Yab2MHKXeBOcq+IfVQJ7hWncgLWImrunSwl09FidbJMuThbbefV1dVq297F1TKdLF3EJXHcluVp6bASuFrnddVjpXC1Ik1b4OJocbpYpnpdrS5AcnWzWtpwcbNaI0KqmwX0O1oR4crFzYoFWC5OVhdcUZfYcXGzWuHKta9p66tcQKMLLhI4WW1wlcLFiglWppNVuIOltPhOlvlBOE1MGioXZ6sNpjjqtSiiTrdQXa0syulokeXiUHW8pq9Gq7MGK/JSNLmV08GiulfU7bO7VxkVq+6qAha/FgaykoujOD5UfYXx23pGl+UELaJyg1ZOdYFWTBcLiLz8DndMaComaEWOCEf7bmr9t9wRYZ+6ICorYFEVGbC6XKzche01GvTXwsSFplR8GDU21GWLEF1Bqsv1cpEtQuyKDE2ZEaIPhNniQ59viIQI0RYfdsaFumJEh4lmOLdFh7EhS8kaG7pCki029AAsW2zoNZKQEh3aIsNENVi2yDAVYNkiQx9AskWGrtvb4kJnuLL1Kz79ks3R8QEMQmRngyxXsIoRFaYCK+Vizal7tfhxYZuixoa6KEv0zHOEOK+ulhyQXK3NGh1ucLR8XKjYjlVMmUXwm7TIneJAUdcvXGT3qku5nKuYS+GY8lmncN60sJCVjYYpMSJnhNgXGZrSQct3yodNWqe1WUGLJAJombVZ2efDyqB5BiyK5qr+isnFyhkN5ooF59TF6tTCxoW6PvO4c9LFhrqGgj59Q6gO3eEXGeoaCJq75QtpM9vS4kPnuNAUIT4US02yqNDU0s79yaJCU2I4DocmIYO3feN7fi4csKiRYSYHa2nHsdkAazDcFgxJlCV2bj7n4+FwNRjQwIoyEpoIWaTlcAj7lkvLWeDqSy974CLAVWtntikgCwBG79mab+e5DI+teR6+JMgCSB3c/qsPDd8vBbQG+W6RwdZM0VUjIJbSd8prr/hZWgOhoNWMAOK6fqESWw7Psl9gshZiDm35x/dm2S+AbJAlt4RfX6R6rIzr1W475YvZ9s2ozVuTpbR0wUr4xg1oaxJmGkUu78u040ZmXZYnhyij7yTBBRuvLGPtXs8VAZQakc2B23SSo8lPiFbvhqSsZ0iJ6jJPMppaommyAZY4QKytDd0vxb0iRrELAlidymR15JHZM2GxAAAYjUlEQVQCrWBXS11LIfeg6qsSn3EdtMSuhDsfDGZBy3d5nsClebafdg+AQEdL1Wf5OlrT7eR4GLYUDQ6CVqgjtnbvDizvDuykGwEE7leOJp9rDkcrmahTQFBAhbLYMxWQptvL8QGIhA5eagdLaH2NXCL0kQGAlQusAAa4ImgzwJXSpnGydJFcLWBuXC1h1L5nc7aArMXx3qIUw3s6WlQXS1ewowVURyuWGAErqZu1SRwskdE1NwGr2X1EcFu+UWEFrHTaNDVZXXJyttquK5fncdu2iYwl2VL/nsTZal22gji5pYO7laQ+qwXIXBytLsBycbRMyFJydrTa9u/ianUde2RXK0lNVpd75eLqtEGK66LJLQ6W2Hl8+L5d99+yfQo3K4WL1QZWJBcLcHKy2pwrCmAB7pDVBldO6xUSlkvbBGBVa7KiiepqZfzCmN3Zily3paLDIGWeGZ7icJEcLaC6WlRRXaCcEWFGxQYs0TRFOVdccgEs8pxXc1gnW4o2VU1Wm1hqtSjP5BGyfRIKtJLWa+kajcNdLWqRap/koNvR6gAxSn0Wh3prtPpAilinVXSNVjPqdrMoNVh9kCNH3W4SBbA41LUUTuLaLE5Fh6sO0MlZdwUwzHlVC9tJqnGhRVbYcr3O2p67rttHYp22yNBUFNjyWs6CfxgyKTYE7KDl4XS1wZarW2WLDtuiQpussOXqVrWBluuxR4AtclwI2CHLFa7aQMPVRbJBlgdcWSNDyr59tkec2DCGi+UDVjEK3l3hKlZU6ApXrVGh6/mz9LubEK5qXOij7NM9LFqE6OM2cRTIG50DKTaMJEoc6Cv2gniPY1ejD4uXj3s1PrDx73KNIPRVgXHiXANW2/4zjxqs0zKUowpZLco6AhHIDlrssOULWtQ1ETnjAWJ9FmUOLSACkPm2R9x/8aCVeooGbtBhmqphEeRbd8UNWOLAvuyARVIdOciuGhc6aPSerTRoUs9oShsMfYFrZGgTS4xIuYEZRiOSY0NgEh0SoEsMxyRoEgPpFRWaWt69jwZNA0naniM+ZIsLKXA13EaDE7FEcrDEzuPp+ydszxUZcrhYlHorjhGFFKjiiAopYLUeFRKXIKpwVeNCkpYuWKGdKWqECGR1toDMIxEBFmdr+2Pvoh8H1dUiukIUwALyjzwsxtXKOcEoQI4ISXNmAeTjl7bI1FO5AYtDC1HUXgErqipkOWrpghUsvYwWIcrcoEWEPXnfCPIewkFQRwKqGJEAXFTQokISNTrk0Nqe7aTtyecgN2hRAYu6/VqehZ51hS7azCUKYKlIkApYFBdLHNgPsUosKaGKDFi07bc95ssVsBxUp3DwlAKt0bvCpnvQQUtQlucBvD89sQ2QB0BbHmiAGdASh3oexGDAUy+lQCsgRtz+2Luw/xr/BXcVXMhGkBaEVqCVdYqHPduxvHN/8PbUZYCyLMeTG66A7IDFCVehUzqEAhanaxUCWOKAdr8wTB0TFBXqYBSyTiIVzDCBqyp3VScrUCGulglVOZwtofeJDDEmydniEIO7FaIQNyfliEIXUR0tgMfViu5sNaMKWBbldrNcxOVakY/jQPgXEpvIgBW009nt5dKWlhe2qwKWv2rhO5Ncna02sApytUw5fjmTXeUUlGWCpnJyt2J3mo4Ol4uj1QcSLm5O5xI6jo5WsxbPeHZ1tahLAfXJxdlyLnzvAiOXpXX62lhydHEiwpU45Fin13UBlXBd6qfrOBwcLVcHKzZQubhYvVBFdLKcIasLrFydrNaldNwgq4KVk2rhe2xx1Gtlr9kC3JytnqvGyd2KOVM74OxusRTDJ1BMwALKcLUAxnotDudpDtwrufemqO1zyQWwUjhWJQCWszicK4a6qyqaKmQxigpaABNo9TwbRN+XTpcY0QG0emErRWeVIEbsg4vefx8PiymIz10UDzCAVgmAtbaniHhQylFvLFhCbJgiDuwDLHFgfxLA6nWxXOCoz8WqtVfFqMaFEWWLEH0hKlaM2BkZ2kRdLggtMWKOWgtLlNgWG/pCgy0y82nDFh3GdrFsaosPOc6H1/aW+LA1LvQBI8qyOkptcWEGuLLFhj7wFDMytLlYOWqsbJDlVWvF9KXQClm+UGSDLM82bHFhBatg1bgwh5ZexjPtQ4wYsdfNMsVUJL/B3UplveuyRIm22JDFlfFsowRHC7DHhzkK951dLQ73ylcjyzeVAtwrwN+d4nCzbHNnmYCVq4jdBCwn1yqCogAWUyxYASuOKmQl0LzEiE5i6B+zj0hU6qjbCgUKFjArGLR8JRsRdwQi18jBOai/clXO+K9tktISRggq5YArqxjgqMaC5avGhYk1etdWOjCBJ0YsoBRjXeLQpTzRoUX7v3FkMdMtlHIcyzv3sxwLxwjE0X/+f8ltsGlpWzFwhR0PYmmGGh2K4TZsveqvWI6FKrm0xANVXFHhTuLSXoMhC1jJpS0VrnjV2jlWyMqktT8Pm8xUFwtoHRDAUiEfbwOIQ4lvqpm+lwENCPb901G042BSs7ZEn7RUCkAQP2M5OZ9Lh9AfWFTQKgWyxNpeAIBcot3LohlBuk4p0dXGTrfpHHrbIkLWtms+RDsABREhk21qEgf2HVybjyIOwGoaNLv9J0COoa2nXZX7EBZRtSarNC3/Ek+EyOGKYVSGWwIA8h7iG1Jw1RQCjgSxFrxLns94tLeMqR5ySwEWuR3GWjKxZz6mc+gUI2AVo0IceqACVg5VJ6sQcThbQJi7JQ9YHno53S2jTwpyt2yQFeBu5XS0bJDl7WrZ4CrE1bK0k8vVyulk2eAqxMmywZWvm2VtI6ObFeRg2aKvAMAyoYrFwQLCXCwLVOV0sSpYJVHrw6WuXViIlLNFhS3lbPnAltgmN4KWcrcKiBKVu+UFWwOxEbQCosQdj7mjmOiQTRzxISauFhW0qGsgplSJ7lUsSTnyAi1vwGqrK/IErHlwrHIBVoWrMlSdrIKV0t2yulmmUgKXg8PuBF0usaEDdKUELdeYsNfVcokIXWGrpy0OV0upD7hSO1l9cOXqZLnAVZ+b5QpoHI6WK2Q5ARZ1cs2pXKAqqYvlEAWmhKwKVtlUnax5VE53y6qU7tYAvaDl5HDZHC1TDg7XjsfcAaCcgng2KXjqgi0HWFO1WpywlVuuzpUYrXSC1jw4Vzb1uVkscOUoV8cqGWAVVGcFVLgqWbXwfQ7EUSQPdBfKi20e4DQSaYrlHa9OeU/TXTDvGg828uBPJvkUu5cyn5YursL43MXxXNEgp3xgjasIPmjOLTX/kytgdbhY4sC+9IDVpabxAqwULlYFrLJV48I5Vawo0Sk2tCmWu0X8wjjjclHgyQC1WI5W6IjCDdEhZTSh6WoR2uJytvQIMVZcSAEr08miuFdmZBjaFlcRPDAbHW5wsChulQZY1PqqaC5WoGsVC7AqVBWpOoXDoimFu+Ul5W5xO1zEK3TG5aLMnZXA4aJM2cC6yLQOVcSpHzicLSD+tA9U50qMDt6PXPGgaEaktqJP6UCdsXwKWD5uVZvYAUs5VjUWrCKq1mTNsbhqtgCtbss20tBX3LVbDvVZfZqp36LA0nTbokcdcsyJxTQCEeAZhQjEAy3OaJADsDgmJ+WWqs/ads2HeOqsBkO2kYGsgMUEVdwuVoWr+VWNCxdMLMC1ctA+EkwPWgB06Ir0pVLsIs4O/437k7Yfrx58SFDPt9QAa0CcKV422nUw4Dv5VOAav+pnyMcwWLln/XeO2dbX2yLO/j4DMMQJOXVRo8Pt//hh0vZilcd5N0UGLB2qqDO7a201h92P1hYqWM2Z6ujCzSI9RgwFLrG1WQct9dBmgS2qw8XgaNkk75scTyhs7TjldjJorR+LFGxg24yHZNBSks2ADbS4nK1Q6YBFFevIQaaReNyiAFYsuAKIgGU6VhTAMtqiAFYFq8VTrclaYHHVbQGzDglZlNqtiFesvE+uA5evdpxyO99xMJ7rZjxEw1SrJZvBjLtF0WjvdrZ6LVcNVu5hAyxqvdSMqLVNERUKWGJ1pUzA4q6zYmyrAtZiqsaFm0w+7pYeG7YpW5yYuB7Vx+XycbX0qNC6X4/z6wJnPs5WH1BxRoiAe4zoExe6QJVPXNgHVl5xoQtYZYoMfeAqJkzZ5AVYfRDk42C5TDzq4WJVqFootXa+FbI2qVxhywW0gAywlWnQjytsuYBWH2Ct79Px3Lo6YC6g5epY5QAtV8hyda1cIct5tnUX0GKYQypELqDlClip4UrJCbJcHSamWd0Bd8CqcLWQqpBV1a026HKFLFOs0AW0g1cBI6y7wKsNtlwBa8O+Ws5rSMTYBVshsWAq4OqCrJA4sAuyQiLBTsgKiQUTgVYXXOUCKl2tcBUa2bUBVui8WC2QVaFqU6hCVpWbbLAVClpAAtgqALJ02YDLBK1QwFrfh+WcUuq4TNii1l3Fhi0bZFFqrWyQRa232gBaTBN2cskELRtglQBWujZAFqUeygZYhPZsgFXhalOpji6schPn3FvA7MM/ygjFSCMOQ6UXzivg4hx9CGwcgUgtlOcchQjwjkQEutdF5ChkN+elYl9rkFrU3oyjgJaSDlilgZXSDGAVWriuVOGqSld1sqqctPo2/pFg7C7XgLm9RrC3uef6Y1jbiyH2zwW87tbwV36Ura1YijKZKDNobb/2s6ztoWnoc00ZkhHhkkvLT/nn3IdQlV81LqziEzdwcT3UZ1yzIee33Wm7TMBVMmjps6oPOM8h+ECraMjSXCvyxKQ2MUEHG2ApJ4gTrjR3KcmizwGqYFVlqEJWFb9KdLfM6IwFtmzLuRCBq1TQMpeu4QYtgA5bxUKWEQuWCllkwLJFbIyzpSuVCFgVrqpaVCGrKr5Kgq6+OqVg+OpbPy8AvkoBrr61AUsBrqIgq6feqhTQCgIrzjmmPNotCa4qVC2uzjrrLHz+85/Hk570JFx++eXO21144YV4wxveAADQ+Km186wzvlexacur9q//cElKsf7joz44k+PB+g+rGtEPYgXKZfHlZjxAw3y+OGeRTyrHWdrFKEIheezZ4blnRdfbnAPAWn7KP6//bBadddZZEEJYfy666KJsx/XiF78YQggcd9xx7G0/8pGPxBlnnIFHPvKR7G3rqqMLq6LIBlpUp8sGWl0wJYR0gjMbaLU6Xcqp6oOStn+3OF07H37z+u+luFpd0kGLy92KtRg1q0pa+sZhxGGve8U9vxSh3VxwtZlAykVbtmzBqaeeOvN3Rx11VKajiaPRaIThcIh3vvOdSfY3h18hq+ZV3C4X0O90BceNfU5XaE2WcrpaHC8duOZBMd2tYhyuUtcW7DgmK2DpblKMCTxjOGCRtNmcKlc96EEPwle/+tWZn6c//ekAgEsvvRQPe9jDsG3bNpx55pn4xCc+scHtuuiii9b/7vvf/z4A4Pvf//6G1/3gBz/A0572NBx77LHYvn07tm/fjkc/+tF461vfuh7BHXfccXjve9+7/nrVhor2/uVf/gUvetGL8MAHPhDLy8s4+uij8bKXvQy3335wHVndCbvoootw/PHHY8uWLbjnnnvW3buzzjpr/fW/+qu/ikc96lE47LDDsLy8jAc/+ME4//zzcdtttwWf0+pkVSWXDlqcdVxtc3K5Olqt7RoQse5yubpaXdK3nbanQCuVq+USFfapGQ+i1Gwp0MrmbjHAlRitxKnNAjY4Whvgigt6TLhihKlULlaFqnBde+21OOecczAej7Fr1y7cfvvtOPfcc4Pbu+OOO3DZZZfhmGOOwSMe8QjccsstuO666/Ca17wGy8vLeMUrXoFTTz0Ve/fuxZ133jnjsO3evRu33347Hv/4x+PWW2/F1q1b8bCHPQw33HAD3v3ud+Pyyy/HNddcg507d67v79Zbb8Uv/uIv4sQTT8T9798+Z+EnP/lJ3HLLLTj22GMxGo1w/fXX433vex++/e1v4x/+4R+C3mshXxWrNqv0Oi5Op0t3uNYBi+m5oLtccjwIqhmzynC5dj70Fux86C30dlskG8ECWErK1Zprd0u5VszulRitxKnPAoBmjO1f/wy2f/0zPG6VdR9x2o0FWHpdVXWt3KU7Rurn7rvvxh/90R9hPB5j586d+Na3voXvfOc7ePWrXx28nxNPPBHf+973cNNNN+Gaa67BbbfdhjPPPBMA8OEPTybHvfTSS9ddNN1he+xjH4t3vOMduPXWWyGEwBe/+EVcd911+NjHPgYAuOGGG/BXf/VXM/tbW1vDO9/5Tlx//fW47bbbcOihh1qP64Mf/CB++MMf4tprr8W3v/1tvOtd7wIAXHXVVbjxxhuD3mt1sqqKUyyna/0rRWP8mUlSivW2xZBvQK4CrT03HM3WZgop0IrhcLGrxDjQQduv/Rx/ozHmvjIUA64qSNFlq8laWlrCtddeCwD40R/9URxzzMRhf/7zn483velNQftZXl7GH/zBH+DjH/84br31VoxGB1dZuPXWW3u3v+qqyaz6J554Ik4//XQAwNlnn43DDz8cd911F66++uqZ12/fvh0vfelLAQBCtH+x/PrXv46XvOQluP7667F3796Zf7v11ltxwgknuL1BTRWyqopWFOBSS/GYz36OZ8q0bTk25+uiQ9fOh94yd6AFFA5bcwpXACNgxZj3qkOcgFXBilfKMXKRbfonHWDG48m9dc89G5e+evWrX433vOc9AICHPvShOOKII3DjjTfizjvvXN/ORV3ApOv+978/Bj3X9Je+9CWcf/75kFLifve7Hx75yEdiz549+Pa3vz3zfnxVIatqbtQWJQbBl23NwzYG8H3emI4ZNkKXLh8A0+PDUODijAh9ZIsQk4JXAUClIsPQGq1gsHKN+CLCFRAOWBWm8urkk0/G1772NXzlK1/Brbfeigc/+MG45JJLNrxOr3e68cYbccIJJ+DSSy/d8DoFcj/1Uz+FT33qUzhw4AAe97jH4c4775x53Y4dOwAA+/btg5RyHapOP/10fPKTn8QNN9yAq666Cqeffjouu+wy3HXXXQCA0047zfs9XnnllevgeO211+JBD3oQ3vzmN+N1r3udd1u6KmRVzb2C3S7XxaVDHS8LbNkU6nrNa4yoK4nLVQBcUeUNV751U5HhCvAHrApW6XXbbbfhcY973MzfXXDBBXjta1+LD3zgA9izZw9OOukkHH300bjppps2bH/GGWdg586d2LNnD8477zw86lGPwle+8pUNrzvllFPwzW9+E5/+9Kfx8Ic/HD/84Q/RWK7Zk046CcCkUP6kk07C4Ycfjs997nN4xStegXe/+9247bbb8MQnPhEnnngivvvd7wKYRIgveclLvN/7Kaecsv77ySefjKOOOmpmpGKoauF71ULJu4g+5A5ojB9mybGY+emTT3F8LherTzGK5YudegF+k5Q6AVasgncmuQBWLVTPr9XVVVx55ZUzPzfffDNOPvlkXHzxxXjoQx+K1dVVHHHEEfjIRz6yYfsjjjgCH/rQh/B/27t/FTWiMA7DvyyybIigjVsIKTaNNqnS5AaEEBALa0EWb8G9BxtTWlp5HWkiaB1CUFJ4D+4ihMwmRXbJOuPoTPZ880ffp5RhZirn5ZyZc2q1mu7u7uR5niaTSeC44XCoVqulYrGo9Xqtfr+vZrMZOO76+lrtdlulUknL5VLz+Vye5+ny8lKz2UydTkflclmLxUKVSkW9Xk/T6XTry8KoGo2GBoOBqtWqNpuN6vW6RqNR7PP4sa0OTtLOES+LZ5O/G4yef/7RL//oVlbjKgr/KFeh/z54UEZjKgr/1GEgqqyiKaXRKwLqOKxWK11dXUmSxuOxut1uujeUrtA/WKYLcZL8o1wW+y5KCp9qdPzc9I945fUl+V1CV5jPcViFefn1s/1IVAJx9RRRhVNGZAEKf6n+0c9PjiIsoZmc394LvXoT/BT69odReO1av8pgAdF778w2ru5/BX87s/mbvPj2xeS8OxmGVeFD8N0cAH8xXQj8B2fRlRLnsXVokVCHwXV+887ZuSTtDqunHEdWonElOQ8sogoICJ0uJLIAB/IaXU5iK+4q7M8MLieRdSis/ByEVl7jiqgCDiKygCzIQ4zFCi+X29xEjK9YkRU3pvaJEVqJB9WjGGFFPAHOEFlAVmU1vPbGlvUegnuC62BkuQyrXfbEVmpxJe0NLIIKMEVkAXmTpfjaCi7rwArzEF5bkWUdVKH38i+0Ug2rRw+BRUwBqSCygGOXRpTdLl8nfs3zm7eJX1OSLr5H29PNpcLH6AvNAkgNkQWcuiQiLInoSiqykogqIgo4CkQWgGhcx5jr8LKILNdBRTwBJ4XIAgAAMPDsbXXyu/EZAABAClL6TAgAAOC4EVkAAAAGiCwAAAADRBYAAIABIgsAAMAAkQUAAGCAyAIAADBAZAEAABj4Ay+OyQ4mDxRLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXzU1dnw/8+ZyWQPWSEQE5IQ2ZMQsmDYwYXFBUWgqKi4FOp217v2xqf1Z1vb6lOtPt5W7W1rq2jFircCikItLiAYQJNA2DcjiWHNRvZ95vz+yGQkZLJAJpnM5Hq/XrwI3+93zrkmIeTiXGdRWmuEEEIIIYTzGJwdgBBCCCFEfycJmRBCCCGEk0lCJoQQQgjhZJKQCSGEEEI4mSRkQgghhBBOJgmZEEIIIYSTSUImhBBCCOFkkpAJIdyWUuohpVSWUqpeKfXGBfd+rJT6VilVpZT6RCkVcd49pZR6RilVYv31R6WUst6ban3N+b+0UmpBL789IYQbkYRMCOHOTgFPAq+ff1EpNR34v8CNQAhwHHjnvEeWAzcB44BE4HrgJwBa621aa/+WX9Z7VcAnPftWhBDuTBIyIYTb0lqv1Vp/AJRccOsG4D2t9QGtdQPwe2CaUirOen8p8P+01ie01ieB/wfc1U43S4H3tdbVjn8HQoj+QhIyIUR/pKy/zv8zQLz197HAnvPu77Fea92IUr7AQuDNHohRCNGPSEImhOiPNgI/UkolKqV8gF8DGvC13vcHys97vhzwb5lHdp4FQDHwZQ/HK4Rwc5KQCSH6Ha3158BvgDVAPpAHVAInrI9UAQPOe8kAoEprrS9oainwDzvXhRDiokhCJoTol7TWf9ZaD9daD6I5MfMA9ltvH6B5Qn+LcdZrNkqpKGAG8I+ej1YI4e4kIRNCuC2llIdSyhswAkallHfLNaVUvHV7i6HAq8CftNbnrC/9B/CIUuoy63YYPwfeuKD5O4DtWuvcXno7Qgg3JgmZEMKdPQ7UAr8Abrd+/DjgDfyT5tLkN8AO4Ffnve6vwEfAPppHzTZYr53vTmQyvxDCQZRMfRBCCCGEcC4ZIRNCCCGEcDJJyIQQQgghnEwSMiGEEEIIJ5OETAghhBDCySQhE0IIIYRwMknIhBBCCCGcTBIyIYQQQggnk4RMCOFQSqmqXuzLrJTKUUodUErtUUo9opQynHd/ewevDVJKPdA7kbbpO0YpVauUyjnvz/s7e10X2vWxfj4alFJh3Y9UCNFbJCETQriyWq11ktZ6LHANcC3Nh4YDoLWe1MFrgwCnJGRWuVrrJEc2qLWutbZ5ypHtCiF6niRkQogeYR2t2m/99Z/nXf+VUuqwUupTpdQ7Sqn/ckR/WutCYDnwkFJKWfuqsv7up5TaYB1F26+UWgw8DcRZR5SetT73gVIq2zrittx6LUYpdUgp9Tfr9U1KKR/rvTuVUnut7b513nu8XSn1jbXtvyqljF19H0qpYUqp3UqpNGvfh5VSb1r7eV8p5dtR30II1+Th7ACEEO5HKZUC3A1cASjga6XUlzQf8r0AGE/zvz+7gGxH9au1/s5ashwEnD3v1hzglNb6Omt8gcDXQPwFo1T3aK1LrQlXplJqjfX6cOBWrfUypdT/AguUUruB/w+YrLUuVkqFWNseDSy2Xm9USv0PsITmA8s7pJQaCawG7tZa5yilYoCRwL1a6wyl1OvAA0qpf9nrWwjhuiQhE0L0hCnAOq11NYBSai0wleZR+Q+11rXW6x+1vEApNYzmJCNQa71QKeUH/A/QAGzRWr/dxb6VnWv7gOeUUs8AH2uttymlgu0891Ol1Hzrx1E0J2JngONa6xzr9WwgBggG3tdaFwNorUut968CUmhO6AB8gMIuxD0Q+BBYoLU+cN71Aq11hvXjVcBPgfp2+hZCuCgpWQoheoK9pKij62itv9Na33vepZtpTjqWAfO61GlzUmfmggRIa32U5iRpH/AHpdSv7bx2BnA1MFFrPQ7YDXhbb9ef96iZ5v/MKkDbCwN40zq3LUlrPVJr/UQXwi8HCoDJF1y/sA/dQd9CCBclCZkQoidsBW5SSvlaR7rmA9uAr4AblFLeSil/4LoO2oikOUGB5iSoQ0qpgcBfgJe11vqCexFAjdZ6FfAckAxUAgHnPRYInNNa1yilRgHpnXT5OfAjpVSotY+Q864vVEoNarmulIruLH6aRwJvAu5USt123vWhSqmJ1o9vpflz2F7fQggXJSVLIYTDaa13KaXeAL6xXvq71no3gFJqPbAHyAeyaB4ZsucEzUlZDu3/59HHunWECWgC3gKet/NcAvCsUsoCNAL3a61LlFIZ1u0m/gU8DtynlNoLHAF2dvIeDyilngK+VEqZaR5Ru0trfVAp9TiwyTqfrRF40Pp+O6S1rlZKXQ98qpSqpvnzdAhYqpT6K3AMeMWaNLbpu7P2hRB9l7rgP5JCCNGjlFL+Wusq62rBrcByawIXCjxF8/YVfwdeBF4G6oCvLmIOWZ9nnaz/sdY63hHP2XldHpDaMsdMCNH3yQiZEKK3vaqUGkPz/Kw3tda7ALTWJcB9Fzx7d28H10vMQKBSKseRe5FZV4fuoHnE0OKodoUQPU9GyIQQQgghnEwm9QshhBBCOJkkZHYopaKUUputu3MfUEo97OyYhGNZV/l9Y93l/IBS6rfOjkn0DKWU0brz/cfOjkX0DKVUnlJqn/VkhCxnxyMcTzWfPfu+9eSKQ+etPHYbMofMvibg59aJxgFAtlLqU631QWcHJhymHrjSOrncBHyllPqX1rrDlXXCJT1M80rFAc4ORPSombKIwa39CfjEumm0J+Dr7IAcTUbI7NBanz5vonElzf+YX+bcqIQj6WZV1j+arL9kQqWbUUpF0rzX2d+dHYsQ4tIopQYA04DXALTWDVrrMudG5XiSkHXCuux8PM3n3gk3Yi1l5dC8q/unWmv5GrufF4BHkRWH7k7TvO9btrIeCi/cyjCgCFhpnX7wd+uG025FErIOWHcSXwP8p9a6wtnxCMfSWputWw5EAhOUUhe115Po26wbrBZqrR12eLnosyZrrZOBucCDSqlpzg5IOJQHzadrvKK1Hg9UA79wbkiOJwlZO6zzitYAb2ut1zo7HtFzrEPfW4A5Tg5FONZkYJ51k9TVwJVKqVXODUn0BK31KevvhcA6YIJzIxIOdgI4cV4V432aEzS3IgmZHUopRXOt+pDW2t4xLMLFKaUGKqWCrB/70Hyo9GHnRiUcSWv9S611pNY6BrgF+EJrfbuTwxIOppTysy6+wlrGmgXsd25UwpG01meAAqXUSOulqwC3W2QnqyztmwzcAeyzzjECeExrvdGJMQnHGgK8qZQy0vwfk//VWsu2CEK4nnBgXfP/o/EA/qm1/sS5IYke8B/A29YVlt/hhqd4yE79QgghhBBOJiVLIYQQQggnk4RMCCGEEMLJJCETQgghhHAySciEEEIIIZyszyRkctizEEIIIfqrPpOQ8cNhz+OAJGCOUirdmQHJERzuT77G/YN8nd2ffI3dn7t/jftMQtZHD3t26y++AORr3F/I19n9ydfY/bn117jPJGQghz0LIYQQon/qkxvDWo+0WQf8h9Z6/wX3lmPNko1GY4qXl1ePxdHU1ISHhxxm4M7ka9w/yNfZ/cnX2D1orbFYLIDCaGw9ZuQOX+OamppGrbWnvXt9MiEDUEr9BqjWWj/X3jOpqak6KyurF6MSQgghRE/Zvn0HOTl7aGpq5Npr53L55Zc7OySHUkpla61T7d3rMyVLOexZCCGE6N/8/Pwwm5swGAx4e3s7O5xe1ZfG/uSwZyGEEKIfS0iIJzg4CA8PDyIiIpwdTq/qMwmZ1novMN7ZcQghhBDCOQwGA0OHDnV2GE7RZxIyR2lsbOTEiRPU1dU5OxQhnMbb25vIyEhMJpOzQxFCCNEFbpeQnThxgoCAAGJiYlBKOTscIXqd1pqSkhJOnDhBbGyss8MRQgjRBX1mUr+j1NXVERoaKsmY6LeUUoSGhsoosRBCuBC3S8gAScZEvyffA0II4VrcMiHrS5544gmee67drdT44IMPOHjwYC9GJIQQQoi+RhIyJ5OETAghhBCSkPWAp556ipEjR3L11Vdz5MgRAP72t7+RlpbGuHHjWLBgATU1NWzfvp3169ezYsUKkpKSyM3NtfucEEIIIdybJGQ0r0qrbzI7pK3s7GxWr17N7t27Wbt2LZmZmQDcfPPNZGZmsmfPHkaPHs1rr73GpEmTmDdvHs8++yw5OTnExcXZfU4IIYQQ7s3ttr24WFprdn5XwrHCKoYP8id9WPdWaG7bto358+fj6+sLwLx58wDYv38/jz/+OGVlZVRVVTF79my7r+/qc0IIIYRwH/1+hKzBbOFYYRWDA7w5VlhFg9nS7TbtJXR33XUXL7/8Mvv27eM3v/lNu1sSdPU5IYQQQriPfp+QeXkYGT7InzOVdQwf5I+Xh7Fb7U2bNo1169ZRW1tLZWUlH330EQCVlZUMGTKExsZG3n77bdvzAQEBVFZW2v7c3nNCCCGEcKwzZ86wffsOioqKnB2KlCwB0oeFkhwd3O1kDCA5OZnFixeTlJREdHQ0U6dOBeD3v/89V1xxBdHR0SQkJNiSsFtuuYVly5bx4osv8v7777f7nBBCCCEcp6GhgY8+2gDAkSNHuPPOOzAau58HXCqltXZa592Vmpqqs7KyWl07dOgQo0ePdlJEQvQd8r0ghBDta2xsZNWqt6mrq8Pf358lS27DYOjZwqFSKltrnWrvnoyQCSGEEKLfMZlM3HjjPE6ePEVUVGSPJ2OdkYRMCCGEEP1SSEgIISEhzg4DkEn9QgghhBBOJwmZEEIIIYSTSUImhBBCCOFkkpAJIYQQQjiZJGQ9IC8vj/j4+F7r74knnuC5557r0rPXXnstZWVl3WpDCCGEEI4lqyz7ELPZ3GOb0mmt0VqzcePGHmlfCCGEEJdORsh62Hfffcf48eP5+uuvWbFiBWlpaSQmJvLXv/4VgC1btjBz5kxuu+02EhISyMvLY/To0SxbtoyxY8cya9YsamtrAcjNzWXOnDmkpKQwdepUDh8+3GHfLW098MADJCcnU1BQQExMDMXFxQA89dRTjBw5kquvvpojR47YXpeZmUliYiITJ05kxYoVttE+s9ls9z0IIYQQonskIQMsFk1RZT2OPrXgyJEjLFiwgJUrV7Jnzx4CAwPJzMwkMzOTv/3tbxw/fhyAb775hqeeeoqDBw8CcOzYMR588EEOHDhAUFAQa9asAWD58uW89NJLZGdn89xzz/HAAw90KYY777yT3bt3Ex0dbbuenZ3N6tWr2b17N2vXriUzM9N27+677+Yvf/kLO3bsaDVi99prr7X7HoQQQgiXY7FAVSH0gVOL+n3J0mLR3Pq3nWTnnyMlOph3lqVjMKhut1tUVMSNN97ImjVrGDt2LE8++SR79+7l/fffB6C8vJxjx47h6enJhAkTiI2Ntb02NjaWpKQkAFJSUsjLy6Oqqort27ezaNEi23P19fWdxhEdHU16enqb69u2bWP+/Pn4+voCMG/ePADKysqorKxk0qRJANx22218/PHHAGzatMnuezg/diGEEMIlWCzw5vVQ8DVEXQFLPwYn7tbf7xOykuoGsvPP0WTRZOefo6S6gYEBXt1uNzAwkKioKDIyMhg7dixaa1566SVmz57d6rktW7bg5+fX6pqX1w/9G41GamtrsVgsBAUFkZOT026fBQUF3HDDDQDcd999zJkzp03b51OqbeLZ0Shhe+9BCCGEcDk1xc3JmKWp+feaYvAf5LRw+n3JMszfk5ToYDwMipToYML8PR3SrqenJx988AH/+Mc/+Oc//8ns2bN55ZVXaGxsBODo0aNUV1d3ub0BAwYQGxvLe++9BzQnR3v27Gn1TFRUFDk5OeTk5HDfffd12N60adNYt24dtbW1VFZW8tFHHwEQHBxMQEAAO3fuBGD16tW213T3PQghhBBOc2F50m9g88iYwaP5d7+BTg2v34+QKaV4Z1k6JdUNhPl72h01ulR+fn58/PHHXHPNNTz++OOMGTOG5ORktNYMHDiQDz744KLae/vtt7n//vt58sknaWxs5JZbbmHcuHGXFFtycjKLFy8mKSmJ6Ohopk6darv32muvsWzZMvz8/JgxYwaBgYEA/PjHPyYvL69b70EIIYTode2VJ5d+3Dwy5jcQHPjz/1IoR09k702pqak6Kyur1bVDhw4xevRoJ0XkHqqqqvD39wfg6aef5vTp0/zpT39yclTiYsn3ghBCWFUVwvOjm8uTBg945JBTypNKqWytdaq9e/2+ZCna2rBhA0lJScTHx7Nt2zYef/xxZ4ckhBBCdF0fL0/a0+9LlqKtxYsXs3jxYmeHIYQQQlw8FyhP2iMjZEIIIYRwH/ZWT0JzUuY/qE8mYyAJmRBCCCFcmQuWJ+2RkqUQQgghXJOLliftkREyIYQQQrgmFy1P2iMJWQ9o2TLi1KlTLFy40MnRXLotW7Zw/fXXd/uZCz3xxBM899xz3QmtjWuvvZaysjLKysr4n//5H4e23ZH169fz9NNPd/hMR5+jF154gZqaGtufW96HEEIIO9ykPGmPJGQ9KCIiwnbuY09pamrq0fZdxcaNGwkKCur1hGzevHn84he/uOTXX5iQtbwPIYQQF2gpTz4/Gt64rvnPSjWXJx85BHdtcKkRsQtJQtaD8vLyiI+PB+CNN97g5ptvZs6cOQwfPpxHH33U9tymTZuYOHEiycnJLFq0iKqqKgB+97vfkZaWRnx8PMuXL7edMzljxgwee+wxpk+f3mbD1ieeeIKlS5cya9YsYmJiWLt2LY8++igJCQnMmTPHduzR559/zvjx40lISOCee+6xHVT+ySefMGrUKKZMmcLatWtt7VZXV3PPPfeQlpbG+PHj+fDDDy/qc/HUU08xcuRIrr76ao4cOWK7npuby5w5c0hJSWHq1KkcPnwYgLvuuouf/vSnTJo0iWHDhtkS29OnTzNt2rRW+6QBxMTEUFxczC9+8Qtyc3NJSkpixYoV3HHHHa1iXbJkCevXr28VW2FhISkpKQDs2bMHpRTff/89AHFxcdTU1FBUVMSCBQtIS0sjLS2NjIwM29f1oYcesr2X9PR00tLS+PWvf20bKYXmzXYXLlzIqFGjWLJkCVprXnzxRU6dOsXMmTOZOXNmq/eRl5fH6NGjWbZsGWPHjmXWrFnU1tYCkJmZSWJiIhMnTmTFihW2v2NCCOHW3Kg8aZfW2mV/paSk6AsdPHiwzbVOmc1aV57V2mK5+Nfa4efnp7XW+vjx43rs2LFaa61XrlypY2NjdVlZma6trdVDhw7V33//vS4qKtJTp07VVVVVWmutn376af3b3/5Wa611SUmJrc3bb79dr1+/Xmut9fTp0/X9999vt+/f/OY3evLkybqhoUHn5ORoHx8fvXHjRq211jfddJNet26drq2t1ZGRkfrIkSNaa63vuOMO/d///d+260ePHtUWi0UvWrRIX3fddVprrX/5y1/qt956S2ut9blz5/Tw4cN1VVWV3rx5s+2ZzMxMfe+997aJKSsrS8fHx+vq6mpdXl6u4+Li9LPPPqu11vrKK6/UR48e1VprvXPnTj1z5kyttdZLly7VCxcu1GazWR84cEDHxcVprbV+7rnn9JNPPqm11rqpqUlXVFRorbWOjo7WRUVFrT7nWmu9ZcsWfeONN2qttS4rK9MxMTG6sbGxTYxjxozR5eXl+qWXXtKpqal61apVOi8vT6enp2uttb711lv1tm3btNZa5+fn61GjRtm+rg8++KDWWuvrrrtO//Of/9Raa/3KK6/Y/h5s3rxZDxgwQBcUFGiz2azT09NtbbXE3eL892E0GvXu3bu11lovWrTI9vkfO3aszsjI0Fpr/X/+z/9p9X7Pd0nfC0II0Vdc+LPZYtH69bla/zak+XcH/czuTUCWbienkVWW7a3Q6AFXXXWV7VzIMWPGkJ+fT1lZGQcPHmTy5MkANDQ0MHHiRAA2b97MH//4R2pqaigtLWXs2LHccMMNAB1u3Dp37lxMJhMJCQmYzWbmzJkDQEJCAnl5eRw5coTY2FhGjBgBwNKlS/nzn//MjBkziI2NZfjw4QDcfvvtvPrqq0DzKN769ettc7/q6upso0gtUlNT+fvf/94mnm3btjF//nx8fX2B5jIfNI8abd++nUWLFtmebRmpA7jpppswGAyMGTOGs2fPApCWlsY999xDY2MjN910E0lJSR1+zqdPn86DDz5IYWEha9euZcGCBXh4tP1rP2nSJDIyMti6dSuPPfYYn3zyCVpr2xmfn332GQcPHrQ9X1FRQWVlZas2duzYYTvb87bbbuO//uu/bPcmTJhAZGQkAElJSeTl5TFlypQOY4+NjbW9v5SUFPLy8igrK6OyspJJkybZ+vn44487bEcIIVyOG62e7CpJyOwNgfbQ+VZeXl62j41GI01NTWitueaaa3jnnXdaPVtXV8cDDzxAVlYWUVFRPPHEE9TV1dnu+/n5ddqPwWDAZDLZDkw3GAy2PtvT3uHqWmvWrFnDyJEjW11vSZQ6Y69di8VCUFAQOTk5Hb6Plv4Bpk2bxtatW9mwYQN33HEHK1as4M477+yw7zvuuIO3336b1atX8/rrrwNw9913s3v3biIiIti4cSNTp05l27Zt5Ofnc+ONN/LMM8+glLJNxrdYLOzYsQMfH58uvd+O3kvL1/5iX1NbW9vh104IIdxGez+bW8qTbkjmkDl5hUZ6ejoZGRl8++23ANTU1HD06FFb8hUWFkZVVZVDFweMGjWKvLw8W59vvfUW06dPZ9SoURw/fpzc3FyAVkni7Nmzeemll2wJwe7du7vc37Rp01i3bh21tbVUVlby0UcfATBgwABiY2N57733gOaka8+ePR22lZ+fz6BBg1i2bBn33nsvu3btanU/ICCgzcjVXXfdxQsvvADA2LFjAVi5ciU5OTls3LjRFuOqVasYPnw4BoOBkJAQNm7caBu5nDVrFi+//LKtTXtJZHp6OmvWrAFg9erVXfrc2Iu3I8HBwQQEBLBz586L6kcIIfo0N1492VWSkDl5hcbAgQN54403uPXWW0lMTCQ9PZ3Dhw8TFBTEsmXLSEhI4KabbiItLc1hfXp7e7Ny5UoWLVpEQkICBoOB++67D29vb1599VWuu+46pkyZQnR0tO01v/rVr2hsbCQxMZH4+Hh+9atftWk3KyuLH//4x22uJycns3jxYpKSkliwYIGtDAjw9ttv89prrzFu3DjGjh3b6WKBLVu2kJSUxPjx41mzZg0PP/xwq/uhoaFMnjyZ+Ph4VqxYAUB4eDijR4/m7rvvbrfdmJgYoDkxA5gyZQpBQUEEBwcD8OKLL5KVlUViYiJjxozhL3/5S5s2XnjhBZ5//nkmTJjA6dOnbeXpjixfvpy5c+faJvV3xWuvvcby5cuZOHEiWusu9SOEEH2Wm6+e7CrlyiWQ1NRUnZWV1eraoUOHGD16tJMiEn1RTU0NCQkJ7Nq1q0eTl5qaGnx8fFBKsXr1at55552LXo3aFVVVVbYVnE8//TSnT59us9oW5HtBCOEiqgqbkzFLU/OI2COH3LYsqZTK1lqn2rsnc8iEW/vss8+45557eOSRR3p8JCk7O5uHHnoIrTVBQUG2+WqOtmHDBv7whz/Q1NREdHQ0b7zxRo/0I4QQPcJiaT0xv6U82TKBvx+UJ+2RETIh3JR8Lwgh+pz2Vk9emKS5qY5GyGQOmRBCCCF6h7tv7toNkpAJIYQQomfI6skukzlkQgghhHC8fri5a3fICJkQQgghHE/KkxdFErIe0LIlwalTp1i4cKGTo7l0W7Zsse1U351nHO38Q7sdYf369Tz99NMAfPDBB62OSOpJ5/fbno4+vy+88AI1NTU9EZoQQlw8KU92iyRkPSgiIsKhO+zb05UjeETH5s2bxy9+8QugdxOy8/u9FJKQCdE9lZWVNDQ0ODsM9yCbu3abJGQ9KC8vj/j4eADeeOMNbr75ZubMmcPw4cN59NFHbc9t2rSJiRMnkpyczKJFi6iqqgLgd7/7HWlpacTHx7N8+XLbsUUzZszgscceY/r06W02BH3iiSdYunQps2bNIiYmhrVr1/Loo4+SkJDAnDlzaGxsBODzzz9n/PjxJCQkcM8999gO9f7kk08YNWoUU6ZMYe3atbZ2q6urueeee0hLS2P8+PEXteFpXl4eo0ePZtmyZYwdO5ZZs2ZRW1sLNB9BlJ6eTmJiIvPnz+fcuXNtXn/8+HEmTpxIWlpamxMCnn32WdLS0khMTOQ3v/lNp/29+OKLjBkzhsTERG655Rbb1+ahhx5i+/btrF+/nhUrVpCUlERubi7Jycm2vo4dO0ZKSkqr/gsLC23X9uzZg1LKduh6XFwcNTU1FBUVsWDBAtLS0khLSyMjI6NVvwC5ubmkp6eTlpbGr3/961ajgFVVVSxcuJBRo0axZMkStNa8+OKLnDp1ipkzZ17ULv9CiGb79x9g1aq3effd/6W6utrZ4bg+KU92myRkgEVbKK4t7vGDm3Nycnj33XfZt28f7777LgUFBRQXF/Pkk0/y2WefsWvXLlJTU3n++ecBeOihh8jMzGT//v3U1tby8ccf29oqKyvjyy+/5Oc//3mbfnJzc9mwYQMffvght99+OzNnzmTfvn34+PiwYcMG6urquOuuu2yxNDU18corr1BXV8eyZcv46KOP2LZtG2fOnLG1+dRTT3HllVeSmZnJ5s2bWbFiRZt/xNo7Ogmak5kHH3yQAwcOEBQUZDvz8c477+SZZ55h7969JCQk8Nvf/rbNax9++GHuv/9+MjMzGTx4sO36pk2bOHbsGN988w05OTlkZ2ezdevWDvt7+umn2b17N3v37m1z/NGkSZOYN28ezz77LDk5OcTFxREYGGg7t3LlypXcddddrV4zaNAg6urqqKioYNu2baSmptoOKR80aBC+vr48/PDD/OxnPyMzM5M1a9bY/Rw9/PDDPPzww2RmZhIREdHq3u7du3nhhRc4ePAg3333HRkZGfz0pz8lIiKCzZs3s3nzZrufcyH6E601J0+e5OTJk8SKZecAACAASURBVF36tzw3Nxd/f38qKyspLS3thQjdyIWlSZDypAP0+4TMoi3c8+97uPq9q7n733dj0ZYe6+uqq64iMDAQb29vxowZQ35+Pjt37uTgwYNMnjyZpKQk3nzzTfLz8wHYvHkzV1xxBQkJCXzxxRccOHDA1tbixYvb7Wfu3LmYTCYSEhIwm83MmTMHgISEBPLy8jhy5AixsbGMGDECgKVLl7J161YOHz5MbGwsw4cPRynF7bffbmtz06ZNPP300yQlJTFjxgzq6upsI0EtUlNT+fvf/243ptjYWJKSkgBISUkhLy+P8vJyysrKmD59eqs4LpSRkcGtt94KwB133NEqpk2bNjF+/HiSk5M5fPgwx44da7c/gMTERJYsWcKqVavw8Oh8kfGPf/xjVq5cidls5t133+W2225r88ykSZPIyMhg69atPPbYY2zdupVt27bZzuz87LPPeOihh0hKSmLevHlUVFS0OVB8x44dLFq0CKBNHxMmTCAyMhKDwUBSUpLtvQghfnDs2LesW/sB69Z9yPHjxzt9PiUlmcaGRqKioggPD++FCN2EvdIkSHnSAfr9theldaXkFOZg1mZyCnMorSslzCesR/ry8vKyfWw0GmlqakJrzTXXXMM777zT6tm6ujoeeOABsrKyiIqK4oknnqCurs5238/Pr9N+DAYDJpMJZf3GMBgMtj7bo9r5JtJas2bNGkaOHNnq+tmzZ9tty15M0PzeW0qIXWUvLq01v/zlL/nJT37S6npeXl67/W3YsIGtW7eyfv16fv/737dKcu1ZsGABv/3tb7nyyitJSUkhNDS0zTNTp061jYrdeOONPPPMMyilbJPxLRYLO3bswMfH56Lecwt7f2+EEK3VVFeDUmitqarqvAQZGRnJPffe3QuRuRl7pcmWcydbypPikvT7EbJQ71CSBiVhVEaSBiUR6t32B25PSk9PJyMjg2+//RZoPqD66NGjtuQrLCyMqqoqhy4OGDVqFHl5ebY+33rrLaZPn86oUaM4fvw4ubm5AK2SxNmzZ/PSSy/Zkrndu3d3O47AwECCg4PZtm1bqzguNHnyZFavXg3A22+/3Sqm119/3Tbn7uTJkxQWFrbbn8VioaCggJkzZ/LHP/6RsrIy22tbBAQEtBq98vb2Zvbs2dx///3cfbf9f7ynTZvGqlWrGD58OAaDgZCQEDZu3MjkyZMBmDVrFi+//LLt+ZYS6PnS09NtZdWW99qZC2MVoj8bNXoUiYkJJCWNY+TIEc4Ox33Iysle0+8TMqUUr89+nc8WfcbK2SvbHSHqKQMHDuSNN97g1ltvJTExkfT0dA4fPkxQUBDLli0jISGBm266ibS0NIf16e3tzcqVK1m0aBEJCQkYDAbuu+8+vL29efXVV7nuuuuYMmUK0dHRttf86le/orGxkcTEROLj49tMroeO55C1580332TFihUkJiaSk5PDr3/96zbP/OlPf+LPf/4zaWlplJeX267PmjWL2267jYkTJ5KQkMDChQs7TFDMZjO33347CQkJjB8/np/97GcEBQW1euaWW27h2WefZfz48bbEdMmSJSilmDVrlt12Y2JigObEDGDKlCkEBQURHBwMNC8kyMrKIjExkTFjxrSZuwbNKyaff/55JkyYwOnTp7t0EPry5cuZO3euTOoXguZ/16ZNm8rUqVNajSqLbpCVk71KDhcXohPPPfcc5eXl/P73v++xPmpqavDx8UEpxerVq3nnnXcuaiWrPfK9IET/ZLFYMBgcMN5SVdicjFmamkfEHjkkJclu6uhw8X4/h0yIjsyfP5/c3Fy++OKLHu0nOzubhx56CK01QUFBvP766z3anxDCPW3fvoO9e/eSlJREevoV3WuspTzZcvSRlCd7lCRkQnRg3bp1vdLP1KlT2bNnT6/0JYRwT3V1deTk7CEiYgi7d+eQnDweT0/PrjdgsbQ+Y7KlPCnnTvaKfj+HTAghhHAHXl5eDBsWy6lTp4mLG4bJZOr6i9vbzkI2du01bjlCprXu9cn5QvQlrjw3VIj+pra2loKCAoKDgxk48NLLgs2Lj66hpqYGX1/fi/s52NF2FqJXuN0Imbe3NyUlJfIDSfRbWmtKSkrw9vZ2dihCiC74/PMv2PTvT1m37oNub2VjMBjw9/fvfFK/bGfR57jdCFlkZCQnTpygqKjI2aEI4TTe3t5ERkY6OwwhRBfU1dXh6eVFU1NT72z83FKebJmsv/Tj5tKkzBdzqj6TkCmlooB/AIMBC/Cq1vpPHb+qLZPJRGxsrKPDE0IIIXrEVVddyf79BxgyZLBt/8Lu0Fpz5MhRysrKSUgY2/Zkl/bKk7LTvlP1mYQMaAJ+rrXepZQKALKVUp9qrQ86OzAhhBCipwQHBzN16hSHtXf27Fk+++wLjEYj5eXlzL7mqtYjX7KdRZ/UZxIyrfVp4LT140ql1CHgMkASMiGEEKKLjEaj7exiT5NRypMuos8kZOdTSsUA44Gv7dxbDiwHGDp0aK/GJYQQQvR1AwcO5MYbr6e8vIK4wf7wlZQnXUGfW2WplPIH1gD/qbWuuPC+1vpVrXWq1jq1O8uDhRBCCLdjXT15WUQEY8aMxis4UlZPdsBi0RRV1veJnRn61AiZUspEczL2ttZ6rbPjEUIIIVyGrJ68KBaL5ta/7SQ7/xwp0cG8sywdg8F5n58+M0Kmmnewew04pLV+3tnxCCGEEC7F3upJkN32rS4cDSupbiA7vwSzqiA7v5SS6ganxteXRsgmA3cA+5RSOdZrj2mtNzoxJiGEED2gsbERDw8POVWlOy48e1JWT7bL3mhYiJ8HoZe/TrUhFz9LHCF+c5waY59JyLTWXwHynSmEEG4uKyubzMws4uKGcfXVV3W+q7ywsVgslJeXE+Dvh8eqm6Q82Q6LRVNS3UCYvydKKeto2DmaLJrs/HOUVDegPCqp9/gOpS3Ue3zHufpzhPmEOS1m+S4QQgjRa7TWZGfvIjx8EMeOfUtVVZWzQ3Ipn376Of/857t89uG7aClP2tUyGjbxD59zy6s7sVg0Yf6eJEcH4mGqIjk6iDB/T0K9Q0kalIRRGUkalESod6hT4+4zI2RCCCHcn1KKceMS2b07h5iYaPz9/Z0dkmuwWDBXnuX4d8cZPDic42cLsUSkYjyV1e/Lk10ZDQv1N+E79G/4++TgOygJTToGZeD12a9TWldKqHeo08vnkpAJIYToVenpV5CUNA5PT08pV3aFdfWkseBrbg+J591zS0lOScaYtqzflyftzQ1rGQ3bdeIEyZFRhPl7UlJXQk5RDmZtJqcwh9K6UsJ8wjAog1PLlOeThEwIIUSv+/77AnJychg9ejQJCfHODqdvO2/1pH/pfu595PofNnXt55u7dnU0rKU8mVOY0yfKk/bIf02EEEL0qqamJjZv3ozZbCEjYzt1dXXODqlvsW7uSstmpS2rJ2Vz1zZbV9ibG1ZaV9pmNEwpxeuzX+ezRZ+xcvZKp5cn7ZERMiGEEL3KaDQyaNAgTp8+Q1hYGCaTydkh9R2yuWu77JUnUbrLo2F9qTxpjyRkQgghepVSiuuuu5aSkhJCQkIwGo3ODqnvsLe5az89e9L+ZP0SzKqK7Hxt27rC3tywvjRZv6skIRNCCNHrPD09GTJkiLPDcD7Z3NWurm7kalCuORpmjyRkQgghhDNIedKmq6Nh9jZydcXRMHskIRNCCCG6qampiYqKCgIDA7tegpXyJNA/R8PskYRMCCGE6AaLxcKGDRs5efIUMTHRzJ07p+1IzYWlSei35cnuHGvkLqNh9khCJoQQQnRDfX09p06dZtCggXz//feYzWY8PM778dpeaVKpflee7OpGruDeo2H2SEImhBBCdIOPjw9paans27ePSZMmtk7GoP3SJPS78qSrHmvUG2RjWCGEEKKbUlNTuPvuu0hMTMRibiL/YBbf5+c3b2Dajzd2vdSNXOGH0bD+kIyBjJAJIYQQjmOxUPvKVUQW7+W0x1CO37qGYXGX97vSJHR/I9f+RhIyIYQQwlFqivEt2YfCwpCm78mtOAtc3i9Kk/1tI1dHk5KlEEIIl1JZWcmZM2ewWCzODsXuuZM6cgIWZaQmJJ5h8ROcG18vaRkNm/iHz7nl1Z1YLNq2dYXf8D8QevlrzX+2joYZldHuZP3+moyBjJAJIYRwIRUVFbz33vvU1dWTlpbKhAlpzgumndWThrs3Qk0xAW5anrxwJAzolxu5OpokZEIIIRyuuLiYwsJihg6NxN/f32HtVlZWUltbh6+vL2fOnHFYu5ekH27sam9emMGg+uVGro4mCZkQQgiHqq2t5YMPPqahoYGBAweyaNF8h7U9ePBgEhMTKC4uZuLEdIe12yX98NzJrswLGxjgxbn6czIa1k2SkAkhhHAoi8WC2WzGZDLR0FDv0LaNRiPTpk11aJtd0g/PnezqkUZAuyslZTSs6yQhE0II4VB+fn7MnTuLgoITjB490tnhOEY/KE9254BvpZSMhnWTJGRCCCEcbujQKIYOjXJ2GJeun5Unu3vAN8hoWHdJQiaEEC6sZQd0GZFwoH5YnpQDvp1P9iETQggXVVFRwerV77Nq1TuUlJQ4Oxz3Ya88CT+UJ90gCenKkUayZ1jvkhEyIYRwUfn5BZw7dw6TycSxY7mEhvbPI2e6TcqTdo806o8HfDuTJGRCCOGihgwJx8vLk6YmC1FRkc4OxzX1g/Jkd440knlhvUcSMiGEcFFhYWEsWXILWmt8fHycHY5rcvPVk46YrC96hyRkQgjhQoqLS6itreWyyyIwGAx4e3s7OyTX4ublye5sXSHlSeeShEwIIRysqKiIkydPER09lODgYIe1W1xcwpo1H9LUZGZCWjJpE1Ic1nZntNZ8//1J6uvqGBYXg4eHC/74cPPyZHdHw6Q86Vwu+B0lhBB9V0NDAx+t30hDYyP79h1gyZJbMBgcs6C9pqaGxsYmPD1NlJWXO6TNrjp58jQbPvo3FuCKikrS0sb3av8O4WblSRkNcy+SkAkhRDdprampqcHHxwetNRqNwaBsWwo4ymWXRTAhLZmy8gom9OLoGEBTkxkLGoPBQFNjY6fPV1dXo5TC19e3F6JrhxuXJ2U0zP1IQiaEEN301Vfb2bfvAFFRkVx33Ryuv34u+fkFxMXFOmx0DJrPcZxwRarD2rsYQ4dexsyZU6itrWXkyMv59tvj+Pv7MXhw25GlEydOsWHDJoxGI/PmzWHQICckPm5WnpTRMPcnCZkQQnSD1pqDBw8xZMhgCgpOUF1dTXh4OOHh4c4OzaEMBgNjx44CYNu2nezZcwAPo5FFP5pHaGhIq2dPnTqNQSmaGhspLCxyTkLmIuXJw4ePcPr0aZKSxrU731BGw/oHSciEEKIblFKkpaXyzTdZjB49En9/f2eH1ONqqmswmTwwN5lpaGhbvhw+PI7c3Dw8PIxERw/tnaBcsDxZUlLCF198gclkorS0lAULbrb/nIyG9QuSkAkhRDclJycxblwCRqPR2aH0ikmTJ+Dn70dwcKDdkmVwcBC33rqg9wJy0fKkyWTCw8ODuro6/Pz8bNcvLE/KaFj/IAmZEEI4QH9JxgACAvyZMuUKZ4fxAxcpT15owIABzJ9/E+Xl5URFRQH2y5Pn6s/JaFg/IIeLCyGECzt86BgffvBv8vIKnB1K77FYoKoQWlaxtpQnDR59tjzZntDQMALDo/D09ATOL09WkJ1fSkl1gxzy3U/ICJkQQrig+vp6Pt20lX/9azPJyQl88flX3HX34nZXdVZUVPH5p9swGAxcdc0U/P397D7X57loedKerk7WV0rJaFg/ICNkQgjhgk6eOENe3gnQmkMHjhIaFtLhFhvHjh6npLSMwsJijh934dE0e+VJ+KE82UeTFYtFU1RZ32pvOnujYbbypPqhPAkyGtYfyAiZEKJfamho4NChw3h5eTNixOUO3S+sNwQGDcDXz4fRo0eQkDiSiZPs70+mtebM6SIUoC0ao4eRgWEhdp/tcy5cOQkusXryQvZGwgyGi5usL9yfJGRCiH5p9+49fPNNNgDe3l7ExEQ7OaKua2pqIiQkiEWLrqehoZHQ0PbPyzz+3fd8tukrAK6YlMywYVEEBLjA1hztlSaV6vPlya5s4jowwEsm64tWJCETQvRLLSNiWmuX+qGX+20eX27+mrCBIcy5djqg2L3rAGEDQ4iKGtLm+eqaWixoFAqDoleSMYvFQlVVNf7+fpc+8tjeykno06snuzovDLBN1petKwRIQiaE6KeSkhLx8fHBy8uToUOjnB1Ol+3be4SAAD/Oni2ipLiMXdn7OX26EICFP7qWoKABrZ4fMWIYFWWVAAwfMcwhMVRWVmE0GvH19WlzT2vNpk2b+e67fOLiYpg1a2bXEl4X3NgVunekkUzWF+eThEwI0S+ZTCbi48c4O4yLNmp0HF9tyyIkJIjgkMDmip3WKIPB7g90Ly9PJk9Na3XNYrEAXNLo1fHv8vn00y8xmUzMu3FOm3JpQ0MDx7/LJ2JION99l0djY6NtS4f2mJsaqXhpOoHlh6gPH4/PTz5ziZWT3T3SCGQ0TPxAEjIhhOiCoqISDh44zNDoKGJje+k4oPM0Njayd89hFIrFt16Pr68PRqOR6TPTyf02n9CwYAIDAzptp7S0jE82bgFgzrUzCAkJuqg4CgpOYTKZqK2to7TkXJuEzMvLi5TUceTk7CMlZVynyRhAacFRQssPYcCC19ndLrOxqxxpJBxJEjIhhOiC9/73Qyqrqjl44Ah33nULfn6+vdr/4UO5ZH2zF1D4+HgxeuxwAPz8fEkcN7rL7eTnnaCurt728cUmZGPGjuTEyVOEhARxWWTznDWz2dzqpIIJE1JIS0tuP/G4oDzpHx5LkXccA+tyqQqOZ4CLlCflSCPhSJKQCSFEJ8rKytm/7xClZWUMjYrEaOyZLTIKzxaT8VU2g8JDSZ84vlWS4+XlCRpAY/I0XXIfkZFD2Lv3sO3jixUWFsJttzWfU6m1ZuvW7Rw6dJTk5ETS0pJtz3WYjF2wetLH1xfDf26jvPh7giKGu0x5UlZJCkeShEwIITrR0NDIiFGXU1NVTWxcDN7e3j3Sz9c7d1NTU8uB/UcZNmwoQyJ+KNddPjwGb28vAKKGRlxyHwMHhXLrbfMAulRO7EhNTQ0H9h9mSMRgsrP3kpw8rvMzPdtZPenl7YNX5MhuxeNIXZmsH+Yvo2HCcSQhE0KITgwcGMqsWTMoLi5l3LixPdbPkIhwTp/ej4+vD/4BrY82MhgMDI2+rNM2zGYz9fUNdldAtuhuItbCx8eH2Nhojh/PZ8zYkfaTMRdcPSlHGglnkIRMCCE6oZRizJieH71JToknOvoyfP18LmmOWkNDI//asJmiwlLSrhjHuKSuzy27FAaDgVmzZ1JbW4uvr514XeTcye5sXSGjYcJRXOusECGEcGMGg4GBg0IvecFARXklRYWlhIQGcfhQrt1nysoqOFFwGrPZ3J1QbQwGA35+fvZHh1zg3MmW0bCJf/icW17dicWibaNhfsP/QOjlrzX/2bqJq1EZ5Ugj0SNkhEwIIVzAt8fyOZ5bwNjEEURE2N8KIih4AJFRQzh1qpDJk5Pb3K+oqGTd2n9RV1dPQsIopkyd0G5/NTW1eHqa8PC4iB8TLlCe7Gw0rKCojB3fbKLOmItCJuuL3iMJmRDC5RUVFWM2mwkPH+SWPyirq2vZuvkbLNrCl5u/YcnSGxg9Znib50qKy2hqaiJp/BhGjGq7K39tTR319Q34+fpw7lx5u/3t33+Y7RnfEBQcyLx5s7u2iMEFypNdmRtWVBBOyfclhHuHc9bjrEzWF71GEjIhhEs7efIU6z/ciEXD1VdNZ+SotomKqzOZPPDz9+GrrVl4eXuS8dUuwsMHEhLaeg+xrV9+TWNjE6dP7yUm5rI29wcOCmXChHEUFpaQNiGp3f6OHP6WAQMCKC05R2lpGRERgzsPsr2zJ524ueulzA0zBZlQysCN9fOZMn0SiXGJbpnki75HEjIhhEurrKyisLCYEydO4+Pjw4iRl7vdD1BPTxPX3jATbdGUlJbhaTLh6dV2pWTYwBCOHT2Or58P3j5ebe4bDAaSUxI77W/8+Hg2f5FBxGVDCAsLsf9QHy9PXuqxRolxiUTd0ny2aUhIO+9diB4gCZkQwqUNGxZDfUMjAweFUlVZRXl5BUFBgc4Oy+ECAvy4+UdzOHXyLIGBAfj7t534P3VaGiNGxDIgMKDDbS86MywuhuiYKAztnI/pCuXJiz3WqLi6mEPZh3n/vTVMnTaFwYO7MCoohAPJKkshhEvz9PTkqqumMzQqirCBofj4dH/T1rNnivlqaxanThU6IELH8fQ0ERMbSXCI/YTTw8ODyyIHE3DBHmYXKi4u5fvvT9oOGbfHaDS2P9LYB1dPWiyaosp6tNYAF7VS0qAMmCvN7N9/gJraGjIytvd6/ELICJkQwuXNmDGZ+PjRDBjgj5dX21LdxTCbzfz7k60YlIHcb/NZuPhafHy8MBjc4/+vxcWlrF2zAXNTE6kTkkhLG9/5i1ygPHnL37az68QJkiOjWL1s4kUfaxQQEICfry9VVdWMGDHCie9G9FeSkAkhXJ7RaCQ83DFJgVIKb28vKsorqa1r4N23NxIcGsica6e0Gn0rOlvK1s2ZDLlsEFdMSuz8yKA+oqamFnNTEyZPE+VlFZ2/oA+WJy+crF9UVcd+yzN4x+Wzvzaaoqp3GRRwccca+fv7s+hHC6muriYsTFZSit4nCZkQwq1prTlx4gxKKS67LLzTCf8Gg4E5107n7Jli9u85SmOTmdLicxQXnSNq6BBbm6+/uobj353E5GEkIjKcmNhLP1+yN1122WBS08ZRXl7JhCva7lXWRh9bPWlvsr7RoxqjTz4oC0affIwe1Sjlc9H7hvn5+eHn13G5V4ieIgmZEKLXFRUVc/r0GYYOjSQoKKjzF3TDsaPH2fz5TkAza840YodFdfqaAQP8GTDAHw8PD7Z+kUlw8ABCw4Jt9y0WC01mMx4eRhqbzJhMP4yONTU1cbKgEB9fLwaF973d3I1GI2kTOkjEOilPmr1D0E1NF7dh7CW6cCQM7E/WD/MPJSV8PDlFOSSFJxHqI/uGCdcjCZkQolfV19fz0UcbaWhoZO/e/SxZsrhHt6moq6tHKdBaUVdb1+5zFouF47knaGhoJG74UDw9TcQOi+SyyHCMRkOrkqTRaOTOu28kY+suRoyK4bLIcNu9XZkH+erLXRiMBm6/6wbCBgbb665v6qQ8Wd7kyfp33qOxoYlrr5vF4MHhnbd5yaG0HQkzGFT7h3zPkV30hWvrUwmZUup14HqgUGsd7+x4hBCOp7XGbLZgMBjQWqO17tEfoCNHxVFbW4/BYODyETF2nzGbzax793M+/XcGUUOHMOvayUyYmAA0r2y0Jyp6CLfccV2b698fP8WRQ3mYzWaOHDruWglZJ+XJU4eOUFFRhbe3F98ey3VoQtaVTVwHBni1O1lfRsOEq+tTCRnwBvAy8A8nxyGE6CHe3t7ccMNc8vMLuPzyYT2+etHLy5Mr0tvflR6gsqKGkyfO4u/ny8kThegOtoPozOWjYtiz+wjePl74+l36XmC94iJXTw4ZMpiAAH8aGxu5fHgcFouFLVu2cvx4PlOnTmbEiMsvMYyubeIK2LauuHCyvhCurk8lZFrrrUqpGGfHIYToWYMHh/douaszDQ2NFJ0tJTAoAP8AXwIG+DJq7DAaGpsYFhfJuJRRl9z22ITLaWxswtJkZvTYtudJ2qO1JvObvZz4/hRp6UlERQ255P677BJWTwYFBXLbbYvQWmMymSgpKeXw4WOEhoawY8fXl5yQXcwmrkopOeRbuCX32FhHCCEuwrYvdvHpv3bwr/XbqKtrwGg0cs3cifzHz5ew4JZr8Pa+9L3MTCYPhsVFUltbz/Hck116Tdm5CvbmHKKxyUzGtqwuvcZsNlNQcIpz58ouLdBL3NzVw8MDk6m5jBsQ4E9oaAglJaUXlYx1ZxNX+GGyviRjwp10aYRMNf+tj9RaF/RwPF2JZTmwHGDo0KFOjkYI4YpKS8rx9/elurqOhvoGvL09MRgMeHu3PR/yUnz15S5qqmvJ++4k4YNDCQnt+CgnH19v/AP8qKioZNSouC718fFHn/LZp18yOCKcBx+8u/Pjonpgc1dPT09uvnkeNTU1DBgwoEuvccQmrkK4oy4lZFprrZT6AEjp4Xi6EsurwKsAqamp2snhCCFc0NQrk9m36yhjEuIoyDtDaXEF41JGMCDIv1vt1tc3UFJcho+3FyXF5/D28sLLy/6igPN5e3tx4/xrqKyoJjSs821AtNZ8uTmDhoZGDh04SnFxaccJWQ9u7moymQgMbL/vntjEVQh3dDFzyHYqpdK01pk9Fo0QQrTDYrGQnXmAM6eKSL0iniERl74p6eAhYQy+Loyzp0vYtH4HJk8TjQ1NXDl3wiW3qbXm83/v5OyZEvz9fZhx1RWEhAbiZ+cQcHt8fLy7fA6nUork1HFkfrObqKgIIiM7mXPmpM1d7Y2GOWoTVyHczcXMIZsJ7FBK5Sql9iql9iml9joyGKXUO8AOYKRS6oRS6l5Hti+EcF2lJeXszTlMTW0tOzNyHNKmt7cXNdV1nCoowse3e2dgWiwWcrIOsX/PUY4d+Z4hlw0kKDjAIXHas3DR9TzyX/fzn4/8BG/v8xI5iwWqCkGfV0BoKU8aPHr07MkL54b9MBr2f9lveZqiqjpCfZo3cTUqIymDx7fZxFWSMdFfXcwI2dwei8JKa31rT/chhLh4WmtOnTqNyWRi0CDnHCTt6+eDr58P1ZW1RI11zDFFVZU1nD1RilbNyURXlZVWkLE1B19fHyZNH8e50gpOFhRiMCoCgwLwMBlb7d7fE7y9vYmOjmx9sb3SpFI9fvbkRY2GySauQrTR5YRMfOHh+gAAIABJREFUa52vlBoHTLVe2qa13tMzYQkh+pKDBw6z5cttKGXgppuuIyKiF7ZluICvrzfz5l9FVVUNYV2YZ9WRmuo6Ghua2L3zCKUlFRhQlBZXdvn1B/flUlFWRdGZUgaFB5OddRCL2YK2KIZGDyE6NsI5h423V5oEh5cnuzo3TI40EqJrupyQKaUeBpYBa62XVimlXtVav9QjkQkh+ozyigoMBiNNTU1UV9c4LQ4/Px/8urnZallpFZ9++DVNTU14e5sYGjuExoZGxqeN6HIbg4aE8u3RAkxeJgIC/UCDQSnik4YzdUYKAwL9emfkp5srJxsaGsjLK8Df34+IiMEX0e0PG7kmRQXyzo+vkNEwIbrpYkqW9wJXaK2rAZRSz9A830sSMiHcgMViYd++A5w7d47k5KRW2xiMGxdPbW0tXl5exMT0/HYzdbX1FBeVERI6wOG73VeUVdFQ34iXj4nQ8GASJ4zAP8CH8Iiu7/h++YihhIUF4WHywD/Al6vnpFNUdI5hcZEEDPBzaLztcsDKya93ZrF37wEMBiMLF81j4ED7o1YdHWu0K9/MW+99xG03z5XRMCG64WISMgWYz/uz2XpNCOEGzpw5y7Zt2zGZTNTV1TNnzjW2e35+flx11YxeiUNrzWef7KS0qJwBgX5cv2AGjQ1NAHYn3ucdO8XZU6WMGDuU4LDO98IKjwghMmYQ1ZU1JCTHdek19gT9/+zdd3CceXrg9++bOuduNHLODABzGHJy3tnZCevVrm61JWmlsyX5XHulsq1TlWSXVJavVGed785n1dVd6ZR8siSvtLu3uzOzOzmQw0yCESRIIodGNzrnfoP/aA5IDAAS4BCc9H7+mWF3v92/brIaD57f83uewM3rGprCNDRt3GnFFd2Dk5OlchlZVlA1lUpFXfExdxprpJRayMW/SjKZMrNhJtMnsJ6A7M+Bo4Ig/ODGn18E/uzeL8lkMn0arFYrsixTqZRxuW6f5dF1HVVVsVjuTSPVjz93KpHF5baTzeaZm4nxwZvVctXHv7Kbmtqbw7ozqTwfvnMOxSITjST56i8cvOPzW20WHn5mx5rXMjezgM1mIRC6Q+PVjbYBjV337duFw2HH5/NSX7/yKKs7jTXSrBMEwl6CwcCq2bDR0TFOnDhFd3cn27YNrnudJtOXwXqK+v+1IAjvAAepZsZ+1TCM0xu1MJPJdH8FgwFefvlr5HI5mpubVn1cuVzm1VfeYn4+xsGDe+jftPbaq7WQJImHn9jF8PlRduzZRDKeQdeqyfnI7MKSgKx6mlGmWCgTvE3AZBgG4yNzpBJZ2nsa8PjXtq14/sw1zhy7jCSLPPPCAYI1n1JQtkGNXV0uFw88sPdjL7V0e3KlId+icLOR62B4kF98+hdWHRJvGAZvvvkODoedDw8fpbOzA7d749qBmEyfV+sdnXQKOLWxSzKZTJ+WakuL22daEok0kbkYgaCPc2eH1x2QJRbSWKwKTtfqtWFNLbU0tVQzNplUjtGRGQBa25ee7rQ7rDzxtb2kElnqGgOrPt+lM6P89b97lVKhzJZdnfzKb3911QDiVplkDlmRUCsqxUJpLW9vY9ynxq4bMdZIEAQaGuoYHR0n4Pct7ZlmMpkWfe5GJ5lMpk+X3++hti60mCFbjyuXxjny/lkURebZFw7iC9w5U+L2Onnq+X1YrMqKP/h9ARe+wO1HHsXmUhQLZeYmYuiGwcx4lKb2lbfobjWwqwfd0HF7nNQ1rr3o/xPbgO3JlV/m/ow1evLJx4nFYvh8vsXB5CaTaSlzdJLJZFoXi8XC81976q5qyCKzcaxWhUKxTDqVXQzIKmWVydE5HC77ssDn7LGrDJ8Zp7E1xP4nt64ps/VxW3d3MXT0KrIk0L2lhWKhsqbr3B4HDz6+tnqze2YD504ufZn7N9ZIURTq6+9/7zqT6fNkPQHZo8B/JwjCOJCjWkdmGIYxsCErM5lMn1miKN5VQf+mgXZSyQy1DaElbSaGjo1w+dw4oijy1It7CdZWa7UMw+DK2Qlq6rxMj0fJZ0u4POtvg+EPufmnv/MCZ4+NIEsiLZ13zo7dbwsLCSYnp2kJWgh8wu3JXC7PG6+/w8JCkkcfO0h7e4vZyNVk+oxbTw3ZbwDjG7sck8n0RaSqGoffPMvsVIxdB/vp7F16aECtqEiSiKEbqJrG+ePXGb88y6Zd7fQOtjB8epzGtjAO193Pm7TZLex5ePOK92VSeY6+dx6b3crug/1YbXd/elRVVWam53E67QRD/jtfoOuo6Tle+fEhypUK5xSFbzftQZw6dtfbk2+++S7f//6PsSgK6UyG3/qt7/JLf37MHGtkMn2GraeG7P80DMOsITOZTHeUyxbJ54oEazyIokg6kWNqLIK/xsP5U9eXBWSDe3twuGy4PA6cLjsfnDqDN+hi6NAIL3z3IfoG25AVacMChMvnx1iIpqiUKhjoWG0KfVva8fjW3+T1+LFznBu6jKLIvPjyk/gDtzmZeWN7Upo8ypNKBz8N/XMMQP/OjxBLybvantR1g7wmY7HZKOYL+DxuFvJlMxtmMn3GmTVkJpNpzSbHZzlyaIiGpjD7D25bsZ4rly3ys3/8kGKhRP9gO9v39eLyOgjWeIkvZNi6s3PZNXaHlYHd3UA1m+YLuUnEMjR3hhEEAcWynq+q9QvUeLlyYZJySeXS0Chev4tkPMNTX9u/7ufKpnNYrRbKpTLFUvn2D75xelLQVWrL19i9uZGGngFkxQLK+k9PftTE9cR4hZ7eZ/n9g362b9tCzlh7NiyTyZBOZ6itDSPLG/u5m0ymm9ZbQ/YbgiCMYdaQmUxfSsePnkeSJK5cGqe3v51QzfItuXy2QKFQwuG0Eo0kAbBYZJ54YS+lYhmHc/W2B5HJBSYuR2jvq8c1bae2IYBhGBu+ddbR04g/4KZULPPOz09SLqvY7XfXnmHPvkHOnLqAP+CjtvZjJzNvc3pSaN7LwP6H15URW22kkS5kGUm46d4ygN1uxWbY1pQNy+VyfP/7P6KQL9LX381jjz18V5+ByWRav/UEZM9u2CpMJtPnQnNrPReGRvD4XLjcjhUfEwx76R9oIxpJsmNf7+LtkiTeNhirlFWOvX4RxSJz9LVzNHWFmb0ewxNwEqj75A1ZU/EsF0+O4gu56NvWtizI+2iE0lPP7yOdylHfdHfbdl6fm4cf27f8jnt8evJOI40+auIK1V5ga6kNKxSKFApFnC4HV0eu0dzcREtLE1br3dfumUymtVlPQDYBfBvoMAzjDwVBaAHqMAv9TaYvjV17NtPV3YLDacNqXbnwXRRFduzvu+NzxedSnHp7GItNwTAMrHYLsiJRzJVweGxouoEsi4jS+ttcZJJ5LFYZq/3mGs8cvkI8mmbyeoSaOj+het+K1wZqvAQ2oiP/PW7ueqeRRrc2cYW11YYFgwH27t3F5eErzCVTvPbaG/T2dvHUU4/f1Vs2mUxrt56A7E8BHXgM+EMgA/wDsHsD1mUymT5FqUSGbLZAbX0QWZYWbxcEAX/g7oZxf9yV0xNoms75I9fwhdw4XTY2P9CB3W3H7bWTjGWxu234atY3ZufahSnOfjCCxWHhkRd24LzRJsPtcxKZiiNbZCRFQtf1u+pptmb3uLnrekca3drEda0EQWDnzm20tDTx93//A2RZolAorus5TCbT3VlPQLbXMIwdgiCcBjAMIyEIwr2fLGwyme4bVdVIJTK4vU4slmoH9Uw6z6s/PES5XKFnUyv7HtyYMtHalgDzk3F8IRcWq4ysSATrfPhrqwGfJ3j77vurmRtfwOqwkM+WyKTyiwHZwL4uGlpDZFJ53v6vx3G4bDz83A7st9lGvWsbsD15r0ca3U5NTYjHH3+YaDTGwMDKrUJMJtO9tZ6ArCIIggQYAIIg1FDNmJlMpjXSNI3Tp4coFArs2rUDu339TU7vpffePMHE2Cw1tX6eef4gkiRRLJYolyvYbBZSyeyK1+m6Tnwujc1pxeW9u/fQvrmRmkY/ilWmlC8jyRJOrx21olHKl3F4bLcNKAzDIBXLYrEpONw2NE1nfHgWq92CATR21Cw2mAWQZYm65iCjl2eQLTKpRI5YJEVzxwYEZJ9we/J+jTS6nb6+Hvr67u3geJPJtLr1BGT/DvgBEBYE4Y+A/wb4vQ1Zlcn0BTU+PsHhw0dRFBlRFDlwYP1tFe4VXdeZnowQrPESiyZvnIC0E6rxsWNfP7G5JIO7Vv6BfOnEGJdPjqGpOk98ay/+dW4rfsTlqx4M+KjWq1JWOfLjIbLxPO0DjfTt7Vj12tHz05w7fBVFkXnwpR3E51OcfmcYQRAYONhN10Dzite19dYzMxHF7XUQDN+jWrF7uD15P0camUymz441B2SGYfwXQRBOAo9TbXnxomEYlzZsZSbTF5DVakWSRCoVFYdj5VOKqzEMg1wuj91uQ5KkO19wB6Iosu/BQc6eusz2XX04nNVMlyAIbBnsgsHVr01Gs8xPxJmfTGC3W3jmlw8gK598TcVsiWw8hzvgZPZ6bNWALJvM89bfHSedyNHUVUsuXUAUhcVtwNsdBKhvDvG1X3oIURKR7uLAwEd0XWdmKoqAQcOb30VYx/ZkJpPjrdc/RNU0Hn18H5piM0camUxfcuvq+mcYxjAwvEFrMZm+8BobG3jxxecpl8u0tras69rjx05z+vR5autqeO65J1AU5ROvp7u3le7e1iW3JaIZpq/P09AWIlC7cgZpy74OTr5xkY7NjeSzJY6/chZ/nZfuXW1Ikkg6luHsO5dxeOxsfbgHxbq2tTp9dhq7a4mMx9h0oHvVx82MRvGF3WSSeRxuK6EGH6IksIdqhqmpa/VZlZlkjnPHr+ELVttffFTYr+s6Z49dZX42zo4H+gjVrnwK8yPXr07x3psnsetpvhU7Aoa25u3JyYkZYrE4hXyJl/79O0xVCuxsavlcjTSq/oKQw26335NfEEymLzuzDbPJdJ81Njbc1XXDw9eoqQkSmYuSyeQIBG4fMNwNTdM59OoQmqpx/eI0X/mlB5CV5V8T3qCLF3/jYS4eG6WYLpKKZYnPpQnU+wi3BLg+NEW5WCE+kyQVSVHXEaZ7T/uyLJqu64ydnaaQLtCxvQW728bAI71A75LHGYZBLlXA5rQiKxKhBh8Ol42+na3s+8rA4vM2d9fd8T0OHRlhfjbJ5LUIoTof4YYAAPFomotDozhdNk4evsTTL+2nkC9RLJTxBVw3gyBdJzZxlXd+dp75yAL1DUEKoW04FobuuD35UW1YMOhHFEVOXbxOdNtJ7I7PXzbs2LHjnDx5itraMF/72vP35BcEk+nLzAzITKbPid27Bzl06DidnW14vXdXs7UWoiRSKlaw2m7/A7alt56W3nqunR7n8vExJFnE6qheE2r0ERmNkZrPoMgSkxdnCDb6CLctDSjiM0lGjo0iKSK6brD1kd6VXorhY6OMnZ3G5Xew57mtCAgcfGEbVke1d1kqlsXpta+6bTo7ESOTyNHSXYfb52RqNIqsSEuGiDtcNuwOC/lskab2WnLZAj//4RHyuSKDu7vZsqNr8fRkYPwIX7P28J/0X6WjpxnlodegfPvZkx+vDfuP33qaHFmOy//4mc+GrWR4eJiamhCRyDzpdJpgcH0tNkwm01JmQGYyfU70b+qht6/rnvTOUisq5aKKw109YahpOnOjMRSrTHNbDSfevEj/znYk+c5bUe2DzXjDHqx2C+5AdRh3U189vjovsyMRxoamECURm2v5aUbFqiDKIlpFw+5avRv83PUYzoCDzEKOM28NE51KYHNZOfjSdo7//CLzU3GCdV72f3Vg2eeTjGU4/OpZQCAeybD78U2EGwPYHVa8gZutNRxOG0+/vJ98tkigxkMskiSfK+J025mdjFUDshunJ0U0QqXLbO32s3v/VhSLBSxLtyfvdFKyJPwd/+SlF3n37VcYyV/5TGfDVrJ7927ef/8Duro68fnufbbWZPqyuWNAJghChhutLj5+F9VZlvemS6TJZLqjTxKMlQplxi/PIltkrp2dIpsusGVvB92DLVw/N8WFw9dAECjlivQMthKbTlDIFHF4bt/WQhRFQo3LZ1q6fA66drVR0xJEtki4/M5lj3F67ez+6gAzw3PMXZ9HkiXaty0/Hdmzp42Lh67R1FtHfDaJ02MnnymQSxaITifwhlzE51KoZQ2LbbXPyMDAqCawdINivoQRcC7JQDmctsXxToEaL509DaRnxxncvZV8rkgqIVDbuBth+jiV8A4effm5FcdBrTTW6OO1YbqRxB+o4+++/ref+WzYSjZt6qevr3djm+uaTF8idwzIDMPYuL0Rk8l035w/ep2x4Rmy6QIiUN8aYnIkQvdgC5ViBUEUMQyd2pYQiUiKQL0Pq/Nm1sowDHKJPIpVXnL7x+USOSRFwuaq9hHz1d78nU2raNUgz2vn8uGrDL9/hVKxTKlQoWt3B9dOjlHfFcZ2I1tWLlYQBGjsDNPYWc1AxaYTXDp6nY7OZvx1Hjbv7+TqmUn69rRjuWWb1TAMotNJNE1j31NbyKYKtPbUMX55juNvXQQBDjw7QGP7yoX3siiwb+x3YfIoemE3P7b/DtlMkbqGP+Dxb7ZjddZgXSWAWmmsUch1szasy9HDK3/3Pm1tjTz6xP7PfDZsNWYwZjLdO+vashQEwQ90A4u/EhqG8d69XpTJ9EW24SN7bsMwDBwuKx6fk0KuxI5HqzMnu7a1IEoiilWhbXM9pVwZq9O6pC3EzKVZRo5cQ7HKbP/qIA7vzbYdpVyJXDxLIV3k2rHrSLLE4FcGcN3SbV9TNc6+do50NIPT7+DMzy6QSWSRFAmH3838+AINXbUoturX0sJMklM/v4Akiez6ytbFzv2hRj8Pvrxz8Xk7tjTSsaVx2Xudn0rwwU/OYOgG2x/upXdb9TRpqVhBEAUMw6BcrKz+Yd3S3FWYPo4ejuD2NZCIZzGcNUuyWWsZa3TrgO8f/8071NQGGB2bZncmh2cDawJNJtPnw5oDMkEQfh34HtAEnAH2AR9SnW1pMn0pGYZBMpnCbrdhs92+43u5XObnr71PNLbAI4/up7195calG2XLvk48QSdOt42GthoMw1gMKiw2hb7d7WRiWc69fhFv2EPrx7YOE7NJFJtCuVCmkC4uBmRqWeXsK0Nk5tMk51PUdITRyiqpuRQXXz9HIVNi4LlB7B476VgGV8jF3EgEd42LXCqPKAp07myh/8Eegk2Bxbq12GQCAaiUVJJz6XWPUioXy2BUszilws3Aq2NTA5WyiiiJNH/UHuPjjV1hSXNXoXkvW/Y+wMT1OXYf3LQsGLu1WP8vvrOTk+eHKErXEVg61uij2rCtW3s4c3oYTVU5fPgUe/YMEgiadVgm05fZejJk36M6SPyIYRiPCoLQB/zBxizLZPp8GDpzniNHT+J0Onn55edwOldv9hqLJpidjeDzehg6ffG+BGSGYTByYpzoZJyePW10b735moIgoGs6hmEsBkEjR66RTxeITycINPrx3rLd2DrYwvAHV/A3+PDV3exPpqkauYUc81cjFDNFLA4b7TvbiF6f59Jbw8hWCUmROPDLB2nZ2szMyByhlgCCJNCyZQc9B7pwB11Y7EtH4zZ0h5m7Po/VIRJqXl6jdicOlw3FIqHYLbT23myHYbEqbN3befOBq82dFIQlzV27BYHuTS3MTMf4iz9/g4BdQTc0srrBee3fLhbrv/vh/8rMlUk8lQApzwLNYht+y9L179ozQG1diFdfeZv5yAKHPjjB8y88se73aDKZvjjWE5AVDcMoCoKAIAhWwzCGBUFY+Yy6yfQlMTY+hcflJpXJkEymbhuQ+QNefD4vqVSa/Qd2rvq4eykTz3P19Dh2r50LH1zlkW/tWbwvl8wz9No5dM1g8OktuEMuXEEnyUgKxapgdS4NkNwhF7tf3LHsNawOK2272lgYjxLuqkEUBOxOC4ahI1kkKiUNd9iDIAi072rD3+hj6JWzeGs8uPwOgk2BFdfuDjh56MZ611vsXiqUefcHpzh3+CqaquPx2jnw1W0rP3i1uZOwrLmrrhv88l+d4Fo2SVi38B1fhZSWRGq4WayvWAvousGWkw/Tt7cFvy2AYSw/F+X1ebBYLBQKRdo77m+21GQyffasJyCbEgTBB/wQeF0QhAQwszHLMpk+H3btGuTttw/R1dlGOHz7wmy73cZLX3+aUql828DtXrI5LdjddvKpAi199Uvui08nKBcqiLLI/GgUd8hF154OatpC2Fy2ZW0qDF0ndn0etVDG1xIkv5DD5rXjDLpp29WOzW1j9uI06ekE0ZE5Am01PPTrD1cHfW9pJDWbxOK0YnFYkCwylWIFh//2n8Pdnjo0DCgXVaJTCQzd4Mgr59jz9BbyqSKSLOCSc2uaO7lS64pp75/iqB8nnW9F176LLeWgvtzEnGWKfvcmHtqzl5bQNFsGusjm8vRv6kCWl3/VejwuXnjpKbLZPPX1a591aTKZvpiElX5zu+NFgvAw4AVeNQzjNlWxG2vXrl3GiRMnPq2XN5k+F0r5MvlMEU/ItaRIP5fIMfTaeXRNZ+DpLXjuMCA8ORXnyhvnQAC1UEG2K0iKzNYXdmG5ceoyM5/mwmtnMFSD5p1tNA1WC+nHjl9n6vwUskVm8PntGLpBKV/GW+fZsAMOs2Mx/vpf/oT56QQuj4O9z2yhVChxcOH3CVaGEVpu2Z5coYZspSHf8eICj/794yDoYIj89Ks/xSv7GBudJqNl2Du4DUWRSaeyvPnzIxiGweNP7cPrM4v2TSYTCIJw0jCMXSvdt56ifivwdaDtluu2AX/4SRdoMpk2jtVhweqwLLvd6Xey9xu7MAzWNBhcEAWqLQkFNE3DZrGjqxpapcLsuTlyC1kat7Wx+ZltqKUK3oabdVPpSArFplApVijny3jrvDh8G5slrG8L8fV/9gSv/eUh6jtqmBmN0dQgEChfQmDp3EkdgQXDS4hqg0VgTUO+m4ONCILA4Pal1RvjYzNkUlkAxkanGdzet6Hv1WQyff6tZ8vyR0AKOAmUNmY5JpPpfrq1E39+IUN6Jo63OYTdt7yJq6feR9djW1CLFRwBFwvXI7jDHrSKzvTpMWSrwsSxq/Q+NbjkutFj14hPLlApVug+2Is7fP+yRe2b6nj8+XZmIwLbH+llaiRCNjOAO3sO4cb25EqZMFEUPtGQ79q6IIIogmBQ32BuR5pMpjtbT0DWZBjGMxu2EpPpCyw6l6BUrFDfHFqybbjRiqk88fEYnjofrvDSoRq6piPeWItWVrn25ll0VWPh6iybXthTDShuIQgCgZabdXKuUDWwKqYLiLKEWqosBnKGYTB1eoyF8SjxiQVqextIR9I0bG68fz3YdB3xr75G3+RR+pr3Qt9PaN/UiK69yUJ0hmC4mt2KZgrLMmG1HjtB+90P+Q7XBvn6t54CwOG4fTsUk8lkgvUFZIcFQdhqGMa5DVuNyfQFUimrzExEKZUqnDw0jKZqDO7pZuuurhUfe/zV86QXsux7fhDfHeq51urK2xco50rMnp9k4KXdKDdaS0TOjRE5N4G/PUx4SwsA5XQew9CR7cu3Nz+iazqGpqGWVAQBLC47No+d/ud2UM4WcddW22EU0wVmz09i89hRixXSkTShjprF1weIjkWJjMzT0F9P4JaTlpqqcfX4KNlEgd79HSuOXFpNYi6FYYC/zoNwy+lJffwIw28dpfuh3Xz7z48uyYatlAkD+5JGrncz1sgMxEwm03qsJyA7CPyKIAijVLcsP5plObAhKzOZPiW5XJ43fv4BxWKJJ596cF0NO6fGIlw6O0Z7TyOx2QTXhqfJZ4qIEjg9Dgr5lXf7J4fn+OAHp0EwyGeKvPy92/ekKqYLCJK4OMKolC2ilVUcgaXNUwVBWNIAFqqnJefPjeOs8TD14TDjb5ykki5gr/OBIVD3yJZl2TEAtVhm7M0hkhPzaBUdV9hL++ODOGq82L0O7Ld07ldsCjaPnWKqQNfBXlp2dSBZ5MV1VIoVzvxkCEESSMzGOfDtA4vZuuRcisnzMyg2hWsnxxl8YtMaPnmYuz7P+Z8dpiL62fZkP/Xt1dOTxvgRkrZ+ro0UMZrm71gX9lEmDD4fQ75NJtMXw3oCsmc3bBUm06fo4wHLzHSE+UgMi9XKpUtXOXBwxQMxy+i6zuG3zmF3WDjxwUUCQS+KRcbpsdPR24CsSGza3rHitbIiVX/FEYQ7FtgvjEcZeecSlUKZ/qe2ohVKHP2zd1AcFrb/4gHqNt/sadX1cD9TJ6/hqfEg35jzKIgiga4GFkZm0PJFKuk8hXgWQRKo2dK2pK7so88nPxcnN5+kkMyiqzqFaApHwEU+nsVR4+XjZKtC/zPbKGWLOPzOxWDrI5mFLHNX5ijnyzRtbbpxYKDK6rQiW2UqpQqeoItitoRhGNjdt8k46TreV36Rx2Knicu9HH7lf6Ohq5bN3/gHhk+eY/JiDlGWmJ+cWL0urBBHLlgpl1Sst8zEXC/DMBi5PEo2V2DT5i5sttXnfppMJtNH1hyQGYYxLgjCIPDgjZveNwxjaGOWZTJtvHy+wM9fe49MNsfTTz9EuLaaCQkG/VhtViqVCo1NdXd4lptEUSQQchOZTeD1u9jz8Gbe++lporNx7JutDBzoXnXbq7mvjmd+9QALs0l23iEjlJ5JMHN2nMRYlFIii8NrBxFKmQIL1yNLArJCNEl5JkpsZh6734mnuVpg3rC7i/CWFtJTUc7/55/hqvPj72sk0NuMu3FpRigzEWHmg/NoqgaIWN0ObAEXzlo/3ubVs0eKTbk5aimRwxl0IVtvBDq6QUNfPZVihZbB5iWfi8vvZM+L2ynnyxjAkX84QTFbYtMjPbRsblrxtYxcFFv8DAIaAfUyNiFDZFzmDy/NcyEeZSBczx8M1HP97BStlnYm5TG21y2tC4tcTHNT8ZrUAAAgAElEQVTp5Ch2l43HXtyF/TYD1G9nZjrCO28fQxQFisUyDxzYflfPYzKZvlzW0/bie8A/Bf7xxk3/jyAI/9EwjP9rQ1ZmMm2w2dl5IpEYTqed8+ev8NiNgCwQ9PGNbz6Hpum4XOtrzfDQ0zuIx9J4/S5sdgtiyaBnawtjl2bo3taCY5UsT3YhR/r6PBTLaKXbt/Zz+Bzk59OIhk4xnqJpsIXMfBIQqOtrWFKsr5fVG8UFoBVLN7OBukF+chZR1djzP30DQzew+pwkzl1l/vBZnK11pC5PYKvxIzlsgIAky9Tt7Mbf1Ygo37lNBoBW0bj0s7MUUwVctR42P1M9gelr9NHzYA+lXInmgeVd6h0eOw6PnamLM6RjWWYuz5Gaz+D4dQeh5sCSvmEGcOFEgga5D1/lEpXwDnQpQM7QuWr7N9g7x7lcaKVs/bcAfLf0P9B7oIlNvT1LAsG5iQWcbjvZTIFcunDXAZkgitWPXDeQRIH5SAy7w4bbvb5ZnCaT6ctlPVuWvwbsNQwjByAIwh9THS5uBmSmz6VQKIDTaadYLC8bXWO3311BtsWqUNd4swapqaeW8eE5QnW+FXuBfSQ+GWPi5CiapuPw2dn7rf2rPtZd66O+w8/CpSyFkQmiikrvQwMYeoXYyYsUJudoeHgboiTi725E1zRK0TjJ05fIXBjBt6kdJInYqWEEQcBvGPi3dJGfiZG6PIFoVZg9dJbSQhJBUej/ta8R2NSCrmr4OhvWHIxBtUA/H8+SnksRHZml44Fu7B4HoijSfMtczUpJJXI1gsWhUNNWsxgohVqCWGwKFruCN+wiu5Al1OhbMntS/cUfMnVtnv+Z3yNanqLV6OfPvr6NVDmO9LOb25MtfU4aAlsQJZHalsCybOWWvZ2cfHeYtp56vCEXpWIZq231v7PVNDSEeforD1EsFEmmUvzgB69htVp56eVn8Ho/vQaxxWKRN954k0wmw5NPPkEoZNbGmUyfJesJyARAu+XPGjd7KJpMnzter5tvfPOrqKq6YaOMBh/soXtbCzandVm7C8MwmDxxndRsEkfIhSAJ2BxWROH2bSEcARe1PfU43RYiRy6ilypc+/5b2Hwugls7yEcSaKUyosOGZJEJD3Qw8/o8uiyxcOws5YUE9hu9sQzDQJAldFVDclgRLTJqrkDm6jj52QVEi0L8/FUEiwU1X8JR48PTtrZt3MjwNAvX5pCtMoVkDl9TgOjVCC072pc9duLMOFMXpsAAy1cs+OqrBylsLiuP/soBhg+NYBhQ310L+RjG5FEEXcWYPIqiJnG2BRkr/x+IDeNcLLRSVP6O5kDzkmL9GmcNQsfqX1m1jQG+8k8eQNN0Dv38DDOTC2za1sbAnu41vd9btbQ2APDKT99CkWUS8SSZdPZTDcimp6cZGxvHbrcxNHSWxx9/7FNbi8lkWm49AdmfA0cFQfjBjT+/CPzZvV+SyXT/WK0WrNZqFsQwDAzDuKd9sgRBwOmxr3jf9NA4x/7yXSSrQk13HTtf2kkmmqbzQM8dn7f14a1MHb5IfnIerVgNlJwNQQrRJI2P7US2L91uc3U0Mf/+KSSbFUGRkWwW6h/uQ80XKIxNMnNphODeQRqf2ks5mSV9bRI1X0KUJURFoZwtoDhsZMZnlwRklUKZxNVprG4H3rbaxdvL+RJTJ65j89hQs0XqtzRhGCDJIuV8CYtj6fo+GuEmrPA7ntWuMPhAeHGska6FuCj3UaMOE5P76LeH6H9ARJq6uyauH5fPFpmZjBGq83H5/MRdBWQf2bylhzdffx9ZkZmLzNPUXH/nizaI3+/HbrdRKpVpalq5Fs9kMn161lPU/68FQXgXOEA1M/arhmGc3rCVmUz3UTad551XT1Epqzz8zA4CNZ47X/QJVbJFFGu16N1it9L9UN+agwZ3U4j+X3iIruf3UoylKEQW0EsVgtu6kRSZ8nwU2e1GctwIBvNpLHoGuSWEmkqguy1YvE5EEdKJNLLLSfbqBDUP7cbidtLzq88z994Z0DXcrWGyswkqmTw1PTe3GfWKytgbp8lHU0hWBcVpWzxxKSkyNq+dQjJPqKuWpl2dRK/OMT00wdzFafqfGcRxyzSA1u1t2Fx2LA4Fb90tpzZ1HeMvvgpT1e1J4Zd/QjRX4hf8QSR7E1ohyNu50qqtK+6mbYXTbaOpvZap0Xm27lr5VOxaKbJMT28HHq+LqclZdu0avPNFGyQQCPCtb32TSqWCz7f2Vi4mk+n+WE+GDMMwTlIdnWQyfaFEZuJkUjmsVoXRKzP3NCDTKhrjh4fJx9K07O/F01Btgtow2EoxW0JTNboe7l9341EAxW5FaQ7jbg4v3hb/4Ajl+RiS00Hw0QfR1Qozf/uPiIpMJZ0j+NABdE1FTWdQ/D5krws1W8CzuXPxOdytDRQ65ynMRElfGqX20d3YQr4l/clmj18hevY6pWSW4JY2hFu2ZCVFovepQQrJHI6AG0mRqBQri/8tpvJLAjLFKtO0pXHZ+9OzUdSJI6RFA+/4EaRsFEmWlrSuOPPa+2RHSvzeU7+P7xHvupu4xufTTI3O09QeJhCuDjs/8MQAqqohigJDJy6TzxcZ3NmLw7m+2sJwbYiOrlaikQV27/70grGPOJ1rb7JrMpnurzsGZIIgfGAYxkFBEDJUJwsv3kW1MezGpxJMX1qaVi1blKS1F5LfjVDYh9VmQVN1Gtvu7ezB/EKG1EQUq9vO3LnxxYDM6rbT/8wn+yFtqCp6oYDodC4GS2o6jeS0oxcLGGqF0sQUajKBmkwhedxkL17A2duDJRhAtCjUPv5AtYbMurSAXbJb0VUNQZKqTV0/tpVbTGQIdDeQmYnTuLcPe2BpfZRsVXDX3szE1PU3kotlcNZ4ltx+K7VUpjA9jq2+FcVuIWq4+a26Zq7ZNDqLEn9quAnb7YvZsM2ezUy8PocsS5z44Rle6HtuXcGYqmp88OoQuqYzNjzLV779ALIsIQgCiiIzOTbH6eOXkWUJURTZe3Drmp8bQJZlnnzyoXVdYzKZvpzuGJAZhnHwxn8/vWpU05fSwkKCn/7kdQQBnvvqkwQC/g17LW/AxfPfehBd1+/qZN1qDMNAscpYXDbKuSKh7gYMXV8W3GjFIhgg3eF0p6FpIAgIooihqqQPH0JNJbG2tOIa3FZ9L7t2kL96HWtvN5LDgSEYWEMeJElHEERkWacyegU1vR9LKFQNuG4JeA1VA0nEv7UbW00A2W7D4lv+e1fD3n7mz40S2tJOoPfONUnOgIuBF2422a0Uylx9+wLlQpmuRzbh8Dso/PvHKeYuoVt7cP32u0hKnis2QBC4YgNJySMIDv7DQ/+B4+8cR0hIXLOOUciUqO2oWWyqaxgG8dkUGAaBBt9tgzRREqmUKsiW5V+HVpsFSRJRNQ2HyxyFZDKZNs56+pD9sWEYv3On20yme2V8fIJSqTpqaHxsckMDMgBlhR/In4Sh68weOkduJkZNVxOeriZyw9eY+sElvFt68PS2AVBJJIm/fwQMA9/+3VjDK9c8qYkFssc/RLBYce15AL2Qpzw3gxyuozwzAzcCMsXrwrO1F9FVDaIc7e24errQMhlKs3Po+TxyQwOVaBRLKER5IUH6zBCCJKIEashdH0fxe3G0t2Lxe1HcK29z2UMeGvf3U0pk0EoV5DUGslpFY+LoFeYvz6AWVRwhD9GRORp6HfwzZ4ShYB2DxRj/+9A56ndsY3tokLPxs0tqw5IzSfSIgWyBHc8O4K33EWoNotzosH/97BRv/dWHWJ0WHv/OPhq7l54MrZRVTr03TD5bZNsD3RTyJcINfuSPtfQI1wV45oUHKJdU6pvMNhEmk2njrOcn0JPAx4OvZ1e4zWS6J5qbmzg7dAkEaGpeXl/0WafmS+Smo9hDPtLXp/H3NpObnMUS9JG6MLIYkJUXEhhadWuwHFtYNSArT01WTxlms1SmJymPX4bsPGqliPvBxwHQ0gmy7/0MBBFb/zasHT2IFgvhl19GXVggN3yB3MkTiJKBpaGBSjxB7JVXyV8fxd7WRuLoEEgyxWgCZ38v1qCP2icPIlotFGZjGLqBoyFUzdDpOlPvnKGYyGLzu2h9ateKMzA/LhdNE78ewZB0xmPDdLkG8Tb6Ga2UOGOzogtwxmblcrKIfmaC31z4NTSvxt5HDi5mukRJIjISQZIlOvd3UtdZu+Q1ho9cI5vMk45liU0llwVkkak441fmsNgUIhML7Hykf9X11tQGVr3PZDKZ7pW11JD9JvBbQIcgCGdvucsNHNqohZlMNTVBvv1LXwdAUdY+W7BYKHPp1CiKRaZve9uyrMf9ombSiFqR3EyU0PYeRElEEnRSHx7DFnBSmprE2tSMtb6WwvgU6Br2FQJPQ9cwSgXk2jpK0xOIdhuCRcGolLG1dYAA+vQFSoUFiqMjFIcOITpcSP4ggiKhzs9gae/DUldHfugEzoGtFM6fpXDpLEp9K0gioqygZvMgy+jlCnouh2y3Vv+/opK6NsX8e6dQ3E5q9m3F09WMrumUU3kUl51yKo+hLd+KXYnVbUOwCPxJ8n9kpFWjpyTzN/XHcVZ0lHIHJcsYcrGVvTsHGHn7Ii6/i3wiRzlXQhBE8skcsYkYtV1hKiV1xb/f5t56omMLSLJE66aGZfe7PHYsVhmtouGvXVsZrKZpHP1wiFg0zv4DO6gJf3YDtfn5eZLJFC0tzdhs5laryfR5sJYM2d8ArwL/EvgXt9yeMQwjviGrMpluWE8g9pGr5ycZOT+Jrhm4fQ5au+9d7yc1XyI9NovF58LVsDyTpWZzaLkcSBLz//VV1OlZrHVhfF2Pkhs6hZSbw6oncXX0kL9yBWtTM7LTQejxB1d4tWowVhp6Fz0eQWrowPf4s3AjS6Sn42iZNOQWQHdSHr2IHl/AMDTUhVkMtUjx4mlEq53i0BFcjz6PtbWd5JuvodTWoUaj2Np7cPX2Yquvx9nfR2EmQu7qGO7NvSjBELb6MAgC0UNnyI5OYwl6CKrVWZuSIlO3v5/k1RnCgx2IytKvE62souZLWDx2DAQWcmVCLgtWtx37DhcjhzU0QeCKReXQT36KrxDk3/BbpOwCnfVhnH4XDQMtXH3nEqGuWqweOxdeO0d2IYtaVkESsbtsWFc4+bj5YBf1HTXY3Fbc/uVbrr6Qmye/sZdKWcUXWlt5bHQ+zsXzIzhdDo4fPctXnn9kTdfdb+l0mh/+8MeUyyXa29t57rlnP+0lmUymNVhLUX8KSAG/uPHLMZk+OZtdQdeqBezrLdAvZQpMnhpFsSk07ehAwKCUymHxOJEsMnMnhsnNxACBtmf3YPXenE+o5QvE3z2EmkogOWyoiSSizYpeKlGZm6F4+hDks4gi6Okk9m077rgeo1xCm7uOIAmUL7yH3NiB5KmeArVv3V1d86WTVKauIrq82GrbMFJxRH8IS6iO8vwceiGHHK5HL+SRa2pwbttJZT6C5HYj+3w43W60dBo54McSrsHZ1Y7ksCPK1a+HUiKNxePA2VaP4rTj6bxZwO9pqcXTUrts3VpZZfyNUxSTWbxdjfz2qXlGp4dpa9zE3/63D9DZtJnuksSIVaO7KJF+e55UeQ7RbiO8uYWa3fUYuk78+jyyRcLQdOITC8xenCLYEUYQof/xLVidVhy+5VMWJFmipuX2GazVGvauxuVyYHfYyOeK9PQunzbwWaGqKqqqYrFYKRaLn/ZyTCbTGq2nqP8vge8ZhpG88Wc/8CeGYXx3oxZnMt2Njk1NOD0OJFki3HDngwBaWQVBQFIk5i5OkZ5aQFM13HU+Ih8Mkbg8hb+vmb5vPbri9UalcmOrr4yWzaBOj6GJIq7ONsrZEo5aL+VzbyGKGRDKOAMKzp4GrJ1dS5+nnEe99iHYPMgt2xEkGUMtQn6OyrVjiOF21ItvIe56CUG2oCVmMPJJlPY+5IZ2BElAnb6Cfc+DSDUtKA1tKO196LkMgs1B4h//isKJDxD8Qay927D3bQJRJPXee+j5PJLbjeDygKbj3jYANwIyq99DaPcWyok0np5WREVGr6jVvmOCQHE+gSBL2IJedN0gli1hiSXIzSdwhv1MXp9B5Z9T7tTQihLRzGHkSJLftf0romqEkFLLePYKhXgGV60fxSLi8DvRyhqZSApn0EX06hwL4zEEQWDs6DW8jQEWJhfo3Nu50l/JhnC5nbzw8pPkcwVCNZ/8gEkmk+HMmXME/H42bV57U+A7CQQCPPXUE8zOzrJ165Z78pwmk2njraeof+CjYAzAMIyEIAjbN2BNJtOapGJZcpkCNY3+JSckRVGkvmVtJ+Ky0TRX3zyHKIl0PzmAzeNAUzVESSR9bYLRH3+IqzFI9PQ1ul54gLpdfaTH57B4nVhcNhI//ynlyUkcA9tx7tyNo7uDzPwEtsZGLHW11AwMkPvpf6IyfgFSMSTFgm3w6xjxSYxSHsF2czutfOxvUM/+CEG2o+94CUmRwdeB6HQjWUUozKJHrqBe+jliuBft6lEMQ8dIRVA2PUrl6gm02auga0gtPQiygiAriHYnWipO6cJxDF1DnRxFEC1k7U5cex9CLxYR7HaKU9MIriyiJFEYm8DVf3OEk7vzZof+7NgssZMXsPg82BrCLJwZQRAE6h7Zznd/NMzJyUn6rW7+F1sO2aJQt8XCtVPV7clrNg2pPInVU4siW2mQmwlvbSUzmyBtkVBsCvMXJ1GLFTa/vI+m7W1EhqdpHGhl7sosnlovuVQBq8vO8FuXqO2qxb3GLcdbxaNpVFWjpu72LTE+zuVy4HLdm7mnhw4dZWxsHF3TCQT91NevbUboWnR1ddLVdf+CVZPJ9MmtJyATBUHwG4aRABAEIbDO602meyaXLvDej05RzJfwBtzsfXoz3lV+MOu6vmQ+pWEYZCMpRFkkOREDoFKqkI0kCfc1UI4ukB2bJn1+Dl9nHcmrMzTs6SZ99Bi21hYC/dXtquL4KLlTxxAUhcyx93H0b8K7Yzu2oA81GcfW2QN6GUSx2lXe60OqbYZCArGpH8FiW1wPuTn0mZOAgJFfgJkz0L4XI34FMdgI9d0YkghCBSp5tNEPqfZmFsDQq2/M6sTQVFBLGLq25DMQ3T4srV2Url8Giw2lvQdBFBEMHde2bZRnZ7E0t5C/fBXDANlT3YrVVZXk6QuomRz+nVtRvG7SVydQnA4KsSRxTcAqCBi6TmQhw3n9j3F0jXM934rq/O9peXQQR62fbaesnDFKbMNKMFh97a5nd2IYOhanjZreJlxhL8nxGMjVvm3Ry9O0PtBH3eYmBEHA2xQgn8gh2RXOv3ERm8tG5Fpk3QFZdC7BWz8+jq4Z7HpoE92bmpc9Zj6yQCFfoqEpjKJszNecw26jUlFRZBmL5d71vjOZTJ9P6/mm+RPgsCAI37/x528Af3Tvl2Qy3VmlpKKpGrGJJDOXIxhljQe/vgPHx+qCxk5cZ/biDPX9DbTtrs4lXBiZZeLIFQRRoHFHJ6IkIlsU3PV+9FKFytw87rog0akI3pAFt+LDXpxFK9WQO3cRW0M9kt2GaLEiu9yUrl3E2lRPZfISYlsvlnAAa+vNGiPbA19DaehArxSR69uRmvoQ7W4E8UYT09gF9Il3EKQUolyCmj6Euj6MQhKhpgcxM45euIJg9SKG90EphxjqQAh0YOQTSOFqJkRu7EWLjqNNX0K9fAjJE0Swu6tZselRXI89h/PR5xGdbsoT40gOJ1KwBlkUsDY1kbt4CVEWsfd0oVc0Ij99HdHpoHhjVmX6whU0HQpjUxTyZf5FzMYlPc5Wb5A/faCOXGEOxT6KLoDiGMXX6cQW8qKrGv/5O0dZiF5Bn5GZPXKRmsFO7IGb9XedT26jmKqe7Bx95zxaRcPbGGDixDXmh2ep39pE42AbgeYgNr+TVDSLrEjIqwRLuq4jCAKFbAmLXVlyEjOfLaKqOrIikUnll10biyZ45cfvoVY0tm7rYe/+gbv8V3p7+x/YS0NjAy6Xk2Dws3ti02Qy3R/rGS7+V4IgnAAeo/qr+cuGYVzcsJWZTKvQNB1vyMXggz1kF/K424NoFQ21oi8+Rtd1YlcjjLw3TF1fIzMXpmkaaEG2ypRyRQRRwNB0ZJvMlpf3Iggs9tay1fgoziepOziImI8j0kT2wgXUhQWs9fWIFgUtPgOZcdzbO7A5FpADPvS5C6iZC2CA2LEfkpcBkJoOInu2gzWAYLnZYkEvLmAkhyG7gFGMI1oM6NmB1PMCYs02KOcwLA7Ud3+M5A9CfBhKYYSWl5GadiNICgRvZne0ySEqQz/FSMfQ3bUonbuQGntR5yYoXTwGCAjeWrTIFNbmTpSmdrLHP6Q0NYmuQ3ZkFGttHYgCmiogu12UZuYRZAt6WUUtq8y/dRQMnfkKXG95C7tjnCuFVhbSv4s7Mcn2YokzNgvbSmXammqYfecU2Zlq7ZejoYbsXAJJkREtMnW7+hbXbvM5sd2Ybdn/wp4bI5tErrw7jDvsZebcJHWbmpEUiWBTgMFnB1DLGrWdN2d4QrXh6/GfXSAVy+AKOVmYSeENuTj4/LbFbe2G1hp6t7ZSKpbp29q67N9XpVIN9hVFJp8rfPJ/sKtQFIWurk82vNxkMn1xrDcXPwscA2xASBCEhwzDeO/eL8tkWtn4xRkuf3idUEuA/r3tbNvfycTwDMnrEX78hz+k/7F+Br8ySHwsyrUPhinEMsxemKJ1TyeSpZolCfc2oubLSBYJb3MNolQNxAxVRZBl6h7cjporoLgclBcWSJ8awrd/L47OdhS/D9QS5fNvYMxewIiOIFsUiIwgSD0YmgWBCtrQeUSxDN5ejMt/gyDLCIoDOr+JINswdBXj3L+CzAgoPgTPflDTCJ56sDqhOAPWIKJiR2jYiXH2r0GUIT0O0+9C3RaQlrYE0WevIHnDVGITiIqCIckYaoXKxGXUyARSoJbK+DBKUzfFy2cRHG4qsSjl2TnKsRhaKkexomLvaEcJByhMTmOtr8G7cxuVSpnh8VEkXUMUJSyOEpLj5oBvUc5hyD7+73SAQuwa3sBWxt4bIX5hHGvQRyGeRi2W0RERnA4sN+qwtLJK9NwohqZTM9CObLMgWxWwKhi6jq8pQHIqTrA9jHRjLJIgCIQ7lgZiH0lGM8Rmkji9ds68e4XN+zpJxjLk0kV8oWpGTlFkdh1cvRFsXX2IfQe2kU5l2DrY+4n/zZpMJtNarOeU5a8D3wOagDPAPuBDqhkzk+m+uH5mElfAwfz4Alq+RC6eZfrkGLloBjQNrVSmbWcbmqohCAI1nWGad3bQMNC8WLytOKy0HriZndEKRVKHP0QvFHDv2YU1HMZyo52FNVxDzTNPLD5Wz8fRIpdg+kNITCBITgRBR/AEEJUcZC5hiDKCVQZkKETB4cGQ7FDJQfYaOBpAdkHqApQzkJ9E6P4OYsdTCAjo8eMYxXmQndD2TeT+b6CFtqAf+yMEA5Bs1eey3sy2GbqO4AlhXP4Awe5CsNoRXQEq0Sm02BSCw4kYCKOE7OjJOJI/hOj1Ifv8GFxHCYUQ7U4s7V24t2+rtsPo6UQvlVDVMo/+6NfJidewt7bx/wV/k47dg+x4/f9lSNTYhkzPvn3kpqJUBv4L1lKKhTTIc3EsXieVfBFb0IvV7ya8ux/J9v+z955BkmXnmd5zznXpMyszy/uqru6a7q72ZkyPd5ghMKABSNAACIq7y2BIIqU/0h/FBhn6o5WCYmhjJXJJSlwuRWi5JOE5AGcwmOnxtrunvSvvK6sqs9Jn3nvP0Y/s6Z5me8w0AGLziagok9ecynsr7lufeT+HUFsCrTXzb55i4a0zhDpaMII2bWNXUr1CSkYe2Uq9VMMOO7d1f4RiQarlGrlMgb2PjLK6vEH3cBvRltsvxBdCsG1s0603bNKkSZNPkTuJkP0esB94W2v9qBBiFPiDu7OsJk2uT99oBxePzJBojxKKOhQyeQKJELV8mepGnWAkSDAaIBRx6BztxI6FadvSeVVR/0d4+TzV6WmEYeIXishQgOr0DE7b9aMv/spp/Nf/EFXMICI90DmKjLQjU0NIfwWqF0D7oMqgQLQ/gm7fB8vfgKUFdPogIvsOakMiWh+Htnth6TBIB3JHELEhCPYgln8IZgj8KmgXIWykqCM6d6I3piDWCeF2dGm10QgQaUeLIHp9CmwTa8v9yEC04eC/NIU/cwbteXhaY/VtJbD/IRrNAyUi9z2IM3oP5RMnkIEg4bGdEApxfm2J3qqi8P5RxutFSnIcIRQVa4rqA9sJhw3+Ym6adRQpJEKUiQ51s/C919Cej5aSQFsL3X0dJO4ZxCtXMQIOTuJK3VhlNc/a6RnKKxt4NY/eh66u1aqXaxQzBSKt0duaAACwMreOMCVO2KZnpI37fm7Hp2Yn0aRJkyZ3kzsRZFWtdVUIgRDC0VqfFUI04/n/heO6LrlsnkRL7Edy1b9Thvf00zPaiemYKE/R0tXCzqe2k5tbY/LwSeJtMUqL66yfnEDVPeL33oNxndE6SilW//ZvqK8sIgyJ0zeMNg0Cfdd23AHocgb/5NdQK+9fShW6WGNfwbjnWUQgjto4D/MKRbERwQoGoetehF9ESwktfeBn0KIbNo6hqUH7XrCj4K6C1RAqQgjofhqdPQnRIYQZRtdz6MoKGBaydRt07UcIiT/zBrpWgI0ZtNOBKi5jJLsQ4QTGwB5EKIGulbC37Kd66i0IhPE3VvFzGWrnz6C1JrjzIO7KCrpawd3IUevt5bG//SolOU7IG+Qbyf+KQSNMyBukYk4SrPXRenEefe8+ZO9B0rPvQO9BCLdCzUXVXIoXp9ECRn77V3BSCQDcQpn8xVliQ904yRhaa8qZLFr5tGzqJDbYQaQ7RXE5RyARRpoGZ144QWWjTDAeZuy53dcV1ddeWI1pSLSU+ErflhjTWnP82HmmJxfYvXeU3v5Pb7JDkyZNmtwudyLI5riy61EAACAASURBVIQQCeCbwItCiCywcHeW1eSniXK5gm1bmObVt4tSiu/9wyssL6/S3d3OMz/36HUfgBfPzjJ+bpZ7xgbpG/rkDzsn1LAIMAxJ1+aGd5NXKNN6yXusML+GX/MwHJPySo7EUMP1Xbsu0mmkvnS1gp9bg2oJL58lumWA8MG9WK0N13mVnULNv4sWHiK5Cem0IJwwIhAAGUT2jyLaImg/hyAO0QHofgbRegC98J/R5KF6HmK7AAUY0PMFcNcg1Al2J9rLItL3oGuriMguCF5ywLfjiNQusJNov4ae+XYjtWkHEb3PQuSSaAwl0aUVEBK9sdiwvHCLGEP3YaT6EUJgDe2k+sEP0MU89fd/iL3jfrQCpRVSSPxygXXhEMgXqU1c4NzSLKVgIxpWNieZrucZEg5vqiK5mTli0TDryyuouovx1e9CebUhxoTACNhERweoLq3gtLdSmpzDSSXwKlWW3ziOX6+zevQcm7/yLNX1IstHLiANg/hQJ70PjzHxyinKq3mCyQhDj41RL9VwQg71UhXta7gNPda35YqXV9/m2/P1KuRLHH3vNLF4hDcOH+VLX2kKsiZNmvz4uS1BJhpP2d+9ZAz7+0KIl4E48P27ubgmP1601tTrdRznSr3OyRNnePON92hJJvjcc09dNai4XndZWVkjlWphYSGD53nXRMlq1Trvvn6KaCzEmy8fp7u/DcP49IZ91/JlpBRE22IUWhs1VR27h1g7KXDLNZKjvWjfJ//227hra4S2bCG0ZQsyECR68F4Kbx0m0NGCEQggnSteUHr6VVRpAaa/B8kO1D2/heh5AENUIRAGWUboOqwexlc7oHwBggPI9H7c0svoWh0qH4IdQHY9DFYbVvL+hpFrvgtdmUXrMlQnwIggnQhCSLRfQS9+B/wyRLdCcABdW0fYyUZvc+RKLZzsvQ/ZMogWJv6ZF5GhJP7SedTKBL6QmJvux2zrxerfjjt+EmlYqGqZ2oUP8VeWEQOb+coP1jmysMDORIo/khP0FkoERS+VwCwhf4ghK4xJGWPxCGntozfOYNgey9/6LkY4TPKhB7A+JsKjgz3kT16gurhMfEujg1FIie+6zP/wg0b3pGnS9dh+0ODEQ4TaEgjDpLJewImFqGRLCCEYfmiU1fFl2kY6Lhf03wrDNBjcdu2A9psRCDpE4xE2ckUGh+9s358mCoUCuVyO9vb2pq9Zkyb/DLktQaa11kKIbwJ7L31/+G4sRgjxGeD/AAzgz7XW/8vdOE+Ta1FK8dJLrzJ+cZLde8Y4eHAfAGfPXiTREmdtLUs2u0Fn5xVBFgg43HvfLk6dusj9h/ZcN2VpWgbxRJjseoG2juTtpZ1uk/WzMyy+e478xCKJ4Xa67t9O/NIDtedj9UhePo+3tooRj1M5f5pAbyciGCX6wMOEd+7BW19GhqIYsY+Nw4l2ITIfogUgbSjPY97zm+i+Q2i3BJkfgJtDWUl08QzCbofKJIS3g9MB7hwaF792CswQhl5E1nqR9hCEB9BSQG4BXZ1CBDeBccmx3yuBX0YbYSieR+ROg66iJciup6+KQAppQqwHAejNj8P8CUCC8sC+4sdm9gxjpLvx8jlWMnlS2QJ+qcBKqcop8RbB4WnOVvrZcB8n5Vb5TurX2dg9Ql+oi8Kbb6NkCJXegbF2Anr2U1spUDw/jnQcjFCI9OMPXz6X9lzyp89TmV/GKxQJdrUTaE/RumeUpbdOEk7FqSytY8eDtO7aBFrTsrkHwzLovXcLmbNz9B4cwXQskr0pkr2pT+1+uRG2bfHo4/tZzeQY3PTPU5BVq1W+/vVvUCyWGBoa5JlnPvOTXlKTJk3ukDtJWb4thNivtX7vbixECGEA/yfwJDAHvCeE+HbT6+zHQ6lU5uKFCTq7Ojh27CQHDuxFCMGu3ds5/PKb9PR0kU5fa165fWyUbdu3kFnOspEtEG+52jXdMAye+OxBcusFWtKxm9b01Mt18pk8kVSEQCRww+0+ojC/igDq+SJCdJGfWrosyK5aQziMDJi4R1/GNAsU/+ZdAgeexd72IEY0hhGNXbW9dvPQewAR74LZToRy0W3bUfVVpJ1G2FF0x2fQtTW0WkCVjkA1gxneC9JBxu/D95fQ/ipaVkAXUSKFXzkNCFTlDMrNIMwwIjIKkb1gXhKDdhJi29C5D8EtQy0PoR4ItDaE4Q0wEl0YiS5U7zK4NUTLlffBiCUJ//zv8Mv/7iWOZfOMuUX+nf8imAojdcW6ou2XniO6Vib42n9H+9eO4EVGoPt3Cd2zA/nci1DNUlmtUPrjP6e+lsUIBDCjV1/v6koWL1cEIamvb+CVGz5eGk20tx2/Wie+dYjD/+NfUC9W2P6bT9F6qbMyOdROYqCV6kYF3/VvOyr2SclvFPnH59+kVq3het51OywLhRJnTl8knW5haLjvx7KuO6FWq1EqlYlGI2QymZ/0cpo0afIjcCeC7FHgt4UQ00CJRgJFa60/LRvrA8BFrfUEgBDiPwGfB5qC7MdAOBxiaHiAiYlpdu8euyycNm0aZHCw76ZpxlPHx/ng7dMYpsGznz9EMh2/6nUnYNPedfNIh9aa4y8cZ/qDGfA8Hv2vnyDZc3P38paRboqT80S7U6DqxG4QTdGVIrZRgGAVSlmI9eDNnsXcchDqa2gZROKCV0bV19CZV6E6A/Ex5OZfRtXn0Nlv4xcc6PgKMtDXGIdkR9ClVUR4F6q+gAr3I3QdIzgCyc/i5r8DahEIoPw5lG6B2iRCGAgziXQ60PVldHUchYcR3YsunEaXziJKk1BZhnoeDBuqG+jiDLrrKWR08Lq/JwDCQLlVRL3GumuQjjREXKaqOBP6U4Lpac6X+9gobaU91cZOu5eT3hy72nfR3jqACGVg6QgoDzN/DntEgOchTAvfiFE8+jZWIoo0BGZ7B8IyUPU68lKKLNjVRmLvVorjMyT37yDU04FbrLB+Ypzk9iGU67F8fpH18/NI2+DEf/gBpY0qbdv6ad3cyfjr51ibzBBORdj6mZ3Xbci4FYWNMvWqS7Lt5v8AfEQ+X6JarRIMBlhcyFxXkL12+F0WF1ZAQyIRI3mpWeGToPXtNR3cDvF4nEOHHmB6epo9e5ojhps0+efILQWZEOKvtNZfBv4U+MZdXEs3MPux7+eAg9dZz78C/hVAX99P33+q/1yRUvLUU49eU0MGjSiX53lMjM9iWRYDg91XPUiyawUsy6Re9yiVqtcIsttBKUXmYoZSZgMzYDH13sQtBVllfIpo3CIScBDVFbLfOAsPP0Ds4IHL69O1EtqtIgCjrR+1UEVaAczhPajJb8D5vwBVQcW6IdaP9ktobwbqawgzgIhuBncKhNl4rbaEtlO41SNo7SFkBOFnUWYNv/Yq0ohg20+jTAcdjICXRKgghrMJabaCtkD5SCuKdDY1hJyw8NeeR7sbiPIsyDCUJ6FebETMwgOIyjogobICNxBkulbCPfl9lOfx5fdSHMuW2d3VzX/cV8QrLl8xcg3NEL/vvyXWtY2/sL/Mhr9OKrm58Z6FW6H3IHr2HbzoZrQVJ3Dp70wYEunYhAYGcPN5zFiM6tQ0RjBAZLTRcG3FIvT/2nNoz8OMNNKwpfkM9VwRVXeJ9HcSLniYQZt6sYrnaSZePsHq2QW2/8oDZGfXCacilNZLeFUXI3Jnguzc8Wn+7s9/SKwlzFO/dJAtO6514v+ntHekGBzuIbueZ9ee0etuY1kmvu9jmiaG8cnS7sVikeeff4FarcYzzzxFOv3ppGV37Bhjx46xT+VYTZo0+fFzOxGyvUKIfuA3gb+kERm7G1zvuPqaH2j9pzTEIfv27bvm9SY/OkKIa8TYR5w+Oc7bbx5DAE89+yD9A12sr+aplKts3zlEvVYnGgvT2Z2+o3MWVwvUSjVqxSoCn0quRPf2HlL91z9ObS1HbS1HsLsdr1jGDDqUVzKwtogZsCmeOkV46yhmLI6/voB3+hUQEmtkJxYS89nfBNNCGCbe638J2gU3D4U8CBdNCWwTbQbR7hLCSSICKZS7gpDt+LaBV30L3y8gjQjCTKDNdlT9HRAxlJ9H6wy+Nw6yDlYr0hhEEsH35hGEkUYQsEE44PSi115AWu1Qz4AMIlQVHdsFxamGH5mVRGcvgh1DJm7sMI/yEVqx6pqcDvwZgeFpTlX6Wcn8Cq2xKLujQxwvTbKrfRfdu55EaA1/+dkr1hVf/W4j8vfV7yLKq5ihNAm47AEmbZvEoQfw8htoX5M/chSURkgTVatd7mA1Ag5+XVJdzaI8xco7pzBDAZx0jPZ7t5PcUSPak6ZaqLB8ZoGNmQzSNtG+ZuDAMHPHpuna3nPZDDa3nGfu7BIdQ2nSvTcW6Vpr3nrxBNVyjVKhwuLs2m0JMssyeeTxAzfd5tBD++nt6yKRiBFPxG667a2YnZ1ndXUNx3Y4e/Y8hw7d94mO16RJk58NbkeQ/QmNbsoh4AOuFk760s8/DeaAj5tA9dC01fipQSmFFAKFRvk+2bUCL3zrTVzXZ/vuYR5/5ppg5k2pFCpMH51m/vgsTshGoAkGLDbt7Wfk8e307r72QeqVq2QOv4dWisrcEun7d1O4MEV0ywDFN9+knl3FJkft3e+htx5AVLMgJPgewjQwuzajvRJ6/rtov47ofBhdmALHgGgSRBUS20Evo60IJMbw6icQTgKR2o+0hvD9cTQSX0+jVRRMiSFMpEyi1ArCiOH7G2hRR8goIDGMAbReQRrD+JUPkOZ2tN4AbwW8JbCioGponUeHd2HYLRCuIOx3AI3On0eEu0FV0W4RvXYW7BgiuQUhBJ7vM76+zEiqA2PLI1iZ8xgzV2rDjLBGeC5/fuiPyMcipAKpRjSslEHPvI3QfuNzeRUibSAlOphCV8r41Qrlk8cw4i2Ex3ZhxqKYsShaa4xQEK9YonjuIsUz54nt20Wwu2ExsvLaESor640RTlojLAMnHkNaJk7cpP/RnQB07V8nc36JUDpKargdaRq0jVyxq1BKcfSFUwghWJ7I8OCvHsAOXN/vTghB70g7mcUcQgjG9g1fd7tSsYJpGTjO7XciBoMBRu+5/vHulLa2VgKBAJ7r0dfX86kcs0mTJv/8uaUg01r/W+DfCiH+WGv9O3dxLe8BI0KIQWAe+BLwa3fxfE3ugK3bN2EYBqZl0D/YTWYpi+sqLNuksFG+7j7FbInxIzNEkyE6N7UxdXQGwzToG+vh+//mH1idzIDWjD62DYkid36Oeq5ItjNCsj1KuDN5eeB3LbOO8hVaa5ACrTVOKoGT2gVAZKgPd2GK+pm3MaJxvJmzOGP3o9bn0WiEv4Rad9FCQGkWytMQ6kQ8/KeNKFQ9g177AUpkUcpH20mk6QAlhE6C8BECNC6ePwtGAmkkUSikdhtRL9mKED5KL6EJImQ74KH0MugCaIW0h0ErDGsI7eXQXgHtruJ7dYRbR669joruQbQ9i+j4DAgTVo9CaRqMAHr5GBRmAYUIxPECbTzwl1+kJMcJq2He+Orf0p7sZe/kbo5ljjVqw0YfRK/PYYYipP2PDWA3o6joMEbhIn5sE0Yw1SgMVYri6y/gZTJ4rofd1ok7N4PX04eVbkwxEEJgt6ZRnoeqVDECAWpzCw1B5ivKCysUp5cpLa7Ssm87rbs203LPwDX3SLQzSbTzxlEvIQROyKawViIYdZC3SBc+9JndbN87TCwRJnidcUuT4/O88fIxHMfi6eceIBYP3/R4d4NUKsmv/doXUUoRCt3+SKcmTZr8bHPbRf13WYyhtfaEEP8N8I80bC/+H631qbt5zia3j21bjO3cfPn71o4Wdh/cQj5bZGzvtUXQSile+do7XHh3CsOS7HpsFFVz8X1FrVhh/vgsCoUTckgNpInGA+TPTmO1hJh95TiiUqb7/m2ktg2QPzNO4fR5hGES374Z7fuE+rqunKuwhjt+FKSJEU3gl/LYI7uR4QT2vudQC6+h10+g1zagbW/D46u2BpEeRGUamTqItqJ4ahi/+C5oAwyJMGNIZwta5EA4CBlBGi1YMoKvZxC4GEYrQrQiNaAkihWkaMeQEq09fLWOFgGkTGHIJGgD0+oE4aBFHiEkjQZjAfVFqBfQhbOI6BiENoGuozseQax/CHYMb2OJiVyOTbEYUphcXJm+PNaoJMe5uLrAptIy/777S+T3/0+kol3U3vk2Qgj0C/89emMceg8ivvpdhGlR2/uvobCMSA8QutS44WWWKL3/FjIQRCvwowlkIIARilxzne1kC9K2Kc/O0zLQqDWTlklkqJfsqUmQJvXVHF6lhhH4mM+bUrhVl8z4Ml7No2t7L9Z1Il9CCPY8vZ3s8gbxdBTzFp2Xlm3S3n1jgTc3tYQTsCiXquTW8z+yIMtmN3j9tXeJRsM8cGj/HU+p+LifX5MmTZrAnXVZ3nW01s8Dz/+k19Hk1kgp2b775ikct+YhjUaG2zQl1bJGSolXq+METdyax+gT29j6xDb8usf6hSFWz8wgHIEVcqgXGpYJfqmEME2052NFQwS72q+cY2WG6uGvoYtZzM5hzIEtOFu2IVr60bUsGMHGqKP6KpQvgmNB670QSiEMCwIfm1spDGRgE7p+AWH1YkUfQ5otaN2IKml8hFQIcggdRYgQQrhoVhDCxhA2wh8C4YHw0X4NIQJoMmg/QL18GKF9fHMAQxkIXHRwD6KyjmYFrB6ojzd8xNY/QK2dgvIC2moDJfCFxYPvfp+yOUPY6+W1bb/J0MprhNxeytYsYTXMJsvAnz8FdoDE0hQi3oeQBrq8isxdQGiFnnkbvTGPaOkleOAxVCGHkbhSWK6VwmxJ42+sExjbS+TAQwjbQdj2NZ2B0nHQpoXV2krp3AThwT6MgENqzyiV5SyZD85iJWJY0Su+aL7rc+GlE2QuLFIp1oh1JREC+vZev/ohEHHojFx/vuidsmX7IEuL67R1JGnruHnTyM348NgpVjNrzM0u0N/fw+BQs8GoSZMmn4yfKkHW5KebbCbPymKWrv5WovGbp1qklDz66wf58KWzxFsjbH1wM+VcGWlIzr94nN6tXVSKFXY900g5GrbJji89SCVbpDC1hF93SY8NABDbthmtQWVXqB59Hb0+RHDbLtCa+uv/L/7MEVASHXVgOY+38ho4jeJyEeqAvs+Cm4V8AOEkwEkgUl8C7YEZRykP5c+BlQQhINCCaY0iL3mDCfFRmqx+ydi2DtpEswG0IJA0pomnkIaLQKJUFV/X0WoNIaL4/hJ4Cyh/A+UtI4wdSAF67VsIv46M7gAkItCHVkB5Cc8vMbkyz5A9j6yXGLdGKJszjWiYOcvE8iTDXplX9/w6k/ksm+//KlL5+KaNLudQykNX89i7nkDl11Bn/xK5fg7fasWfHseyoqhqBWwH9JX+GDOZJjC6Ha0V4d33IUNh3PU1iq/8EBEIED14H0bwisCShoGvL402uqTVzGCA/l94hPS9Y2jfJ9zVenn7ar5MMbNBMBFmbSJDrKMF07n7c1ABTMNg/33b6OxJX1NDVi5Xcesu8UT0BntfIZ1Ocu7sOLZjE41dGzls0qRJkzvltgWZEGLrPzVpFUI8orV+5VNfVZOfOmrVOi9/9wi+5zF+Zo5nfvn+W3ooJdrjPPxrV4r97Y6GHUa0NYpXqNCW6CCcvvIwE1ISSsUIpa7uYjPDIZL7xsi/+G2MVJr69AWc/kGEULA+hbQDUC9j3nMvInsCNfUCwtHo5CB0RhBuEdFxCB1sREREdAvCCKD8IvXid1F+DmmmQDoouYE0+xopST+NYTSEh8ZtDAQXDmCAkAjdiSaF1hboOaAKtOH5cyg11+hAxAEtMcx2fHUaRBIhAkjDQZcnQGl0bQVhtSNbPwvBUZj+Gp6I8tAHr1EyZwnXO3klsc6QP0vI7aFszRH2+hnpGkHEW5ArZ9g8eB+G00i/2TufQf/Zk4jcRfS7w4jffgWjY4j6Y/8ble//CaKlH2P2LO7yHO78BDIYxuoZIXjgSYQTpHr2BN7KPNr1qLWkCYxspTY9BVLi5/PU5mbxihUwTdxcESuZINjXjd2axPhYl+7qySmW3z9PsDVOXyqBDDVeC8ZDxDpbKC5vsOMLB0j0pkncJM34aVHIl/j+t9+gXvcYGO7ikSf3XX4tl83zD99+hXrd5dDDexnZPHDTY23bvoW29jSO4xCP31rANWnSpMmtuJMI2X8WQvwV8L8CgUuf9wHNnu3/QtBaIaRE+XfmNlJcyeN7PrGOOEJKEu0x8hfmcLSFvlRkrjyf6lIGw7FxWq99OAvDwOruo3rhOGL1DJUfzCAHRhGJdqRcQ7alkGIdTQVheggn2IiARYfR9Wn8tW+DqGOkGuOHlLeG786ivHm0quPrCsJuQ1ND+WcQ0sBTBTT9CNkFYoFG+CcO7AE8EC5Cl1B6BagAJug4StXROgCUECKEIQex7d24xFGVYxiBzcjAA6jqN6DyCkqGWRXbacMBrwiBLiYLHiVzthENsxeZ1F2MWEUOb9nOdO8fsLl/TyNaF+tofHz8vVJ1yF1EaAW5cSit4M6uUnvvH1BKIuslRDBKffIs/uI0KtGKDESonj+GCCcovfkifj6HqlbRCNBgd/dQX1xABkOUp+bQtTobp88RHBpCCEn6sQewW66YpZZXclz8+ut41RpupUotV8S6JMikaTDy+BjaV8h/Yvxa2igjhSQY+/RrrLJrBYrFCtFoiHKpetVruVyBaqVKIBRgfnb5loJMCEFb251ZvDRp0qTJzbgTQXYQ+DfAm0AU+GvggbuxqCY/fTgBm4ef3cPS3Bq9Q+237TCeX8px5h8/pLZRpnfvIIMPjFJazhLrbsEtVKnly1ghh/yZcfJnLiKkpO3RgzipFlStiq7XkJGG47oztAk1/wFKlfAvvIWoZzG7hzHHHkbmT4FbRtSnIBYAvwY7/wdk6h78pb9D1SfQ3hK+O4FIPo5hBlEatPbQoowwU0irB6WLwAJCJoASiiJCn0WKGlo7gInBMA2dchFf5YFcI+Unwvj+RbQqoXQVvDICExloR8oATmgfhBpRGVUeh9oCytf8xgv7OLI6yZ70PF97NoO0owwnA4S9HkpmIxo23LMTSvOYToLNrd1IKdFuGV3JIS7lCUW0o5FyDbdC9370/PvQuQuRHMR97Zuo3BLCr2F0DmKNHcLLLEG/g9rIUpsdp3TiA5AGWCFEMIZEIoKXom5t7SSeeBohJfmjx6nOzWGFI2jXw4xGLkfGlK+oZQuUlrMEWuNkz81SL1axIsGr7gshBOKfiLGV6VWO/+AMQgr2PjNGouPODYY/QinF+mqecCRIMOQwP7vCqy+9T6lQpru3lfsf2nnV9h2daXr7uygUSmzfsfkGR23SpEmTu8edCDKXRhggSCNCNqk/qnZu8mPnxIlTnDlzjt27dzIy8un4I92KdEeCdMf1R8YoX5FbzOGEHMLJK51rXtWlnMmTnVrBzZdp6UvTNtbPzOHjqFKe/LlJAvEgqlZHGgbK96ktLuAtzeLNTaArJZz+QZzRHbjHXoDsPLpaBCmRkTjS8BHVi7DyEphBMH2I94ARQFgWCLthvrrxPRAagUbXptHmHrReAKsNKQaQZgIp7Eb0TKfRWiNlBIENuGgdR+tl0BaKCaTsR9OKZgKtTQQeWoXQahm0QmgDoU2EsNDeBNoeQBWPoepLrLONtFVE2ClWxVZO2X9FcHiaU+V+VmtfpE3WkW6Zw7sOMOU/yXDnVtiYg+wklFZR82+iux/CP/1N1Mx72DNvIAoLqOQmvM/9MVKa8Jk/xIgmEbEuEAIRbkEm2lHFHEbnJsx4muCBp/CXZxDxFMUXv4G3nkGXK5idgzhbduNs3oEwBM5gQ6B8NB4punMMp6uDlkAA7SuMcAgj1BBcK++fZWNiESNgEetvp7BSwEomWPpwkv4HtzXuiZqHMMQ1Y5HymSJCCpSvKKyXPpEg++DNM5w7NUM4GuCZX7if1ZUsAKnWBIObeghHg5RLFULhxroDAYennjn0I5+vSZMmTT4pdyLI3gO+BewHUsC/F0J8QWv9hbuysiY3pFwu88YbbxOPx3n55VcZGhq46azJHwdTR6aYOT6HV62TaI/RPtxOz64+4t1Jkv1pvFKFWEccr1In0dtF965B1o6dp7q0RnFqkfi2TQhTIpSHO3meWrmIysxjGjXKSxdRG/OI8jJGzz2Ili6s0XuRtoWoL0DhPNoOQbQLUZsA4UP8HmSoMeJJ2A7EH4DKh4jAIDK0F6QPIoohTJTII2UcISRaCQwZxxBbkTIAeCgqQAatk6BL+ORBm0jRja/bG7VsgNStKF1AuxMYshOkCQjwJd76i6jaAr/x9VaOLL/Fnu4e/r9fGcJUyxjBj0YaTSODJlTXwUljqhqbUj2IUBd69RzaCKIxYOYt1NyH+FPvQLWEyM8j0LB2Hu/l/x1CbZjdO9F9uzGEDaaDvfspVHYJlV3GPfk6UggCB34OhsfQyqc6fg4xM46RbMNItxJ99FkqZ8/gZVbQrk9o+67L11raFoHuruveB/nJRbITi6i6x+ZffZxyroI0DbxyDYDsQpZzL5/BtE22PT1GMHYlcta9uYPs4gbSlLT2p5g6vcDE8TkGtnYxtOPODFSXFtaIxIKUChXKxSpDIz0szGUwDElre4Jv/t1LlIoVDj2yh00jzQ7JJk2a/OS5E0H2W1rr9y99vQR8Xgjx5buwpia3wHEckskWMplVent7LnX+/WSp5KtYtsnCiRlsy2CuNENLX5JIKsq25/Y1RiFJQctAw77AioUvd+RZ8QhGMEDLrq14GznyCxOIYBgjnkAXlzCDJv7sKcx4FGlJrOERZKIFEU6ic1VUXkKoHSoXwRAQ2wzpvQj7UjRPWFhOO9p+HCN6L8LuAerUKodR/hLIJIYxgO9fQFFG+6toGcWWmxEiiNQS1zuH688hcZFGD54/i9A5ECGkMBAijTQjKHcCW9oxSQAAIABJREFUYW5CYGJYA1DP4m8cQdemyBR9TslvNKJhlX7WjL+hNbnOnngnH+YX2ZUcpHXgizD9dVRxFpY/hOwsunUe7ATEepGBNDq7iK5VobwKMoQKJJHVdZQZaUQJtUYDOjONmjwBhom162lEJInWAl1YQ5ULl6+dkAbRR55D5Tfw11cJbNsLwsBbXYFAiI0330K2tBLo7r7lfeCkEvinZ3BiYaSE7ntHKa/lSW9p7Ls2uYphSGqlGsXVwlWCLBgLsP9zjVSi5/qcenOcaEuI029P0LO5/RqHfs/zmb64RK1Sp39TB+GPWWvsf2ArR945R/9QB4lUFCklz3y+EQGbm1mikC8RjYaYvDjXFGRNmjT5qeBOjGHfF0K0ACM0UpYA03dlVU1uimEYPPfcs2SzOdLp1G3Xc/0oKKVuS/AN7htg6sg05UwL+dkMycF27KBNcWmd5WMTRDpaaNsxiJASr1SmvrZOaucIgbYUTsuVLjUzniCy/178YgG7sxt//gL1M29iBEyEE0A6Lqydwl89hgjbCMOAWBeiax9kXm0M5UYjY40h0V75AroyiTZbsSL3IKyP7BccDKMTIYOXbC8yaAHKywN1lJ7CowPfn8FXp9BUAQ9Pu+CtIUQMSRIpI1iBBxGi8adk2lvxayfRbh43/xqTuTKDgSUMBDIQvTLgOziNYZYQwU7+/NC/JltZId3xKNIwUT3PwtR30MJBWBFYeQ9SBxGBNMbRv4f5o+hwGrdrDzhx9M//W+ozR1HlImbvLmQgBnYItb6ErlbQbh1dKyPsEDKeBqWxNl89u1EEQlibdmLkswT3HEI4AazOHrKHD2PGk6w+/32ie/cRHduKvGSCWs8V2Lg4S6gjRbin4Q2X2jZAZa2AkIJgMkYwHSc5fKXpINoWZfn8EsF4kGjbjWdCGqYk1RknM58l2R7DtK+NAL//6hm+87VX0b5m/yPb+PyXH7p8r3Z0p3n2F69fdJ9ua6GjI002m2fbjmtNjZs0adLkJ8Gd2F78C+D3aMyYPAbcC7wFPHZ3ltbkZgQCATo7O2694Y+IW/d47x9PklstsvvRUdp7k3iuf8M5gqF4iKG9/ZRmV/DCDsGojR1ymPnhUbTSrJ6eJt7fRqAlyvo7x6nn8qA14aevrdux2zugvfG7GSM7sfo34y+ch2AMNfUd1OT3obaG0dELPY/AwgsgK2CGofcLiORehBVBqxpq40XwCsAFdGwfqBp+/SIIG2n2obwS6FV8X6J0HuUX0VTQUqL8N/HVWaDR5YmWaN8FFFpV0UYBoVtRqoRhNOqdDLMV6l3USpM88r2/o2zOE/b7OPzZ36K1MN6IhhUW2dW+m1Qwhc6dxsieJB1oQ1yy2GD9NBSXQEh0aRGd3INhOujKOswfRWgfyqsYO78ELQNoEUDNnABVR25+GLO3EWVSsQ48v44MxJCJDszuEYQ0wLTwFqepXzyFs+0AZqodfy2DWltB2A7lE8eor+aozc9DIILv+tRWVpEXLmDGooQ3NQxcl9/8EFVzKU4u0vNsDCscJNiaIDrYqFuz41f7cy1dWOLiGxcQpmTk4S0EIjfupBRCsO+pbZRyZULx4HX/Kciu5pFS4mvFwswKb718gpFtfbR1tNzwuNCoF3v28w9dY3LbpEmTJj9J7iRl+Xs06sfe1lo/KoQYBf7g7iyryU+ajdUimYUckUSIc+9OMvHBNOWNCtseHKFrpP26+0jTwLTNhtBKNh7GobYWshfnsUIBzOAljypDglIgZaMr8BYIO4g50BAZ7sV1tKiD9NFOG7g18DIgXagtQqgTaV0SAsIErdAohLBBVfH9VZS7AChMI4pl3YOrXMBAewsIBFrl0ToKMgM4QAFUAil3g5xGeRvo2gS4JZSjIaCuGvCN9pkqCsrmfMO2wphhyu1nU+Ud/mzbZ8iJAOnhf9kYZ5Q7CXYLVJahnoVgO7hFhBVG20lw2pF2C8T70VYLOt4DG7PQuQtz6+fx88u4r//fqI1FRLQVNX8CLgkyGYphjz1x+X20Nu/D6BhElYuU33kJGY1TO/8hNTtCbeoC2leY0kD7Cjebw88XMNvasDq6EOEYXsWjmlkn2N+LtCyMgEM9X8KwbcQlwbR+cYGlUzNIU+LEQ5dTlQAbixsYtolbdakVa0RTN/fvMi2DjWyJV759lI6+JPse24rxsVmW9z66nVrVpVyuUipXWF5YY2E2wy9++dHr1lTWanU8zyd8qZD/dsRYpVLhxRdfpVgo8uRTj9DamrrlPk2aNGnyo3Angqyqta4KIRBCOFrrs0KILXdtZU1+okRbQkQTYUobFbqHW1mZyBCOhZg7t3RDQWaHHLY8vZPqRoVYZ6N+q2PvCInBDuxIAPPSLMPUgR1U5pexEjHMcAg3s4RfzGN19mEEAqhyHm/qGDIUx+gbu/ywB5DJLejcJFQMtBVCdt4HRg6yR8BOgmxEXbRfBlVDtvw8lD8ApxdhJhC6AChAgLARIoph9qFUHsMcwPczCH8Z8ZFZrEiilY0pWrCkCYHHqee/h/YkYCGVj/IVh/760oBvf5BXf+n3GenaS1gNUpKThNUQw4XXAYksjpPseBYWX0KF+6BlByy/jg50gBFCAKJ9PwDGK/8XYn0anRxA/MsfoueOUO/cjw51IfsPYWuFGn8TGW9Hzx1FGBZy+H50tYh26xAIQ60ChoWwbIRpYbS0U5+bwVuYQfuKwIFHqX74Hm4uC0IS/dWnkYEg9ZU16oaBCISI7NqFX6qSef0IpZllhH2O5N7ttN23g+rKOuX1IrOvnyI52sPSiRkWj04QboszcGjr5etWr9RJ9iUpZUvE2mIkbtCt+085+8Ek0XiQ+YlVtuwqkWhtiDjfVxSLFe5/coxka5zv/M1rlAoVEsnIdYVWfqPIP3z7Faq1Go8+fi8Dg7euhwNYmF9ifnaeYCjEiROneeyxB29rv5uRy+XI5/N0dnbe8QzMJk2a/OxyJ4JsTgiRAL4JvCiEyAILd2dZTX7SOEGbh35xD27dwzAkR4o1iuslNh8cuOl+oZYIoZYrqSppSEKtV9sXGMEAkU39APj5HMXXXsSbG8dIpok9+8v4cyfQ+QxqZRoZb0O0dAKgKuuIzoMYiU2o/FmkLiOyx9DtT0KoE5xWZKAV7ZXwV78PfhkZ24NMff7KeqxehIyAMBpzHd0lpNmNcPNQq+L7eaRvgTuLEGsYIoRw+jACvWg/i2nsxgw9ytmVOYaiAQznHsZzxSsDvo1JJk7+CZu3/zZvfPXvGV9fZrj0BmLjQ6gsQfpeKCyAtCA/iRj+EnrTV2DmFfSZr6FadyC77kO0bEdnZxvmrtlphOdCajM6N4euFVHLZ9C5OQhEUTNHEV27sB/9HYS0qL3/PKpWQdfqKNeFcgGzdwvOnseRoSh4LvbIGLpWw+4boXz8w0Y3pRWgdPIEiUefoOXpZ6h+63vkzk3heq+TOLgXMxYBKVF1FwAz6BBoSzLz1jmscJDZwydxlaD3vlEq6wViPY1oUiVf4djzx3ErLpvuH6ZrS+dt34c9Ix2c+2CKRCpCOH6laP/U0XGOv3cRIQVPff4gT37uAKsrG7R2JK5Jb7quxwfvn2Rhfpmu7jamJuZuW5AlUy0Eg0FqtTr9fXfW6Xk9isUif//3X6dSqTI6uoUnnnj8Ex+zSZMmPxvcSVH/L1z68veFEC/TsCz//l1ZVZNPHdf1kFLckT2GaRlU8hXOfzCNEzDZ/NRWYq1RytkSgRvU9fwoqI0MGo23MEHllb9DBk2k4zR8xOzGQ9ibehl18j8iQmnktt9AhjshdxLMACLU24g0GUGE4aCqc7BxDPwSqraGCPYhzChauVBbaNRqSRN/47XGwHC7B+2tgPKR1UW03YbWK40ZldJGCht0HelsxnNrPPi136UkJxq1YZ97mE1hSVgNNyJkbgfDYgq9fBhpxNnSOoSqCLSMgBGHyBh66VW09kAGIXMWauvoU/8J0XcIMifwI30w+zaydRSdOQs9+1HVImr8DcBuRAHNIJg2hNKIUBuYDrqwCk60ER0TErW+AMEEqlxAVcuoYg4ZiuJs2YEwTWQ4itXZR/zZL7D2t3+N1d5B4eRp3LKH3dWFqtSQlo2bL4Dv07J3O16+SGRk4PK1k5aJHQ1Ry5UItcWxMVgfX6Lnvi0YdiP6U94oUy/XcEIO2dnsHQmygdFOkFDYKDF9cZGh0YYpbrXiYhgS31fU6x6tHS1EYtefr3rk/VOcOTXOzPQi4UiIx5+6/7bP39KS4Fd+9edxXY9Y7JOPSKpWq1SrNUKhEOvr2U98vCZNmvzs8CMNF9daH/60F9Lk7pFZzvLy997DtAye+LmDxBK3Pwz59KvnmTgyTXYhy9LZPlpaQ6i6T8doJ0P33rhDrZYrUFnOEupMYcfCN9zOiCUIjB2kcuQ10DWMth50rYg5shshNcJ20MpHL7wLVhBdzqAyx5GiBNU82izB6T8COw6hdlTLGDq+tWEI6y6DfwG1/Dykn0SXTkPuXZAOovUJwEdgXh6srUsnkCIGJBGJ/ejScbz8BcZXJaNbnkBaES6c/RtKcuJybdjkqf/A5q4dvPrAU0ysTDAcyCIri+B6sPgDtPNFSO6HlWMoqx0++ENwEmBFEaEemH8d+dqfIIoZ9PnX4Vf/GjXzNmrxQ7z2Mcwn/2e0cFDnXsKbfg/RsQ25MYfc+UVkrBNdraKCMUAgnDAy3orZOYxfzCFTPdTPH8fLF9GLszg7GgJahiIExq50WTq9AyR//kuUzpzC8G2MUAg/myU81I9fqRIa7INAkLlXjlLLVwlPZmg/uI1QOo4wJAOP76KaK6GF4PxLJ8FxrpppGW+Pk+5LUcqV6d3ZiDKV8xXqNY94+vopRmh0+L72/FFOfjBBPlti844+QpEgXX1pxvYOIyWEwkE6e25e1+XWXQIBh7Gdm3nmsw/T1n7j7avVKmtrWdLpJM6l3yEYDBIM3nCXOyKVSnHo0P0sLCyyb9/eT+egTZo0+ZngloJMCFEArje8UABaa33j3vUmd4076RCbnlhEA+VSlaXFtZsKMq01hfUSTtDGCdkEYgHq5RqGbeJ7PuX1MsneJGvTq1cJsmquSObEFMFUjJZNnUx/61Vqq1lC3W0M/fITV9WBfRxVLeNOfAjldYxUO2ptBu0WcD+cx4in0ZkLmDs+h+jcj66uIcKdiGgnOn8OUV6AjeOXmgN8GPkXkL8A8TFEYBBdWYDQMDr7Nqy+De4KCBf8KloEIP0AQlf4/9l7r+C67jvP83PizTkhA0QGAYJglEiJkmhLlmRbst1ut93da7u3p7tma6ZqtmrmYR629m1fpra25mG2d6t3Z3s7zFbnIFtOkq1ISsw5gSByvjnHE/bhQiQhgBQpUWqrdT4v0sH9n3P/954L3i9+4fsTHYOYWg6hlgEUROcIons3lfQtjr59hbLyGq5Tv+LYD/6KfpeBS+tsDv1utNEnJSF7Azk/zWDkSUAGzwQggiA2U6OqH5xdUMlAvQiqFxoFkO1QLSAUEwimCcU0ZlVDT8xgrk8i+NowiymwB0C2IQY6wRFAHvs6qEGqx/4KqaUfefxFBFFA9DQtPZThQyiAUS5SX1jEUBJQrlOdvIg7un2qzt7bh9rRSfb4++iFAu7xXTh6uok89wwA1//rK6wcu0R2Lo6nu4X09SWc3S3YfG56vrQbd0uA7FIara6jOFTK6eLta8uqzOizo7ePi5ky7//oPI26zvBjO+gd76RarqPY5E1F+4ZuUCpUcXnsJFYyYJrIcvNxh9PG/ifu1Kjdj70HxnA47bjcTtrao/dcZxgGr776Ool4klgswje/9dVH7vEnCAK7d+9m9+7dH73YwsLiC8VHCjLTND95nN7ikVEoFPn5T9+k0dB4/sVnCIXu3+IP0N3byszkEk6XnZbW+0cTps8vMHliBqfPwaFv7GHnk4MEW33kVnOEuoJUUkVS80l6DvRuOm/19E1quRL5xTiqSyV/cx5T18lNzmL32oge2Y/iaUbK6sk41RvXUGItyOEQ9dlrCLKKnlpF1hVMwcTIpJH8EcxKHrOaA0NC7H4RoesQ5sKvMKZeAaOIaKRBUcHdudGl2Iq59jbMvwqNDKhtIHlBy4IpQiUB7h2gVxGlAKK96VeG6ATvUVLFEhHHDkxTZ25tkrKyshENm2cmm2UgdJh3vuZnJp2iTy0jJi5CYQ4kP2gVhJZnEFqOYpbmQXIhKBt/r/S8hFhcwRRdkFtE6HkWITgM5Ti0v465fA7T20H13T9C7NiHoHoxlQB6No4Z8mPmc5gNBdEThkAv2pW3ELxBtOXr2NoGEZ1b/y4SZBnB7oSGRi2VwZBvIEV3IIcimIZBPZPBrNWxd3Wi+P2IqkrgqScxNQ3xrggXgGRTqaYLmLqJVq5TzRXx2FRquTKVdAHFacPb4qNlZzu1fIW23d33/IyVC1UaVQ3VqZJZyzNlLnL95Ay+iIfDXxtHUTc83RSZw1/ZxdSVJfY9OUxHX4xo29bB8x+F02ln34Gxj1zXaDRIpzL4Az6SqQy6rv9amC5bWFh8MfhYKUuLfz6WFlfJZHOoisLNyWl2je/E6bTf94sjEgvwrd/90pYaMsMwuHFqlvhihp2Heol2BLnw+jXWZ5M43A7Gjw4TavPTubOdzp0bkZUBtk1Vql4n5fUMok1B8Tjxj+wgf2MOZ8SPUalSXlzFt7N5XuXSeUwEytcuo7jtUK1iUkYMx8ATgswSBHsQPCGktl2YqZuQvoVp6AieGOTnEPyDUFoF3QGeTnC0NV3ty0WoTCNUE2A2oJSF2CHMxinQTFC6m+nE0jrmwo8x2p5HdHdimvA7fzHPuaUl9nak+MsfjtDva70z4NvopY80xOdQInsYaW3HWHsfs9o0XUXXEZQ2CB0AyY6xPoMx8yuElj3Iu38XwdmKZI9hvvo/wdIpmL6A+fL/juDpQfj919Cu/BPa5BuQmsVcvQbtE+grs5jaGuaN08iduzBSq4ihHoz4LFK0G23pBo1EAuPUL7HvfRrJu1lsC6od1+HnEbxhzAtnqMwuUrr1x8gtncjBKJWFRZwDA9RWVwl95bmmDYcJ1UQG0aZij9wRPx3PP045WaCSzuFui9FyZBeJq4vY/C4coaYYFGWJ7oN3PhumaVLKllEd6ib/umCrj87hVoq5MoP7ezj52lXcQRfZRJ5itkzgLsPYls4wLZ3bG7w+amw2G88cPcyVK5Ps37fb6oC0sLD4THmYlOV2+TErZfkZE4mGsNlsaA2NtdUUVy//mM7OVp574cn7ijJF2XqrM/ECv/qr0xi6TjZZ4Ot/8BSyIuEJujF0HafHts2Vtie6aweq04Zsk1HsNrpeOkJ+Zw/Fm7MIoog9GqIWT6BlMogud7Orr1rC0Ivg8CDa7dgnjiDKBoTbmpEd04boDmGYFQxDw8yuweoNBE83QjWNgQT2UUTVhmmaUC1CI4/gHgK9gKlVEeo6gm8ftL0Ms3+BIMgYlTUQXWCCufIWZt/3SJQ0rhj/CXvfPFcq3SRqf0nEN8A7Q+3MGhP0+VoQlt/CtAdg8Zcw8kNwdUDqMqbSDjY3guHCzMxiBlX0838OlQzG/AmMchl56HkkmwNh6TQYOubSKbQrP0FwRZAnvoXY/yWEpcuInijY/Mh9T2GmkxiFWtOrTVIQHB7QNcRQJ1p8lUYVBE8UMNHWFm4LMtM0MQp5kCQQJJTOfrR336aRiIPTh7G6ihSMopdKFCdvocRa0H95DO/OAaqpPLlr0wiSSMvRx7CFm/YUzmiA4R+8gFap4WwJIsoSwaEuBLE5LHy7FPrchUVmzs1jd9vY/9IENmfT9kRWJHY9PXh73eCeTi4emyLaEcQbvHe94WfB4GA/g4OWe7+FhcVnj5Wy/JwRDgf57vdeptFo8Nd/+RNaWiMsLq5SLldxu7fvMrsXtXKNarGGIAqUcxWK6RI7xjuIz6doH2rZ1km9nC6SvLWGrz2Ir70ZQdFrDZbePE/87A0Up53AUCddLzxGaM8wgZ0bqU1NI/XGcQBknxfv4afQChlKb/wYvVJDDLUgOn049jyBtjKFNnWCxtottIUrKOPPIbUfRMu/jrZ4CcHfjTL23yNMvwW1LGbrIcTaImZ+BtPmQwiNY478DwiX/xjsIczFdxB3/gA6XsYs3EKMPkVj9R2mb75Ln7cVWXodqfXgnSHfjnkkMYepB5Gkbvr9wabYEFSo5xA8zXSc6OmkIXdhlBYhcwEzPIi5ugDOUyAoUK9ArYK+dgtj8QrKoX+F3PkYLJ7EDPQiOMOYRgOzVkaPzyN0H0F0OpEi/QgOX9NPLLOK2DmOoNoRHD4E1YGeS6EvzyAqdvTUKpLbhxy9Y8lQn5+hdOUijZVlTFEGQUJs7UbRBajWcYztRm7toJ4qILjdlJcT2HpMsucuo7a0IkhiU9Tp2qZ7bw9t/ttLlEVuvXuD5UuLlPIVeg8NMPT08O0/DBILKeweO9V8hUq+cluQ3U2lVEN1qjz7249hd6iWc76FhcUXlodKWW4zyxLTNN951JuyuD+FfInXfvEumUyeeq3B+MTIbffxhyEY87HzUC/Z9TydAzFOvnIBgJYdIdx+J6ZhIkh3viBN0+TWm1cwdIPkrTXGvnkA1WmjUapSzRYxTROtUqeRL7H6y5OY9TqRJyawhwM0clUa2TyCJKIEg4huN+V3f0U9kQTJhuwLg9T8OIouf1MQpJaQ+/aj3TqJ4PGjr80gCCAYAmZyGkGvYwoK+uJVdHcUtDbk2DhidCemXsdwd0O9iGl3Y6xcxEjNIMTGMO3tPHXsnyiJMzhX2nirUibY8xz7Ynu4kLjARGyCQCEOK2cxcSLY2hA7DoHshFoanC0YmVXqF15Bnz0OpoZgd2DO3URwhBHLZYSe51De/88ImTmM8j/QGPs+xuIFzB+8glDJYFZKaKf/DlxhhPgc+uI1QEDuP4Dobqbo5P5DoGkIajNSqefS1BeuIrq8oCgIuob98RdQu4YQ5DvpNS2VRJAkGok4pqQiqCpaUkT0RHEfGsV/6HFMw6CWzKGXK9iiJo18EWdnK96xfkRVRnI6NqUst0Ova6TmkmRWsyxeXiIxm0R1qPRtpLT79vdw4/gULQMxPOGtjSRaQ+OtV85SKlSJtgV46qU9D/0ZtrCwsPiXgjXL8nPIzZuzGIZBIODliSf3MbLz46VYJFnE5VJpuG1UsmUkRWL9VpxKpkgykMDushHdcad+RxAEZJtCOV1EtikU19Lk5+IERzrxdsdolKs4/C48bUGqy2tIDjuFqQXs4QCVhWUME4xMHs++CMVzZymePgF6HSUWwVQdmJINs9FA8ISwHfwmojuIWcpgVIpg84AtgmCTEULd4G5Fn34fY+Uqhrsdc/mvELv3I9TLiJF+BFlF7HsZqikaop1bZ/6BHaIA199gtv3wbeuKsrrCTG0vo40K/89z/xfJ5SuEXFEEI49hmgiyCzG8u+n1BaC60RavUj3+/210QoYQCovoUgdmPo9YSyOEFOToEGJuATAQq0n0QhahPQiiDO4oRuIigqcTDB2jlNt4h01M2YaWXAVdoz59FaNcxDZ6ADnWuWENYoJp4jjQ/LUTPYEtUSVb/xBGuYRj5xjV2XnKyTyVuWXUjnZEpxvPnr3E3z1N6uQ1nO0xOr79VURFQfF6MAE1FkX1OO7ZGfsBsk2hdWc7CxcXUWwydredcrZ8+/FQe4AnfuvgPc9v1HUqpRouj51sqmjNlrSwsPhCY82y/BzSs6ODqZtzOBx2Wlvv3cb/USRXckyemsMdcOJwqQRafYgiaOU6iAJgYhgGAJVMCdVlp//oGPm1DIpD5dwfvYpWbeA8OUl0sBWb10XLoTHsfhfr6Sx6rY6zrbk/vVrFqNapLK+SO30aqVFGCsXQUnHU7kFMQaI+O0VtcRptaR770CiuQ89DrYS2NoO+eA2xZQSlbwLRE8bIpzCUVnQljj57BYE6JOegZwKkZrRIsHnRZBdH/qw51shZb+eNtsPsaBRxaj2U5Tmc1Va6k+sYoop29V2cp39MRbHjeOFfIw0+jyBI4Nvs0G4k5pDcEbTULIJhoBz+A7TVRcQOBaNYRD30baRoH3Q+hrlwAt3RRn0pieGYRwxNonQNI/pjNKbOYNSriI4ogqsVtXsIvVandvEt9FIBTBMp2k71yhlsSJiSjFksIDqdiE4vgrz9r6/s8+M50hRsWqXC0v/9pxgaNDI5BEVh7ZfHif/qBLaQr9l9WdOwx5qWGavvXyU/t45sV+l54cDt+aOGpmMaJpK6+Tm79/cSG27j6muX0RoGOz7UfXs/HC4bE08OsTwTZ3B3pyXGLCwsvtBYsyw/h7S3x/je73wdURRR1Y/fCZZaziDKImuzScaODLD7mWEM3SAxn6Swnmfq2CRLlxy4fHbWrq7gDLqZ+NZ+wn0tlBI59LqOqEiUk3m0ziCK205hfh1PxxixLx+ktLCGuDG/UvZ4qScz6NUGpiGgRFvA58WxcxzXyDDlS2cwDIPq2VOokRbKp4/jHD+I5Aug7JhADrWB6rxt72DUawiShODtgGIN06yDrwOtbT8z8WUGI22Iosh0ev32WKOyusyc5GNHYoXX2r/FzNQJ+gP+pqFeuUB9+iKGZiDoZYx8EnngwJb3zCgXEWIDCKUs6t5vIQ09geRvQT79ZYT1i5jhnQjhf98sxP/hq1Tf+1uqp9/ALGYwinmq59/BNEAKtaIbDrRsBpJnUVp70KMV0DQQBESbA1MUaKwtY2oi+tn3MCUFPV3E5m+ltrSE7Pcj++8/E1JUFLwH9pED3LtG8Rw4SPrsNezhANVEmsD+UeSAl8ytZQAqyRyyQ0Wr1KlkitSX0+gNg5VL8xiGQf8zo3hbN1ut2N129v3G1vfqQegdaaN3pO2+a5aX1omvp+jr78Lre3BTYwsLC4vPE9Ysy19zTNPENM3bhdJra0mxtOgHAAAgAElEQVRq1RodnS0PNQZpO7whF+0DMToGWuja+FIUJZFYb5TEdBzFrlJOl1k5P0c1X6Z8qoDZqDPwzE78HSH6v7aP1M0V2g8OUF1L0SjVECSB2Vfebc6JrFZBEGj98kHAxDnQh2i3gyBiHx3HHg2hFYoYhoFr/2EwTcxijsbKAnIgjOBoNikIoojgb9m0dzncibjnBfR0nOrqX2MU8ujAy6/8W8rqAi6jj+M//FsGQi13xhoZfQw99pvUzr2JzeFmsGcXoiwgtfTRWJqnUZcxkinktl6k2NY0cH1lnurlMwiyguPg15EcLvRcBjOzjBi/DKYBqRuUj/0Yw7SjtPcg9exHXI3TWJ2DfAHB1075/HuILi+1yWuIHg+C3pwNKdgcyK0xjEYNUZKQe0aoL85Qu34Zs96gkc7gGByhcOIEyo40kmrD/6Uvb/EM+wCj3iDx9km0QpHg0aN4x4YoL65TWkogBgP0fe+reAd3kJtZZe3kNQQTAsNd1PMVAkMBli/Mkby5wtrVJSSHnY59vaTnE1sE2adJsVDi9Z8fBwQW59d4+TesCgkLC4t/mTyQIBOauYR/Z5pmFmuW5WdGtVrj5z99i0w2x7PPPYmqqvz0R2+iaTr7D46xd/+9zS4bDY0rZ2aoFquMPz6Ay7O16L9zuBVP0L1hdbHZbqBlqIXJtydxBp1IhFm6OE+jXMc0YPb4TfZ87zA9z4zT88w4ALV8C4krs8RPTxIY7CB98Sbe9lCzY88wcPX2YDY01FiE6lqS3NkraL0dVGbnMep1PONjeEeH8H/zd9HWV5DDMUT13rYbmq4zXauzwx1Ebh9Cd6aZzsUpOxaaRq7iNNPpdYYibRz/4d8ynV5nINSCAOixHVSuX0TeMYF9fC+Caqd66QSC6EBT2hBcO6ivLuPwbhYeenINQVEwa2XMxCz5mSWqN64iR2IEOw4gLJ3GDI+hFRvUpi5QX5lH8kXQajJSbBijUaN49RpaIY/iD+DoH0LPpvC8+B1EpxsxEEEQBOzDe28/p62rH8EwqSyvUJmco7r8NkokgqSomIbeFIH3eo+KJRr5AorXTWUljm/XMNkbc7j7u2mUKzhikS1WKbaAh9j+ZuB7fXKdaq6CzWlDBxrlGuG+lm2e6ZOTyxZRFBmna3Nn70ZEHkM3EUUrpWlhYfEvlwcSZKZpmoIg/BOwb+PYmmX5GRBfTxKPp/B63Vy5NMmu8RF0XUdRZMrl6qa1uUyRyatzxFqDdPe1sb6U5sb5ORRFQrWr7DsyvOX6giAQiG1vIxfuChP4XgBBEsgsponfXEN2qOTXsnQf7NtS7zP9k1Okp1YwyiUUp43g+ACulgCKx4k90iw89+4aoTQ9Ty3RHKrc2BAMpbkVarky9rYYasCPtGMArViiFk+ihgIIH4oEarrOExt1YS6jj592/wG1uWW65ADORjdlZR6X0cdAqAWjVkcwTYYid9JimunAdLZRX4lj68qhxhwIoXZyt36JlqriClWwNxpb3hO1ZxA9m8J55b8gnr6BXWyhEvw96guzaL/3p4hmhdyZyzRmr6MXS5hqnsbqGqYpQCiMXq9SW000RaFcBkScB4+idNy77kqQZdTeITInzoNsQy+VcfUOYotFUSJRRPu9u2tlrwd7a4xaIklgb1O824Jeatk8iseJtJFOruYrlNIlgv1teHvuCK4dz4wiO1VSs3F8HWH6ntmJzbXVCuWTMj21yHtvXURWZF546TCBu+w1XG4nL379KRLxNN09909tWlhYWHyeeZiU5QlBEA6Ypnn6U9uNxSZC4QA+n4dCocT+A+O0tUd57NAExWKZ3XtGNq19762L5LJFpq4v4A96sTtUZFlC0ww8/ofzJwMoZctIsojdbUdSJKLDrbSPdyIqEn1HNj93o1QlM7NOo1DFMEU6nt2Huz2CKG9NqTo622gUSmCaeIZ6SZTKaJUGajBAPZVFDfjRShUSb7yPUa/j6uvGv+fOHMTy/DKXrl+5XRdWEqeZF2W6+8cxalXeOvhdFmUYCLWg54ukj53ANAw846OoAT+Kz4Nod2DqejMVqjRFSfHqDbSGSC1Th6UUws0lbL3DyM47gkfyBnDv3Q9v3QBDQzVXELU8Yvcgsj9E+eYNGpk89bKA6Ywg6CKm4sXWFkWQZRSnh/pqHKNcRO0dwfPcNxFdd2qijHqd/PmLmNUqnr0TyB4PpqaTef8U1XgSLZFEiUZQAiGcQyNkzl6iduIC/n3jONq3Rq5EWSL0+ASNUhVlQ0iF9gzj6mpBcTmQHXa0WoPUjSWCw12U4jlMw4SN2+bwuxj8ysQj6X40DINqpY7DadtyrfWVFIoiU63WyWWLmwQZQDQWuu9A8LvJZnO89os3EUSR558/itdr2ShaWFh8PngYQXYU+NeCIMwDJe4MFx//VHZmgcvl5NvfeZFGQ8PhaH6hjk9sjXQB2Owq9WoD1aYgyRK+gJtnv3WARkMjsk3NT3I5w+yVZZxuG+V8ldbeCB1DzS/19ek4N96ZRGvo7Pn6BL6Il2BXmHK6SN8Tg0jKZqElKhLBoQ5Kqxk87SGQJG79+CTutiCtBwY32SeIqoJ/ojkUulGs4Nk1hiApTTf/1hgARq2G0agj2m3kJuco5sqk29yMdO4gffYyoUwBe72TqmMRl9HH6K695E6dRQpFUb1+hlxNAVrNZDAbGlq9wdpP3sTWEsW/dwxX/wCyz4+gKCjBpteWGo0iAILNTr1kkDpxDhQb0eeeQtTy4Io0C/VdEdgwd6XjIMGX/x2i24OgKAiKSmVuDrOhIdhsKH0DTT+vrg5s3b00cgUK03Moskzgpe8guT2Yuo7e0JDsNurxBPWVleZ1pmfxTIyjlUrUUynce/ZQXYoSfPJx7B3t1HN5SnNL2IJ+CtdubivIANZPXqMwv4arLUzrk+MIkogjGiS/mGDlF+dxtwZxtwRZuzBLpVRl7vh1dhzZibgx5NvQDbIrWRSHgif88cSNYRi896vLLM6u0zfUzsGnRzc9PjLWSyqRIxIL0NL+ycYk3bo1QyaTxTBN5uYWGB8f/eiTLCwsLH4NeBhB9uKntguLeyLLMvI97A3u5vAz46wuJfH63bg36sUCke3TkYZhcPa1a8iqxPG/O8OupwZJr+QIdwSwu2zk1vPkUwXWbqyhVRs8/ftHGDq6857PXYzn0CWZ4PgOuh4fYurHJzF0nfTUCoGBdhzBrV/k1XSepTfOoTca+AY68fd3IG+Y2yp+L56RASor61SSBb5/83+hMjeHy+jjb3x/SHl6iT/xfoN8Wzv7nz5C8vwkxbUK5bML+FeLtH35ILagD1ssguz10FhPInndiLJMPZXBvaMDNRbbtB/P+C4kt4fi9CxrP3sHxeOmOLtA9L99A1bONEXYD18FUWz+t5xsjj26K9pja+/AMTSCaejIThdqSytKaxu21ih6vkjx+iT2niH0ahVTNzA0jczxUzTSWdw7B7HFws0aNU1DDjZFtOxyYYtGqa2tI7q9pC9OYY/nKc0uUZicwxby0vLlJ7a/zw2N4sI6joif8moKva41o5nTayQml3D43WSmV+l7YS+Z1Sw+n4vcYopavowj0IzcLV5aYu7cHKIoMvHSbjxhD/VKHdkmb6k/q1cblAtVvCHXpsdq1QZLs+tEWwPM3lxh7xPDyHdFTwMhLy/95tP3/Hw9DKIo8v77p7HZFJ5//ugjuaaFhYXFZ8EDCzLTNOe3c+oH5h/5riweGrvDxo6B9gdaKwgCLr+TbKKAO+iiWqrj9juRNzym2ne2ceVX1/C3+pFUmVKmvO0YJWh2gc4dv4lsV8gupogMlUjNJyksJIgMt99OlX2Yer6MXm9QWs2Qm0+Sm1mn5/n9SG57swB/uA9XXzeTP/o5FeZupycLe/rwlDW0WgNXQ2XxF6dIX5pCcaoYlSpapUppJYEt6ENyOgl/+QhGvUH63BW0QhlXb9f274kk4RroQ/L5Ka9mqcUTeHvCiBfOgKFhLp4k+dZbyJEu/KO96IIHLZnFFvTdblzQqg28hw9DvYYpyGROX4TZVZSgj0Y2TyOZQJJE1FAAyelEL5aop9Iofj+V2QXcQ/0Ev/QMpqYjb6TaBFnCf+gA9USaxDunMPUGSz96A71UxT3QhRr04RravgZNkEQCozvIXJvDN9iFpMpM/eQymCaltQwYJo6gG9XjJDbWxdrleZxhz6Z7Vi1VEWURQzNoVBrMXVri5qlZfBEP+14cwwSun56lVq4TX85Qr2n07epg/PCdLlW7Q6VvpIOZG8uM7O7ZJMYeNdlMlkOH9lMuV2576FlYWFh8HrCc+r9AFHMVpi4s4Am62P/8TnKJIg73PmrlGu6AC3kjFenyO/nSHz7FtTdv4A668EbvPT9eEATcES+55RQ2rwO9ruGM+HBH/DhjPmTb9j5prtYQ7o4IpXgOdySAoWlUyxW+8vffv12sf/yHf8vjL3wZ59/8v5SlGVxGHzt7+qnYAsz+9CTaehGtUMLb00olkcEeDZFfSlMzphHdHvw9zSiYqCo4+3pZeucShbcu03l0N/bANuk3w8Dm0Ih9+TB6rYGrqxVSzfRkwztKOWNiJGYQbSq5a9MY9Qae/k5Ce0fIXr5F4eYMkt1G7NlD1NYTYJrUCyUyV27i7G6nnikje92IgoqgKsg2W7PoPp7Eu6uZWpOcW+v9BEHAFCUKc+vUMjlMoFYso12dpue7L26JVJmmyfqZKbLTK4THuun7zlEEQaCSKxG/skB+LYsz6mXomyP4uyNIqkLb7h5kl53p96e49tplRp4dQ7ErdE80BazdacPf5ufqe9M4vQ7WZhMU0iXy2TIzF5epVmvkUkV6d3UQX0wB/Zv2f+DITvYeHkaS7u/+/0np6+9lenqWUDhINPrJ0p8WFhYWnyWWU/8XAMMwmL2xwrk3J5ElERMIhD3EujcKpUOuLef4W/wc/u3HH+j6PUdGyC6lsHsdOHxOwv2tlNNFOvbfe6STZFOIPbGLTKcH93wBZ8jHqljdVKz/gW3Fe7/3d7dtK0RRRFAVJKcT2QOaQ8Xb20rvb32ZeqnG4psXUb1OcrdW8PfEMDSdxPVFZl8/i1GqEehvpbiS3iLIyskstn/8LtLqGZzbpCdLMzmM67OUkznKvzpNI5kmMNZPLd0ce1RLpJCcDhr5EpnLt7DHgrj6d1B+9wzu4X6Kt+ZRXQ5c3R3o1RpGQ0N2OvA/vh8MY0sn6YcpL8exd7ejREJgmthaYpimSCGRx72awtV6p+hdq9TJ3FrCGfGRvDJPcKQbQRLIzqxjC/mozyXxup2kZuKEBu50LiZnkxRSZebOLeIMeeg/1I9pQutwKzanDVES6d7Vzs/++G0QBSZPz7FjohNBBJtNZcdYB4IAuw5vf98/bTEG0N3dyfd/8D0kSUJRPr5psoWFhcVnjeXU/wVgeTbBmTdvsDIbR1EVOndEUWwPNVf+vpTSRaaO3cREYOTZUboOD5Nfz7F4aZFgd5hI79bxTndbVzj1Xl5p/yP6/JFNJq4DoWahuixJm2wrHGEfwZ1d1AoVWvb0oXqaUSXJbsMR8lLLlYju7qVerDL1y4ssHL9OpC9G/NoipiDQ8fTmPpT09Crr755gePk0oDcL9stJcEeboswdxT8Wxh4LsvLORWSXk1ylDqJIaKPbNTAxQvrCNQxTID+9TGFmhbZnD+LfW6WymiB0YALfrn5K04t4Rvpvd28KggAbYqyeL2FqOrbg1oikPRogP7WA4nYSeXyclWMXmPnHY0geN9mpFSb+x+8gO23odY3SegbF5aCSyOPb0XK7QN8Z8YIgYPO7UN1O7IHNQtzX5uf035/BFXCyfG0ZX1uAU6+cZ+HaKl2jbRz+zf3EesK0j7TijbjJJPIcaPNz5Jt7MAyTUKvv12L8kd3+6K05LCwsLD5tLKf+LwCSJCIArd1hOnqjjB7oxRvcGhW7F+nVLJMnZvBHvQwd6t2UIovPxDn/o/PUijUinUEK8Ty+Fh+Tb15HkATSS2kUh0qtXiej1hiMtW8daSTNcOyt0xyc2LXJxPXDqbgPyK9mWLi2hiAIhEZ11I2fyzaFlkMjNMp1PC1+cgtJ6oUKvo4gyel15HAQe0eU7HIGT0sAPbdOVXdRTuQxbEFK9iFctUmEzsea3ZQbNCp19FoDRyxEaGKA5PkpghNDtB0ZR1Sav0K2sJ/WZw+TOHWVwuzy7XNDj++mkS0gu11IdhXnPbohq8ksK2+cwTRNoo+NoQY8FObWcLYEccaCOFsjtL9wuGnVIUnUKxqC3U6jVEGr1DExAVg9O0VmehVBEuk5uhtX7E6HbW41R71hgt2GrztM20TPpj20DLUy8uWdVHIVQl1hsms5KoUaWl2jUqySXs0RaPUxcriPxetrjB7uR5JEgi2+B/4sWVhYWFhsz8MU9X9r438tp/7PGa3dYQ6/OI7W0Ojoiz10UfX147eYvbBIeiVLo64xfrRpvWGaJpPHb+GN+ZhZmKVlsIVIb7TpNu+zU1jPI8oSF1+7yL+v/G/U7PPbjjSyVbvpcPjQG9qWaNh25NeyTfd2zaCYLOAKeTB0g9RCkul3bmCa0LV/B9HeKI6AG0mV6XpiJ/HrS5g6qHYZ80+/hrhwEt0+Qm7nf8YR8ZHp+q84RvxIgbamxQVQK1SY/sV5tFqD1n39RIY78fS0IsoSgiCg1RqU1zOoXhd2v4vg7gEUrwvZacce9mPoBqLzjgnrvagXKxiagajIVDN5Updn0Gp1sjeX6Pn6IWSHDcXdjASahoG7LUxoVx+NYon+734JxdmMCjXKdURZxtB1qoUqK5cu4Y75aN3VRWYhQTlfplHVSM+nqWQreKJ30npaXWf0uTH0uoYr4KJaqrE6tU61UifcEaSlr1mT1TfeSd9450N9hiwsLCws7s/HyltZTv2fLwRBoGObtOGD4vI6Sa9k8YbdrE7FbwsyQRAItgdIzicZPDLI3q9PICkSmq4jjQcZbLQjCAKvvf4+Nfv8tiONbqXW8KWbQqJl5MG6REO9MTILKQRJwt/e9BGbevcm8+fnyC6m6N7bTSlZRBnrZOirezHN5oxOf3cEva7h9TTgH08hoOOpXqeRXmP4xa9t8VcDqOXLNCo1FKeN4lqayHA7kiJTL1VZen+S5NU5VI8du8dJ39cOojht+Id7gKbtxOJbl6gkc4THevAPdlDPl1HddiSbssmfzdUWxtPbRjWdR3I4SFyZRRRFfP1tCB8aGSSIIu1H9+Dt72D96gK55Sze7lYUh0rbwUFS1xewBzys31pFK9UprGXxtQfp3NdLajoO/qbpq+q6M5oqvZLh8utXSa/maBloYdfRYdxBF0/9d4ce6rNiYWFhYfHxeJguSzvwb4AnARM4BvyfpmlW73uixeeesaODFDIlCqkivXs320YMPzVIOdOB3eu4Lcbu1Ib18Q9P/x8c2jeO/fQOqursltqw4Wg7PKRWdPpdjH/zwO1j0zRJLaYI90QoZ0vY3HY6NroDBVFEMAwoxnGHN8xdTRM6H8NcOEHJsZPWg3u3FWMArogPf0+MarZIbFf37Z9n5+IU4xmK61kcDTdapU4t3xwb9QH1UpVyIovqdrB47DLJa/NUUnmq6QKxfQN0HZ1A3oicSaqCvTVM/Poy1/7ub0AUkESB1mcmkGzNNYamo1XrKC47kiJTTpfQynVquTKFlRTBvlZsHgdtB5ulncVMiURyBdkuozhUXGEvz/yHr1NKFlBdNmx3CbLMSpZqsc76rTiIIooqsf+liYe7MRYWFhYWH5uHiZD9OVAA/svG8W8DfwF851Fv6teNSqXCa6+9TrFY5Pnnv0I4/MVqp5cVmSd/az+NmoZq39y5JkgCNXcNt9o0Et1cGzbN66+d4uDYMCf+1d9/ZG3Yx0UQBPoP9TN/fp4939hH157uO8XlhgF/9vVmof6HuieFchK3K4L7PoXokirTfWSrKa7W0MgtpnG2BKmk86AoLJ+ZZvCr/tuRL9XjxNsZYe7NizSqDdbOzeBuDWBUa1QSWZaOXcPVFiI01I4oiVSSeZbfu052dh1TEIjt3oG4MdpJb+jMvnGBSrJAaLiDtn39uKJekpPLiIp028j1bjr29RHoiqC6bKgb3mKiJOKJba35aumLsnx9FbvXgd2p4vQ9/LitR8XCwhKFQpG+vh6rQN/CwuILw8MIsiHTNHffdfymIAgXH/WGfh1ZXl5mcXEJp9PB5ctXOHr0mUdy3Xy+wLFjJ7DbbDx55HFU9f51Rv+cCIJwW4zpmt5MA8oCv//z3+dC4gIT0Qn+5Pk/2VQbplZ7aLcHqJbrD1Qb9kmI9seI9se2PlBONsWYoW3bPfmw5FbS5JazrF+eQ3DaKZdreNsjOMMe6qUqpmEibOhNURJpP7KL7HKapePXKWfL1Es17F4HhZU0miZQWE2jOFX8PTG83S3oDR1fbyvVXJn2w6OEhpu1Wo1ylXKygDPkITu7Ttu+fnxdUYZe9iCIwm3BdTeiJOJp8T/Q63IFXDz1/cMMHO6nmC7RPd7x0O/N/VhdjVMslOnuaUdV721HkUik+OlPfoluGMTXkxz90pOPdB8WFhYWv648jCA7LwjC46ZpngAQBOEx4Pins61fL4LBIA6HnVqtTmfnoytmvnz5KkuLKzQaDTq7OhgY2N5x/deJYrbMsVcvoDUMBp5p4+z6eRAMzq6dJ1VOE3aGePf7f81MJo4jYVLKVOjZ9dFf7rqmc/nYLbKJAuNPDRKMbW9Gq2s6WkPH5riHeDWMpujabvbkh7onH4Z6ucat4zdZPD2NJ+whu5BAK9dQHCp1j5OAz0l0Z9e2A9Uju3Yw/fpFkBVkn5u2J4ZRHAqNUg1MkDY6NQVRJLx3iOJSguHvPU3vc/tuX8PmcRDobSG3kKBtX9+mnz8qcokCl96cbDYiKBJ9E9tPNdA0nZNvXCG+kuHg0Z20d99f2KaSGX7647fQNJ2do/0cefrAPdcahoFpmoiigKZrn+j1WFhYWHyeeBhB9hjwA0EQFjaOu4DrgiBc5l/4kPFgMMjv/M5v02g08Hrv7Vr/sIRCQXRdR5JlPJ6tKadfNzRd58S1G6wvp/EFPazO1NAr3YiOeYxKN5WCwls/O0OlVOfx58cIjj64HUImXmDx5hoOl43J07Mc+vruLWuqpRrvvXqRcr7K7qeH6Bz8UETsPunJTSLtY7B8eZHkTJz0YhrVZaN1dzeltRyKU8HmcdLz5CiSuv2vk787QnR3L2BSSRdwhL20Pz5MPV9GlETcbc3GhOUzt3C1BlD9TmITm81VBVGk89AwnYe2DpevV+rUSzWcQddDp4O1uoakNDtGa+U6um4gKxLlXOWe52QSeRZn43j9Tq6cnflIQaZpOoZpoKgytVr9vmtjsQjPPfc02VyOkRHL5tDCwuKLw8MIshc+tV18DnA4HDgcjy4aATA0NEAgEEBRZILBwEef8CHK5Qp2u+2R12RBM1KhNXTUjdFHdxfrS+5Ovnvu2/z+82OM3fqPnJteYm9HJ6WlNPHlLE6vneM/u8Teo8O0dYcfyCzU6bFjd6hUizW6d7ZuuyafLlHMVnD5HCzdXN8qyB5xevJuVKcNWZGJDrXSMdFN1/4+TF0nt5zGE/NvEmOGbiCIwu3XrbodDHx1L9m5OJGdnXjbmq76Dv9mLzhHwEVxPYtsU28X+38U9Uqdq6+ep1aq0TraQfeBB4+yLlxb4eb7M/hbvEx8ZZRQu5/eiU5qxRp9e7aPjgF4/C68fieFXIXxA333XPcB0ViIp58+SCaTZ3TX4Eeu7/8cRIotLCwsHjUPNVz809zIFxFBEIjFPl4K7dzZy5w9c5lYS5gXv3r0kY6JqVXrvP7qSaaT63z16YMMjHRtKtbXXYt4xny4/U7+6g8PkyrVyS8leP+1K8xfXcHhsuMJOzn+s4s88/I+ou0fLTadHjtHvr2PWrmOd5tRTgD+iIdAzEshXWLs0A4oxjdHvR5RenLb/YXcRIdbCfdE8LfdeT127+bi9+RcnNnjU7gjHgae2Xl7YHuov41gXyuNSh3DMLYV0a17+/B2hFHd9gdORdZLNWqlGja3jdxymnSLD0EU8bf5P1IIL1xdxh10kl7NUcqW8UU8DD/20WLI7lB57luPUavWcXs/uvhfEAQGhy2RZWFhYXE/Ht38HIvPlGvXbhIKB1hbTZDPFwmFHj7Cdi9SqRz/c/J/pWGf58/e7eHU4D9sNnKt9/CVJ/fi9jZFQ8RjY3Yth9vnYMd4O96Am3K+AmbTkuJBsTtV7M57R4ZUu8KT35jANHTEP395a2pSED5xetIwDDbGg6HVtWYar6Fz6RdXMDQDUxA3CbIPs3ZlGZvbRn4tSzlTwntXR+Ps+1Mkp9bwd4bof2ZkiygTJRFP68PdR2fQRbgvxo03rmKKAuvzKeweOzufHSXUdf9u4K6d7dw8MU2gxYvL/3BdlYoqo9wjRWthYWFh8fBY/6J+Ttmzd4z33ztLd08Hfv8nq2vTdH2TJUVGqNDYMHKtq3ObjFzvZV0xtLubXLpErD3A2MF+lmfi2J22+0bHFmfXOHv8Bm3dEfY/sVWgbIcgCAiV9PapSfjY6clCusTlt28Sn0vQ2h9l19PDXHztKqVcmXC7H9Mwmz5r9fsXmjuDLs78zUlcQTfyXRYhhm6QnF5DkCWWLszTdaAX+wNEwar5Cgvn51CdNjr3drN0fp71m2t0TnTTurM5hsrfGSLQHSG1mGbm5DS+tgDd+3cQuivrWCvXMXQDh+dON2bXaBstfRFkVfpU0t4WFhYWFg+OJcg+p4yODjE83I8kPdwYpA9zd23YB2ONRlo6HmjI9934gm6e+/bB28fDe3o+8rnPnbiJospMX19iYKSTQHirsNQ0nXKhhFsqI3pij7Rz8m7OvnaVyVOzaDUNWVWIz6co5cq4/E6KuQoDT/RTzVVpH7v/NIFGTadrfx+NWoNqrnWvEQAAACAASURBVILT5yS9lKaar2D3ubj2swu4w17SCynaRjvumb78gPmzs9x48xrFeJ7x5D6K8RzuiIf5s7PEhlsRRRFX0IWhGSxfXaJebRDcKNL/gGK6xJlXL2LoBmNHh4n2hNF1g8tvTxKfT7PzyX46BraxDLGwsLCw+Mx4aEEmCMLvAC8DOiAAPzZN8y8f9cYsPpqHFWMfjoTBZiPXD481+rSMXD+gsyfKjcvzeP0uXNtEi3Rd51c/eZ+Jq/8Bd2MKuh6/b+ekYRjcuDRPMV9mbG8fTveDm4rKqow35GJ9NoXL7yC2I0QpXSS1nKH/wA7aHlCwBLqCpBdT2N02HH4nxVSR67+8CoaJiYk96MUWcKE3dBIzcW4dn8LX6mfo6eFtpwVIskQhnsfhc5JZSBHqCZNfzRHqDd++Lw6vg46JTvKZEomZBDaPA2/Ui6EbrEyukVhIU6vUsTttpJYyRHvClLJlVqYTeEMups7MbyvIGnWNy6dvUa9r7H5sAMddUwgsLCwsLB4tHydC9rRpmt/74EAQhD8CLEH2a852kTBZkjbVhj1oNOxRMfHYIL1DHThdttvdnHdTrdTJr8wTqU8homMunkS4T+fk+nKaC+9PIikShm7w2DNjlAoV7E4bi7fWmb+5xuDuTtq6t0bU9j23k66RFhweO8EWH5IsMXJkgMtvTnLlnSlq5To7djc96CqFarP5IOLeJFZN0yTSG71dNyZKInpdA8MEAVILaWS3naVrq/jagpimicPjILOUppQp4Y1ujRD2PN5HeilNOVOie38vHbs7qZdq2DybxWa0L0Z8JoEn7GH02VF8MR/LN1a5fmwKraEhyiKKXaFzZ/OeOjx2fCE3+VTxnh2VS7NxJi8uIMoCLredXQf6t11nYWFhYfHJ+TiCzCYIwteARaADeLReEBaPBMM0SFfThOwhBEG4ZyRMFMVPPRpmGAbH3j7LwtwKjz8xQf9gcyakKIr4g+4PL74d+XK67PTt2UPyzUEi9ZsIH5GeVG0KgizSaOg43XbOHLvO9PUlfAE3hVQFj9fByV9d4xu/d2TL63R47HSNbBag1UKN1dkEgZiXW+cW2LG7k0qhyslXztOoNOjZ3cHAwWb3YDFd4sJrVxAlkZEnB7j+1g0K6RIun4NAVwhvxIPqthOfjiPbZCqFGqpToZwr4Qo4cfqcZFezzJ2bJ9AeoGt3J4IgICsy+7/7GFpNQ90ww3VsM9bIFXAx+uwok+9PE59L4It5N9KWJrIiMfr0MG1DLbfXK6rMYy/tpl6pb6oruxun24YgNevftotg3otyucLkjVt4fV76+ro/+gQLCwsLi48lyP4N8BvALmAJ+LePdEcWnxjDNO470ujuSBh8+tGwbKbArakFgiEfZ05dvS3Itm58s7Gr8MNX2fv4Tjj43gN1ToaiPp57+SC1ap2WjjD/8GdvEor6SKxmcDoclAoVQjHfpvqqTKJAuVAh2hHc0jVod9uItAdILmfp2dWsHauVajQqDWwuG7l44fba+GwCva5Trdd468+OEZ9OgGHiDbtp1HS693QT7Y+xdGWJ2bOzrN5cw9vqY+jJAXr29iDJElPvTWEYJgsX5gl3h3AFXOiazvW3brB4eYmBw/107uogs5zB5XfhiXg27Xfp2iqlVInsSpZwZ4iW/ij1WoOp03PMXVvBHXaj6wZunwPFpiArErJyb6EVaw/x3DcfQ9N1og/R/fn+e2eZvjWHaZq4f+NFYrEv1uxXCwsLi4/DQwsy0zTLwH/74FgQhP8I/KdHuSmLh+PD0bBUOb1lpFHEFf5M6sK2w+1xEgr7SSWzjIz28e7bp8lk8jzx5F5C4bu+6B+BsWs4dmd24+7HBrh4coqBsS7G9vaSz5QJRDy3BVkxV+adH52jUdPoGWll/9HNQ8RFSWTP86ObolPeqIeuXR3kkwUG7vLsCnUEWby2gqkZCAhUS3VSCyn87cPIqoRsk7G5bPQ91oe/zc/5Vy8SaA8Sn0nSd7Bv49pe1qfi2NwqykaHZnYly6WfX6JeaZBcSHH1zevIiow34mH/t/Ztim55Qi5WJleRVRm7244oicg2BV03KWcr/OSP32bx5jr1msYLv/8Ee740giTd/3MQ2mYQ+UchisLtZoUHMQW2sLCwsPh4Rf1/c/chMIElyP7Z2C4aZuruTSONTL2ZFrw7ElYqlbHbbZ+4S/NBUFWFr770NNVKjWw2x89/+g4Oh51zZy7z3JPDj3zu5AcMjnYxOHqnPsrxoQHcjZqGpukodoVysbbtNURRRHWot/3URFFk6PGtJqe+mJfD3zmAYZicfuUcK7fi7H1pgnB3iD3Pj2H//9u789i4z/vO4+/vzPDm8KZESrx0UDd1UrIl35YP+UwcJ06DNMm22RpZYLG7KBboFkYPbDfodlMsim27Rb1pemyTbtG4rmM7cWzHcZU4USzFtizJukVRtyjenCE557N/kJJIiTeH/A3JzwswwJn5zfP7kiNZHz7f3+95htxgUFRZxOIVi2i/2MGKHTfHWrlzJRX1FWQXZJOZk0n3tR76evrJzM0k3NFLqKsPl3TEYwlygtm4RHJYDUvWVBIsCxLI9JM72NbML86lt7uPy2dbab/STTQeJ9Tex5H3TlG3bglltyxL0tbSRTw+MCM21TC1c1cjZWUlFBYWsGhR6ZTGEBFZaKbSsux2zv3b6w/M7C9SWI9M0oizYcFSNvhubmlUHhx+d9wHH3zM/l98RFl5CU89/QiZmRPbpmc6MjICZGQESCaTZGVl0tfXy86TfwLvH0r5vpMTVVQeZPM9q+ls6WHVKBtpA4S7+3j/jcMkE0l2PLqBYMnIOwlcn9Xa9uRmwIhGYtTfsZy84uHH+wN+Njy8nmQ8OezOSn/AT2HFwIxU19VuPnj9IM45NjzUQGZuBucPXyQSjhDuCLPm/tXkFuXinONq0zUi4RiV9YsouKWNWbSogOzCHOobazn98SUun2khWJpLYXkBObfchXr1UjvvvHaAZDLJjnvXU7+uesI/y6Gys7No2Lh2Su8VEVmophLIvn7L4xdSUYhMzK1LV4w0G2ZmN7Y0KsvPvG2m49jRU5SWFXGttY2urh7Ky2dvFqOwKMgzn32USNsF8v7u0IzsOzlRZsaKdUth3djHXW1uI9TVh9/v4+LpFtaULBvz+JxgNnd+tpFkPHGj1TnSuUda5uK6aF8Ul0ziD/gxv4/ljcuoXF1J+8UOihYX3Ah5nVe6OfTOMQD6uvtYc9fNOyFjkRhH3jtFx9UecoNZrL1jGZ//rUeJ9EUpLMknt2D49WN94X6SiQT+gJ8jB0/RfPYiDVvqWVypWS4RkZk2lWvImm553J66cmQsIy1dUR7MGnE2zOez22bGrtu6rYGf7P0FtbVVFBdP/hqhKRly92QwmEcwf9WM7Ts5nlgsTrinj4KivAldS1dSUUgg4CeZdJRXl0zoHIEMP9wSuK6db6f9YidLVy8mv3jkWbYb56wqpnZjNf29UTLzM7lw7DLZeVnkBHPILcolHktw6sBZulp6SMaT+AK+gQsIhp2vg/MnrlK0OEjxoiDbHllP1igBEWBp3SJWb6yjs62b5nOXSLgEe9/5gM998eFhx504foZ9+z5kxYpadt21TdeJiYikwIQDmZn95ghPdwG/dM59lLqS5LpbZ8NGW7pirNmwkaxZU8+qVStm78L+W+6e9KI9eV08nuCd19/n2tVOlq+qYtcDG8d9T1F5kN1f2IFzjqycTGLROP6Ab1I/v/5QhA/f+gSfz2g518Y9z20f9npvdz+BTD+Zg21Pf8DPih3LuXzqKofeOUZPe4h4NEFxRSEbHlhDT1uIt775E5KJJOvvX0P9tloqVg4PtbmFOQNrssWTVK2pHDOMwUBbufGutfT3R+l8qZtQTy/VtcMXjHXO8fLLbxLw+Ql1h1m/YdW0t+4SEZHJzZA1Dv736uDjJ4D9wNfM7J+cc/8j1cUtZCPNho22dMVYs2GjmdW9C1Nw92Sq9PdGaG3porS8kHNNl9l5f8OEQuz1oHTxTAsH3jlKfmEudz+5adyQc535DL/fRywaJy8zQH84wi9/eBiXcCyuK+XsxxfJzM1g+xObyC24eW2XcwP/JWJJXNJhZkTCEfrDURLxBD6/H78PLp1p4cQHzWx9eB2lSwbuNC0qD3Lvs9tIxBIU3nJt2ViyszPZ8/RddHWGKF88/KL/SxevcvrkWa5cbmHbtgby8rQMoYhIKkwmkJUCW51zIQAz+z3gu8C9wC8BBbJpmOhsmFdLV0zKkPbkTO09OVV5wRzWbVrGmeMXady1btLttqZPLpGdm0V3e5jO1hCLJ9jCzMrNZPsTDXRd66G8upQP3/6EX7x6kGBxLm0XOyhaVEgk1E+4MzwskFWsKMclHbH+KP2hKBgsXVNJZSJJ67k2Iv1xqhuWcmJ/Mzn5WTQfuXQjkAHkF92+iOxE5AdzyQ/e/t7W1nb6evvIzc2hqKSQjIzbd1gQEZHJm0wgqwGiQx7HgFrnXJ+ZjbxmgEzIZGbDZmNLo2lJo/bkSMyMLXesYcsda6b0/mXrlnDgnaMUlORRVJY//huGKCgLUlA2MFPVeaWb3GAOHS09bHusgZ5rIUqriim6Zd0vn8/H0iEr7F8Xi8TY+PB6CkrySCaSnD92lUhvhIrlM7sIa0VFOevW19MfibBx09R+hiIicrvJBLLvAPvM7BUGLh9+EvgHM8sDPpmJ4tJFIpFI6XpdE93WaE7Mht0qjdqTM2Hp8kUsri7F57dpfSZr71rJ+WOXyQnm0BeKcPfnt4+5SGt/OELTxxcGtnhaV8n+Nw7T0dIz0Dr9zBbufnYryXiSrNzbW6gXz7Zw4UwLK9ZVUVZRNMLoE7e4opwvfvkZQj1hVqysm9ZYIiJy04QDmXPuD8zs+8DdDASyrznnDgy+/MWZKM5rzjl+/ON3OX78ONu3b6excdu0x5zMtkZpPxsGad2enCmBIXdPdrWFcM5RVDbxa7QAatcvYemaSgoXB+lqCdEf6ifU2QfAopqS21qpR39+muZPLhPI8JNXlENPey+5BdmEu/uIxxID17KNcDlbX2+En799iIysDK5caOPpL9077bsia2qWTuv9IiJyu8kuexEHkoBjoGU5r4XDYY4dO05lZQX79+9n69Ytk54VSfdtjaYlzduTM+3K+Tbe+/5BHLBrTwNLam8Pnz0dYeKxBMWLht+JaGZsuLue4/ubWNawlLYrXRz88XHA2PrQGpauvHl3YzKZ5Myhi5z8oJnCsiC7MvxsfnA1TYcvsXJLzZg3FgQCfjKzMugLRyguC2qJChGRNDWZZS/+I/AbwEsMzJD9vZm96Jz705kqzmu5ubnU1tbQ3NzMhg0bphTGprKt0Zwxz9uTAFcvt/PxgZNUVpWxfvPyYYGmuzNMEocB3e3h2wJZ+5UufvrqRySSjq33raZ2TeWw12vXL6F2/cBnfubQBYzB33SiiWHHxaMJIpEYvqwA509fZe8/f8CWB1Zz5xPjL9mRkRnggacb6WjtobxiltacExGRSZvMDNlXgTucc2EAM/sj4OfAtAOZmX0O+H1gLbBjSCvUUz6fj8ce20NfXx+5uZO/W20q2xqltXnanuzt7Sc7O3PEwP3+Tw4Tjyc4uP8ES2sWUVx6szVZs2IxbZe7cM5Ru6rytvf2hvqJxxIEsgJ0toWoHaOG6tUVxCNxzKCqfvjaX5nZGfgCPhLxBImkI5Dp5/iBZmrXTCzABwtzCRZO/M9vMpnkyOFj9PdHaNi4luzs7PHfJCIi0zKZQGbA0F/dE9y2NviUHQY+A/xlisZLGZ/PR17e2KuqX5eKbY3S1jxtT36w/wgHPzpBRUUZDz+2k0Dg5l+Jro4ezAeh7l7y8nPIueWC+ezcLHY+0jDq2IuqS6hdW0mkL8rKhqox68jIDLCqsW7U17fuXkt2XhbnT1wl0htjxTjjTce55ovs3fsLfD4fiUSSO3dO/9pJEREZ22QC2V8DvzCzlxkIYp8GvpWKIpxzR4G5E05GkKptjdLWPG1PHj96lvLyYq5cvkaop4+i4oEZsK7OEK//y0+J9EWoqq1g132byM6Z3GeWmZXBtgfG32T7cnMrZz+5RNuVLpYsK2fTPatuu+OyfnMNFbVlZGT6cQ5y8mfuz08g4MfMcMkkWdkzv/G8iIhM7i7L/2lm7wJ3MRDIvrKQt0yaqW2N0kYatSdPnTrDiROnaWhYR3V1au/w27hlNfv3HaJ22RKCBTfben29/cSiMXJys/H5jLz8mVmRvrM1xL43DnPio2YKinOJReNU1JRw4uA5esNRdj7aQHH5wMX4BSXDZ2qj0Ti9oX4KinJTeiPI0qpKnnrqYSLRKHV11SkbV0RERjduIDOzHgauNb7x1JDXnHNuQhvZmdnbwO0rXMILzrlXJjLG4DjPA88D1NTUTPRtKTXT2xp5Lo3ak+FwmJdeepXCgiCXLl7m17/6qykNH+sbVrJ6bd2wViXAoooSNm5dRWd7D1u2z9wCqAM/RkdBUR6Rvii5wRx6w1HarnSTlZPBT39wkMXVxazeVEthyc2FaDvbe/inv36bZNLReNdatu0afyZu4jUZ1VraQkRkVo0byJxzk1tgafRxHkrROC8CLwI0Nja6cQ6ftltnwoD5tZDrSNKoPXnkyDGOfnKcaCzGww/dNyOzjLeGMRi4dnAmg9h1haX57Hp8I90dYYpKgxSW5tPfGyUrN5OuthCt1zppOnGBS82tfPrf3HfjfXvf/JBPDjaRm59NUUn+bYHsyuVrxOMJlixdNLf/LIqILBCTXYdsQRlpJizg98/thVxHkkbtyVv1dIfYtm0zHR1d7LrrjrRt+4Z7+mi53E5JeSGFxZPbUmlxdSmLq0tvPM7MzuDhz99Bx7Uu/vz3v0sikSQeSxCPJwgEBhalzc7JZNGSEjrbemjYtnLYeBfOX+GN13+Cc0nuuX87a9Yun/43KCIiMyotApmZPcPA8hnlwOtm9pFz7lGPyxp1Jszn882f2bA0ak+OpHH7FmLxOIWFQVasWOZZHWNxzvHuDw7Q2REiJzeLJz9/D5mZ09t0Oys7g/IlJazfsYKuth4WVw1fvX/XAxspKMpjaU051cuGXwnQ19uPc0l8Pj+94b5p1SEiIrMjLQKZc+5l4GWv67jVaDNhMPJs2OXLl3nnnR+zaNEi7r//PjIypveP8qxIo/bkSAoLC9izZ7fXZYzJOUckEiM7J5NYNI5LpqaT7vf7ePzzu2i90klZRdGwOy8/OXyK4yeaaO/spLK6/MbMGUDd8io2d/YQi8VZt2HlSEOLiEiaSYtAlq4mOxP2/vv7SSQSHD9+grVr11BVNXNrRU3Jra1JSKv2pJdarrbR3tZJde0S8vImd0elz+fjvke3ceb4BaqWLU7pUhEFRXkUFN2+Dt7J4+cpLy/iWks74VAfhUU326QZGQG23zH6+mgiIpJ+FMjGMZnrwmpra/jZz35Ofn4ehYVptk3NaK1Js7RpT3qlpyfM66/+mEQizpLTi3n8qQeGvZ5IDGxdlJs7+or1pYsKKV00+meeSCTw+/2jvj5Z23asZf++I6xcVTNsuQ4REZmbFMhSaNOmTdTU1JCTk0NOzsysWzVlo7UmIW3ak15xySQumcQfCBCNxoa9FolE+cFre+ls72b7nRtZ3zD5FuAv9x3l2KGzrF5fS+OudeMeH48niEai5I4xU7dm/XJWr1uWtjc5iIjI5Mzhq9HTj5lRUlKSHmEsmYRQC7jB65mutyZ9gQXdmhxJQWGQ3Y/cxYYN9Tywe+ew17o6e2hv7aSwOMiJ402THjsajXHsUBPlFcUcP3KWSH90zOMjkSjff+UnfPc7b/HJodNjHqswJiIyf2iGbD5K8zsn01Ft3VJq6wYWQ+3s6Obq1VYqlyyiuKSQJVWLabnaxl33bJ30uBkZAWpXLOXsqYvUrqgkM2vsGz26OkO0t3ZRXFrAyePnWNewYkrfj4iIzC0KZPNRmt85mc5isRjff+1devv6KCwM8uzn9rDniXtIJpNTWt7EzLjrgY1svWM1OblZ485qFZcUsLR6EVcvt7Hrvk1T/TZERGSOUSCbD9J4Yde5Jpl0RGMxsrIyiUaiuMGWr8/n49LFq1y40EJ9fQ3FJRO/acPMyM0b/YaAoTIyAjz8+M4pB0AREZmbFMjmOrUnUyorK5NH9txD05nz1NfX3bgzMhzu4603fobPZzSfucDnvvDYjNahMCYisrAokM11ak+m3JIli1iyZPjPzucz/D4fsViMQMHktkaaiP7+CO/+aB+hcC8PPHgnpWXFKT+HiIikL/0aPtfo7slpSSaTXLx4hdbW9km9Lycnmz1P3svOe7by8CM378S8eqWVpjMXiMfj444RCvXS29s/4muXLl7l3LlL9PX1c/jQiUnVJiIic59myOaSabQnw+Ewx44do7i4mOXLF+5m04cOHeVn7+3H7/fzqU/vYfHiiQfYsvJiyspvzlxda2nn+6/+K7FYnM1b17Ljzo2jvvfihSu89cZ7+P0+9jxxH+WLSoa9XlxcSE5ONrFIjKVVFaOMIiIi85UC2Vwyjfbk3r17aWpqBhzPPfc5ysrKZqfmNNPZ2U0gECAWjdE3ymzVRMVicRLxBJmZGfT3RcY89tLFFnw+IxaL09rafnsgKynk2ef2EI/FKSgMTqsuERGZexTI0lkK75408+FcEjNb0AuKbtmygWg0SjA/n6rqymmNVVFZxs67t9DdHWbj5tVjHlu/qo5zzZcIBPxU14y8FVdubhosKCwiIp6w67f1z0WNjY3uwIEDXpcxM0ZrT460QfgE9PX1ceLESYqLi6ipqZnBwheuUKiX7u4Q5eXFZGSMvQCsiIgsPGb2S+dc40ivaYYsXaX47smcnBw2bRr9GieZumQyyY/efI9XXn6bwqIgm7eu47PPPXbbTGQ0GsXn8xEI6K+diIgMp38Z0oUWd52zOju6OX68ib6+fk6dbOJaSxubt6ylftWyG8ecP3+JN3+4l9ycbJ58+iGCwdQvnSEiInOXAlk60OKuc1qwII+qqgpOHG+iqKiQVWuW0dXVM+yYkyeayMrMpKcnREtLmwKZiIgMo0CWDrS465yWkZHBk596kLvubeSTIydJxOKsXbdy2DGrV6+gufkixcWFLF68MO9wFRGR0SmQeWEOtyevXbtGc/M5li2ro7S01Oty0kYgEKC8vIT77r9jxNeXVlXwpS9/Bp/Pp22RRETkNgpks20OtydjsRivvvoasVicw4cP86Uv/eqNvR5lfLqYX0RERqNf1WfbSO1JuNmeTNMwdpMBbkGvZSYiIpJq+pV9ps3h9uStMjIyePrpJzl37jx1dbVpOzuWTCYBZr01eH1NP4VVERGZLAWymTSH25OjKSsrS+ttl1pb23jttTcJBAI8+eQjFBUVjnn80U9OcLWllU2b1lNcPPaxY+ns7OIH338H5xyPPf4gxcVFUx5LREQWHrUsZ9Kcb0/OPadPnyUeTxAKhTl//uKYx1671sbevfs4c6qZvXt/Pq3znm06TygUojfcy5kzzdMaS0REFh4FslRKJiHUAte3o7renvQF5lx7cq6qq6vBZ0Z2dhZLllSMeWxWViYZGQH6IxHy8/Kmdd78YB6JeAKfz8fSpdPbI1NERBYe7WWZKinee1KmLhqNYmYT2k+ytbWd7q4eqqoryczMnNL5jh49wb+++95Am/SpR6mo0NpxIiJyO+1lORu0uGvamEywKisroaysZFrnO3fuAjm5OYTDvfT3909rLBERWZjUspwqtSdl0ObNDQQCfurqqqmsXOx1OSIiMgepZTkVak+KiIjIJI3VstQM2VTo7kkRERFJIQWy8dzamgS1J0VERCSldFH/WEZrTZrN6cVdRUREJL1ohmwso7UmQe1JERERSRkFsrGoNSkiIiKzQC3Lsag1OaecPXuecDhMff3yKS/yKiIi4gUFsvFoYdc54fLlq/zfv/tHXNJx/4N3c++9O70uSUREZMLUspR5oampmSOHj3P06EnOnD7rdTkiIiKTohky8UwikeDEiVP4/X5WrlyOz+cjEolw+vRZIpEIZsby5XUUFATHHaukpJhVq1cQjUZZvWblLFQvIiKSOgpk4pkjR47y7rs/xTB8j/tYuXI5+/bt58D+g3z44SE2b15PTW0Nzz33qXHHWrlyGc9+9ini8RgNDetmoXoREZHUUSATzzjnMDOccyQSCQBisTiBgB/nkgNr8U5wa694PE5xcSHl5aW6oF9EROYcBTLxzLp1awAI+AOsXLkcgJ07t1NQEGTr1k3k5GZTX79i3HGSySSvvfYm1661UVpSzLOffQq/3z/m8aFQiPz8fHw+XUYpIiLeUyATz2RkZLBpU8Ow5/Ly8tixY9ukxkkmk3S0d1JQEKSjs4t4PD5qIHPO8cMf/oimpmZWrlzGww8/iGk5ExER8ZimB2TOCwQC7H7oPoLBPHbvvpesrKxRj41EIpxtaqaycjGnTzcRi8VmsVIREZGRaYZM5oXly2tZvrx23OOys7PZunUTHx08ROO2LbreTERE0oICmcxryWSSd9/dy+nTTdx7792sXl3PHXduZ8cdjWpViohI2lDLUua1jo5Ojh07SWFhEfv2vX/jeYUxERFJJwpkMq8VFAQpKyultbWVVau0YKyIiKQntSxlXsvIyOCZZ56ir6+PYHD8Ff9FRES8oEAm815GRgYZGRlelyEiIjIqtSxFREREPKZAJiIiIuIxBTJJW9FolNbWVpLJpNeliIiIzChdQyYp19raSigUpqpqKYHA1P6IxWIxXn75e7S1tbN6dT27dz+Q4ipFRETShwKZpFRHRwcvvfQ9YrEoGzdu4N57757SOL29vbS3d1BaWkJTU3OKqxQREUkvalnKuMLhMJ2dnRM6tr8/QjweIysri56enimfs6CggC1bNhGNRqcc6kREaEa7tgAACq9JREFUROYKzZDJmNra2nj55e8Ri8XYvfsBVq2qH/P4iorF7Np1J21tbTQ2bp3yec2MO+/cwZ137pjyGCIiInOFApmMqb29g/7+frKzs7l06fK4gczM2LJl0yxVJyIiMj8okMmYqqurqK2tIRwO09Cw3utyRERE5iUFMhlTdnY2Tz31hNdliIiIzGu6qF9ERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMcUyEREREQ8lhaBzMy+YWbHzOxjM3vZzIq8rklERERktqRFIAPeAjY45zYCJ4Df9rgeERERkVmTFoHMOfemcy4++HAfUOVlPSIiIiKzKS0C2S1+HfjBaC+a2fNmdsDMDly7dm0WyxIRERGZGbO2Ur+ZvQ1UjPDSC865VwaPeQGIA98ebRzn3IvAiwCNjY1uBkoVERERmVWzFsiccw+N9bqZfQV4EtjtnFPQEhERkQUjLfayNLM9wG8B9znner2uZ66LxWIkk0mysrK8LkVEREQmIC0CGfBnQBbwlpkB7HPOfc3bkuamzs5OXnnle0QiER5//DGqqnR/hIiISLpLi0DmnFvpdQ3zxdWrVwmFQuTk5HDq1GkFMhERkTkgHe+ylGlYsmQJRUVFOOdYs2a11+WIiIjIBKTFDJmkTjAY5Atf+BWcc/j9fq/LERERkQlQIJuHfD5NfIqIiMwl+pdbRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMcUyEREREQ8pkAmIiIi4jEFMhERERGPKZCJiIiIeEyBTERERMRjCmQiIiIiHlMgExEREfGYApmIiIiIxxTIRERERDymQCYiIiLiMQUyEREREY8pkImIiIh4TIFMRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMcUyEREREQ8pkAmIiIi4jEFMhERERGPKZCJiIiIeEyBTERERMRjCmQiIiIiHlMgExEREfGYApmIiIiIxxTIRERERDymQCYiIiLiMQUyEREREY8pkImIiIh4TIFMRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMfSIpCZ2R+Y2cdm9pGZvWlmS7yuSURERGS2pEUgA77hnNvonNsMvAb8rtcFiYiIiMyWtAhkzrnuIQ/zAOdVLSIiIiKzLeB1AdeZ2deBLwNdwAMelyMiIiIya8y52ZmMMrO3gYoRXnrBOffKkON+G8h2zv3eKOM8Dzw/+HA1cDzVtQ5RBrTO4PjiPX3GC4M+5/lPn/H8Nx8+41rnXPlIL8xaIJsoM6sFXnfObUiDWg445xq9rkNmjj7jhUGf8/ynz3j+m++fcVpcQ2Zm9UMePg0c86oWERERkdmWLteQ/XczWw0kgWbgax7XIyIiIjJr0iKQOeee9bqGUbzodQEy4/QZLwz6nOc/fcbz37z+jNPuGjIRERGRhSYtriETERERWcgUyEZgZt8ysxYzO+x1LTJzzGyPmR03s1Nm9l+8rkdmjpl9zsyOmFnSzObtXVoLnZl9w8yODW7F97KZFXldk6TWfN5qUYFsZH8D7PG6CJk5ZuYH/hx4DFgHfMHM1nlblcygw8BngL1eFyIz6i1gg3NuI3AC+G2P65HUm7dbLSqQjcA5txdo97oOmVE7gFPOuTPOuSjw/4BPeVyTzBDn3FHn3EwuIi1pwDn3pnMuPvhwH1DlZT2SevN5q8W0uMtSxANLgfNDHl8A7vCoFhFJvV8H/tHrIiT15utWiwpkslDZCM/Nm9+0FqKJbs8mc9tEPmczewGIA9+ezdokNcb7jJ1zLwAvDG61+O+BEbdanGsUyGShugBUD3lcBVzyqBZJAefcQ17XIDNvvM/ZzL4CPAnsdlrXaU6axN/l7wCvM08Cma4hk4VqP1BvZsvMLBP4FeB7HtckItNgZnuA3wKeds71el2PpN583mpRC8OOwMz+AbifgZ3lrwK/55z7K0+LkpQzs8eBPwH8wLecc1/3uCSZIWb2DPCnQDnQCXzknHvU26ok1czsFJAFtA0+tc85p6345hEzewkYttWic+6it1WlhgKZiIiIiMfUshQRERHxmAKZiIiIiMcUyEREREQ8pkAmIiIi4jEFMhERERGPKZCJiIiIeEyBTERERMRjCmQiklJmFvK6hlQY+n2k4nsyszoz6zOzj6Y71hjnyDGzj8wsamZlM3UeEUk9BTIRWZBswGz/P/C0c27zTA3unOsbHF/7sorMMQpkIjIjzOw3zezw4H//acjzv2Nmx8zsLTP7BzP7z1Mcv25wnL81s4/N7Ltmljvk9X8xs1+a2REze37Ie46a2f8GPgCqRzpunPOONO72wRqyzSxv8LUNE6z/m4M/o2+b2UNm9p6ZnTSzHaOdb/D5PDN73cwODr7/81P5OYpIetDWSSKSUoPtvfuAvwHuBAz4BfCrDOwb+k1gJxBgIBT9pXPuj6dwnjqgCbjbOfeemX0L+OT6WGZW4pxrN7McBjaTvw8IAmeAXc65faMd55xrM7OQcy7/+vc05OvRjv9vQDaQA1xwzv3hCPW+5pzbMOTxKWALcGRwrIPAVxnYNPnXnHOfHuN8zwJ7nHO/MTheoXOua/Drs0Cjc651sj9XEfGGZshEZCbcDbzsnAs750LAPwP3DD7/ymBrrQd49fobzGy5mf2VmX138HHe4OzX/zGzL45ynvPOufcGv/77wfGv+w9mdhDYB1QD9YPPN18PY+McN5rRjv+vwMNAI/A/xhnjuibn3CHnXJKBUPYjN/Bb8iGgbpzzHQIeMrM/MrN7rocxEZmbFMhEZCbYJJ/HOXfGOffVIU99Bvju4AzQ06O9baTHZnY/8BCw0zm3CfiQgdkrgPCNYsY+7vbixz6+BMhnYBZu1DFuERnydXLI4yQQGOt8zrkTwDYGgtkfmtnvTvCcIpKGFMhEZCbsBT5tZrlmlgc8A/wE+Cnw1OC1VvnAE2OMUQWcH/w6McoxNWa2c/DrLwyOD1AIdDjnes1sDQOt05FM9LiJHP8i8DvAt4E/GmeciRr1fGa2BOh1zv098MfA1hSdU0Q8EPC6ABGZf5xzH5jZ3wDvDz71TefchwBm9j0GrpVqBg4Ao7XaLjAQyj5i9F8ejwJfMbO/BE4CfzH4/BvA18zsY+A4A+2+kUz0uDGPN7MvA3Hn3HfMzA/8zMwedM69M8544xmrvgbgG2aWBGLAv5vmuUTEQ7qoX0RmlZnlO+dCg3dE7gWeHwxwpcDXGbgO65vA/wL+DOgHfuqc+/Yt49Qx5CL5dDeb9eqifpG5RzNkIjLbXjSzdQxcC/W3zrkPAJxzbcDXbjn212a7uBmUAArN7KOZWots8E7MnwMZDFyHJiJzhGbIRERERDymi/pFREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMf+P1ETRXrxw/TYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXxV5b3v8c+zM5MEEjKATElAZEwMJMEwD1pAUcQida6CwnG69Z6eg6f1drCt3mr1eqy2pz22Clat9FjQIlBLtVAQQRMgKDMCYRAUQghkhCT7uX/snW0SdsIOGfZO8n2/Xrwga6291m8vdsiP3/Os32OstYiIiIiI/zj8HYCIiIhIZ6eETERERMTPlJCJiIiI+JkSMhERERE/U0ImIiIi4mdKyERERET8TAmZiIiIiJ8pIRORDssY87AxJtcYc84Ys7jevvuMMZ8bY0qMMe8ZY3rV2meMMU8bY065f/3CGGNq7Z9ijNlijDlrjDlgjFnQhm9LRDogJWQi0pEdA54AXqm90RgzEfi/wI1Ad+Ag8GatQxYAs4ArgTTgeuBf3K8NAd4G/hvoBtwCPGeMubI134iIdGxKyESkw7LWLrPWvgOcqrfrBuAta+0Oa+154GfABGPMAPf+u4H/Z609aq39Avh/wD3ufd2BrsBr1iUH2AUMbeW3IyIdmBIyEemMjPtX7a8Bhrt/HwZsq7V/m3sb1tqvcFXT5hpjgowxo4Ek4MNWjVhEOjQlZCLSGa0CvmWMSTPGRAA/AizQxb0/CjhT6/gzQFSteWRvul9zDlgP/B9r7ZE2iVxEOiQlZCLS6VhrPwB+DCwFDgH5QDFw1H1ICa5hyRpdgRJrrTXGDAb+BHwbCMVVOXvUGDOjbaIXkY5ICZmIdErW2l9bawdaaxNxJWbBwHb37h24JvTXuNK9DVzDmnustX+z1jqttXuAlcC1bRS6iHRASshEpMMyxgQbY8KBICDIGBNes80YM9zd3qIf8BLwS2vtafdL/wB81xjT290O49+Axe59W4GB7tYXxv0gwPXUnXMmItIkxlrr7xhERFqFMeZxXEOTtf0EeB5YBwzANVS5CPiBtbba/ToDPA3c537N74H/sO5/MI0x38I1hywJ1/yyN4DvW2udrfl+RKTjUkImIiIi4mcashQRERHxMyVkIiIiIn6mhExERETEz5SQiYiIiPiZEjIRERERP1NCJiIiIuJnSshERERE/EwJmYi0KGNMSRteq9oYk2eM2WGM2WaM+a4xxlFr/0eNvDbGGPNg20R6wbWTjTHlxpi8Wl9vv9jrfDhvhPt+nDfGxDc/UhFpK0rIRKQ9K7fWpltrhwHfAK6jVmd+a+2YRl4bA/glIXPbb61Nb8kTWmvL3ec81pLnFZHWp4RMRFqFu1q13f3rf9fa/kNjzG5jzN+NMW8aY/69Ja5nrT0BLAAedi995KnWGWMijTEr3VW07caYW4CngAHuitIz7uPeMcZsdlfcFri3JRtjdhljfufevtoYE+He921jzKfu875W6z3eaYz5xH3u/zbGBPn6Powx/Y0xW40xWe5r7zbGvOq+zp+NMV0au7aItE/B/g5ARDoeY0wGMBe4CjDAx8aYf+Ja5Hs2MALXvz9bgM0tdV1r7QH3kGUi8FWtXdOBY9baGe74ugEfA8PrVanmWWsL3QlXjjFmqXv7QOA2a+18Y8z/ALONMVuB/wOMtdYWGGO6u889BLjFvb3SGPNfwB24FixvlDFmELAEmGutzTPGJAODgHuttRuMMa8ADxpj/urt2iLSfikhE5HWMA5421pbCmCMWQaMx1WV/4u1tty9/d2aFxhj+uNKMrpZa282xkQC/wWcB9Zaa9/w8drGy7bPgGeNMU8DK6y1640xsV6O+44x5ib3n/viSsS+BA5aa/Pc2zcDyUAs8GdrbQGAtbbQvf9qIANXQgcQAZzwIe4E4C/AbGvtjlrbj1hrN7j//DrwHeBcA9cWkXZKQ5Yi0hq8JUWNbcdae8Bae2+tTd/ElXTMB2b6dFFXUldNvQTIWrsXV5L0GfBzY8yPvLx2EnANMNpaeyWwFQh37z5X69BqXP+ZNYD1FgbwqntuW7q1dpC19nEfwj8DHAHG1tte/xq2kWuLSDulhExEWsM6YJYxpou70nUTsB74ELjBGBNujIkCZjRyjj64EhRwJUGNMsYkAL8FfmWttfX29QLKrLWvA88CI4FiILrWYd2A09baMmPMYCD7Ipf8APiWMSbOfY3utbbfbIxJrNlujEm6WPy4KoGzgG8bY26vtb2fMWa0+8+34bqHDV1bRNopDVmKSIuz1m4xxiwGPnFv+r21diuAMWY5sA04BOTiqgx5cxRXUpZHw/95jHC3jggBqoDXgOe8HJcKPGOMcQKVwAPW2lPGmA3udhN/BX4A3G+M+RTYA2y6yHvcYYx5EvinMaYaV0XtHmvtTmPMD4DV7vlslcBD7vfbKGttqTHmeuDvxphSXPdpF3C3Mea/gX3Ab9xJ4wXXvtj5RSRwmXr/kRQRaVXGmChrbYn7acF1wAJ3AhcHPImrfcXvgReAXwEVwIdNmEMW8NyT9VdYa4e3xHFeXpcPZNbMMRORwKcKmYi0tZeMMUNxzc961Vq7BcBaewq4v96xc9s6uDZSDXQzxuS1ZC8y99OhG3FVDJ0tdV4RaX2qkImIiIj4mSb1i4iIiPiZErIAZozpa4xZ4+4SvsMY84iXYyYZY864O4LneXucv6NzP7H3ibtj+Q5jzE+8HBNmjPmTMeZzY8zH7rk5nYqP9+keY8zJWp+n+/wRayAwxgS5O+av8LKv03+ealzkPunzhGtOnzHmM/c9yPWy3xhjXnB/nj41xoz0R5z+5sN96tA/7zSHLLBVAf/mnvAcDWw2xvzdWruz3nHrrbXX+yG+QHEOmOKeKB4CfGiM+au1tvZTcvfiamlwuTHmVuBpXN3UOxNf7hPAn6y1D/shvkDzCK4nHLt62afP09cau0+gz1ONyY08ZHEtribEA3GtbvEb9++dUWP3CTrwzztVyAKYtfZ4rQnPxbj+0evt36gCj3UpcX8Z4v5Vf3LkjcCr7j//GbjauNuodxY+3icBjDF9cPVI+30Dh3T6zxP4dJ/ENzcCf3B/j24CYowxl/k7KGlbSsjaCfeQyAhc6+/VN9o9DPVXY8ywNg0sQLiHTfJwdWj/u7W2/n3qjbvJqLW2Clfvq7i2jdL/fLhP4FqnsWYh675tHGKgeB54lIafVNTnyeVi9wn0eQLXf3xWG9fC9Qu87Pd8ntyO0jn/832x+wQd+OedErJ2wLg6mi8F/re19my93VuAJPdSLy8C77R1fIHAWlvtbh/QBxhljKnft8lb9aLTVYd8uE/vAsnW2jTgfb6uAnUa7sasJ6y1jS163uk/Tz7ep07/eXIba60diWto8iFjzIR6+zv958ntYvepQ/+8U0IW4NxzfZYCb1hrl9Xfb609WzMMZa1dBYQYY+LbOMyAYa0tAtYC0+vtOoprsWiMMcG4lsnptAsyN3SfrLWnrLU16zb+Dtf6j53NWGCmu7nqEmCKMeb1esfo8+TDfdLnycVae8z9+wngbWBUvUM8nye3PsCxtokucFzsPnX0n3dKyAKYe07Ky8Aua6235WAwxvSsmbtijBmF6+/0VNtF6X/GmARjTIz7zxG4FojeXe+w5cDd7j/fDPyj/nqHHZ0v96nevJWZuOYtdirW2u9ba/tYa5OBW3F9Vu6sd1in/zz5cp/0eQJjTKT7oSyMa13XqcD2eoctx7WGqTHGZANnrLXH2zhUv/LlPnX0n3d6yjKwjQXuAj5zz/sBeAzoB2Ct/S2uHwYPGGOqgHLg1s72gwG4DHjVGBOE6xv0f6y1K4wxPwVyrbXLcSW2rxljPsdVybjVf+H6jS/36TvGmJm4nvAtROsjeujz5Bt9ni7QA3jbnUcEA3+01r5njLkfPP+OrwKuAz4Hyui4K1Q0xpf71KF/3qlTv4iIiIifachSRERExM+UkImIiIj4mRIyERERET9TQiYiIiLiZwGTkBkfFj4WERER6YgCJiHj64WPrwTSgenufizSgEaWlhA33SPf6D75RvfJN7pPvtF98k1nuU8Bk5Bp4eNL0ik+pM2ke+Qb3Sff6D75RvfJN7pPvukU9ylgEjLweeFjERERkQ4lIBvDupd3eRv4X9ba+ksnLMCdLQcFBWWEhYX5IcLAUFVVRXCwFltojO6Rb3SffKP75BvdJ9/oPvmmI92nsrKySmttqLd9AZmQARhjfgyUWmufbeiYzMxMm5ub24ZRiYiIiFwaY8xma22mt30BM2Tp4wLRIiIiIh1OINUAvS587OeYRERERFpdwCRk1tpPgRH+jkNERESkrQVMQtZSKisrOXr0KBUVFf4ORcRvwsPD6dOnDyEhIf4ORUREfNDhErKjR48SHR1NcnIyxhh/hyPS5qy1nDp1iqNHj5KSkuLvcERExAcBM6m/pVRUVBAXF6dkTDotYwxxcXGqEouItCMdLiEDlIxJp6fvARGR9qVDJmSB5PHHH+fZZxtspcY777zDzp072zAiERERCTRKyPxMCZmIiIgoIWsFTz75JIMGDeKaa65hz549APzud78jKyuLK6+8ktmzZ1NWVsZHH33E8uXLWbhwIenp6ezfv9/rcSIiItKxKSHD9VTauarqFjnX5s2bWbJkCVu3bmXZsmXk5OQA8M1vfpOcnBy2bdvGkCFDePnllxkzZgwzZ87kmWeeIS8vjwEDBng9TkRERDq2Dtf2oqmstWw6cIp9J0oYmBhFdv/mPaG5fv16brrpJrp06QLAzJkzAdi+fTs/+MEPKCoqoqSkhGnTpnl9va/HiYiISMfR6Stk56ud7DtRQs/ocPadKOF8tbPZ5/SW0N1zzz386le/4rPPPuPHP/5xgy0JfD1OREREOo5On5CFBQcxMDGKL4srGJgYRVhwULPON2HCBN5++23Ky8spLi7m3XffBaC4uJjLLruMyspK3njjDc/x0dHRFBcXe75u6DgRERHpuDr9kCVAdv84RibFNjsZAxg5ciS33HIL6enpJCUlMX78eAB+9rOfcdVVV5GUlERqaqonCbv11luZP38+L7zwAn/+858bPE5EREQ6LmOt9XcMlywzM9Pm5ubW2bZr1y6GDBnip4hEAoe+F0REAosxZrO1NtPbvk4/ZCkiIiLib0rIRERERPxMCZmIiIiInykhExEREfEzJWQiIiIifqaETERERMTPlJC1gvz8fIYPH95m13v88cd59tlnfTr2uuuuo6ioqFnnEBERkZalxrABpLq6mqCg5jen9cZai7WWVatWtcr5RURE5NKpQtbKDhw4wIgRI/j4449ZuHAhWVlZpKWl8d///d8ArF27lsmTJ3P77beTmppKfn4+Q4YMYf78+QwbNoypU6dSXl4OwP79+5k+fToZGRmMHz+e3bt3N3rtmnM9+OCDjBw5kiNHjpCcnExBQQEATz75JIMGDeKaa65hz549ntfl5OSQlpbG6NGjWbhwoafaV11d7fU9iIiISPMoIQOcTsvJ4nO09KoFe/bsYfbs2SxatIht27bRrVs3cnJyyMnJ4Xe/+x0HDx4E4JNPPuHJJ59k586dAOzbt4+HHnqIHTt2EBMTw9KlSwFYsGABL774Ips3b+bZZ5/lwQcf9CmGb3/722zdupWkpCTP9s2bN7NkyRK2bt3KsmXLyMnJ8eybO3cuv/3tb9m4cWOdit3LL7/c4HsQERGRS9fphyydTsttv9vE5kOnyUiK5c352TgcptnnPXnyJDfeeCNLly5l2LBhPPHEE3z66af8+c9/BuDMmTPs27eP0NBQRo0aRUpKiue1KSkppKenA5CRkUF+fj4lJSV89NFHzJkzx3PcuXPnLhpHUlIS2dnZF2xfv349N910E126dAFg5syZABQVFVFcXMyYMWMAuP3221mxYgUAq1ev9voeascuIiIiTdfpE7JTpefZfOg0VU7L5kOnOVV6noTosGaft1u3bvTt25cNGzYwbNgwrLW8+OKLTJs2rc5xa9euJTIyss62sLCvrx8UFER5eTlOp5OYmBjy8vIavOaRI0e44YYbALj//vuZPn36BeeuzZgLE8/GqoQNvQcRERFpnk4/ZBkfFUpGUizBDkNGUizxUaEtct7Q0FDeeecd/vCHP/DHP/6RadOm8Zvf/IbKykoA9u7dS2lpqc/n69q1KykpKbz11luAKznatm1bnWP69u1LXl4eeXl53H///Y2eb8KECbz99tuUl5dTXFzMu+++C0BsbCzR0dFs2rQJgCVLlnhe09z3ICIiIt51+gqZMYY352dzqvQ88VGhXqtGlyoyMpIVK1bwjW98gx/84AcMHTqUkSNHYq0lISGBd955p0nne+ONN3jggQd44oknqKys5NZbb+XKK6+8pNhGjhzJLbfcQnp6OklJSYwfP96z7+WXX2b+/PlERkYyadIkunXrBsB9991Hfn5+s96DiIiIXMi09ET2tpSZmWlzc3PrbNu1axdDhgzxU0QdQ0lJCVFRUQA89dRTHD9+nF/+8pd+jkqaSt8LIiKBxRiz2Vqb6W1fp6+QyYVWrlzJz3/+c6qqqkhKSmLx4sX+DklERKRDU0ImF7jlllu45ZZb/B2GiIhIp9HpJ/WLiIiI+JsSMhERERE/U0ImIiIi4mdKyERERET8TAlZK6hpGXHs2DFuvvlmP0dz6dauXcv111/f7GPqe/zxx3n22WebE9oFrrvuOoqKiigqKuK//uu/WvTcjVm+fDlPPfVUo8c0do+ef/55ysrKPF/XvA8REelclJC1ol69ennWfWwtVVVVrXr+9mLVqlXExMS0eUI2c+ZMvve9713y6+snZDXvQ0REOhclZK0oPz+f4cOHA7B48WK++c1vMn36dAYOHMijjz7qOW716tWMHj2akSNHMmfOHEpKSgD46U9/SlZWFsOHD2fBggWedSYnTZrEY489xsSJEy9o2Pr4449z9913M3XqVJKTk1m2bBmPPvooqampTJ8+3bPs0QcffMCIESNITU1l3rx5noXK33vvPQYPHsy4ceNYtmyZ57ylpaXMmzePrKwsRowYwV/+8pcm3Ysnn3ySQYMGcc0117Bnzx7P9v379zN9+nQyMjIYP348u3fvBuCee+7hO9/5DmPGjKF///6exPb48eNMmDCB9PR0hg8fzvr16wFITk6moKCA733ve+zfv5/09HQWLlzIXXfdVSfWO+64g+XLl9eJ7cSJE2RkZACwbds2jDEcPnwYgAEDBlBWVsbJkyeZPXs2WVlZZGVlsWHDBs/f68MPP+x5L9nZ2WRlZfGjH/3IUykFV7Pdm2++mcGDB3PHHXdgreWFF17g2LFjTJ48mcmTJ9d5H/n5+QwZMoT58+czbNgwpk6dSnl5OQA5OTmkpaUxevRoFi5c6PmMiYhIO2atbbe/MjIybH07d+68YNtFVVdbW/yVtU5n01/rRWRkpLXW2oMHD9phw4ZZa61dtGiRTUlJsUVFRba8vNz269fPHj582J48edKOHz/elpSUWGutfeqpp+xPfvITa621p06d8pzzzjvvtMuXL7fWWjtx4kT7wAMPeL32j3/8Yzt27Fh7/vx5m5eXZyMiIuyqVaustdbOmjXLvv3227a8vNz26dPH7tmzx1pr7V133WX/8z//07N979691ul02jlz5tgZM2ZYa639/ve/b1977TVrrbWnT5+2AwcOtCUlJXbNmjWeY3Jycuy99957QUy5ubl2+PDhtrS01J45c8YOGDDAPvPMM9Zaa6dMmWL37t1rrbV206ZNdvLkydZaa++++25788032+rqartjxw47YMAAa621zz77rH3iiSestdZWVVXZs2fPWmutTUpKsidPnqxzz621du3atfbGG2+01lpbVFRkk5OTbWVl5QUxDh061J45c8a++OKLNjMz077++us2Pz/fZmdnW2utve222+z69euttdYeOnTIDh482PP3+tBDD1lrrZ0xY4b94x//aK219je/+Y3nc7BmzRrbtWtXe+TIEVtdXW2zs7M956qJu0bt9xEUFGS3bt1qrbV2zpw5nvs/bNgwu2HDBmuttf/xH/9R5/3WdknfCyIi0mqAXNtATqPGsE4nvHo9HPkY+l4Fd68AR+sUDq+++mrPupBDhw7l0KFDFBUVsXPnTsaOHQvA+fPnGT16NABr1qzhF7/4BWVlZRQWFjJs2DBuuOEGgEYbt1577bWEhISQmppKdXU106dPByA1NZX8/Hz27NlDSkoKV1xxBQB33303v/71r5k0aRIpKSkMHDgQgDvvvJOXXnoJcFXxli9f7pn7VVFR4aki1cjMzOT3v//9BfGsX7+em266iS5dugCuYT5wVY0++ugj5syZ4zm2plIHMGvWLBwOB0OHDuWrr74CICsri3nz5lFZWcmsWbNIT09v9J5PnDiRhx56iBMnTrBs2TJmz55NcPCFH/sxY8awYcMG1q1bx2OPPcZ7772Htdazxuf777/Pzp07PcefPXuW4uLiOufYuHGjZ23P22+/nX//93/37Bs1ahR9+vQBID09nfz8fMaNG9do7CkpKZ73l5GRQX5+PkVFRRQXFzNmzBjPdVasWNHoeUREJPApISsrcCVjzirX72UFEJXYKpcKCwvz/DkoKIiqqiqstXzjG9/gzTffrHNsRUUFDz74ILm5ufTt25fHH3+ciooKz/7IyMiLXsfhcBASEuJZMN3hcHiu2ZCGFle31rJ06VIGDRpUZ3tNonQx3s7rdDqJiYkhLy+v0fdRc32ACRMmsG7dOlauXMldd93FwoUL+fa3v93ote+66y7eeOMNlixZwiuvvALA3Llz2bp1K7169WLVqlWMHz+e9evXc+jQIW688UaefvppjDGeyfhOp5ONGzcSERHh0/tt7L3U/N039TXl5eWN/t2JiEj7pTlkkQmuypgj2PV7ZEKbXj47O5sNGzbw+eefA1BWVsbevXs9yVd8fDwlJSUt+nDA4MGDyc/P91zztddeY+LEiQwePJiDBw+yf/9+gDpJ4rRp03jxxRc9CcHWrVt9vt6ECRN4++23KS8vp7i4mHfffReArl27kpKSwltvvQW4kq5t27Y1eq5Dhw6RmJjI/Pnzuffee9myZUud/dHR0RdUru655x6ef/55AIYNGwbAokWLyMvLY9WqVZ4YX3/9dQYOHIjD4aB79+6sWrXKU7mcOnUqv/rVrzzn9JZEZmdns3TpUgCWLFni073xFm9jYmNjiY6OZtOmTU26joiIBDYlZMa4him/uwvuWen6ug0lJCSwePFibrvtNtLS0sjOzmb37t3ExMQwf/58UlNTmTVrFllZWS12zfDwcBYtWsScOXNITU3F4XBw//33Ex4ezksvvcSMGTMYN24cSUlJntf88Ic/pLKykrS0NIYPH84Pf/jDC86bm5vLfffdd8H2kSNHcsstt5Cens7s2bM9w4AAb7zxBi+//DJXXnklw4YNu+jDAmvXriU9PZ0RI0awdOlSHnnkkTr74+LiGDt2LMOHD2fhwoUA9OjRgyFDhjB37twGz5ucnAy4EjOAcePGERMTQ2xsLAAvvPACubm5pKWlMXToUH77299ecI7nn3+e5557jlGjRnH8+HHP8HRjFixYwLXXXuuZ1O+Ll19+mQULFjB69GistT5dR0REAptpz0MgmZmZNjc3t862Xbt2MWTIED9FJIGorKyM1NRUtmzZ0qrJS1lZGRERERhjWLJkCW+++WaTn0b1RUlJiecJzqeeeorjx49f8LQt6HtBRCTQGGM2W2szve3THDLp0N5//33mzZvHd7/73VavJG3evJmHH34Yay0xMTGe+WotbeXKlfz85z+nqqqKpKQkFi9e3CrXERGRtqMKmUgHpe8Fkc7j5MmT7Nq1m+TkJPr16+fvcKQBjVXINIdMRESkHbPWsmrVX9m3bx9//et7dVb/kPZDCZmIiEg7ZowhPDyciooKgoODcbRSL81AZa0lLy+P99//oF2vBaw5ZCIiIu3cjBnXcfToURITEwkPD/d3OG3qyy+/5MMPNxAWFkZFRQXXXz/D3yFdEiVkIiIi7VxUVBSDBw/2dxh+ER4eTkhICBUV5+jatau/w7lknauu2UZqWhIcO3aMm2++2c/RXLq1a9d6OtU355iWVnvR7pawfPlynnrqKQDeeeedOksktaba121IY/f3+eef11wREen0YmNjmT37m9xwwwzGjBnt73AumRKyVtSrV68W7bDvjS9L8EjjZs6cyfe+9z2gbROy2te9FErIRERc4uPjSU5O9rpWcXuhhKwV5efnM3z4cAAWL17MN7/5TaZPn87AgQN59NFHPcetXr2a0aNHM3LkSObMmUNJSQkAP/3pT8nKymL48OEsWLDAs2zRpEmTeOyxx5g4ceIFDUEff/xx7r77bqZOnUpycjLLli3j0UcfJTU1lenTp1NZWQnABx98wIgRI0hNTWXevHmeRb3fe+89Bg8ezLhx41i2bJnnvKWlpcybN4+srCxGjBjRpIan+fn5DBkyhPnz5zNs2DCmTp1KeXk54FqCKDs7m7S0NG666SZOnz59wesPHjzI6NGjycrKumCFgGeeeYasrCzS0tL48Y9/fNHrvfDCCwwdOpS0tDRuvfVWz9/Nww8/zEcffcTy5ctZuHAh6enp7N+/n5EjR3qutW/fPjIyMupc/8SJE55t27ZtwxjjWXR9wIABlJWVcfLkSWbPnk1WVhZZWVls2LChznUB9u/fT3Z2NllZWfzoRz+qUwUsKSnh5ptvZvDgwdxxxx1Ya3nhhRc4duwYkydPblKXfxERCUxKyACndVJQXtDqCzfn5eXxpz/9ic8++4w//elPHDlyhIKCAp544gnef/99tmzZQmZmJs899xwADz/8MDk5OWzfvp3y8nJWrFjhOVdRURH//Oc/+bd/+7cLrrN//35WrlzJX/7yF+68804mT57MZ599RkREBCtXrqSiooJ77rnHE0tVVRW/+c1vqKioYP78+bz77rusX7+eL7/80nPOJ598kilTppCTk8OaNWtYuHAhpaWlda7b0NJJ4EpmHnroIXbs2EFMTIxnzcdvf/vbPDNQvucAACAASURBVP3003z66aekpqbyk5/85ILXPvLIIzzwwAPk5OTQs2dPz/bVq1ezb98+PvnkE/Ly8ti8eTPr1q1r9HpPPfUUW7du5dNPP71g+aMxY8Ywc+ZMnnnmGfLy8hgwYADdunXzrFu5aNEi7rnnnjqvSUxMpKKigrNnz7J+/XoyMzM9i5QnJibSpUsXHnnkEf71X/+VnJwcli5d6vUePfLIIzzyyCPk5OTQq1evOvu2bt3K888/z86dOzlw4AAbNmzgO9/5Dr169WLNmjWsWbPG6z0XEZGLcDqh5AQEQE/WTp+QOa2TeX+bxzVvXcPcv83FaZ2tdq2rr76abt26ER4eztChQzl06BCbNm1i586djB07lvT0dF599VUOHToEwJo1a7jqqqtITU3lH//4Bzt27PCc65ZbbmnwOtdeey0hISGkpqZSXV3N9OnTAUhNTSU/P589e/aQkpLCFVdcAcDdd9/NunXr2L17NykpKQwcOBBjDHfeeafnnKtXr+app54iPT2dSZMmUVFR4akE1cjMzOT3v/+915hSUlJIT08HICMjg/z8fM6cOUNRURETJ06sE0d9GzZs4LbbbgPgrrvuqhPT6tWrGTFiBCNHjmT37t3s27evwesBpKWlcccdd/D666/7VNq+7777WLRoEdXV1fzpT3/i9ttvv+CYMWPGsGHDBtatW8djjz3GunXrWL9+vWfNzvfff5+HH36Y9PR0Zs6cydmzZy9YUHzjxo3MmTMH4IJrjBo1ij59+uBwOEhPT/e8FxERaQanE169Hp4bAotnuL72o/Y72NpCCisKyTuRR7WtJu9EHoUVhcRHxLfKtcLCwjx/DgoKoqqqCmst3/jGN3jzzTfrHFtRUcGDDz5Ibm4uffv25fHHH6eiosKzPzIy8qLXcTgchISEYNwLpjscDs81G2IaWFzdWsvSpUsZNGhQne1fffVVg+fyFhO43nvNEKKvvMVlreX73/8+//Iv/1Jne35+foPXW7lyJevWrWP58uX87Gc/q5PkejN79mx+8pOfMGXKFDIyMoiLi7vgmPHjx3uqYjfeeCNPP/00xhjPZHyn08nGjRuJiIho0nuu4e1zIyIizVRWAEc+BmeV6/eyAohK9Fs4nb5CFhceR3piOkEmiPTEdOLCL/yB25qys7PZsGEDn3/+OeBaoHrv3r2e5Cs+Pp6SkpIWfThg8ODB5Ofne6752muvMXHiRAYPHszBgwfZv38/QJ0kcdq0abz44oueZG7r1q3NjqNbt27Exsayfv36OnHUN3bsWJYsWQLAG2+8USemV155xTPn7osvvuDEiRMNXs/pdHLkyBEmT57ML37xC4qKijyvrREdHV2nehUeHs60adN44IEHmDt3rtfzTpgwgddff52BAwficDjo3r07q1atYuzYsQBMnTqVX/3qV57ja4ZAa8vOzvYMq9a814upH6uIiDSi/vBkZAL0vQocwa7fIxP8Gl6nT8iMMbwy7RXen/M+i6YtarBC1FoSEhJYvHgxt912G2lpaWRnZ7N7925iYmKYP38+qampzJo1i6ysrBa7Znh4OIsWLWLOnDmkpqbicDi4//77CQ8P56WXXmLGjBmMGzeOpKQkz2t++MMfUllZSVpaGsOHD79gcj00PoesIa+++ioLFy4kLS2NvLw8fvSjH11wzC9/+Ut+/etfk5WVxZkzZzzbp06dyu23387o0aNJTU3l5ptvbjRBqa6u5s477yQ1NZURI0bwr//6r8TExNQ55tZbb+WZZ55hxIgRnsT0jjvuwBjD1KlTvZ43OTkZcCVmAOPGjSMmJobY2FjA9SBBbm4uaWlpDB069IK5a+B6YvK5555j1KhRHD9+3KeF0BcsWMC1116rSf0iIhfjbXjSGLh7BXx3F9yz0vW1H2lxcZGLePbZZzlz5gw/+9nPWu0aZWVlREREYIxhyZIlvPnmm016ktUbfS+IiLiVnHAlY84qV0Xsu7v8MjzZ2OLinX4OmUhjbrrpJvbv388//vGPVr3O5s2befjhh7HWEhMTwyuvvNKq1xMR6dCcTtecsMgEV+WrZnjyyMcBMTzpjRIykUa8/fbbbXKd8ePHs23btja5lohIh1YzPFmTfN29AhwO1++1k7QA0+nnkImIiEg7Vn+yvrenJ8GVlEUlBmQyBh00IWvP8+JEWoK+B0SkU/A2WT/Anp70VYcbsgwPD+fUqVPExcW1+ROTIoHAWsupU6cIDw/3dygiIq2roV5iAT486U2HS8j69OnD0aNHOXnypL9DEfGb8PBw+vTp4+8wRERalq+T9WuGJ9uRgEnIjDF9gT8APQEn8JK19peNv+pCISEhpKSktHR4IiIi4k/tdLK+rwJpDlkV8G/W2iFANvCQMWaon2MSERGRQNBOJ+v7KmASMmvtcWvtFvefi4FdQG//RiUiIiJ+EeBLHbW0gBmyrM0YkwyMAD72sm8BsACgX79+bRqXiIiItIEOPjzpTcBUyGoYY6KApcD/ttaerb/fWvuStTbTWpuZkNCxsmMREZFOqYP0EmuOgErIjDEhuJKxN6y1y/wdj4iIiLSyDtRLrDkCZsjSuJqGvQzsstY+5+94REREpA10oF5izRFIFbKxwF3AFGNMnvvXdf4OSkRERFqQr5P1O/DwpDcBUyGz1n4IdI67LiIi0hl1wsn6vgqkCpmIiIh0ZJ1wsr6vlJCJiIhI6+hkvcSaI2CGLEVERKQD0fBkk6hCJiIiIi2vHQxPnjx5ki1btlBYWOjvUJSQiYiISAtoZ8OTlZWVvPvuCnJycnn33RU4nU6/xqMhSxEREWkeDU82mxIyERER8Z3TeWGS1VBz15rhyQAUEhLCDTdcz+HDh0lJScHh8O+goRIyERER8U1DlbCa4cma7QE2PNmQhIQEAmVdbCVkIiIi4puGKmHGaHiymTSpX0RERLxrykT9AHp6sj1ShUxEREQupIn6bUoVMhEREblQO+gj1pEoIRMREZF210eso9GQpYiISGen4Um/U4VMRESks6lfDdPwpN8pIRMREelMaqphzw2BxTNcX2t40u80ZCkiItKZNNRLTMOTfqUKmYiISEfm62R9DU/6lSpkIiIiHZUm67cbqpCJiIh0VJqs324oIRMREeko1Eus3dKQpYiISEeg4cl2TRUyERGRjkDDk+2aEjIREenQKisrOXToEEVFRf4OpWVpeLJD0ZCliIh0aGvWrGXv3n1ERERw663fIjIy0t8hNZ+GJ1uE0zoprCgkLjwO4+f7pQqZiIh0aIWFhURGdqGiooKKigp/h3Np3NWw6qoqrLUanmwBTutk3t/mcc1b1zD3b3NxWqdf41FCJiIiHdrVV0+hR48ejB83lu7du/s7nKZzV8Ps/xvMV7/I4q3/+R/KTKSGJ5vIaZ0UlBe4ElqgsKKQvBN5VNtq8k7kUVhR6Nf4NGQpIiIdWkJCAtddd62/w7h07mqYsdX0PJ9PyYlDfHXiBCkanmxQ/aHImmpY3ok80hPTeWXaK8SFx5GemO7ZFhce59eYlZCJiIgEEqezbqLlnqxvD2/iy5AkQmN6kZCQ8PXwpNThLfnyVg2Lj4j37AuEOWRKyERERAJFI5P1TVkB3YOiuTUkhOBg/fiuUb8a5i35arAaZg22Ktq/b8BNf6MiIiKBwttk/ahETzUs3N/xBRhfhyKNMRdUw5xOy22/28TmQ6fJSIrlzfnZOBz+q5IpIRMREfGXBoYnPRUyTdavw5dqWINDkfWqYadKz7P50GmqnJbNh05zqvQ8CdFhfnpnSshERNq9iooKQkJCCAoK8nco0hTqJdYkTZmY7zAO4iPiv36tl2pYfFQoGUmxnm3xUaH+emuAEjIRkXZt7959rFnzT7p2jebGG2+gS5cu/g5JvKlfCYOLDk92ds2phjmdllOl54mPCsUY02A17M352XWO8yf1IRMRacd27dpNZGQXCgtPU1BQ4O9wxJuaSthzQ2DxDNfXoKWOGuGtaWtNNSzIBHmthtVOxm773SZG//wDbn1pE06n9VTDgh2mTjXM4TAkRIf5PRkDVchERNq1tLRUVq9+nx49EklMVFUlIDVUCTNGw5Nuna0a5o0qZCIi7VhKSjL33nsPs2ffRHi46xk8ay1Op3+XgenUmrLot5Y6alI1rP7E/PZaDfNGFTIRkXaudk+q0tJSVq74K8UlJVx77TR69brMj5F1Qpqof1GXWg3zNjG/vVbDvFGFTESkA/nyy684WVBAUFAQO3bs9Hc4XpWXl/Ppts84fPiIv0NpeVr0u1HNqYZ5S77aazXMG1XIREQ6kISEeKKjoykvL2fgwMv9HY5X6/75IZ/vP4DDGL51y2zi4vy7hmCzqI9Yo1qyGuatTYUxpl1Ww7xRQiYi0oF07dqV2277FtXV1Z45ZYGm2lnt+sFpXPPd2i0NTzaqSQt6+9i01VvyVVMNa++UkImIdDAhISGEhIT4O4wGTZw4nh499hAbG0t8fPzFXxCo1EesjtauhkHHSb68UUImIiJtKjIykoyMkf4Oo+k0PAlcmHjVbGuLalhHpoRMRETkYjQ8CXhPvBzGoWpYC1BCJiIiUl/9algnHZ70dRhS1bDmU0ImIiJSm7dqWCccnmzKMKQxht9/42X2F37FwLieqoZdAiVkIiIitTVUDevgw5PNXb7ojt9/0mGbtrYFNYYVEZHOzdeljjpwc9fmNGyFjt+0tS2oQiYiIp1XJ52s35ItKhwO0+GbtrYFJWQiItJ5dcLJ+q3RoqKh5Etzw3ynhExERDqPTthLrC0atoKSr+ZSQiYiIp1DJxyeVMPW9kMJmYiIdEydsJeYli9qv5SQiYhIu1FZWcnx4yeIielK167RDR/YCXuJqRrWvikhExERv3A6nTgcTeu+tHbNBvZ9fpDILhHM+daNdOkS4f3ATtBLzNdqmBq2tg9KyERE6rHWUllZSWho6MUPliarrKxk9eq1HPviSyZOGsMVVwzw+bWFhUVERUZSVl5GRUXF1wmZr5P1O8jwpK/VMDVsbT+UkImI1FJVVcVf/7qaL744ztix2aSmDvN3SB1OYWERhw9/QXxcd7Zs+axJCdmkyWPZnLuNvn2HExsb49rYCSbrX2o1rKDkXIMNW1UNCyxKyEREajl9uogjR74gPj6evLxPlZC1gpiYriQmxFFQcJrs7JFNem2PHglcN+OauhsbGJ48V1lJaGRCu6/2NKcapoat7YcSMhGRWmJiutG7dy+OH/+S0aNH+TucDiksLIxZN13HuXPnG54D1hgfhifXrdvIzh17GDT4ciZNGuu3pMNay/Hjx3E4HPTs2dOn17RkNayhoUhVwwKPEjIRkVpCQkK44YZrqaysJCws8H9glZeXU1paRlxc93ZV6di1cx+HDh1lZEYal13WhDldPgxPVlZVsWvHHi7r1ZM9uz9n9OhMwsPDW+/NNGLPnr28//4HANxwwwySkpLq7K+ffLV0NQyUfLUXSshEROpxOBztIhkrLS1j6dIVlJWWkZF5JcOGDaKysopu3br6O7RGFRWd5aOPcomM7MKaDzZw+503+f5iH3qJhYSEMHT4YHZu382gwZf79e+yuLgYhzFUO52UlpbV2ect+WqNapi0D0rIRETaqbNniyktLSU6Oopdu/ax/bNdnD9/nilTxjOwCRPl21p4eBhdIsIpLi4hJaVfwwfWH5oEn3uJjR+fzahRIwgN9W9iMnz4MFdSFuQgtncM1lpPPN6SL1XDOi9jrfV3DJcsMzPT5ubm+jsMERG/qK6uZv36TXx5/Cv6JfUhb+t2IrpEkJTUhylTxvs7vEYVF5dQdPosPXrGe28v0tDQZM2+dvT0pLdKmMM4sNYy929zPdsXTVuEMYaq6mpPNczhcHCy+Byjf/4BVU5LsMOw8ftXkxAdhtNpVQ1rZ4wxm621md72BVSFzBjzCnA9cMJaO9zf8YiIBLKgoCAmTRoLQEVFBYWnTlNcXEpa2lA/R3Zx0dFRREdHfb3B12WOIOB7ifk6Kd8Y47Vpq6phnVNAJWTAYuBXwB/8HIeICODqJg80uaN8WwsPD+f6G6b5O4xL04GWOWrK8kVq2iq1BVRCZq1dZ4xJ9nccIiIAp0+f4b1Va7AWpl83ie7dY/wdUsfUjpc5utQWFeB9/UhVwzqvgErIREQCyeHDX1BaVo7DGA7sP+w1ISs4WciWzdvp1TuRYcMHqXrhi1rDkxYoI5Iufa/CtLNljprTosLhMGraKnX4lJAZ1yeij7X2SCvH40ssC4AFAP36NfJ0johIM/Xq1ZOQkB1Ya+nXr5fXY/659mPKyys4dOgLevXqSfc4VdEaVWt40va9irX9HuPzzw/Tv//3mHLzIExUYoerhjXUoqKh5EvVsM7Jp0kR1vUo5jutHItPrLUvWWszrbWZCQntY06BiLRPCQndufW2G7nt9lkk9oj3ekxs926UlpYTFhZKWLgWI7+oesOTX+zZTs/LEjhw4AjnQmICOhmb97d5XPPWNcz921yc1umphgWZoAuqYTP+M4/bfvcxTqf1VMKCHabOMCR8nXypEiZNGbLcZIzJstbmtFo0IiIBJiys8SRr/IQsLh+YTLdu0URGdmmjqFrX+fPnOVVwmu5xMc1vqtrIMkem71VcPiiLz7bvYeiwKwgPD5yqUFssXyRSW1MSssnAvxhjDgGlgMFVPEtrqWCMMW8Ck4B4Y8xR4MfW2pdb6vwiIi2hpKSMsLBQQkKCCQkJaXA4sz1yOp2sWvkBX31ZQHxiHDfdNP3SnzD1YZmjbGPIuiqdoKCgln0jzdDg3LCEdPJOqmGrtI6mJGTXtloUbtba21r7GiIizbFrx342fZRH125RXHv9RLp0aZs1Eq217N17gJLiEoYOG0REROtct7q6moKC08R270Zh4emmrenpay+xepP1m5KMVVZWEhwc3KJVJl+qYd3D4ig7PJ+So0cpK++Ltd6fklQ1TC6Vz//tsdYeAmKAG9y/YtzbREQ6jf2fHya6ayRFp4s5U3S2za57/NhX/OODDWzO/YxPPtnaatcJCQlhwsRsgoOCGD9uVNOSsVevh+eGwOIZrq9rhicdwS3SS2xb3nYWvfwmf/vbGqqrq5t1Lk/YDc0NS6g7N+xU6Xm2HDpDVWUUWw4V1WlRUX9umOaFyaXwuUJmjHkEmA8sc2963RjzkrX2xVaJTEQkAKVeeQXr1uTQu08icfGxbXZdR1AQxkCVs5rgoNbtWHTFFf254or+TXtRG/QS27L1MxIS48nPP8yZM2fp3r3p9/9Sq2FqUSGtrSnf1fcCV1lrSwGMMU8DGwElZCLSaSQl9+bOe3q1+Q/fnj0TuO66qyktK2PAgKQ2vbZXjUzWb61eYsOHD2bL5k/p07sXXbtGXzzEesmXr3PDCkrc1TDn19WwhoYiNTdMWkpTEjID1K4RV7u3iYh0Kv6qhPRL6u2X616g3mT96rv+wvbtn1M1/ClSb4wjNLZXq7SvyMoawfDhgwkLC7vogwbekq/mVMNAyZe0rqYkZIuAj40xb7u/ngXoCUgRkc6m3vDk4Z2fsvGjXRjjwBF0JSO6t17iGBER4XW7L0ORza2GibSmpkzqfw6YCxQCp4G51trnWyswEREJEE4nlJwAa11f15+sH+VaAsnpdBIaFtL24fnYtNVaXNWwfd+n7NCCOtUwTcwXfzO25hussYMCaOmk2jIzM21ubq6/wxCRdqKkuJyqyipiul98/pG4NdRLrN56lIcPH6O6uprk5D6X3rfM15DqVcMKygu45q1rqLbVBJkg3p/zPvER8VRVV3uatjocDk4Wn2P0zz+gymkJdhg2fv9qEqLDcDqtqmHSJowxm621md72tbulk0RELkXhyTOseGsdK5d+yMHPv/B3OIGrfjXM29OT8PVkfWMwxpCU1Jv+/ft5TcbKysrZs2c/J0+ean54PrapaMoSRqqGSSDQ0kki0imcPVNK1fkqQsJCOPnlaVIuD5AJ8oHEWzWsoacnm2DNPz7iyJFjhIaG8K1bbiAqKtK3cOpVwgA1bZUOK6CWThIRaS2X9YmnT3JPKirOMWhYsr/DCUyt1EusoryC0NAQqquqqa52+vQab09JOozD54n5elJS2hufEjL3HLL7AXXmF5F2KSw8lEnTM/wdRmBpo15iU64Zx66d++h5WQLdunmfv+frYt6eifkdsGmr0+lKVlt7Dp4EJp8SMmutNcb8p7VW/5qJSJsoPHmWysoqEnrG6AdUa/Bh4e+W6iUWG9uNMWO9zmN2heJjw1bg6yWMOljT1tOnT7NixUqstVx//Qy6d+/u75CkjTXlX7lNxpisVotERMSt4KsiVr/zMR8sz2Hv9sP+DgdwLbpdU8HoEHyYrN9anNZJQXkBNU/5e6uGeWtRAR23TcXBgwcpKyujvLycAwcO+jsc8YOmziG73xiTj+aQiUgrKi87R1VVFSEhwZScKWuxc1ZXOYnq6r2xaGMKC86y5q85BAU5mHxtFt1io1okpjbl6/Bka4fRzOWL2uNQpC/69OnDli2uReP79evr52jEH5qSkF3balGISKdWXnqO8+cq6dbdlehc1jeeoekplJeeY0h6SrPPX3SqhDXLc6mqrCb7muH07d/Dp9c5nU6MMRw+cJyqqmrOnavk+NGC9peQteHw5AWXbsHFvGu0p6FIXyUmJnLXXXcCEBbWsd6b+KYpCdlh4A6gv7X2p8aYfkBPNNFfRJrhTGEJa/6SS2VlFRkThtB/cG+Cg4MYOXowJ74oZM3bm4lNiGbU1cMICXX9k3X2dCnFRWUk9IrxqTP82dMlnDtXSXh4CF8dLfQpITt+tIANf99GdLdIUjP7s3fnYcLCQujRK67Z77nNNfT0ZDMm639x9Es+/DCH3r17MmZshtd5fq2xmHdHpkSsc2vKHLL/AkYDt7m/LgZ+3eIRiUinUnymjHMVrv5gBceK6uzbk3eYoCAHXx46ReGJs4CrmvbPv2xh43ufkrtml0/XSOzdnR69uxMWEcrlw3wbDtq7/TChYSEUFpzBWph1+yRm3jqR2LgA7/Jfv7ErXLjUUQsMT27auAXrdLJjxx4KTha6Ln2Jc8M66rwwkaZoSoXsKmvtSGPMVgBr7WljTOjFXiQinY/T6aSi7DwRkRf/YZrYK5a+AxIoOVvOFWn96uzrlRzPtg/3EREdTnRMFwAqz1dRda6K8IgwSs+U+xRPeEQok29o2kPiyZdfxqa124mMjiA2riuhoW2/RmOTNTQ0aUyLD0/26XsZ2/J2Eh0VRVR0pNdqWGxod8Kq+lPq2E9YdX9iQ7s36SlJkc6kKQlZpTEmCLAAxpgEoAM9ciQiLcHpdLLhvU/58kgB/Yf0IWPCYM4WlrAj5wAx8dEMHplc5wduaFgIY6Ze6fVcA4b1oWffOIzD0CUqHICusZGkTxjEyWNFXHFl601+Trr8Mnr0jiMo2EFISFP+qWxD9SfqlxVgj3yMcVbhPLSJ0i8PE90r2XVsM3uJ1ZeRlUps32j6xPamS5cICsoLLqyGVUVz6vN5VJsSKmw0hWWVatgq0oCm/CvzAvA2kGiMeRK4GfhBq0QlIgGn+EwZOet30CUynIyxQzzzueo7V17JV0dOEX9ZDPl7jjFi3BXkbdjHmVPFfHGwgMTe3Ynr2a3B61Ser+J8eSVduroSsJ2fHOSTv20nNjGK6+4ZT0xCNClDepEypNclv5eqqmqOHTxJaHgIPfp0b7AiEx4RwIMADSxzVNY9jYiCPE6GDuTY0XJGXPpt+vpS9SbmO62T+/5+30WrYY5wQ0ZSHJsPOdp1w1aRtuBzQmatfcMYsxm4GlfLi1nWWt8mcIhIu2CtpfDkWULDQoju1qXOvt2fHuTUiTMcP3+KXv0S6Degp9dzhHcJJWVobw7u+oKhmf1xOBxEx0by1ReFhIYEExbR8NDfufLzfLg8j7Iz5QzKSqbvFT3Zm5vPubLzHN79FTs/OcCYGd6raU2xN+8wn328H4fDMPGGEST28d6Es+B4Ebu2HKRnvzgGpvbzekxbcDqdbP5oF4cOHGfk6MH0H9inwYn6pTe/xXvvrqbcRDOlBR5A8DYU6XVumJdqWEdo2CrSVppUh7fW7gZ2t1IsIuJne3ccZvOGXQQHB/GNG68iNr6rZ19sfFf27TxKcEgQkdEN9/IyxpAxfjAjxl7hefIuNXsAlyXF0SUqnKh6iV5tpWfKKSkqIyqmC8cPFHD5lX3pN7gnh/d8SbeEaOJ7xbTI+6yqrMLhcGCdzkbXVvxkzU6s0/LV0dP06BNH11jfFsVuaSVny9m7I58eMZYtH+1yJWQN9BFL7BnPtbffhNNpiYpu+F43xJc2Fb5Ww0DJl4ivAnRihIj4Q+HJM4SEBnPuXCUlxeV1ErIBg/sQG9eVkNBgusZcPDGp3QYhODiInn0vXq3pFh9F7wGJFBwrYli2q7o27sYRpI4diLWWmISWecJx0IhkgoKDCIsIoUffhpeoiYmL5ouDJ4iIDCM0vO0m9e/ffZR9O44wcHg/BgzqTUSXEKaf/b/EHt9JSUwaOK9utI9Yl8imN7+FprWp8LUaJiK+UUIm0s6UFJdx9mwJiT26Exzcst/CQ9P7U1pSQVR0BD371E2gjDHEJTY896slBAUHkXnN0Auu21KJWI2w8BCGZfW/6HGjpgzh1Fe9ieoW0Wbzyc6fqyT3w11Ed+tC7vqd9Ovfg5DzRXQv343BSfTZ7S3SRwya27RV1TCRlqSETKQdKSurYMU7aykrK2fgoGTGT2q4lYO1tslVim6xUVxzw6jmhtlhBIcE06OB+WWtd80gYrtHUvrVEbr3TCIoyAGRCRj38KRpoT5iatoqElgumpAZY4pxt7qovwvXWpZdvewTkVZQXlZBeVkFUVFdPM04vTn0+ZfkrttJzz5xXDVlOMHBQW0YpTSHA7jm9E8xJ3KwoaNwsLJF+oi19BJGqoaJtKyLJmTW2gBvkZtitgAAIABJREFUSy3SeXSP68bIUUM5fuwkIzOHNnjcjs37iYyO4Gj+CYYUltC9lYcapRnq9RIrL/iCsCOfYKiGo580a3jS6XRyqqCI8Igw/teGh9S0VSSANWnI0hgTCwwEwmu2WWvXtXRQIuKdMYYrRwzmyhGDGz0uaeBlbM/dT7fYqEafapS6zpWf5/DuL4mICqP35Yme5ON8RSXWWsIamEfmdDrZt+0IJafLGJSRTFQ3HyfVe+kl9mWhg8iQQcRX7qE0JpXoJg5P1q6E5W3ew6db9lAVfo48o6atIoHM54TMGHMf8AjQB8gDsoGNwJTWCU1EmqqqsprtGz+nrKSCyTMyiE3sGrhd5gPQntxDHNp5DGshPDKM+F4xnDlZzMaVn+KsdpI1fTgJvWMveN2pL8+y6+MDBIUEU11Vzaipw327oJdeYjHxXVl72ZMEVxaRMW0c0U2oSNWfF/atynl0iQynuMRJSEgKVUEH1LRVJEA15V/qR4AsYJO1drIxZjDwk9YJS0QuxYmjhezf/gWhYSFERJ4ksXfbTkhv7xwGrNNiHFBSVIrDGIpOFVN1vprgkCAKjp72mpCFhgUTFBxE1fkqIrs2Uh2rv9SRl15iUaHVTJyRQXhkmGe5qAZP566GFewvZt+uw/QcHFNnXthjU3qzN/coXS9LpPCDe3GqaatIwGpKQlZhra0wxmCMCbPW7jbGDGq1yESkybpEhRMSGkxlZRVd46L8HY7fnC0oYdeGz4nuHsmg0f0J8vGhhkFZyUR1j+Rc6Tl2bThAtdPJwJH9iI7tQlVVNb0v9z6Hq1tcFBNmjaSi7BzxXhI2oOGFv2tN1q8oP8/av2yh9Gw5aWMub3R1gNrVsF7V/bg/6rvs+vgIoY7+lLnnhQ24LIUrZg3AWkvm5+c6RZuKM2fOcPDAQXr17kViYsut3SnS2pqSkB01xsQA7wB/N+b/s/feQXJk953n57005avae9/ohvd2ZoDhjIZDztBrSWolrURKXPm4WK4ibkN3cWZ1G7F3q4u7i1ut9nSn26VColbm5EWKTuJ4P4OBHQxMW3SjvSvvMt+7P7JhetqgG0ADGE5+IhDoqsrKfJnV1fWtn/n+xDwwtjnL8vHxAc+6Qmu9xGR1LSpqYzz5xYOUiw6V9fe+AVq5ipnhGQzLoGqNGZDXmbk6Q3I8SePWRsIVm1/Llp7NoDX0nRwily6QnEpR31lDdcsqIukDWAGLjh1NjPVN4boKw5QoV/OxLx+6rY1IoiZKgjVE8CqjjsqOwozUIoQgNZ8jk8wTTYQY7Z9eIsjW6pK8JocZn5+gqqqF2Xe/tiwS9lFKRX7nO99lYSGJaRr8zM/8M0KhOzPJ9fG532xkluWPL/74m0KI54EE8N1NWZWPjw+lQpk3v3eO1FyOQ09vp34dTvcAsU0c7zN+cZy+168Agl2f3EX1GmvKpwu8/9xFpCFJTiQ58PkDm7YugJmROU7/4D1AU9FQSTlfxgpYhGJrp/1Woq69ms7dTZSLLp27mwE2LmLWkZ68eHKI908O0dBWzZGnd1JVF6OxvZrZyRR7H+u5uSut+Nr3vnbDH2xZl6Tq5vOffZqq6jh/MfvOskgY/GhGwz6I1hrXcTGkRKuV3Jp8fB5eNlLUHwC+CHTc8rx9wL+598vy8fFZmE4zP5kiFA8ycPbaugXZZuKWXIQUaKVxy+6q2xXSefLJHEIKXMfFtDe/sSCXzHvRRAHVTXF6jnRgB+9MkJmWwc5bBNGGWUd6EiG4cnaEqro4E8Mz5NIFYhVhHnt2741o2PWo3GxujpOTp0AoTk6cYjY3B2ppl6QRjWLb1kcmErYSQgg+/ZlPceVKH62tLX50zOdDxUb+Sv4tkAROAsXNWY6Pj891YlURwokQ+XSRbQc7HvRyAGja0QSAYRvUtNesuE1uIct7f38a13Fp7GkkUhOj6j643Td015KcTqNcRTFTYOCtAbqPdN2RILuOchUj74/jll3adjatX1iukp78oJfYlt0tXHh3kGiLRSjqRa9WioZpN4qbb0eGhlH5drQbpTbmjy9aicrKSo4cOfygl+Hjs2E2IshatNbPbNpKfHx8lhCKBHjii4dwyi7B8P2Zo3g7zIBJ2/7VC80BCqkCTsnBDFqoskNDb8NdH1cpdds6Ojtks/vJbSSnUpz69mnsUIC+N/s58Jl9d3zcyaEZ3n/1CkJItIbuA6uc+zrSkyux9WA7/27qNzkzc4Z9/+iJr5WiYbWxanbJ3+Dd/lEOtLTedV2Y1ppSqUQg8NEVbj4+DxsbEWSvCSF2a63PbdpqfHx8lmBaBqb14Rp7lGisoLannmKqQPPetcXb7XCKZS698D6Z2Qw9J7ZStY60bSASwApaFHNF6rrubuajd+0FaI2x2uuwRnpSZ6e5fDHHtT97m62HOmjsrllWmH9m5sxSw9YVomFCCP70Fx+9JxYVSime++HL9PcPs2/fTo4eW30eqo+Pz/1jI4LsOPBzQohBvJTl9VmWezZlZT4+DzlKKQr5EqFwYFNqdYq5IspRhNbytXoIMSyDLcfXniSwXjKzGZITSYKxIGPvja5LkAUjAQ5+bj/FbJFY7eqT39YTdatprWL/J3eiHEV9Z831Jy6Nhq2RnszrOFdOXyJeGeH0Sxf57/q+cdvxRTIolkXD4N6lInO5PP39wzQ21nHm9HscPrJ/3V28Pj4+m8dGBNmzm7YKH58PGUopXvn+aa6NzNCzo5VDx7ff0/1nZjOc+95ZVNml94lt1HasP9LjlsoIw0AaH/4P2XBlhFA8SCFdoHlXy7qfF4wGCa5iquqUHE7+9UmuvH6FjkOdHP3SEaygteK2QgjqO26plVspGrZKelJpRZo00YoQydkM0Q6L05O3H19UGwusGA27V4TDIbq72+nvG2bvvp2+GPPxeUjYiO3FsBBiL3Bi8a6XtdZnNmdZPj4PN4VciWsjM9Q1VND//igHHt16Tz/Ycgs5nKKDaZukJpLrFmTJkWlGXr2AHQnS+dQ+rPDyiIoqO+RnkliREHZ8bW8wJ1+knC0AGjMYwIre32idHbLZ85kDuGUHe4VzuRMysxmunrqKaZtcPXWV7Y9vo7ptnR2sq0XDPtA9eatp696avfyfH/ttIhURAn+0PBp2vwvzpZQ89fHHOfG4X0Pm4/MwsRHbi68Dvwj81eJdfySE+D2t9X/YlJX5+DzEhCIBurc2M3R5jJ0Huu55lKGiqYLK5krKhTINWxvX/bz5vgmsQIBiKk9+Lr2iIJs8eZnkwDhGwKLj2SNY4aWRJOUqpt5+n/TwBOVckeJCBu0qEp2NtD59+LYi7m5wimXmByaxY0ESLV5kyrCM1eu37oBwRZjKtkpGz47S0NuwtmHtOov1lYA5Q1KNV8txq2nrmZkzuLEyUwt5ZvqWm7Y+CJsKIYQvxnx8HjI2krL858BRrXUWQAjxW3jDxX1B5vOhQylFLlsgHAnekZgSQnDkYzs5eHw7xmJq0HVczr9wmZmxeXY+3kPDBtKMH8QO2ez65O4NP696axNXX75AqDJCqHq5U39hZoFU/yhGwEaVHNxCaZkgKy1kyAyNe87x/dewE1GcQgmnWKaczW+qIBs/2cdc/wRCCLY8c4Bwzb2fNmCHbJ78xSfJzGUIJ8Krpitv5yU2MaGZfuESLTsa+PV3/+Xqpq1uF+VpOPX9d+kKmAwU475NhY+PzzI2IsgEcKsTpLt4n4/PA6dUKpFOZamojGMYt4+mvPLCKQb6Rmhrb+TJTxy548iEcUudVno2y8TgDJGKEAMnr96VILtTYk3VbP/iowgpEB8QmqVkhonn30EUcriFAnWP7SNQubzo3YoGsWJhSqks1Xu7PcsHIN7eQKi2YvNP4j5EiQzLIFGfWHujVdKTSsB4weHCS/3YQZuBsaucLC83bb01GtbXOYNhGvxaQ5D2w53s39/2kTNtfVDMzs6SyWRobm7GNDffoNjH507ZyG/n7wNvCiH+evH2F4D/fO+X5OOzMRzH4e+/9RzT03N0b2nnqY8/tub25bLD0MAo9Q3VjFydoFAoEQrdfYQinAgRqQiRTebZcrB9xW201kyev0pydJbGvR3Em5YapiYHxlm4MkLVzk5iLXcm6JxMFpUvEKirRtwiTlXZQWtFIBEl2FBD1TbPksLNFyiMT2ElYlgVccrzC9Qf2YoMeMLsfgqHxgPdBBIRArHgpkTHVsJ1XMYvjCKLc9Tv3Y1x3fx1hfTkraatnUYXv5z9OsHKatzUUpuK1OAknbbJYDHGgfZK9uxu5q3xBcKxINt66n0xdp+Yn5/nL//yrygWS+zbt5cTJ44/6CX5+KzKRor6/w8hxIvAY3iRsZ/XWp/atJX5+KyTfL7IzMw8tTWVDA+P3nYItGWZ7N63lXOnL7Fjd/c9EWMAdtDi2Bf2U8qXVnWHL6bzTJwZwo4Fufr6JXZ98ZEbjxXm07z3n76NclxmLwyz99e+gBFYJZ22CuVkmunnX0c7LrFtXSR237SfCFQnqD64g3IqQ7znpj/YwsmzFCenEYZBsLmB/PAowjSpefLRG9fRSWdw83ns6qolIu9eoV3F/IVByvki1bu6MMN37q6/UaauTBD79k8RK12k/NZ+jF/9By81KQTqK3/H3Hwf1VW93gij7OwN09Y+3U/74w10tXaw65tLbSrOnR/jf9xdy7XJFJ/60m4SNTE+/lNHfSF2nykUCpRKZYLBAMmF5INejo/Pmmwofqu1Pok3OsnH56EhGg2z/8BOrlwa4Pjxw7f90CsVy9RWV/G5H/8xKqpX96m6Ezwj19U7Ec2AhRUNUkzlqeyoW/KYUyixaO+HKjkg1z4PJ50hNzCEVV1FqMUbaeQWS2jXRVgmTia3ZHshBPHu5dYRuux4IkspnHQWYZpo10UVS95xMllmX3gFVXaI9HQS371zHVdiOW6hiCqWMOPRZa9RbmKW2fMDCNNACKg7vOOOjrEuPlCob7oLxEoXkbjYM6dupia14ms/+IU1RxhVN7YTCC+3qejY3cylt4boaq8mutg04Iux+099fT2PPnqMmZlZDh8+9KCX4+OzJrcVZEKIV7TWx4UQaUDf+hCeMez9ySv4+KyCEIJDh/dw6PD6PIrfevECo/2T2EGLZ778COFV/Ko2AzNg0fvJ/RTTecJV0SWPReor6frCY6QGx2k8th3DWvvtmXznNE42Q35wGCsRx4xFCdRUEt/Zi5POEN+xvuHYFYf3khsawaqqwIrHSJ46i7QMrCqvXkwVi6iyg2HbOKnMHZ23k80x9dwbqGKJxN5txHo6ljxuBCyElGjHwYzcW2uNqfdGmB+eomFPO4mmqmWF+tXbt1GqP0Bm5jRVzYcQi52T6x1hBDAxOM3F1weo76xh+yNddO9ppW1rA4Zl+D5fDxApJQcOHHjQy/DxWRe3FWRa6+OL/9/bUIKPzwMik8oRCNuUimXKJee+HbeUTFOcS2KGgkTqvdE5ynHIDY4gTINwewvVvU3I6RHy588RTISxKlYvPJcBCz1fRpjmjTSikJL49i0bWpcZjRDf5aU23XQKmZkGx6HYHyW0dQdWZQWx7b2UkyliO7be0bk76SxuoYAZClGYnFkmyII1FbR8/BBusUy44e4GkWutKeeKmEGbcq7I2KkBAvEQw69dYs+nepYX6kdq+JWOFk5HZthX28A30EjEhkYYXXx9ADtkcfXCGG3bG4lVRbA2mG728fH5aLMRH7Lf0lr/xu3u8/F52Dn6xC4unhmirrmKxAeiVJuBVorM0Bjj//gG2cFRYj3t1D9+CIlDdvAq5bkUQuJFoDJptOM1Mxcnp9YUZImD+yhOzWDGohjhexNVUoUC2nEQlo2bTgGeyItu7111+3zfZUTAJtTVs2p9mV1TSbi1kXIqQ2LHyoIxWH2brsd1oJWi71tvMnv5GjU72mh/YjchO8/khRmClTHKIo7ReoS5a+9QvRgNm83drAs7ObkYCYvUUBsLrHuEUX1nDVcvjBGrihCM+hYWPj4+G2cjNWRPAx8UX8+ucJ+Pz0NNZU2MR57auMfXnaBdl5nXTzF38j2KyTxaKdxikdzQVVRyjuLkNEgTq7oKhCDY2EB+8CoAwcaGNfctAwFCrc1L7lOZJJgWMujVLWmtQetlFhirYVZVE9zSi0qnCW3bicplcGbGMSpqMeLLLS8K/VcoDg2ilYsZjWM3Nq28VtOk+tj+da3hbshOzHP15fOYQZupM/10jf0P9I69TaPZS3/wf2bs7CD/uqGe00Yz+2rr+QZ6xUgYsGo0bCW2P9JF2/ZGgtEAlr0xawXHcclnC0Tj97ej1cfH5+FiPTVkvwr8GtAlhDh7y0Mx4NXNWpiPz48Cbr5AcWKGeG8nc6feJ7Krh4ptHQQSEdJnZ7Frqgg0NxFqbSbQUIuQkppPPAmwbhF1nfL4AOULb4FpETz4FCIQonTmRVQ2ibXrOGb17R3/hWEQ3r4LlUvhpmYpXjjlRcxMm8iJZxGWvXT7QBCtXBACYT34FJ0wDWLN1aSvTlHXHUWPvMOc0FSVL2O5STJmxfJo2Cp1YbB+01YpJbGqyIbX6zguP/zWW8xOJ+nZ0crh43fWMOHj4/PhZz1f5f4Y+C7wvwD/zS33p7XWc5uyKh+fdeC6iqHLYwB09DYtMWndbLTybBqKsymq9mxZ0WAVwAiHCLXUk782SeuPf5zYllZK14bBtkgc3o8QgmBL0xLxtVEhdh13agSVnwNpo7IpRDGHSs1CMIw7emldggxAO2WK7z6Hyucojwxitm0HrUDrZdsGu7oxYjGEaWJV3xzCrcolilfeQwaDBLq8weuqVERlMxjxBMK49wadynXIywm2/8TjOKUykcYqfuoPW7lsO/QWTX73xx6hXBHHfWd9dWH3g1ymwOx0kuraBEN9474g8/H5CLOeov4kkAR+avOX4+OzfoYuj/Hmc+95xu5C0L2t+bbPuVcUZ1PMnx/ACFrMnr5E05Mrt9QLKak6ug/tukjTJP/eKUpDfYAg8sjHMKu8jj5ndgw9P4HR2IWMbNwNX2sNmXH0xAXPtqJ4BNJZtAGimMfo2ruBnSl0uYSwbKymFoy2buy6ZoS9PFIkpMRMxHHGBnCcPGZ9KwDZ158j/9YLICXxz/4zAp1byb7xEm42jVXfROTAsQ2f41oo1+Fr3zzKaYrsI8A3fvZNrsxNccH2POkuBDQzEUVvIrTuurD7QTQeYsv2Vob7x9l/7M4aJnx8fH40WPdXcSHEHwghKm65XSmE+MbmLMvHZ30Iz7brvmOEAhi2iVsoY1csj46VxkbIvPYcpdEhhBDI6yNbNIBYMnRMF7KUz7+MM9ZH6fwrtz22dsvo9CS6XLjlTg3lHEZQQPYape/8G9zLP8QMC+xjn0aQw5286KUXb4M7exXyk7gDbyCNMnZdPUZFzarbly6+Q3nwPYrnXkWl573l5LOeuapWqEIWXSpSnp3CGe0nd/IVVKmwZB9uNkN5ehLtrq/rVWnFTH7GE6LA7GwfpyniCsFpiszO9tFT3UBEdaO1JKK66aluQAjBn/zCI/zd5w/zb7fEyM3emY3HvUJKyZETO/nyz32cLdtaH+hafHx8HiwbyRvs0VovXL+htZ4XQmx+la6Pzyp09DbdmHvY0bO+dNy9woqGaHr6CG6uSLDmZkTLzSRRmTT5M28hIzHy509h1jUiF6NLgd4dyHAEEQpjVC6KHCG9f04ZEb59HZbqew61MIqwQxBKIAJRZOsxrG3HKc1ehnQGIYKo+VGM+m3o+SH08BuABmli1G5BKwfcMuIDJrZaKdz+NxGhMFIUkQEbPTsCFUsbDLRbRicnEcG4J7yUQqVmKLz5LayOnYQfeQq0QgTDBLfuRdoBjEgYd8rFrKzGnZ1CNnrTAlQhT+a1F9ClInZLB+G9B9c+/+vji6ZOsTu2nW88+/voQDvdBYP+oEt3wUAH2pFS8upX/5z+uUl6qhtu+IEVkznyF0Yoh2yGX7/Ejs/6hqE+Pj4Pno0IMimEqNRazwMIIao2+Hwfn3uKYcj7mqb8IHYsArGbhdwqmyb/xg9R5RIqkwOtkfGKJfVS0g4Q6FpqISECIQL7n8JNzWJWr9yleB2tFCo9gQhX4l57F1nZBgJ0vAWjoRdj6yMINYMuZBAtO7F2PI1KjqJvRBIFupxHXfp7dCGFqN+JrGiFaANCSISUyOo29NgliFWCFMj6rmXrcPreRE32gxXA3vUJnIo6SmefQwRsyoNnCLZsI3riaZzBs7gTfdDQTWjbbiQuwrSQ0Zt+0qpYQJVLyEAIN718vI3SirnCHNXB6sXxRTOcmjyJEnA29R79b77K1o89hcnvYPdfxGjeQW3cM/s1DYOttUuvqRm0MIMWTr5EvPE+DEv38fHxWQcbEVT/O/CaEOIvFm9/Gfi3935JPj4fPlQ+g8qmvFoxO4DRUovV1IgoLKDzC4ho9ZrPl7EqZOz2hqhCSmTnCfTYGWTbUUR2EoSBCHhpU6O6HdF+CJSLuePHAQcRiiE6jyOkhazuhMw4Kr/gzWo8+6eo2h5E00HMlqMAmL2PIWIViEuzCJFEF5PwgfXrXArsIJSLIMBu68W98jLu5VcR0SrQivKVd9CZedS1i5QvvYkIhAnuOoJR3YQM3JyOYMQrCG3dhTs3TaBn6cikW4d576vdxzee+QakC+wrFDkTtNlbKGHkHC8V+UvHmckcpjpkrlmYb4cDbH3Gm5YQrVvZ+6yYK3L1zAiBSICWXc1ruu3Pji9w/uUrJOri7D7Rc1+bS26H43jXxtiE+aM+Pj73lo0MF/9DIcQ7wI/hVcD8E631hU1bmY/PQ45WLrqYw12Ywrn0FhgmVmsnuuxgd2zBef8HaAQ6OYJ16EsIefsPRV3OoufeA7sCUdGzorAwqrug2ota6ew0SAsR8iI9sn43IliBMCywLFTfX4JykI2PImu9bkcdrkHGGlDTlyFciZ45D+khVDCOrPE6KvXw8zB/Bewoeqb/xvGuY/Ycw716FpGoR0QqvWNX1iGtw2g0uCVkOIEzP44uFREBw+sezS8gA0v3JYQg2N0L3b03asMSRUnhwlnmbedGNOz05ElmszPU1Lfwr+ZqqXEuMiN66PiZE955OQ7lt84xNJ+m7ugOYm2r+7gF4yGC8dXNdIdPXWXyygRO2SU1kyacCNO6sxkruDylfOmtIVxHMXppgtat9TiOopAr0txVh2k9OCE0PT3Nt7/9XaQ0+Oxnn6Wq6u4mIPj4+GwuG005jgNvAUGgRgjxuNb6pXu/LJ+PGqViGcOQGObD+01eK4WaGwchERW1lM89j16YQhXznigpF7Bq6zBq29BuGSFNdDkPVowlVfxroMZehGQfQpgQiEN4bXPY63MXb9yWBqKyw1tvagjcMhg2FOdvbmMGkFs/jej5BKr/B+jh5xC1O9Bzl6HGE23YEQjEvPOo277suDJahdzxxJL7rJ5HcIZOYSTqEZEqzO4EsqYZrTTuwLto5WLUd9481/QchbMvYQTC2LuPo+3gjWjY7lAXv13x8zhXJ5dEw0gXEFHJjt94ibnpMXbWNd+wCSnNp8nPJLHiEZKXR9YUZLfDDtm4jiKfLjB86iqhijDKVWw5clNMpueyGKakprmCK+9eJRgJkEsXeOuHF9Bak0nm2Xlkebr3fjEwMITjuLhuidHRa74g8/F5yNnI6KRfAL4OtACngWPA63gRMx+fO2ZqdI43v38eO2Rz/DN7iawRuXiQlK9dofjKX0C5QODY51ELU8hEDUyPgjSQlQ3IinpvYyExGptQySmMjhOreoup7Cgk34d4L8KKoidfgvQIumIHhrhLcRptQdTth1IaUb+0UF4IgTBsRPcnUCjIzyDqvOHswrAwtn0OEa6AQAQZrVzX4WSsBnv30zfvMEyMKq9+y1isjbse8dPFHOnn/gv9s9foqe/CaOllPha9Ydp6OtvPbGCOmop6/uv+GurcS8yY26ipb/GOZRjUNCztSrQrogQqo5RSOSq3bdv49bqFtr2tRGuiZOdz9L89iFYa4xYH/vGBaU7/8CJCCo58ejf1HTUEwjbJ2QxoMKTEKd++o3Uz6ezs4Pz5C1iWSUvLg6u19PHxWR8biZB9HTgMvKG1flIIsQ34nzZnWT4fJUb7pjBtk2wqz/xU6oELMl0uUZ68ilqYxmzqxKzyIi16bgyVnATtUjr1t5hN3ajULPbOxzCbPQGgM9dQmTTaVTBzBikkZIYhWrv8OMqBsR+AtCFzFV17DBFtRttxRMV2RGj5czaCkCai6dG1tzFsZM9nAY0QEjV/EWbPoIM1iPI0OLPoiTcRrcu/d2mtIDsOZhgRXFu03Zp61eUCxekhnp78Pjl7hPBoC6+c+CLaCdFbgP6gprsAkf1PE6+uYOfTn2Jueowdt0TDVsII2LR8/AjKcTAC9qrbrQdpSGraqqlurSJaHaFcdKhtv1lHtzCVRhgCt+SSTeZp3er9jtjBCvY/sZVirkTXrpa7WsPdUldXy1e+8tMIITBNv//Kx+dhZyPv0oLWuiCEQAgR0FpfFEL4ToY+d0371kbGh2ZIVEWobrj7AdN3gy4VyL/5A4rnXsWob0PNjGEc/xzCtDDbd2L0n0TNDmAk4hiWi7H9CWTCi/7o/Ax66Nue0Aoufnhr5QmulRASzAiU5sFKQKQVEW5CBIuIhhP36YyviyWBVmUYfxFtV8DMKTQBBAbIlQ1T9eRJ9MRJMCxkz48jgktTYtfNagGcUB0D81N0mcDl5+lLLpCzRxBCkQuMMlgsskXN8ycTI6SkJqEEZoWBCHszOT8YDVv1XAyJYdydGFuyPyGoblme6mvb3sjCVArLNqlru/m4lJKuHQ9PNMp6CMZZ+fj4rI+NCLLRRWPYvwH+QQgxD4xtzrJ8PkpUNyZ45mcfRQjW7GZbL9pViDvsdFO5DCqfQYRjqPlJRGOH57MFGBV1hJ/5Jdzhd9Dzg2DXdPodAAAgAElEQVQGEIHoLQd2QLsgTQhUIhse8WqwEp0rHksICa2fgfwUBGsRVhQ6vrjC+eTR+asIqwIRqL/9+SsH3AyYce8Y60WYEKpH5CYg3oWoPQxOARHvWHn7whyYNjhFdH7Way6wb5rk6vkB1MA/4mj42NnvkjUGiTgdPL/zJ9gSjhBxOsiZQ0RUN53FNIW+swQS3VQn+9BNBxDRuvWv/T5QyBZJzWRI1MWIJEI88rl9D3pJPj4+P0KsS5AJ7yv0v1g0hv1NIcTzQAL43mYuzuejw72yCpg/f4XUpSGiHc1UHdi+4bmEMlaB1dSJkAZmcxdWx44l3ZEyHEdsfQKyu8AKAXl0ehoibRCqh5anEMUFRPUuhBVZUsqvtULPvwn5YUgcREZ7EGYEYp03HgexbM164Q10YQwtJLLu0wgzzmpo7aInfwClSQh3IWo/tu5zF0JA+6ehMAuBKoRhLzrhrzIKoWorOj0M0XoYfwm0Q7nxCQbdGD3VDbhT59BTp+jTlWSNQYRQZM0hhgpFehJxXiPH/OgYldUJSpdeR82Ok+/4CjIYwmjdi3r3VQI9OzHi66th20xcV/H2d86RTeaIVUV55Av77smXBx8fH5/rrEuQaa21EOJvgIOLt1/cjMUIIZ4B/j1gAP9Ja/3vNuM4Pj+aKMdl4fQlnJlpJt+/QrSjkUD1zQ9zVSzgzk1hxBLI6MqpUWGYBHY9QmDXI6seR0gJsTp0cQ498i1QJUjsQtafQFSukcV30ujsZbQZRcz+EB1uRUjPj0sVxtGp18FMICuOI2QA7STR5Tm0m/PSm1p5/9bCLUBpGm3XIvLDaK02FCUT0oJwA7owiTt7EdL9CBmApmcQgZs1VFormH4NaSl0bhCwKRtRHv/rf0XWGCaiunlxz1MY8Va2zI8QKbeQs0aJOO1sPfEVZH4W8e1fpkY56Knz0JXFrG5AtuxCxmspnH0b7ADFCycJH/v4ute/UQrpPIZpIAxJbiFHuCKMaS//s6gcl3y6QCgSIJcqoJXewOA5Hx8fn9uzkZTlG0KIw1rrtzdjIUIIA/iPwNPAKPC2EOLvfK8zn/UiTQMzaJKdncdKRCnPzC8RZIUzr+HOzyBsm/CjzyBMc4mL/nV0dgKEQIRvkx5UZVCuV2Pl5m67PpXvRxUH0KkJRLgbFt7EqPIiWDp/BUQASjNQnkNbNaj5F1GlWbQ7gwhuRUb3IazbOMsbYVSoDWZfRFcdw9xIynIRrUro8e9Dfgwyg+jqY5C+skSQoTWOU2Igq+gOhZF2HYPzs2SNYS8SJvsZ4ov0RCyItfLqwP/GQuoaVfWVXmQpWgetR2HkTWg5jLn9SYRlI2vbbww218UCom7tyQV3w3T/JH2vXMawDYRlUkgXiNXG2fOpPcuiX1bAYs+TW7l2eYq27Q0PtT2Lj4/Ph5ONCLIngV8WQgwDWTxjJa213nOP1nIE6NNaDwAIIf4U+DzgC7IPOYVsEStg3tWHWCmZwSmUCNVWLOu0K07NkHr3DFZFgupH9iG1g7Qs7Nqbxda6XETl0gg7gC4VcC78AApJjO5HMeq6b2ynFvrRwz/w5n+3P4tMdCw5lnayIG0vkhSsg7rjUJxDVK39NtDKQRf6IXEYFl6EcCfo/I3HRbANlXrbS0eaFYBCladR+YteWlOngBKqNOtF0eRqb10FhT60TsHcD3Gj2zAiHatsuxoChOE1HBgBT3wFmxmcHrsxE9Jx8px49W/IykEiqotXv/oX9HYJIue+R1b2e8O8934RWUrCxBnkwgg1WqEnzkJuxhNkX/025GYQkVosIXAmRyi8/LfIaAWhgyfQ5TJG5doTDu6GhWvzWEFPiGXTKWo768jMplFlhQwsF7INnbU0dN5d56uPj4/PatxWkAkhvqm1/lng94C/3sS1NAMjt9weBY6usJ5fAn4JoK2tbROX43MvGDk3ysDJQcKJMPue3bOi0/ntKC5kuPaPb+GWXap3dVG1u3vJ49lLV0BAYXyCUFcHDZ/5OAiBEfS6A1VymtK555BOHlHRhqxoRU+dQ4YrUGPnMeq6vQ7D3Dg6O443HFJDOb3kOCp9GebfACMK9c8gzDCiYumon9UQ0kQE26EwjEicgEADMnxzpqUMdSACDSBMhDDRbhptBMAMod0sunAZVegHEUQEajFiJzDCPSsdCXQJxGLdl86u+zrfXKsFjc96EbL2n8QVYU780c/eEFqv/OT/Rf+VvyUrF+vC5AD9c5NsrW3i1a/8Gf2jF+gOlhEzb0HNQe+rW3UnenYQGvfBdTPb65GyRcpXL0EwhJuawXLLmDWrRyhTlwbIDowQ29ZNtPPO7CUadzaTnklT1V5DR2MlU31TdB3pxgz4FhE+Pj73n/X85TkohGgHfh74A9ZrOb5xVtrvsmpirfXv4YlDDh06tEq1sc/DwkT/FOF4mOx8llwqT+IOBJlbKOKWXQzbopRaLjACTQ2kz13ACIUwoxGMUHDp8+fHvUHfdgAhk4iZfnR6DgWYnZ7m19eeQ6cGQFqQaEcYIUTFBwRPbhBtRMFJIcoLYIaXPKy1i8pfRLspjPBOhLG0+F7GDkNkN8jAinVd1+vJvBsm0q5CmXvR5RkggC72IVQBaEAXLkO4B62K4CyAmUDIIEJIZMOXUXPPI6xa5IqibW0c16U/VaCnegfCTdHf/22ysv9GKrJ/8gpbohYRp5WsOeJFw6obQCnMb36e3pE3oKoV9eSveNe98RDqE/8akMjuZ2CVRguzqZPSxZPISAUyunpq1i0USZ6/ghWPsnDqApG2RsQdzGqMVsc48E8O37jd8oB9w3x8fD7arEeQ/d943ZRdwEmWCie9eP+9YBS41WyoBd9W40NP+94WLr58haqWKqKVkRv3a61B6zWNPq8Tqq2kakcnpXR2WXQMINLdSaCuFmnbyEVDUJ1PodKziEgFRm0b7kQ/IBC5MUQ0gdBljN2fQl43bC3MgBlBuDlE4zFEYIXOvvguxOxLEGyEwNJUmlMcQhcuosoLSLMKN/8+ZnRpgFcIAcY6TW+FgYzsQ2iFEAFU7ixKWl7KFAVWPVorVOo1lJtEGjFk4gmEMJCBOmTjP13fcT6A47o89gdfvhENe/lzX6c7oom4rWSNRfHVtAcxPc3LT3+VAXs3vfW9SCnRqXEYeROhXPTsVcgnoS6CCFVh9H5+yXF0KY9KTQECWdGAMG2s5m7M2hYwzTXnfkrLxK5MUJpbINhQuyExNjM0xezANA3bm0g0rt29WS459J26CsCW/W1YKxT7+/j4+NwrbvsXRmv928BvCyF+V2v9q5u4lreBHiFEJ3AN+EngpzfxeD73gbrOOmraa5YUSZcyeYaeP4sqO7Q/uZdQZXSNPXhmn9V7t6y5jRm7uQ/tlCid+Q7q6rsgNPZjXyVw9AsAOO/8Dlz9HsTb0FYQNfaPnjFrzT5EehiirSuLMUCGmtHNPwk4aGcOiCFkGOWmcVLfQ6kswkkjjYMgEzjlEdAFDKsVIYIr7nMltCri5N9C6wLS7sSwW5D2U976C32o/HmUmkG682iVQcgw2s16HZgbHLfkuC79c5M3asP65yaXRMMGMga9RpmXn/5pBqwD9Nb3ItwU1D+FbcTYmp1GZ4dwyylYuICsaUPPDEPTAWTvT0C0ffn55VMUT/4N7sBJRGUz1pajWNu95gZhe2lmN5XEzWYwa2qR1lKjV2EY1J44iJPJLXndnXyR+b4x7FiYRMfydGcpX6L/5ctYIYvLL7zPwX96bE3ritFLEzcEWTBs07n7Ry+ClkwmeenFlwlHwpw4cRzbvnemuj4+Phtj3V/5NlmMobV2hBD/FfB9PNuLb2it39vMY/psDKUUTtHBDm3sj7YARl6/SGp0lqbDPehymVIqh7RMFgYmCB1cW2xtGNeB3AK4BbQVxZ14H6NpFwAyHEFv+STCSSNyI5Dp91KP+VFk26dufy5C4GROoZ0pkEHM6OOgNVoXkSIEVhAj+ghaCJzSOQQStIsw6ymXziJkHMvaiusMIoSJYXZ7g8RvQes8WhcRMoxb7EO7SaTZgmHVg84hZAh0GbSDjBxCFwcR4Z1e7dcKaO2gcpcABxna5tlYsDwa9upX/5ye6gYiqvtmYX7rIwh3O5a02WbGULkR9MwLgIJ/+CZcexdR3YY+8QXQoD/566BDyO4vrZqa1PkUFNPe46U8uri0Q9XN5Ui99hK6XMZuaiZ60Is0uoUibq6AVRHzmjYql1qXTJ7qIzk0idZgRYKEa5c+bpgGdtimmCkQqYnd1qPODlk3aibs0I+m4/3p02cYHx+nWCrR3t7Gli33+L3o4+Ozbh6qGLzW+jvAdx70On4UcF0X4w7qalbDKbuc+f55klMpug910L5nfaNsAAoLOeYHJglWhJk4NUDnE7swAjbadYm13FkXncpnAJCh5dE1EQhj7HwanBzCtpGNO28+1vIETLyJqD4M4SYvhejkIXz7cTeqPIFTOIcujiGtJlBFwEEYMczocXRpCBncg7RqUCqFQAAuSJtS6SRazaDVCFqVEFKDckDEgCJgYRhNCCERMo40m1DuDFqXQZdwSxeQZg1GoBtXlUCGEGYN6ALILoRRiXYzXlOAXBqNU8VrqPz7uAqGZtP0tjy6YjTsRmH+V/98SdQM45bXqDyHFkAujbj2rpeenBmCmfcg0elNK2g4BkKgy1kwAogPdISKeB1G8w60MDAq2zB7ji290E4Z7boIy0blvU5Ut1hi+oU3KGdyRLvaqDzgvaZaKVLDk6iyi9KLNm1SIORysWVYBjue2Ut6KkkwHrqtIGvqrsMKeEKstuXBm9NuBjU1NZx33sMyTeLx1Q2HfXx8Np+HSpD53D1KKV5/8QyDfWPsPdTL7v0bL+r+IMnJJJP9U8yOzFHZVMHw2RGE4xKIBqjrabh9pCEaxI4GSA1OULuzjWBllN7PHUVrjRnYeOTBmZugfNbzJrb2fAyzqgHtlsEtImxPoJn13RhP/zrutZdh7G9wi/3I9s8gE12QuFn2qNu/6D0vsHxe4a1oXaKU/h6oDBqFFG3I4FaE9Ar7rfBBdOjAjWshZRwzsA8oI2QljjOJYgKBiZRxtJ5HCAOlFjyLChRShhGiCiEkZnAHWiucwttolUXIOCARMoIZObS4pjJO9k2vsF+7ICRCmJiRRxDGzRFGUgYpK83j3/pDcsZVr1PyK3/ClqpaIqpz0bqigy1VXj2dQZ7e+KKYvO5+qpRnURHuhuI0BJqg5Qh69C2oaoT6IxDdgmj9DEJaqKlzqPHXwYoh259ChGtvXBth2ljbnsTa9uSK19qIJ4js2YczP0ew04vYqEIRJ5vHikYpTs3c2DZzbZZrr7yHEIKqXe00Hd2KFQ0Rql5ZXEhDMnR6hNxCjs5DnbSukYYUQlDXuvbvxYedHTu2U1tbg2VZVFb+aIpOH58PC+sWZEKIHR80aRVCPKG1fuGer8rnjslmCgxcuUZdQxVnT15h174tGx4fdCv5dIEz3z2HW3bILuSwQzbBgOTauRGU6xKMBUk0VlJM58nPpYnUJrDCXkqsMJdGuS6hmgQVjQnUzCylqRmK82kClTcFQ3FqhvLMLMHW5iU1QeAV/5eHL+FMT2B378SsqkWn5xZH+uD9HIvjXvwOFJKItmMY9YsRMbcAg38M2VH07Nuoiq0YFb1L9i/MiOe3dTu06wkNBULYmNGjN8TYjX194DoLGbvRTWkHDqJUI0KEkbIWrbNe5EvNorTrpTYxPrA/iRncv1gntkKKTSvQZYQM4haHkXYzWhfRKoNL+GaUy65nyN1Bzrh6Ixp2Zfiv6K2u44XPfJWhjKA76iJ1Du3aqLnnwM1DsBWZOOaZ3n7zJxAjbyJajyK++m3PsuLnnkSnr6FTp6AwCRU70clBsCLo+UtgRdHDL+EujCMaDoFdBcJAzY0jKxowWlYfbRVo7SDQ2kGmf5jcW2eJdLcT7emgMDFNYvd2nFyRwkIat1S+8RzDNKnsWTvSmUvmyC7kiFSEmRqYWlOQfRQQQlBX93DNDPXx+aiykQjZ/yeE+CbwvwLBxf8PAavPmPG574QjAZpaahm7Ns2O3V13JcbASwkBGJZJx+5m9jyzm5HTw1w7O4KQEiElbsmh7wenKedLhKqibP3UQXJT84z88BRaaxqObEOXHexYCK0Uquzc2L+bL7Dwxls4qSTzLzxP7Wc/TbD1ZjpUZ1OULp9FBMMUL7yNefxTGPXtqFmvAdeob4d8Ep1fQAQT6LkBWBRk2smBk/KK9gPxZSVN2llAZS8gzGpEuHfFa+U6U6jyIMKoQYaeQDrDGHYXiBBKJdHaQcrKZTYWrppG6UmkSCBFC1LaSNlx89iAo66CUAiCCKHQurjs+ELYCGPlKI2QAWRwL255gqRop5IRpFmBSwXHP1gbVrvlltqwDrZUVKDdDJZdRU98DmFWgREBN4t284hiCW0soGafQ89dwBh5w5tKMPLmTWNXKRGJVpQzD5kxGPhLtIyAYUP1Qbj2OlrYiFgLznvfQVTtoDz8HkbLPk+UVTYioqtHZdxikdTZ9zGjEZKn36Pxs09TsWcbynEZ+u5blNM5ApUxmh7bgXYUic6GVfd1nWhVlOqWKhYmkvSeuPvosY+Pj8+9YiOC7CjwW8BrQAz4L8Bjm7EonzvHMAyefOYwxUKJYChw1/sLJ8LsfGoH6ek09T31GKZB6952QokQgXCAeH2Ccr6EW3KQEqbf7SMcNok0VqGUQhoGpXSOmn1bkAGLQCxMsPYWj6lFD9bS0BBmIk72zGns+nrkYreXsAOIQAiVz2E1ekbAMhghcODj6FIWNX4KZYYQiWZ0Zgaj7abVhDBDiOanYP4CxLcgYkstM1T6FDgpdGEUYdeAtbyezSldRusCuNPYoSeQgUe95+o0jtsHgKaIaSwd8aP0FIIwWi+AqAc+0Aihy1y32dOkkbIBV11DymrEBjolhVnPz/x+P++OXuJASyt/8rVe+uZGl9SG9Y29SncsyYtf/m8ZyjexJW6gcycRMoKMHvKEqLS95gIZw/j278K1s9C0G+fRA2DG0LXtMH0VWo+gLQs9e9oT5IkdiPnzEKzxomLBZpAmMt6MrvtVxPAr6IURqOjyxlEFIlDKQziOsNb+/ZSmiRWPUlpIEait9qJyeHMlnVwBKxqinM0Tb29ArnM4vWEZ7Hp6J1rru/6y4uPj43Mv2YggKwN5IIQXIRvU+naTjn0eBFJKQuHlNgtKKRYm0wTDNuHEOv2wgOrWKqpvqaUxLIP6nsYbt62QTfvx7Yy88h6xuhiZsVmCVXEqt7aiimUqt7ZihYPUH9q2ZL9aKYxgkKrHjjJfyiKFwIhGl/hKCTtI6OhT6FwGEavAnRkE5SJrOlFjJ9GzV9DKxex9FuItSz5khRlGdnwZmhYg1LDE20prBzDQKu91HcrAYhrUQYhb69oEjnsVhMRQC0gjen3xNx6H5W8DKarQehYhYlx/m2mt0Nr1CvdFHClq0drBkCG0ziFFjNtNrFZKM5stURO1EUIwnSlwXv0Wwe5hzufbGZ/+FTrCgojqIisHCKsOOsIzIOsxnEm21uxGyCA68ElALBd/uRkYO4vQLnrsHMI5ihYZ1Of/e4zYY+jUafTl34FyBqIdaGFC9R6YfA0aHoNgAwRrINyIFAK6vDoxo5DGnR7E3PYkYCBDMUQgvOz8bkUYBtUnjlJOpbEq4jdeWzNo03BsB6nBcSq2ti4RY/mFHKV8kVh9Yk1LC1+M+fj4PGxsRJC9DfwtcBioBv4fIcSXtNZf2pSV+dxz+t+9ysC7VzEDJse+sI9IYu0PxI2QaK1Bfmwn1148B2hCNXGiTSt3UGrHIfXWWzjz80T27CHY2krt5z+Pm0xixOPLjD5lMAzBMO7sEO6lH3p3OkWwwmi37HXxGYEVP2SFHQd7aYG3k30fd/avAAsZ3oZMfAxkGLd4HuVMIqwWDKsZIUJIqx3BNYR2cNUwpm5ECAMh4hiyDY2DIZfPN5SiAUQNYCKEQOsSSvejmAEdxxQ9mIZXv6S1i9dpufI5XEcpzU/+v69xcnSE/U0V/PHP9yCNOEZoGITCCA0jzSzSiPP8l/4lg7PjdEU1ujSIWxzCjD/qDTCHm1Ybi8X6RGq9zkjLgPou9EQ/uqYBLIlIHMSo+6Rn73HtfS+1me5DR9oR0kLGe9CJrQhhrrp+EYxhtt6c96lKRVQ2gzBMimPjmPE4Vs3y3xdpWwRqlqds4+31xNuXeo3lF3Kc//tTuCWHpr1ttB3oXPVa+vj4+DxsbESQ/XOt9TuLP08AnxdC/OwmrMlnk0jNZLBDNsVCiWK2dE8FGUCsqYbOZ71RNIGK1c1enVSK0vQ0RixGvr+fYGur57Jfe5vBzdejUkJ6UbKm/YhILcIMIqLrK0zW5TnU3N9DfhCMONh1i8O7y54YMypxCu/iqmmkjGGYO5BGDUJbi5EzFzAQQmAYq6/XEyY3I22aPJocXpqyhNYphAgvbmsAy1+L1aJhoe5hLuTbmUr+C5pqHuFg/X5OT59mX90eaqPdCCGxZQW9VWnc4ijCbvfEktW2VDApBX/wGa8urPWoN+xbgPrM19FzVzwxFu1GxPYhzChu8jKkR70uy4anEPXHEdHOxZdkebdseegs7sj7GK07sDp23zzsdZ+xYgHXBa0lSEnlk09gRtc2CV6LUr6IW3IwAyb5+dztn+Dj4+PzELERY9h3hBCVQA9eyhJgeFNW5bMp9B7p5NIbAzRV11FRvzmeQysJMVUuk3z7XcrzC8T27KLYf4ni0ABmXT2Jo8dW2MvKyKp26HoMtIus34peuIyeOglV2xHR1QdRL0UgjBjaiHgF9ZG93jBvJNKsxy1PghlGyihaZ5FSY5v7UWp8sb5rcTQTZaAEhBY7JFdHU0QzhaDkVY1p24tG6SJCrFxHdT0a9u7oKAdaWvnTX3wEw8wuiYYZlkLIAP/5E/+RmYWXqbQjmIGtCCOC1holI2DUo4pjCDOBtKrQWt3oGCU344kx5dwo1hfROkTV4xDZCoVxbz5muMO7cuUkxLehdTei5ggy1o2a7UOlJ5D1OxGhmwX6ulzEGT6HjNfgXD2H2bIVYXrXzs2k0cUcMhSmNHINWVXnFRKqu6uAiNUnaNrbRn4h50fHfHx8PnRsxPbiF4Cv482YPA0cA14HfmxzluazUbLJPKZlEAjbKKUQQiyJiMSqIhz61O419rA5OAtJSpPTGNEw6VOnEYUkRiiAGQ4Q6lr/KFQhDYzG7cBiPdbYKxCoRE++g67chrBub18hrEpk1WeRscOIYAfS8tJhQkiMwC6MwDaUO4frjGKYbQgRwDACGMYtYgMHzTBetCyBYHl3n0bhlVzaaDIIodFUI1QFkELpGQQLSLagtbwRCbtejzadKS2pDZvO/Bl1sepbomG7qYsdxC1eQbsFKi0QuoAqX8MwFjtGy5Po7AXvf/NxtFLo8b8ESyD+f/beM8jN/L7z/PyfhJyBzolkB2Y245CTRxpNULAseyVr5SBvne3d8tWd9+7FXV257tZ3e16X9857L7xbXkvr0TrKXtsley15JY3yJM4Mcw5NsnMG0A00Mp7nfy/Q7BzQze4ZkvN8qrpINJ7wfwA08MMvfL+B4xUB1dpdMNYDzScQnkrGT3G1gmu55ZEI7EEW4pXJT98OZG4K696PQVGxspOoe396fmPNQA03YCWGUSNNoM5n0LRQGL2mHjM1ReDjL2HOZNECfrQHFCZVFMUOxGxsbB5ZNlKy/A0q/WOnpZQvCCF2A//n9izLZqMM3x3nwvdvohkqXUdbuXO2D3fAxf5nO+i7NMjUyBS6rtK0v4mG3fXrH3ALUb1eVI8LM5PF07mL9A+/g5nNoHmcmOkUqm/9D+KlU3FCKAhfC3L6LrhrQV0+xFAxMC/OWQXNrcfZAM6GZdvfLzOqWi2qtlbGrUwlcNKA/MrrZRRIz25TCygIIRGKFykTSKlhWTOUrXv8wmuDnBsa5XBjlD/9sh9V1VHU6OJsmJZBCBevvfIaiXyCiDNCOfMTkCbSSiNlZS1SmX8sZSmOLI1BKY6c/Ab81W+gjNyC+i6sn/nXFWupn/pNmBlGafnCqlZHc4+P7kU0vjJ32xLFSv9buYzQ54dEpFmmeOcKVllD3/8x1FDt4udO1/Ee33q1nJFbo0zcnaBpfyPhpsdb0NXGxubxYyMBWV5KmZ/NujiklDeEEF3btjKbDTE5kEQzVIq5Ej1netEdOqnJGW6/f494f5x779+j+UAT+ZkCsbYourOSsbBMi8xkGsPjwOGt3gB7I6guJ+EXnkWWSqhuN2Z8lPLoMFrAj9DXV+o3J3uwet9GCbag7HxmblpSNL+IqEmCEVg0QQmzGbTkW8jcAMK7B+HbB+UEqD6E6lmybRGzPAgYqFrDMk2xpUgJlrSQlCqm4aIXQT2SMpAAvFSa9DXARKADlcyNaUFP3GBnSEWKaSYzM1yV/26uL2wy8y+p9XsIObT5bFhtNxFXpeFdEQpRV3R2JQpWaQCEG0WNQmkYcjeQehQhFVRZh6mFkblBREFHjNxCSAs5chNBGJwKcuYa+JtA31jvlrRMzDunMSenUSINKDuem3++EuMU711HaDpCM9Ai2/8FoJApcPvtHhweB9d+dIMnv3SSctFEM9Q1py0BCvkit68N4HI72NHZsO72NjY2NtvBRgKyQSFEEPg74HUhRBIY3p5l2WyUtv1NJMfS+KNeovUB7p7rx+V1EGkMkRhI4vS6MIsm7qAbVZ8PXvrfv8PErRF0p87eTx/BcD+YdpmZL4BloboXy2ooug66Tik+gZVKgDRx7jmA4lxffkMOnEE4A1iJuygNB8E9W2ZUVKTmqihPLMXKIXP9YNQgM9exrDSUxxGKCyX0CYRS6WeyzGnKpdtIKwMCFMWFUNfx15TjCBQEOSpN+g4kU0BmdoMJoBbLShHPGNTMNuUvNfP+0ULKIAcAACAASURBVC/8XwhtclEmDDGBWcqgOXctyoYtnV6UVg4rP4RVHK0o9JtDKHoNmNOzyvpfRAy8i9F0gvKnfg3iP0HGGmFiCOr3IoK7QXUj3Dsq/yobM4ynkKE8eBVrKo45PojW8QLSE8aaTiIBRdWR5TKK98F7FS3TYuLWCFbZpKarAdVY/ralGRoOj4N8OkegNkD/tRFuvnuPQNTL0Vf3o6+wz32unr/LjYu9WFLi9jipb46uuq2NjY3NdrGRpv7Pzf73t4QQPwQCwLe3ZVU2G8Yf8fDcF44xcG2Y26fv4PE6OPKpg7h8ToK1AcxPHkQoAk/QvUi3KTOZxnAbFLNFSrniAwVkxeQ08TfeRZqS0KkjuOqWTyGWE5MIVUP1+pCl0gpHWY6ItiNHLiHcYTDmMzlW4gqMvgVGANo+OyvyOoHwtlWCDFcrMteP8O2F0hBScSOt/Kwoq4FlpioTleYkKAJFjYFY/09CoiKZqjTIY6BQoNJPZiBEBtCRlocvffXKoqb8pWbevQmTzppDHKnt5uLERbpr9hFzxlCEgVnqQ3dGF2TDKiVYWRzBzF5CluJgJhFmFmEVUTyHoTiCcO6CXG6uWV8Mvodq/AdkYAbrlTaY7kcJ7oPpyyiRk6AHV77I9XB4K8/H6D1EsBEzm6Z44xrmdBLF68N17HmsQh5LGFjF4pzQ72aYGpik//QthCKQlkXDobZl25QKZVSXgSEEnU93cvY7V/EGXUyNp8hMZQnWrB4YqqqClBJFKFULzNrY2NhsNZsyF5dS/nirF2KzNqP9cZJjKZo76/CuIeo6cmsUd8BNJpmlkCng8jnxx3yrbt/6RDuD5+4R7ajDHd685ABAKTmNVTIRmkpxPL5iQGbUN1EeHQKhoNct7+NaCaXpKDLaiZzqxep/C6W+uzLRN30bqfuhkITMAMTfBllGZnoRDZ8E30FE4CiK6kKWmrCytxCO+gUlyzJSWggRQAg3mr4PIarwtcTAsspIOQ2igMSHIEEi4yfmb0QIBxMzpWVN+R2Rujn7Ire1gx2hEqoS4muvfI1EPkHY4aFcOFvxpxTLe6Cs7FXM6R+DLGApbhTFBUYDirsb1apFBA9U+sCkrMhYzMpZKMEdSG8Ic/IdSPUjC4llfXUbRSgKjhOfpxRqRWgaarQZ69pVFLcHmc0gnB5mLl2nnEyiBYMEn3kasclSoKKplSyolKj6ym9ZgzdGmBpPYZkWidEp2g42cv3tO0SaQnhDaz+new/vxBtw43AY1NTbBts2NjYfDusGZEKINPc9XpbcBUgp5fboJ9jMMTOd473vXAUB44NJnvvcEcb74xSyRep2RNEd831YrQeauPbGbUINAbyR+QCrOGtv5FqiPeaN+dn98qEtWaezLoYRDmCVyrjbVjZ5Vr0+fM+8uKHjCiHAKmINvweqjplLoO79HES6of+boOhIxUBICajI4hTW0F8jzBmEuxkZfRGhR1EDi0tRQgkilAiydB2EjlnupVzKomotaHrzyosBLGsayxrDIo2QDiyZ4Ze/pnNu6ApHm1pmJSqmV2jKd/KjL/2/3B4/TXukDm3Wo3JhX5juOIyUOYSyPHMli4Og10PuCorRguY7ilD9iD/7xcVaYopS+XeB4CuKG2VmBOluh9I0MjWCNTWIaHgW4QiscK4sMj2B8MUQxsp6dcLhxtj//Nxt56GTlAbuoHccQGg65nQK1eulnEohy2XEJrNkgcYw7R/bj1W2CLWurP3mCbqQVmXYw+1zEW4I0tBeg6Iq66ry67rGrq6Ptsm4jY3Nh8+6AZmUcvX0is0HgqIIhADTkqiqQnIsxdlvX0FKQSqeYd9T7XPb1u6qIdYWRSjzkhcTd8f58R9+H0VVOfGlUzTtXz3Y2ChmvoiZz6MHfKhuF7EXntzUcaRZxsqkUNw+hKavcF8cWS5CahBZyiI0FbHrFXCGoZhGjL6JrPsY5AeQ8XchfgnpqAUziwg9BdryLIkQCoqiIfRmLHMGaY4gtCZKpUsV3TG1CU1rmLVZmrcZsiyTeCZG0D0NAiYzJlflf8S1mkTF/aZ8mUWVQ+yO7awo/KvzEg1WaRIrdx2h16A4VzY6V1x7IXsJAi+ieA+jqC6YGV+mJXbf+JuFYrlCQyoG5NNI3Ijpu0jVgMQVRP1iS1ppmZSufAdy0+AKoHd/tqrsll7TgF4zn/X0dh8id/cuvkMHN1WyTI1O0fveHbwxP20ndq1ZTqxvr8Xtd6GoCrrLID4yTTDmtS2SbGxsHhk2VbK0+WBx+5w89elDTMVnqG+LkkvlAYFQBGbZXLb90g+uvrO9FDNFQDB6fWTLArJyLs/I997FzBcI7N5B6EDHittJ0yQ/MABS4mxpWWaNBFC4/DbmxAiKP4jz+IuLpibN3neQ47eRUkc4g4ia3cjMOCKXQJQLlcZ+q4Bw1yEztxDxd5FkoDCKNHzIUqqixr8Cit5IOZ9AqEFQnUgriUSCcGKafYAT0+xBCA1N68AyC/zCa8OcGxqjuyHGH/8zJ7oq1pWoEEIgMUAYWFYeFRfIPIhK+dnKXq6UW/M3Qa8DbXnWSnG2oBhNlaBLmZ2I9cTmypOy6TjSTCF730RobkT984j7ciBmAXIlyGUgchCRGwVpVnwnlz1hFhSzCIcHWcxUtltH/HYlnM1NOJs3n3nqP9eLWSwzcWuE2M4afLXLH5OFBGr8FAslfvS358imsjTuquX4J/Zu+vw2NjY2HyQbKVmu9FXTLll+QITrAoTrKh9ITrfBgee7yKfzNO9dX1Kgfk8D/ed7scoWrce2TjiznMlh5goIXSM7MrlqQFYYGmLm/HkkAiyJa9diMVhpWZiJcRRfECs9hSwVEY4FulaZBOhuKOVQGp9Axq8ifPUIdwxaXoWpW+DfBdlhiJ+pBBSKB/w7Ea5mxArm3/dR1BC6+2lkebpiyaS7EOVbSCuFooaxrASTM5KIJ0+xcInJmTJX5f+Ha1cf13OtpPN/QJ0/uKJEhUAQ0VWwMqB6EUJHd3RTzlyCwhDlwiRCb0RR/aAFkcWBiozGav1dK1kdzZYnZWoAOfkG8tZXQDXA1VB5TPyzz0lxGqxC5TEpFxDtnwerhHAtLwEKVUftfA45fhulpgOhri9Nsh0E6oIMXx5Adxk4fNVJshRzJbIzOTxBN/HR6W1eoY2Njc3WYZcsHwEsy6KYL+Nw6XPq+02d1VoFQeP+Jl75Xz6NZqgYbgdmyURaFppDp5gpIFSB7qyupFTM5Jg8f7sSgO1pIz+VJnmph+gT+zDzRRRDo5TKoHldKNrsy+t+2ciyKM/MYBWLlRKYoiBmf4w9xyjfvYrefhDFsXhoQdv5FObgeRRfHUrDfmg8BsqskbW7HuGuBKVmqqeSOfJ1gqcNETqAMMLgXDtoNYuDWPnLgEDzPIGu76k0zksHX/zqG5wbGqG7VuM///wkiNpF2TDdcCDQ+E8v/h5TJZOIKzZXJrOK97ByV0GoaN6nEGoAIRwosoRU3Vj5e1AYqzTo+59C+FpA8SCUVYKPFayO5sqTDieYGXDXw/RN8O2oTJ/exxVDBDuQmRFE41MIx3yPmiwVsKbGEZ4Airvy/UoNN0F4/eyWtCyKE3EUhwM9OP/dzCwUKWcLGAHPppv5mw63Em6NoLsdGK7qXp+egIs9x3cwem+S3U+1beq8NjY2Nh8GGypZruBliZTyJ1u9qIedYrHI1FSKcDiIpm1v1deyLM589xrj/XHa9jey/8n29XdaAXew0pidncpw/buXMcsmDXsaGL06iKqr7H75EK7gymW9cr5Iqn8CaVmMn7nB5IUeao91MvzGRaYu3KCcLRI/d5PGF0+S6xsiMzCKEQ5Q89xxFE3F0Vhp8E9fuUb2zl2yPT2ouooWCOA/earyYV7fhl7fhiyXsbIzCJdnLrAR3ija7k/ML2iFjI20SpC4BPkZCHajtn5uRcPrRftIC2vmLGb2QqVcqYWYmJ6mJhxGKG4mppJzoq3Xc63E0z9FXUBypGY/Fyev0l3bTdjho5x5G6wsQb0ZIRb0bZlpEDrIEtLKIdRKgKS49mJmL4HeAKWZyjUKBaEt0T+zLGT8KlI3EL62irXRgulJPAuyW44oBPYgssPIhpcQnmaEMR8gCUVDtKw8TFG8/hZWfBihO3Cc+AzCWB4QmjMzZM6fAVXFe+TYnH7czI0eZm7cQqgqkeeeQg/6MQtFhr//PqV0Fn9HE9Eje9Z8HpY/L5JMIoPD48AT2dj3QSEEXYdb6Tq83PrJxsbG5mHG9rLcIKZp8s1vvs74+CTNzQ188pMvPlDj8EwqSyFXIlzjX/E4+UyRsf44kboAfVeH2XdqV1XnsyyLeH8cy5LEWqNzfWWpsWlKuSKqrjJ4qR+HU6ecL5FNZFYNyEbP3mbq3hj5RArDpWMEPaQHJgh1NJK6aqCIIkJTUT1OssMT6CE/xeQ0VqGIorkQioKzuZmZq9fRAgGyVy7h2rUTc3qa8tQURm0l2yfLZXLv/xAzPYXe0oFzd3f1D2QxhciNQ2gflGbmgjEpLTDzCG3xpKBlSSZTCUKlQRSjhXL+Hr/0X2o4N/I+R5tG+ctfPQXl84uyYcLqRVX38Norf0wyO0JQZJGl4UqwpbiRZnz2nGWs/BhWGYRlgaMNoc33agktiOZ/FinLyHxfJWgzlmTxLAv5tZdh8AyEGzBP/TRK82cQX/4HRDY+Pz15/5iKiqh7tvrHawEym0YYTmS5gDRLyJyFmZ5GDYRRHJXyab73Ltm+vko2s7EJZ+us88DMDELVkOUSVqEAQDlboJTOYvjc5Ebi655/9MYwA+d7ie2qpfX4Tu6d7WXg8iAOj4Mjn+7GcG9ew2wpt27c48K5G3TubqN7g4GijY2NzXZie1lukEKhyMR4nGgkxPDQKJZloa7QpF4NqeQMr//dexSLZQ490cHe7uX9XU6PQVNHLcM943QcacGyJIrCukFZvD/O5devIZB0Pt1J457K9FuwPoTD68QqW7Sd2MXwpX68ATf++tUFQq2yVdGd8ntwhzz4mmLUdO/CFQvgjviYvj1Azan9OPxegt27SV3twd+1A9W9ONPiPXSQzNXreLoPY6WnUX1etMB8WU3ms5ipKVR/kPJwH2wgIJN6AKl6IXENWj+DNX0bmbgIpXhF0T98BCV8pHI9luSffvU0Z/qSHG108mdfyDIlTnJV/B9zk5LjU39I1BXmSLSFi4k+DobqqVGdMNMD+AiZ08jiBGZhAnQf0qmhug8DYI7/PXLiu2DmkJHnUJ37EUsEZ2V+HJk8D64mFP8OyEwsDrKykzB0FiEtSAxBPgOJCxDsWjw9uQUYe5+mPHgDJVyP0F3MvPk6Vi6L6g/jefJ5hBCUplLkewdACPxPzPfkefd2ISVoXg9GtCLjYQQ8+DtayI1MED7cuea5pZT0nbmLJ+xh9PoQdXsaSA4mcfmcZFM58pn8lgVklmXxzpsXCYcDnD97g86uNtye9Z0ibGxsbD4IbC/LDeJ2uzh58gjXrt3imWdPbjoYA8jM5CkUyjhdOvGxlRuQFUXh8Au7OfhMB0O3x/jO194i1hTiyIt7ULXVz10uVaYvhRBY5fkPUKffxaHPHZs7dqy9bt111h/rwBny4gi4CbQu7l2re6abumcqgZOUklKhjAgEcTXVLwsanfV1OOsr57NKpUr/2ILHT7i96E07KI8OYuzemDaayA4js9OgBKBUQA5/v9JTNXMbs+mnSIzeoCZ0GJkbYWLofc70KVgiw9khH1PGC2haaXE2LPWPKPWf5D+9+PtMFTIERRqZuQx6LRRHQHGBlUcU+hHqPkTJRNUrJUSZvgKqG0qTUE7POgMsRo79GGQZMv3Iv/2fEENnFzfqe2KI5pPIgdPISAv4W7Cmx+Dq36C0PI0S3brsjuKPYOytSF/k+/vI3bqFVleHyKYrIrNCoPoCuDp3AxUtudJMltzQOI5YiNATRxY/F4pC9EgXsP7bgxCC6I4aJu6M4qvxY7gd7Di+g553emjYXY/3AcWKF12notDcUkffvSFitREcVfZN2tjY2HwQ2F6Wm+BQ934Ode9/4OPE6kN07m9mOjHDgWO71txW1VR6zg/gD3sY708wk8wSWEOBv3ZnDWbBxDItGnYvLodt1DxZ9zipObj+dGYhkSZ+sQfV0Bk/c4PmTxxfdVtlBVNxoSg49x2DfceW3SfLRUo955CFLHrHsbnm8zms8uwcsAqFFEz3QHEKS1H4+b9TODse4Fjraf78kyOEjTLRnX9CRhvAY+0i4nsFRSizk5LnORRqIqI7EFYJ3dVGzDnbbyYcUBpHeA4hND+W6keWCwhAqPOBg4h8Ajn+LfAeRISeR7hW6GdyRCBzB0plGDq7vFFfCPjyNxHZSXBHUFL3sHq+C54YcuhdWCUgK4/dwxq7i9q0BzW8uhOClJL8jUuUhnpxdOzH0boLq1ggd/UiSjhKaXQU70//3FxDvmd3J4qhozid6LEoI6+/TTmdRdEU6l99FtVRCW4K0xlKmTzummBFYb8Kdpxqp/FAM7rbQFEVwo0hTvyT1V87D8JzHz/OVHI3/oD3gb5M2djY2Gw1VQVkopLq+B+llFPYXpZbhqapHHu6+kxHy546bp3pI1jjwxNcrp5eKpaRlsRw6iiqQtP+ldXytwvVqaMYGmahiKd5a8tqVnIUc+g26A7KA9cxup5YvIG/DeqfQZp54kodEf8ehJUjobRxdtzAEmnO9EG84EQUb1IwBhDSoqDdJVlIEnVFK7phmUFCxT6E6gLHfCArhILqO7z4en3dKM4dYKbAmL9eLfQkMnAMhIYQS4Jfy4LsJCL2NPg7QfMhmv9h5Ub9WXFXMXt9wt+InBmD2L4VHyNZzGPefAecLkrX3kB58vOrTjjKXJZSXw+qP0Th5mWMlp0IRUUxDKTpxujajx6bz4YqDgeePZUMmZQSTAuhKkiLOR+P4kyOe985i1UqEepspv742uXK+ctUcPo/mNKhqqpEopv077SxsbHZRqoKyKSUUgjxd8DR2du2l+WHQPvhVpq66tEdGuoS8deZqSzvf+sS5ZLJkU/sJdL4wXvy6R4XzS8ep5zN49ziDz3h9IJugFlC8S6/Npkapdx3mV9408+5xD2O1O3j6z/jJBLaTbT9V8god/CUWwiM7kf1xeiOHuDC5BW6a7qJOCvTjYpQiHpbgJbq16UHQF/QB1eYQmbGEN76RVOOwCIdMbGWzdFK51E0lPZPQSkLxiqZUVUDpweZS6P4o3PHsrIZCvduovoC6M07K9IpDgdqMIw5lUBvbKuUlzUN76lnMKeSaOHIqn2KQghiTx8hMzCCqzaKOlv6K+eKWGUT1WFQnM5U/Rja2NjY2GysZHlaCHFcSvn+tq3GZl2cqzQ4T42lKGSL6A6N0d74hxKQARh+D4a/GoPujaH4wjiOvQrlEsIXxrIk8UyRqNeo9MmNXGGypHPV8VVcu/q4mmsl7vkrVJmhoN2tZMP0XqayIaKlJH/0/O+RFOqciv56yHwSGb8M7jqUUGdlInHiUkUPLXYAoWhIs4R1579COYt0BFA6f25xhmwtHbEFjfrm6E3MgUsodZ1ozfO9dELRwLG6DrNQNYxDn0BmphC++evKXz9POT5OyTRRfEG0UAShariPP4OVz6G45p8v1e1Bda///Ol+L8F9i4WAXVE/NYd2kIuniVVR4raxsbGxmWcjAdkLwD8XQvQBGebNxQ9uy8psNkSkIYg74KJcNDckGjs9liIxlCS2I4o3tPWB1INgFYvkbt8EwNXRNdc3ZlmSL371bc4NDnKkqZm//NVTiHAbyuTrqO7FFkYRZ4Tumm4ujF/gkCtCRDHA24LiihFdWk6cRUoLCmkwvHMWTtbgD6GQhMR1pCuKnO5Fjp1BWiWEWUapOwJYYJZAc0I5X3EMyCzIfK2lI3b/3JZJ+e57CHcIc+Aiam0nwqi+nCccboRjcTlbGC5kqYTQdcQC3Tyhaqie1fsQpZQUJqcQqoIjvNi2KDtRGUJxx+Z/L4Qguq+t6rXa2NjY2MyzkYDs1W1bhc0D4/I5eebzx5BSVt20X8qXuPDdK0hLMtIzxqnPH2cmnmHk9hjR1jDhhu3JsuUTqUrjd10YVV/9JVgcGiTf04MlIWHpNO3vQgjBxEyeK9bv4lxg5l1b00mtv4Gjqfe4MHlxkYXRay9XPCVDpTwiN44ItS/v7ZpFSol19wfIZC8i0IzS/olZ0VY3MjsGil75UQ2kZWKN3EQO9yNc30M9+ouItpchdQ8Cu+C1V5Gz05Pil78FioL84l9iTd5Dqe1CpuOYiWHUWAuKp1LiFYqKEmrESgwgfDWgVTKipb6bFO9cRmvYgdF1ZEPad849h9BitSguN6pvbT/IhWR6R5h47zLSkgQPduLf1YTmNEj1jzP45hUAmp7ej79la/sFpZS2KbiNjc1HjqoDMill30pK/UDflq/KZlPct1Xa0D4wq22mYFkWF797BSklo7dHOfWFE+jOrfUxLKazDHz/HFapTGBHPXWnFjeoLypFGg4sKfm1ayqXzlzg8I/H+Or+AgW3uszMG1woTi+vvfq1OUNvc+Q25t1zKDWtRNqfQLgU8K9tByTNElbiLsJfj0z1g1kEzYloeh4x0w6OAMLwQWQvCgrW9BQyFYfpYcwrf4/x1K8jPfWU3vsr9MH3EUjkbHlSOgIUL34PmZ+BkX7KPeeQponWugfn0/MTjVrXc8jcNMLpq2ioSUmx5xKKP0x5sAe9dTfCVX02U2gaet3GTb5LM1lAkLhyh+mBOOH9O2l+6QSlmdysNp2glMlv+Lhr0X97jPNv3KS+JcLRF/Ys65W0sbGxeVyxlfo/wuhOncOvHiQxMkWsNYKiKOgOjcx0FofLQChbn6WwSmVk2UQ1dErZxR/m9wVbz/YlOdoa4i9+5QmKh05wc+TXcTX0cS3bSjz7zwmnZzgS2c/F5NVFmTCYbcx3VVTxzXvnEZ4A5ugd1Ka9CPfK2SErm8JKDCF8Ecz+C8j4JEpmCqXjBYRW+e4hNCcE522rhFAQ0b0oO1PIc19H7/0B4vKfw+1vwRf+Ais1heWqQ8mNIiOdFduj/AyykAOnF2vsHlY2DRLMqYlF6xGKivCEF5xLoDXsoDR4By0cQziqM9reKEszU772JjLDE8yMp9ClinJnmMaySakMycE4rrAP3xZnx66duYvH52Lgzjgdh1oIrSHtYmNjY/M4YSv1f8TxRb34ovMaWode3k9ieIpAzIdmbL1PpyPko+b4bgqJFIGuZibShbnG/HimyNm+OKaY4WyfZGxogkzfjflsmLsPygkUd5Q/evIPmRL5NZvylbpdmEM3UfwxhGPljJK0LEqXf4AsZJClIkIDEWynOD6EYXpR1imfaa0nUX31cPlPEdKs9IeZOZTG3RTz/wzhdGCc+kUQAuHyoXWewIoPojXugWvvYGWncRx5aZE8hZlJIwsF1GB4/vf+WkTURGvfPdfXtlWUs3nG3jiPLJWpeaobI1QJgjSXk8CenYS6R8jHU3hba9GcBsmeYeoOt5NLzGAWyrCFrYctHXXcONtLIOzB49+ewNPGxsbmYcRW6rdZhNPrpKFzffX+zSKEINjeiGU18MU/fIezA1Mcaw3x9V89SdijEWl/jYxyB1exjdTfx/G11LFfbeW67Ke7ppvWU59GdbpQnE6irK3iru08itbQBYYLoa7+UpeWCaqKwEB4vJRuXwBnkNLt8yj+CGpwSRZoVkvsfrO+CLVA88m5Zn3hq0PfW4fe9RRCcyxeU30H1FemE0WgltzF98jduoPirUENhimnpkh99x+QpoXnyAmcHXsw0ylyF94HVcXK5fE9+dzmHvxVyI3FKU2lURw66d4hIqHdc/e56yPUntiLmSsQO1LRFYt0NTJ64R6emgCGb2v1w/YcbaO1sw6HS0dbo79wPfL5PA6Hw+5Fs7GxeWSwlfptPhCWylQMDSc52xfHUjOc6bWIZ4oILT0nUVFy9JKYSuKYdPB7Nf8D2rP7iPmX2zGthRACXGuXvISiYBx4AXOiHzXciPCFEa4ayiN3K9ZO2hKZkQVaYqyhJSYAlgRjyx6TbA4znUZxuij03sLdfZL8nVvke26BpqLFanB27AFVBUVFlsoIY+1jbgZHyI9wGFhlE1d9dNF9qq5Rd3z3ot/V7Gsh3F6PqqurCs9uFiEEngcUiX3zzXe5evkm7Z07+NjHnraDMhsbm0eCjTT1f272v7ZSv82GWNob9vVfPYkzM0Nox1fJO/pwlXYQ9ryKIuYlKvaIVhp37iHc3YWrPobmWe5MsFUo3jCKd75nS+86jhprRjjdKN4lArdraIlZegBrehrV768qUFF9ARSHE6tYwAhXpEoUhwstVouVy6E3tVW2c3twdx8nfekSUnchTXORB+iDYgR9NL36JFgS1bU44Iv3jJDsnaBmbxP+hvnHSHOsP+xRyBXRjOUixttJuVzm2pWb1DfUcPvWXU6dOobbbRuI29jYPPxsqiZgK/XbrMXSbNjS3rB4pkg5olJ29iGoZMPm7ItmJSp8eQPVYaC5P/g+IqFqqLGm+xezWEV/FS0xq1Bg+o0fY+WyOHfuwrPvwLrnUTxePM+8RObqVdIXrlBMpHDv7gJpITQd56554dXCZAKrUCZ39x5GLIajYXWfys1w34tyIaVsgXs/vkapUGRqYJKjv/xC1dmm/uvDXHnrDt6Qm5OfOoixxdO6q6FpGvsO7ObK5Rt0de3C5bL70GxsbB4NNjJl6QR+HXiainvdm8AfSCm3du7d5pFimWL+Ctmwhb1hHmsXYc8rKN4GumsPc2H8wnL7IlcUHoakRpXlSQArl8PKZVHdHkrj47Cy3eQyhKpRGBhCC4fJ9/Xh2d2Fe9+hRduU0zOUUzOUZzJYpRJmobjq8dI9fRTGE/j37MQIVa85tvLaFOL3xsgmM6gOnT3JGTzh6qYeB26O4Qk4XWKjxQAAIABJREFUSScypJNZwnX+D6x0+NRTJzh+vBtd1+1ypY2NzSPDRmoJf0LlY+b3gX8P7AH+dDsWZfNocD/4OvU73+eLXzk9F5xVsmEpzvYliGeKJAvJSm+YmDfzFkLw2suv8b3Pf4+vvfy1DX1wlrMFyrnCmtvkxiaZunST0vTM5i9whfKkmS+QPHOR+Pl7lDPZuU1Vvx/njl2gKLj3r58dA5CmSSmVRq9voBSP42hoQDgWlwytUonEG6fJjU6QHZ4gl8gw8eP3Fp37PqXpNFMXrlOIJ0meuVLVGsqFEvnkDNKylt2n6iqxvc2g6xTyJte+fZlyoVTVcXccbCSbLuCPeLn8Xg//9T+/wehAvKp9twLDMOxgzMbG5pFiIyXLLinlwq/uPxRCXNzqBdk8vKxcikxStiRn+5LEM8WVs2ELesNWzIatdU7TYmYkgeY0cEf9ZEbjjLxxEaEoNL5wBGd4ubejmcsz+dZ5hCLIDY1T/+oz1V7gquVJ2Xicifd6yA+MAGWMYIDMnV4ChyqpMKEoeKoIxKxSiWJ8Cs3nIX35OvnhMVS/j8iLH0dxu5cFEdKysEplVKeTQiKF1AwKiWnyw2N4Oxb7RSqGjmromLkCWizMWpTzRSav9jN68S6KoVOzr4W6w7sWbSMUha6Xu4kPTuGJ+jBNC7NsrTerAEDDzhpqW6NMDid541sX8QZc3DjXS11zZP2dbWxsbD6CbCQgOy+EOCmlPA0ghHgCeGt7lmXzsLFSKTLqNTjSGpjzlIx6DeL5+LyZ92w2bGFvWLVm3veZuHyPicu9KJpK20tHGHrjMhPne/DUhikkUisGZAgFoQischnNW+UwwDrlyXzSpPjuBYTTQWE4iebxIIWKWSyhGtX3R02duUxuaBThMKCYRw8GKIxNkhudxN3SgNAXH0t1OAieOEx+eJToi88yfeEaqseN5p0X/zILRcrZPEbAS+yFk5TTGRyxtW2vRi/cZfzSPcav9tNwvJPUYHxZQAbgifh44svPMnxtiEhLBIen+ilPVVUIRLx4Ay4yqRwdB5ur3tfGxsbmo8ZGArIngF8SQvTP3m4BrgshLmObjD92VJMNi3h13C1fxeu6gLumG8nJRWbeq2XDpJRkp7LoTh3DtbyZfCGlTB5F17DKJsWpDIV0DofPQy6exlW7ctChOg1qnjtBMTmNs26xgbeUEqtYRtEVRDY+nw1bY3oSbw06GVSngVUsU/vq82SGJpi+2Ud2JE7dx59A0ar7Uyqm0ihuJ1a+gG9PF9m7vRRTWZJnr5EfTxI91b1sH2d9Lc76WqxyGU9rM0LXcMxel1koMvL99yims/jbm4ge3YvuW1+pVRECzeXAWxsECfVHdq66rb82gL92c/1oTreDF//JcYqFMm6v3WBvY2NjsxobCche2bZV2DxUbCQbdmHiAqY0uTB+gUQ+UVU2bOjKIL1nezFcBgc/dQin14llWcR7J7DKFtGdNahaRdahpnsXQtNweF34WmL4W2rJOh3422ox1gg8jJAfI7Q4eyalZPS9G6TuDNE28X9jTF9G3M+GrTI9eR/N66H2pWeRponqcpK80Y/u91FKzWDmiyje6v6UwscOkr5xB0dnFG97G67GOkqvv4ViGJgzmTX3VTQNz67WRb8zcwWKM1l0v4fcSHU9WtKyiOxtxhH00PbCQfxNa5eNHxRN1x5I5NXGxsbmo8CGzMW3cyE2Hx7VyFRsNhu2EsmhJA63g3ymQD6Vx+l1Mj2YpOdH10EIyoUSNR11jN8cweF30XCicy6wa37+EKVMflMK8VapTOruCN4wGLcuITAXZ8NWmJ5ciGLoQKWkGDm6l6krPXh2NTNx/jZCQOzIbjT32iU9IxIi8tSxudt6wEfw8F6KEwl8XfM9YeVcnsSl2yiaRvhgB8oqAY3u9xDsaiM7PEHoyPrGGeVCiZ7vXyaXnKHxWDuRbQ7GbGxsbGyqw/7a+oiTTE5z+p1zBAI+TjzRjVZl6ew+1cpUJPKJTWXDVqL1SBu337xNzc4YvlnzaCklQEXh3pL0n7lL/M44UoLD7cBXG6CQzpEcTOCr8ePYiEK8ZVFKDDM1IXFEAsxMJimFD2JMXV6cDZstT1aDp7kOT3MdyZv9ZG4NIRA4wsOE9+5Yf+cl+Ha1IHc0MdM3SnZsCv+uRlI9g6TvDIKUGCEf/p1NK+4rFIXwoU7ChzqrOlc+lSWbSOMKeJi8NUxN19bqmdnY2NjYbA47IHvEOfP+JUZHx+nvG6S5uYHmltU/YJdmwoAVs2ELLYzuN+ZvNhu2Ev4aP0d/5uii3wWbw+x6uguzZFLTWU//mbtzQRpCIKXk1g+ukk/lUHWVgz99HK0asdHZZn2t/zQux26Gm/8N7S+fwAj/YM1sWLUY/tmhAQGGf/Mu27nRBGPvXK5ouc1qjcUv30GoKuHDuykk0xhB7wNLObiCXry1QTITKVqe6Fh/BxsbGxubDwQ7IHvEiUZD3L3Th27ouD3zZbxqBFsVRVQtU3FfN2xpNkxKSXx0Gk1XCUarEw1dCUVRqOmsn7vdfKQNd9iDw+PAV+OvNOObFkJVkJaFRFZ34NlmfSFNPPkbaOUpFFXZUDZsLTz1UVpeOQlS4ght/voBkHJeaFYKgnt2UczmGXnnGprHRWTfDiIHVm++rwZVV+l48SDStFC0rbNfsrGxsbF5MDYckAkhvgT8FGBSqTD9g5Ty61u9MJvqONS9l/r6GhxOB6FZZfaVgq+VMmExn2NetLUKmYqVsmF3rw9z/ic3URXBsz91hEhdddN4uXQeVVNWnbLUHDq1C8ppQgg6P7aP+L0JvDE/qrHKS3dWS8xyRug/e49sPE1X/TGUkTMUQ4doev5JXCFvVWusFkfwwY5nlsrEb/RTyBaJ7N9JcHcbxXSW7OA4imFQzBdACFID4w8ckEHlsRR2MGZjY2PzULGZDNlzUsov3r8hhPgPgB2QfUgoikJNbYx4poiUckOCrcADlyLTyQyqolAum+Qya6vn32f03gSXfnADzdA48emDeEPVlfpcQQ+GP8OVH1zDE/Kw/xP70ReWLRdoiVm1Rxk1/jd0l5PbO/4fdv/TOhyeGI4lJb98OsfUcBJ3wI2vNvChqLvn49PkxpK46qKUc0UUXcMZ9tP22WewLMmdb7zJxIUegl3NlDJ5dI8tH2FjY2PzuLGZgMwhhPgUMAA08XC4Dn5keVDB1tVKkdXSebCFXKaAy+2grmVtdfj7TA5MoRs6xVyRdCJTdUAGMHxjBIfXSXoiRXaol8DO9vkesAVaYurYWZw7suTzKt5oYMXyZCae5t0/eYPx26NEd9Zy5AtPEG754KcOHX4vutdFKZsnvGde1kIoCqoCitMgdqQDM1+mOJOzAzIbGxubx5DNBGS/DvwMcAAYBP77LV2RzZpstWArbK4x/z5un5NTL1Xn3Xiflr31JIaThIIBIg3BDe1b31XH7bducTjxv+P986uLVfUXaImJ5ifY/dkXKOXLoArOfuMshsug67muuTJpPpWjlCmiKAqFdI5Svjqfxq1GcztofeUEZqmM7l4cbCV6hpkeSpAZnKT5uQO4wj7MkomiCsQ6k6Zm2SQ3ncPpc6KtVuK1sbGxsXko2PC7tJQyC/zZ/dtCiP8V+N2tXJTNymy3YOsHhT/q5dkvntjUvrXttUTCJuq/v4pYqqovxCItMacQOP1w++3bFLNFMskZpkemiO2sZMv89SGaj+1AvzFE06E2Im2xdc6+NtNDCZJ3xwjvqsXfUF228D6Krq2oNTYznMBTE8TwuonsaWFqMM7AOzdxhX3sfGE/mmP1SdMbP7pBYiCBL+rl4CcPVYYZbGxsbGweSjb8Di2E+C8Lfv4a+JVtWJcNlQBsIl2Yk39YKRsmkZVsWMfv4G79ChI5lw1ThbpiX9iHGYxtCsuCmfHKFCKgheorCvuKtlxV//705IJrDNYHMEsmutPAHZwvj+pOnb2vHOJj//KTdL6w94GySGbJ5N5PrpEen+bej69hlsxNH2shsX0tKKqKrzGCpybA8IVeVKdOZmKaXHJ1ZX/LskgOJ/GEPaTjM5QKH072z8bGxsamOjbzCZSSUs4FYUKIP9jC9djM8rhkwx6YdUy/q9ERi+2owRf1o6gKhntt78zNIhSB4TIqXpt+N4q6NY+5K+Kn87MnAZi8PUKib4LUYIIdT3XiWqP3TlEU2k+1M3hxgLbDbTjWcRB4mHjv3XNcvXKTY8cPceDg3g97OTY2NjYfCJsJyH57ye3f3IqFfNTZTjPvR5V8tsjY9eu09L+LkCubfleL07dyI3xmKsvU6DSh+gDugHvRfZZlkRxKoukagXXkPBRVof0TB8lMpvFEfev2dy1k4sYQU/0T1O5vWbPUmeifJNQaw+l303i8HaEq9J/vo1ws0XywBX2JhEhdRx11HXVVr+NhIJPJcv7cFWpqo5x+5yx793WhqrZEh42NzePPZnrI7i25ndi65Xw0qEa09SOZDYM5HTE8MS79+BZjfUm8+m7C5RuVMqXnwfq8FmKWTc7/t8sUc0WcHgcnP38MZUEgNXR1iLvv3QUhOPTqQYL1aw8gGB4nxgYnIAvpHENnejC8TvrevM6BLzzF2PUhJm+PULu3kWj7vFhu3b5m7r1xjUBzBG8sQKI/Tt+5e6iqiqpptB5t29C5H0ZcLif1jbUMD43S3t5mB2M2NjYfGaoOyIQQ//MKv54GzkopL2zdkh5vVhdt/Whnw4Bl5Ukz+m9QVIV3or/N859sw9vY+kA2R0uRshKUaYaGWba4L/4/k8hw+XtXSfQncHoNVE2hXCxv2XkXojl0dK+TQjpHoClCKV9k8MwdXCEP/e/1EG6rmVPU99cFOfT5J+f21R06QihYZQvdpTOTyIBgQzIiDxuKovDJT36cdHqGQMD/YS/HxsbG5gNjIxmyY7M//zB7+1PA+8C/EEL8tZTy32714h4HqilF2tmw2T6wBTpiDLzLoVfD9A8ECES9eJu2LjN2H01X6X5pP+O9E9TurJmbQhy5NUq5aGJ4HHgiHuo76gg3bWxqslpUQ6PzpW7yqRzuiA+hCFxhL9nEDP76IGKNychgY4gDrx7EMi1KZYv3vnEOEBx6eS+RbVrvB4GmaYRCG5NDsbGxsXnU2UhAFgGOSClnAIQQ/wr4G+BZ4CxgB2RLqLYUOTcp+RHOhvHlby7SEaP5Cdy1zeyu296gM1DrJ1C7OBMTbgwxdH0El8/Jvo/txRfZWqulpehuB/qCpvvOFw+QT+VwBT3rBt2B2TJq74V+JCAti4s/vImqq+w+tYva1sia+28VN2/c5b3Tl9i5q5lTTx1eVPpdi1wuj8NhVL29jY2NzePKRgKyFqC44HYJaJVS5oQQ1XnmPOZstjE/kU88/tmwpSzJhs01629genK7iDSHOfWF4wilcv7+K0N4Qm4ijaFl28YH4vSd6yPWFqPpYBPZZIbJexOEmiP4azZXctMcOt7Y6vpiK1HfUcv0eIpsusDkaIpAzMvNd+9ta0CWzxdQVRVd13jv9CX8fg83b9xl/4FOAsH1jdYvXrzKu6fPEYtF+NSnX8QwtmcC1sbGxuZRYCNfS/8COC2E+FdCiN8C3gK+LoTwANe2Y3GPEvezYad+5/t88SunsSw5lw3T9BmOtAaJeo0Vg6/HTjdsJZZoic1lw5Zqia2gI/Zh4PA4MFwGN9/u4fbpu1z89tVKj9YSbr91G8u06DvfS3Y6y7XXrzB6fYTrr1+hXFi57yyTzDBxd3xLnQEcHgeHXtrP0U8dJBD1kpnOEWtaHkBuFb33hvirP/9HvvE3rzOTzrCrvYX45BTRaBi3pzo3tetXbxEOhxgfn2RqKrVta7WxsbF5FKg6Qyal/NdCiH8EngYE8C+klGdm7/757Vjcw8xWylQ8qJ/kQ88WaIl9WFiWrLzakXMCvQsJ1gWZuDeOK+BGd+ooqkIpX0ZzaLP7LaaYLXDlv12ilC8Sbgqzd4O2U+thOHVOfrabfKaAN+Ref4dNcrenH6fTIJ2aYXJyilNPHWb/gU7cHieaVt3byqHD+3nrjXdpbKonFFpbVsTGxsbmcWejshdlwKIyj/aRlf7eDpmKx6Y3bCVWK09uUEvsw2D3k+2MxMZwB90r9pJ1PN1Bw94GnD4nhtNg7yf2kxxKEqgLrqj8b5ZMzLKJ7jIo5hb/CQ1dHWKyf5KWQy2EGjaf3TKcOoZzYyXPjbJ7706Gh8YJR0PU1FZex/7Axnrt9uzpoKNjB6qqPn5fQmxsbGw2yEZkL34D+FXgb6l89/8zIcRXpJS/v12LexhYmgmDlS2MPpIyFauxdHpySbP+VmqJbTcOj4O27pZV71c1dVGvmCvgxhVYPTPlCrjpeLqT1Ng0qqHx/f/4A6Rl0XZ0B8PXRnD6HNz4yU1OffHkll7HVtPQWMuXfukzCCEeKJiqNptmY2Nj87izkXfD/w54QkqZARBC/C7wDvDAAZkQ4vPAbwF7gBMLSqEfKitlwhRFfHRlKqqgkM+j/8XnUAbfe+TKkx8UsZ01eGN+3vmLdxi6PIgr6EZzDOL0Ocmn80RaHg3JCnsy0sbGxmbr2EhAJoCFjskmK3bJbIorwM8Af7hFx9sSVsqExXyOj6ZMRRUM9I1w+juv87PD7wLmI1ee3C6mx1PcfqcHX8xHxxO7UFQFTVdxeh1oToNysUxDVz2tR1rJTefwRrxkp3MYbgNN//CV6ovFEjeu3UXXVbr27LQDMRsbG5ttYCMB2deAd4UQ36ASiP008NpWLEJKeR146DJIK2XCgI+mTMVqLChP9twaQLqjjBvt1JZ6ttzq6GEkncgw0Rsn2hLGH125h+ru+/co5csMXx+hdmcNwboAulOn+9PdtJ9qx+l34Q17UBQFh9vBrXfv0ndlCE/QzYnPHFqxF+2D5NrVHs6cvoxE4nQ62LGr+UNdj42Njc3jyEamLP+dEOJHwFNUArIvP+6WSStlwgTCzobdZ8n0ZOeLf8TQ4Bin23+bl57vwh1rfqzLk5Zpcf7blzGLJgPXhnjq506smNEK1gfpu9CPw+NYZHLuDriXGZoDjN6dxBP0MJPMkE3n8a8jTCul5PK7dxi8M8b+J9ppaa998ItbgKaqFVcpCYrtLWljY2OzLawbkAkh0sy5/FV+teA+KaWsSv1SCPE9oG6Fu35TSvn31Rxj9ji/BvwaQEvL6s3WW8FqmbDHXqZiNdaxOmoMqXzxF19FUZSPRllLgFAUpCyvGXi2HW4h2hLBcOk4PI5Vt7tPx/E2rr99h/r2mqqkK2amc9y+2I8v5OHiW7e2PCDbvXcnDoeBpmu0tNavv4ONjY2NzYZZNyCTUq4vuV0FUsoXt+g4XwG+AnDs2LHlwlBbyGqZMPhws2GJRAKn04nbvX06U8uowuoITwztoxKcUmlqP/zyPiYHEkQaQ6v2ewkh8K1SzlyJ+vYa6tur77dzug18IQ+pZIa2rq0PmDRNo6OrbcuPa2NjY2Mzjz1zvgYPYybs0qXLvPXWaZxOJz/7s5/F79+cPc9SJicTjI6M09zSSCCwQgz+EFsdfViM9k7Qe3mYps7abfe7XAvd0Hj+s0cq5c2w50Nbh42NjY3N5nko6kpCiM8JIQaBU8C3hBDf+bDXdJ+Hzb5oYGAQt9tFJpNlamp6S45ZKBT41jdf5523z/Dtf/xBRZH+EbM6+qAxTYtLP7xFMVfkyps9FHLF9XfaRgyHTjDq+2iUim1sbGweQx6KDJmU8hvANz7sdTwKHDt2lB/84Ed0dNRRX79SS97GkbISYGiahmlaIC344898YFZHF85d59b1Xg4e7mL33p2bPs7I4CSDvWPs6moiHNteKx5FEfgjHpKjKTwhN6q29YFQKpHh5oU+wrV+du5tfGi+FNjY2NjYbD1iJX++R4Vjx47JM2ceCg3ZR56RkXH6+4f4/9u789i4yzuP45+vzxkf8RXHOezECTlIoIRCoAuFJVwllBKutttqq1LaXdSVVtWqWqmtULtSd6u2S9WVVt3dltJVqy3bbYUKtLAFwlWaUo4ASYCQC+fACcTxmdiOz/nuHx6zjpmxx45nnvH4/ZJQPDM//35fP/qZfPI8z+95Vq5sVE3xoPT9tSPDk3kF0pffTNsaYr29ffrVfb9TTU2l2tu79Jk7blT+NJ7k6zvVrwd/8Yzy8/PV3zegZSsWqbq2QuvWL09bkBnsH9Sxg23as+2gJGnDdeeqYtxcsVPdfTIzRVKYzD/e7x98RV3tPTrReVK19dVatnqR1qxfSjADgFnKzF529w2JPmN8A1IspkXl0ocuPl81NVXJhyfHOdB0WDt3vKm+vv5pX7q4uFC1C6rU2tqh+oa6aYUxaWSCfWFhgfr7BnTk0HG909yq7c/vUWtL57Rrm0xhcaFi7jrV06/hwZia97572ufHm9v19C9f0tO/fEkdx05M+fwl8yIa7B9U84Hj6mrv1s4X9qm9ZernScXw8LDaWjvU3x926BUA5qqsGLJEQImenkxhePLYu616YstWeUzq6DihKzZ+aFqXz8/P10c+eplOdHWrsmr6D/QWFRfq6hsuVltrl44catHh/e+qqLhQxcVF0z5nKipry1VUXKjh4ZjqltWc9lnrkU6ZmYaGhtXZelJVdVN7AOP8y1Zr8fJa1TZU6Z2321RUVKDiaHp+nmd//6L27T2gmupKbb7lWhUWpndzcgDA6Qhkc8n4dcSk5E9PprjVkcvPeAitsLBANfMrz+gcklRZXa7K6nItW7FIZ61pUGlZRPMq0/vU4byaMl35qYsUi/n7wlLDmoU6drhdBQX5WjgurI11oqNHLzz5hiKRQl109TmKxM9TWFSgJctrVddQrdZ3OlVSFlHZvGhafo5Dh5rfGzbu7e1TRQWBDAAyiUA2VyTrCUuwllgq6hbO1zUfuVzdJ3u0avXyNBc/NQUF+VqyNHNbNhUWJw4vZZUl2viJhFMFTvPWriPqOXFKHcdP6N3Dbe9bS6ygIF8LG5IHuplw+eUX6cUXdmj9+Ws1b164JTwAYK4ikM0VyXrCzJIOT3Z0dGlwcEi1tdUJe8GWL8/cnoanTvWruLgw6LIO7mfeG5hI7aIKNb1xRIVFBaoIsI5YU9MhbXt5h1af3agLLjiPhwYAIAACWa4aPzw5UU9YguHJY8da9fBvHtfQUEx/fsWHtHbdqgz/AP9v24uv67Xte7Skvk5XX3fJtCf+n4mO4yf13GM7VFxcpA9/dL2i03hqMpn6FXWq+GS58gvyVFIWmfwbZpC765mnn1NZWam2vbRTq1at0Lx5M7I5BwBgCghkuWiaE/XH6u7u0eDgkAoLC9Ta2p6hwhPb9fp+LVhYo+bmY+rpPqV5FZkbUutq79a+199Wy5FODQ+5OrtPquVIh5atnpk14EaVV2ZwG6wxzEz19Yt04MBhVVVVKhrNbCAEAIwgkOWiM5yoL0kNDYt09tqV6u09pfPWr0tzwRNb/8Gz9eq2XVqxol5l5ZkNLs8/9bp6T/apraVLpdGIyipKVDmFfSmnYmhoWMPDw2l/MnS8q66+TG1tHaqoKOfpSgAIhECWC6YyPJmioqIibbzy0jQUO3XrP3i21p27UgUF+Rmf3xSNFqvj+EnV1FZo440XqHReVEVJJvGPFYvFpjTf7eSJHj322+fU3zegK6+7SIvr07MQbyIFBQWqq8vcQxAAgPcjkM12MzA8ORsUFoa5VS++6hy1HGlXeWWpquanNrdqx4t7tWvHAa1a16ALL12bUohsbelUT3evoiXFOrD/SEYDGQAgPFbqn+0SDU9Kc3bT75kWiRZp6cqFKYexwcEhvbG9SbULq7T3jcPq70tt5fsFC6tVUVWu2HBMK89eeiYlAwBmIXrIZps0DE9i5hQWFmj5qsVq2ndUS5fXqTiS2nyw0rKoNn98o9w9yFOkAICw2Fx8Nkk2PJloBf40cnft3LlLx4+368ILz1NVVUXarzmbuLtO9fYrEi0Kum4aACC7sLn4bBWLSd0t0mhozpLhyZaWNv3puZf19uGj2vqHFzNyzdnEzFRSGiGMAQBSxt8Y2Wq0N+z7a6Wf3jDyenR4Mq8g6PBkJFKsoqJC9ff1q6KSRUQBADhTzCHLVsnWEsuCpycrKsp1082b1H2yR4uX1AWpIVu8sm2X9u85pPUXrNGatStClwMAmKXoIcsW44cnk/WGZcnTkzU1VVrWWD+nFxLt7Tmlna/uUTQa0fN/3KlYLBa6JADALEUPWTaYI2uJ5ZriSJHm11bpeEu7li1fzJwxAMC0EciywQxsdYTMy8/P13U3XKaTJ3pUUZm5/TUBALmHf9KHkOrwJLJeYWGBqmsqkq4d9s7RY3pt55vq6enNcGUAgNmEHrJMO4PhyV27dmv37j1av/4DOussJpBnuxMnTurhh5+Qx2I6eLBZN26+NnRJAIAsRQ9Zus3QWmJ9fX169tmt6uvr15NPPq3h4eEM/QCYLveRRWLNTDFnwj8AIDl6yNIpUW/YNLc6KiwsVFVVpdra2rVoUd2smkA+ODiogYFBlZaWhC4loyoqynX99VeqpaVVq9ecFbocAEAWI5Cl0wyuJZafn6+bbvqY2traNX9+jWyWPHXZ3d2j3z60Rd3dPbriyku0evXUhlqHh4c1PBxTUdHsXF6jYekSNSxdEroMAECWmz3dLLNBmtcSi0QiWrJksYqLi2e48PRpb+vUyZPdKisv0f59B6b0vT09vfr1/Y/qvv96QAcPNqepQgAAwqOHbKbk0FpifX19ys/Pn5FFXxfUzVfdwlp1tHfqvMvXTel7W1s71NF5QuWlpdq7u0mNjfVnXA8AANmIQDZTcmQtsbfeOqgnnvi9SktLdNNN16u8/MzW14pEinXTzdcpFotNed5bbW21qqsqdPJEt9asZQ4WACB3EcimKxY7vedrmpP1s83+/U2KRqM6ceKkWlvbzjiQjZrOQwglJVHd+vF4Gk7CAAAOiElEQVRNGh4entNbNAEAch+BbDpyaHhyvHPOOVvNzU9rwYL5qqsLHyrz8vJm1ROlAABMB4FsOnJkeDKR+vrFuuOOT8vMZsWTnC0tbdqze78aGxvUsHRx6HIAAJgWuh4mM/7JSSnntzrKy8sLGsaONL+jJ5/YqrcPH5U0snRGd3fP+45zdz3+6DM60HRYjz/2e5061ZfpUgEAmBH0kE0k2dCkWU4MT2ajoaEhPfbYsyoqKtChQ8265prLteXxZyWTNm3aqCX1i047PhIpVltbh6LRiPLz+fcFAGB2IpBNJNnQpJQTw5NTMTAwoJdf3iFJuvDC9SoqKkrLdfLy8lRWVqKOji7Nm1eu1rZ2xWIxmUktLa2nBTIz06aPXqmjR4+ptrYmbTUBAJBuBLKJ5MiTkzNhz579euXlnZKkkpISrV9/Tlquk5eXpxs+drWOvXtctQtqJEkHDzRL7jprZeP7ji8rK53y6v8AAGQbAtlEGJp8TzQSee/rkmhkgiPPXGlpiVactey917fedn1arwcAQGgEssnMsaHJZM5auVybIyNbNtXX8zQjAAAziUCGlJiZGhrYJBsAgHTgsTQAAIDACGQAAACBEcgAAAACI5ABAAAERiADAAAIjEAGAAAQGIEMAAAgMAIZAABAYAQyAACAwAhkAAAAgRHIAAAAAiOQAQAABMbm4kgqFotp69bn1NR0QJdeeolWr14ZuiQAAHISPWRIqrOzU6+/vkvRaFTPPfen0OUAAJCzCGST6Ojo0N69e9Xd3R26lIwrKytTTU212tratWLF8tDlAACQsxiynMDAwIAefPAh9fb2av78+frkJz8hMwtdVsYUFRXplls2q7u7W5WVlaHLAQAgZxHIJjA8PKyBgQFFo1H19PTI3edUIJNGQll1dXXoMgAAyGkEsglEo1Fdf/0mNTUd0Lp1a5WXxwjvTHJ3vfLKq2pqatJFF21QY2Nj6JIAAAiChDGJpUuXauPGK7RgwYLQpeScrq4uvfDCSxoYGNRTTz0TuhwAAIIhkCGYkpISVVSUq7OzU/X1S0KXAwBAMAxZIpiioiLdeust6urq0vz580OXAwBAMAQyBBWNRhWNRkOXAQBAUAxZAgAABEYgAwAACIxABgAAEBiBDAAAILCsCGRmdreZ7TaznWb2gJmxTw8AAJgzsiKQSdoi6Vx3P0/SXklfC1wPAABAxmRFIHP3x919KP7yeUn1IesBAADIpKwIZON8XtLvkn1oZnea2TYz23b8+PEMlgUAAJAeGVsY1syekLQwwUd3uftD8WPukjQk6b5k53H3eyTdI0kbNmzwNJQKAACQURkLZO5+zUSfm9ntkj4m6Wp3J2gBAIA5Iyu2TjKzTZK+IukKd+8NXQ8AAEAmZcscsh9IKpe0xcy2m9kPQxcEAACQKVnRQ+buK0PXAAAAEEq29JABAADMWQQyAACAwAhkAAAAgRHIAAAAAiOQAQAABEYgAwAACIxABgAAEBiBDAAAIDACGQAAQGAEMgAAgMAIZAAAAIERyAAAAAIjkAEAAARGIAMAAAiMQAYAABAYgQwAACAwAhkAAEBgBDIAAIDACGQAAACBEcgAAAACI5ABAAAERiADAAAIjEAGAAAQGIEMAAAgMAIZAABAYAQyAACAwAhkAAAAgRHIAAAAAiOQAQAABEYgAwAACIxABgAAEBiBDAAAIDACGQAAQGAEMgAAgMAIZAAAAIERyAAAAAIjkAEAAARGIAMAAAiMQAYAABAYgQwAACAwAhkAAEBgBDIAAIDACGQAAACBEcgAAAACI5ABAAAERiADAAAIjEAGAAAQGIEMAAAgMAIZAABAYAQyAACAwAhkAAAAgRHIAAAAAiOQAQAABEYgAwAACIxABgAAEBiBDAAAIDACGQAAQGAEMgAAgMAIZAAAAIERyAAAAAIjkAEAAARGIAMAAAiMQAYAABBYVgQyM/tHM9tpZtvN7HEzWxy6JgAAgEzJikAm6W53P8/dz5f0sKRvhC4IAAAgU7IikLn7iTEvSyV5qFoAAAAyrSB0AaPM7FuSPiupS9KVgcsBAADIGHPPTGeUmT0haWGCj+5y94fGHPc1SRF3/4ck57lT0p3xl2sk7ZnpWmeR+ZJaQxeR5Wij1NBOqaGdUkM7pYZ2Sk0utdMyd69N9EHGAlmqzGyZpEfc/dzQtWQ7M9vm7htC15HNaKPU0E6poZ1SQzulhnZKzVxpp6yYQ2Zmq8a83Cxpd6haAAAAMi1b5pB9x8zWSIpJOiTpi4HrAQAAyJisCGTuflvoGmape0IXMAvQRqmhnVJDO6WGdkoN7ZSaOdFOWTeHDAAAYK7JijlkAAAAcxmBLMuZ2SYz22Nm+83sqwk+/5yZHY9vO7XdzP4qRJ2hpdBOxWb2y/jnL5hZY+arzB5mVm1mW8xsX/zPqiTHDY+5t36T6TpDM7NPmNkbZhYzs6RPeU12/+W6KbTTQTN7LX4/bctkjdnAzO42s93xrQIfMLPKJMfN9fsp1XbKqfuJQJbFzCxf0r9Jul7SOkmfNrN1CQ79pbufH//v3owWmQVSbKcvSOpw95WS/kXSdzNbZdb5qqQn3X2VpCfjrxM5Nebe2py58rLG65JulfRssgOm8HuayyZtpzGujN9POb+MQQJbJJ3r7udJ2ivpa+MP4H6SlEI7jZEz9xOBLLtdLGm/uze5+4Ck/5F0U+CaslEq7XSTpJ/Fv75f0tVmZhmsMduMbY+fSbo5YC1Zy93fdPfJFp+e87+nKbbTnOfuj7v7UPzl85LqExzG/ZRaO+UcAll2WyLp7TGvm+PvjXdbvGv3fjNryExpWSWVdnrvmPgvepekmoxUl53q3P0dSYr/uSDJcREz22Zmz5sZoS2xVH9PMbJP8eNm9nJ815W57POSfpfgfe6n0yVrJynH7qesWPYCSSXqwRn/WOxvJf3C3fvN7Isa6e24Ku2VZZdU2imVY3LKRNuVTeE0S939qJmtkPSUmb3m7m/NTIXZIdVt3SY6RYL3cu7emoF2kqQPx++nBZK2mNlud09lmHPWSKWdzOwuSUOS7kt0igTvzcn7aZJ2knLsfiKQZbdmSWN7vOolHR17gLu3jXn5Y83NuVGTttOYY5rNrEBShaT2zJQXhrtfk+wzMztmZovc/R0zWySpJck5jsb/bDKzZyR9UFJOBbKJ2ilFqdx/s94MtNPY+6nFzB7QyPDcrP0LNJHJ2snMbpf0MUlXe+J1p7iflFI75dz9xJBldntJ0iozW25mRZI+Jem0J93if5mO2izpzQzWly0mbaf469vjX39c0lPJfsnniLHtcbuk9/VwmFmVmRXHv54v6cOSdmWswtkjlftvzjOzUjMrH/1a0kc08jDAnGFmmyR9RdJmd+9Ncticv59SaadcvJ8IZFksPtfpbyU9ppGg9St3f8PMvmlmo0+8fSn+uPkOSV+S9Lkw1YaTYjv9RFKNme2X9GUlf6pwrviOpGvNbJ+ka+OvZWYbzGz0Sd21krbF762nJX3H3edUIDOzW8ysWdIlkh4xs8fi7y82s/+Vkt9/oWoOIZV2klQnaWv8fnpR0iPu/miYioP5gaRyjQyvbTezH0rcTwlM2k7KwfuJlfoBAAACo4cMAAAgMAIZAABAYAQyAACAwAhkAAAAgRHIAAAAAiOQAQAABEYgAwAACIxABmBGmVl36BpmwtifYyZ+JjNrNLNTZrb9TM81wTWi8YU0B+K7KwCYJQhkAOYkG5Hp/we+5e7np+vk7n4qfv6c2/sQyHUEMgBpYWZfNrPX4//93Zj3v25mu81si5n9wsz+fprnb4yf52dmttPM7jezkjGfP2hmL8e3FrtzzPe8aWb/LukVSQ2JjpvkuonOe1G8hkh8j703zOzcFOu/N95G95nZNWb2RzPbZ2YXJ7te/P1SM3vEzHbEv/8vptOOALIDWycBmFHx4b0rJP1U0p9JMkkvSPqMpHxJ92pkz8MCjYSiH7n796ZxnUZJByRd5u5/NLP/lLRr9FxmVu3u7WYW1ciGzVdoZH+8JkmXuvvzyY5z9zYz63b3stGfaczXyY7/J0kRSVFJze7+7QT1Puzu5455vV/SByW9ET/XDklfkLRZ0h3ufvME17tN0iZ3/+v4+SrcvSv+9UFJG9y9dartCiAMesgApMNlkh5w9x5375b0a0mXx99/KD60dlLSb0e/wcxWmNlPzOz++OvSeO/Xj83sL5Nc5213/2P865/Hzz/qS/GNh5+X1CBpVfz9Q6NhbJLjkkl2/Dc1slH7Bkn/PMk5Rh1w99fcPaaRUPakj/wr+TVJjZNc7zVJ15jZd83s8tEwBmB2IpABSAeb4vty9yZ3/8KYt26VdH+8B2hzsm9L9NrMNkq6RtIl7r5e0qsa6b2SpJ73ipn4uPcXP/Hx1ZLKNNILl/Qc4/SP+To25nVMUsFE13P3vZIu1Egw+7aZfSPFawLIQgQyAOnwrKSbzazEzEol3SLpD5K2SroxPteqTNINE5yjXtLb8a+Hkxyz1MwuiX/96fj5JalCUoe795rZ2RoZOk0k1eNSOf4eSV+XdJ+k705ynlQlvZ6ZLZbU6+4/l/Q9SRfM0DUBBFAQugAAucfdXzGzn0p6Mf7Wve7+qiSZ2W80MlfqkKRtkpINtTVrJJRtV/J/PL4p6XYz+5GkfZL+I/7+o5K+aGY7Je3RyHBfIqkeN+HxZvZZSUPu/t9mli/pOTO7yt2fmuR8k5movg9IutvMYpIGJf3NGV4LQEBM6geQUWZW5u7d8Scin5V0ZzzA1Uj6lkbmYd0r6V8l/UBSn6St7n7fuPM0aswk+WyXyXqZ1A/MPvSQAci0e8xsnUbmQv3M3V+RJHdvk/TFccfekeni0mhYUoWZbU/XWmTxJzH/JKlQI/PQAMwS9JABAAAExqR+AACAwAhkAAAAgRHIAAAAAiOQAQAABEYgAwAACIxABgAAEBiBDAAAIDACGQAAQGD/B+oCmYXyw3hvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXzU1d33/9eZyUpWSALIlkSKrImBJBA2ERdArYAFbveNFi63X702vFrv1tpWf9Xq3cuq3WwVrVrp3QIWkctSFQpFUAIElR0kEWRLQhKyb3PuP2YyJTAJSchksryfjweQfLfz+X4zw3zy+Z7vOcZai4iIiIgEjiPQAYiIiIj0dErIRERERAJMCZmIiIhIgCkhExEREQkwJWQiIiIiAaaETERERCTAlJCJiIiIBJgSMhHptowxDxljso0x1caYV89Z9y1jzEFjTJkx5j1jzICz1hljzNPGmELPn58aY8xZ6280xnzu2fcjY8yoDjwtEemGlJCJSHd2DHgCeOXshcaYacD/D8wB+gCHgbfO2mQxMBe4HEgFvg78i2ffYcCbwH1ALPAOsMoYE+TPExGR7k0JmYh0W9baFdbat4HCc1bdCPzJWrvLWlsD/Bi4whgz1LP+buD/WGuPWmu/Av4PcI9n3Uxgo7X2H9baOuBpYCAwzc+nIyLdmBIyEemJjOfP2d8DjPH8OxrYedb6nZ5lTe1rztpXRKTVlJCJSE+0BvhfxphUY0w48BhggV6e9ZFAyVnblwCRnn5kfwOmGWOuNMaEAI8CIWftKyLSakrIRKTHsdZ+APwAWA7kAblAKXDUs0kZEH3WLtFAmXXbi/uW5ovAcSAe2H3WviIiraaETER6JGvtL6y1w6y1fXEnZkHA557Vu3B36G9wuWdZw75/ttaOsdbG4U7sEoGtHRO5iHRHSshEpNsyxgQZY8IAJ+A0xoQ1LDPGjPEMbzEEeAn4ubW2yLPr74F/N8YM9AyH8R/Aq2cdN90Y4zTGJAC/Ad7xVM5ERNpECZmIdGffAyqB7wB3eL7+HhAG/AH3rclPgM3A98/a7ze4h7P4DHfV7F3PsgY/B4qBfZ5/F/nzJESk+zPW2kDHICIiItKjqUImIiIiEmBKyEREREQCTAmZiIiISIApIRMREREJMCVkIiIiIgGmhExEREQkwJSQiYiIiASYEjIRaVfGmLIObKveGJNjjNlljNlpjPl3Y4zjrPUfNbNvrDHmgY6J9Ly2k4wxlcaYnLO+//xC+7XguOGe61FjjIm/+EhFpKMoIRORrqzSWptmrR0NXAtcj3tuSQCstZOa2TcWCEhC5nHIWpvWnge01lZ6jnmsPY8rIv6nhExE/MJTrfrc8+dfz1r+fWPMXmPM34wxbxlj/rM92rPWngIWAw8ZY4ynrTLPvxHGmHc9VbTPjTE3A08BQz0VpWc8271tjNnmqbgt9ixLMsbsMcb81rN8rTEm3LPuLmPMp57jvn7WOd5hjPnEc+zfGGOcLT0PY8ylxpgdxphMT9t7jTGvedr5szGmV3Nti0jXFBToAESk+zHGpAP3AhMAA3xsjPk77km+5wFjcf//sx3Y1l7tWmu/8Nyy7AucPGvVLOCYtfYGT3wxwMfAmHOqVAuttac9CddWY8xyz/JhwK3W2kXGmP8LzDPG7AD+NzDZWltgjOnjOfZI4GbP8lpjzC+B23FPWN4sY8xwYBlwr7U2xxiTBAwHvmmt3WSMeQV4wBjzP77aFpGuSwmZiPjDFGCltbYcwBizApiKuyr/F2ttpWf5Ow07GGMuxZ1kxFhr5xtjIoBfAjXAemvtmy1s2/hY9hnwrDHmaWC1tXajMaa3j+2+bYy5yfP1YNyJ2AngsLU2x7N8G5AE9Ab+bK0tALDWnvasvxpIx53QAYQDp1oQdwLwF2CetXbXWcuPWGs3eb5+A/g2UN1E2yLSRemWpYj4g6+kqLnlWGu/sNZ+86xF38CddCwCZreoUXdSV885CZC1dj/uJOkz4CfGmMd87HslcA0w0Vp7ObADCPOsrj5r03rcv8wawPoKA3jN07ctzVo73Fr7eAvCLwGOAJPPWX5uG7aZtkWki1JCJiL+sAGYa4zp5al03QRsBP4B3GiMCTPGRAI3NHOMQbgTFHAnQc0yxiQAvwZetNbac9YNACqstW8AzwLjgFIg6qzNYoAia22FMWYEkHWBJj8A/pcxJs7TRp+zls83xvRtWG6MSbxQ/LgrgXOBu4wxt521fIgxZqLn61txX8Om2haRLkq3LEWk3VlrtxtjXgU+8Sz6nbV2B4AxZhWwE8gDsnFXhnw5ijspy6HpXx7DPUNHBAN1wOvAz3xslwI8Y4xxAbXA/dbaQmPMJs9wE/8DfA+4zxjzKbAP2HKBc9xljHkS+Lsxph53Re0ea+1uY8z3gLWe/my1wIOe822WtbbcGPN14G/GmHLc12kPcLcx5jfAAeBXnqTxvLYvdHwR6bzMOb9Iioj4lTEm0lpb5nlacAOw2JPAxQFP4h6+4nfA88CLQBXwj1b0Iev0PJ31V1trx7THdj72ywUyGvqYiUjnpwqZiHS0l4wxo3D3z3rNWrsdwFpbCNx3zrb3dnRwHaQeiDHG5LTnWGSep0M3464YutrruCLif6qQiYiIiASYOvWLiIiIBJgSsi7KGDPYGLPOM4L4LmPMwz62udIYU+IZLTzH16P+PY3n6b5PPKOb7zLG/NDHNqHGmD8aYw4aYz729OPp0Vp43e4xxuSf9Xr7ViBi7YyMMU7P6PurfazT660JF7huer01wRiTa4z5zHNdsn2sN8aY5z2vuU+NMeMCEWdn04Lr5tfPVPUh67rqgP/wdIaOArYZY/5mrd19znYbrbVfD0B8nVU1cJWnU3kw8A9jzP9Ya89+ou6buIc/+Jox5hbgadwjr/dkLbluAH+01j4UgPg6u4dxPy0Z7WOdXm9Na+66gV5vzZnezEMd1+Ee9HgY7tk0fuX5V5q/buDHz1RVyLooa+3xszpDl+L+T2tgYKPq/KxbmefbYM+fcztSzgFe83z9Z+Bq4xlyvadq4XUTH4wxg3CPt/a7JjbR682HFlw3abs5wO897+stQKwx5pJAB9XTKSHrBjy3OMbinpvvXBM9t5n+xxgzukMD66Q8t0FycI/m/jdr7bnXbSCeAUmttXW4x8mK69goO58WXDdwz/HYMAn24A4OsbN6DniEpp961OvNtwtdN9DrrSkW9zh424wxi32s977mPI6iX+jhwtcN/PiZqoSsizPu0c6XA/9qrT1zzurtQKJnGpgXgLc7Or7OyFpb7xlqYBAw3hhz7hhPvqoTPb4a1ILr9g6QZK1NBd7nn1WfHsszyOspa21zE6jr9XaOFl43vd6aNtlaOw73rckHjTFXnLNerznfLnTd/PqZqoSsC/P05VkOvGmtXXHuemvtmYbbTNbaNUCwMSa+g8PstKy1xcB6YNY5q47inlgaY0wQ7il1NHmzR1PXzVpbaK1tmPPxt7jnjuzpJgOzPQO1LgOuMsa8cc42er2d74LXTa+3pllrj3n+PQWsBMafs4n3NecxCDjWMdF1Xhe6bv7+TFVC1kV5+pi8DOyx1vqaKgZjTP+GvijGmPG4f96FHRdl52OMSTDGxHq+Dsc9mfTeczZbBdzt+Xo+8OG5cyP2NC25buf0QZmNu19jj2at/a61dpC1Ngm4Bfdr6Y5zNtPr7RwtuW56vflmjInwPOiFcc8jOwP4/JzNVuGeM9UYY7KAEmvt8Q4OtVNpyXXz92eqnrLsuiYDdwKfefr1ADwKDAGw1v4a93/u9xtj6oBK4Jae/h89cAnwmjHGifvN9H+ttauNMT8Csq21q3Anuq8bYw7irlTcErhwO42WXLdvG2Nm434C+DSaW7FJer21jV5vLdIPWOnJG4KAP1hr3zPG3Afez4Y1wPXAQaCC7jsjRmu05Lr59TNVI/WLiIiIBJhuWYqIiIgEmBIyERERkQBTQiYiIiISYErIRERERAKs0yRkpgWTF4uIiIh0R50mIeOfkxdfDqQBszzjo0grNTPlgzRD163tdO3aRtetbXTd2kbXrW066rp1moRMkxe3K73p2kbXre107dpG161tdN3aRtetbXpWQgYtnrxYREREpFvplAPDeqZoWQn8f9bac6cuWIwnW3U6nemhoaEBiLBzq6urIyhIkzC0lq5b2+natY2uW9vourWNrlvbtOd1q6ioqLXWhvha1ykTMgBjzA+Acmvts01tk5GRYbOzszswKhEREZG2McZss9Zm+FrXaW5ZtnDSZxEREZFupzPVLn1OXhzgmERERET8rtMkZNbaT4GxgY5DREREpKN1moSsvdTW1nL06FGqqqoCHYpIwISFhTFo0CCCg4MDHYqIiLRAt0vIjh49SlRUFElJSRhjAh2OSIez1lJYWMjRo0dJTk4OdDgiItICnaZTf3upqqoiLi5OyZj0WMYY4uLiVCUWEelCul1CBigZkx5P7wERka6lWyZkncnjjz/Os882OZQab7/9Nrt37+7AiERERKSzUUIWYErIRERERAmZHzz55JMMHz6ca665hn379gHw29/+lszMTC6//HLmzZtHRUUFH330EatWrWLJkiWkpaVx6NAhn9uJiIhI96aEDPdTadV19e1yrG3btrFs2TJ27NjBihUr2Lp1KwDf+MY32Lp1Kzt37mTkyJG8/PLLTJo0idmzZ/PMM8+Qk5PD0KFDfW4nIiIi3Vu3G/aitay1bPmikAOnyhjWN5KsSy/uCc2NGzdy00030atXLwBmz54NwOeff873vvc9iouLKSsrY+bMmT73b+l2IiIi0n30+ApZTb2LA6fK6B8VxoFTZdTUuy76mL4SunvuuYcXX3yRzz77jB/84AdNDknQ0u1ERESk++jxCVlokJNhfSM5UVrFsL6RhAY5L+p4V1xxBStXrqSyspLS0lLeeecdAEpLS7nkkkuora3lzTff9G4fFRVFaWmp9/umthMREZHuq8ffsgTIujSOcYm9LzoZAxg3bhw333wzaWlpJCYmMnXqVAB+/OMfM2HCBBITE0lJSfEmYbfccguLFi3i+eef589//nOT24mIiEj3Zay1gY6hzTIyMmx2dnajZXv27GHkyJEBikik89B7QUSkczHGbLPWZvha1+NvWYqIiIgEmhIyERERkQBTQiYiIiISYErIRERERAJMCZmIiIhIgCkhExEREQkwJWR+kJuby5gxYzqsvccff5xnn322Rdtef/31FBcXX9QxREREpH1pYNhOpL6+Hqfz4gen9cVai7WWNWvW+OX4IiIi0naqkPnZF198wdixY/n4449ZsmQJmZmZpKam8pvf/AaA9evXM336dG677TZSUlLIzc1l5MiRLFq0iNGjRzNjxgwqKysBOHToELNmzSI9PZ2pU6eyd+/eZttuONYDDzzAuHHjOHLkCElJSRQUFADw5JNPMnz4cK655hr27dvn3W/r1q2kpqYyceJElixZ4q321dfX+zwHERERuThKyACXy5JfWk17z1qwb98+5s2bx9KlS9m5cycxMTFs3bqVrVu38tvf/pbDhw8D8Mknn/Dkk0+ye/duAA4cOMCDDz7Irl27iI2NZfny5QAsXryYF154gW3btvHss8/ywAMPtCiGu+66ix07dpCYmOhdvm3bNpYtW8aOHTtYsWIFW7du9a679957+fWvf83mzZsbVexefvnlJs9BRERE2q7H37J0uSy3/nYL2/KKSE/szVuLsnA4zEUfNz8/nzlz5rB8+XJGjx7NE088waeffsqf//xnAEpKSjhw4AAhISGMHz+e5ORk777JycmkpaUBkJ6eTm5uLmVlZXz00UcsWLDAu111dfUF40hMTCQrK+u85Rs3buSmm26iV69eAMyePRuA4uJiSktLmTRpEgC33XYbq1evBmDt2rU+z+Hs2EVERKT1enxCVlhew7a8Iupclm15RRSW15AQFXrRx42JiWHw4MFs2rSJ0aNHY63lhRdeYObMmY22W79+PREREY2WhYb+s32n00llZSUul4vY2FhycnKabPPIkSPceOONANx3333MmjXrvGOfzZjzE8/mqoRNnYOIiIhcnB5/yzI+MoT0xN4EOQzpib2Jjwxpl+OGhITw9ttv8/vf/54//OEPzJw5k1/96lfU1tYCsH//fsrLy1t8vOjoaJKTk/nTn/4EuJOjnTt3Ntpm8ODB5OTkkJOTw3333dfs8a644gpWrlxJZWUlpaWlvPPOOwD07t2bqKgotmzZAsCyZcu8+1zsOYiIiIhvPb5CZozhrUVZFJbXEB8Z4rNq1FYRERGsXr2aa6+9lu9973uMGjWKcePGYa0lISGBt99+u1XHe/PNN7n//vt54oknqK2t5ZZbbuHyyy9vU2zjxo3j5ptvJi0tjcTERKZOnepd9/LLL7No0SIiIiK48soriYmJAeBb3/oWubm5F3UOIiIicj7T3h3ZO1JGRobNzs5utGzPnj2MHDkyQBF1D2VlZURGRgLw1FNPcfz4cX7+858HOCppLb0XREQ6F2PMNmtthq91Pb5CJud79913+clPfkJdXR2JiYm8+uqrgQ5JRESkW1NCJue5+eabufnmmwMdhoiISI/R4zv1i4iIiASaEjIRERGRAFNCJiIiIhJgSshEREREAkwJmR80DBlx7Ngx5s+fH+Bo2m79+vV8/etfv+htzvX444/z7LPPXkxo57n++uspLi6muLiYX/7yl+167OasWrWKp556qtltmrtGzz33HBUVFd7vG85DRER6FiVkfjRgwADvvI/+UldX59fjdxVr1qwhNja2wxOy2bNn853vfKfN+5+bkDWch4iI9CxKyPwoNzeXMWPGAPDqq6/yjW98g1mzZjFs2DAeeeQR73Zr165l4sSJjBs3jgULFlBWVgbAj370IzIzMxkzZgyLFy/2zjN55ZVX8uijjzJt2rTzBmx9/PHHufvuu5kxYwZJSUmsWLGCRx55hJSUFGbNmuWd9uiDDz5g7NixpKSksHDhQu9E5e+99x4jRoxgypQprFixwnvc8vJyFi5cSGZmJmPHjuUvf/lLq67Fk08+yfDhw7nmmmvYt2+fd/mhQ4eYNWsW6enpTJ06lb179wJwzz338O1vf5tJkyZx6aWXehPb48ePc8UVV5CWlsaYMWPYuHEjAElJSRQUFPCd73yHQ4cOkZaWxpIlS7jzzjsbxXr77bezatWqRrGdOnWK9PR0AHbu3Ikxhi+//BKAoUOHUlFRQX5+PvPmzSMzM5PMzEw2bdrk/bk+9NBD3nPJysoiMzOTxx57zFspBfdgu/Pnz2fEiBHcfvvtWGt5/vnnOXbsGNOnT2f69OmNziM3N5eRI0eyaNEiRo8ezYwZM6isrARg69atpKamMnHiRJYsWeJ9jYmISBdmre2yf9LT0+25du/efd6yC6qvt7b0pLUuV+v39SEiIsJaa+3hw4ft6NGjrbXWLl261CYnJ9vi4mJbWVlphwwZYr/88kubn59vp06dasvKyqy11j711FP2hz/8obXW2sLCQu8x77jjDrtq1SprrbXTpk2z999/v8+2f/CDH9jJkyfbmpoam5OTY8PDw+2aNWustdbOnTvXrly50lZWVtpBgwbZffv2WWutvfPOO+1///d/e5fv37/fulwuu2DBAnvDDTdYa6397ne/a19//XVrrbVFRUV22LBhtqyszK5bt867zdatW+03v/nN82LKzs62Y8aMseXl5bakpMQOHTrUPvPMM9Zaa6+66iq7f/9+a621W7ZssdOnT7fWWnv33Xfb+fPn2/r6ertr1y47dOhQa621zz77rH3iiSestdbW1dXZM2fOWGutTUxMtPn5+Y2uubXWrl+/3s6ZM8daa21xcbFNSkqytbW158U4atQoW1JSYl944QWbkZFh33jjDZubm2uzsrKstdbeeuutduPGjdZaa/Py8uyIESO8P9cHH3zQWmvtDTfcYP/whz9Ya6391a9+5X0drFu3zkZHR9sjR47Y+vp6m5WV5T1WQ9wNzj4Pp9Npd+zYYa21dsGCBd7rP3r0aLtp0yZrrbX/9V//1eh8z9am94KIiPgNkG2byGk0MKzLBa99HY58DIMnwN2rweGfwuHVV1/tnRdy1KhR5OXlUVxczO7du5k8eTIANTU1TJw4EYB169bx05/+lIqKCk6fPs3o0aO58cYbAZoduPW6664jODiYlJQU6uvrmTVrFgApKSnk5uayb98+kpOTueyyywC4++67+cUvfsGVV15JcnIyw4YNA+COO+7gpZdeAtxVvFWrVnn7flVVVXmrSA0yMjL43e9+d148Gzdu5KabbqJXr16A+zYfuKtGH330EQsWLPBu21CpA5g7dy4Oh4NRo0Zx8uRJADIzM1m4cCG1tbXMnTuXtLS0Zq/5tGnTePDBBzl16hQrVqxg3rx5BAWd/7KfNGkSmzZtYsOGDTz66KO89957WGu9c3y+//777N6927v9mTNnKC0tbXSMzZs3e+f2vO222/jP//xP77rx48czaNAgANLS0sjNzWXKlCnNxp6cnOw9v/T0dHJzcykuLqa0tJRJkyZ521m9enWzxxERkc5PCVlFgTsZc9W5/60ogMi+fmkqNDTU+7XT6aSurg5rLddeey1vvfVWo22rqqp44IEHyM7OZvDgwTz++ONUVVV510dERFywHYfDQXBwsHfCdIfD4W2zKU1Nrm6tZfny5QwfPrzR8oZE6UJ8HdflchEbG0tOTk6z59HQPsAVV1zBhg0bePfdd7nzzjtZsmQJd911V7Nt33nnnbz55pssW7aMV155BYB7772XHTt2MGDAANasWcPUqVPZuHEjeXl5zJkzh6effhpjjLczvsvlYvPmzYSHh7fofJs7l4affWv3qaysbPZnJyIiXZf6kEUkuCtjjiD3vxEJHdp8VlYWmzZt4uDBgwBUVFSwf/9+b/IVHx9PWVlZuz4cMGLECHJzc71tvv7660ybNo0RI0Zw+PBhDh06BNAoSZw5cyYvvPCCNyHYsWNHi9u74oorWLlyJZWVlZSWlvLOO+8AEB0dTXJyMn/6058Ad9K1c+fOZo+Vl5dH3759WbRoEd/85jfZvn17o/VRUVHnVa7uuecennvuOQBGjx4NwNKlS8nJyWHNmjXeGN944w2GDRuGw+GgT58+rFmzxlu5nDFjBi+++KL3mL6SyKysLJYvXw7AsmXLWnRtfMXbnN69exMVFcWWLVta1Y6IiJzvxIkTbNr0Efn5+YEORQkZxrhvU/77HrjnXff3HSghIYFXX32VW2+9ldTUVLKysti7dy+xsbEsWrSIlJQU5s6dS2ZmZru1GRYWxtKlS1mwYAEpKSk4HA7uu+8+wsLCeOmll7jhhhuYMmUKiYmJ3n2+//3vU1tbS2pqKmPGjOH73//+ecfNzs7mW9/61nnLx40bx80330xaWhrz5s3z3gYEePPNN3n55Ze5/PLLGT169AUfFli/fj1paWmMHTuW5cuX8/DDDzdaHxcXx+TJkxkzZgxLliwBoF+/fowcOZJ77723yeMmJSUB7sQMYMqUKcTGxtK7d28Ann/+ebKzs0lNTWXUqFH8+te/Pu8Yzz33HD/72c8YP348x48f996ebs7ixYu57rrrvJ36W+Lll19m8eLFTJw4EWtti9oREZHGampqeOed1ezevYd33llNfX19QOMxXfkWSEZGhs3Ozm60bM+ePYwcOTJAEUlnVFFRQUpKCtu3b/dr8lJRUUF4eDjGGJYtW8Zbb73V6qdRW6KsrMz7BOdTTz3F8ePHz3vaFvReEBFpTm1tLW+88SaVlZVERUVx++234fBTH/IGxpht1toMX+vUh0y6tffff5+FCxfy7//+736vJG3bto2HHnoIay2xsbHe/mrt7d133+UnP/kJdXV1JCYm8uqrr/qlHRGR7iw4OJg5c2Zz/PhxBg0a5Pdk7EJUIRPppvReEBHpXJqrkKkPmYiIiEiAKSETERERCTAlZCIiIiIBpoRMREREJMCUkPlBw5AEx44dY/78+QGOpu3Wr1/vHan+YrZpb2dP2t0eVq1axVNPPQXA22+/3WiKJH86u92mNHd9n3vuOSoqKvwRmoiIdDAlZH40YMCAdh1h35eWTMEjzZs9ezbf+c53gI5NyM5uty2UkImIdB9KyPwoNzeXMWPGAPDqq6/yjW98g1mzZjFs2DAeeeQR73Zr165l4sSJjBs3jgULFlBWVgbAj370IzIzMxkzZgyLFy/2Tlt05ZVX8uijjzJt2rTzBgR9/PHHufvuu5kxYwZJSUmsWLGCRx55hJSUFGbNmkVtbS0AH3zwAWPHjiUlJYWFCxd6J/V+7733GDFiBFOmTGHFihXe45aXl7Nw4UIyMzMZO3ZsqwY8zc3NZeTIkSxatIjRo0czY8YMKisrAfcURFlZWaSmpnLTTTdRVFR03v6HDx9m4sSJZGZmnjdDwDPPPENmZiapqan84Ac/uGB7zz//PKNGjSI1NZVbbrnF+7N56KGH+Oijj1i1ahVLliwhLS2NQ4cOMW7cOG9bBw4cID09vVH7p06d8i7buXMnxhjvpOtDhw6loqKC/Px85s2bR2ZmJpmZmWzatKlRuwCHDh0iKyuLzMxMHnvssUZVwLKyMubPn8+IESO4/fbbsdby/PPPc+zYMaZPn96qUf5FRKRzUkIGuKyLgsoCv0/cnJOTwx//+Ec+++wz/vjHP3LkyBEKCgp44okneP/999m+fTsZGRn87Gc/A+Chhx5i69atfP7551RWVrJ69WrvsYqLi/n73//Of/zHf5zXzqFDh3j33Xf5y1/+wh133MH06dP57LPPCA8P591336Wqqop77rnHG0tdXR2/+tWvqKqqYtGiRbzzzjts3LiREydOeI/55JNPctVVV7F161bWrVvHkiVLKC8vb9RuU1MngTuZefDBB9m1axexsbHeOR/vuusunn76aT799FNSUlL44Q9/eN6+Dz/8MPfffz9bt26lf//+3uVr167lwIEDfPLJJ+Tk5LBt2zY2bNjQbHtPPfUUO3bs4NNPPz1v+qNJkyYxe/ZsnnnmGXJychg6dCgxMTHeeSuXLl3KPffc02ifvn37UlVVxZkzZ00DJOQAACAASURBVNi4cSMZGRneScr79u1Lr169ePjhh/m3f/s3tm7dyvLly31eo4cffpiHH36YrVu3MmDAgEbrduzYwXPPPcfu3bv54osv2LRpE9/+9rcZMGAA69atY926dT6vuYiIdB09PiFzWRcL/7qQa/50Dff+9V5c1uW3tq6++mpiYmIICwtj1KhR5OXlsWXLFnbv3s3kyZNJS0vjtddeIy8vD4B169YxYcIEUlJS+PDDD9m1a5f3WDfffHOT7Vx33XUEBweTkpJCfX09s2bNAiAlJYXc3Fz27dtHcnIyl112GQB33303GzZsYO/evSQnJzNs2DCMMdxxxx3eY65du5annnqKtLQ0rrzySqqqqryVoAYZGRn87ne/8xlTcnIyaWlpAKSnp5Obm0tJSQnFxcVMmzatURzn2rRpE7feeisAd955Z6OY1q5dy9ixYxk3bhx79+7lwIEDTbYHkJqayu23384bb7xBUNCFJ6r41re+xdKlS6mvr+ePf/wjt91223nbTJo0iU2bNrFhwwYeffRRNmzYwMaNG71zdr7//vs89NBDpKWlMXv2bM6cOXPehOKbN29mwYIFAOe1MX78eO8o0mlpad5zERGR7qPHT510uuo0OadyqLf15JzK4XTVaeLD4/3SVmhoqPdrp9NJXV0d1lquvfZa3nrrrUbbVlVV8cADD5Cdnc3gwYN5/PHHqaqq8q6PiIi4YDsOh4Pg4GCMZ8J0h8PhbbMpponJ1a21LF++nOHDhzdafvLkySaP5SsmcJ97wy3ElvIVl7WW7373u/zLv/xLo+W5ublNtvfuu++yYcMGVq1axY9//ONGSa4v8+bN44c//CFXXXUV6enpxMXFnbfN1KlTvVWxOXPm8PTTT2OM8XbGd7lcbN68mfDw8FadcwNfrxsREeleenyFLC4sjrS+aTiNk7S+acSFnf+B609ZWVls2rSJgwcPAu4Jqvfv3+9NvuLj4ykrK2vXhwNGjBhBbm6ut83XX3+dadOmMWLECA4fPsyhQ4cAGiWJM2fO5IUXXvAmczt27LjoOGJiYujduzcbN25sFMe5Jk+ezLJlywB48803G8X0yiuvePvcffXVV5w6darJ9lwuF0eOHGH69On89Kc/pbi42Ltvg6ioqEbVq7CwMGbOnMn999/Pvffe6/O4V1xxBW+88QbDhg3D4XDQp08f1qxZw+TJkwGYMWMGL774onf7hlugZ8vKyvLeVm041ws5N1YREem6enxCZozhlZmv8P6C91k6c2mTFSJ/SUhI4NVXX+XWW28lNTWVrKws9u7dS2xsLIsWLSIlJYW5c+eSmZnZbm2GhYWxdOlSFixYQEpKCg6Hg/vuu4+wsDBeeuklbrjhBqZMmUJiYqJ3n+9///vU1taSmprKmDFjzutcD833IWvKa6+9xpIlS0hNTSUnJ4fHHnvsvG1+/vOf84tf/ILMzExKSkq8y2fMmMFtt93GxIkTSUlJYf78+c0mKPX19dxxxx2kpKQwduxY/u3f/o3Y2NhG29xyyy0888wzjB071puY3n777RhjmDFjhs/jJiUlAe7EDGDKlCnExsbSu3dvwP0gQXZ2NqmpqYwaNeq8vmvgfmLyZz/7GePHj+f48eMtmgh98eLFXHfdderULyLSDWhycZELePbZZykpKeHHP/6x39qoqKggPDwcYwzLli3jrbfeatWTrL7ovSAi0rk0N7l4j+9DJtKcm266iUOHDvHhhx/6tZ1t27bx0EMPYa0lNjaWV155xa/tiYhI56KETKQZK1eu7JB2pk6dys6dOzukLRER6Xx6fB8yERERkUDrlglZV+4XJ9Ie9B4QEelaul1CFhYWRmFhoT6QpMey1lJYWEhYWFigQxERkRbqdn3IBg0axNGjR8nPzw90KCIBExYWxqBBgwIdhoiItFCnSciMMYOB3wP9ARfwkrX2583vdb7g4GCSk5PbOzwRERERv+k0CRlQB/yHtXa7MSYK2GaM+Zu1dnegAxMRERHxp07Th8xae9xau93zdSmwBxgY2KhERERE/K/TJGRnM8YkAWOBj32sW2yMyTbGZKufmIiIiHQHnS4hM8ZEAsuBf7XWnjl3vbX2JWtthrU2IyEhoeMDFBEREWlnnSohM8YE407G3rTWrgh0PCIiIiIdodMkZMYYA7wM7LHW/izQ8YiIiIh0lE6TkAGTgTuBq4wxOZ4/1wc6KBERERF/6zTDXlhr/wGYQMchIiIi0tE6U4VMREREpEdSQiYiIiISYErIRERERAJMCZmIiIhIgCkhExEREQkwJWQiIiIiAaaETERERCTAlJCJiIiIBJgSMhEREZEAU0ImIiIiEmBKyEREREQCTAmZiIiISIApIRMREREJMCVkIiIiIgGmhExEREQkwJSQiYiIiASYEjIRERGRAFNCJiIiIhJgQYEOQERExB+KiopYu/ZvhISEMmPGNURERAQ6JJEmqUImIiLd0u7deygpKeWrr47x5ZdHAh2OSLOUkImISLc0YMAAXK56QkNDiIvrE+hwRJqlW5YiItItJScncdttt+B0OnW7Ujo9VchERKTbio6OVjJ2AWVlZezYvoMvv/wy0KF0OFd9HQUFe7EuV6BDUYVMRESkJ/vwg3Uc/eorjIFbb72F2NjYQIfUIVz1dSx8fQI5VJNGKK/c+TEOZ+DSIlXIREREpNs7txp2uuggOVRTbww5VHO66GBA41OFTEREpAe76urpHNh/gPiE+G5bHfNVDYvrcxlphJJj3cvi+lwW0BiVkImIiPRgkZGRjB03NtBhtCtXfR2niw4S1+cyjMPRuBpm3dWw+PgRvHLnx422CyQlZCIiItJttKYa5nAGER8/IsARuykhExERkS6rK1bDfFFCJiIiIl1SV62G+aKETEREepSjR79iy5ZPGDJkCJmZ4zDGBDokaaHuUg3zpWtEKSIi0k7Wr99IVVUN2dnbKSoqCnQ40kIN1bBrVs/n3t9n4qqv81bDnNb6rIZ1lWQMVCETEZEeZsCA/uzZs5/o6Ch69eoV6HCkKS4XVBRARAIY062qYb4oIRMRkR5l2rSpjBo1kujoKMLCwgIdjvjicuF67QZOf5VN3MAMzN3vdtm+YS2lhExERHoUp9NJ//79Ah2GnO2capir/BQLaw6RM6gfadWHeKX8FI6o/t2mGuZL9zobERHpNk6cOMmyZX9m/foN1NfXBzoc8RdPNazgudHYV68Hl4vTziByQkPdtydDQzntmWOyvfuGuVyW/NJqrLXtcryLoYRMREQ6pc2bP6a6uppdu/Zy8uSpQIcj7cXlgrJT4EmCGqph1wzqx701h3CVnyIuPI60fuk4jZO0/unEhcf5IQzLrb/dwsSffMAtL23B5QpsUqZbliIi0ikNHDiA48e3ExnZi+joqECHI+3BR9+wf1bD8FbD4o3hlVmvcLrqNHFhce0yNInLZSksryE+MgRjDIXlNWzLK6LOZdmWV0RheQ0JUaHtcJJto4RMREQ6pczMdC69NIlevXrpaciuqgV9w+Ii+5HWL52c/BzS+qV5q2EO4yA+PL6NzTZOvhqqYdvyikhP7M1bi7KIjwwhPbG3d1l8ZEh7nnmrKSETEZFOyRhDfHzbPpClEwhQNcxX8tVUNaxhXUPiFkjqQyYiIiLtrjV9wxqqYW1Jis7tmO8r+WqohgU5TKNqmMNhSIgKDXgyBqqQiYiIkJ9fQGlpGYMHDyQ4ODjQ4XRJ501rFKBqmK9bkcaYTlUN80UJmYiI9GhFRcWsWPEOdbV1jEkZybRpU9rt2C6Xi9Oni4iMjOjWg9D6nOTbUw3zZ9+w1tyKbKiGdVZKyEREpEerrq6mrq6ekJAQysrK2/XYmzd/wqc7dxEVHcn8+XO6RVJ2biUMaHpaowBUw6DzJ1++KCETEZEerV+/vkydmkVBQSHp6WPb9dh5eUeJiYmmuKSE0tKyLp+Q+aqEOZxBTU9rFKBqWFekhExEpBW++uorcnPzGD78Mj0B2E0YY0hNHeOXY0+ePIFNmz4mZcwo4uL6+KUNfzqvX1gTlTDjcLTrtEbdvRrmixIyEZEWqqqqYvXqNTgcDg4ePMhdd93ZpX8jF/9LTBxMYuLgQIfRJj77hTVRCYOLm+S7p1XDfFFCJiLSQsYYgoKcVFdXExGhgUqle2lpNexiK2EXM2hrd6mG+aKETESkhUJDQ5kzZzYnTpxkyJDB3e43dAmMuro6vvgil7CwUAYPHhSQ11VrqmEXWwnrioO2dgQlZCIirRAfH6++Y9KucnI+ZfPmTzDGMGfODQwePMjvbQaqGtbcoK09qRrmixIyERGRAKqtrcUYBy5XPXV1dX5vL5DVsK46aGtHUEImIiLSDurq6qitrSU8PLxV+40dezkOh5Pw8DASE4e0e1ydqRrWVQdt7QhKyEREpMs4fbqIoqJiBg68pFON6VVeXs5f/vIupaVlTJ9+BZdd9rUW7xsWFsaECRl+iauzVcNAyVdTlJCJiEiXUF5eztsrV1NZWUVS8hBuuGFmoEPyKigopKiohOjoKPbvP9iqhKw9dUQ17NxKGPie0Lsndsy/GErIRESkS6itraOquprw8DBKS0sDHU4j/fr1pV+/BIqKSkhNHR2QGDqiGuarEuZwGFXD2oESMhER6RJiY2O4+qppfPXVMVIv98/I+m0VFhbGvHlzcLlcOJ3ODmkzENWwpiph6ph/8ZSQiYhIlzF8xDCGjxgW6DB8MsZ0aDIWiGpYU5UwUDXsYikhExER6eQ6UzVMlTD/UEImIiLSifmjGqbpizofJWQiIiKdiL+rYZq+qHNq/chvIiIi4hcN1bBrVs/n3t9n4qqv81bDnNb6rIZdKBlzuSz5pdVYawHfQ1Q0VMOCHMZnNUzJmP+pQiYiIhIggaiGafqizkkJmYiIdArWWmpqaggN7Rn9kzqib5imL+o6OlVCZox5Bfg6cMpa27kGmREREb+pr6/nr3/9kLy8I4zPHEt6xthAh9Suzq2EAQGrhoGSr86oUyVkwKvAi8DvAxyHiIh0oNLSMvJy8+jfvx87cj7rVgmZr0qYwxkU0GqYdD6dKiGz1m4wxiQFOg4REelYUVGRJCYOIe/Lo4zP7NrJWEv7hRmHQ9Uw8epUCZmIiPRMTqeT666/tsv3IWtNvzBQNUz+qUUJmXH/VAdZa4/4OZ6WxLIYWAwwZMiQAEcjIiLtxRjT5ZIxfzwlqUFbe6YWJWTWWmuMeRtI93M8LYnlJeAlgIyMDBvgcEREpIfy11OSGrS1Z2rNLcstxphMa+1Wv0UjIiLSSXVENay5QVtVDeveWpOQTQf+xRiTB5QDBnfxLLW9gjHGvAVcCcQbY44CP7DWvtxexxcREWmLjqqGadDWnqs1Cdl1fovCw1p7q7/bEBFpL3V1dTgcDhyteDpOugaXdXG66jRxYXEYYy66GnZuJQx8T2GkQVt7rhb/L2KtzQNigRs9f2I9y0REepy83KO88dpKVq18n6qq6g5t21pLVdU/5yaU9uWyLha+t5Br/nQN9/71XlzWdVHzSTZUwib+5ANueWkLLpf756b5I+VsLa6QGWMeBhYBKzyL3jDGvGStfcEvkYmItFJ5eQW5h4+QkBBH337xfm1r966DhIeHUVBwmvz80wwefIlf22tgreXDDz7ii0N5jBo1jMlTMzuk3e7svGpYRSE5J7dRbyDnxDZOVxQSH5HQ5mpYU5Uw3YqUs7Wmzv5NYIK19jFr7WNAFu4ETUSkU/jg/U1s+kc2q995n7Kycr+2ddnwZMrLK4mJiSIuLtavbZ2toqKSLw7lccklfdmz5yB1dXUd1nZ35LMa5nKRVl3troZVVxPncgFtr4Y1VQkDVcPkn1rTh8wA9Wd9X+9ZJiLSKdTV1uIMcmIt3ttC7a0gv4iCgiIGD+7P7XfNJSjIidPp9EtbvvTqFc5lwy9l/77DpF4+gqAgje/dGi2qhkX25ZWQoZw+mk3cwAxMZN+mj6cBW6WdtOadvBT42Biz0vP9XEBPQIpIp3HVNVPYv+8Q/S/pS3R0ZLsfv7KymvdWb6Cmto64+FjmfOPqdm/jQowxTLsyi0mT0wkODu7w9ruyhmpYTn4OaX3TeGXmK95qWE5oCGnVNe5qmDE47n6X+IoCiEiAJhIoDdgq7anFCZm19mfGmPXAFNyVsXuttTv8FZiISGvFxkYzfkLz8yDW1dVTXHSG6JhIQkJal9C4XC7q6l0EBwdRU117MaFeNCVjF3ZR1TCHA86pjKkaJv7U2qmTtgPb/RuSiIj/rPvbJxw7cpI+CbFcP3tqq243RkSEc+2sSXx19CTDLkvyX5By0S62Gqbpi6Sjdbmpk0RE2srlcnHyWAG9+0RTVFBCdVUNvSLCW3WMgYP6MXBQPz9F2L5qa+s4eCCX0JAQkocO7tbVmvashmn6IgmE1jxlucUYo+erRaTLcjgcTLzicurrXYwdP6rVyVhX89nOvfxjwzbeX/sRR4+cCHQ4ftPiJyUbqmH/ugtzz5pG1bD80n+O69bc9EUaM0z8pVNNnSQi4m9Dhw1h6LAhrd6vuqqG4qIyesdFtbrvWaBY2/AX3WoQWX9XwzR9kQRCa/qQ3QdoZH4R6XHq6ur52+qPKSkqpW//Plzz9Qld4gM55fLhhIaGEBYWwqDB/QMdTrto775hmr5IOovW9CH7b2ut+pCJSI9TW1NHSVEZUTERFOaX4HK5OnTssbYKCQlmTOplgQ6jzc6thAEdUg1z76rkSzpWa25ZbjHGZFprt/otGhGRTii8Vyjjp4zm4L4jTLwytUskY12dr0qYwzg6rBom0tFa24fsPmNMLupDJiKdyPEjBZw8eprk4QOI6dP+A8ICDBs5hGEjW9/3rC0qyquoKKuid3w0Tmdrnr1qP2VlFRQWFtGvXzxhYf6vFLV0Pkmjaph0U61JyK7zWxQiIm1UUVbFP/66E4fTcPzLAq67eVKgQ7oolRXVrH37YyrLqhg2ejAZU0Z1eAw1NbWsXvU+paXl9OsXz+y51/q1vRb3CwNVw6Tbas2vXl8CU4G7rbV5gAW6xmA8ItJtGYfB6XBQV1NPcEjXn9exsryairIqIqLCOXW8OCAx1NbWUlZWQWREBEXFZ9r9CU2XdVFQWeA9rrcaZuu91bCGStj7R0+yNGRoo/kkXRjybQwNUbVmQm8NUyGdVWv+9/ol4AKuAn4ElALLAY1NJiIBE94rlOk3plNUcIb+g+MDHc5Fi42LZFRaMiePFZI2ITAd8iMiejHtygl8cehLxqQOb9fkpT2ektSgrdIdtSYhm2CtHWeM2QFgrS0yxoT4KS4RkRbrnRBN74ToQIfRLhwOR8ASsbMNuyyZYZclX/RxLmbMMBeGQhtDPO5Oy9D8oK3qGyZdWWsSslpjjBP3rUqMMQm4K2YiIiLnuZhqmK9KmMNhNGirdFutScieB1YCfY0xTwLzge/5JSoRkW6stLiCitIq4vrHEBTcsUNoWGvJP1VESEgQsb0vXFW01nLieD7GGPpfktDstu1ZDWvqNmRTyZeqYdLVtTghs9a+aYzZBlyN+/0y11q7x2+RiYh0YUcPnqT8TCWJIwYQ1uufvTsqyqrY8PZ2qitrSBxxCenTR3ZoXPv2fMFHG3NwBjm4/sZpJPTt0+z2hw7m8cHf/gHGMOv6K0lMHOhzu/auhjV1GxKUfEn31KpHkqy1e4G9fopFRLqhmupagoKdOBz+G0+rtrqW3VsOU19bx6iJQwmLCOyH9ekTJWz7YA/GGMqKKkm/2p101dfVc+pIERVl1fSKCuVMYXnHx1ZYQlCwk+rqWsrLKi6YkJWWlmEcDlwuF+VlFd7lHVEN021I6Um6/jPiItJpHcj5kr1bc4nrH82E61JwBvnn9tzxwwUc2XMch9NBREwvhmcm+aWdlqqpqsO6LBhwBv0zEd3+4V6OHc6n+EQJDmcsmdd0/BhjY1Ivo7S0goiIMAYMuvDIRSNHDaOsrAKHMQz9WiLQcdUwVcKkJ1FCJiJ+c/jzY0THRVBwvITykkqi45oeRb+2upby4koi+0Q06ldVXlJBdXkNsf2icTQxan2vqDCMw2CtJbJ3eLufR2t8uecYn286iAMYPj6Z5FEDAHdfrFNHT+N0OjjxZSExcZEcP5RP34HNV6jaW3RMJDOvn9Li7cPCQpk8NYPTVacJCQkGWjefpKphIi2jhExE2s3BHXnk7T7OpZcPJnnMQL52+SB2bfmChIG9iYhpOlFy1bvYuuYzzhSUEzcghozrUzDGUFFSyZa3c6itqSM5dRDDJ1zqc//4gb2Z8o2xuOotvfsFdviLrw7k0ys6nPKSSuL6RRMS5k5ijDGkTRvOtg/20G9wHGERodTXN35Q3Vrrt2SkpLiU3Z8fJD6hN8OGJ7V4P1XDRDrGBRMyY0wp4GuY5oa5LLvH4D8iclGqK2vYl51HTFwke7Z8wZAR/bk0ZRBDRlyCM8jhTTQqz1RRWVpFTL8o7y3Mupo6SgvLierTi6KTZ7Aui3EaqipqqKuuIyQsmNJm+lvV1dZTcvIMziAnMQmRfu2v1lwMxkBy6kB2rttH3CWxxCRENdpm4NC+DLg0wdPhv4qkkQO8647l5pP94R7iLollwjWjCApu39+XP/pHDgWnTrN392F694khPqG3z+3UN0wkMC74jrfWRl1oGxGR4NAgeveLpuhECX2HxHlvL559+7GqvJqt7+RQXVnLgGF9GT1tOAAh4SGMmDiUr/YeZ8zUYd59Y/tFcem4IZwpKOOy8U0PUnp0z3H2bzmEte4+W/2H9m1yW38oPnWGbe99jtPpJOP6MVx798Qmk0JjDIOH9T9v+d5teYT1CuVEXgHFBWXEXxLbrjGGh4dSXVNLSEiw99bjuVpTDeOu1ZB/DPoOVDVMpB206lcwY0xvYBgQ1rDMWruhvYMSka7F5XJRdrqCtOkjqKupIyK2l8/KR21VLTWVtYT2Cjmv4pU4egCJowc0WuZwOBiWkXTB9o0xnjK+9U6x05Hy8wqxLkt1TQ2Fx4qJ7B3R6mMM+lpfdn38BdGxEUTF9mr3GCdOSWNI4iVEx0QSHePuy9fWapjLZbn1d594Eq2jmr5IpB20OCEzxnwLeBgYBOQAWcBm3HNbikgXU36mkurKWnr3jfL5QXkyr4Cj+04yZOQlJAxuvuP5/s2HOLLnBL1iwsi8MQ1nE53vI/tE8LXxSZw+VsLQcUPa5TwABo3sjzPYgXW56N2/db0oaqvrOHHgJMHhQfS7tG+bkoZ+yfEc2XeCoJAg4gb6vhV4IZddPoRBl/YlJCyo3W9XAoSGhnDp1wZ7v7+YalhhWXWnmL4oNzeXw4dzGT16FH37dmxVVKS9teZd/zDuicS3WGunG2NGAD/0T1gi4k+lReX8feV2amrqGDPhUi4bm9hofXlxBf/z0gbyjxYRExfFbd//OmERIeR+ehSApMsHN7oVWXC0iIiYcCpKKqmuqPF2ZD+XMYak1MEkpQ72ub6tnEFOeveL5tP3PiMvO5dRV4+iTwsTo7ycL/nysyMYIDQ8lN4DWn+rMDo+iitvnQDQ5JOgLdErKuzCG7VRe1bDOsP0RRUVFbz33lpCQkLIzc3jnnvuUgVOurTWJGRV1toqYwzGmFBr7V5jzHC/RSYiflNRVk1tTR1h4SEUnSqltrqWoJCgRh9o1RW1BAUFUV9fT01VLae/KuKL7XkAhIQHM2T0P0dsHz5xKAc/ySUxdSCRvdv/dltLlOaXUltVQ1BoMKePFF4wIXO5XDgcDozx3PK0vp5darmLScT8zWVdLPzrQnJOtU81rKlbkR3ZN8zpdBIaGkJ5eQUJCQlKxqTLa01CdtQYEwu8DfzNGFMEHPNPWCLiT/GXxJA8agBniioICw3mw9e3EDeoN2OvHYXT6SAithczvzmFXR8dJGn0IGL7RVFdXuXdPzi08X8dCUPiSBgS19Gn0UjsgFh6xUZQV1NLv6+d32n+bF98cojje44zcMwgEtOGEBoZSkh4MLGXxHRQtP5zbiUM4HTVaXJO5VBv68k5lcPpqtMXVQ2DwHfMDw0NZe7cORQUFDBgwIAL7yDSyZm2/FZojJkGxAD/Y62tbfeoWigjI8NmZ2cHqnmRbuHD1zfTKzqM4vxSpszPILKJDuXWWgqPFoGBuIG9/VKRKC8sxTgc9GpDp3hwx2it9fmEY8MYX7WVNXzyx4+J7hfDmVMlZN02CedFTPB94otTnDiYz+DRA9rcf6y9+KqEOYwDW1/Pva+PJ4dq0ghl6Z2fYJxOXPX1nM4/RlzfgRiHg/zSaib+5APqXJYgh2Hzd68mISoUl8uqY75IOzDGbLPWZvha15pO/aHAPCDprP3SgB9dbIAiEjiJYwZycFse8YP6EN5MHyZjDPEX6Nx/MQrz8jn4971gYPhVo4ltwwj2ni4V5y0/sj2X47uP0n/kQPokxhMaGUrJ8WISvtb3opKxmsoadv99PyHhIXz2wR6uuCOrQ8dAO69fmK9KWHg8prKQV77M5TQu4nBgKgtx9UroMtUwkZ6gNbcs/wKUANuAav+EIyIdbejYIQwZdcl5fcg6WmVRBQZwuSxVZyph4AV3aZG6mjqOfX6EqIRocj8+yNGcPIyBgaMHkTR+6EUd2xHkJDQilMrSKqLjIzv0+vnsFxbSmzSXkxzqSLNO4kI8FbuIBMygCcQd/RgGT4CIBArLNEyFSGfSmoRskLV2lt8iEZGACQ71/VRkR6kuraSyoARXTS19hvYjLjmh3Y7tDHbSJzGewsP5RMRHUVNWhTPYiauu/qITjqBgJ+nXp1J6uoyYBN/Dh7SXFlXD6l28/GUuRbjo46mEEdkXl4Xbav43h6vySKpO4i2LqmEinUxrErKPjDEp1trP/BaNiPRIJz7Lo/xUCcHBDvoN609wWEi7HdsYw9Cpwxk8LomgsGCOf3aUmvIqBl2eeOGdWyAsMpSwSP8mMC2thrkw7DbDR6QfQQAAIABJREFUGVG3h8/M10iu70U07imMsr8soc4VQ+GXxaqGiXRCrUnIpgD3GGMO475l2TCXZapfIhORHiM0uhf1tfU4nA6C2jEZa+BwOAiLck9uPnhckne5PyfzvhhtrYYV2BjmVnyX3raU00TxlxPFpMREqhom0gW0JiG7zm9RiEiP1m/UICLionCGBNErzv/T59ZV13Jw3S4qSyoYesVIoi/p+Kcja2vqqCyrJjI2vNGDAK2phu0LGsll1bvYGzqSEeHxxDsMqQNi2PmVg6/FBHFZknv0+o4etFVEWq/FCZm1Ns8Yczkw1bNoo7V2p3/CEpHO7OSnh/8fe28eHMmZnnf+vi+Pug9UFe6r0d1A33eT3WzenCbn1BzyjC3JlkczOhzetXciNrxhRXg3wgqHdz2O0IRX3o2Vx5pZayVZd+gYzWhGnIOcIYdXn+yLfeG+gUKhUHdWZn77R4FAowE0gG6gSYr5iyCbqMzK+qrYVfXg+d73eZm+NkRqTzuNB1cf+r1ehJREtlgUzQ5OMTswRWpXK7Zlk5/MYob8TFwbeeiCrGrZvPxX58jNFOjY00TnI/X35YZ9Jv/rxNw5ZqsxXitWqY/4+PP/8ckVhZfnhnl4vL9Zd3+2EOIrwB8ADfP//L4Q4l9u1cI8PDwWsS2bG6/3cu2Vm1gl6z1di2NVmb48QKAuzPTlARzrPYsiXDfVssXAK++Qn8zS99IVArEgZthPtWRR17l5DQTrpVyoMDdTIFwX5Df6/g2n//Q0X/rel3CVu+CGaUpx2J13wwIprut7iDvwjr4HN5AiFTY52plkVsY51plYtg3puWAeHh8sNrJl+cvACaVUAUAI8VVqw8X/81YszMPjg0K5VGF8JE2sLkxdcmODrdfLyPUxXvvzt3AdhasU+57suef5jmUzcW0YISWNe1qR+v1nbd2NNHTCrUlyI2kirUnkFgzC3mykpqEHDKx8mUAighn2s+9Tx3BsBzP48Fyjd2vD6qJ17NjfxvXe2wyK3vt2w9azDZmbK1CpWCRTcU+keXi8j9nIJ6kAnDt+duZv8/D4UPPKDy8wOjSF32/yqS88RTC0+QOiS7ky+XQBISWzo7Nrnj91c4zh8/2gFEbAILWz+b4f26lYlCZnMWMhzGgIIQQdT+7DKlQwQ2s7MVtZOF/O5ChOzBJuSWJGV5+hqRkaO08fopQpEKqPIoRAM3U08+GJyZVqww6e3M53fu/frKs27GhnkrMDckNF+ZmZOb7zVz/GrtocP7mffQd3Pqyn6+HhsUE28mn0/wJvCCH+Yv7nzwLf2PwleXh8sCgVy/gDJpZVxbGdte9wH7R0N7H9SAeO7bL9aMea50tNggIQD+yOjb92hcLYNLrPpOMTj6H7TYSU+Oa7FlfDrdpMvvY2lXSW1Il9hFoaHmgdd+NUbYZ+eAHXtsncGGL7p04i7krJL05lGT93i2BjnMaDXWuueS1GrozQf36App4mtj/SdU+h+SCdkvfrht1NPlfEsqr4/SaTEzPse6Bn7+HhsZWsu4ZMKfU14MvADJABvqSU+k9btTAPjw8KRx/dQzln0drSSOgBv/BXI1of4ekvPs7T//QUzd2rD852qg69P7jIxLnbNOxqpuf5Aw9cI1XNF9H9PpyqjdqA4Kxk5iiOTSM0SfZa/wOtYUWUAqUQUqJcd8VTRt+6SbVYYfrKIOVM/oEeznVd+s70EYwHGbkyglVcvZbvXTfsva4Na2pJ0b2rk1g8wuGjux7o+Xt4eGwtG/LrlVJnqY1O8vDwmGf41iQhM8T0UJap0VliiTCmX9/0mYbB6Npir5zJkx/L4I+HqM7miJ9a/UtYKcXczSEqM3PE92zDjIVXPK/p1AFmrw8SbEpihNcvOPVwgPL4FKWJNI2PH152vJovknunDyMeJryjY91Cw6lYIASaadD2zCEKo2kiHQ3L3LFqoYxdKFJM5wk2xNEDD1YrJqUktb2eyVuTxJtiGP7F6QYP2w3LpHO883YvDa1JdvS0rbpmw9B54pmjD/S8PTw8Hg5rCjIhxCtKqSeEEDnmN0HePUQtGHZrqpg9PD4gBEJ+HMdBSknf5WGmBzPUtyd55KN7H+qgaQBfLIi/LkQlW6T56PJ6oWq+iJASPejHms2RPn8daehUCyVaP/LIyteMhwnVBbAzaezGOHpwqShzSuWaQPIvFTxCQbgxQd3uDux8aVktWeb8NSrTGdxeGzMew5eKr/n8ylMZxn9yASEFTU8fI5CKEUjFVjx35NXLKKuKbtRq3oxNKN7vebybjoPt+EK+2rYwYFlVfvX7v8LF6Yv3lRt2P7Vhr710kUK+TO/NUZKpGPHE1me3eXh4bC1rCjKl1BPzf3rveA+PFdh7vItkYxSf3+SNb79NoinG5FCacr6yLldrJaplCyEE+jpmTDqVKla+iC8eQfcZ7PzoUZyqgxFYmnhfGJ5g6rW3EZqk6dlHkIaOMDRcq7rE+bLzBTJnLyENg7pjB7AyWbJvv4MwdHAVdccPLJxrTc8w8+pbICDxxAnMxKKo0gI+gttaKA2PE9m9HSEE2UvvULw9QHj3TvSgn1LFAgF2Po8ZjyDWqHcrjk6DUjgVm8nXL6EHTOoOdONPriDK5rczzXBgRTGmXJfC1BxGwMR3j4aAO5FS4o/6a26YlqQwW+THf/sqF6oXcHEX3LBE1eHr/X3MSUXMFajCNGkR37TasFA4QHoqi89vYjzExoR3cV2XXC5PKBRE19//XbYeHh8E1v1OEkJ8VSn1r9e6zcPjw4aua7R21QrWe452cuPsAK07Gladb5ifzqFcRaRhZXN5bixD70tXkFLS/cJBAnUrbyXCfGH7989SzRUIdzbS/Nh+pK6tWMhfns4gNIlr21izOSJdrbQ+9wjVQolAQ2LhvELvINVMFrdaxd/aiBEJg6bh2jYysLSDtDKVBhTKcbHSMxjxKJWxcQB8zU0kTxxEHd+H1HWcSoX8jV7MZILc1Zs0fuJZzFQd2XOXmD17ifLYJMnH7r29Fu5sIj8whus6lKcy+GJh0mev0frCyWXntjy+n7mBSfzJCMYKna8TVwYZv9CHZup0f/Qo/njono8Nyzsl/13nv8dXMjngCC6basENm65W6XW7OapucE51s53YQm3YRt2wlXjsmYN0dbeiGxqvvXQRheLUM4cJbWBL+UF49ZU3uXL1Bk2N9XzqZ573RJmHxyawkXfR88Dd4uvjK9zm4fGhpftoJ9sPtqGt4vTMDM/wzouXUUDPM7up71reeTg3MoOQAtuqUpiau7cgK1tY+QJmJERxfOaea4tub6MymUGaOsHmFABmPIIZX2p+G3UxcF2krmNEwpiJOPXPnMC1qvgbkgCUh4ZwslnM+gZKoQACib+lifLQMHNnz4OC4J4e7OwcRixGaHcP0jDwNdZjTU7hb2tG8/vwp+rIotCjYSqT02tGZJjxCO2fegK7XGH0xTexyxX8jQmquQJ6OLjkvmY4QGrf6gPEy5kCus/ArlSxipUVBdlatWEcVYT9Zb55c3CJG5aKNPAvW75G3+AA2zq28UfzxfibNb7I9Bl0bG/iysXbjI+lEUDvzWEOHOm+72uuF6UUN67fprEhxfj4JMViiWjU20Dx8HhQ1lND9s+B/wHYLoR4+45DEeDVrVqYh8cHldXEGEAlV0YBQgrKc+UVz0lsbyQzMIkZCK45TsgIB0ju7SI3NEnjI7vvfW40TMsLj625/mB7C0Y0jNA09HBNpPiSi+uwZ2fJnT+PkBIjl6Ph9NMLx6yJ+S5MAcXrN5CmH2t8ArOhHjOVJPnYUZxSGW2+Dk0PBYju7aY0OEL82IF1iRQhJVJqBJuTuJZNeSrD0N++SnzPdhIH1p+z1XRoG6O2gy8WIty4vH5tPTMl25LNmJ9McP5rS92weiH47792inTh+BLxtdnjixKp2MK1k/Vr1+BtBkIITj52jNdfP8e+/buJRFb/hcHDw2P9CKXUvU8QIgbUAf8H8Ot3HMoppe79K/kWc/z4cXXmzJn3cgkeHhuiWq7Sf6YX5cK2R7owAybVYoVSeo5AYnFr7d335XoEinJd3IqF9D+ccTl2Lsfsyy+jbBt/ezuRY8cWjrm2TamvHxC4pRLF231IQ6fumacWxN1mkD57ldzNfqr5Eq4ShNprUSBtHzt1X9e72wkDmC5Nc/pPT+MoB01ofP8L3ydRdbC/tmfBDdP+52uISAM//19+uuiG/bPHHmoifi5bQClFNO4JIw+P9ztCiLNKqeMrHVtPUX8WyAI/v9kL8/DYKKVShbcvXMcfMNl/oBtN27yRQA8Dw2/Q/cRiFIVyXQZfukB5togZ9rPjE48idW3dX+hKKbJvnac8Okags53Y0UMbXpNSCmdmqtYpWZda8thKKaze61SnJ/B178VI1KNHIsROncIpFDAbGxfOdYtFXKtCcOcOhBAo18XX3IQM+DdVjAFU5/Jk374OhkH82H6cikXq+N77utZKTpgUcsVOyZVqw1Zzwx4Wkdj6X9vRkQmKhRKdXW0YH4CRVx4eHyY2UtT/u8BXlFKz8z/XAb+plPryVi3Ow+Nu3r5wnSuXbuLYDrFYhG1dre/1kh4I5SqqhQpG0IddsuYDTtcvMpVlUR4bw0wlKQ0OEzlYK6DfCNWxIUoX3gABgSOnMJsWX1M3P0f5xhWEP0j58nmMp14AwEgkMBKLjQBOPkf+py/VGgF27EKLxZHBEEjIv/FTtHic8KGjiE0q/tZMnXDPNnBc6o/uJti2elju3awrMyyQQhWml3VKrlQbBpu/FbkVTExM851vvYyrXA4d3sOJxzYu3j08PLaOjXw6HnxXjAEopTJCiCNbsCYPj1XxB0wcx0VKic9nrn2HTcZ1XIQUm+aCSF2j7cn9ZG6OEt/ehGauHXNxJ8I0CXZto9Q/SKh7x4bFGIAqlwEBSqEqxbuu70f4/KhSEb119ZFNbqmIa1kIn5/CxbNowVBNfPlD2HNZilcvIaVG6MixVa+xEcI7O6lMzaAF/EuiNtZiPXVhSbNWL5cmdl9umGM79J4bxKrY7DjagT/0/hBqju3gKhdd07Cs1acMeHh4vDds5NNbCiHqlFIZACFEYoP39/B4YPYf6CYej2KaBs0tDzYSaKNM9U9x8yc3CCfD7P3IPnTf5vz1DzclCDclltymlEJVq0jz3qJTCEH00H4i+/cg7nP71mjrxC0VQAjMlqVdidLnI/zYs7jFAlp89QYDPZHE17kdJ5dFaDrKqqAcByOZIH/mdYQvQLm/l8CevUj/g0czBBqTtHzq2Zo4vit817WdVed3ruSG3Z0Z5mQnmJ2unf+15t+kb3CQlmQTf6KvrzB/anCGW+cG0HQN3dDYdXL7Az/fzaC5pYEnnz5OIV9i7/6t78b8IOO6Lrdv3wZgx44dDz3g2ePDyUa+UX4T+KkQ4s/mf/4C8O83f0keHqujaRqd21rek8cevTKKP+RjbnKO/EyeePPWdLUpx2HurTNYk5MEd/UQ2lWrObMmRqkO3sZo68JsXjou537FGIA0fQT2rW52y0AQGbh3cKrQdIIHatdw8jkqvbfQ4jHM9i6c6WnsuSx6NIbQN+YA3nPdK4iuuWu3yV65RbC9mcQj+1GCJduTdUacnjLcMBU9Fagz4qSr9hInLDZQofh2P0rBV4+0cMOoEjckI+f76Xp87XmQpt9A0yTKVatm0W2Egdtj3LgyyM49bXR13/8WvRCCPXvX34X6YebmzZt873t/B8Dp06fZu3fPe7wijw8D6xZkSqn/TwhxBniO2tikn1VKXd2ylXl4vM9o7G7g9mu3CdUFCdVtbpH6ndi5OYpX30aL11G8dZvQrl0o26Z04U2kz0/p7TMYqUaEsXFx48yMoNKDyMadyOjWOIxaOELw4KLAizz5DM7sLFoksmk1ZCuhlCJ7rRczGacwNEZk73Z+7ZV/wYWpCxyuP8w3P/ZNMtNj/P7IAHMaxBzITI+RamxbUhf2nwMGRaUAgaZp1JkaynWRxvpEb6IlzqOfPoxt2SRaH0y0V6s2r/3oEqGwnzdevkJrZwPmBre1PTaObTvUvubAtu33djEeHxo2+uk4BrwJ+IGUEOIppdSPN39ZHh7vP5p6mkl2pNAMbWGO4d24VRuxQpekXShSHBjBqIsRaF4eBnsn1bERVGGOyvgI0WdP126UEhkK487NIiNRlHJwRvtA6mgN25Zt262Eqlaw33kZpI6bHsJ49PML91PFDAAieO/cs/tBGiayfvE5V9PTlK++jZZMEdi9f11rXw8KhdURRfVlCDTVM+vmuTBxFkfAhYmzpAvTpBpauebbR0/lCjd8+9jT0Iq4qy5Muaq2RSUEie2NRFuTVEsV6tpT615LvHFjI35t28F1XMy7RmVpmiSeCDMzNUc8FUFfY7SUx+awa1cP1WoVwHPHPB4aG+my/BXgK0AbcAE4CbxGzTHz8PhQYPhXdydmrw+SvniTQGOCpscPLtlSy5y5iDWTBaDx9JPokdUdNqHr+Ld1oByX4I7aFpOQktAjT+JkM2ixOO74Lezes7VjmoZWv3oi/QJSIjQTZRUhGId50ehkhnGu/QBQaHtOo9W13fs6d6AcuzYz8h5bkW6ljJvLIqNxpOmjfO0SbtXC6buF2dyKXpdc9+Ot+hjK5cvf/TIXpi5wKHWQb576JjOToxwqV7joNzlUtlCzBUS4gd3/+mVmpkZrYmxeDEopSIVNypkCmqmT6lncFo+1bL5IvZP8XImX/uYclZLFqRcO0HyH8JNS8uwnjpNJ56hLRrxapoeEruscPux1oXo8XDbikH0FeAR4XSn1rBBiN/AbW7MsD4+tJTuRZeLmBKltKRJtibXvsA5m3xlA8xtM/OB17Olpml84hTEvvITUUI6L1DSQ9+7Q9HftRJo+0HX0+sWcL+nzIRtq8Q7uOtajnCpYOfDHEUIiNAPjwAu4+WlkrHHRxStmFkcWFWdhnYLMLRWoXPgBqlLBPPAEerJ5+Rpcl+KZV3Bzs2jROMGTz6El67Fv30AGAmvWpjmFPLk33wAg8ugJtFAt/PTu6Ip0cYazE+dBuJybvMhMeZZUYxv/ajpFvXudSXcHqjeNat2G1DRSTe3LHit9fZSxMzfQTIPtLxxZ12zLzSAzNUdhrkQg5GPgxvgSQQbg85s0tT64aPXw8Hh/s5Fft8pKqTKAEMKnlHoHWLvC1cPjfYbruFz5wVXSwzNc/eE1qpXNqRGJdrdRHBhF95vguhSHJxaORXa0oZfS+PwOco1ATqHr+Dq78LW2rxqvobXuQu8+ib77CWRyubhQThX31rdw3vkz3KFXFq8djKI1bEf47hAbZgA1cxNVGEfUrb9o3J1Lo4oFhG5gD15DVVeIUnAc3EIOGQzj5OfAdQns2kvkiWeJPP7Mmh2XldFRnEIRp1CkMjpau6Rd5cvf/TKn//Q0X/rul7CtCsoO0lMGTSl6yqDsIEJKun7pzxmp+yp2+R8xc+Yq+f7hVR+rODWL7jNxrCpWvrTu1+FBSTbGiCVCOLbD9j3vTcPKnVQqlYXtOg8Pj4fHRhyyYSFEHPhL4EUhRAYY3ZpleXisTXYqh111SDTHNpYLJsAXMClkCvjCfuQqjpVj2czeHkWaBvGuxjVrnRJ7u/DXhUm/dgEhBf76ReetOjqMv7kBt1TCnkljNi13k1ZCKRd34BXU7ACy/RQyuaP2FDQDvfUevw9VC6jiNCKYgtle6Hhq9XPTN9A7DqIqeagWqU1Ku9eaamOdZCyFCEVxJocgO4EqzuE7ehoZWBzhIwwD//5jVId68XfvWyjq1+8RoXEnRjJFgXeYVQU6E0kq4+MMvPUjzqZrbtjZifPc+vaf097VxR+ODy1EV+gyBwQJtTTStv8AM+5N7GKZkW+/SuPTx6g7sDz2oWF/JyOFMuHWBKHGrd2mvJNg2M8Lnz+BUrWasXsxk84yl83T3Fq/JTl8w8OjfPdvf4hpGnz6Mx8jHo9t+mN4eHiszLoEmah92/1P88Gw/1YI8SMgBnx3Kxfn4XEnVctGN2oF8zNjWd78m4s4rmL/E9107lu/syClZP8L+8lOZImkImirdM+l3xli8u1elALdbxBpXbuoO9hcj++TtWHb2h1fmEZTM9bEOCIYQItuoOC7lEFN34BAHWrkTZgXZGviiyHrD6AytxCta8x3TGyHgZ8ifBFE4N5dgao0R/XKD8F10fc9i//Rj1O59GNUfhYqxdqfgaUzFc2WDsyW1UNl74VWF+dfiT/j4szbHH7re/yn6K8gRB09ZbjtV+wog9bcRGkkQ7DjJMnhN6DzBCLcgDWTZebNC8iAj+SRPUyfuUJ0VyfZ6/3E9+1YJrD9dWF2fGxzgms3ynpqw/K5It/+65ewKjbbd7Ty7PMnN30dt2/3o+ka+UKRiYkpT5B5eDxE1iXIlFJKCPGXwLH5n1/eisUIIT4G/J/UZsf8jlLqP2zF43h88Lj2+m36L43S0t3Awad7qBQtHMdFN3SKc+UNX88X8tGw/d7djghAvdv8vn4HTlvBufC1tWOkUghN31hchS+CCNShShloPLDm6cq1UdlrtRW3PIJse2zt9TbsRsXbQDMR2r1dF2dmBFXOg9RwpwbQtx3G6NyHdfkVZLwBGX+wKI27a8NGey9ybupizQ0bP0++O0JiYoA/HB9kTkLMFcwmRwkceATx8b+B4jSE6kEIcjduoxwHa3KGxGNHQNcpjkwS7W7ftM7OjVIuWVx8/SZSCg6e2InPv36Xy7Kq2FUHv98kX9iaLdXdu7vp7R2gLh6lpWX946g8PDwenI1sWb4uhHhEKfXWVixECKEB/zfwPDAMvCWE+Gsv68zDcVz6L49S1xxl5OYEux7ZRn1Hgq6DbVhlm20HtmaeZWp3O7rPrM1NbFm58F+5Loj1jVJyp3txx95Btu5Fb1naSq+UAuUg5NK3pNBM5O5P17YSfWs7a2ruJkz+BBAooUFsN0KsLj5UOQ2VWQi3rSnGAGSsAUczwHWRdTVXUovXE3jic2vedy3u7JQ83HCY33nq/6Jy6fYSN8xMdVP3id2IzO+THH4TOh4l+ekvIH3zAazhRZHta6ynPDKJDPgw41HqW5twyhWquSLVXBEjcu+Ggq2g7/oo/TfGUEoRS4TpObB+5zCRjPH4U0eYnMiw78DWBLw2NtbzxS/+I2B9rp2Hh8fmsRFB9izwz4QQA0CBef9AKXVwk9byKHBLKdULIIT4I+AzgCfIPmQsdPzNo2mSjj3NDFwdpXl7Pb5gbYbg3lNbmzouDZ1Ez+piz85myb35OkLTiJw4udABuBLKruD0n0OEEzh9Z9EadyK0mlOmlIsafhFy/aiGk8jU0nZ7oRmg1baO3NIYlPoRoR0I3woOn5CAQCkX0mdg5k3cQAdCWRDdjQxvW1yTlUP1/iXKKSNi3YiOF9Z+TcJJjKOfwpm4hSplUZHUfbtNtuNwe2aC7mQTUsolnZJnx88zU52j3m8tccN0mUP4GuGXvr3ghq0mhsNd7fhSCaSpo80LtuyNIWav9aGZBq0vnMQILzYV2JUqg69dpzJXovPx3QSTkft6XvciFPEjqKXmh6MbHyHVs7uLnt1dm76uO/GEmIfHe8OagkwI8XtKqV8Evg78xRaupRUYuuPnYeDECuv5NeDXADo67q8uxeP+mcvm0TSNUPjB5xHejVWucvbvrlDIljj2wj7q7gjX3Pf4TrqPdWL49HW5UaNXhhm/Mkzj7hbCqTDpm+MkdzQQa1t/uOea6x0ZBruKWy5RnZxE61pdkCENRLQBNTeBjDfDnU6YNQdzfSh/Eoa/g+uPIELbljlbyq3A9A9rzlexH9X8GYSdQ6EQTgl8zYhoN0pIqGZh9gLKSMDwn0L90zDxI1TwHyPkvBPmWuBUQQtANbfu5+1O9qL6z2Oj0DUDrX7bBl61Grbj8PjvfoGCvE3I3c6Pnvl3OGZ8iRsGccJPfQYGvkFy/MJCbVjt9ZRL3LDVMCIhXNth9PtvMP3WZdB1wl3tOJaNU6osEWT5iSzZwWn0gMnk1SG2Pbl3w89rLTp2NBEM+RFCkGz06rM8PDwWWY9DdkwI0Ql8CfhdNlJMszFWuq5adoNSX6cmDjl+/Piy4x4PjuM4DA+N4/P7aGpaFDADfaO8/IMzSCn52M88Tqp+/Z1oVctm6MY4ZsCkdfvKrsbMWJbM2By+sEnf28PUPb/0C9FcIZQ1OzZLPp0n1VWPL1RzQWzLZvhcH8FEmKFz/Riawgj6yI7McPDzJ9HM+x/f4+TmqPTfRk/WYzQ1UR7oB9OHnrx3TpSQEmPfc6hSDhGILn3+RgRCbaipl8CeQPV+HdH5i2ixfQAoOwt2FqXVgTTBLqD0KCr9ElSnUMU+RHAH0t+KTD5XE2VuFVUeRZUnIbQd7DxKCCgMQLADofkQ/iSq9WlEcRyR2kAIphCod9+a6+xuvdsNuz0zQUHeRgiXguzlxrW36Ka63A0LNsKvvrikNmwtSkMj5K/dxN/WQnhPN9ZMlukzV1C2g1uoIAVE92zDl1y6BeyPB9H9Bo5VJdK0dV2WqaatmYHq4eHxwWY930y/Ta2bcjtwlqXCSc3fvhkMA3cGKrXhxWq8J1w8f40zb15G1zU++ZlnaWysibLJ8TSa1KhWq2Rm5jYkyK6fG+DGuQEQgic/fZj61jqKcyUc2yWSqGViRZMhfCETq1SlsWttJ6ucK3PlxSso12VmZIYDH63tnmuGRqyljtmRGWItMZxihUqujC/iR9wVK2CXKpSnMpjxCGZ07SDQwvk3cUslrKF+Ik8/T/wjz4MQyBUK9ZVyl7hcQjMQ4eW1aEJqqI6PQekCzN6E/DQqvQ0V3QvKws38CNwyGA3IhhcQVhplxCH9IkoLgp0DoaPc8h3XNKDlkwinhFICCr0w/WrNJYvuQjTUOkFlYg8kNjYaRkZSOJEEwhdGRNd2qZa6YTt49Yt/Snc9PaJ+AAAgAElEQVSigb2WWBjyvcMM4GQLmGYzSWsMJ96NNTqKjBQxWrrW5YbB/DzL85fQQiHy128R6GxDDwcJNtSRvTFIaFtrbatyhfoxfzTI7p95BKdq448+/PoyDw+PDzdrCjKl1G8BvyWE+H+UUv98C9fyFtAthOgCRoCfA35hCx/PYxWKxTKGoWPbNlZlMSCye/c2xsfSmKZBW3vjPa6wHKUW2hVrX5rTOV7/1tu4tsuh53bRsqOBYDTAU184hl11CYR967umUmSHZ5i+NU6qLUHzvjaEEHQ/s5dyroQv7MexbIrTOYLJyLIZlJOvXqCczqL5TNo+fmrFDsk7kT4/djaDKKSp3jyD2XMUGVxebO9OXUGNvgaxLmTns/csrAcQQoNIDxSugwyAryZ2lT2DW00DAiEyCCMGRgwBuLHjqPxViB9GaUFk7LHl19TDtWJPfyMIHYQGbmXN13Y1VCWPfeXbuAPnwAwjBcg9H1k4frcTBtzlht3m9swEuwI6fzg+RAaXBBL7yTYsISi0/BPIjaHtPIEYvIVSLjIURYut7EBa09MUr1zGSCQI7qvNxfQ1NlAeHcOIRJA+E6FptHz8SRqeLhNsrUf3r/53ywiYGIHNz/fy8PDwWIt1791ssRhDKWULIf4F8D1qsRffVEpd2crH9FiZI8f2IYQgEgnR2rYovOJ1EX7mZ5+5r2vuOtqJP+jDHzSob61j9NYU1YqN4dPJjM/RsqPmgBg+A2NtLQZAIBqg+8luzv5xms4jnQyd66dhVzOaXhv+XRyfZeidIZK720jtXj4OqDKTpZyeQ/OZuFUb5aw8kEi5DpVbV1CVMv5d+9BjYezeLCo7SfXWeXwHn15+n/EzEEigZm9B01Hw1911TQtV6gPpR/g7EEKgNX0KN9QFTgkZ3YdbncQtnsVxx8DVkWYc5VZr7hcggztQzgxYCrAR4h4TB3z10PA0VNKI+a3Q+8J1UHYFUCAlqpRdOLSSE6ZrWs0Nqwhu+Gpu2M5gCIJRtPYTpIbegPYTmHseR6k3EcoFY1fNhZserXWdytUHahevXkFZFqW+PszWNoxEgvjxQ9hz29FCIaSuk7naS+bSbTS/iS8Zw8qVMaNBdN8G4kf+HlGpVDh37gJCCI4dO4KxkRgWDw+PLeP+i2m2AKXUd4DvvNfr+LATCgV4/MnNDcg0fQbdhxZ3pOvb66jvqMMq2RsKdb2b5LZ6Oo9tZ248Q11bcsEBcyyb8XO38MfDjJ+7Td32RjRz8Ysn3zfK9FuXUOUKeiJCfE8XetC/4mM40+NYt6+BpiOkxOzciRq/jrKrCP/KhfwiuRt36gIi3ATm8m49N38FlT8PSLTkx8DXhNCDaHWPLJ5U6asl9QvAH0dqfpaVVUofStk1B06s7uwIIRCRbogsT6jfCCIQQ9/7CWx/FMcIczvRQ4/rrlAXVnPCehINiMI0fzg+SEYoEgpUuhdCR+CLS3PDzN3H0Js6EYEQwvBhT44gg2G0yOo1V0YqRenWLTS/Hy1YK9AXmoZRt3if8lQG3W9ilyoMv3yRatHCjIfZ9vyxJQPgPyxcu3ads2cvopQiHI6wf//Gtqw9PDy2hveVIPP48FApVChniihX4drrGZW9MlJKep7bSyVfxh8JLBTLS0Mj1BgnP54h1BBf9sVbncshpETzm8S6Owi1rbwF65byWLfexpkeQUs0I4IRZDiO79gLqEoRWbfy/UTzo2ipfaAHECs4PKo6jmP1Ay7CTqP5lodwSqMFR+tF+JKgzTtpcqnoksG9CCOFkH6Evrlde0opsMug+5c2IVQyKLfCs2f/mII+uHJdmCXYLh2sN/8EoQfQmw6RHL+AG+/Gzc3h3nwTfduhxa5JQGg6WnLxdTBa1453CO7eg6+lBen3rzoXs27/TqbPXiPcnGKmdxJfLER5toBTqX4oBVkgEFgYfxUIrPxLiIeHx8Nn3YJMCLH37pBWIcQzSqmXNn1VHn/vmR7OYFcdBDA9NEM0dY/IiDXQdI1gfGlBvhCCzqf3U5krYkaCy7KyIjs7sHIFNNMg0LJ6unx14B1UOYcejWDu3IPZWXOYZKQOIis3NahqFlUeR/ibVhRjAPgaUJUwyslj2/1ItQsh7gqFlT6kfxeOmAFlIbTlX55C6Ahz8wdSK+Xi9n8fNduHqN+Paj65UBumpm/Rp3wU9MF71oW5w+cRmoEqz8HnvgH+AG5mGrf/Qi2qIxRDb9mFW5zD7n8bEYyhd+zbUK6ZkHLVuZjKcZm9MYhbtWl++iiaz8TfmGL6Sj/1h7ZjhD6cYqSnZyeBQE1kt7VtTaiyh4fHxtmIQ/YnQojfA/4j4J//8ziw9mwWD4+7qO9IMHR1FBTUd947MuJ+kbpGILFyuKceCtD4xNG1rxGMgOMiw1H0ppVH7iiloDIBwgAzjpp6EeUUQQtC02eXpe8DaIHdOOULCNFRq5FSlVrR/V0ILYTQgkAUV609Lkc5c7iVAYSeQprrG2C+cF+7DJU0rpkknS9Rl+lDRlqwJ6/w1N/95kJt2I8/+b+zve+n7K1QqwuzBDtjCTB8S+rCVPsx1DsvIwIRRLQB4Q8jypX5SGmBMGudjHbvedzMOGqiDxlrQFvFddwohdEpps/dQMwPj08e3Em0s5Fo5+Zc/4OKEIKOjva1T/Tw8HiobESQnQC+CvwUiAB/ADy+FYvy+PtPuC7EE/+wVi91d+fj+wm9vQcZqUPoRs0VWwGVuwFTtXFFNH0UlFMTZ67NClF6QE1o6bFP4FSuoTQ/VWcITdWhaUvFgpQBhFYP2EhtcUtSuUWUKiJkDCEWa+Oc3BlQJVS5HxH7yLyYWxvlOqiBb2Fn3uEfv9zDuVk4mmrnD54aps+/bUltWN/AGXp2nuIP/+5/qblhCpw3vw49H0X74t+gZocg1oamachHP18TnLaFmxmpzbs89AIgkLHadqUIRFFTgyB1hLnOjo51IHUdJChXIQ2vOsPDw+P9zUY+papACQhQc8j6lFL3X/zj8aHnQYWYY1XJ9E5ghHzE2h9sqPVqCCHQ6tbIwLJmayOLXBvcMqL+I1DsRwQ6FzoiV0LqKVxRj+1cBzWI4yTwiSeQclFECeHHNA+hlIUQtW1ZpSws6yJCVREygeHbf8dFDVR1rva465mv6SrSBYtkQKHyg0xPj3El8CaB5CBXSp3MdP0+PZEge195NzNMsV2WUYVptPYTJIdeR8U7EbF21NglnHIWd/wyItqK1nMaoZso16F6+XtQyiJCCfSDn1ziNGptuxGRBDIYQYY2LzQ10JSg9ZljuLZN6I5t6enbE4xcHCC1vYGWQ53rmvzg4eHhsdVsRJC9BfwV8AiQBP6LEOLzSqnPb8nKPDzWYOJiP1PXhxAItj9/hHDje5OALuL7UHYeNB8iVCu8F+Z6RjTZuKoCogLKAjGLUhXgbldLQ6kCCgtJApSNwEYJA+a3MZVbQTlp8HUgjGY0I4WQ9x5v5bqKn/uvP+Xc8DBH29r5g08/jkxfRQsOgnDRAgPopoUslRdrwxS41hwi0lzrkpwbxR05B8U0ov1R3KGzEGpEZUfAKoA/WhOqlRwiEK7VkykXqAkyNzuF9faPQErMQ89t+LW/E+W4IFgQe0IIgs1Lt8OVUvS/cRN/NMDopSFSO5vwhT+ctWQeHh7vLzYiyH5ZKXVm/r/Hgc8IIX5xC9bk4bEuXKUQCGoNY1s3RUtVZsGxILDyyCehh6HxWVDVZV2Q98aPJlpw1ARCWAgRWLHezHUncNQkQtXS/qWMouk7Ue4sUm9DuRWqhVdwi5dBBtEDhxCB5YPX33XDUuHacPapfJnL7lfx7xjgcqmTmdAfU3/sf+XYwM9yAYfD6CR9dSDlQm2YajuGduSXEIHaxAERb0OLtoBjIQw/ODbuyDlEogvM8Pzr40Pb+STu5A20zkcQ2uJzdGZGAYWyLZzMJHKFSQbroZKZY/zH5xGapPnpoxiRlacuCCGItyTIDE4TTIQxVhjHtRrvdiZ6jpqHh8dWsJFg2DNCiDqgm9qWJcDAlqzKw2MdNB3qwgz5MUM+Qg0ru2PFviHKo+OEerbjq7/LLalaVMf6EL4gRuPKRc6qNIXq/UuUXYTmx9Eaji87x3Vt3MKbUJ1GBHahBXYtvYYqYLvDCIJosnUhtV8Iga63IN0EDjdrgwzEBIoAYslb886t3ZoY0PRmoFa0r5w5cAvzxfI2ys1yN3e7YX/0q4+h6QW0wMCCG6bpBTQ3xDeHBpnBJYlElNK1sUXzmWHijnmStUkJbq2TVNY+ErTWQ8imfUtEl2tXIRhB23YcEVgazaHVt+OM3UIYPrTk+rpFle1gzWTQQkH0UM1NzA+Mg+viWBal8ZlVBRnA9id3U5ot4I8E1h17kZ3J85PvXkDXNZ742GHC0Xu7jx4eHh4bZSOxF78CfIXajMkLwEngNeDB9hk8HhpKKTLTOXx+g1Bk418ouZkCZ39wDdNncPT0HvzB93bEjO4zaNjXsepxu1CszTUM+pl96zyNnzi95Lh1+xLVweu4k/3YLe2Yh0+jJe7qTKzmUJUZyN+Ayigq0oYILGZlOZURnPzrKGsEGTyEqvQvCDKlHEDWkvZVFZcphAqhiaUukJR+an0yNuACDne+NaVsAGUCGoIV4kFkBM23q2YSiiBa4PCabthU/o9pCNVxDJ0LqrLEDZN3dEoSqn93EUvmSSqnitv3Iio3hux4AplcFKFLHLDsKJXv/gfc0csQacI89FmMI59F6LW/OzKcwHfyc7X7rTPuYvbiFUr9w0ifSf1HnkAL+Am1NZDvG65FWzTce8aq1CSh5Mrdt6sxcHMcq2JTKlQYG5qme5/Xpejh4bG5bGTL8ivU6sdeV0o9K4TYDfzG1izLYyu49vYAF15/B8PUeeGzJ4nVbSz7q//qKOVChbl0numRDG3dq4Spui4j18dxbUXr7iZ048HCN13HRYj1f2G/izQMpN+PUyhhNq1U9K+gXMCdS0NLG07fObTEJ5eeEmqHQBKsEETaUcWRJYJMlW8gtBhKjYA9jgzVOkcdZxbX7QPhQxBGMYNSWVxlIFyFlEvdOkETigwKjbs3xITQ0MS9okFsUDaabwfS143CWJcbJko5vjnYv6obxh1u2DLKGdTccG081PgFSO5a8TR35DJkx8CpQiGNmh1GledwKhXc0RvIxh3oDauL6hWf7ewc0u/DLVdwKxZawI8/Faf9U08BbElHZVN7gpuXh9ANnVTD5gbwenh4eMDGBFlZKVUWQiCE8Cml3hFCrPwp7PG+JD0xiy9gUipVyOdKGxZkqdY4g9fGQIFTdXDnR+bczWTfNFd/fBMhBa7r0jU/MkkpxfTANHbVoaGrHm0d20XFdI7bP7yM0CU7nzuAL+InN5JGCAi3JO8p0qRpkHzmJPZcHjOx3DUxtx9AaAbCJ0EKRGJ5SKbQDOSOL6BGY6AcRGT70uNmG5SuIQP70KKnkFpg/rlOA/p8NEUKKXSU0kDYKHLU+mJqKNT8vwMIJuaFWStyJTdsBezyMNMzvSSDAoSfaatliRs2mfsjGoKB+3bDVsQfRwTrUcVpaD2x6mmyeS8i3grlLISbkU27wAxjn/8BGD6ca6+i1TUhjPW7rbEj+8ldvYG5oxM9tuh0rSbECjN5rJJFrCl+3529DS0JPvkLjyME+Pze8HEPD4/NZyOCbFgIEQf+EnhRCJEBRrdmWR5bwYFjO3jjJ2VaO+ppaL73ts5KNHfVc+hph7f+9jKXX7lJMVtiz2M7lp33bhAnSi0RbOnBGS5/vzbswS7btB9YPvD7bjKDU7iOi1upMjeWwZiWjLx6BQS0P7mf2LblI4fuRA8G0YMrZ3EJ04fZfQhj225UpYhYJXJBmDHEti+glFpW0K0FulFmK0hzSdK+ECmU6kMQQAofLj4QIcBCsLQDUzEFZIASChOUAPIoQgghcJwpXHcSKRvRtNp9lXJxrX5cp8Iv/O4o50bzHGkM8Qf/ZAIp7CVumCy+AhM3+MZAX22eJBI1/hNI7Easxw1b6TXRTGTPp8GpIIzVs860ujZ8n/sqOFWEGajFgyiF8EdwCxlEIAraxhxUMxEnceo4lUwep2ShB1fPLivM5Hn72xdxbYe2Qx10Ht22oce6E3/AE2IeHh5bx0aK+j83/5//VgjxIyAGfHdLVuWxJcSTET762ZP3ff+5dIG3vnuFm+cG2ba/hcxkbsXz6juTHDy9B9dxadq+uFXoui6o2ve+46wvwi7eniJ9YwzdbxBpilMcS4MU8y7d5sTgCcOHMNYOJBVCoFwLtzJY+9nsQGrmsvBVpRRSxpDyICBw1RSKEgI/kl1I6cclB2SBOFCm9lY0QflwnTRCWLjCQdKE4w4g8OO4/UCcmaJDwp/BrVxnIq+4wm8T2DHA1VIn01P/kIboCMeUzgXm3TBrDBXbiWzYRnJqABp2okq3UGP90P4PlsyT3NDrJjWQawfPCsH8YHZt4Qbz0HO4c9PISGL18VL3YOZyLzNX+9H9Jm0vPIqxymD4armKaztohkZ5bu1JBx4eHh7vFfdVbKGUenmzF+KxPiYn0pw7c5XWtkb2H+x+qC34hWwR3dRo3JbEqTrsPbXcHYPawO/mHcu/5FOdSXqe6MaxHFr2rG+sTygVZd/P1kSkZmj4Qj5cxwEhiW+rPYZyHGYvvoM1m6Xu8D7MxNbV+Lilazj5s7jVUbTgPkT8o4h5UaKUi1IlLPsSAoGhH0QIPzCLpB4oIYRE4QBj1N5+Y0ALkEYQwXFtHJVGqDhKZZgrJ4kHgrgUQIX4ud95g/PDwxxpbeL3fgE0PbfEDcN6C5UO8I2hPjIokkiU3gLWOOoLv4XwdaNmXwNrZj4PbOviQgDcfJrq5e+DcjD2nUZG59P5TT9aqg3XKuNMjyOjcaS5XFQ5pTJWOoMRj6KHFzsnixMZjICfaqmMXSivKsiiTTHaD3dSnivSfmTbljxHDw8Pj81gTUEmhMix8qe2AJRSKrrpq/JYlVdePoddtRkbmaK1rZFE8uEVGKda47TsaKCuMcahp3uIJFaPFlgJKSWtezY+CFu7oylAGjr1+7uWHLfSs+R7B9D9AbKXr1P/1KMLx5Tr4ExPIAwTrS6FMzOGfeM1ZKwBvefkko7A9eI6WVAaSpVRTh4hgzjOBLZ9C9seRAkLKcPgRPEZexAqgZoXXGBQezsZgAX4EQQR1F5LW10CFcR2p/il/1bh/OAgRzvj/Pdf3s90UXLF/XX8Owa4Uuok4/w2DXEWa8NcRVKzwLcN2biD5EQvov0EouU0StmLUwP8z6Fyt8DXgDC29u3rZidqGW5C1kYnRe/o1HRdim/9BDeXRYvGCJx4jnJvL9bkJMFduzCSSdKvnqE6O4cW9NPwwlPYxQqZm8P4UzFKExlirfX4Eqs/ByklHUc6t/Q53onruly8cIXZ7BzHjh0kGt1YN6eHh8eHlzW/jZRSH+pPFNu2yefzRKPRFQvY75ezZy5y8cI1DhzcwyOPHlr3/VKpOLdvDREI+PEHNm/u371wbIcLP7rOzNgsB5/uobFzPSn0W4tdKlPNFfElYmihAJrPj1MuE+xaWpdm9V3HunEJJQTBo6eoXvo70AxUpQ+tpQcxP09RWXNglyDQALio9FtgpRHJkwjfYgG+MJoQMohSJdCbEVqtFs9xRucdsjIIF7CRovb/R8p6lEoAct7RFEA7ta1KP8qF6UKlFlGBD6UyzBR0zg3mcEWBcwOKTMmHbix1wwyfiWa5C52SCSVwZDvCl8L93P+GDByHcDMIsWTepTCiiMTiYHVlzdbWZi4XNio/Am4Fwp33tbUog3GqozdQjo2+467tctdBFXKIQAAnl8WZm6N47RoyECB/4QJ1zz2HUyqjBfy4loVyHMbfuIo1W8B1HDo/fgJfbGONKVvN6OgEr792Bt3QcWyb088//V4vycPD4wOCN3H3HjiOw7e+9W3Gxibo6dnJ6dObE7lmWRZnz16mqTHF+fOXOXBwN37/+sTVqaeOsHNXJ9FomOAq2zSbTXY6z1jfFP6gydXXe99zQeZULMZ+8CbVQplwZxMNJw/S8JHHcMsWRt1SUeGWitjjfahchpI1g3SyuDNjGN0nEIHa7xqqnMG9/RdQLaCiHch4J2QvgRZAzbyFaP7YwvVUdQzNtw1FM1qge8F1krIBV+WQWgIIo8kOdG3RmRGiJmaUquC6c0gZQogwrqv4+f/6OmcHMhztiPLf/qmNwiYRTJDa+TUKso+Qu4O4eRzK73BMyWUp+qLtOMnhM4iOE4jtX4FqGswkQlvbwXRzfTD6IiCh41NLIz0Ko6i+v0YpB9H0GKLh2KrXUeUcqpxFRBoR2qL4cytFREMPQtdR+QzckZQidAOjez+5l75byyMrlxA+H26xiNnaipCS5KljFHoH8bc2ovl86H6TcnUWaRrIDTYDPAx8PhOpaVStKpHIh/p3WQ8Pjw2ykS3LlYqV/l5vWZZKJcbGxmlsbOTWrds899wzm+KSGYZBV1c7fb2DdHS24fOtv3tL13VaWtdXhK2UwnFc9HWmka9GKBZACsmFH12nsSPJ9OgsqZb3Zm4kgFO2sIsVjHCAynQtlV4PBiC4POzWaGyhomtonT24uUn09k5EJIVx6CO1rj+Aag7sMqo4DLnrqHwbGCbCBHxLxacwWlDWCEL4EdridrGut6Jp9QudmEIs/j91XQulsoCBbQ+RLpZIhQwM4yDpgs3ZgTSOyHN20GWmkCAZDJCtSip6P0K5VPRe0tnXSDou3xjqJwMLuWHKZ+B+/Jeh9A8QTaeRegj0DWwllyYBWUv4r8wsEWQ4Fkq5ILSae7gKyipiX/0WWEVEaif6zmcWjslICmH6wLFXjhUx/Oj1bdhVl6lvfQdfRyeRY8fwNdXWYSbrMJOLHcGNj+4l3N6IGQ1ihN9/afn19Uk+97OfoFQs0dq2vjpJDw8PD/C2LO9JKBTi8OGDXL16ncdPPbZpW5ZCCD5y+glyuQKRSGhLCvOtSpWX//Y8s+k5Tj53gPaulUNc14MvYNLzSCflYoVQNMDU8Mx7KsiMaIj4/h2UxqaJ71/eWKAcG7dUQgZDaHX1+HoO4uZm0XsOIv0GIpJEi90hakMtiOR+VGUC/CH4/9m78yA5r/O+99/n7b17umdfMYN9B4iNIAnuokiKokRTlmQ5sp1YiWMrvsmt3JQrVYnLlZt7byqV3fnD2a4sy7FvHDm2E9mWZC2URIoSdxAEQRL7NlhmMPs+0z3d/Z77Rw8GGEzPipnpAfD7VKEw3f32+5458w76wXPOec7Acajcgat4HK/ywJRze+E6LPgsjjx++hTO5QnEdmJeDLPwlMoRzvnkc2fIjp8CC4JV8Mv/dYgjl3McWBvmj3/NpyoRpHrz1xjxzpHwN1Kd+Ad4XjV10fvYV7uPo13vsbeyhQr6cJEKrHE71e2nset1w9KXgBzEqwqZMabWSZuLVWzHjbWBhbCy9VNfTK7FGh+F3ChWs2/mk+TSkE1DOIEb7Z3aX4kKwgc/Uyh1UWTSfrCyCi8WJ3v1IsHKWvx0urASN1j8n6ZAJERqjlInpVZXV/ohfRG58yxoyLLIXpY4515d6katFmbGI488zCOPPLzk5/Y8j/Ly5Yt1e7sH6enoJ1kR5/QHrbcVkAE0bazlyukO8tk8a4qsoFxJZkblzo1U7pwefDjfZ+SdN8j1dBJqaiGx/0GiB5/GZcfxojPUI/OCWPMTWP1+/MvfgqAHXgS6f4LDh6oHJvefLBwfxs9cwh+/Ahi+FycQ2zHtvH5+jI6BDipjIfD76MuUc+TyeGFe2KUkvaM+eL1kgucmM2FD+Q3UxhowF+Rr1zrovXqVykyMvFdOMH4f9is/xMaGb9QNizRg0RZcfgyLby30gfNh7CrgQaxpMuB3zuG63sT1fwShFBaMYzUP4K377LS2F/rZw2r34TKD+Oe/A4C3/lkscktSPFaJt/ZB3GAbgTXTA7fZSooEEmWkPvYMke0dDB45hhcKEqwsXbAvIlIq2stylcjn8wAElmheTEVVkvKqMoYGRtmxf2FZk2LiqRhPfqGwsfZsGb3xsXGCkeCSLoBYCJcdJ9fbTaCymuy1Nlw+jwWC81pNaaEk3trP4DpfxfW8DvFNMPgRlG2AyNQgtDA/a6IfAtMDa993/MLvvc+7rUMcaPH4wy9toDa1jprN/24iG7aJqsQnyY+1saeilmP9neypqKWCa5ithZFOvMtvU+PncO2ncLkoFlkHuRFcqLDo2QDzIljl41P7YOgMdP24sPl3xT68xLrCUGR+FPqPQSABl7+Ja3wWrv0Y2/Dzs/dp31kYK2S+XP95rH5q0GVmBBp3Q+PuOfu4GAsEia5ZQ7i2trB7wAzZMRGRu5n2slwFenv6+d53ConG555/gqrq288QRGNhPvG5Q+SyuSXb6mWuodWzRy5x/kgrlY3lHHhu17y2RlosP5tlvHeAUKqMQOzGUJgXiRLZtIVM6wVi23djCwxwLRjHmj6JH6ksBGPBOASmr+TzgtVY8jFwPhasnLaZd8/IOEdae/FtmCOXkwzl9uPZMJng+clsWF+mj/J8P7/X0cfAtStUpEO4bEdhEn2itrCd0cS2RsH653HZXlzX98Dlofx+LLmz+DeRHwM8GGuD0e/hog3Q/CmINUF8DQxdhEQzlh+FxPR5Xc7PgQVu/LwTDbiJr73E4jOtzvfn2OpKlfBF5N6lvSxXgUutbaQz45NfL0VABhAIeAQCK/chd/l4G6naJH3tA4wNpSmrXFidsoXoeeMo6c5ugmVx6p9+BC90Y2VfbNtuYtsWl625zqoegLKNEEhgwalDnTeCrxRmNmWl5P3rKvn6rx26ZW7YJqrLPoln1RPzwo6yr24f1dFq/HQjXvsFavw8rv08uaF+/Nx3sOQ+vIltjez68GR+FOdyhfle2f6Z257agfPHwSKQGwHyuNwYnnnQ9DyWGxef+S8AACAASURBVC4sPsgNw82rKv0cfs9xXPtbWLwGb8OnsEAEL9mE7fhioXxGaHE/00zrBcaOHyNY10Bi38EZA+VM3xCYEalYXeUsRESWm/ayXAWaWxr48IPTOOdobil8QPb1DvLqy28TjUV54qkHiN1mzbG+7iEOv3qcVFWCA49uJzTDRsy3Y+O+Fk6/fYHadVXEU8u3As45R7Z/kFAiQW5kFD+bmxKQ3SzXc43c5dMEGtYRaph/gVAzDyK1054vFnz1jIxzuLUH34Y53OrTPTSMF85My4bVRKom54VV5xsx5whUbIOWQ4VMWPP9eCEPDNzgYaj/2ambfEcasbIdkBvBUvfN3PZABKt+EFe+G9dzuLDP5sSEffMCEC4vDLZGbgT+Lp/Fv/BNXOtLuEQD5nIw1gVlhbpuFr69ACl99iReMkX2Whv+yDCB1PSCxsNt3bS9+j4ATU/spaxJk+NF5N4xr09lK4xd/H3nXD/ay3LJ1dRW8dd+8dNAoSQGwImPzjI0NEpXVx/tVzvZuLnltq5x/Mh5hofG6O4coGVjA01rl/7Dbt3uNTRvb8ALeEu+ctTP5rCAh3mFc1c+uIfh0xco27ahUPKiCOf7ZD54DQuGyX/0FoF4gnzPVayskmDt2vldt8hQ5LutfeR8x+HWPro7T1FV1UTNpq8yErhAIt9CpV9HMPrAtGwYI1035oVdfhvXfxrK193Y4DtWDj0vQW4Qi27E+Vnc4KnC8GFqK260DVwUq9iNBWOFOWJ+FpshC2rBOFb/ROH7GDiPyw5iFduwYJH+yo3AaCeucjtcfgW/8WEslCxa62Yu+YFeXHqMQHX95GrJcMs60mdOEaisxosXz7KN9w/f+HpgBBYZkPm+z/DAGPGyCMFl+I+HiMhymNe/Vs45Z2Z/Dtw/8Vh7WS6x0C0ZnsamWk6dvEAkEqa84vZXY1Y3VHD5QieRSIiy5PJlr5Zj3tjQ5Q463jxOKBlnzcf2E4yGiTXUEmuYnsGawgwvnsIf6MFiZWTPvoMb6QUHXvzTeIlChshlx/C7z2CRJF7VjW2ZimXDasrCHFhXzrtXrnCgJkLV8Cv09GfIhM5jzpEJXqK3/QfUhhumZcO4eV5Y407cwOswcgyaXsDK6jDAq3kWcsP4I1dwx/91IVCKNeLafgDD5yG5CdKd0PDUxHMXcdUHsOoDkE9PG14FcKPX4PL3cAake7HmIutwwimscgfW/jquYgcWKIPes9A4czHYYvLDA4y+9TIunyO8bgvRnYWyIbGtO4ms3YCFwlOGK/28j5/NEYyGSW1oJN07CHBbpS2OvHKKS2euUVVfzuM/s49AoDQLTEREFmIh/31808wecM69s2ytkUkbNrVQVV1BMBQkkbj9AGrbfWupa6wkEg2RWMaAbDkMnm0jGAuT6R8i0zdEsLF67jdRWIQQ3fc4+YEevGQlubNv4YZ88AKYF8D5PoyPkL/yDvSdJ++gf92nqK1rnJYNe7e1j56RcarLQsTX/i7J2FHiyTpc32aq8qPsTdTy/nAXe+NJquPr4er3J7NhXH67kAErq4OJbJgbeK0wOT83WAi6AoVAyrwILhSEnj+HQBQGT4Nz4LzChuDpFJRvh+wwDF+AWAOu5whuqB0ba8NV78Grv1GmxaV78fvPFmqF3VJ+wuWzk1X1zTys5UkstZ782b8qtM0rPgw8q2wW5+exYAg/M7WYrBedet/lM+Ncefk9hq52Ub1zAw0P7aDpsT0Lv+ZNnHNcOd9JRW2S3o4BMqPjxJMrs6OFiMjtWEhA9hTwd8ysFRjhxubit/cvqMxoKTJj15kZVbWl3VTB9/1FlcNIbW6i483jRCqSRCoX1icWjhKsLawkDG09RL77ciEzFkmQO/Eyru8qLj+ExcL89Verebf3PQ6ua52SDTty5QoHmluoKQvTk+7haNdR8i7P+0Md9LGLqvId/N57x+jvbqOqZi34Y1CxdcoqSRIT2TzPKwRmgYeg901I7oTw1ADTLADjo9BzFCKVUP8JGD4NwSRU78NqHykEa2XrYbgVUpuxvtO4WD3W+xFMBGQun8Fd+EvIjeEsiNU/ilUU1uH4bW/jdx7FKrdgjQ9hLodFUrhEI77FYLgDLMpCf1ouGCa0dhvmsoQ3bJ/12PGBEYZarzHQ2sXgxU4i1eVUbW2e9T1zMTP2PLqZ429fYMveFmJlK7Pfq4jI7VpIQPb8srVC7noX3r3I5Q+u0LS9kc2HplfXv1X3qSsMnO+gdvdaUi31xBuqC3PTbqO+mYVjBJsKxVPz6VE6r7VRU1sL/Tl6q/bxbm87eR8O35INK4sdJV63D8chqqM3rZSs2UN1w9PY8DWs62JhpWRXK1Q8DJXbJrNhk0Vcb+LFmmDN54q20zkHhKHxecj04dXcD9V7ATdlo3OaPgF+BvPChXprg+eh7qGbTwR+DoIRPOJY9R7MrLAJeudRLNGI6ziG332uMFy64SksXIbl81jVZuj8COq2TmmbPzpE9vhr4AUJ73oEi9wYIh3v7mTk7dfBQeKBh/Hisy8ECFcmCSUT5MfbSK5vJDc2PufPcD427ljDxh3Ty3mIiKxm8/50c861AoMUtgded9MfWSX6ewf56P2z9E7s77ha5LN5Ln9whVRdiqsn2hif44M3O5rh2pGz5HM5Lr9+Auf7BELBWYMxfzw7EcjMzfcdv/AH7/PED6r469/NwLr91G3Yy/6qLIHgIPurslTHjN5072Q27Gjne/SOdGLO8bVrHfzg0lV+v6OLwJpP4W3/21jLIfCCWMtDhblYFriRDVvgAgczw2oPYtlhrHIHhMqwSNXUYOz6cYEoZh5e87Ow9W9hsUZctjBUaMEorP0kVrEVW/+pyYUWZh7U7MINt2GxqomgLYobuAzRCohWkG87Tn5oADfaN+Wa+WsX8EcG8Ps7yXVdmdqvgwPgF34G/sDMZTmuC4SCbP65J9n6i8/Q+NAOqrbdXnZMROROpkr9dwnf9/nBd94iPZbmo2Nn+ewXn1mW0haLEQgFqNtYS8e5TqrXVhGKzj43KRAOEknGyQyMkmionDMrNvjhKYZOnyfWVE/lg/umHV+8aGsfeQdH+oJ0XminsXZTYW5Y7RUSsTU49xzV0Wr2Jtby/vBF9kYbqcxmcb3nsUtvUePyReeGFcuGLYZXez+uei/mzf0zdM7H9V3Eb38HMn1YpBxv22chPw5jA1j5Diw2NZjz1jwC9QdwzuFd+BGMD+PV7YZAGGs+BH09WCBC7vzbhHY/N/k+S1UXMm+BIIFk5ZRzhpuayXV14pwjvGZ+q4ID4RANB7ZMPvZ9n46zneTHczRsbSAYXh33sIjIclOl/ruEcw7fz2Oe4efnlylaDtlMjtHBMcoq41NWXG57fCvr719POBaasySGFwyw4dn9ZPpHiFbNPmfMOcfwmYuEqysZu9pBaixD8KZFELOulLx8mX2pOFXZYXq6L3AsfZU8Pu+n2+huO05N1Vq+eqmVgaErVCTyWCBM7sxPCZSvh4ELNzb4hhvZsCU0n2AMwHWfxm99Gb/9XaxuN5iHGx/GXfgRLj0IwTCBXX8NC96YT+V3nsb1XybQtAdv2wuF84ynyb7/bfyBDsiNg5fGKssYP/0ubjxNaNM+gjVr8B56obCCNTq1fEU+PU5k225CFdNrjM1X35U+Tr96imwmS2Y4w6Z5DG+LiNwNVKn/LhEIBHj2U4/QerGN5rX1JcmOjQ6O8d3ffZVsOsfWB9az/xO7Jl8zM6KJ+U+wDkZCBOvn3rHAzCjbsr6QIVtTj0XCdA1litYNK7ZSMhFaA9Ffo6Zm4+TcsD2RFsrOniCTe4fYwCVq8HHDbTA+jJ/LkFv/GdzgNcKP/x2CE8Fl7tpZ/LaTeE3bCDZsmbG9Lp/F9bdBpAyvbH6rRefi/CxgULEJw/Dq9kK0CvI58ILg+8CNIN2lB/Evvg6hBLmzrxDaX9jL0g13w3AvXqISvBqCGx/Az2QZ/+Cnhb1AgxEi2w/ixabPDUu3d9D/5mGcc1QeOki0aZFlKwx6rw3QcaGH0dEsa3Y3E9XEfBG5B6hS/12ksjpFZfXtraTMZnOcer8V33fs2Lee0AKGjE68do7Wj9qIRMNcSrSx79mdS14g9jrfd3T2DOFOnMXlfGo+9ijB8jJ+8atvFc2GzbRS8lj2KmP7DpGIJibrhlWUBck2hvHzUfKxJgJjV8mXrSdYvZFA8zD59nMEtn6c/NWTBDfsw+XGyZ97C4smyZ99i0DNOiwYxvk+uXNv4/raCWx8gEBNM/mLR8i3H8cCIUJ7X8Di89smK9/+EX7nGbw1ewjUTN0s3qvZju/yBPDw6nZiXrAQXDUehEw/XsXawnyy6wJhCMVhfBirvDG0aIkqiJXjMsMEtzyKV9GEG+gu1A3L52adpJ8bHgYcZkZuZGRBP8ubVTVXUdlcRbgsSjgeZqR/RAGZiNwT5v1p65z77MSXqtR/F2s9c40P3zkPQCQaYtuedYwMjRGJhuaseh5LRaleU8Fg1zDbDm1c1mDsF373TQ5f7GVX3PjtbWGiVzrIhyIzZsNmWim5J7Wd6OVe/PrxG1X0B8/jp8oJbnuQ8UgcRnvwajYSNCPQfB/BoT5czxUCaye2L/KCWFkVbrALS9YUslKAG+nDbz+LxVLkL7xLoKYZNz4CgRDOz+FymXlVwnfjo+Rb38Fi5fjnf4pXtX7KPDkLhAg07LvRPwNt5E58D/J5rOUA3i3zxywUJbjzU7ixfix5Y7Nw5zusaQ/BZAVeWWF+WKC8hujB53C5cbyKmYdk42ubyfUPgnPE1y5+cr6ZsecTu/jo5VOUVScoryttqRYRkZWyqHEtVeq/e4UnMmLOOULhEKeOtvLhW+dIViZ48sUDRGaZkL/lgfWkahJEE1FqmitnPG6hZtq+KO/goxFHX9bRUJUiMUc27GjnUXrTvTf2lLxyhWQ0xJCdwmXWkZyoG2YtDxHe+yyYEUhU4I/0E5gIRszzCO18EnLj2EShVfM8Qruexo30Y4nyyWDJomVYrAx/bJBg804AgusPkr/yASQqcRYm39OGV1lf2GNyJoEwFquA0V6sfM2cixxcehh8n3zHaehrxw10Etr1ialBXDSJRW/Mz3P5HJkjP8IfG8ErKyf64HOTx3vJuX+WXiRCxQP75zxuPqqaKnn8lw4tyblERO4UC1llGQX+LvAYhQkpPwX+s3MuvUxtkxJo2VTPk5EQzvdpaKnmh//zMMnKBIN9wwz3jxJpmHnCdigcpHlb45K259ZJ+b//8/cRTY9zYG0FRy71s785xZ5P7yVSkcR3/ux1w4rtKTlyFhsfxAuFi66U9MrK8cqmfs9mNq3qvQXDWPnUDJKFIngbHiR/9TxUFSrEWCxFcMuj+MP9ZA5/D5fPElq/m9CmfczEAkGCOz+JSw9i8XkER1VrcQMbyXeex2vYjhvqAj8L3ixDf76Py6TJjwyTOXsCKpuJbZt5A3MREVlaC8mQ/SEwBPzOxONfAP4/4AtL3SgpHTOjseXGENeO+9dx+JWTNK2vpbxm9kKf83W9XlixIc25NvN+91uHSQH/7sE1jH5+PVuqGyar/0+tG3ZLNmyGPSVdwwESDz1FpKlpyVdKulyW9PtvAZDv7SHx5AuTmTA3ni4Ucw2G8UcG5zyXhaJYaH5bAFkoSnDrU5BsxG87jrf+4OQKS5fLkm27iJdIEayuv+k9YUK7DpH5zh8T3LiH7IXTRNZtnrbdkYiILI+FBGTbnHN7b3r8spm9v9QNktWleWM9azbULdl8sPRwmve//xG5TJY9z+4mEg/jO0c0EZmxRMX96yp5t7WPfY1JIiPDtLd28X9n/h3nP7zMvrp9fO25r+GZN2c2rFjdMC9RS3SZ5rqBQSCAG89goXjh8XXhBLmRcVymn8R9Ty7L1YON26Fx6vZFI69+i8yHb2CJJOWf/98IVNRMvhaqbyGy9zFyHVcJVFRDkWHU7PAoFvCwQIB8epxQMr5scwVFRO4lCwnI3jOzQ865NwHM7CHgteVplqwmS/mB23u1j9H+UYLhIGcPX6CtfYAyHPc9u4t8eWLapPzaZIQ/+tUHOdfbwebKOj78H68xXpbnXPASvvNvZMJiNZNV9GfKhhXdU3IZWTBI7OCT5Pu6CVbXT5nDlbt2CaJJvEiC/EA/war6Wc60dHLtF/DiCfzRIfLDA1MCMoDYngfxR4cZa+uk6zs/INLUQPn9hWK7I5ev0f3mMZxz5AngnFG9ZxOVO9avSNtFRO5mCwnIHgJ+2cwuTTxeC5wwsw/QJuMyT6naFKFIiGwuxz851snx3jRb40F+52ofm9dUTmbD7l9XSU1ZGN/5/OpLf5ujnYWs128/9q/wnWOrv5EzXLiRCYNCxmuWbNhSVdFfiEBZOYGy6fPuvIrqQr7M8wiUVy3pNZ1z5Pt7sGCIQHLqtaMHn2bsnR8SXredYMPaae+1QAALxxg5eYZgRTnpK22Ubd9KMFlGurMXCwUZ7xlgPJOnbF0jw5c7qdi+jvHhNGN9IyRqU4Ri4SX9fkRE7gULCcg+uWytkLve5NywyjgP/dxBugbHOPHvf4IPnBnNEV5ThZlNZsO2VDcU5pCN9XC088a8MP/JALs+8yBf/5NR+ttvyoSZlTQbtlChmgb8nQ8w3na1ULd1Fi6XK3wRCICfLxRpncV461kyJ45CIEBs38O4XJ5AMoWFI2S6+nBVmwnvfQgvOH3FbLqzm943jpC51kt4NE2suZFArDCPLLmphUx3H8F1TcQtyFBbN6PjMPLNd0iPZPBzPvHqJNue3z+ZVR3pK9QkS1Qmpl1rynXHxkmPZEhVJSbnBIqI3EsWUoesdTkbInevYnPDGmvKOHhTNmztmopp2bCvPfe1ovPCbKQLrh6engkzK2k2bCFcLsfIhx9g5pF9520qn30OCwZxzk0ZIs4N9DHyzmu4vI8Xi+NGh4hu3UVk49YZz+0PDxaCt2yO4XffhLzDwhGiO+8j39+PF4szfvECkbrpw6SZ9k4wI1RdRXL3NpJbN0wOtYYrklQ9tI/WV44B44Sb6vH7RhntGSQ9lCG5pprx4XRhr0szeq70cuyl4wDseXYn1c3FM4Hp0Qw/+sZhRobTbNu7jj2HNt9Gz4qI3Jm0c+89zDnH+HiWSGRph5hmWylZbG7YTNmw+aySnJIJg1WZDbtVfixNdqAQNPljabx4HOf7DB9+h/GODhJ79hJtKVTQz3V34XJ5/Eya7LUrxLbuIHP+9GRA5vJ58sPDBMrKChX1gcjG7bhMGovG8dvaIehw2SzBRFlh/tjYGLEdO4u2LbZ2DaNX2gmlEsRbGqfVPBu83EkunQXniFQkyGdzRFMJmh/aykj3MLXbb9RJG+4dwTl/8uuZArKRoTSjwxnKkjE6LveAAjIRuQcpILtHOef46cvvcfHcFXbct4mDh3bN/aYibg6+xoYzBCNB/sbvvzPjSsmZ5obNlA2ba5XkrZmwbDrLWP8o8co4wcjMRWxLxR/P0vPyT8kNDROpr6Fsxy6ClVX4o6Nk2toJlqcYO31qMiAL1TWQaT1HIBggmKog199HZFNh5aRzjqF33ibb2UmwpprUoUcwz8OLJ4jf/2jh/c0byLSeJ1TbQLCyivInniKfGcebIQgPV5bT8PxTUNizdtrrZY3V9Jy8Cgb1ezbQfCiCeR6BIltsNWyqY+DawOTXM6msTbJx5xo62/rY87CCMRG5Nykgu0eNjaY5f/YKDY1VnPjwPPsf2E4gMEu1+CJuHorcXhXjb5Y5LBXncGsf+eXOhhXJhPm+z8mXPmC0d4Sy2iQ7n9+7oiUZnHPkxzIEouEZq+nnhkfoP3YCl/PJjY5R/bHHCm3PZgmWp8gPDBLbdmM4MpBMkfrYczeukc3iRSYKvObzZLu6CFRUkOvpweVyWHhqoBUsryC458CN64+k6frJYVzep/bx+wlXTV9wMNtOAPGaFFs/8xBgRYOwm0USEfZ8YvesxwB4nseBx7fNeZyIyN1swQGZmf0i8CKQp1BY6ZvOua8vdcNkecXiUdZvaqL1fBs779s0r2BstqHI492jWFMNbnCYvY1JjrUPLXs27Fb58Txj/SNEU1FGe0fwcz6B0MKCzOuGrvUx0NpF5cZ6ErUz705ws863P2L44jUSzXXUP3Jf8WDQOUIVlbjxDNl0lv5jJ0lu3UAgGqH8scfxMxkC8fiUt0zZ8ihyo9q+BYPEd+0iffYssR278MJzDz2PdXSTz2SwQIDRq51FA7K5BMKrL/MoInKnW0yG7Enn3BevPzCz/wgoILvDmBlPfPx+xh/bM685ZHMVbd1VlyAwlqZhYx3//clttA52L2s2rJhQNMT6Q1voPN3Ohr3rFh2M5bN5Wl/9CM8zBlq72PG5Qzjf58rrJ8gMjNL86E7iNVM3vfazOUZarxGrrWTkSid+JksgOr1fg+VJkru3MnLuErmxcYbPXATfp2LfTiwQmBaMzSW2cROxjZvmf3xDDcNnLuLyPvHmlal9JiIic1tMQBYxs08Dl4FmQHur3KHMbMZgbL4T87/+a4cmjwNwOH7le78yPRtWt2/yuaXIhs2kbksDdVsaFvSejhNXufzeBWo21bPuwc2YQSAUJDuaIVwWBTNGOgcYvNpDKBam66NLrHty6lCcFwpSvn09AycvktrcjDfD/DUvGCRYU0f2zDVy6RFCufy8MltLJZQqo/GTT+CcwwsuLmAVEZGlt5iA7O8CnwPuA64Af29JWyQlN1c27PpQJADmsOAQUD1zNixWw9ee/Sq9fWeprtpaGMpbJTXDnHNcfvcC8eoEnafaadzZTCQZY+MzexntGiBakSA7miFSniAYCZNLZ0k2FV8tWL1nM1W7N846B8vlffo+OEt8XQMjF3wq799N2YbmJf2exgdH8EJBgrHim4lbwGP1FgQREbk3LTggc86NAv/t+mMz+0fAv1rKRsnKWkw2zMzwnT+/bJjv4/3hi9RcD76+9K1C4LUKaoaZGdWb6ug+20GqvpxQvBDERJIxvGCAU999n/TwGM0HNrDlhQfIj+eIpGYeVpwtGINCMJRoqWP40jXKNjVTtrFlzvcsRP+Zy3QdOU0gEqL56YOEkwsbAhURkdJYzKT+P7n5IbAPBWR3rMVmwwB6073zy4aNdBUyYX6u8PfE8GTegZeoLfnm1Osf2kzjrhbCiQhe4EZwlB4cJT00SiQVp7e1m4ZdLQSLzAtbqNoHd1O5axPBeGxJg7H8eI6Rth4CkTC5sTTZoVEFZCIid4jFDFkOOud+9foDM/vPS9geWUa3ZsKAlcmGFRme7G7v5/XvfUAsHuaxT+8jlig+vDYb5xz9nUMEQwGSVbNvzTMb8zyiqelTIeNVSSrW1jDcOUDLwQ2LPn+x64WSi29vMYOXO7ny+gk8c4TCHmUtdURrK5b0GgDZ8Rz5bJ7oIn5eIiIys8UEZP/8lse/tRQNkaVz+VIbb7xxhIqGRp55fD+e5xXNhHmerVg27NbhyQsn2gh4xkDvCD3X+mnetLAVf/m8z/HXz9H64RVC4RCHXtxLeW1ySfsxEAqw+WOLK5i70vrOthOKhRkfHmPNo/eRXFM97Zjei510ne2gflsjFS01C77G6OAYb3zzfTJjWfY9tY2mWYq9iojIwix4vMQ5d+GWx71L1xxZCq+++jb/+bTj17/Tzs/9p9cmM2O3ZsKgMIfq6792iDd+82n++MuHpmTDnvnTZ/hb3/tb+M6fzIYFLDA9G/afHsX+4AXw/RvZMC9YfLL+RGaueXMd2WyeeDJKZW1qpm9lRkd/dJI3v3mUCx+1MZ7OMjaUXrL+uxNVbm4kNzZOtCJJrHp6YJpLZzn/2mnSg2Oc+8kp/PwcO5oXMdgzQnokQyQaov1891I0W0REJsw7Q2Zmv1Hk6QHgXefc0aVrkizUrUORqbo6Wj/sxcd4v21o8rWimTBY9mxYMY1ra3j+lx4hEDCCoYUlap1zdF3uZcN9zZw5commLfXUtBRf+bjcnHPk0lmC0dBtz4XLjWdpO3yW/HieNQ9sJpyIzvu9qZY6yj5XVVhBWWRemhf0iJRFGRsYJVFVhnkLb2tlQ4qKuhSjg2NsuG/Ngt8vIiIzW8gn4cGJP9+cePxp4B3g183sT51z/3qpGydzKzYU+fzHH+Rrp17nWPswByeCr+uZsFvnkC313DBg3qUrItHFVXw3M3Y/sYUz77byzN84xJYD6xZ1nmKcc/RfGyQQ9EjNMQTqnOPMqyfpvthN/dYGNj28ZfK1zjPtDLb307irmUSRjFUxA5e66D13DQsGiJ5uo3H/xgW13ZslsPWCAbY9ex+jvSMkasoWFTxGYmEe/dn9OOdKvhBDRORus5CArBo44JwbBjCzfwr8GfAE8C6ggGwFzLdExf/8e49PC75uzYTBymTDlkPz5nqaNy99pfn2Mx0c//EpzPPY//x9VDXNPDE+l87SfbGbVH2KztPXWH9wI4FQgLGBUS6+eZZgOMhY3wj3febgvK4dScbxAh4u7xMpX7rVkQOdgwx2DDKezhKOh0k2LHy7pJspGBMRWXoLCcjWAuM3Pc4C65xzY2aWWdpmSTELKVHheUZt8sZKuGKZMM+8FcuG3SnGBtOY5+F8n8zI7PPSgtEQ9Vsb6Dx9jcadaya3agqEAgRCAbJj45RNzI9rP36VtmOXqNvWRMv+4hm9eG2Kur2bcM6ncsMCFznk8qQH00RTUQI3VeBPD6c59t0P6Lncw1D3CE07mwgEAzRtW9huBsupr2+AV15+g3g8ypMfe5hoVCs4ReTes5CA7L8Db5rZX1CoP/YC8HUzSwDHl6Nx97rFFmyFQgDWm+6lOlqooD9TJszMVn02bCU172gkPZIhGApQu272lYhmxqaHt0xmxq4LxyPsfH4fYwOjpOrLyefyXDp8nkR1GW0fXKJ+eyPh2PR6Zj3nO7n41lnMIFwWpXr9/AJd5xwnYIyyOgAAG+dJREFUfnic/vZ+Khor2PWJ3ZP3gfMdzi9sk+T7PjiHBUr/s3POcfbsRUZHx+ju6qG/r59rHRk2bV7H5s1LV2JEROROMe+AzDn3z8zsr4DHKARkv+6cOzzx8i8tR+PuZUudDSuaCStc6J7NhhUTSUTY9eS2Bb2n2CbmsfI4sYlhx9x4jvRwhmunr7HhwY0EI8V/7XKZHJjhrn89T/lsnoFrA5RVlzHQ3k9+PD95jVgqxq6nd9Lf3k8gEiRaFqFuQ+2Cvr/l0Hb1Gj986SeYGeXlKbLZHOFQmPLyha+4FRG5Gyy0DlkO8AFHYchSlshKZMOmZcKgkPG6R7NhK6XnUjcWDlHeXEVZQzneDNX5a7c0kMuMg3nUbJz/kGUwHGTd/etpP36VdQc3TAv4qluqqC7RKtSZ3Lh3HevWN7Nt+yZCoSDJZFmJWyYiUhoLKXvxfwC/BvxPChmy/2ZmX3HO/c5yNe5esSLZsJn2k7yHs2ErJZqI4gU9vECIROXMAUcwHKTlwMJWVl7XvLuZ5t1Lu0n5cmpsqufZ555kbHSMrds2Eg7f/pZUIiJ3MnPOze9As2PAw865kYnHCeAN59ye226E2ReA/wvYATx401DorA4ePOgOH57XoavKrdmwrqEMD/+LH5LzHUHPeOM3n6Y2GSm61dGt2bDusW6e+dNnyLs8AQvwgy/8gJpYDX4+dyMb5nkw3Am/vaOQCfOC8BsnbgRcvr+obJhzjtaLbeRzedZvXEMgMH3obikN9o9w5PWTlKXi7Du0lWBwea+3lIZ7hvFzecomSmnMlCWbSy6bZ2xwjERFfMq+myIisvqZ2bvOuaJL7xfyL7oB+Zse5yeeWwofAp8DXl2i860avu/oGspwPfC9ng17+F/8kC9+5U18301mw4KeFc2G3VozbEkr6BcuNKWK/ny1Xmzjpe/+lB++9AYnj59fmg6bxZsvf8gP/vJt/tcfvsyF023Lfr2lVFZdRjgR4fCfv8frX3+Lwc7BBZ/Dz/sc/e6HvP3n7/HhyycASI9kOPnmeVo/vFqYtC8iInekhcwh+33gLTP7BoVA7GeBry1FI5xzJ+Duq29UbChyReaGrdAqyXwuj3PgmZHNzX8S+mKNjowxns7igIG+4WW/3lLrvzbASN8IoWiY9jMdpOoWNoE9m8kx2DVEqrqMnst9+HmfM4dbaT/bgZ93JCri1DRX3lYbnXO0X+nG84z6puq77ndSRGS1Wsgqy982s1eARykEZF/SlklTzWdi/orMDVuheWHrN67h0ccPkM3l2Llr87ze09c7SDgcJFG28MKnD31sFz1dA4SjYTZtu/O27knVJonEI+SyOWrXL3xz70g8zIb9a2k71c7WhzfhBTwi0SD5nI/neQTDtz+Ee/7MVV7/0fuA8bHnDtCyYfXUKxMRuZvNOYfMzIYorKqcfOqmr51zbl7/zTezHwDF/nX/LefcX0wc8wrwD2ebQ2ZmXwa+DLB27dr7W1tb53P5ZVcsG2YGX/zKjecmN+9eiblhi5wXtpzOnm7lpz8+QigY5PkXn6CqeuEV49Nj43ieEY4sbtulUstl87i8T2iR20bdKp/L03W5j3A0RFXj7VXgB/jw6DmOvnUK5xyHnryPLTvWLkErRUQEZp9DNmeGzDk3v4345j7PM0t0nq8AX4HCpP6lOOdi3E6ZijsxG7YUOtp7CIWCpNPjDPQPLSogixYpqHonCYYCUKRu2WIFggEaNiw82zaTLdtbyEwEves3Ny3ZeUVEZHYLrUMm3F6ZClj9c8OWy877NtPbO0B9Q5TGNaUvTirTRaJh7n94R6mbISJyz1kVAZmZfRb4HaAW+LaZHXXOPVfiZgHTM2HAgrJh0863wtmwgYFBfvzj10gkEjz++KGS1nuqrErxM599qmTXFxERWa1WRUDmnPsG8I1St+NWxTJhnmd3VDbs6NEP6LjWyfj4OOvWNbN58+IKj4qIiMjyWRUB2Wo1UybMzFZlNqyY2tpqPvroJMFQiFRqSaYDioiIyBJTQDaLmTJhsDqzYcXs2LGNmppqwuEwFRW3vwpP7nzpsQyH3/wIz/M48NBOotE7e6GEiMjdQAHZLOabCYPVkQ2b6Xuoq1u+CfTpdIZAwCMUujPLUNwqm82Ry+aJxSNzHzwD5xy5bJ5QeHX+ep0+2cq5M1dwzlFVk2L7Lg1ji4iU2ur8xFhFimXCYHVmw1Zaa+sVXvr+q8SiUX7mM8/e8UOiYyNpvvMnbzAyOMajn9zLxkUUn3XO8d7LJ7lytotN961h18OblqGltyeVSkxu5bWYAr3z0dHRyUsvvUxlZQXPPPMxIpHFB7giIvcCBWSLsFqzYSvt7NmLRCJhhkZG6OrqueMDsvMn23j75cJQXi6fo2VD/YKzXOnRca6c6aSqqZzzH1xh+4MbCCxgE3DnHM65RW8+Ph/rN63hU2UxzIzautvbamkmR949Si6X48KFVtrbO1i/XgVmRURmo4BsDrdmwoB7MhtWzM6dW7l86So11ZU0NNxZwWQxDkckEebiyXbiqSivv3SMJz99YEHniMbDNG2qpf18F+t3r1lQMJYZG+f1v/qAkcFRHvzEburWzB4sZcdzBILeooK3uvqqBb9nIdatW8vF1sskEnGqqiqW9VoiIncDBWSzKJYJ88y7J7NhxTQ21vHLX/oCZnZXbEK9afsaHv74bgJegJ3719PfM7Tgc5gZ9z+9g+xjWwgvcHuk3o5B+rsGiSdjXPjw6qwBWevZa7z1yoeUV5bxsU8fILLKJubv3LWdpjWNRCJhYrFYqZsjIrLqKSCbxUyZMDPja899bWrm7C7Phs1kOYfWVlosEeWTX3iETTtbuHq+kx0H1i/qPGa24GAMoLy6jEQqRno0Q/OW2Sfanz1+iUQySl/3IH09QzSsqV5UW5eTVvWKiMyfArJZFM2ETfAc1OT9Gwff5dmwe8mWXS1s2dWyZOe7cKKNU0daWbetgR0HN8x4XDwZ5eNfeIB8Lk9kjj07N+9cy1uvfEhlTYrK6jt77p6IiIBdX211Jzp48KA7fPjwsl6j2BwyfB/+4IUbwdeXvlUIvHz/rs6Gycy62/s5eaSVhrVVbL7vRjDn+z7f/NpPSFYkGOwd5rlfephYYmlWHN7OHDIREVl5Zvauc+5gsdeUIZvDtEwYFIKuYsOTyobdsw6/fALfd3Re6aGuuYpUZYJMOkt3ez/JygQD3UNU1qUWNZQ5k9Va50xERBZO/6LPZqZM2EzDk7Jizp29yGs/fZf1G5p57PEHSp4lqqgp4+r5LqKJCJGJoOut739AV1s/4WiQR1/YR1Vdas5VlytR9kJERFYfBWSzmSkTZnbXT9Zf7d588yiJRIyTJ86za/c2qqtLW1rh4FM72LBzDcny+OT8r5GhNNF4hGwmS1kqRjAUmPUc2fEcr373CH3dQzz01G5aNtSvRNNFRGQV0H/DZ3M9E+YFp2fCrg9PKhgriY0b19LbO0B1VTnJ5PJUm1+IYChIfXMV8WR08rlDz+6mdk0lBz62Y8rzM+ntHqSrvZ9YIsKpY63L2VwREVlllCGbjTJhq9ahh/ezY+dmEolYyfbRHB1OM9A7THV9OeHI9DZU1qV48Omd8z5feWUZOT/PuVNXePYzDy1lU0VEZJVTQDYXTdRflcyMiopUya6fHc/xo788zMhgmro1VTz1M/Or6D86kqarvY+KqiTlVWVTXxsewzefsooY/b0LL0orIiJ3LgVkIouQHc8xNpyhLBVloGcI59y8div46fffp6ejn2g8zKd+/tEpFfZ95/DMiETD5PL55Wy+iIisMgrIRBYhXhbl/id3cOVcB9v2rpv31lHp0QyReJjseJ78LeVUauoqePyZ/Qz2D7Np+9IVphURkdVPAZnIIm3c1sTGbU0Les9jn9jH2ROXaVpbSzwxfaL/uk2NS9U8ERG5gyggE1lBVbUpHqzdVepmiIjIKqOyFyIiIiIlpoBMREREpMQUkImIiIiUmAIyERERkRJTQCYiIiJSYgrIREREREpMAZnctTKZcS6cu0J3V1+pmyIiIjIr1SGTu9Zbr73P6dOthENBPvP5pymvSC7JeS+ev8p775xk/aY17Lt/27yr9IuIiMxEGTK5a42OpomEQ+RzPtlsbsnO+/qr7+MFPI69d5rhodElO6+IiNy7lCGTu9Yjj+/now/OUF1TQU1t5ZKdd01LHRfPXaWiKkk0Fpl8/vKldi6cv8y27Rupb6hZsuuJiMjdz5xzpW7Doh08eNAdPny41M2Qe0w+n6evd5BkKkEkEgYgnc7wx//tW4QiIZzv84t/40U8TwloERG5wczedc4dLPaaPjFEFigQCFBTWzkZjBWe8whHQoyOjBGPxzSvTEREFkRDliJLIBQK8cKLT9HV1UdDY60CMhERWRAFZCJLJFWeJFW+NCs5RUTk3qIhSxEREZESU0AmMoNTJ8/zv/70Oxz/6HSpmyIiInc5BWRyTxkbS9PR0U0+n5/1uGw2y2s/OYxz8MZr75FOZ1aohSIici/SHDK5Z2Qy43zrL37E4MAwm7es48mPPzTjscFgkLq6aq5d66K2ropwOLSCLRURkXuNAjK5Z4yNphkaGqG8Ikl7W9esx5oZn3j+Cfp6B6ioTKmmmIiILCt9ysg9o7wiyb79OwgEAjzy+IE5jw+HQ9Q31EypNyYiIrIclCGTe4aZceDgbg4c3F3qpoiIiEyhDJmIiIhIiSkgExERESkxDVnKinLOcfrUed478iFjY+Pcf/A+9uzdXupmiYiIlJQCMllRHde6+dEPX+Odtz9g3bpmfD/P1m0biEYjpW6aiIhIyWjIUlZUMBggEAiQKEswOjZKXV2NanyJiMg9TxkyWVE1tVX8zIvP8vgTD1JeniKeiPHBsZNUVVfS0tJY6uaJiIiUhAIyWXGNTXU0NtUB8J1vv8LVK+1gxue/8DyVleUlbp2IiMjKU0AmK+7M6Qt8cOwUO3dtLnVTREREVgUFZLKistksr/74LVKpJD/9yWE++/nnuHK5jqrqSmXHRETknqWATJbNwMAQP/rha4RCQZ76+CMkEnGCwSC1tdV0dHRTU1MIwqqrK0vdVBERkZJSQCbL5tTJc/T29JLL5bnUepUdO7dgZnzyU0/S2zNAZVW5Nu0WERFBAdmqcO3aNd588y2am5u5//4DmFmpm7Qk6uqr8X1HMBSkqqpi8vlwOExDY20JWyYiIrK6KCBbBV555cek0xna2tpYt24ttbV3R7Cyfn0LP//FF/E8I5ksK3VzREREVi2NF60C9fX1DA8PE4vFiMfjpW7OkiovTyoYExERmYMyZKvA448/xtatW0ilUiQSiVI3R0RERFaYArJVIBgMsmbNmlI3Q0REREpEQ5YiIiIiJaaATERERKTEFJCJiIiIlJgCMhEREZESU0AmIiIiUmIKyERERERKTAGZiIiISImtioDMzP6NmZ00s2Nm9g0zq5j7XSIiIiJ3h1URkAEvAbudc3uA08Bvlrg9IiIiIitmVQRkzrnvO+dyEw/fBJpL2R4RERGRlbQqArJb/ArwnZleNLMvm9lhMzvc1dW1gs0SERERWR4rtpelmf0AaCjy0m855/5i4pjfAnLAH810HufcV4CvABw8eNAtQ1NFREREVtSKBWTOuWdme93MvgS8ADztnFOgJSIiIveMFQvIZmNmnwT+EfCkc2601O0RERERWUmrZQ7ZfwCSwEtmdtTM/kupGyQiIiKyUlZFhsw5t7nUbRAREREpldWSIRMRERG5ZykgExERESkxBWQiIiIiJaaATERERKTEFJCJiIiIlJgCMhEREZESU0AmIiIiUmIKyERERERKTAGZiIiISIkpIBMREREpMQVkIiIiIiWmgExERESkxBSQiYiIiJSYAjIRERGRElNAJiIiIlJiCshERERESkwBmYiIiEiJKSATERERKTEFZCIiIiIlpoBMREREpMQUkImIiIiUmAIyERERkRJTQCYiIiJSYgrIREREREpMAZmIiIhIiSkgExERESkxBWQiIiIiJaaATERERKTEFJCJiIiIlJgCMhEREZESU0AmIiIiUmIKyERERERKTAGZiIiISIkpIBMREREpMQVkIiIiIiWmgExERESkxBSQiYiIiJSYAjIRERGRElNAJiIiIlJiCshERERESkwBmYiIiEiJKSATERERKTEFZCIiIiIlpoBMREREpMQUkImIiIiUmAIyERERkRJTQCYiIiJSYgrIREREREpMAZmIiIhIiSkgExERESkxBWQiIiIiJaaATERERKTEFJCJiIiIlJgCMhEREZESU0AmIiIiUmIKyERERERKTAGZiIiISIkpIBMREREpMQVkIiIiIiWmgExERESkxBSQiYiIiJSYAjIRERGRElNAJiIiIlJiqyIgM7N/ZmbHzOyomX3fzJpK3SYRERGRlbIqAjLg3zjn9jjn9gHfAv7PUjdIREREZKWsioDMOTd408ME4ErVFhEREZGVFix1A64zs38O/DIwADxV4uaIiIiIrBhzbmWSUWb2A6ChyEu/5Zz7i5uO+00g6pz7pzOc58vAlycebgNOLXVb7wI1QHepG3EHUr8tnvpucdRvi6N+Wxz12+IsZb+tc87VFnthxQKy+TKzdcC3nXO7S92WO5WZHXbOHSx1O+406rfFU98tjvptcdRvi6N+W5yV6rdVMYfMzLbc9PBF4GSp2iIiIiKy0lbLHLJ/aWbbAB9oBX69xO0RERERWTGrIiBzzn2+1G24y3yl1A24Q6nfFk99tzjqt8VRvy2O+m1xVqTfVt0cMhEREZF7zaqYQyYiIiJyL1NAdgczs0+a2SkzO2tm/7jI63/TzLomtqQ6ama/Wop2rjbz6LeImf2PidffMrP1K9/K1cvMqszsJTM7M/F35QzH5W+69/5ypdu5GpnZF8zsIzPzzWzGVVtz3aP3mgX020Uz+2Dinju8km1cjczs35jZyYmtCb9hZhUzHKf77SYL6Lclvd8UkN2hzCwA/EfgeWAn8AtmtrPIof/DObdv4s9XV7SRq9A8++1vA33Ouc3Avwf+1cq2ctX7x8APnXNbgB9OPC5m7KZ778WVa96q9iHwOeDVmQ5YwO/2vWTOfrvJUxP3nMo7wEvAbufcHuA08Ju3HqD7rag5++0mS3a/KSC7cz0InHXOnXfOjQN/DHymxG26E8yn3z4D/MHE138GPG1mtoJtXO1u7p8/AH62hG25ozjnTjjn5ipmrd/tW8yz3+QWzrnvO+dyEw/fBJqLHKb77Rbz7Lclp4DszrUGuHzT4ysTz93q8xNp1z8zs5aVadqqNp9+mzxm4pdyAKhekdbdGeqdc+0AE3/XzXBc1MwOm9mbZqagbf7m+7st0zng+2b27sSuLnLDrwDfKfK87rfZzdRvsMT326ooeyGLUixjc+uS2W8CX3fOZczs1ylkMz6+7C1b3ebTb/M55q4221ZnCzjNWudcm5ltBH5kZh84584tTQtXr/luEzfbKYo8d9fff0vQbwCPTtxzdcBLZnbSOTefYc471nz6zcx+C8gBf1TsFEWe0/3GnP0GS3y/KSC7c10Bbs54NQNtNx/gnOu56eHvorlQMI9+u+mYK2YWBMqB3pVp3urgnHtmptfMrMPMGp1z7WbWCHTOcI62ib/Pm9krwH7grg/IZuu7eZrPPXrXWYJ+u/me6zSzb1AYjrurA7K5+s3MvgS8ADztite50v1WxDz6bcnvNw1Z3rneAbaY2QYzCwNfBKasZJv4sLzuReDECrZvtZqz3yYef2ni658DfjTTL+Q96ub++RIwLXthZpVmFpn4ugZ4FDi+Yi28s83nHpVbmFnCzJLXvwY+QWExwD3LzD4J/CPgRefc6AyH6X67xXz6bTnuNwVkd6iJuU3/O/A9CoHWnzjnPjKz/8fMrq9o+/sTS8XfB/4+8DdL09rVY5799ntAtZmdBX6DmVcR3qv+JfCsmZ0Bnp14jJkdNLPrK3l3AIcn7r2XgX/pnLvnAzIz+6yZXQEeBr5tZt+beL7JzP4KZr5HS9Xm1WA+/QbUAz+duOfeBr7tnPtuaVq8avwHIElhOO2omf0X0P02D3P2G8twv6lSv4iIiEiJKUMmIiIiUmIKyERERERKTAGZiIiISIkpIBMREREpMQVkIiIiIiWmgExERESkxBSQiYiIiJSYAjIRWVJmNlzqNiyFm7+PpfiezGy9mY2Z2dHbPdcs14hNFLIcn9ghQUTuEArIROSeZAUr/W/gOefcvuU6uXNubOL8d/1ehCJ3GwVkIrIszOw3zOzDiT//4Kbn/4mZnTSzl8zs62b2Dxd5/vUT5/kDMztmZn9mZvGbXv9zM3t3YvuwL9/0nhNm9p+AI0BLsePmuG6x8z4w0YboxB53H5nZ7nm2/6sTffRHZvaMmb1mZmfM7MGZrjfxfMLMvm1m70+8/68tph9FZHXQ1kkisqQmhveeBP4rcAgw4C3grwMB4KsU9iQMUgiK/l/n3L9dxHXWAxeAx5xzr5nZ/9/e/bxKWcVxHH9/yEDzwgXdRYYIgoQimhsjKcJFEIraSoRCJNFN/4EtJBGtlQiSWRSoK1FKF250oVYS4Y8uKmqYokstpKso6v20eM7IcLvPzEjNfbzxea3Oc/jO95yZ1XfO8515vgYutnJJmmb7D0lTqB6g/BbV8+muAW/YPl0XZ/uOpGHbA6331Daui/8UmAxMAW7Z3jrGfo/Yntt2/RuwALhQcp0H1gHLgbW2V3RY733gXdsflXyDtu+W8XVgke3bz/q5RkQzckIWEf3wJnDI9j3bw8BBYEmZ/67cWvsLONx6gaRZkr6SdKBcTy2nX19KWlOzzk3bP5Tx3pK/5ePy4N/TwAxgdpm/0SrGusTVqYvfTPWw9UXA9i45Wn63PWR7hKooO+bqW/IQMLPLekPAUknbJC1pFWMRMTGlIIuIftAzzmP7mu11bVOrgAPlBGh53cvGupb0NrAUWGx7PnCW6vQK4N7TzXSO++fmO8dPAwaoTuFqc4zysG080nY9AkzqtJ7tK8DrVIXZVkmf9LhmRDyHUpBFRD+cAFZIeknSVGAlcBI4BSwrvVYDwHsdcrwC3CzjJzUxr0paXMarS36AQeBP2/clzaG6dTqWXuN6id8NbAL2Adu65OlV7XqSXgbu294LfA4s/I/WjIgGTGp6AxHx/2P7jKRvgJ/L1B7bZwEkfU/VK3UD+AWou9V2i6ooO0f9l8dLwIeSvgCuArvK/FFgg6RfgctUt/vG0mtcx3hJHwCPbe+X9ALwo6R3bB/vkq+bTvubB3wmaQR4BGz8l2tFRIPS1B8R40rSgO3h8ovIE8D6UsBNB7ZQ9WHtAXYAO4EHwCnb+0blmUlbk/zzbjz3m6b+iIknJ2QRMd52S3qNqhfqW9tnAGzfATaMil073pvroyfAoKRz/fovsvJLzJ+AF6n60CJigsgJWURERETD0tQfERER0bAUZBERERENS0EWERER0bAUZBERERENS0EWERER0bAUZBERERENS0EWERER0bAUZBEREREN+xu5N3ZMJvLlrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXiUVbbo/++uzPPMDEmgkQSSGEiCYQZFBlFQkas4NE5wnO7pe889eFtv29qDv7aP/rpttU/3sVX0ONG3BTwotDM0iKJMQWUmkDBK5nmuWvePFCUhlVBJKqmksj7PwwN5633fvSrFsNhrv2sbEUEppZRSSnmOxdMBKKWUUkr1d5qQKaWUUkp5mCZkSimllFIepgmZUkoppZSHaUKmlFJKKeVhmpAppZRSSnmYJmRKKaWUUh6mCZlSymsZYx4yxuw0xtQbY1696LV7jTFHjTFVxpgPjDFDLnhtljFmkzGm3BiT5+S+CfbXa4wxB40xs7v/3SilvJkmZEopb3YG+DXwyoUHjTEzgP8PWAREA8eBty84pdp+zco27vs2sAeIAf4P8I4xJs6tkSul+hWjnfqVUt7OGPNrYJiI3Gn/+hkgSEQetH89BDgN/EhEci+4bjbwkogkXHDsMuBbIFZEKu3HtgJvisife+YdKaW8jc6QKaX6I2P/ceHXACkuXDsOOHY+GbPbaz+ulFKdogmZUqo/2gj8N2NMmjEmCPg5IECwC9eGAuUXHSsHwtwbolKqP9GETCnV74jIp8DjwBogH8gDKoFTLlxeBYRfdCzcfr1SSnWKJmRKqX5JRP4oIqNFZADNiZkv8J0Ll+4DRhpjLpwRu9x+XCmlOkUTMqWU1zLG+BpjAgEfwMcYE3j+mDEmxTQbAbwI/EFESu3XWezX+TV/aQKNMf4AInIYyAEetx+/AUijOalTSqlO0YRMKeXNfgbUAj8Fbrf/+mdAIPAWzeXHr4EvgccuuG66/dyNwAj7rz+64PVbgEygFHgKuElECrvzjSilvJu2vVBKKaWU8jCdIVNKKaWU8jBNyJRSSimlPEwTMqWUUkopD9OETCmllFLKwzQhU0oppZTyME3IlFJKKaU8TBMypZRSSikP04RMKeVWxpiqHhzLaozJMcbsM8bsNcb8izHGcsHrX7RzbaQx5oGeibTV2AnGmFpjTM4FX7uybdOl7htk/340GGNiux6pUqqnaEKmlOrLakUkXUTGAVcD19C8aTgAIjK5nWsjAY8kZHa5IpLuzhuKSK39nmfceV+lVPfThEwp1S3ss1Xf2X/8jwuOP2aMOWiM+dgY87Yx5l/dMZ6IFAArgIeMMcY+VpX95xBjzAb7LNp3xpibad7yaJR9Rulp+3nvGmN22WfcVtiPJRhjDhhj/mI//pExJsj+2o+NMd/Y7/v6Be/xdmPM1/Z7/4cxxsfV92GMGWmM2WOMybKPfdAY85p9nHeMMcHtja2U6pt8PR2AUsr7GGMygLuAKwADfGWM+QfNm3wvBsbT/PfPbmCXu8YVkWP2kuUA4NwFL80DzojIAnt8EcBXQMpFs1R3i0iJPeHaYYw5v2H4aGCpiCw3xvxfYLExZg/wf4ApIlJkjIm23zsZuNl+vNEY8+/AbcB/Xip+Y8wYYDVwl4jkGGMSgDHAPSKyzRjzCvCAMebvzsZWSvVdmpAppbrDVGCdiFQDGGPWAtNonpX/LxGptR9/7/wFxpiRNCcZESJykzEmBPh3oAHYLCJvuji2cXLsW+AZY8xvgfdFZKsxJsrJef9sjLnB/uvhNCdi3wPHRSTHfnwXkABEAe+ISBGAiJTYX78KyKA5oQMIAgpciDsO+C9gsYjsu+D4SRHZZv/1G8A/A/VtjK2U6qO0ZKmU6g7OkqL2jiMix0TkngsO3Uhz0rEcWOjSoM1JnZWLEiAROUxzkvQt8BtjzM+dXDsTmA1MEpHLgT1AoP3l+gtOtdL8n1kDiLMwgNfsa9vSRWSMiDzhQvjlwElgykXHLx5D2hlbKdVHaUKmlOoOW4DrjTHB9pmuG4CtwOfAdcaYQGNMKLCgnXsMozlBgeYkqF3GmDjgz8ALIiIXvTYEqBGRN4BngAlAJRB2wWkRQKmI1BhjkoDsSwz5KfDfjDEx9jGiLzh+kzFmwPnjxpj4S8VP80zg9cCPjTG3XnB8hDFmkv3XS2n+HrY1tlKqj9KSpVLK7URktzHmVeBr+6GXRGQPgDFmPbAXyAd20jwz5MwpmpOyHNr+z2OQvXWEH9AEvA78zsl5qcDTxhgb0AjcLyLFxpht9nYTfwd+BtxnjPkGOARsv8R73GeMeRL4hzHGSvOM2p0ist8Y8zPgI/t6tkbgQfv7bZeIVBtjrgU+NsZU0/x9OgAsM8b8B3AE+JM9aWw19qXur5TqvcxF/5FUSqluZYwJFZEq+9OCW4AV9gQuBniS5vYVLwHPAS8AdcDnHVhD1uvZF+u/LyIp7jjPyXV5QOb5NWZKqd5PZ8iUUj3tRWPMWJrXZ70mIrsBRKQYuO+ic+/q6eB6iBWIMMbkuLMXmf3p0C9pnjG0ueu+SqnupzNkSimllFIepov6lVJKKaU8TBMyL2CMGW6M2WTvJr7PGPMTT8ekOsf+9OHX9u7r+4wxv/B0TKprjDE+9s7773s6FtV5xpg8Y8y39t0Xdno6HtU5pnkP23fsO2AcuOAJZo/TNWTeoQn4X/aF0WHALmPMxyKy39OBqQ6rB660L3r3Az43xvxdRNp94k/1aj+h+UnJcE8Horpslj4o0ef9AfjA3nzaHwj2dEDn6QyZFxCRsxcsjK6k+S//oZ6NSnWGNKuyf+ln/6ELPfsoY8wwmnutveTpWJTq74wx4cB04GUAEWkQkTLPRvUDTci8jP0x+fE079On+iB7iSuH5m7zH4uIfpZ917PAw+gTj95AaO4tt8vYN55Xfc5IoBBYZV9G8JK9cXWvoAmZF7F3Pl8D/A8RqfB0PKpzRMRqb4UwDJhojOlQDyrVO9gbvBaIiNs2T1ceNUVEJgDzgQeNMdM9HZDqMF+ad+n4k4iMB6qBn3o2pB9oQuYl7OuN1gBvishaT8ejus4+lb4ZmOfhUFTnTAEW2pu0rgauNMa84dmQVGeJyBn7zwXAOmCiZyNSnXAKOHVB1eEdmhO0XkETMi9gjDE018QPiIizbWNUH2GMiTPGRNp/HUTzZtcHPRuV6gwReUREholIAnAL8JmI3O7hsFQnGGNC7A9MYS9xzQG+82xUqqNE5HvgpDFmjP3QVUCvefhNn7L0DlOAO4Bv7WuPAB4VkY0ejEl1zmDgNWOMD83/Yfq/IqLtEpTyrIHAuub/++ILvCUiH3g2JNVJ/x140/6E5TF60W4g2qlfKaWUUsrDtGSplFJKKeVhmpAppZRSSnmYJmRKKaWUUh6mCZlSSimllIf1moRMN1VWSimlVH/VaxIyfthU+XIgHZhnjMn2cEx9jm7p4T30s/QO+jl6D/0svUdv/Cx7TUKmmyq7Ta/7TaY6TT9L76Cfo/fQz9J79LrPstckZKCbKiullFKqf+qVjWHtW8esA/67iHx30WsrsGe2Pj4+GQEBAR6IsPdqamrC11c3YPAG+ll6B/0cvYd+lt7DU59lTU1No4j4O3utVyZkAMaYx4FqEXmmrXMyMzNl586dPRiVUkoppVTnGGN2iUims9d6TclSN1VWSimlVH/Vm+ZedVNlpZRSSvVLvSYhE5FvgPGejkMppZRSqqf1moTMXRobGzl16hR1dXWeDkUpjwkMDGTYsGH4+fl5OhSllFIu8LqE7NSpU4SFhZGQkIAxxtPhKNXjRITi4mJOnTpFYmKip8NRSinlgl6zqN9d6urqiImJ0WRM9VvGGGJiYnSWWCml+hCvS8gATcZUv6d/BpRSqm/xyoSsN3niiSd45pk2W6nx7rvvsn///h6MSCmllFK9jSZkHqYJmVJKKaU0IesGTz75JGPGjGH27NkcOnQIgL/85S9kZWVx+eWXs3jxYmpqavjiiy9Yv349K1euJD09ndzcXKfnKaWUUsq7aUJG81Np9U1Wt9xr165drF69mj179rB27Vp27NgBwI033siOHTvYu3cvycnJvPzyy0yePJmFCxfy9NNPk5OTw6hRo5yep5RSSinv5nVtLzpKRNh+rJgjBVWMHhBK9siuPaG5detWbrjhBoKDgwFYuHAhAN999x0/+9nPKCsro6qqirlz5zq93tXzlFJKKeU9+v0MWYPVxpGCKgaFBXKkoIoGq63L93SW0N1555288MILfPvttzz++ONttiRw9TyllFJKeY9+n5AF+PowekAo31fWMXpAKAG+Pl263/Tp01m3bh21tbVUVlby3nvvAVBZWcngwYNpbGzkzTffdJwfFhZGZWWl4+u2zlNKKaWU9+r3JUuA7JExTIiP6nIyBjBhwgRuvvlm0tPTiY+PZ9q0aQD86le/4oorriA+Pp7U1FRHEnbLLbewfPlynnvuOd555502z1NKKaWU9zIi4ukYOi0zM1N27tzZ4tiBAwdITk72UERK9R76Z0EppXoXY8wuEcl09lq/L1kqpZRSSnmaJmRKKaWUUh6mCZlSSimllIdpQqaUUkop5WGakCmllFJKeZgmZEoppZRSHqYJWTfIy8sjJSWlx8Z74okneOaZZ1w695prrqGsrKxL91BKKaWUe2lj2F7EarXi49P15rTOiAgiwsaNG7vl/koppZTqPJ0h62bHjh1j/PjxfPXVV6xcuZKsrCzS0tL4j//4DwA2b97MrFmzuPXWW0lNTSUvL4/k5GSWL1/OuHHjmDNnDrW1tQDk5uYyb948MjIymDZtGgcPHmx37PP3euCBB5gwYQInT54kISGBoqIiAJ588knGjBnD7NmzOXTokOO6HTt2kJaWxqRJk1i5cqVjts9qtTp9D0oppZTqGk3IAJtNKKysx927Fhw6dIjFixezatUq9u7dS0REBDt27GDHjh385S9/4fjx4wB8/fXXPPnkk+zfvx+AI0eO8OCDD7Jv3z4iIyNZs2YNACtWrOD5559n165dPPPMMzzwwAMuxfDjH/+YPXv2EB8f7zi+a9cuVq9ezZ49e1i7di07duxwvHbXXXfx5z//mS+//LLFjN3LL7/c5ntQSimlVOf1+5KlzSYs/ct2duWXkhEfxdvLs7FYTJfvW1hYyKJFi1izZg3jxo3j17/+Nd988w3vvPMOAOXl5Rw5cgR/f38mTpxIYmKi49rExETS09MByMjIIC8vj6qqKr744guWLFniOK++vv6SccTHx5Odnd3q+NatW7nhhhsIDg4GYOHChQCUlZVRWVnJ5MmTAbj11lt5//33Afjoo4+cvocLY1dKKaVUx/X7hKy4uoFd+aU02YRd+aUUVzcQFxbQ5ftGREQwfPhwtm3bxrhx4xARnn/+eebOndvivM2bNxMSEtLiWEDAD+P7+PhQW1uLzWYjMjKSnJycNsc8efIk1113HQD33Xcf8+bNa3XvCxnTOvFsb5awrfeglFJKqa7p9yXL2FB/MuKj8LUYMuKjiA31d8t9/f39effdd/nP//xP3nrrLebOncuf/vQnGhsbATh8+DDV1dUu3y88PJzExET+9re/Ac3J0d69e1ucM3z4cHJycsjJyeG+++5r937Tp09n3bp11NbWUllZyXvvvQdAVFQUYWFhbN++HYDVq1c7runqe1BKKdU7iQjbtn3BG2+8ybFjxzwdTr/U72fIjDG8vTyb4uoGYkP9nc4adVZISAjvv/8+V199NT/72c8YO3YsEyZMQESIi4vj3Xff7dD93nzzTe6//35+/etf09jYyC233MLll1/eqdgmTJjAzTffTHp6OvHx8UybNs3x2ssvv8zy5csJCQlh5syZREREAHDvvfeSl5fXpfeglFKq9yktLSUnZy/R0dFs3fo5I0eO9HRI/Y5x90L2npSZmSk7d+5scezAgQMkJyd7KCLvUFVVRWhoKABPPfUUZ8+e5Q9/+IOHo1IdpX8WlFKuamhoYM2atZSWlpGcnMSsWTM9HZJXMsbsEpFMZ6/1+xky1dqGDRv4zW9+Q1NTE/Hx8bz66queDkkppVQ38vf358Ybb6CyspLo6GhPh9MvaUKmWrn55pu5+eabPR2GUkqpHhQQENDioTLVs/r9on6llFJKKU/ThEwppZRSysM0IVNKKaWU8jBNyJRSSimlPEwTsm5wvmXEmTNnuOmmmzwcTedt3ryZa6+9tsvnXOyJJ57gmWee6UporVxzzTWUlZVRVlbGv//7v7v13u1Zv349Tz31VLvntPc9evbZZ6mpqXF8ff59KKWU6l80IetGQ4YMcez72F2ampq69f59xcaNG4mMjOzxhGzhwoX89Kc/7fT1Fydk59+HUkqp/kUTsm6Ul5dHSkoKAK+++io33ngj8+bNY/To0Tz88MOO8z766CMmTZrEhAkTWLJkCVVVVQD88pe/JCsri5SUFFasWOHYZ3LmzJk8+uijzJgxo1XD1ieeeIJly5YxZ84cEhISWLt2LQ8//DCpqanMmzfPse3Rp59+yvjx40lNTeXuu+92bFT+wQcfkJSUxNSpU1m7dq3jvtXV1dx9991kZWUxfvx4/uu//qtD34snn3ySMWPGMHv2bA4dOuQ4npuby7x588jIyGDatGkcPHgQgDvvvJN//ud/ZvLkyYwcOdKR2J49e5bp06eTnp5OSkoKW7duBSAhIYGioiJ++tOfkpubS3p6OitXruSOO+5oEettt93G+vXrW8RWUFBARkYGAHv37sUYw4kTJwAYNWoUNTU1FBYWsnjxYrKyssjKymLbtm2Oz/Whhx5yvJfs7GyysrL4+c9/7pgpheZmuzfddBNJSUncdtttiAjPPfccZ86cYdasWcyaNavF+8jLyyM5OZnly5czbtw45syZQ21tLQA7duwgLS2NSZMmsXLlSsfvMaWUUn2YiPTZHxkZGXKx/fv3tzp2SVarSOU5EZut49c6ERISIiIix48fl3HjxomIyKpVqyQxMVHKysqktrZWRowYISdOnJDCwkKZNm2aVFVViYjIU089Jb/4xS9ERKS4uNhxz9tvv13Wr18vIiIzZsyQ+++/3+nYjz/+uEyZMkUaGhokJydHgoKCZOPGjSIicv3118u6deuktrZWhg0bJocOHRIRkTvuuEN+//vfO44fPnxYbDabLFmyRBYsWCAiIo888oi8/vrrIiJSWloqo0ePlqqqKtm0aZPjnB07dsg999zTKqadO3dKSkqKVFdXS3l5uYwaNUqefvppERG58sor5fDhwyIisn37dpk1a5aIiCxbtkxuuukmsVqtsm/fPhk1apSIiDzzzDPy61//WkREmpqapKKiQkRE4uPjpbCwsMX3XERk8+bNsmjRIhERKSsrk4SEBGlsbGwV49ixY6W8vFyef/55yczMlDfeeEPy8vIkOztbRESWLl0qW7duFRGR/Px8SUpKcnyuDz74oIiILFiwQN566y0REfnTn/7k+H2wadMmCQ8Pl5MnT4rVapXs7GzHvc7Hfd6F78PHx0f27NkjIiJLlixxfP/HjRsn27ZtExGR//2//3eL93uhTv1ZUEq5pKqqSpqamjwdhupjgJ3SRk6jjWFtNnjtWjj5FQy/Apa9D5bumTi86qqrHPtCjh07lvz8fMrKyti/fz9TpkwBmrevmDRpEgCbNm3i3/7t36ipqaGkpIRx48Zx3XXXAbTbuHX+/Pn4+fmRmpqK1Wpl3rx5AKSmppKXl8ehQ4dITEzksssuA2DZsmX88Y9/ZObMmSQmJjJ69GgAbr/9dl588UWgeRZv/fr1jrVfdXV1jlmk8zIzM3nppZdaxbN161ZuuOEGgoODgeYyHzTPGn3xxRcsWbLEce75mTqA66+/HovFwtixYzl37hwAWVlZ3H333TQ2NnL99deTnp7e7vd8xowZPPjggxQUFLB27VoWL16Mr2/r3/aTJ09m27ZtbNmyhUcffZQPPvgAEXHs8fnJJ5+wf/9+x/kVFRVUVla2uMeXX37p2Nvz1ltv5V//9V8dr02cOJFhw4YBkJ6eTl5eHlOnTm039sTERMf7y8jIIC8vj7KyMiorK5k8ebJjnPfff7/d+yil3GvPnj18+eV24uLiWLRoIf7+/p4OSXXSyZMnOXo0l6SkMQwePNijsWhCVlPUnIzZmpp/rimC0AHdMtSFHZB9fHxoampCRLj66qt5++23W5xbV1fHAw88wM6dOxk+fDhPPPEEdXV1jtdDQkIuOY7FYsHPz8+xYbrFYnGM2Za2NlcXEdasWcOYMWNaHD+fKF2Ks/vabDYiIyPJyclp932cHx9g+vTpbNmyhQ0bNnDHHXewcuVKfvzjH7c79h133MGbb77J6tWreeWVVwC466672LNnD0OGDGHjxo1MmzaNrVu3kp+fz6JFi/jtb3+LMcaxGN9ms/Hll18SFBTk0vtt772c/+w7ek1tbW27n51Sqmfs33+AmJhYCgsLKSsrY8CA7vk3Q3Wv+vp6/v73D/H19SU39xh33bUMHx8fj8Wja8hC4ppnxiy+zT+HxPXo8NnZ2Wzbto2jR48CUFNTw+HDhx3JV2xsLFVVVW59OCApKYm8vDzHmK+//jozZswgKSmJ48ePk5ubC9AiSZw7dy7PP/+8IyHYs2ePy+NNnz6ddevWUVtbS2VlJe+99x4A4eHhJCYm8re//Q1oTrr27t3b7r3y8/MZMGAAy5cv55577mH37t0tXg8LC2s1c3XnnXfy7LPPAjBu3DgAVq1aRU5ODhs3bnTE+MYbbzB69GgsFgvR0dFs3LjRMXM5Z84cXnjhBcc9nSWR2dnZrFmzBoDVq1e79L1xFm97oqKiCAsLY/v27R0aRynlPhkZGZSVlRIfH99r932sq6sjZ0+O4+9z1ZqPjw+BgQHU1tYSFBTU5oRET9GEzJjmMuW/HIA7NzR/3YPi4uJ49dVXWbp0KWlpaWRnZ3Pw4EEiIyNZvnw5qampXH/99WRlZbltzMDAQFatWsWSJUtITU3FYrFw3333ERgYyIsvvsiCBQuYOnUq8fHxjmsee+wxGhsbSUtLIyUlhccee6zVfXfu3Mm9997b6viECRO4+eabSU9PZ/HixY4yIMCbb77Jyy+/zOWXX864ceMu+bDA5s2bSU9PZ/z48axZs4af/OQnLV6PiYlhypQppKSksHLlSgAGDhxIcnIyd911V5v3TUhIAJoTM4CpU6cSGRlJVFQUAM899xw7d+4kLS2NsWPH8uc//7nVPZ599ll+97vfMXHiRM6ePesoT7dnxYoVzJ8/37Go3xUvv/wyK1asYNKkSYiIS+MopdwnKWkMy5ffy4IF1zhdAtEbbNv2BZ9v+4IPPviI77//3tPh9Eq+vr4sWrSQOXNms3DhtVi6abmSq0xfLoFkZmbKzp07Wxw7cOAAycnJHopI9UY1NTWkpqaye/fubk1eampqHP/LWr16NW+//XaHn0Z1RVVVleMJzqeeeoqzZ8+2etoW9M+CUv3ZZ59+xv4DBzHGsHjxDQwaNMjTIfVONlvzUqWQuB6ZkDHG7BKRTGev9c7UXik3+eSTT7j77rv5l3/5l26fSdq1axcPPfQQIkJkZKRjvZq7bdiwgd/85jc0NTURHx/Pq6++2i3jKKX6rslTJhMdHU1EZES/S8bKy8spKipi8ODBjofJnOrBh/pcoTNkSnkp/bOglOpvGhoaeOut1VRXVzNgQBxLlrSzW05VAfwuufmhPotv89Klbnqo77z2Zsh0DZlSSimlvEJTUxN1dXWEhARTWVnZ8sl0m605CTt/zMMP9V1MS5ZKKaWU8grBwcHMmXM1ubm5pKam/PDkZFvlyWXv9+gasvZoQqaUUkoprzFyZCIjRya2PNhWz1GLpdvLlK7SkqVSSimlvEsvL086owlZNzjfkuDMmTPcdFM7Cwp7uc2bNzs61XflHHe7cNNud1i/fj1PPfUUAO+++26LLZK604XjtqW97++zzz5LTU1Nd4SmlFJ91/ny5O+S4dUFzV97uOeoKzQh60ZDhgxxa4d9Z1zZgke1b+HChfz0pz8FejYhu3DcztCETCmlnHBWnoQfypO9MBkDTci6VV5eHikpKQC8+uqr3HjjjcybN4/Ro0fz8MMPO8776KOPmDRpEhMmTGDJkiVUVVUB8Mtf/pKsrCxSUlJYsWKF42mRmTNn8uijjzJjxoxWDUGfeOIJli1bxpw5c0hISGDt2rU8/PDDpKamMm/ePBobGwH49NNPGT9+PKmpqdx9992OTb0/+OADkpKSmDp1KmvXrnXct7q6mrvvvpusrCzGjx/foYaneXl5JCcns3z5csaNG8ecOXOora0Fmrcgys7OJi0tjRtuuIHS0tJW1x8/fpxJkyaRlZXVaoeAp59+mqysLNLS0nj88ccvOd5zzz3H2LFjSUtL45ZbbnF8Ng899BBffPEF69evZ+XKlaSnp5Obm8uECRMcYx05coSMjIwW4xcUFDiO7d27F2OMY9P1UaNGUVNTQ2FhIYsXLyYrK4usrCy2bdvWYlyA3NxcsrOzycrK4uc//3mLWcCqqipuuukmkpKSuO222xARnnvuOc6cOcOsWbM61OVfKaW8Th8sTzolIn32R0ZGhlxs//79rY5ditVmlcKaQrHZbB2+1pmQkBARETl+/LiMGzdORERWrVoliYmJUlZWJrW1tTJixAg5ceKEFBYWyrRp06SqqkpERJ566in5xS9+ISIixcXFjnvefvvtsn79ehERmTFjhtx///1Ox3788cdlypQp0tDQIDk5ORIUFCQbN24UEZHrr79e1q1bJ7W1tTJs2DA5dOiQiIjccccd8vvf/95x/PDhw2Kz2WTJkiWyYMECERF55JFH5PXXXxcRkdLSUhk9erRUVVXJpk2bHOfs2LFD7rnnnlYxHT9+XHx8fGTPnj0iIrJkyRLHvVJTU2Xz5s0iIvLYY4/JT37yk1bXX3fddfLaa6+JiMgLL7zg+P5++OGHsnz5crHZbGK1WmXBggXyj3/8o93xBg8eLHV1dY73cf6zefDBB0VEZNmyZfK3v/3NMfbMmTMd93nkkUfkueeeaxXf2LFjpby8XJ5//nnJzMyUN954Q/Ly8iQ7O1tERM9WPjIAACAASURBVJYuXSpbt24VEZH8/HxJSkpqNe6CBQvkrbfeEhGRP/3pT473uGnTJgkPD5eTJ0+K1WqV7Oxsx73i4+OlsLCwVTzndebPglJK9SlWq8gr80V+Ed38s9X6w/HKcyJu+nfdXYCd0kZO0+9nyGxi4+4P72b232Zz14d3YRNbt4111VVXERERQWBgIGPHjiU/P5/t27ezf/9+pkyZQnp6Oq+99hr5+fkAbNq0iSuuuILU1FQ+++wz9u3b57jXzTff3OY48+fPx8/Pj9TUVKxWK/PmzQMgNTWVvLw8Dh06RGJiIpdddhkAy5YtY8uWLRw8eJDExERGjx6NMYbbb7/dcc+PPvqIp556ivT0dGbOnEldXZ1jJui8zMxMXnrpJacxJSYmkp6eDjRvzJuXl0d5eTllZWXMmDGjRRwX27ZtG0uXLgXgjjvuaBHTRx99xPjx45kwYQIHDx7kyJEjbY4HkJaWxm233cYbb7zh0h509957L6tWrcJqtfLXv/6VW2+9tdU5kydPZtu2bWzZsoVHH32ULVu2sHXrVseenZ988gkPPfQQ6enpLFy4kIqKilYbin/55ZcsWbIEoNUYEydOZNiwYVgsFtLT0x3vRSml+r0+Wp50pt+3vSipKyGnIAerWMkpyKGkroTYoNhuGSsgIMDxax8fH5qamhARrr76at5+++0W59bV1fHAAw+wc+dOhg8fzhNPPEFdXZ3j9ZCQkEuOY7FY8PPzc/RhsVgsjjHb0tZu9yLCmjVrGDNmTIvj586da/NezmKC5vd+voToKmdxiQiPPPII//RP/9TieF5eXpvjbdiwgS1btrB+/Xp+9atftUhynVm8eDG/+MUvuPLKK8nIyCAmJqbVOdOmTWPr1q3k5+ezaNEifvvb32KMcSzGt9lsfPnllwQFBXXoPZ/n7PeNUkr1SxfvPXm+PHm+v1hfKU860e9nyGICY0gfkI6P8SF9QDoxga3/we1O2dnZbNu2jaNHjwLNG1QfPnzYkXzFxsZSVVXl1ocDkpKSyMvLc4z5+uuvM2PGDJKSkjh+/Di5ubkALZLEuXPn8vzzzzuSuT179nQ5joiICKKioti6dWuLOC42ZcoUVq9eDcCbb77ZIqZXXnnFsebu9OnTFBQUtDmezWbj5MmTzJo1i3/7t3+jrKzMce15YWFhLWavAgMDmTt3Lvfffz933XWX0/tOnz6dN954g9GjR2OxWIiOjmbjxo1MmTIFgDlz5vDCCy84zs/JyWl1j+zsbNasWQPgeK+XcnGsSinl1fro05Ou6vcJmTGGV+a+widLPmHV3FVtzhB1l7i4OF599VWWLl1KWloa2dnZHDx4kMjISJYvX05qairXX389WVlZbhszMDCQVatWsWTJElJTU7FYLNx3330EBgby4osvsmDBAqZOnUp8fLzjmscee4zGxkbS0tJISUlptbgeYOfOndx7770diuW1115j5cqVpKWlkZOTw89//vNW5/zhD3/gj3/8I1lZWZSXlzuOz5kzh1tvvZVJkyaRmprKTTfd1G6CYrVauf3220lNTWX8+PH8z//5P4mMjGxxzi233MLTTz/N+PHjHYnpbbfdhjGGOXPmOL1vQkIC0JyYAUydOpXIyEiioqKA5gcJdu7cSVpaGmPHjuXPf/5zq3s8++yz/O53v2PixImcPXvWpY3QV6xYwfz583VRv1Kqf/Ci8qQzurm4UpfwzDPPUF5ezq9+9atuG6OmpoagoCCMMaxevZq33367Q0+yOqN/FpRSfdrF5UmR5pmx8+XJPjgj1t7m4v1+DZlS7bnhhhvIzc3ls88+69Zxdu3axUMPPYSIEBkZySuvvNKt4yml+i4R6fFqTo/rA3tPupsmZEq1Y926dT0yzrRp09i7d2+PjKWU6rvOnTvH3//+AaEhoVyzYD7BwcGeDql79IG9J92t368hU0oppfqK777bh4jw/blznDlzxtPhuI+3NHftAq+cIesX07lKtaMvrw1VSrUtMTGBI4ePEBISQmxs97Ro6nH9sDzpjNclZIGBgRQXFxMTE6NJmeqXRITi4mICAwM9HYpSys1GjhzJHT++HV9f3xY9Cvu0fliedMbrErJhw4Zx6tQpCgsLPR2KUh4TGBjIsGHDPB2GUqobtNcYvE/o5uauTU1NfPvtd1itVtLSUvH393dT4N2r1yRkxpjhwH8CgwAb8KKI/KH9q1rz8/MjMTHR3eEppZRSqqt6oDx59OhRtm79HGOadzcZPz7dTcF3r960qL8J+F8ikgxkAw8aY8Z6OCallFJKuUsPNHf18/MDmpdvnP91X9BrZshE5Cxw1v7rSmPMAWAosN+jgSmllFKqczyw9+TIkSO57roFWK1WRo4c6fb7d5dek5BdyBiTAIwHvnLy2gpgBcCIESN6NC6llFJKuchDT08aY/rk0qXeVLIEwBgTCqwB/oeIVFz8uoi8KCKZIpIZF+f9fUmUUkqpPsnL9550t16VkBlj/GhOxt4UkbWejkcppZRSLtLmrl3Sa0qWprlp2MvAARH5nafjUUoppZSLtLlrl/WmGbIpwB3AlcaYHPuPazwdlFJKKaUuQcuTXdZrZshE5HNAPzGllFKqN7v4yUnokacnvV2vSciUUkop1cu1VZo0RsuTXdSbSpZKKaWUcpOmpiZKSkqwWq3uu2lbpUnQ8mQXaUKmlFJKeRmbzcbGDX/n7bf/ykcffoycf/Kx4zfSJyd7iJYslVJKKS9TX1/P6TOnGThwAHn5eTQ1NXV8GyF9crJH6QyZUkop1UvU1NSwf/8Bzp0716X7BAUFkZWVRWVFJZMnTercno794MlJm9goqi3q/AyiG+kMmVJKKdVLfPLJZ5w8eRJfX1+WLr2Z8PDwTt8rMzODzMwM1y/wwL6TnmQTG3d/eDc5BTmkD0jnlbmvYDGem6fShEwppZTqJRobG/D19cFms2Gz2Xpu4H5YniypKyGnIAerWMkpyKGkroTYoFiPxaMlS6WUUqqXmD37KlJTU5k7dw6RkZE9N3A/LE/GBMaQPiAdH+ND+oB0YgJjPBqfzpAppZRSvURERASTJ0/q/oG0PInFWHhl7iuU1JUQExiD8XDSqQmZUkop1Z/0g/KkTWwtEq02y5NikKYwT4cLaMlSKaWU6l+8vDx5fjZs9t9mc9eHd2ETm9PypM0mLP3Ldib95lNueXE7Nptnn7TUGTKllFLKm3l5edLV2bCXrn6Z3JJzjI4ZhDGGoqp6duWX0mQTduWXUlzdQFxYgMfehyZkSimllLfy8vKks7Vh52fDzh87Pxt220tfsyu/lIz4KN5enk1sqD8Z8VGOY7Gh/h59L5qQKaWUUt7KWXkydMAP5ck+rquzYW8vz6a4uoHYUH+PL+rXNWRKKaWUt/DyvSddaV1xfjZswe9zWPqXr7DZxDEb5msxLWbDLBZDXFiAx5Mx0BkypZRSyjv0w/Kks9YVfWE2zBmdIVNKKaW8gZc9PXnxbJiz8iTQqnVFX5gNc0ZnyJRSSqm+yIufnuzIYv2lf9neYrG+xWJ6/WyYM5qQKaWUcruGhgZKSkqIjo7G39+zT695JS8rT7q7dcX52bC+REuWSiml3Mpms/Hee++zdu27vP/+hp7dJLu/8KLyZEcaubq6WL8v0hkypZRSbtXU1ERBQQHR0VEUFBTQ1NSks2RdZS9PNvpHYiwWfL2oPOlNrSu6QmfIlFJKuZW/vz8zZszAGMP06dO7PRkrLCxk795vKS8v79ZxPMZenpT/P4nCZ67grTfepLyiork8+S8H4M4NfW5GzFtbV3SFzpAppZRyu7Fjkxk7Nrnbx6mvr2f9+g00NDTw3Xffceutt2CMQUQ4d+4cgYGBREZGdnscbnXxYn17edKIlUENeTRVfs/3339PREREn2vu2lbriv42G+aMzpAppZTqs0QEm82Gj48PVqvVcfzbb79jzTvv8te/vkNRUZEHI+yg84v1f5cMry5o/tpenhTjwzn/RAIihzF48GBPR+oSV1pX9MfZMGd0hkwppVSfFRgYyHXXXUN+/kl+9KORjn+oCwuL8A8IoL6+nsrKKmJjYz0cqYva2upo2fuYmiLiAqJY6uODxdL751NcbV1RVNXQ72bDnNGETCmlVJ82aNAgBg0a1OJYRsZ4ampqCA8LY9iwoR6KzAWu9hKzPz3Zm//R7mzrirY2+e6LrSu6ojd/tkoppVSnREZGct11Czp83blz5zh06AijRo1k6NAh3RDZBbyol1hHGrne9tLXXtHI1d00IVNKqT7EZrNhjOm3/2h1J6vVyoYNHyAChw4dZtmy27v3CdG2ypPne4n1If2xkau79f4itFJKKaB59mbVqtdYvfr/UlVV5elwvI4xhgD7ujN/f3/3rtOy2aCqAOyL24EfypMW3z7VS+zihfrQ9dYVSmfIlFKqz9i/f3/z2pySYs6ePcvo0aM9HZJXsVgsXHfdNZw+fYbBgwfh6+umfyLbKk0a0+fKk221rTDGaOuKLtIZMqWU6iNGjRpFY2MDISEhxMX1jdmUviY8PJzk5CT39i5ra5sj6PVbHbnStgLQ1hVuoDNkSinVR4wYMYJly36MxWLRrYh6M1efnOzlXF2oD1Bcra0rukoTMqWU6kMCAwM9HYJqTx9+crKzbSsAbV3hBpqQKaWUUu7SR5+c7GrbCmO0dUVXaUKmlFJKdZaXlCe72rYCdDasqzQhU0oppTrDi8qTrs6GtVWaVF2nCZlSSinVGe2UJ23BsVh6cTLmrHWFtq3wLG17oZRSXqK+vp4PP/yYd95ZS0lJiafD6fWKi4spKytz/YKLm7s6aeza2NjI++9v4KWXXiY391j3BN5BrrSu0LYVnqczZEop5SVOnz7DkSNHCQwMZM+evVx11SxPh9RrHT2ay8cff4bFYmHRomsZNGhg+xe4WJ4sKioiP/8E0dFR7Nq1i1GjRvbMG2or7LYW68elk1P4Q3myqErbVniazpAppZSXiIgIJyAggIaG+ksnGC4oLS1l06Z/sG/fATdE17sUFBRijKGxsZGysvJLX9BWc9eLGrtGRUURExNNWVk5SUljuvEdOOfKbJgI1JxYTtWRR6jJX4EIOhvWC+gMmVJKeYmYmBhuuWUJDQ0NxMTEdPl+//jH5xQWFrN//2EGDIgjLi7WDVH2DikpYyksLCIwMICEhBGtT+jk05OBgYHcdNNi6uvrCQkJ6eZ3cVHILrauKKpqYHd+OU22UHbnl+lsWC+hCZlSSnmRsLAwt90rNDSUkyfPEBgYQECAdz1NFx4ezqJF1zp/sYtPT/r6+rpvH8wOcLV1hTZx7Z00IVNKKeXU9OlTSEyMJyIigvDwcE+H03P6SHPXzrausFi0iWtvpAmZUkopp/z9/T2+KL1H9MHmrl1tXaGzYb2PJmRKKaX6rz7S3NWVfSajA2K0kWsfpgmZUkqp/qsPlCe1dUX/oG0vlFJK9R8uNHftbbR1Rf+gM2RKKaU6pKqqml07cwgJDWb8+DR8fHzaPb+mpoZz5wqJi4slNLRnW0G00EfLk9q6on/QhEwppVSH7NqZw8FDR2lqbCI2NpaEhOFtnisivP/+xxQVFRMREcbNN9/gcksIm82GxeLGQk4fLU86W6yvrSu8jyZkSimlOiQ0LISmJiu+Pj4EBrb/j7/NZqOyopKwsFCqq2toampyKSHbv/8gW7duZ2RiPFfNntG5xKwPPD3Z2cX62rrC+2hCppRSqkPS01OJjY0lIMCfQYPan1ny8fFhztxZ7Nt3kNGjRxEYGOjSGF9/vZvYmGiOHj1ORmY60dFRHQuyD5Qnu7pYX2fDvIsmZEop5SW+/76AzZs+J25ALDNmTO62bvE+Pj7Exw9z+fzhw4cyfPjQDo2RnHwZu3d/w6DBAwgLC+1oiL2uPHnxTBg4X6wfHRDTvFj/1Clqaoe3WKyvrSu8myZkSinlJb7+ejcNjY0cOnSUMWN+xLBhQzwdUqdNnJjBuHFJBAUFXfKhAaBXlyfbWhfW1myYLtbvnzQhU0opLzFi+FDOnP6ekOBgIiL69lZHxhhCQ12cGevl5cm29ph0tK5wYTZMy5PeTxMypZTyEpenpzB8xFCCggIJDg72dDg9p5eXJ53NhAEUV+tsmPqBJmRKKeUljDHExES3+bqIeMc/8H2sPImYVjNhxuhsmGpJEzKllPJydXX1fPzRFkpLy5k9eypDhg7ydEid18vKk660rZCmMKczYcZo6wr1A906SSmlvNy5c4WcOXMOXx8fvvnmgKfD6Rpn5Un4oTzZTlLT0NBAcXEJNpvNLaGcnw2b/bfZ3PXhXdjE5ihP+hgfR3myrS2NmsPWbY1UM50hU0opLxcdHUlYaCjVNTVkZqV5OhzXXVyahE6XJxsbG1m37j2Ki0sYO3YMM2dO73g4LjZxvbg8qU1clSs0IVNKKQ8QEWpqagkKCnTv9kBOhIWFctN/u4aGhkbP7iXZEReVJhtvW0d5RRUREeH4daI8WV1dTUlJCTEx0Rw7ltfhhKwjTVydlSd1XZi6FE3IlFLKAz7//Gv2fXeQ+IRhzJ07q9uTMn9/f/z9u9ZQtOBcEXv3HmTEiMGMSRrlpsjacEFpUk5+xSfvrmHnwTMUFZUwZ+4s5syZiV8HZpoiIiJIS0vh6NFjTJs2pcPhaBNX1d00IVNKqR5ms9k4sO8QgwcPID/vFDU1tX1i5urTT77AZrWRn3eKQYMHEBER5r6bt/PkpG1IJieK6ykrr6C2tpa8vBMUF5dectumCxljmDJlElOmTHItHBdaV2gTV+VOmpAppVQPs1gsTMhMY/fOb0hK+hEhIZ3vGdbY2Mh33x5GREhJHYO/v59bYjyWe4KSknKSkkcRGtocX0RkOCdPnCY4JMht4wAtypMNAyewL/NpEkYmEGUvTfqExJG5ey/FxaWEhQQTFxtLZGT3Nb51tXWFtq1Q7tSrEjJjzCvAtUCBiKR4Oh6llOoumZnpjB+f6tq2QO3IPXqCr7fvBQx+fr6kpiW1OqeyopqmJitR0eHYbDaMMe3O3BQVlvDpJ1/iYzGUFpdx9bxpAFw1ezJnzxYQFRVBUJBrm4S75ILypO/Znez7ehv7D+Sy9NYbsNgbu2ZkpJORkU5VVTWBgQFu3aezK60rdDZMuUuvSsiAV4EXgP/0cBxKKdXtupqMAfj5+WIwCOJ01qqwoISN723BZrNy+fhkDh88jp+fL1fPm0J4hPOtiSwWCxZjsFpt+Pr+EGNAgD8JCa5vKt6mNsqTcvIrCvwSqbWEESTi9FJ3lXZFhM8/38aBgwf5OPojjlQfbnexPqCzYapb9aqETES2GGMSPB2HUkr1FSNHjcBvgR8iwvARg1u9XlZaQWNjI/7+fuzdfQCbCAY4fep7wiN+5PSe0TGRzL92JuVlFSSOHO7egNtp7GpqirBUGzJOnyEhYUS3POhwfjbMr8GPb7/dR0hcMIcqDyJGtHWF8qhelZAppZTqGGMMI+KHtPn68PjBJCQMpa6untLSCrZt2c2QoQMYOKhl/66GhkaKCkuJjAonODiQIUMGMGRI1/aBLCgoYuvWr4iLjWbylKzmMuMl9p0cEAoDBnbP1kct1obFpXPtwIWcO3eOkVGjyGs8rq0rlEe5lJCZ5v8KDBORk90cjyuxrABWAIwYMcLD0SilVO8WGBjA7HmTqamp469vbGT+tdMpKCghPKJl6W/TJ9s5dfIc4eEhLFo82y2L9r/+ag/VlVVUnT3GyJHxDBs+xKP7TrZYG1aYw29v+C3+1gA2r06l6vRpbV2hPMqlhExExBjzLpDRzfG4EsuLwIsAmZmZzhcZKKVUDzp+7CRb//E1w0YMYcbMiY61YTabjbLSCsLCQ/Dzc+NTiZ0QFBTAmOQEDh/KZ/yE5BaL4kWEwsJSIiJCqayspqG+wS0J2eDBsUz45qcMajyG7YP34J4PenTfyUu1rhgQOoCiqgb2nKjQxfrK4zpSstxujMkSkR3dFo1SSvVBO3Z8Q0hIMMeO5pOaehlxA5oXgW/+7CuOHTvJgLhorrluplufDOwoYwyTp01g4qS0VnEYY5h55URy9hxkXOpoQsPcs3B+wpghsOE4BhuWs7talSfLysopK6tgyJCBXW5aezFtXaH6mo787TAL+CdjTD5QDRiaJ8/ctjGaMeZtYCYQa4w5BTwuIi+76/5KKdUdRo0aQc6u/URFRRBub5YqIuTnnSY2NorCwhLq6hoIDf3hr1yr1crpk+cICPRn4KDYHou1raRw2PBBDBs+qGs3v+jpSRM6AEZkOy1PVlfX8O66v1NTW8voHyVy9ZyZXRtaW1eoPq4jCdn8bovCTkSWdvcYSinlbhMyUhh9WSJBQQGO0qQxhslTJ7Brx3dcnp5ESEhQi2v27jnE7h378PHxYcGiGQwYGOOJ0N2nnacnnZUn6+vrqa+vJyQ4iNLSsq4N7WQ2LMo/moCmkVRbcgmwjiTKPxpLoNHZMNVruZyQiUi+MeZyYJr90FYR2ds9YSmlVN9hjCE8vHVPrzFJIxmTNNLpNbU1dfj6+mK1WmloaOruEF1WWlKOr68PYU7eT7su8fTkxaKjo5gy9QpOnz7LhAkdK7S4OhtWfPRurKaKOgmjpKZRZ8NUr+ZyQmaM+QmwHFhrP/SGMeZFEXm+WyJTSqk+xGq18tW2bygqLCN76uUMGBjd7vnjM5LxsVgICQtmyNA4rFYrFovFo0nC8WOn2PTpl1gsFuZfO4OBA9sppbaz96SrT0+mpCSRktJ6Z4H2OJsNa7uRawy78i06G6b6hI6ULO8BrhCRagBjzG+BLwFNyJRS/V7BuRIOH8wnODiQXV/vY/5109o9PzgkiOyp6QCcPV3Elo92ERoezJXzswgKbn9bourKWspKq4gbGIl/gPue3iwoKMbHYqGhsYmy0oq2E7IOlifdydlsmDZyVd6gI22QDWC94Gur/ZhSSvUppcUVnD1ViM1mc9s9w8JCCAwKoLamjkGDO9Zb6/C+fPwC/CgprqCooP31VA31jXy8/is2/30X2z79pisht5KcPIqY2Cji44e222zWaXkSfihPuin5sYmNotoi5IJtlM7PhvkYH8dsWHG1vZFr4w+L9ZvDaZ4N02RM9QUdmSFbBXxljFln//p6QJ+AVEr1KaXFFfz93S9oarRyecZoLs+6zC33DQ0LZuGNM6mtqSc6NqJD1yaOHsLpUwWEhQVd8tqG+kZqa+oJCQukrKSiKyG3Eh4RyrWLrmz9ghvKkx3lrDRpMRZEcLl1hVJ9SUcW9f/OGLMZmErzzNhdIrKnuwJTSqnuUFdbT1OjFX9/XyrKqwA4nV9ARVkNCaMHExTc+fVFwSFBBF/0NKUrRiQOZvHgGHx8fVps5u1MaHgwWdPGcer4OcamJ3Y2VNf1UHnSlYX6sUGxP8yGaesK5WU6unXSbmB394aklFLdZ+CQGC7PGE1FeRXpWWMoKazg84/2IiIUF5Qz9erLPRJXQKDrszo/ShrGj5KGdWM0F+jg05Od4WrbCtBGrsp79bmtk5RSfV/BuSL27j3I8OGDSUoe5fb75x06S0VJFaNShhES1nLGymKxtChTlhS6t+x3MRHp9IyN1WrjUE4+dTX1JE9IJCikcwlHfV0DJ/LOEhYewqAhl2hC2wPlya60rTBGF+sr76RbJymletynn3yBzWojP+8Ug4cMIMLe3d4dSgoq2LH5ABZjqCirYer89me8ouPCmTrnckfJ0l1EhD1fHObYgdOkZI4kKT2hw/coOF3Ct1/l4uvbvHYqY3rHWkSct+OLfeQePonFx8K1N04nKibc+Yk9UJ7sWBPX1m0rQGfDlHfqVVsnKaX6h4jIcE6dPENQcCABAW2X6koKKygqKGfI8BhCw4NdurePrwUDNDVZ8Q90rSXE0PgBDI136VSX1VbXc/S7k8QOiuTbHblcljYCi6UjD7aDv78fPj4WrFYbQcHOv0+NDU1UlFYTER2Cr5/zv9KtTVZ8fHyw2QRre0+W9kB5Upu4KuVcR9aQ3Qfkd284Sqn+4KrZk/n++0IiI8MJDHQ+01Ff18CmDbtobGgkNyqU+Usmu3TviOhQZi6cQFVFLUMSem6PyIsFBvszcFg0506XkHjZkA4nYwAxgyKYtSiD+vpGBg5r3WjWZrOx9e85FJ8rJ3ZgBDMXZjhNXDInjyMiKoyIqFBi4yIvvIFby5PV1TWc+76AuAGxhIU1d/q/uDypTVyVcq4ja8h+LyK6hkwp1WUBAf7Exw9t9xybTbBabfj6+dDUZHWsxSo9V0FDfSOxQ6Pw8XGe5MQOjiR2cKTT1zrCZrNRfLYc/wA/ImI7tpWQxWJh6rx0aqubW1R0VsygtttgNDVaKSmoICI6hJKCCqxNVqezZCGhQaRnjWl50M3lSZvNxoYNn1BSXEpYWCg337IIi4+lVXkSMdrEVSknOvJftu3GmKxui0QppS4QFBzA9HnpjB47gulzxzuSsc/X57B9w7cc3Xuy22M4nHOCrev38I91uygrrOzw9T4+FkLDgxARSs6VU11R6/K1IsKZY4WcOHQWa5PV6Tn+AX6kTx6NzSakTx3TZsnSKTc3dxURKiurINhKTW0NTU1NTsuT2sRVKec6uobsPmNMHrqGTCnVCdVVtTQ1WomIcm22adDQGAYNjXF83VDf6JgFqrkguTl16CyHvjzOwMQYxk4b3anyoDNVZbX4+vvS1GClrrah0/c5knOSg18fxz/Aj2k3jCc08tLr4c6dKOGrD74DgfraRkanj3B63o/GDedH44ZfOohufnrSWAyfxL7P/rJ9jI0byz0BtxFla2uxvjZxVepiHUnI5ndbFEopr1daVMHH732FtclG9swUEke3X7IEOHuskG+3HCZueDRpM8cQOzSK5ImJ1FTWkZSZ4Dhv3z+OYPH14fg3p4kcEMbg0QPxuUSDVVckZyZgs1oJDgsibmhUp+9TXlBBQLA/N7sd2wAAIABJREFUDTWN1FbVu5SQia15uyBjDFZrF7d4uqA8aRuaxReJv6a+vomJN/6VMJ/aTj096ax1xYHy/diwcaDigC7WV6qDOpKQnQBuA0aKyC+NMSOAQehCf6WUC8rLqqmvayQwyJ/C78tcSsgO78wjMCyQs8cKSUwbRkhYIAlJgwm4oB9XTXkNpWdKOZtbhMUIAf4WKgorGTt9TDt3vjRrkxU/f18mXp3SpftUldWQmDqMpt0nCB8VQvTg5jVhl+pPNjA+mvEzL6Op0UZ8chfbcVxQnjSnvuZk3T6sAdEc+O44E6d0vMjR1dYVulhfqdY6kpD9O2ADrgR+CVQCawBdV6aUuqTBw2IYljCAutoGLhvnvPx2sSGj4jiy+wRhUSFgtbH9nZ1Ym6ykXDWW2OHNTx3W1zQSOzSSsMhgCvKLCIkIpqKwqkux1lbW8dWGb2iobeDyWUkM7MDTmg11jfj6+WDxsZC//wwHv8jFP8iPK667nODwIGw2G3s/O0BBfjHJk0YxLKllslVZUg1ASGQQ9dWNlBVUEDM4nMDgAAJDXFhjdXFpElqUJxsHTqDJEo3NaiOqg3tunqetK5Ryv44kZFeIyARjzB4AESk1xmjxXynlkoBAf2bNz+zQNT+aEM/Q0QPxD/KnKL+IhrpG/IL8KDpZ4kjIIgaGMTIjgYrCShLGj6Cuqo6RE7rWVKy8qIqayjoCg/05c7TQ5YTs5MGzHNyWS0hUMJnXpFJ0sgT/ID/qqhuoLq8lODyImvJazh4rJDwmlKO7TrRIyApOFLP7w/0AjMoYwZHd+fgH+vJff9zE/2PvvYPkPO/8zs/zhn475+7JGWGAQQ4ESBCMoihSkqVV3HTl2+w9u1blqr1bX6q1Xbe156vzlu07u/aCy+e1dJt8K2lXK4qSKEqkSAIkEYg4CDOYnGc6xzc890cPBhjMAJgBCZFavZ8qFNnT7/u8T/eg+/3iF76/ZHuMrv4Wdh+/xzD0u3VOCrHSPekJpPh0poBl2ySSG+tEda0rXFwePpsRZKYQQgUkgBAiRSNi5uLi4rJhauU6pXyFSDK4bp2Xs1wvpagKQgj84cboo1hLlHAqRL1SJ90Zx3EcFEVBUZQHFmCVQpXpa3OEU8EVgQcQTYcIJ4JUClU6djRveL2JwRn8YR+FpRLFTJm+/Z2ce/UKzT1Jok0Nd3xv0Es0FSY3X6Bn7+p5lMVMGdn4isWsWXgMnVKuglmziDdFGBucYeDYFhRFwbJsMrN5AhEf/uCyrcbdjF1hlblrNH4Xp/51WC896VpXuLh88GxGkP0b4OtAWgjxB8AXgP/hoezKxcXlQ0dKycULV1lczLJ//07C73O8kZSSWqXOW998j0qhStvWNHufXj0KqLBQ5ML3LiAUhT3P78J/W/G7ETA4/Jn93Hh7iMFXLhJri5HsTbE0ukhzfyuRlii2aVMv1/CGfasEQb1cR9VVVH21ALz0oyvk5wpI4OjnD+CPNK7nDRgc+7n9OI68q9fZenTvbuPia9eINYcJJwJoHo0nvry6qkNRBeG4n9JSEWk7FDMlvAEDRVVo3ZJmaToHQO+edroHWikXqkxcnWXy+hzbD3evdJCee+MaI5cmCHurPP6lj+ENeD+QzsmNzpk8PZrDcm5ZV6RChhsNc3F5H2xYkEkpvyaEOAU8S8Py4rNSyssPbWcuLi4fKnOzi7z15lk8uka1XOP5F5944LWqpRrvvnyR7FyBWqlGsj26IjxuZ2F0AdtykI7F0mRmlSADyE5nOP0XJ4h1JliomSzcmMMfDXD1h5fY97nDXPrOOcrZEq0D7XQd6m28juuzXPvxNYyAh90v7sUIGDi2w/TVGRYnlhCKguZREXdYZQghUNXNRXla+tKkuxIr0b3bqRSqDL5+lXrVJDObp1qs8cP/+AYtW5rQfTrRdIQDL+zi0CdWNxH4wz6SbTH2PLltlZ3H0kyWJ3O/T2z2MvbXDsGvf+d9z53cXLG+a13h4vJBspkIGVLKQWDwIe3FxcXlI4RheNBUhVrNJBgOvK+1MjN58gtFfEEPqirQPBrbD3evOS7ZmWBqcApV14iu47Q/cWqESFuM2cFptj2zk3q+SqVQIdIUpV6uU86W8McCLNyYXxFk8zfmMQIesjN5zv7NGdp2taMaGld/fBUcSaQ5xNYjffjeh5v+7dzNbmNqcJrcXB6zZuFYNrm5PJFUmKWpLM1bmyjlyuQXi6QC60eY7vRWO3A4SfTyZRRsxMypB5o7udFomFus7+Ly8NmUIHNxcfnZoVSskIglaGpNcODQzve1VjgZxBswMKsmB57bedci+VAqxNEvHQFA1VXKS41uSX88iJQSq1qlvpin60AXhq5g2iaBkI/tT+9A8+qktjSTGVug+8iWlTVbdrQy+OplSksFAlEfI+/coH1fJwiB7lFp3dpErOXBug03QygVQkrQPRr7X9iDbdtMX5vDNi2ycwUCER/h5D3Swnd0T8Z7+qDrKIyfRGwyPTk3u8RrPzjFV/ljRsyhe0bDbNViX3uMsxNusb6Ly8PEFWQuLi5rME2LH37vHXSPzvXL4xw4NPDAa9UrdXxBg+NfPIhjOxi+1emteqnG9PkxjLCPpv7WlTqv3OQiQ69eBKD3qQF0r45VqpHsTeGL+KnlK0Ra41RyJTSPhqIobDm2DY41uhCl41AtVJh6bxRdSNp3tVPOVfD4dJq3pvFH/TiWTbp3Y9Gk90u6O0ngs/sRqrLSqNDU0xBRlmmjqGIlCrbGo2wDcyct2+HiqWFq1Tq7D/XhC6yN+A1dGSefKzE7s0TRKnDDvo4jnLtGwyYWCpx45XVe0Mr87hf3cmTfNjca5uLykHAFmYuLyxoUReAP+shlC4QjIRTlwW7C4+cnGH73BsFkiL3P71ojxgAmz9xgcXQBadlohoZZKOONBqiX6oBESKhmy/i6kmiGjlWDSFscT9DH/LVpOg71odyRJpSOw7UfXmL6wjiVXIXmgXYMv4feo314Qz68wcafe1EtNEYzeUP3Pu5ObMvGMW30dV5rILZ+6le7rdlgZmSeCz+8SqwpzN6P7Ww8d7fuydvSk9NjC1w6dQNVV9A0lQPHVjdMXLl0g3/9r78KZZXtOzoJJ8IodGEbo3c1clVqJQqFEqFwgMzUNGL/+zPbdXFxuTv3FWRCiALLVhd3PkVjluXG+6ddXFx+KlBVlY+/+BgL8xmSqRiq+mBjiKauTBOIBSgsFCjnKoRTa1Nyms+DY1ooqsL8xXHqpQrYDt1P7yLa0UhtJvqa0H0emre3kBubI9GbRqgKhbE5aot5HKtplSirl2rkJpZIdKW4/voV6qUa7fu6ibXF11x/PXLTWS5//wKO7bDj47uIta5/nlW3yE9nMUJeAvEgZtXk0svnKOfK9BzZQvP2zTvsD5+ZwOvXyY8OU1joINYS3VD3pNfnQVEFjuUQuENEOtLhvzv/e1w7Okgkn2aX9Zs8+clj/E//TsG5R21YvW7S0ppmcTHD7r39a67p4uLywXFfQSalfH+97i4uLj+VBII+ArdFkcy6RW6hSCjmXzfStR5tO1s5+Wdv4/Go4NjrH7O3i2AqjO7zsHh1klquiKIqePxeep+8lSqt5UosXB5D9WhMvX0Vze/FrNSoLOaJdKcJtdwSTZ6AQbw7RWZsgUO/9BhNO9rRvToA9XKN6QvjePwGzTvb1nRXAhQXChTn8yzemMOq1nnsV55EM/RVx9SKVa6/fpncZA7dp7P77x2gVqxRzpTwRXzMX599IEHWuiVJ+G9+nmj9Mnz7EfiVb2+oezLVEuPZzxymbprocRgdmqZUrNLV18Jrb57keuUKUpHkIvM8/cQ+etriHLqPkathePjkp5++75gnFxeX98+mUpZCiBiwFVgpTpBSvvZBb8rFxeWjhZSSd16+yMJUlnA8wPGf27+h4d2hqJ9ISKOaK3Pxb06x7/NH8MWCq45RNJVYZyMS5g37CDZFMIL+tcd5dFSPhlU18Scj+JJhClNLqF4Pxh0RIaEo9B7vx7GcNd5jU+fGmL82g7RtfNEA0fa10a9kTwqzXCOYCKEqCuVMiXBzlFqxytyVKar5CuOnhhl5Z5hoa4zmnR3YdYtAIkioKUJpqUjf/u6NvLVr6O4xkNYgAhsm39lU92S8KbxiW9FqdfFL5m8xNjTN3FwRVXRjGyP4nT62dW1BiI0bubpizMXl4bNhQSaE+HXgK0A7cBY4CrxFY7ali4vLR4hT755n8NJ19h8cYOfAPUbtbBApJdn5PMGYn2Kuglm3NyTINK9OYWoJx7SY+PEcPl3QeXwn8d617vdmsYJQFBJbWtddS/d56P34AWr5MoF0BEXXCLXGUQ0dzzoF7EKINWKssY6OtO2G/5ix/legEfRy8MuPMnLiGr5oAF+0Ufs19vZ18lMZZgcnsUybSDqEUARNO1rxx4MIIRj4xB6kI1E2aih75+zJQKrRNbkBc9fbbSvMusXo7MSKbcWkMkJJlmgPNKGFAmTP/zpSLa1KT7qdki4uHx02EyH7Co1B4ieklE8LIfqBf/ZwtuXi4vKglMsVzp66SCIV58SbZ9ne3/fANWA3URSF/U/3c/29CXYf68Pr31jK0h/1031kC4tXpzADOoquUVkqQu/q44oTc8y8cQFUhfZnDuC9y2gfI+zHCN8yi/XFN19R0bKrE38siGboBFOrr2ObNlalhifkI721mVhHAnV5UDiA5lFxLJtoW5x61aS8VKTr6Fa6H+lbiSJZVbPRTRpcKxLr5Tr1Sp1APNA4fgPdk3czd73dxHVvah8/X/wNMktFVNGF5RnBY/Xy2NGDbNnezlEF/ir7NmcnVdfI1cXlI8pmBFlVSlkVQiCEMKSUg0IIt+XGxeUjhtdr0NScYmZmnu6e9vuKsY3WB7X0pGjp2dwonuJMBqVcJJrwEtjbiUASTK8VUZW5LEJVcEyTWq54V0F2J2apwuTr53Esh7bjuzEi9zewVVRlJUV6O3bd4tp3z5AbnSfalWLrCwdX6s5u0nF4C6GWGEbIRygdQTrOqhq08lKRwe++h2M59D25g1jHrevUSjXOfuss9XKNzn1ddO3vojQ9jn/sBELad+2evBu3m7i+N3+WJ6pzhEJpMuduRcKavtyGd7ne7y9/+5hr5Ori8hFm40PaYEIIEQW+AXxPCPFNYOrhbMvFxeVBURSF5198gs9/8QWefvbRex6bXyrx3T89wSt/8Q6lfOUD38vce0NkLo9RHJkhFPOh18vMvXme3I3GV4ddN6nOLRHoSKEFvPiaEgSaE6vWcEyLxTNXmH/nElaltuq54uQitWwJq1KjMDr7wPuUUlJezJO9MUtubI4bPzjH4rW1X2+aoZPsayaUbhjJ3tkQUM4UseuNjtH8dPbWa7AdLn73Ald+eAmKc2QnMwCcf2uerLEDBxW79fB905MLlQWkbDS93zRxlVLBsHo5engfQRV2N4dRZZiDXfFVkbCb6cm7iTEpJdVqbWV9FxeXnyybmWX5c8v/+0+FEK8CEeClh7IrFxeX94Wu68Ti93efH782Q61iUraqzIwv0TfQ9oHuQ1VVVJ8HbAczX8As19B9BvVMEdnlMPfj09QXsnhiYTqfP7Jux2Npco7s4AhCVVC9HuK7b7nwexNhhKogHYkvvXbU0kaZOjlI5vo0VrmCU7eIdKVwTHPNccWZDDNnhgm2xGja041QFCrZEvnJJYQiqOQreEM+zJpFdnKJ6vfP0/XIFizTprRU4JMtf0xs4Sq25zA430Hz6pxK/AE+tcShLz2LeptYqlXqDL5zA1XX2Hawk9/8wW+smjG5VDZXmbimv9jKwP4ePuHITUfCpJS89uo7DF0fZ3t/D8eeOPDA76WLi8uDsZmifgP4PNB923n7gH/+wW/LxcXlQalV65QKFaKJ0Jr5h3eS7ohz/fwkukcjkb53mrBeqlGczxNIhtatj1qPpgNbsMoVqjML2EtLWNkSgdZeots6kI6DmSmghQPUc0Ucy0b1rN2v5m1EdaQt0fyrr6t5NHQdHMumns2zcOYadrVG6uA2Qp1rGwfWwzEtssOzBJpjgKTv4wcQqkJyezsA1WyR0kyGYEucqVPXkabN/MUxIp0pjEiA4VfOU82VmL44TsvebvyJEKVsmdHXBjHCXlAEfcf6iUZMYuPXUISDMtuYPbn76X7mx5cIJ4Kr3lNHOpw+e4G5wRzSBitYWzNjMhlMrDJxfT8jjarVOsPXx2lpTXF18AaPPLoHXXd9w11cfpJs5hP3TSAHnAJq9znWxcXlQ6BWrfPyN05QzJfYsqOTR47fe+RRqjXG8794FKEIjDvqpW5HOg7Xvn+OSq6MEfYx8OlD9+wirOeKLL1zATXoo/fFI0x//wQAus+g6ZGdmJkMixeu4Al7cRSNxMEBVM+t6zt1k8K1ERSPRrC3k9aPPYK0bbzp1RYVpakFZN2ini9x469+SHWpSGygh9kTF/HGI+j3ceMHUHSNxM4OFi+Pk+jvoHlf70pkyTEtRn/wHnbdZHFwHH9TnMzwNLrPi+ZriB7HcUARICVSAlLiWA66V0UpLeDxGWiGxtaPP469eAgxe2pl9qQhBO39q73KVor1Z8/SoXXzq/J3aAqn18yY3IxtBUA+V0JRBMGQf81zXq+Hrdu7uXZlhB27trhizMXlQ2Azn7p2KeUnHtpOXFxc3jflUo1ivkwoEmR6YmFD52ykY1I6knq5hsdvYFbqSNuBewiywtUbmMUS1aUsgfYmYvv7yZ67Rnh7D3o4wOJrJ1C9BtXpGUIDWzCnJ1gcGyG8bxd6JEzx+iiFS9dASlSvgb+jFek4ZM9epjwxS3RvP4HOFnypKEJXcWwbIx7BqpiUpufRDYPxl96k6dgeAq0prEoVIRopz/Vo3tdHenfPuiJT2o3Cfek4NB/cQnxLC3rAuzIaacuze8iOL9BxdDtISbQzSXEhx57s7xMoX4TLL1HZ+Z858+3zWJ7/nh2fT5HaueOu3ZMrxfrYjGsj7HqmBy2+esbkZm0rxkdm+NH3T6Eoguc+9SipdGzV80IIHn/yIEce2+uKMReXD4nNfPLeFELsllKef2i7cXFxeV9EYgH693QzOTrHwcd2fGDrKppK31MDLAzNkOhtQtEUHMteM0PyJp5EjOLIFKquowUDeKIh/C0parNzFC9cQo8EqUzNUpucQtg1anOL+Pu6mfnmtwnvHqAyu4hVLKEF/Ait8TVlFcoUh8bRI0Gy7w0S6GxBNXQiPU0kdvdg1WzsmoljWhSHJ0FAbTGHUBVmXz+LUBRanj6IEVubmrXKVRbPDaF5PcR29a68LkXX6HpmL/nJBcLtKTSPhpZaXZun+TwEm6L4EyGq+TJzV6eJJSSByiWQNky8TXl6nHrFxPB7WVhQSN0mxm73EhNCrBTr34yG9XZ0oShi3fTkRpmfXUIRAtO0ySzm0XWNC+9dI5GM0j/QsxJd24wYcxyn8R7dJy3u4uKyMTYjyB4H/kshxA0aKcubsyz3PJSdubi4bBpFUThwtJ8DRz/4uYPhlhjhlhhWpcrUd09glaukj+3F15RYc2yotx0j3jBv1QKNtKFdqZJ/+11QBELTST5xlKyuIE0TRVWpjoyhxyLMf+d7eDvaUYRD7JE9eJsbnYeq34seCWLmigT7OgBYOnWB2vwSSGh+7hhaOMDi2+coXh9Fj4XxHd9HeWYRIQSOZVNbyq0ryDKXRymMzyJNCyMZIdh+y3LClwjjS6xfX2ebNtdfPkOtUCaSgGzBwHEkc8D+9kcQE29DxxFCnT1EhmrkZvNEW281HzjS4Ve/86ucnb97sf5iqY5hWvyHX95PyREPZFuxZXsnM1OLaLpGe2cTr796ioX5DNevjJJMR0mlNzbj8yaLixle+vYrAHzyUx8jFnvwhgoXF5cGmxFkLzy0Xbi4uHxkKM1mqBcqhDpSKKpCZWYR1evBm2zcdGsLOer5IprPS+HG1LqCDMATbfiNScvCqdcbkS6lIcBUvx9faxPK8UcxMxkSzzxB6eo1arML1BeXUDQdPezD15JeER+KrpF+6gh2uYq2XAclhIJ0QCgCFIFdqlAancYIeajNTJM5dYH4kX2UJ+bQNBVf81r/MQA94AXLRqgK2l3SmtCwr7g9rWnXTGqFMltn/kf8Q5co+ncy2PwHaH4D+YW/RtQyEEjhEYLOfZ2c/s45Tr52mmPGEVKdCRbLS5yaPQPC4dTMGRbLt4r13x1VONAVY2lohgtvD2H4PDzz2UMP5CEWjgZ58eeOrzwOhvxMTszi8eh4PJs3ib1xY5RqtYqUkrHRCVeQubh8AGzG9mJUCLEXuPmpfl1K+d7D2ZaLi8tmqFdNZscWCUb9xO7TLXk7jmVTms+RG5vHCAcIpsOMvHIW6Uhi8zkMn0r28ghCVWn/2GGMeBgjHkYP+rEqNYJdd+9klI6DXS5ROvU2TrGAb/tOYo8/hpnN4kk3ol5GOomRbogkTzxGfWGR2KOHsUolPIk4irG6PkrRNZTIrRmX8cO7KE/MokeC6KEAjmVjJCLkzl/B25TErtbRgz46Pvn4Pd+HyLYOPLEQiq7d1ZR2aXCMubPDhDpStD66A6EoeIJe2nfH8Q9dQmATrF6ma1eEUO9WFF0H/VakrbBU5H9X/hUjYpjtb/XzZx1/irSD2JUuFN8oTqULaTfGL/2bT23nlZfOk46oTA7P4fUbVEt1SvkKgfD9GxXuxyOP7aa9s4lQKEAkGrz/CXfQ0dHG+XOXEQha2zY/QN3FxWUtm7G9+ArwG8BfLf/oq0KI/1NK+b89lJ25uLhsmHM/usr0jXk0j8qTXziEfwM3bek43Hj1POMnroCUxHqaaDu0BWTD8NQxLWwsFFXFsR3sapXi4AwgaX220fVYn56gOlrE6Oha5SEmTZPiO29gTk9gl8p4uvqoTU3g3bINLbK+4BGaitF8b3f6O1E0lUBnM8pylEfRVNJPPkKgp53q9AKB7lZUY3UEyLEsqlOzqD4vRqoR3ROKgr/pVtpOSklxbBbHtPBEgsydvsrsmSGSe3rJj0yT7AlgtHSBENhajJJ/J4HKJUTHEdL794IQa2rDtFaVYTEMwuFyZZCRyXF62jrZpfwep4cmONDesVKgP3JpiqihkVss0n+wm8kb8zS1xYg3399bbiPoukZXz/ozQ+/G4mKGfK5AW3szTU0pfumXPw/wQBE2FxeXtWwmZflrwBEpZQlACPEvaAwXdwWZi8uHTL1mons0LMvBthrF1o7jYNeslW7Aaq7M9LkRvNEAzQMdWDWL4lwOfyLMwpUJot1p/OkI7cd2Us2ViG9tA+mgeHT0gA9ZLlC6NAiChgCyalQGL4EExWPgabl1g7eLeayleZRoDGthFjufJXDw6Af6mq1ikewbbyFNk/CRwxipRtRN0VRCvR2EejvWPS9/4SrFa8MIRSX1zKN41km3VaYXmX3jHCyPm1R8XlRFkL8xRX/tj/D835eg4wj2L36DybOj+Ab+FebcJDt/4QW0ZTF2c87kzdowjx7HLneh+Edxyl2UFlVEu+DPfuOxNdYV7VvSTI8sEAj56OlvZeBw75o93kmtWufk6xeoVus8+sRuQhsYI7VR8vkC3/j6S9Rqdfr7+3jm2eOuEHNx+YDZjCATgH3bY3v5Zy4uLh8ye5/czsjFSWJNYULxALZlM/jKRfKzOTr2dtK+t4uJU0MU5/Is3ZgjmI4QaoqS3tXJwuAEOz57lPRAJ/5EGBJhbo/DpA42GgQqY+OwPFZHaBrYtznZ39FpJwQ4M6PUp0YwunrxhDzoybW1ZvXJMcyJEfTOXjwt7Xd9fbWpSWojwxid3WiRhoCysjnsSgXFY1CfnEb1eqmOjqGnUhhN6cY4pKvXMbNZgjv60cK3atqEqiEdB2nZd70mSEBgxENUc2UivS207G/G+NolhGPB+EmUeoZQc4TCdIZQRw+q0fBSu33O5E0j11QowQ75u5y5NsX2YIJtW5cF5DrWFW09aZK/HEXVFLQNdj5OjM0xcn0KzaNx9dIYBx/dQWYxz6mTl4gnw+w71P/AHZG1Wh3LNPF6DfL54gOt4eLicm82I8j+A3BSCPH15cefBf79B78lFxeX26mWahQyZaLpELpn/Y9sIOJj4LFbI4WqhSr5mSzBRIiZwWna93bhDfvJji823O2XC9db9vbQsrcHACtfoHDhEp5UEqNpberQ2962khr0pFMgJcIwELqGFothjl9FeLyo6Q7s/BKejk4wSyg+P7JWRVar4LnlRi/NOtULp1C8Pqrn3kFPNa9YXNyOtCxKZ0+j+Lzk3vgRimEgEPj3H0QLBpH1Ot7OdgrvnMKulKneGEZ79lmcapXipcuwnH6NP96Y6xke2IZdrSEUgRZZO+hcSoliaMT3bkFRFMLNBiYhFENH9xnQcaQxCLzjCCKYpu+pJOVciYqnurLGndYVN41c//K3j2/YyNXwbS4CFYkG0Twa0pEklq05Tr55nvNnrlKt1kmko3R1by5NeZNkMs7xJ44yMzPHvv27H2gNFxeXe7OZov4/EkL8CDhGIzL2K1LKMw9tZy4uLlimzZt/8x7TQ/MYXp0Xfu1xAtG1Tut34gv7iLXHyU5m6DrUSHe17usm1BLF4zfwRtaukT35LrJWozI8QuK5Z1B9q8cUCUXBaG7CyS9iXj+DkmzH29kFQP3qKczRKyAE3oPPoMWbMH0BtJYOkA56SztKKIK0LXAchO4BRUUJBHEKORSvF2mZ6woyFAU1FMLKZpG2Q+3GELJeQ4tEiT/zTEMYqiroGrJgNdYQCnalQvHtE5j5AoGBAcL796AFAjimibWwgGNa5FVB7MjBVZcrDE+ycOoSioDO7P+KMn0Ko+MI/P1vNUJ/f/9bUF5oDAIXAlTBP3r7d+5pXbFZI9cHIZmO8ukvHMeybGLLNh31Wp2hq2NousbE6OyKIJNSbqpbUwjBzoHt7BzY/lD4XxbTAAAgAElEQVT27uLisrkIGVLKUzRGJ7m4/MxSLpf58esncRyH4088SiBwf4H0oJg1k8xsnsWJJWzL4b0fXuGxz+5fdczQj68wfvoGfce307G/Ee1SVIXtzwzgWA6qvmxyqqlE2ta3qGg8r2GWSghNa9hIrLef0YtUXvkqIhhHBKP4n/p5FH+oIYqEQLKc0vTo+A4+Tv3imzjFDDI7iVPMUj//BrJWxjPwGFq6Hf/h49SunseavE7l7e/hO/QMin91159QFEJHHsPOZbHLJTLf+joiHEFa9VWNBOFDB6nPzqJFoqg+L6XJCRSfgVLIUx8fI//WW8Q/9rGGDYdtU5uepTI2juIxiOzftbJOPZNH0TREeR4x9W7D3HX8ZEOEBdM4ApZUhQSNf5ney7riQY1cH5Q768b2HtzO8PUJPB6NRDJKqVThe995g0q5yrMff4x00+b8x1xcXB4e9xVkQogfSykfF0IUYPnbdvkpGsawG++xd3H5O8DVq8MMDY8CkqbmNPsfYgrHF/Sy61gfczcWaOqO4DFWz5ssLRU4/Wdvovs8nP7zEzTvaEdfnkkphFgRY3fDLhUAgRoIEjl6iNrsHHo0usZuQtoW1tRlame+h/T4sYffRYkmqX5rHLXvEPq2YwhvAAw/UhHU3v5rcGysfBbF40cCMr+IUymieP3YMzfQ0u0ohhesGoo/gKxWcEr5NYIMGk0ESiqNZlmEDh/BWlrAt2PXqmNUnw9fd/fKY6OtHU8ijjk/j97aglx2ltdjUcK7djA/NUN4zwCVG6OEBrai1HMQSBHZ3oVZLKO2JqF+BJbNXS01glOp8ps//AeromF3s67YzJzJh0Vndwtf/KWPY9sO7Z1NjAxPsjifwef3cXXwhivIXFw+QtxXkEkpH1/+79piCxeXn0FisSgKIBE/EUPM7Yd6aOpMUFgqke5cHeFSdQ1v2Ec5WybaFr+rAHPqdaqTU40xRsvdiOb8DOV33wIh8B96DD2Zxt/dSEE6+XlkrYgSa0VoBvbcMPbwKajmUHUDkWhBTbUg89PI0hJOYQ69awf2whj1E3+OPT+O2roTUZ5HVlREUx/22DlkcR5HaUJv27qyN09PP9Xzb6Emm5G2SfH7f4ri8+M98CyK745omaYRfOQYTr2G0BrC06lWsDPzKKEIiuHDqddQ/EGMtjaaf+XXqM3PIYsljI5G16UQgsC2XuxikfLoBP7uDpSv/RyMn8RpPUSm/w/xxiNEB/qQh/+Gxcx1fHYTo399kiWZ51R1dTQsFUqsa13xMNOTG0UIQVtH08rjRDKKP+CjXjfp7Hb9w1xcPkpsxofsX0gpf+9+P3Nx+btOV1c7X/jS30NKSXKdzsGHQTQdJrqO4as35OP4P3qezOg8Tf1t6w7HBiiev0B1bAIUQfypJ9AiEexcFgDp2DjFHCQbhfxOKYt57mVwLJTmrejbjoGiNQZ9N3ehdu5D+MLYw+8ivX6EZqCEGiLPmbmKEmnCycxCrYSIpNGizZhjF6B5C4pH4Nl7DC1+y1BWjSYJHP80AKXvfhV7dBDLqiNUD76jaweEmNOj1C69jRKM4jvwJJWzb+JkF0FRQfMg6zWMrQMYfTsaEwE6OrEyS6tmeQshCB/YQ2D7VqrXziHHTiCkjZh4h6XsW+jJDjypKP/wvf+as3NnGQjs4J84v4ms+29ZV9wWDVvPuuKjSCQa4nNfakTM/H7v/U9wcXH5ibGZGrLngDvF1wvr/MzF5e88icRHJ9UTbY0RbY2t+5xTrVB44zVKw0Mo0TSK7kE6jcoDT1sn1uIcCAW9+TbLCcdEWjXARtaryHoJKpMoySQi0Y/W1IdQFLSmHuyxk2BVEIYPWSsgEp2Qn0Xb9gh4fDiXf4BllVC79mBe/AEoKnJ+FOJt6+5XiSaQQzVQNYR3fXNba+IawuunfvU0TmYG2wTFG6A+dg1UD57u7Zizkxh9jeHqteHrlC6eoz49hdHVS/jRY2iaiQikKI+MUxxaQPdtxVO5RlnpobxkodfnyCuVFeuKi8XLLNbmaU62s7P4u5wdmv7IRcM2imG4/mEuLh9FNlJD9tvAfwX0CiHO3fZUCHjjYW3MxeWnlUqpyo9ffo9a1eTYx/cSS66f7V+aylKvmiQ74mj3qfW6H9JxsPIFVL8fxXOrzqx07gylU28iHVCTKUKHD6LHog0PrqUhvE1+1LYBhH6b+NENBFmc7BSiox9n5j1YuIJwbNS23SuF9DI3gZy7gFA0rNICol4CzYu+9xOgeql9938GxUIpjaMe+gzkJsEbQtbLd30d3gMfQ23qBgl622ozVFmvYA6dBbOMsziPrFUQgRBarY7jOKjhMDKXxc7METj28ZXzrHwOp1rFWlxC6B6c/+M5ZHUYO76L2s5/jmNZzHX9t8jtEZxrdUK5IsHedtLJ9hXrCq3WScQbI7almb/4bM9HNhpWyJe4MjhCOh13U5IuLj9lbCRC9v8CLwF/CPyT235ekFIuPZRdubj8lGKZFt/587c49eNBtuzuYHhwkoOP9685Ljub592/PYd0JD37O9j2yP2d2O9F/uw5KqMTaOEQ8SeP4eQz1MeuYS/NgFARwsbX24u3rQ0pHZyxt7GG3kL44iAlWs/hW4tVMpB5D1EYxzk3jTj4D5HSRigKQrsVBRKagVAUpGNBNQ9GEFkv4UyfA6EgkEirDv4IaiCO2PoY1uR5ZHkee/YaalOjjkw6DvbMIJhV1NadeLp2rP/eTl7Hnh0Gx8EYOIiaSCMrJfSufvD4qA2eRoSieA8+iZa65beleHTsuSmk4lCfHEa3ryOERF04T3XwPbTufn7P/hPOnbvI3vhu/u3R/wV/c4rF26wrKnaQQr+CEGLT0TApJbVyHd2ro66TUpZSUsxV8AU8GzaBvRuvv3qKxfksF+U1PvvFjz3QnMrNUC6XmZqaJplMEI26A8ZdXN4PGynqzwE54Bce/nZcXH66WZovUMiVMbwexofmeO5zj6x7nG3aSAmKpmBWrXuuWRibxSxVifS2rjjB30lteg41FKR2/SpFrwX5BRR/EGFVCR48hPD58S93JTqzl7BHfoycH4RoJ9KZwLYmUXqeR2g+8PiRZhasAtQEIpBE3fYCKB5E6Fbtlwg1o/Z/Gqw6UtWwh34IRgS5cBWh+1GaekGPIGIdiEAc1RvEmT6HMPw4w2+hJLsRqo7MTmJdP9GIvFkmWt+RlWtYExdwZq+jduxG+ILL5vkCJZrC17lzOUoWBilRvH5QVNTkrciQtEzM4fcIHDiMPjmOZalUhjooyym81STlmSJlY4Qz2gUQDqcXzlGJ6wR1jaSmcrArwbujCvtaAuw82kusb/PGqlffHWH47Dix5giHX9iFqqnYtrMizs69eY2hCxNEEiGe/Mz+9yXKtJtr6yrKXaxL7oaUshFpVDcerX3ppZeZmZ7FH/Dzi7/4ZQzjpyNt6+LyUWQzRf3/EfiKlDK7/DgG/Esp5a8+rM25uPy0EYr4STZF8Rg6A4d6aetaf1h2rDXCjmNbqBardO5av54KoLKQY+qNC4Ckni/RfGTn+tfdu4v8O++gKnWoFLAzC8uGqhECx56DyjyUp5FaB5glRCCG0rwd4fMgAlEozTT+RHoQ/gRqsg1pjoBXA01HRDqRtSxOZhARaEF4Gk7wItjo4BOAsu8XkPUi9oWvI80qSrgZYVWQS5eQsRZEuA0RTCAL8yihNAgVx3Ewz/5/OJe+A+l+lLbdyOI8eMNg29ijpxH+GNb1E+hHfh7DFwChoISTjevqy/VQQqA13TG70nEQ/+kzhMdOYPl7MLv/Mf79+/gto5/zRYUddit/KLox/RHspdW2FY0lPxjrivHLM0TSITIzOcr5KgvTWS68OURzV4IDz+5gYmiOSCJEbrFIuVAjHH9wQfb4UwcYH5shFo8QCm98lmW9Xuelb7/C/PwiTz19jC1beu57jpSSYrGEPxCgVqtiWZYryFxc3geb+eTvuSnGAKSUGSHE/nud4OLys4YvYPDcF44wcW2G3EyexckMiba1BfeKotCxo5nyUpGbgQzHsqnny3hCPpTboyRSrjn/1lMSa3YM1SqTfPoY5XdeR5p1jJ17UO0FlEgEWZrBuf4SOCYYOkI4YIRQo/04OsihryP1EPA8KiCEghJpBfXwsgu+gXQs5OhfI80ieCKw5RcQYm36TXiCqDs+haxkkbaJHHm9EXFbvIoS7UDb8RyykkX4oo10Z2EWOXcJ0bYTOTOIOfgt5HgCJdqB0v88wh9HlpZQYu0oqgqR9QXuupQXcMZPsiQk8dIwisdhZvg9zhaugnC4oExhbWtlS98udn0jtsa2ovF7ev/F+lsPdTF4YpiW3hSBqI83//Yc4USA6ZEFStkyu45u4dwbV+nqbyEYvVXL5zgOQohNCUF/wMf2HfcXU3eysLDE9MwssWiUs2cvbEiQCSF44YWPc/78RXp6ugkEPrhh5i4uP4tsRpApQoiYlDIDIISIb/J8F5efDaTk+skRdK/OwkSWZ3756Lp2FJOnhpkbnED3e9n+wn5mT16mNLOELxWl85l9CEXBl4zQ+sRerFKF8DpF2k52nvr5N0EIZGsv/kefRVYryPwgzM/BwhxSl+DYYNcgNwbNB1CW3kEYW1AmTiCVMtg5mP0+jv/LsPQu6DpE+sDfhvAlQToNQad6wak3ROJddILwxRC+WKOezBdB1kuIZKOOTmgeRKghqmQtj33jNbCryLlJsEsosxeQrftwyn4UaaHvfg5ZySP863eRrn4zHCgvYNsq5shlRDjOb3V2c5Yaey2VP1L9CMe7ysQ1vOtRPF6VP/nCAHntAKmwd10BJKVk8tQwS6PztOzpwhPw4o34MQL3F2tdO1vp6G9eGezdtaOFq6dGEZpg9OoM3Tta+fSvPLHqnMnROd585RzRRJgnP7F/jSHwB008HiURj5PJZHn8+JH7n7BMOp3m2Wc3IZJdXFzuymYE1b8E3hRC/Oflx18E/uCD35KLy083iqpgBAwq+QrBeOCuwqUwm8MT9FEvVKnlKxQm5tB0lfLMEo5poxqNG3ioPXX3iwnl5syMRooyGEb6A1hj52HuJPg7IPIphKohrRqiOg7VDMgKsjwM1RmEVQLNB04NWRxFFIcacxqNFpTmpxHqsujofBHyQ4jwVoSyts5I1gvI7DXwpVBCHQhPAGXgcyAdhNL4qpFWDYqTYERxchNQGINUG/i8CMWPzE+BU0dU5pDXXkZse37F42w9pFVHlnMIXxDx1c83RhxFtuLs+2+Yn77CKSwQgtMalLd00dW8hV1/fisalvCpzP3wbcxcAV97C+LoXsxyldl3ryAUlaZD29C8Hmr5CrOXJ/HFApz50zcId6YxAga7Pn1gZTLCPf9O3Dbiqf9QN6mOGK998zTDFyeZm8zw7BcOrzr+yvlRvH6DhZkMi3M5WjqS973G+8Hr9fK5z3+Ser2Oz7e+3YiLi8vDZTPDxf9ECPEu8AyNW8DnpJSXHtrOXFw+4jiOg5Ss6ZxTNZXDL+4mv1gkkgqtuhnfTtuBbiZOXiO9sw1/3I9q1sgMThLb3nnX4v07UaNJjD3HkbUKWnPDZR+rhKKpyO6nEPUc1IcQ5nWEvwfavwyVCeRUBaqLEOkBfzuYJWj9BIonhBQaQtoQ3dYo8l9G+FsQ/rtbKTgTP4DyLEhw2p8Cs4KI9iA8twxtnbFXITsCmgHNR7FnzoJVQfElUWQJEglo341iVXFyo8jrL6N2HQcj3OjcVG95aEkpMS/+AFmYQ2ga6vhJMjjEs1cbdWhqalU0zGjdjR72rjJxtUsVzFwRPRKiOj2PlJLc8DSlqSWk4+BPR4lta0fzeRCqIDe5hOLRMYIGtXINq2beVZBl5/KMnJ+iqSdOS+/qKJI/6EVVVWzLQdPW/v3o2trKO69fJBQNEIk/3E7Jm6iq6ooxF5cPkc2mHKeBtwEvkBRCPCGlfO2D35aLy0ebUq7Cqe9cwKxbHHx+YI2Lvi/kRdMV7Pr6HZTScSgPT2DUCxgigrQdvGGD9scHcGp1pOOsGpx9E2vqMs7cNdTWAdR0HwBaun31QXoQEduGzFxHxltg9m8hegCKw4hQN6gC4WsCI4r0PYUwmhDeJoR3WTS0fw6khTDWn0LgFEehuoCIbEfot4sFgSyMIcszUJpGCTQjs1dQt33p1iH1Iui+hh2GmUPUp6FeQhg6omk/ItAM1JFWFZkZAlnHnD0LgQ4UI4C67cVGOrSax5k6j7M0hhJuxi5l+c2Obs6KGvscnX+b7KKlYxsDo7/HmTtqwwSSwPwMpYkavt4ufJ0tVMZniB/ejRACI+xfGZbuCTcGx2fHFrCWu2F3vLiP/HSO5p3t+CJ3Hyx/+nuXAcnsyALRdARf8FZ60xcwePxT+1iaz9PavTb61be9jdaOJJquor9PKwwXF5efDjbTZfnrwFeAduAscBR4i0bEzMXlZ4pGx1wF3dCYHppfI8hqhQpXXj6LVTVp29dNemf7KoFl1+qUJufwpWIUhqdI7ttO/MBOyuPThPZuX1eMSbOKfeMdhD/S8BALxxCKthKBchwLgQShQjQNegWqo+CJIbPvQvwIMvtmo1A8fhihBhpCTKxOPwpPBCntW9d1LKhMgBYAVJh6GRDI6iyi/cVb5zUdQs6+DbEBxOI5CLRCLY8z+SMIdqBEelG6nsaZO4cSbEOWphDRbqgsQqwL4U+AU0fpPA7+NLZTQ069g6wuQQpQOnGKcyhGGPv/epZsdphYsA3r8d8n27GdU8ON9OQpxWHm8uskL53gPz39GQotn13VJVmfXyB/5hwIQXV+kfJ8AbNQZu7EOcJLBeJ7ttD+zH6sSg1/uuGtVc2XUT0qQhUYQS87nu9a8/tZmFgiM5GhZVszwXgAf8ggM5PH4/eg6Wt/n/GmMPGmteOwbuLzux2LLi4/S2zmn15fAQ4DJ6SUTwsh+oF/9nC25eLy4VMp1cjOF4imQvjuKN6ONoUx/AaWadHcszbCUc2XqZdr1OcznPt/rtL79C66nj2A5m2k3FSvQbinlcKNaaI7u5GWiVaaIZzS8abuUsCu6ohADFnKIDwqcvgvQVGg81NIYePc+HeAA02fhvJVnPIgVGfA24pIHkIJ9EFpEHBw7DxCVFBsP2irDT2d/AXIv4f0dyNijyKX3oHchcY8y9STy0fJRv3abQhvEiWxE+o5ZOdziOg25MJ7yPwQIjuIbT+BKI0jYltRwj1IfxzZehRZnkfp+xRKoh+kjdCWZyz2PI1VnkXUE8jyDDLWi6gsYY38mN/Qc5ztaGFftcq/7zuIqjXfSk+Wu3AsC6UlhT0xRGrb6mZwodysu3OwaybYDsWxWfRoBOkIfM1xZk4PU80WiU5naHt0B+ntbVQLVTRdJda+NnJYK9U49/1LKIrC3NgSx750mP3P7WTq+hyWaVOvWugfQGF+ZimPqiqEIz+ZNKaLi8tPjs0IsqqUsrrchm1IKQeFENsf2s5cXD5EHMfhzb99j2KmTDDm5+kvHFpVCxaM+jn+pUNIKdE9az9GwVQEX9DD9CvXCUb9ZK5M0LR/K8HWxs1cCEHqkQESB/pRNJXqtUvUx8dA2iihCEbHWtsBoajouz6OLOcaBfmZc0jHhso8snYDaRUACflLSEpIexpp+EGpI1hA1lVUbzuofmR9FCwPdm0KNfY8sjYOVha8vVA4j/QkEeUbyNBuZGEQKqNgNKGofmTbJ6G+hAj13Xq/bBM58yp4/IjmR1EC7WBXkItnoV5G6n6Y/hFSDyCKo0j/f4HwJVH3/CoycxHMQqOYX79lnSCS/ag9z2Be+zYZT4D41FvIpasseOOc8Ro4As54DZY8AVIBgwHnH3P6+gz7AjrpgUWEEUTv24W0LKzMIkogiOoP4EkliT12BLtWQ08kmH/jDPVCmXqxhpGMgFCo5Up4oyEKkwsAeAIGW55c3wOu8bsRKIqCbVr4w406LN3QGLk4RSlXYezyDE99+RCqtjHT1VymwOs/OIPh9fD40/vw+b2MDE/w6isnEULw4qefJN30kxls7+Li8pNhM4JsQggRBb4BfE8IkQGmHs62XFw+XBxbUi7U8Aa9lAs1HFtyZxbxXvMnVY9Gx6E+6pOzFEZm0QMG3tjaqIayfINWfP7GeCKhoN5lqDY0xhXhDyAreaQsIHy9iHAvTkVFLnwdSR3hb0IxwjhKCWlmQI8jrQUcYePY82B0odg5hBpFKF6wsji5kw1fMSuLCGxFFAfB2wJ2BZwaCA0UHbxNKEJAYLWZrZz+AQz9CQgFqRoIfzNy7BvglMAIIro+A1OvIqsL4AnDzS7N8hRMv4506sjCGErv5xHKciRJ2shQC/9g9CXOqpJ9psMfJ/aDSGNWulF9Y5jlLuyZacSWFF/7TCuzF6ZIeE30rqNoXbsQikrp9EkqVy9jzs0SPPIEwUOPYDTfKrL3d7aSeGQXdrlKZHsXvnSMxI5OciNzNB/atup11it16qUa/nhglUD3+Dwc/OQe8gsFEm2NwfOFTInRS9MEoj40j4bjSDbqgX/18hi5bBHTNJmcmGfLtg7m57MIoWBbFplM3hVkLi5/x9iQIBON4ovfWTaG/adCiFeBCPCdh7k5F5cPC01XOfyxHYxcnqZ7R8sa8VVeLDB/bZpIW5zoXSwJgm0pup47iFmuEd/Riea7e02Q3tZF0BcARUGL3ftGKwsXoDKK8BmI9AGEHkSlBTt5GIciihxF8X8RZAUFFeFpxyq+hmMu4thzKDKPIwIgUqCncQrv4pQvI7Q4iqcF9DgYKQjsQFH9oAWRvnbwd+DMvQqAEj+E0G+rf7KLYOagMgPj38RRNbCKCG8cECi+JE7zUURxDKIDt0SXoiOdOiydBl8z0p9CtD6LtGvIkW+yOD/IWVViC8FZXSET6SS963kGrh/m9PVx9sd8xBfeRbZ2oKe7aOqYQzoWWsuWFWsOO5/DyiwhHZvq+A18W/9/9t40Sq7zvPP7Pe9daq/qfd+ABhorQRALKe6kFkukKUuakWzHsmM51iieyRz7TMZJzsk5SSY5+ZDJZJtJPDOe2MrYjo9sz3hsy7IiyVopkiLFDSABECDQQDe6gV6reqv93vs++XBBNFoAF5CESNn1OwcH3ffWvfetW9Vd/36W/7MLt6Pj6tLTA92sT87gJnzy48OICL0Hx+k9uBkBhFiMnfjKi9QrDfr3DLDtrh1b9uc6s+Q6N0X3S4+fJduRpjS/xl0/feCGkdTXQ0R55qnjpNIJPvzoBwDYvWcbS4tFPNdjZPTmRzi1aNHi/c1b+g2hqioifw4cvvL9927FYkTkY8A/Bxzgd1T1f7oV12nR4q3QN9pF3+iNxdbk905hw4jS5AL7Pnkn/g0MQo1j6Ng9smWbNhs0XnkeGzRI7j2CSeeAOIXpdnaj9RLR5J8hfg4ZeGCLzcPVc2DR6ilA0fqZ2IrCLSB+GyYMwesG4+K0fRSInd7VSWI3nkDry9ioDKwh/gha/CNobsTGsEEWzd6OrP8QnBSsPYX2fApNdELlVXTtZaR8DhBsfRFpOwi1WaT9INJ1FD33++AIbLwCyz+EzqOxB1nnQbRRgrlvgA2v1KLF5qOS6kUGP4RGZUgPYGtLlJZP05EsQL2EJicYrztMJiPG6w7m4H+J29nOH/89ZfHEd+ioXkD8FLg+4ifx991/3f1KHzxCsLpCtL6O196F+RFHeb+QpfPwXoJyFeeKaLaRRYxgQ0uzXCORT9OsNmhUGiRzSVbnVjj3zHmKsyXGj26ja+R6Ee16DsmUz9BEH903mNbwRpQrNQ5/YB/1WjySCCCXz/Doxx98kyNbtGjxk8rNpCyfFpGjqvrsrViIxK1evwV8BJgFnhWRL7e8zlq8H/GSPuWldbykh7mBj5Rai63VMKnUlo7JsDhPOD8Nrkfz4lmSuw+haiGsg5uKi+CrS+jl7yCVs5htP4ckOq45byO2q8jvxkaLEE5CNYuT/gBO4WPY+kuIU4jTkdcU3TuJbUBA0xZRDRBx0dpprC0jYjG2Dv4gNC/FYiyqgt+FRBvQWEQz47DwrXi4NwphFZaeQMWgqy9B/09D12EoWojqYHxM+21Iuh/bLKGrJ6F8AYIiEGI7jyKNeRAXab8y9Lx8kc9/67/hmDQ5SILfefh/oLsyhxP+M/zJaZzBvXRnDFqZBzdNT/8Aqv2Y3ADiv/7YHretg45P/Cy2XEaSCYy3VeQ2SuvMfe8YqkqjuIHX1c7cc+dId+eo1y3VUpmO0W5G79tN/74h1i6v0L2zl1efvkA6n2LymfM3FGR3PLybhYtF8p3ZLZYXb4XtO4aYuThHZ1eBzq62Nz+gRYsWP/HcjCB7GPhPRWQaqPCaP7jqgXdpLXcC51T1PICI/BHwCaAlyFr82AnqAevza6QKKdLt13/Yb39oL+WFNVLtGRzfpb6wDNbiZlJEtRr1ybOExWX8wSFyhw5fPc6ks+C4YC1OoQO1ETr1NXRjFut7yPpxqG9AFAIaR6V64qiI2jph+SmiaA0SSYhymOQO1FYAi+N14ngP3/D5iAjG68FJ7wNtgiYgWMA4GdS6kKghbgGT3Y9JbovTj34nYCDRjTSXYeBT8QglBcnvgflvwOrxOOo19f9A593Q+wCYBCa3HUn1Yhsl9JX/EYJ1qJeg7SCEZXTyt4hqC6w4HXTkxzB+GyWvn2PSjNOT2mAlNU7XyKP80W4oVpp0elX03J+iYR1bKyNeeyzEuna+6espIji53A336ZVZoWIMGkUsn7xIIp9m7WKRRtNSGO5idXaZMWDs6Par74+Zk3NUN2oM7LqxWW4yk2B0z82nFq21lMsVxieG2H9g4qaGhLdo0eInlzcVZCLyB6r6S8C/Af7sFq5lEJi55vtZ4LqhaiLyBeALACMjIz+6u0WLd4VzT75K6WIRN+FxxycP4f+IJ5SfTtCxLS4Mr88vsviNx2nML+KlHNJ9XRFfDL4AACAASURBVATFRbL799O8fAm9/SDixPVMTqGT9D0fQ6MQJ9eONtbRjRk0WYBX/g8km0E1RHp/CnF9SPWj2sQGS6gNUFsGqaBuhKR2IJLB+OOIbP4oqzYBENkaCTJOO176KGiAWsXyPHgdOOmjiNMGtg5ONvbrcq4RAT0/BbYe+5ZdM+dRB38GFQdWX4g7NGvTmKHPIKlrBEpjCcIyuFnwA0j1Qe0SVpt8/sy3OV4tc3u2i9+94xexzt4t6UlNjF4Zrg3duQS2OInWipDshMp56BmMRzHZCI0imicfR9cXcfc+gNPej9ZrBOtr0GjgDw4j3vXpX4BkZ4Heu/cTrFfI7xjCOb/AwvHz5Aba6exsY2VqkeGjO7dEOr2kx6GPH6RebpDpeH1z2LfD5UuLPPn9F65MgBDuue+ON3x8EAQ4jvO6EyFatGjxk8FbiZAdFpFR4FeA3+N1J/O9Y250Xr1ug+q/IRaHHDly5Lr9LVq8XcJmyOzxi9Q3aqwvrOElPcJmSNiM8N/gMzeqN6lemEabDcLFCqmBbiSq0ZyZJHP47qtiDOJZjhKW4DWHez8L2T505ivgAdpA3AKMPIakRxG/nbD2ElEwQxicwZoGqIfn7cE4edzEHYjZ7MqM7BqRPY9gcJwdGNkUVnEXpw+mgHENxokHWouTRVXRxjwarmAyuxF3s2BfjAvm+g5R8QuYoU9ixcS1ZF4hHj5+7WPSw2jHEWx5ipWRT9LVfhtaPk1x4SmOVTawAsc2lijWN+ge6sLl/8KfPB2nJ/PJOHqlFholdO77sa+al8Y5+KvoxgLSMY64CaLFCwRnnoTKKuHSRUzfAYKlRYJSCa93BFtZJ7Xv9YVNbrTv6tfd+0Zo296H47sYxzB8ZPyGx3hJ7y3NsbxZXNdBBKLIkngT77KpCxf55jcfJ1/I8dhjP0U63Rp91KLFTypvRZD9a+Juyu3A82wVTnpl+7vBLDB8zfdDtGw1WvwYmXz6HE/8y28SBSHb7t7ByNEdtA+2k2574whIarCPzLYhgvV1vEQ/Tr1IargTSSZJ9MaDsVUtNFaJpr8J038JUQW77+/jDH8YaeuLxVF1ezxaqPeDmMKBzRowDUCrqC2B6QTHxfEHMc7IFjEWX6cMCKoWG5WI9AIiCYwZJWqeRO0qxunGTexHnGtEVlhCK8dAPKyt4bS/teJxcdOYkc9AbQ7cNOK3X7efsV/l81/7HMeP/QYHO3bxO4/8v5hyioP1/5vjSZ/b600k8yBOfgdf+sI4xcqddGV9NFhHJ/8thDVoPxqPc+rcgxR2YLr2QNeezeuk8hAFqHEQ4xGWFjHZPHZqEu0bjUXdTeClbhxN+3HQ19/NI489SL3WYHTbG6c8T516lVQqSam4wtJSkdHRoTd8fIsWLd6/vKkgU9V/AfwLEflXqvr3b+FangV2isg24BLw88Av3MLrtWixhbXZZeobNVBLY6POjnt24ryB19hrGM9l4DM/Q7BcxG0rEE6dILw8DSJg4r9f7Mz30dJpdPZrSHMx7jRceAoG7oPUIFJ+FXVCtG8vknR4LTisquANgdbBLoPUME4vjrcDc4OolWM60Wg99gPTCqoNVMuI5NFoDXHy2GiZsDGN1k9jvH5Maj+IHw8Vt42t6co3QcMNbOn7IA6m474bPqZULXJs8Vhs5Lr8CqW103QN7uY3lwt02/Msm+10Dcbiyhi5OnPSTv4BzPyHeD1uBmnfC0EZ6bp9y/nD2ZfQxXN4t3+YaOkS7vAebBPCuWky930Ut70Hb3jsLT+n9wODQ71v6XF7907wzW8+TntHG93dLV+yFi1+knnLRf23WIyhqqGI/EPg68S2F19U1ZO38potWrxG8fwCttagf6IPdYQDnzr8lsQYgNqI6PI5pFHH9HSQ2HUI09aNk87h5K5EjNbOI6lONDMAEoAo0rEHnCQmPYwd+BS6+vXYxDVaiwvvJUVk5wjtKdSt4bq3YejB9QYBJbKXEMkhkgNVrL2I1QqO2YYxaaJoIW4AwMWYHOqNYMNLGG87WjsDJoNtzmAS2xE3h9P2MNgK6nSgzSK4+U2/sNd77tXzccE+EVqbIUrtZLK0wM7Ovs2apo06B+uNq9EwiotI+23s+bX/ndLss0y0pdH6JJrZs6VGjaAUi7GoDOlBzNCHNq8bBVBZwFpDcOwv4xTfyirSv5/w3DH8o4+S3HOYv+mMbRvhlz/3c60ashYt/gZwM12WtxxV/Srw1fd6HS3+dtGs1PnBv/oGYSPE9x3u/82PU+i73mpAo7h43Pib6axodYnm2eNE81NIOgdGSOw+gj+8aRqqYQXat0FpEhn/DGR7MI6H5HdcFSAqTWwiA8EyTuqaujCtoTRRQjClK1GxEGUOZTW2sGACUZdIzwJCaOv45jDGdGNMDnAQSeD628GPKwyicAPbmAKTxIZraOUVJFyDzG2w9iQaFMHvxbQ/uFUkAdpcRIMVJDkCfg/IKcAhctq47/c+Q9VMkrbjPPGLX8R1M3T1DvGbxS66ozMsm220ZZfB1nA676W98iI0JrGXL8LIP8BJXjMBYPAx2DgLQQLCKtpcQ/wCAHb6cbQ0iQYBbCxirWLXN4g2XsSWFogCS+aBv4vJd/B2sdayOlMCEdqG2t+3gsfz3v06thYtWvz4eV8JshYt3gui0BLWm4hjENch25klrNZpllbxO9pw00lss8naU08RrpfJHTxAcmQEDZo0XnycqLpBePk8/tg+JLk13ac2QC9+GQnWoa0PZ+QhAGxUJSq/CAImOUZUP4G4edR4mOQA1gZYnUJpYqQH1SJCGlCUJnFKs4FqAtU5RAe54kSDYmk2TwEVHGcbjnO9ua1J7kW8Iez6D4jq30Eac5DZD+UXIVxH3DYIloAIcNGghN14GZwctnoWIxDVZ1lL305H92OIcThXLFE3Z0Ggbs5ybvrL7OzqQ908Oz/3H1Gcu8COfB2a57FRDREP0SYWgcZFork/RNMTmLa7MYleBItmt0P5PFSn0Y1zSOeVqFe1BH4GghJmYDdEEfQliU6+gGba0fIaGjTf0fti6dwC5544A8DEQ3vo3v7W0ogtWrRo8XZ4y4JMRPb+qEmriDykqt9911fVosXbxFrLRqlKKpfAf5MONYhrtBZeOEf3WCf1jTq3/9JDGGOY+96zBOUq4ggd+8ZwfJ9wfR0nk6U+NUVyZORKjZjBJNN42w+QOHg/Tmf/lnNrdQatXY6tIBqluCbMVomKXyaqnwE3gTT7we3CaoRqBYkWUImwOong4DjjOOYOrE4BayAlYADUYPUisIKhiuoQVhcQrRDZBVxnCGvnbyjIQEEbqK0hTjuqF5GogqR3I/ho9RySP3zVTsOu/RBsA61NAYo1KT7/1P/J8ZUpDvYc5Isf/SI73PKW1OR4MoVtzkIjALtGR1cG0QySGkXLz6AaYgv3IBsvoU4OCVbR2iSKhd6/gxLFaUsbgklAcrMT0ow9gL38AtJzG05+BJpVXHXAJgiXLuPtvhPT3nOD5309YSNg/vmzRM2I/iM78bNxp2gURICwsbzB9IsXyfUUSF7Zt7q0QWlujd7RTjKFVmdjixYt3jk3EyH7ExH5A+B/BpJX/j8C3H0rFtaixdvhpe+fZfr0HLn2DPd/8o43nR9oQ0t5rkTfvmGqpTJtQ52oWsJ6A+N7bBw/QUKaGM/DyedpTp0h1ddJtF7CyXeQPPQQ4eoSTkcfNBaJzvwp4jmY/ntiw9b5b0FURaM60v8RADRYvOqWb8MVxOxBJAleEmOGUS0hkkBwiSNUBqQG4iPkAItggDEsRSDAUsbaJaxdw8gQIhbVCo6z1bJBNcQ2LhBVTyEaYW0DCedQtw+8XiQxgnHzkJnANhaIyi9jkiNYJ89K5RQdiQ5M7g6Wq5d4oXgBxPL8/IsUqyU6Uh6/awqszpynvW8nNmkIwxpi10EcnNQ2kBTixY0H4nZgwkVM18NE68dh4ziYFLhtcVfq5b+CYAUSeRj/ZUyyO96OINlenIlHNp9YOk4xpx74u6gq5kcilfW5BTZOnCHZ30t23wTlqTlWTk+THuxCEilWz88jjkPp7CX67ojvWe9EP+XlDYpza1TWapz7wTn2f2Q/zXrAD//qJaLIMnt6nvs/c/i6tG6LFi1a3Cw3I8juAv4p8BSQA/4QuPdWLKpFi7fLwsUSuY4MGytV6pXGDQVZFETUV8sk8mnchEffoZ0sn5ym98AY7pWoWtfdB9k4c57scAe8lsqc2E558imC05OsL54n/+l/gJNrx8+1o+V5orNfxs49A9kuNChj+m4DESTVCz13YbLDBBsvEK5+FY3WMMn9OOkBMAbH34WaCGsXEUnhmHFEM4CLAqE9BdRBUwhRbAgrAziyDavTKC5oFTSJyjqeux/HDGPMVkNb25wlqp7EVk+AKSDNedQfRhoXsbaCRFXo/Cga1YhWv4eGa0SV03zhha9wbOk4B7tu44uPfBIJe5mow2RSGa+DhmlMLkP0c/8LhfIyNteN6kosLL1DiAaY1G1o4zTqdCGBiwZLaLgO1RBJDWI6PoRoHbyuWHg1i5DshqiKiIPdmEEvfhPcNGbbTyP+DbzREukbGhquHTuBcV3Kr07i9XQx/9RLrL56ibDeoO/Bw2AMai2JwqaQczyHwQMjLFwoYm2E48XvJVVFlXjWpb05O40WLVq0eD1uRpAFQA1IEUfILqjepLlPixa3mNvuHefUMxfYcWCI7DX+YWotNlIcz2H68RNszK+SbMuw86N30LV7kK7dg1vOk+zI0wjXIe1iRGm7+04Ia2ijRlScwS6cpvZ1IfPYryNegte8v6jNQVSC9mEk/xm0uRGLsmxc5K+1F65EwEKMX8DPx1Ezq2WicBokizEjiDg4MoKIS2BfBhaBJopgtQuji4jJ4zj9GO1DtUpgXsJIgHH24bmvZ4HgxO73Xge2OoskBiFYBhRx4uibqoII2rgI0SrLlRmeXzgWR8MWX6JYLdGlq3xp/iLrBgpWcM0GYnpxCw+iuSpB5QmsWmy0gJDAzd6LbZxBnDwazuFk7wNbx64/BeIghBh/swBfgGjsl2Hh29B+GK0soCd/F2wT8juIph9HssOYnt2I88ap6WB1nWZxlahaJT02jJtJI65LUK2R6MgT1pqI5+FlEuSHu7ccm2nPcOCR26it1+gcju9pIuVz9JH9FC+t0L+9pxUda9GixbvCzQiyZ4G/AI4CncBvi8inVfXTt2RlLVq8DQa29zCwfWvtUGl6ibPfPYXjCNvv20VlcY1kIU19tUIURBh3097CNgPKL58kWF0lWlnF7+4GVdxCHsiTefgTVP7sf8PpHMOWLqPVVaTQi2R7Mds+jI2WkVQbkt+OOCmkN3bD16hKtPY91DYhaoKbAXeztsvaeaxdI2KKyJ7DmF4ck8Mx2xF6UC4DIeCjukLIMlFUxol2oTqHMTk89/CVUUObAkVtHQ2Xrwwcz2H8QVRDnORtOO4Z0Brk7kScDghLmPQEYdhgcuElxpxujFMAzRLVXsRJXSSqjWIDD00anMGddF4+hw7tR7Kb91xJIk4f2vweTuoQVtewwVlUy2j1AjZaJGwu4OfuQzK3Y+vn0WAdKieR1C6kfgmMh+k4CunR2FNt9rvY/DZk/mnULEFV0dJsHF3s3feG74m1F17CK2QRoHDHftxMitGP30dqoJuoGdBoKFppUl0uU15YpTC0VcwWegsUegtbtnX0Fejo27qtRYsWLd4JNyPIflVVn7vy9TzwCRH5pVuwphYt3jXW51c5/ufPsXj6En17Bll6dYGhu3ezdPIiA4fGr3Nkb8wvUJu+CI6DSSRAIb1v/9X9/o7biCZ2Ek0dw9l2BElv2mM4vQcRPwHVeaRzq3mpbc4R1S+CGpzcR3Ay23GSu6/uF3JYTiEISj0WL6Swuh67zMseoHElHTcDtoLVIjZ6AjEZrC3j+92IbI48UlsnXH8iTmVKAjf/MLY+BdVTiFtACvcjBCguekUsBk4b9//xf0HFXCAdjfD4p/5zejvG+ePSP6c7mmXZJGh3zhIGRfTvfAHTzON1fzRucCCuUQuDk6jZQJJHsdEcaqvgDiEYLNOAoOF5onoHXvYBWF9Aq5NEa09jsnchjSIigqZ3IaWX4hRhYhjjGNj+GJrbDVPPAALiokEDu7aMZNsxyeunKph0ClssETRCFp54icLe7RR2jTF4f/waLZ2+xKXnzuEkXBK5VoF+ixYt3htuxhj2ORFpB3YSpywBpm/Jqlq0eJeImhF+2sfPpmhs1Ome6KN9rIf2sTiiE6yViRpNEl1tiDEIltqFSXSjRHbXDjJHD+N1tKPNRiy2mhXc/u142+9Aw+aVdGWM2hDJjSDte7DVi+jKFJLbibg50Iio+gKIwfF7cFO3bVmnMT0YRog4hyEJJLF2mdAWMSaPiIPn7EWMh2iagGOoBY2aiFYxDohsrsU25og2niBqTiGJUYzjYBuXidaeRBK9EK5iCFCnQGn9NIWwjIjL5OKrVMwFRCxV5yIXNiw7gmPsj15FbESvniWsFyHlIv4ITm5PPHvztXugFdSuISaNlTLGy2PFQ+0qrr8TjVYIo5Nx96ak4yJ/ccHWUeOjlXOISaBOGhql+Jyr58DMQfttyNjHcY2L9XJobYOo1qB5+i/RoImksySPPoK4mxHCsFKlWVojqDYIIoOfSlI6/irZ0QGcZCzGu3YNkO0p4CRc/MzmLM56pcGF4zOkc0mG9w28b33IWrRo8TeDm7G9+DzwG8QzJo8BHwB+AHzw1iytRYt3TmGwnW13TzB4+yi9uwZIFeIISlitU19eYeXZE9goom3/Tgp7xwlLRVL9XTTKS5hUmuqLz+Cn4jFGiTsexOTaMG392MsnccY3G4w1aqKzfwmNIrawB2lcQBFoLCB9j6C2jHjtoBHgEAUL2OACxu3F8bcBdYQGDv0IeYwYQK9ElFIIm2lVI3kk8JHgEipgTB+O9oCNDWSj9ccJy8/Fsx+9gVio+RPYtSdAm2j5ZUzhfqzJ8Ktf+084tnSM2ws9/Pbt9zGev4+M3U7VnCcdjTGW3QCvHe0fh7lJGDqC23EvYeNlBBfjxjVXYbhAEDwHuIgWwNYwThfYZYybxfF24rqDqDqoRhhJ4WWOYpwUdDyKmgK2/ApiMrHpbOFOyOxCG38F9VWk/zBSX0KiGuIUMB3bCJ79C2y9Qjh5HGfHXWi9CjYCPILVNdafe4GgXCVsRLjtbWycvczqd18g3d+1ZSKviJDquL5BYPK5aeYnF4lCS7otRfdwazRRixYtbh03k7L8DeL6sadV9WER2Q3897dmWS1+kimXy1y6NEd3dycdHW/fKf3dwDiGgf3DW7Y1VjaY+84PqS8UqV+cwc/nSPS0k+opIJ6HSaZxCm0QBph8CrU1AKLiPCbXhriKUiW88DiYJibbg5UGcvlbkBlG5RyS9EBDkM0fMbERikX8YaLqk+D2EDUnMW5fXPgvJhY5xgPJYu0CjhnESBfGaUNtlWblSaLGaRQPEcX1e6Gxjq19k4Z8Cyd7FxoWQUMUB2McvMLDRBsvEVVOUwotHR13I14Py+sXeH7hRRDLCysLrCRuo8su8aQtsXrpEu19CYJojkjqhJ/8FUzUhdtxP46TxUtvdbsJw5NE0TxIA8fsJZG8B3Cx0RJgMU4vYfMiUf15jNuBxGX78Wvk5qDrY6Am7qx0s4jfhU7+PpSOgZfDnv9LSI1ihtdx/NcicooYwR0YR9IF3KGdiB9HuKrnzmObAVqvgTWIKomBPlJjI9hGQLBRxUm88QBx8QxTJy+zOFOiUm/y4M8efVt1Y9ZaqtU6mUyq1QDQokWL1+VmBFldVetx0bAkVPW0iOy6ZStr8RPLV7/6DZaWlkmlknz2sz9HIpF484NuIc2NKpeePo2b8Oi/azdBuYJthleCJIK4Drq+xsq3vwPGkD9yGO+DH0QcB0RpHP8+ai2sTdN86hi6ehrK81BfxDplJN8HvoKXg7XTSN9DSGEcu/EKGpXR9ZeBBiZ9Bxqto83TWLuCrc9gvDaC6LtIYlc8ANyWMe7IFeuLDsC/as4aBi9jw3liU9cySAbIQvUlaE5DVMPW15HsHsTvw/FHMN4wWpslaizwhZMvcnxlhtvbX+Z37vxFoqpDVBvFpKaxtVFoemiwhHvpJbrUonPnMM08kt0Vd0uKAzS23NsoWkZ1FciANIEkiAE8RATHjd3tbViisfEXqK0jwWUS2QcRZ6u4Me33oJWz4HdB+RIElfifl0YbDcQWsef+CufQryEiuPs/iF2cwusYwOS3dkf6PV3Up2eI6k3yd91JdscoG1PzLL/4KqmedvzC9RGxH8VPuIhriICgEXLh5Us3Lcistfz1155gZmaO3XvGue+BIzd1fIsWLf72cDOCbFZE2oA/B/5aRFaAy7dmWS1+UlFVarUaqVSKIAiIougdnW9jtUp5vUp3fxuu9/YmfZVevUS9tEEUhOSGu8kNdJAe6qXhOyQLKZxUAmyT2rlzqLVk9+7FHRu7enzitnuI5iexM8cwnQPYoofJ96IpH/GSgCDpvljYFfYihd3Y+hyycQobraHFb0JuH2os2pgENwuJTiRqoHaGyKxA5Yfgj2C8XlRymOQEsLVAXZwujMlgbRUnsRs39QE0qmJ5BRvUoVkC18ckRzC9n0XCdezK94hqcyyvT/FCaRZEeaF0kWKzTlc6w77oC0ydu8xY3zDdgw+iG4+jAxNw+VV0YB9O94cwfgfNahDPzjRpVOsoEYJDZC/GUT0nhW8exuoGnrvjukiQjUpoVCS21+jHTR268YsVBmDqaGoQtXXw2qD9ALK6jiJIo4xaixiDSRcwY7ff8DSpkWEqs4s0GpdYO3EWv6sDN5eh8+he8sPdGNdlbW6FC0++SrY7z7Z7Jq4bJp8upOgYaGOtWEFV6d12o4kHb0yt1mB2Zp6+/m5ePXOBe+471KpFa9GixQ25maL+T1358p+IyHeAAvC1W7KqFj+xiAiPPvpRTp16hW3bxkinr+96e6tUy3W+/efP0ag1Gd3Vz10ffH17g6AesHRuAT/r0znaHXfpqcb1QZ15SmdmcDwXP5fGSfj03XcQgLBSA5TaubOEs1MYz0OczQ9MDZoEx7+NDRrY0iKun8Dd/zFM0kONi7gu4qUgP4w0lhA3h669CGsnYeMMmCa4KSifBK0hXlvsU5boRhLbiBpnkHA5jgSFNTTtQfLGaS3H68fkfwbVJkgKXf0huvyVeKyQ6cb4uVjsiUekHpOlZbYHVaR8AmlmiKqjmPSVaJh3OyTK/JF8DuMtY6ULu/rPcPJ3ob/4B0jTRXJj2OgCQX0SyzqO00kUnCKyGQQQ6UO1iWoD4xRw3V2vm5ITpx3HG0FtFTcVv44abkC0Dl43Yny0+DRUZ+Pt/jCQQHIT0DYBY2l04SRaDQhPfhV3z08h7hunHE0igXgeqFKdLzH/0jSoYo9M0LF7hEvHLiJGKE4t0bOrn/yPDJTvH+/h/s8c4e5P3kG+M0sqe/OR3nQ6ya6945x5ZZJDR/a1xFiLFi1el7cVclDV773bC2nxN4fu7i4efPD+d3yeZj2g2QhIphJslCpXtweNkLmzC/hpj95tsfiaOTbN/CuXQWDPhxxKr16iWtxg9L49FMZ6SbRlMa7Bz261NXAz8ffpHTsIV1dBhMTwtTVnGgs718cZ2It/+KeujuXRRhkcD3GvfFCn4lmL9rVUm5ODZBdIFZwEBJeABuK04RQeje0orIOtPBfXOaV24HjDGH/b698USSBWUVtDq5NoZQaac5j0XmTgMxhRQn+UB37/56k4U2SibXz3gQ/Q5RXZF3yWFybh0OAgPb37sbN/glleRlQxy8tEtRXIRTipCUiB2io2mI27IW0JNVmsLaOyjkgnRi+g4qNaRK2LyDyu03/DZRunAz/7UdRWcLxhNKphV74NtgaJIZy2+8D4cb3eygnUXYrTwp23I04Cs+dnsY1/D5ESLZzDGb4DaRu8cr+bcYess/XXWWH/BG42jZNKEkQCVsEYwmYIQPtIBzPPXyCRSZDMX293ISJ0DrRdt/1mEBHuu/8w99x7R0uMtWjR4g15U0EmIhuA3mgXoKqav8G+Fi3eMYXOLAfv2cnS5VX2HBq7un3y+SkunryEiOA/6tPx2oemACj11Qrrl1dI5JMsnLhIfqCDZFvmRpe4ipPJ0P7gg9dtFy9B4vaHiJYv4/SOXhVj0cIpdPpp8DM4e34aScQ1SdHqWbj4dYjW4k7D1AiktyGpdpSjqCSRRB9OchjVCHf9ZTT3QWztBCa1D5PaDcEa6nVcF21SVXT5+1C5gGbGwKQRLIHpY6risyu5DZMe5sIrX6LiTCFiqTgXmE7/E3bmPb70a8OszL1Mu3cRLW5A2360bxzmz6N945jsIOK2X/PkE3HXoy3j+gcwThtBNINoDWvXwenGiBCJxUgK1RXgxoJMRHC8zWkIGq7Hlh0mBVE5fkzHXajXDo0a4rWjfgHpfwhpm0CMg+nZQ/PxL4KTIJg5TaJtkObCHJUXf4hJpMjddR/mmoisk/DJ79oOgA0jgoN1bBjSsSsW3H17h2gb6sRNeHjJNx9E/05oibEWLVq8GW8qyFQ19+NYSIsWP4qIsGP/MNv3DKIKjVqTRMqP/zoQobZWY+qFaVzPMHxwlGQ+iZ9OUOjJs3LuMrXiBl13D77ZZa4jXF2hcfECXk8fft8AqqBeCtxrUlYrFyGRResbaH0NSWSJKgvYp/9baE4jThJpGwZtIm4B036DiKFaCB2k/BJO5wNIajfMfwWNatB2B9J2cOvjbQOqF9BkL1Kdgv5PEAY1Hv7rP6LiniRzaorvf/K/Yzw4RSYYoOJdJmO3M9F/AAPwe4/RdfFp6N+JfezXcfKH4Ve/i1bXsGYJGxaRqIzjZFG1ROE0Kj7G3QEmiZgsjq4Q2RpGvCu+Zykck0CIMDJwlDu0OwAAIABJREFUw/sZBctgyxivH7kyW1PcPCZ/CG0uYjK7iYovwMyfQWYchj6B1OYwhd1IcrNuy3SMIgOHwE9BLRZxjfPnsLU6thFQOXsOr7uXRF838iMCyLgO3bdtjTyKyFUblBYtWrR4r3l7VdItWtwiyus1jj35Komkx/47x3nx268wN1UkagTkO7Ic/OBudhwew096nPrWKRbOzrMyW+Lhv/cgA3uHgDiSlMwlqZfK1IvrV2vJ3gqqSuW5H6CqBJdmMB+4l8YL30WtJVqcJXUktt2T/gPYye9gCkNIphsNqujZL6Prs2BcJGHRwmGkcATpPIhGcXeiONcYya6/gtSWUc0gJo9EG2hUBScL9TlgqyATJ0mU3c1K6UU6Og/j+O2cTT1Mxf1f42iYmeT8pZfZ2Vzj8dvGuJD4ODvau6A2A5qCmWcQjdC5VyHywWuLa7fSEdHaM+AUsLVTOH4faleJwinCYJ6IRRynG8/bj+ftIQpKqG1g7TK+9wGMSRGGy0TRFKprOM4oEBI1p8A2iJozcU1fVMRNH776fEx6HNLjqI3g/Jdg5WWIvgvZMUz/Q5v3yUZobQNJZvEm7sKW5nBH9hPVatQvXaIxeRbSBSrrUL38AzLbR+l/5AHcbJqoGRLWm/i5985yolar842vP46q8tGPPUgqlXzzg1q0aPG3jptJWd7ot1krZdniXeXciRkWZ0sEQUQylWB5bg1jhKlzixy8v43580v0jXUxdmCIE//fcebOFvFTHuuL6zTLNbykT647R3lhjcJIJ6vTSwzetQvHcwjrDWa+9gzNjSqjj95NsvMah3lrqZw5S1SpYNUQrSwRLi3itLUh1sYf5tZefbwpDGAOfXbz+HoFUGT4Y2h5GgrDiMlD8RU0OwrTXwUURh9D0rEVBOLFxwhgXEj0QHYCmsuQ3oltVhDHvzo826rl8z/81xxbOsbBnoN88aNHmOgaJGPHqZhJMnac8ZRAkMa1dXaygNANS0/B6M/D8F0w8wwMHUJ6PoSYuCg+qp7Gbvwg/gnPP0bUnMVqk8jWiVgBGlhbIgyncZw+onAJlTIo2IaDEBGFcxiTQrlAwrOgFhtMo7YaW104BdAbVT4Q22TUl2BjMrYOKW8OAFFVmqe+S3jueVQNyQd+AW/fBNHqCs3FWYznkz5wiKBSo7JUp7mygbu8wsbkLLnd2zj/jRdorNfpPTBCz21vUJt3C/nBk8/zH/70q1hrcV2Hxz7+4fdkHS1atHh/00pZtnhfUejIElmL6xp6BtpYmVtn+dIKY7sHsKFlZG+cFnNch9HbhnFdh0TG5/KJGdZnS4jAnkcO0r1niOUzl+i9bfSqncHqqSnmv38cXIPxHHb+/EeuXre5XKTyyhnE8/A62nCaNZxMlrBYIjWxD+OAOzB23Xo1CtByCUnlMUP3o+szyP7PobPfhLAGiXa0PAc2hKCMPfFFpOsOzMjDSH4X6iQAgfQIIg7SdR926QT27F+hpVeRrn2YHZ/E5AYoVktXjVyfn3+RYrVEd6aLJ3/53zFZWmBnZx8Un4VoA/nmb8PyBSi0Yz/yn6FRDfnlr6Crp7G1Y1D8Orb9fiQ5gDYnEX8A0Rqqy0TNJgCetyNOXdozqEbYaI0wPAvU44gbZaxOgzawuoqNfAwOIVM4Th+xcWsK4+/GiIO5UkOmNgBxELmSVlQLqWE0O4E4PrRvdtNqeZXwxHcJ10qYZIbglSdpdO6m+O//HWG5THrvPtK79pK9cyfuqzNEEXjtBfz2HM2NGo31Kol8hrWZ5fdMkKkoNrI4RgjD8D1ZQ4sWLd7/3FTK8gazLFHVx9/tRbX428vYrn7y7Rlcz6HQkaV7qJ2wGeElXFR1S3H09ru2M3fmMmEjJGw0MQbUKhpZ+g+N03fH9i1pKieTii0tLPi5rUX+JuEjrosGIV5HB053gfrZM0gygT+0fUux+LUEp59CizNIMot78GNgcmjTIqOPIc0SpPtBA3T1JHb1AqSGYO0ClHchbdvAacee/RrwNLrzESTVButTYEPC2ipTa+vsKJ7B5AbQKLvFyFWjuJHAdRx2dcdCVbuOguRg+b9GVNG1FVibQldeRLrvRRMu1K8EvMMSIkOY1AG0+Q1wO8HrQ20JkQTGpHHdEWzzMopFqQAJ0BwiHka6sLqM0kQkA5rBiI8QIJLFSR4CMRhnc1qDrc7A8vdQN4Pkbkf8AoRNUAe8LrT7MG7XpnlqePFlNJGF9TOQ68a091M/f56gWERch+b8PD2/8B9jPI/Ou7vI759Aowi/LY+NLG1jvZTnVhi8a+KdvTHfAffee5SVlXWCZpMPfuje92wdLVq0eH/TmmXZ4qaJooilpSL5fPYd+YzdCBGhs3czlWiMwU+aq/uupVltkuvK4acTuKkkg7d3YlWJgpCwEaBWcRPu1QLvtolhJj73CGGlTueBHVvO5RUKtD94L7bewO/qBGNwOroJlos0V9dIpG5cg6Tri0gqh62VCc/9gODZPwcxeEc+gTu4F3FTiMmig49iV0NYv4DpGINk3BlqV6fQMB7NZNemcFIHoecOwo3LPLSwQqX0JTLnn+GJXzhKe+kU+4J/yAuXVzg8NEx37ko9mrWEL/0+OvcUMnQ/zr7PwtAhdPZ5KLRDpgucWIBKchgtnwVbgcQIAG7mtri7U0PC6rPYqAxujjBaBt0AW45r3NQlCpex0RyGPMbfh588grUrqIINitjqcWw0g/hlJPsBHP9KXV9zGV35IbYyBX4nsnoSLZ2BRBd03oVaF60prC6h9VXkyv0RP4XbNoBzuBdv1z04fdvR/CXcF54j2qgRem2Unn2Z9kP7cJIJvGuEtnEMw/fuven34LtNMpng059+9L1eRosWLd7ntGZZtrhpHv/eDzh95iy5bJZPf+bjJJPvTZFytjtHMpckqIf07+4n25nlxF88x3w9JGo2SaQ8sr1tjD+8H+M6iAgde7e/7vm8QiG2O75Cc36R2tlzIGDuuxe/K+74s40G4jiI6+Luupdo+jjutoNEMyfAGGwY0Hzx69ilGZyBXXg77ySaeg7UR6UXGXwIScb2EiY/ROPyS1yo1pjIxJYRJjfI9OBjVI791pVi/fOc/sa/ZGfG5w8OZVkbfZieoe1X69r03z6Kc/FptNBHGNQwOx7F/Mo30NXzKLXYMDZ9xVtNI2guo81FcJ6Gno/F1zRenErUGo43BloD48epNqcXJIUxHUThLBJVsVIDduE4bThOGzZcImw8iwazqA1QswTRxtV7aVefh9plCNYRFFTAK4ANwMtCdjuEBvELaHX5qiBztx/EtPcifhqTj+9/cniUoX/0X1F6/iUay+vULs2T7O8hu23o3XhbtWjRosV7QmuWZYub5vLlOfL5HOX1MtVq7T0TZMlskjs+eTiOhPku9fVanN5MeSyenmXHA3soz6/SKNdJvYkP2Y1Qa19z27ta0N+cv0zlxWcxvk/27gdwOgZwOuJ0oWQ7sCuzSNCAZDskMkRLF4lWV7DLF3DSDpLIY9KbKbwo2cGDx/8iLso/+3W+dec/xvfTjA9NXC3WTwcjjPseungBZ/QA3flronXVZZh9NhY5a/NIugcSBTAG6dhxXSeO2ga2fBJU0ehpTNeHEHPFg0tSOIntRMEc4EBjDuP14yTHseEcYrrAVok0QADXuzYN6KImgUgSnCTi9WMSo5u7m+tQ/GFcIzb4jxC/A5afBS+HZIZxxjKEJ/6EaGUeXVtG2scREcTxcLpGrnttnGyWzPZtNJaPY1wHL3/96xvUA+obNTIdWYzz1n3AquU6C7NF2rsLtHW++czLFi1atHg3aM2ybHHTPPDgPTzz9PNMHLmd9vZ35mT+TnHczfmDyXyKbffsZO3SCvs/cYSVyQXyw50kcte7sL8VTL4NTRfIbBvC646HVwdzlzCeh63ViFZXcNKbQsBp7yf10/8YtZZw+mVs6RI2MmhlPa6Z6t2BOzSBpDbDcJOlBSpm8mok7NXjTzBWnMcb3cvjP/tFLmysMDb9PDTLmJ5tuNsOYxw3FokikOlGhu9CZ56B/gPIwc+jJ/+QKDuIDN0D809As4QMPIykesFtg9QoNOaR5BDXej6LCE5iJ+J2E1WeBpNFwyJEK6A1bFjESB4xBiexH8fZbLA2bjte9gE0dSB29q9ejk1sC4eQRDd4XVA4CKpIYwNRH/o/vFnYn+nBOr3Q1oO9fAbtmUAym8IV4o5LIotcec3Tw/14+SziGNzsVkEWNgJOfPUY9fUa3Tt62XHfW//b8YmvHWeluEEi6fHIz91NIvnGI5patGjR4t3gLQkyif8c/3VVXaU1y/JvPcPDgwwP37zh6ruFqlIvN/BT3hZBBtA13kfXeDzCaPjIOOKYt+U/1VxZY+W5k4BiljfI7BTqC0uUpxcIly7jteVpFFdwu3ox/laXdzEGZ3A39dklgvkLSGMV8RJE9jLh1DxzY9vYM3GA5swUfdPnSDdHqPoXSdWHGK2WiFZXwJ7GOfUiu+98GO3sQ+tlJNOG/P4nYuuK4f+fvTcLkutM0/Oe/5yT+56VWfu+AAWgsIMESHDrJtlcmt093dPdM9Mzo7ZCluyQw1aELqwLXdg3VlgOh8K2wlJ45BgtHlmyNFIvM93N3snmThDEvlcVqgqFWrOqct/O8vsiwSoUagcLRIH8nwgEkJnnnPwqM4F88S3vdxy+/9egafD9v0YUUzVxdu0/g+FDpi4jrQXI30QEGiF1BtH2MpqmIyNHkak3EBi1kuEd+wvpmICNEH7QAkgng7QLOHYa9DBIGyFKaJoLTax0tteMGBgxZHUOmb+E1P2Q/hDR8FW0+BEkNtKqIm+/h0Qimp5CJA8gHYfKxz/FPP06mjeAaB3AJZb/0+SYJvPvnsZcSBM5sh9/e+3z54qsPgRulkzK2TK6x8X0jWm6n+xj7MJtsvN5eg53EIiu3ftYrZp4PAaWaePYa1h1KBQKxTazKUEmpZRCiB8CR+/cVrssFQ+NwVM3GbswQTgZ5PAr+zFc+qrHacbq928KIUB8koiqCbrc+ctovgCOK4hVgeLgCAiN0MDKpedOPoedyyAi9eTfuYIeiWGNzfHtyMcUp8bwv9PNX84fwu318kPzCFM9v0+34cFdV0f54zfR6pqRllkLxe1DuH2Qn6mJMceq/V5MQbAeKQT4E7USX7QbZ/IUsjCGECXIXAeXDxnfh5P6sCa+rAVEYFdtZZGVBSOAtPPY879ClgbB14ceexbpZLEL5xDuGNLKgF1G2mOLwwAAUjpLWa5P0H21sqVdqE2VAsIVQTS8gMwM46Rugu4CM1u7Rn4O++pbiGADpRuXkDNgZv+S8O/9zcXX3szkqKbmMUIBCkMj+NtbsKsmQgg018p/xrwRH4meJGd+fIZQY4xr7wxy6+oULo+BVbY48sr+Nd/6k185yMj1SRrb4vgCKxeKz0zPMTM9T2dXC8GQcvpXKBTbw1ZKlu8LIR6TUp56YNEoFJtg8sYMoboAmdkc5XwZf8THzPAsjuXQ0Fu/ImsGtRLWrVOD2Lak/bEe3P7aF+3C8BTZ8RSJ/jYC9UulRHc0TN2TR7DyRfxttWZ7T2OC4uBNDH9thyTSQeiriz49HIV4gmsXP6ZRGjjZEoO5FMXkGEI4FPVhbvkep6tYxNPRxZ7uvRiJJoyGFvS6Zux0Ck/vvpoICyQXy5OL5q5txyGQRFZLmJd/gyznMfqfRWs4hB7rxhn+K6RVRGo+ZDmLNn8BKUuABHcUyoPIyADSKtREmZVBVieRdh7Kw8hKL5p/F9J1G2lnEXoj0p6uZd3cAdCi2HO/ATOFiBxH893VL2YWwLcHPFEQPmT6OvgbEe4whNoRDcfALCCSh4Ga4NTqWrHGruBUDYyuNsxbg8hyEeGrlSJdoSCuaBgrlydycB/56QVuvXke3WXQ8eVDeCLLS5ZCCOIdSZL9zbi9HorpArpLp1qx8K2ySPxuYokQscTqmbdiocTPf/I2tuVwc+gWX/umGjJXKBTbw1YE2ZeA/0oIMQoUWFoufuCBRKZQrEHPsQ6uvz9MU289/oiPubE5rvz2as1aq2rRfqBtxTnpsRRzQ9MIXWM24qflUCfVfJnb71/D8LkZe+sie35/uUeUr6l+2e3g3v5atskwcHsNsC08Lcv3N5qZHIVbk7jq47x0+X+nYAzha2nnP+Sfoa+hHV91kpJ7jIDdzZ6eAYRjEzr5HEZ0qRfP0zdQGyL416+tWp7kTnkSIZDZWWRuDtx+nMlr6NFG8ETQul7FGf8d0hNAzF1Azn2EiPdCoBGqZUSgD7lwClm6hfQ2IupfRrgbkNUZhLsO9BBYeXT/MRA6TuEadvaXCKeEJsI41m+heB0R6EHmL9f60gBZmUfe+jE4JjLSj8iM41QyOKUM0tOBFmpGb3sM4a41y1sz48hiFs8Tf4DrWBnnzPtYQ5fxDjyG8C5lnzSPm8RzTyAtG83jZvLUdYSmYZUqFFOZFYIMINoUpaG3gVK6yK4n+hC6oJSvEG+KrDh2s0gpkYCmCWzbWfG4aZosLGSIxSK4XA92YblCofh8sRVB9soDi0Kh2AItu5to3tW4WM6qbeS5Y6VwT8tPKVtCN3Q8IR9C05COxBepZUh0t47hdVMtVAg1bjycUJ5eYPbMIEhJ3ZF+ov13RIjtMHvuGjemx2nNW+iGwcilC4vN+iXPGMVnX6a9ZPN6cYDZtiZ2tXZxZ2J59ScrplYtT6Jptd/vIIIxhCeANMtoyZoTvXRswIVofwFx62eQHQZ/MzLQjdbyZWT6I5xKCoqjSLsAVg5CBxAyhJb4DrqvBZk9i1O+Da4kInYCcucRtgPCA7kRZPEthJVD1lXRGr4GgFOYQI79GLLXId4PZg7sCrKShYmzSOsqTrwXIXT07mdw8mmqF94GwK5rxnvoGcIvtiGfKSM83hWvjdD1xYxkpKuR7Ng07pAP3etl6J3rBJMhGnY1LR6vu3R2PdmHbiz1EQZjARzHYWEmiy/oxevfWsN+IOjnhZeeYHpqjp7e5cLfcRx++tPfMD05S0NTkq997cVlRsYKhUKxHpsWZFLK0dWc+oHRNU5RKCiXq7jdxrZ/Md39ZZ3oqKP/2X4y0xmmb85iVi26jnaQupni2lvXMNwGB145wJ7XjiBtSeBOOUp3u+j+yiHK6QL+5MZZE8eyaupPEzimuXh/fjrFV0/9A0qeUTzFVv488w3a+9qX7Zjcs2vf4mtQt+LCzrKsF7CsPOk0HcXM2rh9Nmga0qyiuWslV+EN4Tr6dbBthNuLtC2s03+BM3EW0X4creFx8CagMAbFWZzJdxHNz9TElJkBpwjuFkTmNFL3o6XPIgO9yPIkuOJgpsAu18qz/j6knQWzjNDmQZPg6UEL3plgTJ0CIwBGENxJtMZnkbEc8uZvsMU4spxCR9RKntS2Kji2haYbCE0svq/Cu/FUrD8Rpu/3TiIEXH79PIV0gdnBKYKJEIF4Lfs2evE21z+4Sbw5wqEX9y6Wsi99MMzg+Vv4Ah6e/ebRVfvE1qO5pZ7mlvoV91uWxcz0LHWJGDPTs1iWhdutJjQVCsXmUE79igfG5QtDnHr/Isn6OC+++gSuVZqv7xcpJbblYLh0NE2jaVcjt69MYlYsxs6Pk+xMkJnKYLgNzLJJMV0k2ZVccR130Ic7uDlbjEBLPXVH+rGqVcyWRqSUCCEYq2QpeUYRwqHiH2fC1Okc2M07fUs7JtcUpGuVJoWA7/811tQwCx9dhg8+wNvbi26XqE7cwt3Rg3/fQYDa8vE7C8ipFnDG3gdfHDn8Jtrz/z2EOnBmPgQzDbd/BXYRkkcQll3LKiafhdyF2uOeBEK4IHwEWbiECO1H8yRrey+rMwh/D9Ku4Fz7X2uZteI0spqprUAKtEHmLaTtRYQGEK4wwhXG9nSBMQpeP1rPS2jNh5C2RenSOcqT87hbW/HtPoZjWZjpLK5QEM1TEzKO7YCUqw5ofOIt5vZ7yE5n0F3G4t5SgNEL44TiAebG0xQyJcJ3PMVSk2n8QR+lfJlSvrJlQbYWbrebJ598jAsXrvLkk48pMaZQKLaEcupXPDCuXh4mFg8zOz1PJp0jkYxty3Ut0+bjX1xifirD3id6FheOh+tDjF+ZxON34/G7aepvIjOdIVQXJNIYoZQtkUvlCNeH8QY3Z2brWDZWxcId8CB0jfCudv7wX7zLx+Mfc6S1jX//t59gT0c3fqeHojaEr9JBf2cvejjM7TcvEI2HECtSYnexVmkSaq7/7ig4EmEYOPks5vQYwhegMnwdX/8+hH7PX2FPCOJdOENvIUJNoAfR2l4AVwDn2v9dy5YJA8qTiGAPWAWE5oH6F2u7N913pjWDuyC4ZPyq+VrvmpgER2uA8izMX0e2FBDuCKLuMM7kFRAe5MhbyEAjwhNClvPYqUlwHJxcHkPTsbNpSlcvYucKWAuX8R/7MumLl6hMzWKEAiS//CRmocL4G2eRtkPrswfx1oWX/ahmqYptOXQ90Uu8M4E37MN7l+dc+74WbpyqZcj8dzXyD5zo4cK7gzR1tRJNbq/x676B3ewbUH7ZCoVi6yinfsUDY+/+Xj589wJNLQki0dWn1gAq5Sof/OYSxXyJ418aIJYMr3ksQD5dZG4iTaguwM0LtxcFWe/xbhq66/EEPIu/jn2rtqjatmw+/vFZKoUK/oiPo988smrWKj+bZeSDIYLJEC0H2rnxm4uUFvI0Heig+UAHs/kyF51/jLdnlIulDmbz/x8NYR/vfr+WDev0RDC8bsbfvkRlIU9hcp5gU5xAwx0xem95cpXJybtxxeMEBvZh5/N4OjtJX71A9epVvH39K8UYdzzQ9n4dIdzgDWONvoOe7IPwbmj5BpTnoPVLaO4gcuZtCHSAtwGhGeCrNdFLxwSrVJuKvAdpFmqZQRtkoLXWI2YEcRbGkLYJmg+0EkiJNTMG5SIi0gqRdoTHB0YtG6UFgmheP9ZcCj3ZgFOpUE0tYIQCWIUiTsWkOL2AVaqgGTq5WzPLBFlxocDF189jmTa9T/WRmysye3qM3sc6SbTXFHDngVZadjeiu7Rl73WyOcaXv/3Yup8xhUKh+KxRTv2KNZmdnWN0ZJyOzlaSyfXSPKvTv7eLnr42jDt7JNdiZmKBidEUXr+LaxfGOPHlgXWvG4z6iTaEyczm6D+xtJtS0zQiDauLOelIrKqF2+eiWjZXNP9/wthHw1SLFaav5vCF/WRTaeYDNsaNSZoPdKAbBXTfKAgH3TeKbhQAH4auszu5NHHpjQUpTM6juw1c/qUl4JuZnLwboWn4e2uL0O1iAS0aR6+amHMpnHIJbZV+Kz1UjwwloTiPM5vCKc2BcNAMQNpoDghvAtH+eytfJ6uMHPkhVNLI+hNoyUOLjznZW8iR10HoEOlDK0xApAtZXMC+9nOQIJoHEHXdSLzY104jETgOGLufQ9MlRkftvRW6QeTr36V09TJGOEwlbyICAZxKhfC+XRgBH/6GGIbPg2PZBFuXC9Viuki1VMXt9zB9fYbURBrdpfOzf/ZbDry4lz0n+3B7Xbg8K/+Jsyybmdvz+PyeDcW/QqFQfFZspan/m3f+qJz6vwBYlsVPf/JrbNvm8qXrfO9PvolhbL0HbDN9Y5FYEK/fRbVi0dAS3/B4w6Vz/LUD2KaNy7M5awHDbbDv+T3MDKdo7Ktfc7dhsCFCdjqLy+/G3xjiv638H5TkTXxWN+/Zf0mdr46jDYc5O3uWQw2HqPOtLlTrD3YTbK7D5ffg/sQ8dBOTk3bVpJLK4IoEcAWWiy3dH8BVl6AyfgtXMknl9ji+nr7Fx6VVxcmkEL4QxoFvIrMTMPRGbRBBd4NTqpnI6uv0NlXTUFlAemKQuYbjgCzPozUehfx4TYw5VQj1INpeqJnALtyZ6xECoXnQGw8hy3mqnKE6PowsmziWB/8TLyC8SyVCIxAkdPRxKgtZ5n75PkITeOvjhHbVRLYnEqDrqydqPWT3fI4ijRGizTGqhQptB9so5CsMn7mF0DUmh2ZJttfR3New6o944dQgV8+M4HIbvPit40Timy9bVipVCoUisVjkvjZAKBQKxVrcV5e1cur//FKtVvnVL39HKjVPLpevTUm6jNoewQdEOBbgpe88gVW1CG1yCbimaWietSc3pZRUilXcPtdiuSrWHCPWvHYfm2XbFFtc7G05gCfoY6Q4R8l9s2ZdYQwzND/N7mQzf/7ynzNfnqfOW7fml7LQNALJSE10Sd+65UnHspm7NIpVrmKl01TSOVx+L60vnUC/Zy2Tb/ce7FwWJOihpeyOtEyKb/wn7PQ0RrIF34nXINaNo59GLoyjH/4OwpzHuXUaZ+IioiuKXBiGagGtcT/CdUc0ehMQ6kIUJ5CRvcjb7yPRccp5RPtJyIyAHkHixUnPokWbENF2RNtxsCpoTQM41QpOPk81I8lfGkWPxPHGcrUMnz+EuKdUrOlabXL1jsfYssfW2Lbg8rkZeHnJAvHoaweJt8W5eW4c3dDQXDqnfnEJTRMMnOzF41u6biFbxuVxYVUtKuXqmp+HeymXK/z4B78gnclx8NAejp84vOlzFQqFYiO2MmXpBf4u8BS1gs/bwD+XUpYfUGyKbSCdTjM5OU1zcyORyMbWDpOTM4yO3iIUDOI2DKbTKSLREFevDrJ//54HFqfP7wH/5qfdKmUTTRO43Kt/hC+9O8To5QmSLTGOvrQPfY2M2CdYts3Jf/2dRZuKX37r31D+eA6v2UXZdZOA00NfXW1HpiY0Er7E+gFuoTyZn5hj9sJNNEOjPDVLrKcZu1TGMa0Vgszd0EjkmS8BywWZOT6IOXwBadugG7WdkZkJrMtv157n4x+i9RxCGD6chTE07xmc6YuAwJm+gla/F63pAMLlRbS/DIAszWNPnsOZOAPuOM7cAhSzoHux3vvf0AIxXPu/gt5+CHN0DKdURE7mqA5dq/WQpRfQow2wAFZNAAAgAElEQVQgHGzHYP69sxjBILGTj6N7l4YqXOEgjc89hpkv4m9eOQm77vtm2hguHZfXxa7j3TT21mMYOmOD00yOpJCOJNYUoXvf0u7Vgyf6ME7rRONBEpvwn/uEfK5AOpMjFg0zOjKuBJlCodhWtpIh+zdADvind27/EfD/AN/Z7qAU24NlWfz4xz8lny8QCgX53ve+i77Gqp9PiMUiBAMBiqUSHV3tmI6DS9cpFEqfUdQbM3N7nvdev4Du0nnma4cJx5Zn1aSU3LoySbwhzOz4fK2R/551OY4jmStUSQTdCCEYmp9eNHItaEO8+8F5fNOSf8R/R/hII48P9G/NS+2u8qQce59bb5+i+cRRDLexzNgVwPC6EZrAsRySR/vJ3byNJ7oyk/QJdwuxpR9IosWacXJzuLr2owUi2MX5O6JPgmZAuBk5O4g0TTACCCGwUzeRlXLtPs2F3rokMoQvXluvNHoNIi1YH/8Q4h3ImRFEshtZTCMLCziZOWSxgKyWKV99C6dSRY8nQTPQPAJXexcy2IBuC6xsDiudRW9cPuXqTUTxJjYvjhzH4fLvbjA5NEvXoTZ6j9ZMej+xtgjH/Egp0TRB4J73PhTxr9unaNs2xUKJQNC/7D2P10Xp39PDrVuTnHzq2KZjVSgUis2wFUG2W0p58K7bvxVCnNvugBTbh5SSatXE4/FQrZqbKjuGwyG+8wdfp1KpEgj4icUiVCpVDhx4cNmxrTI+PIOmCyqlKvMz2RWCTAhB32OdXD81QuvuJrzB5Zk3x5F3rCvGF60r+uoalxm59je1MTx+E7fLw77mdjRNo5yvoBkabu8qfWtrTE/KsffJefYwPljC0zRLQ1/TilP99VE6XzyKbVrY5Qr5sWnMUpWFa7dIHupdPE46DmYmh+H3LSvtSSmpzkxj2QZGy148+58CQEt04nnqb+AsTGDsehotGMeeGMIpjSPHb6AlDyCnxrEXJpHaLfTup5bFJasl7MlhpBaC8YuIWCuYZYi3oIXr0fwRjP6nQXMjgiHkXAW9oRUxP4cWCBF+9Q/RQhE0t5vKdIrMR2cwwkGM6MaN9KVMkYVbc4QbowRX2StZLZpMDs0QbYgwcu4W3Yfblomn5u56nv2WDyEEkcTme8Rs2+bnP32LqclZ+vq7ePqZJeGlaRrPPHt809dSKBSKrbAVQXZGCHFCSvk+gBDiOPDOgwlLsR24XC5ee+1lbtwYoq+vZ9NN+V6vF++dktLjx3dOWaZcqvLOz88yfXsBTQpiiQjJNXrCeg+20b2/ZdWs1lrWFe98f8nIVQhBtD6My2MQiAWYHklx/tdXMdw6j712gODdInCd8mTq4mUGP5pD0wWewNreZ75khPzUPKnLt6jkSnjC/qXpzDtkzl2hMDyKEQyQfO6JJVFmmTjpBTztfdjZNMJxQK9Nthpdj0Fto1LNTHdmDKeQwbl5AaN1D3gSSHsau2BiZfNYU79BizRgdOwFoSF0F6KuF1qO4O55DGd+DC3RjTk9Ay4PwhNC6Drex18B6WBn00izipFoQGg6lVQac2oeX2sDyVdfRGjampm/T5BScvXXF6kWapYXh775GK57RLDb7yLZHmd2bJ62vc2rvs/R5NpWK2tRKpaZmpylvqGOoeujPPX0UdW8r1AoPhO2IsiOA39DCDF253Y7cEUIcQG1ZHzH0tjYQGPj6tNmO5GRoQkW5jL09ncQCvuXPTY7uUBqKkMg7KO+KcqJ5/ev+2X5yZe0ZdvLHPM3a10RbVzquZsdW8BwG1RLVXLzheWCbJ3pycT+fbjrM+i6RnAdiwXHshn/3SWES0Mabpqe2k/oHquH8tQsRiiIlctjl8uLgky43Hh2DVAduYFn137EGkut7dlb2MUq9s0LaE09SN2H5gmjRVvR6ruxLr+DlujAWZhCTzSjBWs9YtbMGHa+jFNxcPWcoHLzBpXrV5BCIgwXnrbOOyJLw4gt9dZV01mG/uKvKU2kiB3so+t7r25e3EhqmcY1krrj16ZwpODQS/tItm48mbtZAkE/u/q7uHTxBiefUmJMoVB8dmxFkL38wKJQPDKYpsngjRFcbhc9PR3b+oW1MJfl7V9/jNA05mYyvPDaiWWPR+tCeAMequUqrd0Nm3rue5v13/n+f1zVumJ+KsPcVIamriTByPKeIyklCLg9OE1bfxPxxjDkZzZl7iqEILKJxnGhCYyAh0o6j78+SrA5sSKTFDm0h/RHF/F3tmGElpfhPN278HTvYj2kZSH8UbTOowjhoIcTuPY+hTX0EbKcx2hLYmdm0VxehOuOgWswjnnxDE4uizk5jhb8CugaEolA1Ba22zbl6RSay8Bzl1+dXalSmprDHQ1SuD2DXa5g+DbekCCEoP/5AeZGZok0x1Zkx/ILRS69PYjb66KQKZL8zvYJMoBypYymQSo1v7geS6FQKB40W1ou/iADUTwanD93lQ8/OAOA+7Xnae9o2eCMzaPrtXKWYzsYq/iXhSJ+XvnuE9iWjW+N8t+92bB7m/VXs66olEze+ck5pISx61M8/93Hl10zPZtj5PIEyc4EnqALz3/41pbMXTeD0DQ6njtAaS6Lty68ut2DZmCaEuvWDIHuDtyxrZmaGg3tYFXBsdEbOhEeLzgSY8/TaC430rZwsimEN4jwLGUnhcuNtE2EbiA0DXdLZ21LgKbjamgmf+MmmXNXELog8cyJRVHmra8jefIg2etjJI7sRb+T0bNNGyHWtrQA8EX9tB7qWP3ncOu4PC4qxSqxxu01dq1UqtwcvkVTcz2DgyOcfPoorjUyjgqFQrGdbN+2Z8UXAkc6tUqSBHmnnnTt6hCXLt5gYP8udu3u3uAKaxOOBnnxtRNk0nnaOlYvs7o9LljDDHa1bNi9zfprWlfcGUb8hOxCgUqxSl1TBLfHheHSqVZMQt7Shuaum8UsVbl9bhTDbRBqCDNxephAIkRr8+pms+WpVG0a07QoTaWQUuJeYxrTLpXIvPsu5vQUwSNHCfTXVi252vuXnn9hjvQvflLL4n35JVyJevRY44prefc/hjUziR4Mo/lrmTl3y5JYcipVhKGDZeNUzaWXVAjav/YcdqWK5nYhhKA4l2Pw1xcQmqD3+f1obhfScZbtoNwIb8DDE18/SD5dJN68+cnMTV3b62HfwC4uX7rBwUN7lBhTKBSfGUqQKbbEwYN78HjceNxu2tqaqVarvPW7D4lEwrz1uw/p7GrF7V7HCX4D6hvj1DduXIK617YCWDMbdnez/mrN316/m5OvHmR2Ik1LTz3ZhQK//cFHWFWb3YfaGBiI8MTXDlLKV0i0RGF87d2T61FMF5kdSRFrieKP+Jm4dIvZG5M4loOhgzfoZW5wilh3I6FVypyBzhaKt6fRPG6y126SuXidQFcbdcf2rTi2dOMGuVOnQBPgSLxtbeiB5dOohdOnqA4PIVwGpRtXcCVWF5Sa24u7tWvNnyu4u7vmpu92421c+Xrod02EZsbncGwHaUqmLt1iZqRWFux/fh/RdUx77yUQ9ROILmXxUpNpMgt5Wrrq8fru//MH8OTJo5x44vDWbE4UCoXiU6IEmWJLuN3uZRYYhmGQSMSZmZmjvr7uvtYrbZXVbCs0TayZDbu3WX814o0R4nea+GdvL2BVbVxunbZ3/hb84hKRtuNE1ihPmhWTzFyBcDyA2+vCcRw0TcMybXRDQwiBlJKLv7xItWRy/e1r+ANeqrkSbo+Gy+si0honPzEPAsrZAv54EP0e01t3JEjLq89gZvJM/uIdjFCQynRq6XUxLaRto3s96IEAms+Hk8+hh4IIt5vC0DB2Nofm9VIeGcXJpREeD9K2cDe1LXuu/I1h8ldu4OtqJzzQv24fle7xEDm4d1PvXaS1jtT1SYQmEC4Dx3bQNMhNZ7ckyO4mly7w5k8+xrZsJsfmeOrlgxuftAFKjCkUis+aLX97CiG+B3wdsKkVev5KSvnvtjswxaOBpmm88tUvMT+XJl4XfSBfZPdmw9ayrdA0bcNs2Gaoa4qw+0gnpakxwrcugVy7PCml5MOfXWRhNksoFiAU8TMzNkcoHqA4XyTRHuPgl/cgNAFCIJHkZ3OEogFcQS/Ne5tJdCcJJsNkxmYZfvMyY+/dIHVtgpajPYQaoytKkkY4QHh3F6XJWSKHa+LYKpSYefND7FKF+GP7cWyoOH5cLY3EXnwJM5Nl4d1ToGlYqVnCB/djFdyEX3gVVzyOp7V98frScchduoYrFqF44ybB3i70TTTjbwZ/XYh933y8JmTLJvm5Ao4jSfbUXk/LtJkZSeHxualr3ZxAcxyJ40g0Xcc2rW2JU6FQKD5r7ied8ayU8g8/uSGE+D8BJci+wHg8bpqat9Y/BZBeyPLLX7yNEIKvvPw04fBKA8/VsmFr2VbA5rJha3LH3FULJBl4vBtkF8ytX560LYfMXIFgxM/cRIbsbI665ihnXr/EsZcHmB2dp5grE4z6GXhxH3Njc3Qd6WD87C38UT/N+9tweV0MvnmFmWsTWLki3pCXsXfGKc/naXtiF4ldywcnhBBED+witKcbp2xSzRawMjmsQgnD76U0Pk32/EXMYoXK3C1K07PIcoX84BjStvG3N2GmM7iT9QT27Ufcs71BaBre1iZKYxN4kvEV+yW39JLaDjPXJ6kWKzTvb8dwG4vN/J6Ah4FXDy07fuj0CB/95AK5hSLP/80n6TnczviNGWzTom13E4Zr5SBAJB7kiRcGWEjl6OrfviEThUKh+Cy5H0HmEUJ8FbgFtPLJN6FCsQ6O4yCEWFb6Gh4eI58v4jgOIzfHOXCwf8V5q2XD6kMrbSu2IcBN7568G8Olc+DZPkYuTnDk+X6mb6ZYmMqy58memjhrieIP1bJL/ogf//5a31NTfzNCE2iaRmE+z8JYikhLjPlhE188ADIBmsAsrr782syXGPvlaeYuDeGNhYj3d6AHAhRn54kc7Kc8NUnx9hS634fu8WCZFt6uLoq3JrF9UUJHj+Btql8mxhzTIjt4C4Dwgb2E+vvQfd4NjVzXY/LSOO//yzcwSya9z/Rz7Hsn1z2+kC6Sur2Ay21w7d1h/FE/H//6CkLUxG/vofZVz2vtbqC1+9Hx21MoFIp7uR9B9neBbwH7gXHgv9nWiBSfO2Zn5/n567/F43bz8qtfInTHQ6u5uYHzZ6+h6zqNd5rBN2PiKoRvmW3FtvhErWPuutH0ZGtvA629NTHQ1t+EWTbx+N2YFQvDra9aOtXvsnzwhnwEEiEKc3l6ntlD4742pi+O4pg2iTUyPpV0HrNQxCpVkRGH4vQ8ht+LdPtZuDZO06tfJtDVgSsSxNtUj6yaFMenKM3lMfwBciOT+NuWMonScZh86xxzZ6/hS0YRhkGkr23V516P7FQaq2wSbY0jJYyfHSEzsUCoPkI+ldvQ12v3iR6Gzo5jmxat/Y2Lx0pY007EcRyuXRqlVCyzZ38XPv/2lFcVCoXis2TLgkxKWQT+4pPbQoh/APzj7QxK8fnixvVhLMuhWMgycXua3f01QdbYlOS7f1Rzb/f5vJs2cYVVbCu2yhq7J9cqT0opufjRECM3Jtl/rJfOXSt3UkLNS00P1ExVV915udo5Lp09Lx3Eqpi476xLaj68vn2ILxnF3xinspDDEwkQ39NJ+voYroCPaqaA5nETO7zUaC88buKPH6KaLWNXTTyxyLLrFafmmb80TOF2Cmk5aC4dq2Kiu/RNZ8jys1mu/+I8jm3TfLADV8iHWbEIt8Txhnzs/8bGzveBqJ9v/L3nKWRKhBNBhCY4+sIebNuhrW/1DNjU7RQfvnMRXROYpsXxp/ZvKl6FQqHYSdxPU/9/uPsmcAglyB55ZmdTvP76rwkG/bz00vP4/f6NT9okHR2tXL0yiM/nJVm/VF50HEnB1kgEaz1KG5m4ktf4+c/eJFlfR2trI++89RHxRIyTT23RvPM+ypPFfJnLZ24SrQtx+u0rdPQ1bk9m7g6ari2KsfWwqxa2aeMOeGh/4Rhtzy+JHHc0SH5smuju9lVjcwX9NL5wAqdcxR2vGapKKcnemqU4mcIdCRLqbiGyu43CQpGxd98m1FxH69MDaPqSKJu5dIv0eIrG/R2EGqNMnB+jlC4QaoxilitohoFVsQg2eNBcOk0DbfQ+tZu6js1ZhLh9btx3WVe07VrpjXY3hstACIFlOXg+Rb+bQqFQPEzup2SZlVL+l5/cEEL8822MR/GQuHjxMpZpMnF7itu3J+nr69m2a7e0NvK9P/kmmiYWPcpWa9bfyMT1r37xK9ILGcZGb3Pj2jCWbTN7dZ7e3g5a21bPWK3KfZQnPT430boQC6ks7T3bK8bWozCfZ+yjmmFssreBG7+6gFms0vnkLuruWh9lVUwWbs1hVaEusHZbpyvoh+CS2M5PzDP+uwtI6RBqbaCps4FgWwPX/vO7+JMR8hNzWMUy7lDtnEquxO0zw3iCXsbeu0b7yT1M3DG3TY8vkE+XkY7DnlcP44sFaTvchSfoIdm99aGPzVLfGOfF105QKVdpXcNQWKFQKHY69yPI/qd7bv/D7QhE8XDp6Gjn+rUhfH4fdXXbuxsQav5lc4UqCZdc17piPduKeDzCxMQ0Xq+bjq4WLpy/gc/vJbTKdOYytlieXA3D0HnmlcMMXhkn0RDZ8PjtYvTUMMV0gcxEGk0TmPky7qCXhdFZ6u5qYs/eniM9Ootm6Mxdu03zsd5NXb8wmyE7lSYQD+JNRAl1NjF/cwbN7yE/uUC0qwFXwItZqoIA3W3gDnqp5EpEO5K4fG4Mt4FtWlQtSawjQbVkUi2ZDJ++RGYmiz/io64jsaxvbjNUylV0XVt1jda9NLV8ivK1QqFQ7ADup4fs5j2357cvHMXDoru7kz/+k+9gGAZe7/Y2RW/FumI924oTTx6hs6uNQNBPJBJi164evD4PgcA65dX7nJ5cjavnR7h0ZghN1/jKN06QaNj62h7bshenKzeDPx4kM7mA4XERbY1TmMlQzhSo39O67Dhv2I9m6EhH4k+ENo7DtMlMzDF1fgR0A0tqJPrbyU4sMPr2FYQQ1O/toPloD7npDIO/uYjQBLtePMCulw5TyRbxxUPoLp3+Vw7VBJumMfjWVcINEUINIfJv5/GFfZSyJeyqvSVBNnUrxbu/uIDbY/Dc144SjGxfCV2hUCh2IpsWZEKIv7/K3RngtJTy7PaFpHhYBIMbZJruk+2yrtB1nZbWpX6iusQmjEM/xfTkvZRLFXRDx7EcLMte91jHcTjz5jUmR+c4eLKPtr4G5qcynPrZRTx+N4+/un/RDiM7l6eUK1PXElvhs9V+tJNYWxyP34M37GP3Vw6uOqnoT4TZ9dpjOJaNL1Z7H81SlfTtefyxAIG6JZEmpWT4zUssjMywMDxN475W/HUhdLexqE2llGh3erNyU2mEAMeyyc9maehvwfC6mB2ewSpb1Pc14IvW1jId+fbxxefpf3Y34xdv07a/Fbd/a71dt4ZmMNw6xUKF+dmsEmQKheJzz1YyZMfu/PqrO7e/CpwC/mshxH+UUv4v2x2c4tHkoVlXwLaUJ9fi4OO7cLkNgmE/9U3ri8HcfJFbN6YJx4NcPnWTtr4Gxq9Noeka+XSR9HQWf8hLMVPigx+fw6patO1pYuCZXcuuo2kakXv2Wq71WnnuWdA99NbVWnbNZbD/944tDg1I2yE/kyHUGMOqmCR2tyzaa4Sa43Q9uxe7ahPrqpVE453JWhnT0Ii21MrZ6dsLXH/jKggwyyYdRzuZv73AjfeHiDVF6T3RTaI9QaJ9a6XE9FyeUqFMe18jEyOzRGIBEqvs9VyParXK5MQMkWiYaDS8pXMVCoXiYbEVQVYHHJFS5gGEEP8D8JfAM8BpQAkyxWdrXXEv21ieXA1/wMuxk5vb2egPe4nEA2Tm8/QdrPl5NffWMzE0iy/kJVpfy1hVKya2ZePyGJRy5fuKq5QpcvPUTbxhHx1HOhZLg1bVxHAbOJaDYzmLxxfm8pi2pHx7jp4v76fhrvKnEIJY5/LGeF80wP5vPr54O5fKMfLxCIV0kUDMX5u1BgY/HEY6kttXJmnsayCc3Lh0ejfZhQK//uEpzKrF7oPtfO1vPL3CTHgzvPnG+wwPjuD1+/j2d766fklboVAodghbEWTtwN224SbQIaUsCSEq2xuW4lHh3j2TG1lXbGs27F62sTz5aXG5DZ7+xhHKxSqBcK00mWiJ8fyfnEDTxKJoiiRD7Hmyl2wqR9fB1Y1YzYqFWTbxhb2rvnZjZ0bJTGWYG00RbY4Sb61lsXqe3sPM9UnCDWG84aXs2eDvruLyeUAKIq1b23LgOA6XfnUJ6UjQBO1HOmneW8uuxZpjjF+6jTfowRvc2MLjXiplE8u0cHtd5NKl+95Fml7I4Av4qJSrVCpVJcgUCsUjwVYE2f8LvC+E+BG1/xO/Bvw7IUQAuPwgglPsbO7HumIbn3xl1msby5PbgeHSCUaWlxFd7uV/5YQQdOxbe/dmpVjlgx+fpVyo0Hesc1XR5o8Fmbk5i+428NzlZeaL+Ol4bKV9ieF1MT+WIpQMo29igvHeeF1eF8WFAtGmKM17W9BdOsNnxkhNLNB9rJOmvoZlPmKbpa4hzP7jvWTn8uw9umSMOzM9T7FQoqWtAdcm4n3uy09y5uOLtLQ0Eo9vffBCoVAoHgZCSrn5g4U4CjxFTZC9LaX86EEFthmOHTsmP/rooYbwheLebNh0tsSX/u0foPlGcUod/PaPa9YV9/aQPYBAVi9NfvLYNpQndwrzkxlO/eQ8/pAPl1fn2Cv7mRyexRf0kmit9bE5jkNuJofL68IfXT8bVFgocPZHH1NMF+k72Uf70U4G371BamSO7uPdNPatb8IKUClUSE+mCSVC+KN+Cuki7/2n0/jCPmzL5pk/Or7muWbVolo2CYQ3twJ3PpXhr3/4BqZpM3Cgl+MnD2zqPIVCodiJCCFOSymPrfbYVm0vLMChtlrO/LSBKR4dtsu6YltYqzQJD6U8+SCJJIM0diVYmM6w50g31z8cYfTSbTRNcPwbh4jWh+80/m/OG62SL+PYDqFkmEqhQilTYmZwhmBdkNHTI5sSZJ6Ah4beBmbH5jj1k/OEEyHcPjfFTJGmnrVf+2KhzOv/9l3Mqs3hp3ez6+Dqi8Lvpmqa2LaDy6VTKqnOCIVC8fllK7YXfw/428B/opYh+wshxJ9JKf/pgwpO8fC4Nxu2XdYV9xnMA5uc3Onohs7B5/cs3p4cmkXTBEhqfVxbJNIYpWF3I+VcmdaD7XiDXkKJILlUnua9LTiOg7Qlumtjz7DBj0ZxeQzmxuc58Pwe3F4XocTa1ikf/PIip393jUhdkGgitClB1tBYx4mTB8mkcwwc7NvSz6pQKBSPElvJkP0t4LiUsgAghPjHwHvApxZkQojvAP8jsAd4/GGXQr/obDYb9sCsK5YH80AnJzdDeiFLsVSmsTHxYEqwW2DX4114gx78YR/RhtUtHUYv3mbyxgxdh9to6Fzet6e7dHY9tXvZfQMvH8AsmWgunY//6iz5hSJ7nt5FwzrZLoCGrgTDH48uxrJR31g+V6KhvY7UZJqO/o0zcRfOXWP81hSHjuxhz8D6y9YVCoXiUWcrgkwAd7th2iwOvH9qLgLfAv6vbbqe4lOwlWzYtjfr38tDnpxcmM/wox/8CtM0OXx0H8ce2//An3M9PH43fcc613y8nK9w/YNh/BEfl968Tn3HxkJZN3T0kM7kjWku/PoKhkvHcBs09NSvu1mg61AbDd0JPHfWJ23E0Wf6cbldPPf1I+w6sH52LL2Q5dQH5wkEffzujVP8wfe+uuH1FQqF4lFmK4LsXwIfCCF+QE2I/R7w59sRhJTyCqxteKl4sNxbnnxo2bBaMDuqPDkxMc17731MwO+jqXnn96YZHgN/2EcxU6KuNbal98ksm2hCYJZNXG6d2bE5Lvz2Kv6wjyMvD6zIgAkhCGzBQb+5I0lzx+beP6/Pgz/gI5ct0t27uh2IQqFQfJ7YtCCTUv4TIcQbwElqguz7amXSo89q5cnPzMh1ZTAPvTx5L6nUPM3NSTLpLM2fsSCrlKtomrbCKmM9DJfOY68doJApEarbeBWWbS3tmKxrjdHzeBdm1WLXyT5Gzo/j8rrIzRXIpvIk2rZ/6fxaeL0eXvvGl8lmciTrH1BvokKhUOwgNvyXXgiRozZVuXjXXY9JKeWmdpMIIX4FrNY48g+llD/azDXuXOfvAH8HoL1946ZgxRL3ZsJg9fJkQ/gzyobdyw4ydv2Ejo4WWtsa6exqpbOrdeMTtomZiXnefv0cuqHz7FePEN2EuPoEt8+9YT+XlJLLb91g8sY0nQfb6D3WSSAW4MR3H0c6EpfHoFo2ufTGdQJRH8F44NP+SFsmGPQTDCpTV4VC8cVgQ0Empdza/pO1r/PCNl3nz4A/g5oP2XZc84vAapmwmmP86tYVDzwbVgtqR5UnV6Ozq43v/uHX0HUNv39z3lnbwcRoCiEE1bLJ3HR6S4LsXoqZEuffuIbh1hl4ZhfegIdKocrk9WkijRFGzo3TfaQdTdOWLTdv6EoSb46hGxqavvVhBtO0GBm8jcfroa2zQbUkKBQKxTo83JExxQPDcSSzuQqfGP8uZcL+ERed/5nZfG1v4iflSV3oHG08/OCsK1YGWCtP/pM98K++WrstRK08+fevwH/xkx1j7BoKBT5TMQbQ0duIbmgEIz58AQ9XzoywMJu9r2uNX58mP1cgNb7A7Ng8AG6/i0RHnMkb07gDbsyytewcs2pRzJVxeYz7EmMAF88M8u4bF3jj9Y+Ympi7r2soFArFF4WtGsM+EIQQ36Rmn5EEfiKEOCulfOkhh/XIshUTVyGEKk/uQGLJMK/98VNIKfnZv3+PSrnK9fNjvPpHT26ppwwgUh/EkQ6GoRO6U3rUNI2+x7uYGE5RyJS48OY1jr1SmyAtFyq891j115cAABbxSURBVFfnKOUq7H2im86Blvv6GRxHomkCKeV9eaYpFArFF4kdIciklD8AfvCw4/i8sFUTV1We3JlomobjOIu3Jfcnaho6Epz89lGE0PDfWXR+54LouoamC6zKUoaskClRzJbxR7xM3kzdtyAbONyL1+fG63PT1Jogm81z6eINEnVR+nZ33dc1FQqF4vPKjhBkik/HjrKtWD3AHTc9+aigaRpPv3KI2yOzNLXVbTk79gmr2VMEon4OvtBPZipHa38j5UIF3aUTSYaob4uzMJNl35O99x27x+Ni38Gl5ebvvnWaqakUlyybWDxKIhm772srFArF5w0lyB5xdpRtxVqo8uSnIhIPEonff1O/bdncujaFZui09tUvM3lt7EzS2Jlk/MY05968hsfn5smvHeSxVwa2I/RleH0eqhUTl8vAMDZezaRQKBRfJJQge8TYzI7Jh2ZbsRSkKk/uIIbO3eL8G9dx+10YukZz70oRPHUzhcfnppSvkJ0v4A9v/xDDEyeP0NrWRCgUIBrblFuOQqFQfGFQguwRYivN+g8tG6bKkzuKatnk7G+vMnxunERLbNmys0qpysV3BnGkpKWvnvmpDPHGMPHGyAOJxeNx09vXwfDQKP/mX/2a9o5Wnnn2iYe+H1ShUCh2AkqQ7WA2kw1br1n/oaDKk58pUkomR1LYtkNzVxL9HouKYq6ML+il92gHQkBj15JIvz04w/jQDEIIInVBXvzTJ1ZkUzMLeVwuA3/Qy3bx/vun8fq8XL06yL6BfpJJ5cSvUCgUSpDtUBxH8kf/4n1Ojy5wtCPGv/vbJ3Zes34tUFWefIBUylXMqkUwvLpj/eRIind/dh5pSxLNURrb6+jZ34rb6wIgFA/QvqeZ1Pg8+072LstGBSK+xc9LMOZf8dm5eX2C99+8iGHovPj1x4nWbYtHNN3dHZw9d5FYLEo4fP+9cQqFQvF5QgmyHcK92bC5QpXTo3PYIs/p0U8e22HN+qo8+UDJZQr88scfUClXOfHsfrp2rbSfsC0bJOTSReYmM2Rmczi2w74TtelGXdc4+OyuVa/f0F7Hs986ipSSaHKl2JqdWsDl0qmWTbLpwrYJsuMnjrC7v4dAwI/bvf6KJ4VCofiioATZDmC1bFg8YFDX++cUtCECTg/xwMsPz8R1LVR58oGSWchTKlTwB73cGpleVZA1d9dz6GmT2dtpbg/NYJk2Lo9r088RSaydodo90MH8bAZfY4yGlu1bLC6EIBaLbtv1FAqF4vOA6qbdASxlw7KcHp1nrlBlobJAxRhGCIeKMcxCZQFYyoY9FDHmOJCfgTvrmBbLk5qhypMPgGRjjMbWWuZzz8HVjVR1XaP3QBsnXh6gqTtJLlPi4geDfPSbyxRz5U/1/JF4kJd//0meffkIHq/KZCkUCsWDRGXIHgL3lidXy4Zpoo5D9Yc4O3OWQ/WHqPM+5MZnVZ78zPF43Tz/2mObOlZKSWp8gURThNO/vYpjOWiaxpHn+h9wlAqFQqHYDpQg+4xZzbpiMRsml7JhCV+CP39JlScVUK2YfPjmZfLZIsefGyCWWNnLpWkaHXuauPzBMJFEEKFp+EKehxCtQqFQKO4HJcgeMJu1rlgtG/bQmvVrgavpyR3CzMQC40PTePxurp4b4Ynn96963MGn+th9pINivoxVtUm2bNynVciXKJcqxOrCyg9MoVAoHiJKkD1AtmRdsZOyYao8uaMIRfy4vS6qFZNk89r7H4UQ+AIefIHNZcZy2SKv//AdyqUKB47u4uCx1acxFQqFQvHgUYJsA7LZLKlUisbGRvz+1b2gPuGRtK5YDVWe3BTVapV0OkM8HsMwHtxfpUg8yMvfeQKzaq2609JxHFJTGUAydGmcfLbMY8/tJVq3vsdXIV+iVKrgD3iZmZp7QNErFAqFYjMoQbYOpmnygx/8iFwuR0NDPd/+9u+vmb16ZK0rasGr8uQWsW2bH/3op6Rm52hvb+Wrr730QJ9vPaf8wYu3OPPODbLpOzYZYS+p2TTRRIiBo920dTUsHmuaFqmZBcKRIMmGKP37OknNpjlyfM8DjV+hUCgU66ME2TqYpkmpVCQYDJLN5pBSrimgVsuGCSO3arP+jsqGqfLkfVEul5lLzVNXF+f2xBSO4zy0HqzsQhHDpWFWLIau3kbXNfxhD09+5QAfvnGJ1s76xc/t2789w9jIFIGgj9e+9QyPPzXwUGJWKBQKxXKUIFsHv9/Piy++wODgEPv3Dyz7wn0krStWQ5Un74tAIMDxE8e4cuU6zz178qE2xPcf7qRaMYk3hPGFPUgpyedKZOYLtHYml/0nYm42TTDoo1goUSlX8Sp/MYVCodgRKEG2AT09PfT09Cy775G1rri3NAmqPPkpOHz4AIcPH3jYYaDpgl0H24klQrRdbySfKdHZ14hl2SvWHZ187hDnPr5B/0AXkajaI6lQKBQ7BSXINuDeTBjw6FhX3M1apUkhVHnyEaZYKPPzH7xHsVCm/0AXR59Y3wi2qSVJU4sS3QqFQrHTUIJsHVZr1Nc08WhYV9zLWqVJUOXJRwDbthkdnkLXNNq6GhZLpMV8mWKhTCDkY2ZCTUoqFArFo4pyglyH1XZMAtT5atYVutA52nh4hXXFjhBjau/k54qha7d5+1dnePMXHzM6NLl4fzwZpv9AFx6PiyMbZMcUCoVCsXNRGbJ1WK1RH9iZ1hV3oyYnN428I1h33Ht4D7ZlL/7ZcZzFP2uatmGZUqFQKBQ7HyXI1mGtRn3YQb1hq6EmJzfF/Pw8P/nr1xGa4LXXXiEa3XjV0MOid0/bou1KR0/zww5HoVAoFNuMKlmuQ5231qivC33n2laAKk/eJ0NDNymVS+TzBUZGRh92OOvichnsPdjNngNdGIb+sMNRKBQKxTajMmTrIITY2Y36oMqTn4K2thbOnj2Hy6XT3Nz0UGJwHIdMOk8g6EMIwccfXqZSqXLs+D78Ad9DiUmhUCgUnz1KkG3Aji5NgipPfgoaGxv50z/9HgBe79qriVZjfn6BX/z8DbxeDy9+5TkCgfX3nK7Fh++e5+rlm0TjYfbu6+Hi+UFchoHf7+XYCeWir1AoFF8UVMnyUUOVJ7cVr9e7ZTEGcOXKDYrFElOTM4zfmrjv5x8bnSQaD5Oez/L/t3fvQVaX9x3HPx92BXS5rFwyhsuKEQZlELRFqlw0JqSSmmrQdNo0aZwkU8bOdDqdTGdSh0ky09ZJUzOdTpteYo1jWtE6RW1SnTSS5g+MLVWiCFhAqYaLSCDAEtdluex++8eeNQvs2fue7++cfb9mmDm/33n2+X13fwN89nme33lCofq6OrW3d2jipIZB9wkAqD6MkFUTpicLY+aMy/Tqjl26aOxFOtl2Svv2vqXZTTMGPK19/Q3X6MXN23XVgis0b/7lmjqtUWfOtOuy9xd0vSIAYES467H/arRkyZLYsmVLdhmV03JY+surO6cnx9RLX9jJtGSid95p0U/e3K/nnntBlrTqV2/SvHlXZJcFACgo2z+OiCU9vceUZZExPVloEyeW9oK0FJZOtZ3KLQgAULWYsiwqpierwvyrrlRbKYjNv+rKPlp3am09qQipgacoAQAlBLKi4unJqjB27Fhdv/Tafrc//NOj+t4zm6To0Ec+ulIzZnAvAQBMWRYH05OjwuHDR9XeflYh6dDbR7LLAQAUBCNkRcD05KjRdPkMvb77TbV3hK68sim7HABAQRDIioDpyVFj0qQJWvOJW7PLAAAUDFOWGZieBAAA3TBCVmlMT9a0s2fP6ujRZjU2TtS4ceOyywEAVAkCWaUxPVnTNj77nPbve0tTp16qO9bcqvr6c/+Ktbe3y7bGjGFwGgDwC/yvMNKYnhw1Ojo6dPDgIU2Z0qhjx5p16tTpc95/++3D+ud/2qAN//q0Wlre7bMvAMDowQjZSGJ6clTp6OjQsuXXa8e2nVp6w3VqaLjknPd37dyjuro6HTverEOHDmvu3Au3WTpz5oy+//0f6uDBQ7rllpWaN+8DlSofAJCIEbLhdP5oWE/Tk9IvpicJYzXj6NHjevSRJ/XiCy/rQ6tWaPHiBRe0mTv3cp0+fUaTJkzU+943rUw/x7R/3wFNnjRRL7/0ykiXDQAoCEbIhktPo2Fd05Nd55ierFl79+7X6dNn3ns9deqlF7SZ3TRTn/6dO1VXV3fB2rIujY2TNWXqpTp+rFk3Lls6ojUDAIqDQDZcyi3WZ3pyVGhqmqUd23dLEWpqmlW2XV9PXo4fP1533XW7Tp06pYaGhuEuEwBQUASyweroODdolRsN4+nJUWHatCn67U+tkaSyo1/9VV9fP+Q+AADVhX/1B4PF+ugBIQoAMFgs6h8MFusDAIBhRCDry/lPTkp8lhgAABhWzLH0ptzUpM30JAAAGDaMkPWm3NSkxPQk3tPa2qrm5hPZZQAAqhiBrDdMTaIPzc0n9PjjT+qxxzZo587d2eUAAKoUU5a9YWoSfTh27Lha3z2phoZLtH//W7r66vnZJQEAqhAjZH1hahK9mDnz/ZpzRZPGjhur665blF0OAKBKMUIGDMG4ceN02223ZpcBAKhyjJABAAAkI5ABAAAkI5ABAAAkI5ABAAAkI5ABAAAkI5ABAAAkI5ABAAAkI5ABAAAkI5ABAAAkI5ABAAAkI5ABAAAkK0Qgs32/7V22t9l+ynZjdk0AAACVUohAJmmjpIURsUjSa5LuTa4HVaitrU1HjhxRR0dHdikAAAxIfXYBkhQRz3Y73CzpE1m1oDq1tbXpiSeeVHPzCV1zzULddNPK7JIAAOi3ooyQdfc5Sd8r96bttba32N5y5MiRCpaFImtpadGJEz9XY2Oj9u3bl10OAAADUrFAZvsHtnf08OeObm3WSToraX25fiLigYhYEhFLpk+fXonSUQWmTJmixYsXyZJWrFieXQ4AAANSsSnLiFjV2/u275b0MUkfjoioTFWoFWPGjNHy5cu0fPmy7FIAABiwQqwhs71a0hcl3RwRrdn1AAAAVFJR1pB9Q9JESRttb7X9D9kFAQAAVEohRsgiYm52DQAAAFmKMkIGAAAwahHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhHIAAAAkhUikNn+U9vbbG+1/aztGdk1AQAAVEohApmk+yNiUURcK+lpSV/OLggAAKBSChHIIuLn3Q4bJEVWLQAAAJVWn11AF9v3SfqMpBOSbkkuBwAAoGIcUZnBKNs/kHRZD2+ti4jvdGt3r6TxEfGVMv2slbS2dDhf0u7hrrXKTZP0s+wiMCy4l7WB+1g7uJe1I+teXh4R03t6o2KBrL9sXy7pmYhYmF1LNbK9JSKWZNeBoeNe1gbuY+3gXtaOIt7LQqwhsz2v2+HtknZl1QIAAFBpRVlD9ue250vqkLRX0j3J9QAAAFRMIQJZRNyVXUMNeSC7AAwb7mVt4D7WDu5l7SjcvSzcGjIAAIDRphBryAAAAEYzAlmNsP2Q7cO2d2TXgqGxvdr2btt7bP9xdj0YOtu/YftV2x22C/VkFwbG9v22d5W2+3vKdmN2TRi4Im7ZSCCrHQ9LWp1dBIbGdp2kv5X0UUkLJH3S9oLcqjAMdki6U9Km7EIwZBslLYyIRZJek3Rvcj0YnMJt2UggqxERsUnSsew6MGRLJe2JiDci4rSkf5F0R3JNGKKI2BkRfIh1DYiIZyPibOlws6RZmfVgcIq4ZWMhnrIE8J6ZkvZ3Oz4g6VeSagHQu89Jejy7CAxO0bZsJJABxeIezqX/5oa+9Xd7OBRff+6l7XWSzkpaX8na0H993ceIWCdpXWnLxt+X1OOWjZVCIAOK5YCk2d2OZ0k6mFQLBiAiVmXXgOHR1720fbekj0n6cPDZUYU1gL+Tj0p6RsmBjDVkQLG8KGme7Stsj5X0W5K+m1wTgBLbqyV9UdLtEdGaXQ8Gp4hbNvLBsDXC9mOSPqjOHex/KukrEfGt1KIwKLZ/TdJfSaqT9FBE3JdcEobI9hpJfyNpuqRmSVsj4tbcqjAYtvdIGifpaOnU5ohgu78qY/sJSeds2RgRb6XWRCADAADIxZQlAABAMgIZAABAMgIZAABAMgIZAABAMgIZAABAMgIZAABAMgIZAABAMgIZgGFluyW7huHQ/fsYju/J9hzbJ21vHWpfvVzjYttbbZ+2PW2krgNg+BHIAIxK7lTpfwP/LyKuHanOI+JkqX/2PwWqDIEMwIiw/QXbO0p//rDb+S/Z3mV7o+3HbP/RIPufU+rn27a32d5g+5Ju7/+b7R/bftX22m5fs9P230l6SdLsntr1cd2e+r2+VMN42w2l9xb2s/4HSz+j9bZX2X7e9uu2l5a7Xul8g+1nbL9S+vrfHMzPEUAxsHUSgGFVmt67WdLDkm6QZEn/I+nT6tyf80FJN0qqV2co+mZEfH0Q15kj6U1JKyLiedsPSfrfrr5sT4mIY7YvVuem7TdLmijpDUnLImJzuXYRcdR2S0RM6Pqeur0u1/7PJI2XdLGkAxHx1R7qfToiFnY73iPpOkmvlvp6RdLn1bnZ8Wcj4uO9XO8uSasj4ndL/U2OiBOl1z+RtCQifjbQnyuAHIyQARgJKyQ9FRHvRkSLpCclrSyd/05pau0dSf/e9QW2P2D7W7Y3lI4bSqNf/2j7U2Wusz8ini+9fqTUf5c/sP2KpM2SZkuaVzq/tyuM9dGunHLt/0TSRyQtkfQXffTR5c2I2B4RHeoMZf8Znb8lb5c0p4/rbZe0yvbXbK/sCmMAqhOBDMBI8ADPKyLeiIjPdzt1p6QNpRGg28t9WU/Htj8oaZWkGyNisaSX1Tl6JUnvvldM7+0uLL739lMkTVDnKFzZPs5zqtvrjm7HHZLqe7teRLwm6ZfVGcy+avvL/bwmgAIikAEYCZskfdz2JbYbJK2R9JykH0n69dJaqwmSbuulj1mS9pdet5dp02T7xtLrT5b6l6TJko5HRKvtq9Q5ddqT/rbrT/sHJH1J0npJX+ujn/4qez3bMyS1RsQjkr4u6ZeG6ZoAEtRnFwCg9kTES7YflvRC6dSDEfGyJNn+rjrXSu2VtEVSuam2A+oMZVtV/pfHnZLutv1NSa9L+vvS+f+QdI/tbZJ2q3O6ryf9bddre9ufkXQ2Ih61XSfpv2x/KCJ+2Ed/femtvmsk3W+7Q9IZSb83xGsBSMSifgAVZXtCRLSUnojcJGltKcBNlXSfOtdhPSjpryV9Q1KbpB9FxPrz+pmjbovki66S9bKoH6g+jJABqLQHbC9Q51qob0fES5IUEUcl3XNe289WurgR1C5psu2tI/VZZKUnMf9b0kXqXIcGoEowQgYAAJCMRf0AAADJCGQAAADJCGQAAADJCGQAAADJCGQAAADJCGQAAADJCGQAAADJCGQAAADJ/h8Z+Wmob+bqsAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXyU5bn4/8892UlCNsIOISCSQBIDJBg2AUVAUUSBg2sVFY7btz2n34On+qsV2/qtrb6sVbvZKli1co4FLApVXEAQQQkSVHaBIAiSkBDIvsxcvz9mMmaZhMkymcnM9X69eJE8zzPPfd95ksmV696MiKCUUkoppbzH4u0KKKWUUkoFOg3IlFJKKaW8TAMypZRSSikv04BMKaWUUsrLNCBTSimllPIyDciUUkoppbxMAzKllFJKKS/TgEwp5beMMQ8YY3KNMdXGmBVNzt1tjPnaGFNmjHnHGNO/wblpxpiNxphzxph8F/f9hTHmS2NMnTFmmccbopTyexqQKaX82Ungl8BLDQ8aY6YA/w+4DogHjgKvN7ik3PGapS3c92vgQWBdJ9dXKRWggr1dAaWU8hQRWQ1gjMkCBjY4dS3whojscZz/BfCtMWaYiBwWkc+Az4wx01u478uO193i0QYopQKGZsiUUoHIOP41/BwgzQt1UUopDciUUgFpPfBvxpgMY0wE8DNAgB7erZZSKlBpQKaUCjgi8gHwKLAKOAbkA6XACS9WSykVwDQgU0oFJBH5vYgMF5He2AOzYOArL1dLKRWgNCBTSvktY0ywMSYcCAKCjDHh9ceMMWnGbjDwAvA7ETnreJ3F8boQ+6cm3BgT2uC+IY7zFqD+fkFd30KllL8wIuLtOiillEc41gh7tMnhx4BngM3AMOxdlcuBn4qI1fG6qcDGJq/7SESmOs6vAG5vcn6RiKzotMorpQKKBmRKKaWUUl6mXZZKKaWUUl6mAZlSSimllJdpQKaUUkop5WUakCmllFJKeZkGZEoppZRSXqYBmVJKKaWUl2lAppRSSinlZRqQKaU6lTGmrAvLshpj8owxe4wxu40xPzbGWBqc/6SV18YaY+7rmpo2K3uIMabSGJPX4PMOb9tkjIlwfD1qjDG9Ol5TpVRX0YBMKdWdVYpIpoiMAq4ErqbByvwiMqGV18YCXgnIHA6LSGZn3lBEKh33PNmZ91VKeZ4GZEopj3Bkq75y/PuPBscfMcbsN8a8Z4x53RjzX51RnogUAEuAB4wxxlFWmeP/SGPMOkcW7StjzELgCWCYI6P0pOO6N40xOx0ZtyWOY0OMMfuMMX9xHN9gjIlwnPuBMeYLx31fadDGW40xnznu/ee27HNpjBlqjNlljMl2lL3fGPOyo5x/GGN6tFa2Uqp7CvZ2BZRS/scYMxZYBFwKGOBTY8xH2Df5ngeMxv7+8zmws7PKFZEjji7L3sDpBqdmASdFZLajfjHAp0BakyzVnSJS7Ai4dhhjVjmODwduEpHFxpj/BeYZY3YB/x8wUUTOGGPiHfdOBRY6jtcaY/4A3AL87UL1N8aMAFZi3xczzxgzBBgB3CUiW40xLwH3GWP+5apspVT3pQGZUsoTJgFrRKQcwBizGpiMPSv/TxGpdBx/q/4Fxpih2IOMGBGZb4yJBP4A1ACbROQ1N8s2Lo59CTxljPk18LaIbDHGxLm47ofGmOsdHw/CHoh9BxwVkTzH8Z3AECAO+IeInAEQkWLH+SuAsdgDOoAIoMCNeicC/wTmicieBsePi8hWx8evAj8EqlsoWynVTWmXpVLKE1wFRa0dR0SOiMhdDQ7dgD3oWAzMcatQe1BnpUkAJCIHsQdJXwK/Msb8zMVrpwLTgfEicgmwCwh3nK5ucKkV+x+zBhBX1QBedoxtyxSRESKyzI3qnwOOAxObHG9ahrRStlKqm9KATCnlCZuBucaYHo5M1/XAFuBj4FpjTLgxJgqY3co9BmIPUMAeBLXKGJMI/Al4XkSkybn+QIWIvAo8BYwBSoHoBpfFAGdFpMIYkwLkXKDID4B/M8YkOMqIb3B8vjGmd/1xY0zSheqPPRM4F/iBMebmBscHG2PGOz6+CfvXsKWylVLdlHZZKqU6nYh8boxZAXzmOPRXEdkFYIxZC+wGjgG52DNDrpzAHpTl0fIfjxGOpSNCgDrgFeBpF9elA08aY2xALXCviBQZY7Y6lpv4F/BT4B5jzBfAAWD7Bdq4xxjzOPCRMcaKPaN2h4jsNcb8FNjgGM9WC9zvaG+rRKTcGHMN8J4xphz712kfcLsx5s/AIeCPjqCxWdkXur9SyneZJn9IKqWURxljokSkzDFbcDOwxBHAJQCPY1++4q/As8DzQBXwcRvGkPk8x2D9t0UkrTOuc/G6fCCrfoyZUsr3aYZMKdXVXjDGjMQ+PutlEfkcQESKgHuaXLuoqyvXRaxAjDEmrzPXInPMDt2GPWNo66z7KqU8TzNkSimllFJepoP6lVJKKaW8LCACMmPMIGPMRsdq23uMMT9ycY0xxjxrjPnasfr1GG/U1RPcbP9UY8w5x8riea6WBeiOHLP5PnOsZr7HGPOYi2vCjDH/43j2nzrG7XR7brb9DmNMYYPnfrc36uopxpggx6r3b7s455fPvd4F2u7vzz3fGPOlo225Ls778/v9hdrul+/14Nyf9h/GvrvFvgazk+vP+/RzD5QxZHXA/3UMHI4Gdhpj3hORvQ2uuQr7IpDDsa8u/kfH//7AnfYDbBGRa7xQP0+qBi53DCIPAT42xvxLRBrOoLsL+3IHFxljbgR+jX2l9e7OnbYD/I+IPOCF+nWFH2GfpdjTxTl/fe71Wms7+PdzB5jWyqQGf36/h9bbDv75Xg/wO+Adx8LSoUCPJud9+rkHRIZMRE41GDhciv1NakCTy64D/iZ224FYY0y/Lq6qR7jZfr/keJ5ljk9DHP+aDpy8DnjZ8fE/gCuMMS0uYNpduNl2v2WMGYh9nbO/tnCJXz53cKvtgc5v3+8DlTGmJ3AZ8CKAiNSISEmTy3z6uQdEQNaQo1tiNPZ97BoawPeLUIJ9DSS/C1paaT/AeEf31r+MMaO6tGIe5Oi6ycO+evt7ItLisxeROuzrYiV0bS09w422g31fxvqNqwd1cRU96RngQVqebei3z50Ltx3897mD/Q+PDca+UfwSF+f9+f3+Qm0H/3yvHwoUAssdXfV/NfZFqRvy6eceUAGZsa8Mvgr4DxE53/S0i5f4VTbhAu3/HEhybBnzHPBmV9fPU0TE6lhaYCAwzhjTdE0nv332brT9LWCIiGQA7/N9xqhbM/bFVQtEpLWNy/3yubvZdr987g1MFJEx2Luo7jfGXNbkvF8+e4cLtd1f3+uDse/A8UcRGQ2UAz9pco1PP/eACcgcY2hWAa+JyGoXl5zAvplwvYHAya6oW1e4UPtF5Hx995aIrAdCjDG9uriaHuVIX28CZjU55Xz2xphg7Fvo+NVmzS21XUSKRKR+n8a/YN/v0R9MBOYY+wKpK4HLjTGvNrnGX5/7Bdvux88dABE56fi/AFgDjGtyid++31+o7X78Xn8CONGgF+Af2AO0ptf47HMPiIDMMS7kRWCfiLjaVgVgLfY95IwxJgc4JyKnuqySHuRO+40xfevHzxhjxmH/3ijqulp6hjEm0RgT6/g4Avvm0fubXLYWuN3x8Xzgw6Z7IXZH7rS9yfiJOdjHF3Z7IvKQiAwUkSHAjdif6a1NLvPL5+5O2/31uQMYYyIdk5dwdFnNAL5qcplfvt+703Z/fa8Xke+A48aYEY5DVwBNJ6759HMPlFmWE4HbgC8d42kAHgYGA4jIn4D1wNXA10AF/rVCuDvtnw/ca4ypAyqBG/3hlxPQD3jZGBOE/Y3nf0XkbWPMz4FcEVmLPVh9xRjzNfYMyY3eq26ncqftPzTGzME+E7cYP98PMUCeu0sB9Nz7AGscMUcw8HcReccYcw/4/fu9O2331/d6gP8DvOaYYXkEWNSdnruu1K+UUkop5WUB0WWplFJKKeXLNCBTSimllPIyDciUUkoppbxMAzKllFJKKS/zmYDMuLERslJKKaWUP/KZgIzvN0K+BMgEZjnWCfG4VraX8Hva9sCkbQ9cgdx+bXtg6i5t95mAzMsbIXeLh+Uh2vbApG0PXIHcfm17YOoWbfeZgAzc3ghZKaWUUsqv+OTCsI7tXtYA/0dEmm77sARHtBsUFDQ2LCysw+XV1dURHBwomxY0pm3XtgeaQG47BHb7te3adm+rqKioFZFQV+d8MiADMMY8CpSLyFMtXZOVlSW5ubldWCullFJKqfYxxuwUkSxX53ymy9LNTaCVUkoppfyOb+Tw7FxuhOzlOimllFJKeZzPBGQi8gUw2tv1UEoppZTqaj4TkHWW2tpaTpw4QVVVlberopTXhIeHM3DgQEJCQrxdFaWUUm7wu4DsxIkTREdHM2TIEIwx3q6OUl1ORCgqKuLEiRMkJyd7uzpKKaXc4DOD+jtLVVUVCQkJGoypgGWMISEhQbPESinVjfhdQAZoMKYCnv4MKKVU9+KXAZkvWbZsGU891eJSarz55pvs3bu3C2uklFJKKV+jAZmXaUCmlFJKKQ3IPODxxx9nxIgRTJ8+nQMHDgDwl7/8hezsbC655BLmzZtHRUUFn3zyCWvXrmXp0qVkZmZy+PBhl9cppZRSyr9pQIZ9Vlp1nbVT7rVz505WrlzJrl27WL16NTt27ADghhtuYMeOHezevZvU1FRefPFFJkyYwJw5c3jyySfJy8tj2LBhLq9TSimllH/zu2Uv2kpE2H6kiEMFZQzvHUXO0I7N0NyyZQvXX389PXr0AGDOnDkAfPXVV/z0pz+lpKSEsrIyZs6c6fL17l6nlFJKKf8R8BmyGquNQwVl9I0O51BBGTVWW4fv6Sqgu+OOO3j++ef58ssvefTRR1tcksDd65RSSinlPwI+IAsLDmJ47yi+K61ieO8owoKDOnS/yy67jDVr1lBZWUlpaSlvvfUWAKWlpfTr14/a2lpee+015/XR0dGUlpY6P2/pOqWUUkr5r4DvsgTIGZrAmKS4DgdjAGPGjGHhwoVkZmaSlJTE5MmTAfjFL37BpZdeSlJSEunp6c4g7MYbb2Tx4sU8++yz/OMf/2jxOqWUUkr5LyMi3q5Du2VlZUlubm6jY/v27SM1NdVLNVLKd+jPglJK+RZjzE4RyXJ1LuC7LJVSSikVoGw2KCsAH0hOaUCmlFJKqcBjs8HL18DTqbBitv1zL9KATCmllFKBp+IMHP8UbHX2/yvOeLU6GpAppZRSKvBEJsKgS8ESbP8/MtGr1dFZlkoppZTyfzabPQsWmQjG2P/d/nbjY16kGTKllFJK+beWxotZLBDV2+vBGGhA5hH5+fmkpaV1WXnLli3jqaeecuvaq6++mpKSkg7dQymllOpMFRUV7NiRy6FDh/DIclw+Nl7MFe2y9CFWq5WgoI4vTuuKiCAirF+/3iP3V0oppdpr27Zt7N9/EBCioqLo169fx27YtHuyfrzY8U99YryYK5oh87AjR44wevRoPv30U5YuXUp2djYZGRn8+c9/BmDTpk1MmzaNm2++mfT0dPLz80lNTWXx4sWMGjWKGTNmUFlZCcDhw4eZNWsWY8eOZfLkyezfv7/Vsuvvdd999zFmzBiOHz/OkCFDOHPG/pfB448/zogRI5g+fToHDhxwvm7Hjh1kZGQwfvx4li5d6sz2Wa1Wl21QSimlOiIoKBiboxvRYulgaOKqe7J+vNiP98Ed63yii7IpDcgAm00oLK3u9DTpgQMHmDdvHsuXL2f37t3ExMSwY8cOduzYwV/+8heOHj0KwGeffcbjjz/O3r17ATh06BD3338/e/bsITY2llWrVgGwZMkSnnvuOXbu3MlTTz3Ffffd51YdfvCDH7Br1y6SkpKcx3fu3MnKlSvZtWsXq1evZseOHc5zixYt4k9/+hPbtm1rlLF78cUXW2yDUkop1V7jx+cwbdpUrrlmNn369OnYzVrqnvSh8WKuBHyXpc0m3PSX7ew8dpaxSXG8vjgHi6XjD6uwsJDrrruOVatWMWrUKH75y1/yxRdf8I9//AOAc+fOcejQIUJDQxk3bhzJycnO1yYnJ5OZmQnA2LFjyc/Pp6ysjE8++YQFCxY4r6uurr5gPZKSksjJyWl2fMuWLVx//fX06NEDgDlz5gBQUlJCaWkpEyZMAODmm2/m7bffBmDDhg0u29Cw7koppVRbhYWFkZY2qn0v7obdk64EfEBWVF7DzmNnqbMJO4+dpai8hsTosA7fNyYmhkGDBrF161ZGjRqFiPDcc88xc+bMRtdt2rSJyMjIRsfCwr4vPygoiMrKSmw2G7GxseTl5bVY5vHjx7n22msBuOeee5g1a1azezdkXPyV0FqWsKU2KKWUUl5R3z1ZH3zd/rY9E+ZDy1m4K+C7LHtFhTI2KY5gi2FsUhy9okI75b6hoaG8+eab/O1vf+Pvf/87M2fO5I9//CO1tbUAHDx4kPLycrfv17NnT5KTk3njjTcAe3C0e/fuRtcMGjSIvLw88vLyuOeee1q932WXXcaaNWuorKyktLSUt956C4C4uDiio6PZvn07ACtXrnS+pqNtUEoppTpVN+2edCXgM2TGGF5fnENReQ29okJdZo3aKzIykrfffpsrr7ySn/70p4wcOZIxY8YgIiQmJvLmm2+26X6vvfYa9957L7/85S+pra3lxhtv5JJLLmlX3caMGcPChQvJzMwkKSmJyZMnO8+9+OKLLF68mMjISKZOnUpMTAwAd999N/n5+R1qg1JKKdVuftI96YrxyHofXSQrK0tyc3MbHdu3bx+pqaleqpF/KCsrIyoqCoAnnniCU6dO8bvf/c7LtVJtpT8LSim/0lL3ZNMgzYcZY3aKSJarcwGfIVPNrVu3jl/96lfU1dWRlJTEihUrvF0lpZRSgc5V92RU7++7J7s5DchUMwsXLmThwoXeroZSSqlA5sfdk65oQKaUUkop3+JHsyfdFfCzLJVSSinlY/xo9qS7NCBTSimllHfZbFBWAPUTDeu7Jy3Bftk96Yp2WSqllFLKewKwe9IVzZB5QP2SESdPnmT+/Plerk37bdq0iWuuuabD1zS1bNkynnrqqY5UrZmrr76akpISSkpK+MMf/tCp927N2rVreeKJJ1q9prWv0TPPPENFRYXz8/p2KKVUwAjA7klXNCDzoP79+zv3ffSUuro6j96/u1i/fj2xsbFdHpDNmTOHn/zkJ+1+fdOArL4dSinlt7R70iUNyDwoPz+ftLQ0AFasWMENN9zArFmzGD58OA8++KDzug0bNjB+/HjGjBnDggULKCsrA+DnP/852dnZpKWlsWTJEuc+k1OnTuXhhx9mypQpzRZsXbZsGbfffjszZsxgyJAhrF69mgcffJD09HRmzZrl3Pbogw8+YPTo0aSnp3PnnXc6Nyp/5513SElJYdKkSaxevdp53/Lycu68806ys7MZPXo0//znP9v0tXj88ccZMWIE06dP58CBA87jhw8fZtasWYwdO5bJkyezf/9+AO644w5++MMfMmHCBIYOHeoMbE+dOsVll11GZmYmaWlpbNmyBYAhQ4Zw5swZfvKTn3D48GEyMzNZunQpt912W6O63nLLLaxdu7ZR3QoKChg7diwAu3fvxhjDN998A8CwYcOoqKigsLCQefPmkZ2dTXZ2Nlu3bnU+1wceeMDZlpycHLKzs/nZz37mzJSCfbHd+fPnk5KSwi233IKI8Oyzz3Ly5EmmTZvGtGnTGrUjPz+f1NRUFi9ezKhRo5gxYwaVlZUA7Nixg4yMDMaPH8/SpUud32NKKeXz6rsnn06FFbPtnxtj75788T64Y13AZMSaEZFu+2/s2LHS1N69e5sduyCrVaT0tIjN1vbXuhAZGSkiIkePHpVRo0aJiMjy5cslOTlZSkpKpLKyUgYPHizffPONFBYWyuTJk6WsrExERJ544gl57LHHRESkqKjIec9bb71V1q5dKyIiU6ZMkXvvvddl2Y8++qhMnDhRampqJC8vTyIiImT9+vUiIjJ37lxZs2aNVFZWysCBA+XAgQMiInLbbbfJb3/7W+fxgwcPis1mkwULFsjs2bNFROShhx6SV155RUREzp49K8OHD5eysjLZuHGj85odO3bIXXfd1axOubm5kpaWJuXl5XLu3DkZNmyYPPnkkyIicvnll8vBgwdFRGT79u0ybdo0ERG5/fbbZf78+WK1WmXPnj0ybNgwERF56qmn5Je//KWIiNTV1cn58+dFRCQpKUkKCwsbfc1FRDZt2iTXXXediIiUlJTIkCFDpLa2tlkdR44cKefOnZPnnntOsrKy5NVXX5X8/HzJyckREZGbbrpJtmzZIiIix44dk5SUFOdzvf/++0VEZPbs2fL3v/9dRET++Mc/Or8PNm7cKD179pTjx4+L1WqVnJwc573q612vYTuCgoJk165dIiKyYMEC59d/1KhRsnXrVhER+e///u9G7W2oXT8LSinlSaWnRR6LF3m0p/3/0tPerlGXAnKlhZhGB/W3NJjQA6644grnvpAjR47k2LFjlJSUsHfvXiZOnAhATU0N48ePB2Djxo385je/oaKiguLiYkaNGsW1114L0OrCrVdddRUhISGkp6djtVqZNWsWAOnp6eTn53PgwAGSk5O5+OKLAbj99tv5/e9/z9SpU0lOTmb48OEA3HrrrbzwwguAPYu3du1a59ivqqoqZxapXlZWFn/961+b1WfLli1cf/319OjRA7B384E9a/TJJ5+wYMEC57X1mTqAuXPnYrFYGDlyJKdPnwYgOzubO++8k9raWubOnUtmZmarX/MpU6Zw//33U1BQwOrVq5k3bx7Bwc2/7SdMmMDWrVvZvHkzDz/8MO+88w4i4tzj8/3332fv3r3O68+fP09paWmje2zbts25t+fNN9/Mf/3XfznPjRs3joEDBwKQmZlJfn4+kyZNarXuycnJzvaNHTuW/Px8SkpKKC0tZcKECc5y3n777Vbvo5RSXhNgi7t2hAZkLW3F4AFhYWHOj4OCgqirq0NEuPLKK3n99dcbXVtVVcV9991Hbm4ugwYNYtmyZVRVVTnPR0ZGXrAci8VCSEiIc8N0i8XiLLMlLW2uLiKsWrWKESNGNDpeHyhdiKv72mw2YmNjycvLa7Ud9eUDXHbZZWzevJl169Zx2223sXTpUn7wgx+0WvZtt93Ga6+9xsqVK3nppZcAWLRoEbt27aJ///6sX7+eyZMns2XLFo4dO8Z1113Hr3/9a4wxzsH4NpuNbdu2ERER4VZ7W2tL/bNv62sqKytbfXZKKeVTdPZkm+gYMi8PJszJyWHr1q18/fXXAFRUVHDw4EFn8NWrVy/Kyso6dXJASkoK+fn5zjJfeeUVpkyZQkpKCkePHuXw4cMAjYLEmTNn8txzzzkDgl27drld3mWXXcaaNWuorKyktLSUt956C4CePXuSnJzMG2+8AdiDrt27d7d6r2PHjtG7d28WL17MXXfdxeeff97ofHR0dLPM1R133MEzzzwDwKhRowBYvnw5eXl5rF+/3lnHV199leHDh2OxWIiPj2f9+vXOzOWMGTN4/vnnnfd0FUTm5OSwatUqAFauXOnW18ZVfVsTFxdHdHQ027dvb1M5SinV5XT2ZJtoQOblwYSJiYmsWLGCm266iYyMDHJycti/fz+xsbEsXryY9PR05s6dS3Z2dqeVGR4ezvLly1mwYAHp6elYLBbuuecewsPDeeGFF5g9ezaTJk0iKSnJ+ZpHHnmE2tpaMjIySEtL45FHHml239zcXO6+++5mx8eMGcPChQvJzMxk3rx5zm5AgNdee40XX3yRSy65hFGjRl1wssCmTZvIzMxk9OjRrFq1ih/96EeNzickJDBx4kTS0tJYunQpAH369CE1NZVFixa1eN8hQ4YA9sAMYNKkScTGxhIXFwfAs88+S25uLhkZGYwcOZI//elPze7xzDPP8PTTTzNu3DhOnTrl7J5uzZIlS7jqqqucg/rd8eKLL7JkyRLGjx+PiLhVjlJKeZzOnuwQ0527QLKysiQ3N7fRsX379pGamuqlGilfVFFRQXp6Op9//rlHg5eKigoiIiIwxrBy5Upef/31Ns9GdUdZWZlzBucTTzzBqVOnms22Bf1ZUEp1oZa6J5uOIQtwxpidIpLl6pyOIVN+7f333+fOO+/kxz/+scczSTt37uSBBx5ARIiNjXWOV+ts69at41e/+hV1dXUkJSWxYsUKj5SjlPI/5eXlvPPOu5SXV3DVVTNJTOykrFVL47HruyfVBWlApvza9OnTm80G9ZTJkydfcAxcZ1i4cGGrs2yVUqolJ0+e5NSp7+jRI4I9e/YydeqUtt/EVdZLZ092mAZkSimlVIBISEggIiKCmpo6kpIGt/0GLXVN1o/H1u7JdtOATCmllAoQ8fHx3HLLTdTV1TXaTcRtrS0Vpd2THaKzLJVSSqkAEh4e3mowVlZW5txmrxmdOekxmiFTSimlFABffvkVH3+8lZiYnsydex09wsMbd0Nq16THaIbMA+r/8jh58iTz58/3cm3ab9OmTc6V6jtyTWdrV5q9FWvXruWJJ54A4M0332y0RZInNSy3Ja19fZ955hkqKio8UTWlVIA6dOgQPXtGc/ZsCWeLi5pvBA66sKuHaEDmQf379+/UFfZdcWcLHtW6OXPm8JOf/ATo2oCsYbntoQGZUqqzjRkzmsrKKgYPHkRiD+N6pX3lERqQeVB+fj5paWkArFixghtuuIFZs2YxfPhwHnzwQed1GzZsYPz48YwZM4YFCxZQVlYGwM9//nOys7NJS0tjyZIlzm2Lpk6dysMPP8yUKVOaLQi6bNkybr/9dmbMmMGQIUNYvXo1Dz74IOnp6cyaNcs5LuCDDz5g9OjRpKenc+eddzo39X7nnXdISUlh0qRJrF692nnf8vJy7rzzTrKzsxk9enSbFjzNz88nNTWVxYsXM2rUKGbMmEFlZSVg34IoJyeHjIwMrr/+es6ePdvs9UePHmX8+PFkZ2c32yHgySefJDs7m4yMDB599NELlvfss88ycuRIMjIyuPHGG53P5oEHHuCTTz5h7dq1LF26lBmfyZoAACAASURBVMzMTA4fPsyYMWOcZR06dIixY8c2Kr+goMB5bPfu3RhjnMtsDBs2jIqKCgoLC5k3bx7Z2dlkZ2ezdevWRuUCHD58mJycHLKzs/nZz37WKAtYVlbG/PnzSUlJ4ZZbbkFEePbZZzl58iTTpk1r0yr/SinVIpuNIb16cNedd3DttdcQGjdAx4t1JRHptv/Gjh0rTe3du7fZsQux2qxSWFEoNputza91JTIyUkREjh49KqNGjRIRkeXLl0tycrKUlJRIZWWlDB48WL755hspLCyUyZMnS1lZmYiIPPHEE/LYY4+JiEhRUZHznrfeequsXbtWRESmTJki9957r8uyH330UZk4caLU1NRIXl6eREREyPr160VEZO7cubJmzRqprKyUgQMHyoEDB0RE5LbbbpPf/va3zuMHDx4Um80mCxYskNmzZ4uIyEMPPSSvvPKKiIicPXtWhg8fLmVlZbJx40bnNTt27JC77rqrWZ2OHj0qQUFBsmvXLhERWbBggfNe6enpsmnTJhEReeSRR+RHP/pRs9dfe+218vLLL4uIyPPPP+/8+r777ruyePFisdlsYrVaZfbs2fLRRx+1Wl6/fv2kqqrK2Y76Z3P//feLiMjtt98ub7zxhrPsqVOnOu/z0EMPybPPPtusfiNHjpRz587Jc889J1lZWfLqq69Kfn6+5OTkiIjITTfdJFu2bBERkWPHjklKSkqzcmfPni1///vfRUTkj3/8o7ONGzdulJ49e8rx48fFarVKTk6O815JSUlSWFjYrD712vOzoJQKUFaryEtXiTwWb//fav3+eOlpkU76/RjogFxpIaYJ+AyZTWzc+e6dTH9jOoveXYRNbB4r64orriAmJobw8HBGjhzJsWPH2L59O3v37mXixIlkZmby8ssvc+zYMQA2btzIpZdeSnp6Oh9++CF79uxx3qu1hUGvuuoqQkJCSE9Px2q1MmvWLADS09PJz8/nwIEDJCcnc/HFFwNw++23s3nzZvbv309ycjLDhw/HGMOtt97qvOeGDRt44oknyMzMZOrUqVRVVTVbcDUrK4u//vWvLuuUnJxMZmYmAGPHjiU/P59z585RUlLClClTGtWjqa1bt3LTTTcBcNtttzWq04YNGxg9ejRjxoxh//79HDp0qMXyADIyMrjlllt49dVXCQ6+8JyWu+++m+XLl2O1Wvmf//kfbr755mbXTJgwga1bt7J582YefvhhNm/ezJYtW5x7dr7//vs88MADZGZmMmfOHM6fP99sQ/Ft27axYMECgGZljBs3joEDB2KxWMjMzHS2RSmlOo1uBO51AT/LsriqmLyCPKxiJa8gj+KqYnpF9PJIWWFhYc6Pg4KCqKurQ0S48soref311xtdW1VVxX333Udubi6DBg1i2bJlVFVVOc9HRkZesByLxUJISAjG8YNksVicZbbEtPBDJyKsWrWKESNGNDp++vTpFu/lqk5gb3t9F6K7XNVLRHjooYf493//90bH8/PzWyxv3bp1bN68mbVr1/KLX/yiUZDryrx583jssce4/PLLGTt2LAkJCc2umTx5Mlu2bOHYsWNcd911/PrXv8YY4xyMb7PZ2LZtGxEREW1qcz1X3zdKKdUhTVfb15X2vS7gM2QJ4Qlk9s4kyASR2TuThPDmv3A9KScnh61bt/L1118D9g2qDx486Ay+evXqRVlZWadODkhJSSE/P99Z5iuvvMKUKVNISUnh6NGjHD58GKBRkDhz5kyee+45ZzC3a9euDtcjJiaGuLg4tmzZ0qgeTU2cOJGVK1cC8NprrzWq00svveQcc/ftt99SUFDQYnk2m43jx48zbdo0fvOb31BSUuJ8bb3o6OhG2avw8HBmzpzJvffey6JFi1ze97LLLuPVV19l+PDhWCwW4uPjWb9+PRMnTgRgxowZPP/8887r8/Lymt0jJyeHVatWATjbeiFN66qUUm6pX22/4ezJ+uUsfrwP7linGTEvCPiAzBjDSzNf4v0F77N85vIWM0SekpiYyIoVK7jpppvIyMggJyeH/fv3Exsby+LFi0lPT2fu3LlkZ2d3Wpnh4eEsX76cBQsWkJ6ejsVi4Z577iE8PJwXXniB2bNnM2nSJJKSkpyveeSRR6itrSUjI4O0tLRmg+sBcnNzufvuu9tUl5dffpmlS5eSkZFBXl4eP/vZz5pd87vf/Y7f//73ZGdnc+7cOefxGTNmcPPNNzN+/HjS09OZP39+qwGK1Wrl1ltvJT09ndGjR/Of//mfxMbGNrrmxhtv5Mknn2T06NHOwPSWW27BGMOMGTNc3nfIkCGAPTADmDRpErGxscTFxQH2iQS5ublkZGQwcuRI/vSnPzW7xzPPPMPTTz/NuHHjOHXqlFsboS9ZsoSrrrpKB/UrpdpGuyd9kmmt+8rXZWVlSW5ubqNj+/btIzU11Us1Uv7oqaee4ty5c/ziF7/wWBkVFRVERERgjGHlypW8/vrrbZrJ6or+LCilgObdkyL2zFh996RmxLqMMWaniGS5OhfwY8iUas3111/P4cOH+fDDDz1azs6dO3nggQcQEWJjY3nppZc8Wp5SKkC0tBm4rrbvczQgU6oVa9as6ZJyJk+ezO7du7ukLKVUAGlpM3DdCNznBPwYMqWUUspv2GxQVmDvlgTdDLwb8csMmYh0+eB8pXxJdx4bqpRqJ+2e7Nb8LkMWHh5OUVGR/kJSAUtEKCoqIjw83NtVUUp1JZ092a35XYZs4MCBnDhxgsLCQm9XRSmvCQ8PZ+DAgd6uhlLKk3RxV7/iMwGZMWYQ8DegL2ADXhCR37X+quZCQkJITk7u7OoppZRSvkO7J/2OL3VZ1gH/V0RSgRzgfmPMSC/XSSmllPI92j3pd3wmIBORUyLyuePjUmAfMMC7tVJKKaV8gM6e9Hs+02XZkDFmCDAa+NTFuSXAEoDBgwd3ab2UUkqpLqfdkwHBZzJk9YwxUcAq4D9E5HzT8yLygohkiUhWYqL+RaCUUsrPafdkQPCpgMwYE4I9GHtNRFZ7uz5KKaVUl9PuyYDkM12Wxr6S64vAPhF52tv1UUoppbqcdk8GLF/KkE0EbgMuN8bkOf5d7e1KKaWUUl1GuycDls9kyETkY0C/05RSSgUOXdxVOfhMQKaUUso3lZWV8d5772Oz2bjyyun07NnT21XyD9o9qRrwpS5LpZRSPujQoa/57rvvKCgo4NChQ96ujv/Q7knVgAZkSimlWtWnT2/s864MvXv39nZ1uqemMydBZ0+qRow0/OboZrKysiQ3N9fb1VBKKb93/rx9WUjtrmyHlrom689p92TAMMbsFJEsV+d0DJlSSqkL0kCsA1x1TUY5Mo313ZMq4GmXpVJKKdWZdGFX1Q6aIVNKKaU6i86c7FaOHj3KgQMHGTVqJIMGDfJqXTRDppRSSnUWnTnZbVRXV7Nhw3ucPn2ad955F6vV6tX6aECmlFJKdRbtnuw2goKCiIyMpKysnJ49ezpmEnuPdlkqpZRS7dV0lqQx2j3ZTQQHBzN37nUUFBTQt29fLBbv5qg0Q6aUUkq1R/14sadTYcVs++eg3ZPdSI/IHvTs15OIiAhvV0UDMqWUUqpdWhovproFm9i48907mf7GdBa9uwib2LxaHw3IlFJKKXfochbdmk1snKk8Q/2C+MVVxeQV5GEVK3kFeRRXFXu1fjqGTCmllLoQXc6iW6vPhuUV5JHZO5OXZr5EQngCmb0znccSwhO8WkcNyJRSSqkLaWm1fV1p3yfZxEZxVTEJ4QkYY1xmw3pF9OKlmS81us6btMtSKaWUakq7J7stV2PD6rNhQSaoUTbMYiz0iujl9WAMNEOmlFJKNabdk91Kd8yGuaIZMqWUUqohXW2/2+iu2TBXNEOmlFIqsDVd3LW+e7I+Q6bdkz7DX7JhrmhAppRSyuNqamrYuPEjzp8/z+WXTyUhwbsz2py0e7LbaMtMyfpsWHeiAZlSSimPO3HiWw4e/JoePXqwa9dupk+/3NtVstPZkz7Ln7NhrugYMqWUUh4XGxtDREQ41dXV9OvXz3sV0dmT3YI/jQ1zl6lfsbY7ysrKktzcXG9XQymllBvKysqorq72XndlS92TTceQqS7XNBt2pvIM09+YjlWsBJkg3l/wPr0iejW7rsPl2oSi8hp6RYV2SUBnjNkpIlmuzmmGTCmlVJeIiorq9GCsqqqKU6dOUVtbe+GLdfakT/JWNsxmE276y3bG/+oDbnxhOzabdxNUOoZMKaVUt1RbW8ua1f+k+GwJSUmDuOaaqxtfoLMnfZK3xoY1zYYVldew89hZ6mzCzmNnKSqvITE6rBNa2D4akCmllOqWqqurKSkpIT4+jlOnvkNEvv/FrbMnfZK3ZkrWZ8N2HjvL2KQ4Xl+cQ6+oUMYmxTmP9YoK7ZSy2ksDMqWUUt1SVFQUEydN4MCBQ1xxxbTGWRSdPekTfD0b9vrinC4dQ9YaHUOmlFLK40QET0wiy8hIZ8GCGxg6JElnT/oYXxobVp8NC7aYRtkwi8WQGB3m9WAMNEOmlFLKw8rLy1m3bgPl5RVcffWV9OnTyRkq7Z70CZoN6xjNkCmllPKokye/40xhEQbYu3d/5xegsye9TrNhHacZMqWUUh6VmNiLHpE9qKmpYejQ5I7fUGdPepWrtcA0G9ZxGpAppZTyqNjYGG6+eT5Wq5WIiIiO3Uy7J73K1SxJi7H43EzJ+mxYd6IBmVJKKY8LDe2kJQV09mSXcndcmDFGs2EdpGPIlFJK+aTKinKqi49/P3MSdPZkF2rLuDDQsWEdpRkypZRSPuf4N98Q9Opc+tYcpXZAFiF3vWvPghmj3ZMe4q1ZkhB42TBXNEOmlFLK55w4+AV9a45iwUbwyZ3fz5wEnT3pAV05S9JmEwpLq53r0gViNswVzZAppZTyviYzJy/KuJSC3KH0rjqCbUAWwdo12am8uWZY04H5gZgNc0UDMqWUUt7lYuZkYu9E5MHPoPwMwZoN61RduZ+kO12R/jRTsiM0IFNKKeVdLcycNJYgiO7j7dr5HW9mw1wFX8aYgMuGuaIBmVJKBYCKiko+/vhTACZNupQePTq4Hlhn0oVdPapp96Q3s2EtdUUGWjbMFQ3IlFKqm7HZbNTV1bVpba9DB49w9PA3APTpncglmaM8Vb0La7rSvs6c9JiWFnL1VjYMNPhqiQZkSinVjVRWVvLW2g2cO3eeyy+fxLCL3NuKKDa2J1gMiNg/9paWVtrXhV07hbuD9TuSDWuaCQN0YH4n0GUvlFKqGzlzppii4mJ6REawZ+8Bt1+XNGQQN9xwNTfMm03SkEEAWK1W59IDXaaljcBVh7V1Idd2leFiiQogIJep6GyaIVNKqW4kMTGBXgnxlJScZ3xOVptfW+/rr/P5aNM2EhMTmHXV1M7b2qgp3QjcY7pi6Qp3x4XpwPyO04BMKaW6kfDwcObNvxar1UpISEi77/Pl7n1ER0fy3alCis6cpV9/D8xm1I3APaYrlq5oy7gw0LFhHaUBmVJKdTMWiwWLpWMjTlJSL+Ljj3eQkBBLXHxsJ9WsCd0IvNP4UjZMM2GeoQGZUkr5qdraWnbn7UMQLrkktVG3ZOrI4QxJHkRoaAhBQUGdU6B2T3qEr2XDNBPmGRqQKaVUJ7BarRw5kk9QUBDJyUk+kTk4dPAouTt2A4LFYjhbfI7z50qZMm08CQlxRESEd15h2j3ZaTQbFph0lqVSSnWCPXv28c6/3mf9ug0cOZLvlTqUlZVTWlrm/Dw0LBQRQQTOnyvl8NfHKC0rZ3fe3s4vvKXZk7oReJt4YpNv3cy7e9AMmVJKdYK6OivGGESEurq6Li//u1MFrF/3ISLCrKumMWBgX4YNSyL0misQhMjIHhw79i3VVTX069cJ47f8oHvy9OnT1NXV0b9/f68FHJ7Ohulm3t2HBmRKKdUJ0tJSERGCg4O46KKhXV7+6YIzjjWhhIKCQgYM7IsxhsFJA5zXzF8wm+rqGhIS4jpWmB90T544cYJ//vMtRIQrrric1NSULq+DJ8aG6Wbe3ZcGZEop1QlCQ0MZOzbTa+UPHTqYo0eOIzZbi6v3R0VFEhUV2fHC/GD2ZHl5BVarleDgIM6dO+fx8ppmwqDzN/nWzby7Nw3IlFLKD0RHRzH3+pmeubkfdE82lZw8hNGjM6mpqSEjI92jZbW0n2RXZMN0M+/uQwMypZRSLfOD7klXQkNDmTx5kkfu7e64MGOMx7NhoMFXd6EBmVJKeUFFRSUhIcEdWm2/S7TSPVlSF0bxkWP06dubyMge3q6pT2jLuDDommyY6h40IFNKqS52+Ot8PvzgYyIiw7nuullER0d5u0rfc7N78vDhfH7zxPMYi2Hy5Bxuuvn6Du8e0B111Zphmg3zfxqQKaVUF/v6cD4RPcIpO19O0ZniLg/Ijh37lq++2M/FI4Yy/OIGEwBsNsTRPWku0D35xe49iEBtdS2nThU417gKJJ5aQV+zYYEp8P6cUUopL0tLS6GutpbefXvRp2/Xzkq02Wx8+MFWykrL+WjTp1RWVjnPVRafQI5tw9jqkG+2t7q4a1p6KsOGDqbfgD5cN3dW522/5MNsYuNM5Rln8OkqG1Y/Luz9Be+zfObydmfDdNHWwKMZMqWU3zh+/CQ7PtvFkORBjB6d7rO/qAYM6MsP7ljolS4+YwzxcbGcPl1IbEw0IdXFEN4PjKGwzEJwyFD61h7hbOQIElqZPTl8+FB+9OMlBAcHExzcNb9KKioqOH26gMTEXkRFdW1WUbNhytM0IFNKdQvnz5ey+aNPiOgRwaRJlxIW1nyczKYPP6bOamPjxk9ITh5MXFysF2rqHm+NtzLGMPOqKRSeLqT/e3cT9OwO5+zJhMR43hryU6ylBeRMn0nCBX7xh4d34l6YFyAivP32OxQWniE2NoaFC+d5NBDUsWGqq2lAppTqFr74Yi8nT52mtqaWwYMHMnx489Xwe8ZE888338VisXDo0FHGjRvthZr6vvDwMAYlhMLJHY1mT0ZG9Wb+wmupq7MSHu5bv/xtNhvnz5cSHR1NWVk5dXV1HgvIumIFfUCzYaoRDciUUt1Cr17x2Kw2QkNC6Nkz2uU1maPTObD/ML0SEyg4faaLa+jj3Jw92ZVdkG0RFBTEzJlX8OWXe0lJubhTs3Pe2E/SYjGaDVON+N5PnVJKuZCSMpz4+DhCQoJb7IocMKAv2eNGc+ZMMdluZsd2ff4lX315gIzMkVxyycjOrLLv8MLiriJCQcEZwsPDiInp2Sn3HDRoIIMGDeyUe9Xz1n6S9YPxNRum6vlUQGaMeQm4BigQkTRv10cp5Vt69279l2FwcDDTLp/o9v2qqqrZseMLEhPj+XT7LlJTLyI0NLSj1fQ9Xth78ssv9rJ162eEhoYy9/qrO76heSfp7GxY0+CrLePCQLNh6nu+tuzFCmCWtyuhlPIf+fkn2LJ5B0VnzjY7FxoawoABfSksKGLgwH6+v2q+O2w2KCuAhuuC1XdPWoK7bO/JwsIiwsLCqKquprS0zOPluaM+Gzb9jeksencRNrE5s2FBJshlNuxCwVjTJSpcZcPqM2HbHrqClUtyNBOmXPKpDJmIbDbGDPF2PZRS/qGsrIIP3vuYkJBQTpw4xU03z2l03mKxMHPWFM6fLyMmJrr7/6JsqWvSmC7fe3LM2AzKKyqJjenJgAF9PV6eK57OhrkKvnRcmGovnwrIlFKqMwUFWQgJCaGqsoqYGNfdncHBwcTH++7yGG3SUtckeLR70pW4uFjmzJnZZeU11dljw9ztitRxYaq93ArIjP07aqCIHPdwfdypyxJgCcDgwYO9XBullC+LiAjnmjnTKS46S7/+Xbsifpdwc+ZkIPBGNqylJSo0G6baw62ATETEGPMmMNbD9XGnLi8ALwBkZWUF3uZpSqk2iY+PIT4+xtvV6HxemDnpq7yVDQMNvlTnaUuX5XZjTLaI7PBYbZRSSrWosKCYuro6+vZLxHhh5qSv8KVsmFKdpS2zLKcB24wxh40xXxhjvjTGfNGZlTHGvA5sA0YYY04YY+7qzPsrpZS31NbWcqbwLHV1de16/amTBbz15gesW7uJ/fsOe2XmpC/oipmSupm38oa2ZMiu8lgtHETkJk+XoZRSXc1ms/Hu+i2cPn2GAQP6MvPqyW3+pV5RXkFIzVnqQuM4f77cKzMnu1rTTBig2TDlt9wOyETkmDHmEmCy49AWEdntmWoppZT/qKmppeD0GRIS4jh58jR1dXVtW/PMZiN5y70kF33K+Z4jCUl7137ch7onS0rOsXnzdiIjI5g8OafDC+y6GhdmMRYdG6b8ltsBmTHmR8BiYLXj0KvGmBdE5DmP1EwppRo4+W0BlRVVDB7Sn5CQ7rViT3h4GNmXXsLePYfImZDZKBirq6ujsqKaqOgeLWdiKs5gOfEZiJXY0n1AORDZJXV31xe791JYcIYT1dUMSRrEsIuS2/R6d8eFGWM0G6b8Ulve1e4CLhWRcgBjzK+xj/fSgEwp5VGnvzvDO29vwWq1kTk2lexLu9/OaumXjCD9khGNjtXV1fHuuo8pOF1MSmoy4yc79t/shstZ9EqMZ8/e/fbN39u4d2VbZkmCZsOUf2pLQGYAa4PPrY5jSinlUXV1VkSEkrOl5OXu5aKLBhGX0P2Xsqgor6LgdDGJveP5+tA39oDMh5azOH36DAB9+lx4Q+2RI0eQmNiLkJBgYmNbfzadPUsSNBumur+2zLJcDnxqjFlmjFkGbAde9EitlFJ+7/PcPbzy0j/J+3zfBa/t1z+RzDGpVFVUExISxkcf5nZBDT0vumckKanJnC0+R9al6faDrpazgO/Hi3VREHHkyDHeXP0v3lz9L/Lz3VsTPDExwa1grKOzJG02obC0GnHs16kzJZU/aMug/qeNMZuASdgzY4tEZJenKqaU8l9VVdXs/vwAiX3i2ZW7l5FpFxEa2vIgd4vFQuqooRzYm091dQ09IsK7sLaeY4xh/MRLGD96AEQmsvfLwxw++A1XJmYSXpjn1e7J0tIyMCAinD9f2mn37YxZkk27IjUbpvxBW7dO+hz43LNVUkr5u7CwUAYO6sPx49+R5OYg/R6REVx17STOni2l34DOCVIqyqv47uQZ4hNiiI2P7pR7tkmD7klr/2xy5R6iY6JZFfYf3Pyf4zBdmBFr6uKLh1FcVOL8uL2adk+2ZZZk025IQDf0Vn7L1Kd8L3ihMTtFxOtbJzWUlZUlubn+0XWhVKCxWq2UlVYQ3TMSi6Utoyc6z/o3P+bM6bOEhoUwd+E0wiO6+Jd3WQE8nQq2OsQSzL8ueoGCsiAGDOrDlVeN79q6tFNh4RkOHjzM0KFJ9OvXt9G5lpaucLW+WFOuMmEWi0FEuPGF74+vXJKDMcZl8KaUr3HEUlmuzunWSUoprwgKCiImtnOzUiePF1JcdJ7ki/oTGRVxweurKqsJCw+hts6K1WrrUNkV5VVsfm8nFeVVTJmRRUKii7FUrcyeNIMuZdrc2Zw7V0ZCr1i3y7XZbJz45jsqq2qIi+9JYmJclwUkNpuNdes2YLPa2LfvILfcOp9yKb/gYH13smEtdUMaY3RDb+WX2hKQTQP+3RhzDPsiOAb7vuMZHqmZUsqvVVVWc+pEETGxkcS7Cl7a6HxJOZve3QkC350oYvo14y74mqlXZnFg3zEGDurtVgDXmoJTxRSePkt4RBiH9h0jIbHJW2MLsyfPz13J7i3bCIvrz5jQEPr2u/CMxoYO7DvKB+9u48vdB7k4ZQjTZ03gktEpHWpLW4SEhHC+opTwHmHc8+E97D6z262lKxpqyxIVoMGX8k9tGUN2D3DMs9VRSgWKrR9+wcnjBYSGhXDNgskdDojqCeJ2hii+VwzjJzcOnCrKq6itriMmPqpN5cbGRxMWEUpNTS0DBrtYPb+FzcC/3HWEb88I1d8epf/g3gxM6tOmcquqaqipqaW2ro7g4CBOf1fUpte3l01sFFcXM3v2DL799hRh8SH87r0n3Rqsr0tUKNWcWwGZiIgx5re+NoZMKdV9VVdVExoWgtVqxVrXse5CgJ6xkUyblcXZovMMuah/u+5xvqSc99d+RnV1LWMnpHDxqMFuvzY2Pprr/m0qVquNHpHhbi/uGtsrmiOHjhMSGmx/XRuNTBtGTU0NCb1iiImNZkzWyDbfo61cjQ0zGLcG6+uCrUq51pZB/b8HVvjSGDId1K9U91VSXMqhvd/Qu188ScP6XfD6ujor3x0vIjwilF593R9j1RbfHivgo3c+J6JHOIl9Ypk0I7N9N2ppcdemQRr2ZSUKT58lLCyUmLi2ZeW6StNB+GcqzzD9jelYxUqQCeL9Be/TK6KXy8H6TbNhhaXVjP/VB9TZhGCLYdtDV5AYHaaD8lVA6KxB/dOAe4wx+egYMqVUB8XGR5M9aZTb13+54zD7d+UTHGxh+vXjiEts2/Y87ujdL57BQ/tyrqSc1My27cXYSAvdk642AzfG0LtvfKu3q6uzcuTQcYKCg0geNqBLZ6W2ZVsjzYYp1X5tCciu8lgtlFLqAqoraggJCaKuzkZtbZ1HyggJDWbSle3IinVg78nvThbx1edf039wIiMzhrq8Zv+eI+z4ZA+CEBwURNLQ9nXJuqMj2xrp2DCl2q8tAdk3wC3AUBH5uTFmMNAXHeivlGrgbGEpuz85SFyvaNJyLiIoqHOyOenjhhESGkxUTITHuizbpYN7T27/6EtEhF2fHmDAoN6tdFvah5e4O8ykPTQbppT3tCUg+wNgAy4Hfg6UAquAbA/USynVTX356WFKz1VSeKqEfkMS6T0grlPuGxkdwdjJHVvOoa7WyvmiMqJiexAa3vJWTW3Shu5JVxISYzh25BQ9IiMIjwh1ec2IkckEBQURHBLE4OQLj7dzl2bDlPIdbQnILhWRMcaYXQAictYY4/rdQynlM2pr66goqyI6pkeXjD2Kbw2cCQAAIABJREFU79OTgm+LCQsPJTLat/ac/GzDHgpOFBMTH8Vl148mKDio7TfpQPekKzlT0hmeOojomEjCwl2/pYaEBJOa5ro780LKyyvYvu1zQkKDufTS0YSF2TNTbcmGIQap+34RX82GKdX52hKQ1RpjgnDkzY0xidgzZkopH1VbW8d7b2+juPA8w1IGMf4yz8/BGTl2CP0GJRAeGUpkdOesLdYZbDYbRd+VEB0fSenZcmqq64hoEJCVn6/k03e/QkS4dEYaUbE9AHsXYcG3ZzEYEvv3xLx8bbu7J5s6W1RKbU0tffq3vqF2R+zdc5DDXx+l1mYlJDaInPSsNmXDdDNvpbpGW/5cfhZYA/Q2xjwOfAz8P4/USinVKSrLqyguPEdcrxi+OXKqS8q0WCwk9I0hMjqC6sqaZlsSWa02zp4+T3VFTZfUp2G9Rk9JwRjDqPHDiIhsnLU5efQMpSUVlJdWcfzwaefxE4cL2LJ2F1ve2sXJPfubd0/ab27vnnQjCCk4Vcy7a7ax8V87+dfqrWz453YOfOW5obg9Y6Kxio214f/LvXmLWfTuImxic2bDgkxQq9mw1jbzDrYYl9kwDcaUaju3M2Qi8poxZidwBfYlL+aKyD6P1Uwp1WHRMZGkpCVz9OuTjB3v+QVDGzryxXEOfJZPTK8osq9OJyTU/nazZ8shThw8TXhUGJNuGNN5Y7ncMPCi3gy8yPW4roQ+PbEEGRBI7O8Y92azUVv8LfXhRYVEd6h7EuDzbfupqqrh6332ZSziEqI5d7asnS1qrum4sIsvHoo1rJY/b/5tu7JhrroiW9pPUinVfm3pskRE9gP7PVQXpZQbRIRdO/bz7TcFjLk0lQGDWh44bowha8Iosia4v95XZzm+/zui4npQUlhK+blKYhPtWZfi0+eJ6BnOuYJSir87T98hrvc37GrxfWO48sYcRMSePXPMnkw+/im9YzI4mv1nhqT0h7T2dU/W690vnv1f5NNnQAL9BiRgtQmjMts3PqwpV+PCLMZCatIIt8aGtaUrUseGKdW52hSQKaW8r6S4lD15h4nuGclnW7/i+hsv93aVXBp6ySD2bD1Er/6xzvFYAGmTLuLz9/ZSXlzO7g/2EjRjFImDWl8YtbOdPX2eopMl9E3u1ahu4T0aDKp3zJ40tjqizn1BekYsOLJ87syebEnmpRczaGhfIqPC27VVUkPuzpI0xrQ7GwYafCnVFTQgU6qb6REZTkSPcI7nf0fKqA6sJu9hg0b0pf+wRCxBlkZdWr0GxJEyLhmptWIx/z977xklV3red/7eGyrn6uqc0QlpGnGAyYEcDjkkJZJKXkkWLVLUrryWuNaxJe85+0Hac3ZtHR9pdy3ryKu0Cj6yd22LIkWKpDgkZ4YTMQOgMQAa6ASg0TlUV443vPuhGo1udDfQjcCZ4dzfF6Bu3fDee4Cqfz3h/wjSC9ldC7JKsYru1lBWPc7KhQrXzk3hDXpp29+0bTfpzNgCV96dZv7KEsF4gJnRBZ786WMIKTdHve6xe3I7FEUh0XDvPmq76pKEe4qGOTg4PHgcQebg8AHD7XHR3tpIejZPeq5AZiVPOHZ3MxCllBgVc1MdV6VYRdUUNNe9fURsZytR3xFn4eoylmnT0te4q3NOnp9m/O1rBGN+jrxwEM2lMfHOJHMTC9iWJBDzEd/C+8yoGFz8wRiaS2VmdJG+46uRMWnDVp2TQuy4e9I0TK4Mz6BoKl0Dzdua4ZaKFV759lmKhTJPfuww8frwju/7Xj3DnGiYg8P7mzt+2gohctywiL7lLWqzLO//QDkHB4fbYlQsYvEwpmFRKRvb7mcaFtVSFW/QsynaYds25793icWry9i2xOd30/94L0jJ8MsjuLw6h18YxLtLLzGjbFDOV/DHNvqe5ZbzFFJ5Yi0xPH43xz+5tQWHZVgIVWwf5RqZxx/xkUvmKaSLhOtDuHw6tmmjKAqavrUIVDQVf8RHdjnPgcd7aD/QTPOeekQxubWxK+zY3HX8wjTvvjmObUt0l0ZH79Yic2F2heWFNF6fi/FLUzsWZPfiGQZONMzB4YPAHQWZlDJ4p30cHBx+uAye7GX49FVCsQB1jVt/qZuGxTtff5dcMk/HQy30PbyxcLxSqLI8uYLb5+Hiy5c49PwBrpyZJBD1oXt0yvkq+WR+V4LMKBuc/foQpVyZlr3N9Jzcs3qtCue++S5m1STSFOHQC1uLsYXxBUZeGyMYD3Lguf3o7s0fUV2DbVx6dYx4axRv2EspXwIp8YXcdB/tIly/9W9EVVU4/sJBcstZQr4yerS5FvWS3ntOTSqqgm3LtetsRzQexONzUa2aNLfXbbvf3UbDtoqEKYpwomEODh8AdpWPEEJEgV5g7RNaSvnK/V6Ug4PD7QmEfTz87O07J8v5MtlknlBdgLnxJfoe7ia7lOX6uWliLREa+xtJdNYxP75AS18jpUyZrsPtRJvDpGfThBIBwg27C4CX8xVKuTLekJfUTGptu21LbMtGc2kYle0jetPDs3iDXrKLWQqpApFVsWkZFuVcGW/YS1NvAw3dCRBw8cVhpi/OkF3O09TfxMrUCs29DVueO58qUC1WiP3DzyOmT90XY9cb7Nnfitujo6gKzZ3bC61wNMCnfvpxLMvetqD/XqJh20XCHJsKB4f3PzsWZEKIXwK+DLQCQ8BJ4A1qsy0dHBzeY6SUjL55hYXxRfYc76Spr4Hm3noWryUZeKQWqbr8yiiWYbFyPUmkKcLBZwfY90QvCIFRNvAEal/ej/3sybv60vbHfLTsbSY1k6L74ZsNB96gh73PDJCeTdM8sP0sxuaBJsZeHycQD+CP+oFaavXCdy6QXcwSa4ux/yP7UVSFhfEFzv/DBXwxP/Oj83gjXlr3Na8dM3VhhnKuQuehNoyqyamvDqGUl3lq4S2Q1l3NndwOVVXo6NvZjMlbxyPdz2jYdpEwcKJhDg7vd3YTIfsytUHib0opnxFCDAC//WCW5eDgsFvK+Qozl2YJ1gW5/OoYQkra+hs58FT/2j7+iI/lyWV0jwvNpSGEWCvcX197dbcRFEVR1tKUt5LoqCPRsX30CKCpr5G6jjpUXVmrITPLJrnFLMF4kNR0CtuyUVSFq6ev4Qv7GHttjOb9LegujcbemqhKzaYZf+sKqiZQykvE+vsxDQvNW0ch+BCB/Pn72jl5t+RyBf7HV36Fd5Pv3rdomBMJc3D4YLIbQVaWUpaFEAgh3FLKy0KI/jsf5uDg8MPA5dUJ1QXJLueo5stceXMCoSoc+cwRvKHaTMn+J/po7GvEF/EBkmqxgsu3ddRk5doixZU8id4m3LuYSbk4NsfU6SvEu+rpeLhn16LgRt2YbdlU8mXcAQ/tgx3Mjc7R/XD3mtVFMBGkUqjQfqCVRHcCl8+91tWp6RpCgcG5f0Xk+mWYPEHX4L+nmK0gfvzroBXvOj15L6yPhi0tpvjbb3ybc8o5bGFviIb9yXN/ysTKAr3xRsczzMHhQ8JuBNm0ECIC/C3wHSFECph9MMtycHDYLaqmcviFg1QKFcZfGyO3lMOsmqSnkxixAFbVJFAfIt4WI7eY4dKL5wHo/ehBgrd0+xVTea7+4DJCERSWc/R/bHDtvVIqj6Kp24q0qdNX8AS9LI7M0TDQgjfs23K/2yGlZPSlYdLTKSKtUfqf3U/74fYN+ww80U+2v4lDnzpEfiVPKB7EvTqfMtwQ4tizrQT/8jJCWjB9it6fDkLgRvTu7mxC7oVba8P+RfP/gtvy0SLamRFTa9Ew25b83J+ccoZ5Ozh8yNjNLMvPrv71t4QQ3wfCwDcfyKocHD6kWKZFZjGHN+jZtd0E1ESZL+yj74l+FsbmWbw0zfU3xlgamyXR10SoKcreTxwmv5BBrnYF5hcymwSZoioIVWAbFuo6L7LkxDzX3xhBURV6nz+Mbwv/s3hnPYujc/jjQVw+N5V8mczUMr66IIHEzmwerKpJZiZFIBEkM5PCqppo7o1eaaquEl31G9uqszLU2Q3tJ++7setOuVNtWOiYh0R9jC8Z/5yOox0c6uhCCMFyvrLtMG8nGubg8KPLbor63cBPAJ3rjjsE/K/3f1kODh9ORt64wszlOdw+Fyc+c3gt4rNbPEEPHUc6SU3MYSlgFKtobp1qvoSUkmhHgpVrSwBEOzYLFU/IR+9HDlLOFImss2coLGZQNRWzalLJFrcUZO0P76Fhb0sthairjH/3XQrLWYSisP/Hj+Pawbggza3TMtjO3PAMLYPtm8TYltj2xk7JXRi73m920imZ8Nex96DgX3zzKuf+eISjHYvOMG8Hhw8xu0lZfhXIAKeByoNZjoPDh5vMYhZPwE25UKFSMu5akN2g+8m9LAzP8NBPngAEDXtbEELgCXnZ/+mj2x5XXMow84MLaH4Pkbabgqx+XxvlbBHd6yLYtNkNH2qF/evTlLZtIxQFpERuZTG9Da2DHbQOduxs59VB4Jvc9u+xe3Kn7LRTcn1t2Le/8Sqj15c4O+XBBmeYt4PDh5zdCLJWKeXHH9hKHBx+BJkanWd5Ok33Q62E6+5ct7T38V4m3rlGy0ATwbh/y31Sk4vMX5gi3tNEfX/zbc8XaogQumVuolmqsHjuCqpLI3GwC0Xf/DGQHJ0BRVBeyVFcTBPuqIkaT9hH3/OH73gf6+l+Yh/JKwsEEiHcAQ+WYaFoyv2N8qwOAt/SbX8LpJRIW641CNygkClx+sVhFFXhyEf24ttB2ninvmG31oZ9xp+nPuShzWMzXVWdVKSDw4ec3Qiy14UQB6WU5x/YahwcfoTIp4uce3kUl1sjk8zz9E8du+MxkYYQR7cZKQQgbZvJ10dw+b3MvD1OtL0O3evadv+tWBmdIXNlDmnbuKMBQm31IMQGcRJuT5C7voTmdeOJ3duwDnfQS/NgJwDzQ1dYHr5OuKOB1kcHNokyadssj85hlKskBlrQPdvc263pyV0MAq+WDYa+M0w+mWf/0/00rDNyvXZhhsXJJB6/m4Vry3QdbN186buIhm1VG/bbXzrC3MR1/uRkA5HGRicV6eDwIWc3guxx4J8IIa5SS1nemGW5/beHg8P7iEKhyPDFMcLhAL193Q/8y0/TVXRdpVysEk5sFjXVUpXMXBpfxIcv4mNpbB6jXKWhvwVt3bDv0kqeYjJLsCmGK+DBVxciP5/GE/GjbjO38XbofjdSSoSiYFcMrn39NYQQND99GHe4FsULtSXo++wjCEXZUNS/G6yqSWkpjSvkwxX01cTW8BS+RIT0tQUaD3Wh31JPlptPM/XWKIoqsKsmrQ/3bj7xdunJHdaL5ZJ5MgtZfGEvUxdm1gSZaVhcOT/NlfMzhGN+HvvM5kjg3UbDtqoN6+9sYKBrd4PVHRwcfnTZzSftJx7YKhwcfgi8+cYZJiauYduSUChIY9ODrS3y+N08+mOHyGdKxJs2dxeOvXKZzGwaza3Rebybq6+PgiKwDIv2YzV7BrNiMPHiEJZh4Yn46f/kMfY8fYDiSg5vxI+ibS3IKuk8uetzaB43voYYrnAAs1TByBUItdfjCvoQikJpfglpWtiWTXF+ZU2QAWjbRad2yPxbl8heX0TzuOh64WE0r5t4fwvLl6cJtSfQtojsKWotlWlbcnshuF16cof1YsGYH3/ERylXovtQ29p2o2ygqiqHnunHLJtEG0L3LRrm2FQ4ODjcid3YXkwKIQaBJ1Y3/UBKee7BLMvB4f6juzQsy0ZVlDUD0QdNMOYnGLtZC7Y4NsfcxRnajnRilg1Ut4plWghqEatqroiRL63tLy0b27JRdRXbMIGa3UPwlrqw9UjbZu7lsxRmFslfnyc+2EvLR46RPD1MJZnFyBUIdDQS7GrBHQkhFAVFU/E1xHZ8X9K2kZa9Zf3ZDcqZAkJANV+q2VZ43TQd7SFxoAN1dUrArQQaIvR89CGMinGzmeAe0pNb4fK66D7SxvULsyjazTStN+hh78lu5q4s0vl4C4Zp8qUXf2kt8vV/Hv99XvvqReqKzSwFZujx9OM1/YxfmuY3v3uNc7NZx7TVwcHhrtmN7cWXgS8Bf7O66T8KIf5ISvn7D2RlDg73mRMnDtNQX0cg4CeRiD+w6xhlg8JKAX/Mj74u9VjOFnn1D1/EtiQz5yZ58p8+x+LEIqHGMPGOOirZIlOvXiQ/uUj62gKRzgZ0n5vOpw+Qn0sR7dp6aPZWCFVg5IsIVUVaNtV0HiNfxjItClNzlBeWyVy+SnRvNx2ffAShqttG227FqlSZf/kMRjZP3fH9BDpqMxyLc8sUZhYJdbfgjoUJdSS48rUxvJEg0rLWjr+ThUWweZ0w3CY9Wf7cf2Hy+29iu2LsKVZx7aIb1TIthn8whsvj4uJLo8Sao6guhZXyCp0HmgnV+Xn72xcpu4sMVYewsDi7MMTpM+cpZMscf/tThPZGeObEQV799hBTiznOThs76pR0cHBw2I7dpCy/CJyQUhYAhBC/Q224uCPIHD4QuN1u+gd6Hug1bNvm4ncukEvm8Uf9HPr0oZszGY1VUSLANix88QDdiZuGpt6gB388gBC1SNkNQk0xQk07j14JRaHpycP4mhOUF1bw1kcIdjUDkvTFCehqoXBtFk88jFWp7EqMAVTTOYx0Dj3oIzcxTaCjCbNY5up/fRFZMciNT9H1089B1aSuvw2ramBki3him81b74QsLMHUW4hb0pPJa0vk8y5smSd1fYmGvZuL77d/PgJfyEsuWcAf8SFUNtSF/U/e30RRFJSsTovawbR+jXa7i/pgAylPidc625kuCE6PZfmFsE3Uo9HpMZms4kTDHBwc7prdCDIBWOteW6vbHBwcVpGWpJAu4A15KWVL2KaN4qoJMn8swNGfOcnCyBzdTwysCbUbRDrrKSVz2LYk2tNyT+twhfwkjmwcNRvu6yDc14GRL1KaT1JNZfB3NK2JMSnljiI5rkgQVzRENZsjsb9W61ZN56jMLyMlCE0BIQj1tFBaSqPZbhRd3dn516UnJTB1LknM3Y+/fBnaTiBW05OBRAhJTfT463Yp9AR0PN2ElnMRqguSNtIb6sJ8T7iwrlj4gl5+q/F/5/TlcfoSzQwc6SDQEmPmD9/AlpKh6Qy/86kTZKeX+KuPxnFFQ040zMHB4a7ZjSD7f4C3hBBfWX39GeBP7/+SHBw+uKi6St/jfcxemqN9sB1tXWG6EIKOE710nNiicxBQXTqtjww8sLUZmQz585fQIyGC+wYQys2C9uLVSXLnL+JuaiJ8dLBm5LoNqttF00eOb6gh0wNeIvu6qWbzxA/X7Czc4QANJ/Yx9923WHj1LPFDfYT7O7df4C3pSftnv0Lqyhwzrt8gPz1GzxMfo8OWKKog3Bzj4GeOI4TYVbpyyy5J4hxKHGJoqbatt7Ob7p/vRAI/92enOD2tc1QxeFpT6WyNcGxdbVh3WwzR/uDS3w4ODh8edlPU/3tCiJeBx6hFxn5RSnn2ga3MweEDSqKrnkTX5m4/2zApLWfQA15cwd0P3N4tZiZD/tIIWiSMv6+X/IVLmNkslcUlXA31uBK1onlpWeTOX0QLhahMz2L196CFbu89JhRlg2iTpkn9yQMoPi/e+psCxSyWsE0LxaVTSee2PJdVqWIWK7jUAmJd96RqZLAqBlOvXcKXCJO+vkRTroQnUmuScAd2Ztp6py7JmDtO8fqXyE9PUyy1IWXNsmQpV+HMZArLlpy5nnZqwxwcHB4ouzIYklKepjY6ycHBYRuklCwOTZC5Ok9isJvonpqb/uLpEbJX59A8LtqfP4Hmu3/1ReXZOfJDQ+iJekJHDiFUldz5i5grSYqjY+jhMHo0QnHiKubiAuXWevR4DGmaZN94HXNuGmPJhbenB8XnRUpJdWEBWa3ibmlBqNvXmFWWkiRfeRMkhA8fQKg3ux699TFCfe0YuRLRfd0bD7RtrPQsU69PYuRLRPraSNzSPemvj9D6yAC56WU84cAm37LtsG2b5evL/Pq5X+dC5sJGz7B10bC4J85yvsqZyQymHeDM5E3h5XRKOjg4/DC5oyATQrwqpXxcCJED1k+iu2EMu/tKXQeHDzhSSgoLGYQq8CfCmBUDRREouoZRKJO8PIUnGmT+9PiaIKumc2heN0apTHkxibepDtW90YtLWhZmLo/q96HoOxiovUrx8gjC7aEyM4u5pxs9FkX1+8m+/hq2aVK8cI7wsx+lPDGGOx7CWJjHymSQto2ZyeDr3YM0LaKPPYLQVIylJXJvvQlSYpeK+Pq3T6Xa5QrYEqGqmMXihvcUXaPuyN4tDqqlJ5Xrb1Hv6WO+/9+w9M4o7uf+mGCdhgjU1/ziWuPkZpapP9hJ87E9SNsmObaAK+gj2Li99cf8yDynXzvNee08trBvGw3bTng5A70dHBx+mNxRkEkpH1/9897mpzg4/AiRHJtl+q1RhBA0HGglMzqD6tZp/8hhNI8LIWDx1DDxgzejQvXH97Fy4QqqMEi9c458MED9MydRXDeFV/r0OSozs2jhMPEnH0XssPvR3dJM4fIoQteoXJ9AlhvxD/RRHhlGDfqRpoEAvHu6KY+Po/h8KF4vQtPQ6+owUyn8g4MYy/NUxkcRXh+1Cn2BNM3bX7upHn//HuxqlUBP184e4Kq5q5Am3vIIlakJLD3K/BvDaM8eQVerXPnmKZYvTJJP5kgc6GTm9Uv4mhOsXF1AURX6P3EEb+ymke369KRZNQkqQbpkN9fE1TtGw7YTXjuJhpVLFYbPX8Ef8NI70L6pWcPBwcFhJ+zGh+x3pJS/eadtDg4fBoxCpTZ6yLJITcyj6SpGsUw5mSXYlsCj2bgGmhHVEmapguZ1o6qSSGec1NASajCAmS9glcprgkxKSWVmDgFUlxaxqxVUbWe1Zt7uLmQxQ3n4LIYsYs5OEXzyo4SfeJLK1HU8XV0IVcU3sBd3cwuK14virgmN0COP1iJWQpD5ztdRPF7M+Rl8e/cB4OmqiUppWVRnroNQcLW0rdWQKZpG+KGNUTCzUCQ/PILq8xAY6KuJnG3MXUXbCeoGHyc9ch25KgJTo9Pkp5OUljNIS2IUKoTbE9iWhaoq2Las7bvKrcX6//fTf4Rl2tgv/Sq59BLF8u2jYfeShhw6PcKp184zdX2eT37mSZ5+7vhdncfBweHDzW5qyJ4DbhVfn9him4PDjzx1A60Y5SqqSyfcHGH2tWHcYT/eRAShKLijQcrJDJrfg6KpWKUyyVferEWqhA7SJtDTiRa86eIvhEAYRfLvnsPT0bErUxlzcRZr5hp2NoMsV9Bb2xGqirulBXfLTQsNoShokY2pPiEErNaIaZEYxvIiWjCEt6cHu1TATi8hYvVUZ6Yovntm7Th3W8e268lfHqMyO480LfRoBM+3v3jb2ZMx00IPeJG2TWp0iuJyFiktPFEfLU8MEhtow18fQVo2y6OzuMIeir4KXhnYslg/J7ME+poY/m/DWDuMht0tLpfG6KVJNJfKhXdHOXpiH8GQ/84HOjg4OKxjJzVkvwL8U6BbCPHuureCwGsPamEODndDpVTl7PcuUy1WOfTsXkLxB/PFqHtdtK+zqOj57GMIRax9wTc8fohKMosrEkDRNcxqFWwboevoXi91H31y0znNbAZj+hp60AeVErJqgHfjPtXZa5jTV9Hbe9EbW7FSi8hqBaHpoCi4mlvRmtvx9O1D8daia8b1EYwrF9FaunH1HrrtffmPnsTKpFGCQWS1Qumt72MbVfSmdpTwarG+vO0psKtVqvNzlKancTc2otr5O86eVHWNSF8bS2dGKc6uUEplkeUqodZ6vNEA4babjQINgx21aNgPblpXRF0x3GY3BWUCt9VN1BVD8YgfSlH+wcN9nHzyIZaXUjQ1J3DdYRKBg4ODw1bsJEL218A3gX8N/Kt123NSypUHsioHh7skOZNmeTqFy6MzOTzLwSdqnl9SSkqZErpH3zDO6HakR6fIXJ0jtreDYHsD0rJJXxjHyBeJDvahB26mExV1Y92Q6nbha65be635fYSPH6K6vIKvq33rC0pwt7ViLC7iamtDDW3sl5FGlcqF0wifn/L5Uwhdo3zmZbAtXN378Z98ClkpoQQDKP5aFMy2TKojZ1AidVRH3sHOzqM2dCHcfszx06jxZrSeo2vpR6FpaPHauq1sqRbRc7mRpTyuA8dqCxE14bcltk155CyyXMIV9BHo6UBv6dly9mR5MYmZL+JtaVhrbtBDfqRtoagqrmgQPeDBljbLpeVtrSumpq9jVbwsj38BW+QpyyArReOHZlGh6xo/848/zvJSinA4gNt9b0PZHRwcPpzspKg/A2SA/+7BL8fBYXts22bi/Az5dJH+Ix34gpstEAJRPy6PhmlY1LXcTM1NvzvF1NlJ3AE3Bz95CJf39l+aZrHC4tkx9ICP+VOXCLQmKC8myVy+iqJrpC+Okzjx0LbHVxfmKV2+gF7fiHdgP2ZyCdLz+Ds6tvX40sJhQo8/hZXL4mnv2CwgVBXFH8TOp1HC8VrRvZQIVcOuVtD9Piojr2KWi2hdg2htfZgXX8FOTmDnlsAoIUtRzPEzSCFQPAHM6THUph5EMLp5QQqokRDSFrj3H0OoGu7OPds/tNXOSe/1N9F8PaT3/M/odfFazdjnv46dmSN3bQX5zhDuthaSr51F2jbVZIrY8dqzDO9pxh0JIFSFarZApVDiX177LYb+y7kto2Eus4vZ711D2PBQIsD5JWUtGlYpVrl6dhJNV4ke7kDTH9xAeV3XaGre3ZBzBwcHh/Xspqj/L4AvSynTq6+jwO9KKb/woBbn4LCec6+M8vU//QGxpjDVisGJjx3YtE8o7ufJnzyGbdmoqsKFvx/CtiXVUhVP0EMpV6KSK99RkCkuDVfQRzVTwNcYQygKqteNoqnYhokevH0qtHTxXaQQVCbG0CIRSkOnELqOMTdN8NlPbuuE725qhqbmLd8Tiorv+FNYuTTqLS0SAAAgAElEQVRqKAqqht7Zh7U0hdbUhl3KI8sF8ASwV2aQ8Ubs1ByuPYPIShERbsRenkK4vCiRRoyLLyPMInbuCMotgkxKSfX8y1Auoagaimf75gK7XKoZxVYzq52TFnpxnMjRAfTm1XtRFMo5SXFiEqEqWFULKe1aY4Rp37wukoLfIO6J44kGWS4tM/TOuQ1GrtIMkhz/ApbIU7IDZLokMY/G//F4M/6B1rVo2NSFaWZH5rAtSSAeoHHPZrNeBwcHh/cLuynqf+iGGAOQUqaEEIcfwJocHLZk4sI03qCHpdn0bQvePaujdGYvTpNbyiEEhJoiFNMlEt0N+GJ3ritTNJW2jxylksnjidYiWq5IiMaPnsSuVHHX3Yy+SdPELuZRAkGQkvLo+Vptl6KDkJTPvoJx/QpaUxdq5N6iKMLlRos31K5rW4j0NVRZxBp7Hf3wJ1EaupDZJbSuQYQ3iBKqw84l0bqPoDb1YGeWEN4QWAZy/gIitBf7+rvQPIC0DLAMhGtVfElq0a3tsG2MqYuUR0ZA1fAdfwp1Xeekq31gw/Gq14tQBNK28bbU42lrxsjmCe6ppXC3Gmu0fW1YnNOTCkc6Iuw93IBVNWne34prndmuJ+hB2rWmhTsJ8B81JicnKRaL9PT0oO/Cz87BweG9YzeCTBFCRKWUKQAhRGyXxzs43BP9RzqpVkz8QS+Hn+i74/6BuiCKoiCRNO9vJdK8RVruNqhuHV/9zWOqczOYySXc7V1rES5pWxTfeRkrvYLe2IqWaKL0yt9hV0rovYfQG1qxsyto4RCimsbVcuC2cyJ3hZRI2wRFA9usdVXue3TDLvrgc2AaCFctvavGahEraRko0WZkIYXS1IesFjEvfBNZKaB2nUBt7Mf90FNYS9OosUaEfougWU1PatffxBvqoTTw61SnJlA/9gfofjci3LRJzLkTceLPPIa0rNqUACSl8gqKpyaithprtD4attvasOb+RnwhL6qmEm64f/7VpmmSWskSuqVerFyuMDE+STDkp7393obD3wszMzN87Wt/h5SQyWQ5efLEe7YWBweHnbMbQfW7wOtCiP+6+vqngP/t/i/JwWFrDjyyh+4DLXh8LtQdGKaGGsIc+uxRpJR4gt477n877GKRwtDbCEXFSC4Rfuo5AGS1ip1JoYaimEvzKJEYdrWIcHkQRhF39wClM69CMY2r7wD21DCyrQ/hvrf1AAhVQ9//LPbydZS6doS6ORIiFBVcm5+VUHX0h56vpTK9IWR2HlnOg+bCnh5Cqe9BCURQAtu44a8Zu1qo2TGELGNcuYyhatg9+/BEtk676tHVZgNp84VvfWFthNGNaJjL6KKoXkGvdBC0fbgCrpvRsPYIajJNOqUQbo3fsVNSURRiLbsT4TvhpRffZmpyjlg8zCc/8xSaVvsYfevNIS4Nj6Mo8NnPfZxE/XszdNyyLKB2/4ZhvCdrcHBw2D27GS7+l0KId4BnqSWMPielHH5gK3NwuAUhBNVcmeTEEvU99Xi2KOq/FXfAg5ErsHTqAq5IiFBv291126kKiqphV6uoofDaZsXjxdWzD2P6Gq7uHjSfG8+B49i5DO7BR5DpKVyNEVTfYWQxVxM42v1LISnBOpRg3ZbvSaOAPfcOQvchGg4jFA0pbcjNgqIiAk0IbTXCE4gj/FGs0e8h4m1YV19H7X785rOy7Q3GrtIdhqbDMHcW0XYCz/HnKb7zg1r0bwtn/1uHfCeLK5xeOAvC5vT8WZLFFbBr0TBbKVCyAsxeX6Zrb/taNEzMJ5l8+SIC6HhiH9Huxvv2HHeKlJK52SWi8TCpdI5KuYoWqH2M2paFotSel23btzvNA6W1tZVnn32WYrHIwYOb6ywdHBzen+w25TgHnAI8QJ0Q4kkp5Sv3f1kODpsp58oMv3gRgNTMCoOfOoRZMZj8wTClVIGOJ/YSbIxiGyZmsYwe9CEUheUzI1SSaXJXZ3DHw7gCHqRpovp37lGmuD0ETj6Olcuh1W2sA3Pv2YertYPqma9jzFRwNXWhP/5pZH4J4/xboOpokUaUgRMo/jBCvftMvywloZqDQMuGiJis5sA2EJ5YrRYMsOfPwMoY0q4ivHUQ6cJevIAc+xsQGsrBz6OE2gAQmhut93EoLYEisIe/iijOo/Q9j9AD8BefWrOtkJ//O4wLL2H3/gLK/i+gn/gZVCHw7D+CXS6CopF/6evobd249+zbMhomrQBWqQPFO4ld6kBaARJBF4ebQpydVTgQVGhuqkW3bviGLc/Yq7WDAst6bwSPEILHnjrMuTMjHD2+D/8665MTjxwmEg0RDgdpaHzvOi4VRWH//n3v2fUdHBzujt10Wf4S8GWgFRgCTgJvUIuYOTjsmlK+zOkXL2GaFsc+uo9AZGMnn1E2MMoG3rC3FqkRtbIk25aIVd+vYjJHbjaFK+BhaXgafzzI7PdPU0llCXU1k3h4P7rPQ3G2iplMkn71VYRZRnG5CB45gqdl61ofKSXm5DB2ag69exAlnEANRVBDW6fwpFFGmlWEywvFLEJ3IXUvqFqtUD4YR43srMtP2hYU5kH3IzzrmgcqWayxv0VYVYgPoLY/U9teWkJe+SpIEzt+CJG+VDvA3wm2gVQ00GrRRLl0BpkeA2kjM1dgVZAB4I2itBzCmngJou3ISg47PYXqT2w0ds3NY+eTiEAUu5hDFjMIlwdXew+WZTD9nb+mLtREdeIiems3STO/KRqWCMY5oPwmZyamOdLaRiLoRgjB//fPnmQxmaUu6EHzbExJRvc0YVu1EU+xroYdPcsHQfeeNrr3tG3a7vN5OXzEiUg5ODjcHbv5qf5l4DjwppTyGSHEAPDbD2ZZDh8G5ieTpBazKJrK1Mg8e0/cHMRdKVY4941zVAsVOg530jbYhifg4cDzB8kt56nrrKXpPCEfroAHo1Sl4WAHVrlKNZXDHQ2Sn14k8fB+Yof60L0a+XM5ZDFPZXaWwL69GItL2wuyQhrz2jlw+aiOnMLz8Cdvey/CH0PrOoKdWUDrGARACcTQD70ARhkR2rmAkHOnkAtDoLlR+n8C4V5NkVplsKpglaAws7a/XZiD7FhNfFUy4LlRN2VCMIIIdiACTbV1hjqR3jiobkSwGTt3HVIXIdyPCHUhNAMRcEM2Cb4ISqABfPENxq4i1IzWdxJ7+hIy3EDl1f+E8AbQDn+CX3r9NxhaPMvBlVb+cM8/rwnTysZomG34yJ+/yB/0GFSff5Lmjsa11KiiCBoTYbZC1VXq929jqnvjWVg25XwZT8CzyazXwcHB4f3MbgRZWUpZFkIghHBLKS8LIfof2MocfuSJJkKomootJfHmjZGncrZMJV/BE/SQnE7SNliLSIQawoQabn5huwIe+j55FNuwaqlIKQn1tZG/Pk/8UK0TU9E1At2tGNevYBVLuJqaELqOt6tz+8WpKsLlwa4UUGO3MUNdRQiB2tCFGgzCuoJ9xb+zonIpbSgtguqtpSV1H5hlMIpwQ5B5E4hAHBbeALeCLC8DEq79R+T8t8AVQzQ9C0JFqC5k8SpC9UD6AnZkLzI3AiuvoAS9EDsMwQ7k8H9A5q7B1HcQB78MC2fQ3vpzWJ6oia9DP79m7Lq+hkxr6Maqa2Pxm79LeGkWoXlZaetdi4QNVacpDhwgoCgkgu4N0bCoVSZ15Sqqz4f32hiiswlp21SSaVSvBz3gqw0Ol3JXHalSSi5+d5iV6RTx9hj7P7LvgbnzOzg4ONxvdiPIpoUQEeBvge8IIVLA7INZlsOHgUh9kGd/5ji2LTe57gfqAtR3J8gsZuk4vP0QawDNrcPq/EAhBHWH+6k73I80DaxsGiUQRPX5iD71BFapjB6LbvtFL6XEvvYa9tIYav0e9Hg/Smjrbjk7fQ3rwp+DNw4dH4ULfwmaFyW+D2Xgcwixao1RzUJ5Gal4oLSACLQivBtrjOTSWVh8CxQ3ovkZ5MpIbR//zciaEALhi0Fify1SZhaQRhaqOYSvARQdPDFE388hVBdMfQMK06D5oLoEi29AfgKCvQhZgmoamToH5RS4I2AWAA2WJxDSRk6f2nLuJNSK9L/47V9iKDnEQ2qUP1AfQwnsuRkJK3ZglxQI19b9n7/06JpNhV2uoHo8WMUinpaa2M1cGCM7chVF16l77AiLp0ewSmWanjiEp26bTs9bMCsmKzMpQvUhklMrWIaF5nKceRwcHD4Y7OjTStR+Zv7aqjHsbwkhvg+EgW89yMU5/Ohzw8T1VlRNpf+pgS3f2wnSMimeehk7l0ZrbMU7eBLV779zIb9Zxl4ahUAjrEygdD2ybRG+ee6PYe51EDpkpxGVNFJKpK+uVm+lurCNPPbQ79UK8a0qou4gLA/BDdF0g9JSTbBZq8743Z/YeD+2CXYFkTiOlBboYfC1Isw8Mn4IVB1iR6DleVh+CWkWIHESET0A7mgtnan7wR0DqwLxo8jZ70CgBaopiB1E8dUjez4Nsd9HrkxD3Z61uZO3dkku55c5vTgEwuasnaLw9D+iPuRlv/VlzowvcijoJTTxBrL+0whF2TDQW/V6iD79BHapjLo6RqqazqG6XViVKsWZJaqpPKrPRWpkioTfi+a98zBw3aPTMdjO9PAMnUc6HTHm4ODwgWJHn1hSSimE+Fvg6Orrlx/EYoQQHwf+L0AF/kRK+W8exHUc3h+U82VSMymCdUEC8cB9PbesVmojhoIRzMU5pJTbpq+kbYJVQeh+0DyIaBf29FsIfwCMHKixrS9iZGrzJO0iBBLgDiGqOUTHc2tiS6bHIT1aE0yVHMQfqjng37i2VUaunEO6PGDFEJ468LcgqylkaRrhaQbNX0tJVtMQO47S+vzNE7jCKH2/DNQiUbJwFTs/gawuQDWJ2vmLCKUWPVTaPwvWC9iqF7nyBix9F8wKeJtQ9vxs7dpGAfnRX0MWVhB1+xFCbN0lWTCxih0ovlo0TLjbMM59i7/Yn2MxvkJ9YweC7e09VI+H6sIiqR+8jru5ifCBHjIXxvFHgvg6mslOLpCfX2Hm1BjTr16k+8ceJb739vVjAJ1HOug8cvuIqoODg8P7kd38hHxTCHFcSvn2g1iIEEIF/gB4DpgG3hZCfM3xOvvR5fL3himuFFB1lSOfO4a+Ot6muJRBWha+huhd1wAJjw8toGNeeQP98Ee2F2NmBXvia8hyCqXpBEr9IErrQ7DyBtKYwZ74Cur+L255rNr/E9jeGPjqUfZ+HsWoFdQL/WYUTvFEsSJ9UE5C108gAi2IQNs6wXYe0kMIaUPjcyihHqS0kAv/AFYJqVyAuiegugJ6BPLjEN6/8V7X35seQRpJMFKgh6AyB95VIeOOI/OXYPk7YBQAC3XoHCRnYPQKfP4bCN2P3fkZUtlJYrHadbbyDEvEY+wrfYGzsyWOJKLUuW1Mo4zqC9PU5kFp2YuaaLttDVh+eAQtFKQ8PYO/r4f6J4+tvdf+wiOM/rdXkPYS1WyB5IWrOxJkDg4ODh9UdiPIngH+eyHEJFCg5ggkpZQP3ae1PAyMSymvAAgh/jPw44AjyH5EsQwbVVORtl0r4gYKcytMfv8sSGg6MUC0p9YFKaUEy0JoW/+TtbNJjPEhlEgCrfMAVAsodhbP3kFk9jrw6KZjZGEWmZ9GFpfAE8O+9vdAGenvgMI4WCaSKtI2EUrturI0B2YR/O0orU+hJAZBD9Y8wTzBzdfwt6H0/CQoGiLchxDK2r0CoHpqpqtCQajr0nLSBhTABlcMvM1QXqyJs9sgXFFoegFSb6PoIVDXpWgrC5A+DWYWKku1yF9ypiYGp2r1Yra/ji++9C/v6Bmm6B7+31/9OMl0hngsjrx+CkrzSKUB1+ALKME7+3B5O9oojI6jRyMIVd0QxVR0jWhvK6lLU9iGSd3Bmx24t4t2bodt21y7NEe5UGHPwVbcH7LZlg4ODu9/7ijIhBB/JaX8x8AfAV95gGtpAabWvZ4GNg1hE0L8MvDLAO3tzi/m9xvlfIVKqUqoLnDHL829z+5laWKRUFNkbSi0Ua6ADUJVMIoVoPYFnDs7RHFkFKFA6MhhPD29G85fHT2DLBewUguo8WZEIIziDSELGUT8pmfUDXElC3PYV/4GaZogVUiPgWYjZ78P/kaI70WYZUSglRuTzGV5CTn9dZAmRAdREo+CZ5t05o3rrbwNqXcQehRb90HmHFSTiOgxlPABRHg/aEFQNGwrD0vfRgT2Ixo+hixeR/haEZoPGj+OlPZao8C217PLYCWRHh8yMIjiiq8+QwuJAuUCeCIQOoQIHcI+P0xq9gzxlmMIf4JkMbkjzzAA1eWhvt6DLKUxly6jNO+Fcm5HYgzAv7cfb1cH+fFJ5r/1Mu6GOuKPHEGotVFP9Yd7CHU2oLpduAK1ztXCco6Jly6ieV30PLN/7d9NdilHej5DXUccX2jzWKqlmTRDr4ygqApGxSTcEOTK5Rn6DrbR+h56mjk4ODjcYCcRsqNCiA7gF4G/4Ma30/1nq/PKTRuk/CNq4pBjx45tet/hvaOYKfHG14Ywyga9xzrZc/j2gtkX9dNxrGvDtlBrgsq+dmzTItZbi47Z5QrlqWmsTAojk0XxamixGHr85sggJRTFzCyBpiE1DUXV0Qc/jixlEavWE/b8G7DyLjKyF9s2EMtvIvQIdH4OAq0w/U1InQZNILwRCD+G8ETXhmTL4gyyvADuOoRZvuPzkGYBZr+KrCwghQqlcURpGunfg1z4Nvg7UbQA0teCXRjDTr6E0MLI6suozT+L4t7Y3Xk7MSbtMtJM1Qr27RzC1QDmcu09I4mVeQ31K/8a5kYQLYfgn3wLqWh8samJIa2FQ4kG/gy5ZTRsfZdk3CuRc68gpYVoOFkTiy4/wl+HzC+hNOy943O5gV0qYRVLFMavoUdClKdnsUr70AK1qJ5VNVm+NIWiKCQGuylnisxfmsG2bArLOfILGWJd9Rhlg3PfPo9l2syOzHPiJ45u+jGgaSpCCCzTRgrJqZeH8Qc9vPm9C3zm83VoO5iN6uDg4PAg2Ykg+w/Uuim7gdNsFE5ydfv9YBpYb3/dimOr8b5FSsnI29eYGVug73gnbX2NFHNljJKB26eTWsjc1XkVXaPhSO/GbW4X7uYmKtNTaEEfYmmC6jslOPAIWlMXlFJonftQQhHsye9ivflvsWKdqJ3PoEZ7auu1DUi+i/Q1IlLD4PJB/BAUr4NKzTai/VNIRYLmBUWFwiUoyFrUydeOzJyuZREVBVH38J1vxkgjPQkojtY6MUuzSDWIzJ5BhPYjU69hh45gXf/3yPJVMLJIdwOKtwvsMqg7G0AupcTKn6oJMsWFUMNgFRD+gwDY5Uko57FnL5MSEJs5hyimWMa4GQ1bOMtyboa4TLJf/hpnJpIcXRcNu9ElaaeGkakLgAKuECJxDKHqqHs/AdUieEI7WrNVKrPy8qvY5QrChuQbZ1E8borTC4QGah8p068Pc+Ubp1A0lYWRGYSmUy0ZKC4N3efBGwus3b+0JUIRyG1mSMabwjz2qUEqJYP6thjzcytkVvLEEiFUx0DWwcHhfcAdBZmU8t8B/04I8YdSyl95gGt5G+gVQnQBM8A/An72AV7P4R4o5cpMDE0Rrgtw8dVxWnsbiDaGaBtoIreSp+9Y5327lqyW0cgTO9KPGk1gXj2LGoljTo8iyvPIpdHa2J/GPsiOw/J5mHsNuzyHMvg/IHz1CEVHRvoQ6REI7UH4G2DxNWRFgex5qC6htP8UoufzyNIiICH5as3by8iCtGq/RPyt4G2rzXe8E+56RHg/sjoPnpZaqjPQi6hMgSsOdgVZHAErB9KqeX0pKrbmR92FIAOJtIsIxQuyihJ+GiE0RDFVM1d1t2C4JvmFxnZG3RZ9VY2/YhYrPbUhGmYtvIgMuPjrHxekPE+QiLVuTjtrfgRK7fm4bhr0ClUH79YO+1thl8vIcgXV64Wqgb+3Cz0cpDQ9vybIKukCQlWwqgblVIFwZwNCEez5yCDeqL/mPwe4vC4Gnz/IykyK+u7Etqny+tab6eWnP3WUdDJHtC7omMc6ODi8L9hxUf8DFmNIKU0hxD8Dvk3N9uLPpJQXH+Q1He4et89FqC5AZjlH8576mlO9prL/yd47H3wL1ZU0RjaHp6ke1b3Zb8qcuYpMLyOlRGtoQku0YGeT6P3HkHNvgzeKLKYQ7iDCFUKWV0C1IXWpFhmzq7WxQ01PIRpOgOpFEQLb344c+z0ojCArC9jWp1FdUVDd2MVpCHQjEIjoEdACUPckGGlEaGeDm4WiozZ8DBk7iazMI9wNCD2MXZpGVmYQrvqap5ivB6RRE2TuJhA2trS4kUST0sSuXgUEiqsTITb+txVCQfUfQ1augd6MItxYf/5JUrPvEGs5hvL5b3BNHmLYXevIHHZJJhYv0VvXzn77lzgzUeRIQ5CYdhY7n0boCerqXDUbDasMRhL0KEL1ITwx7GBLre7N34k08jWRtk7UWIsTWFfPoCQ6UbuObSl4tEgY394+jKUkwaO9ZEeuU11eIXy8b22flkf3Uknn0XxuWh7dx9LoPPX72gk2bjaKDTeECDfsLDoH4PG6aGzd2vDXwcHB4b3gfeWcKKX8e+Dv3+t1ONwZVVM5+amHKOXK+G8ZCr4bzEKR5R+8hTQs3I11RA70onh9KOuEmQhGa5EeAVqkDqVzAGwLoelYbhV78k0Uv44szaCc+FUst0RYJRRPGFQXcvqrtShX9CgidujmeV0h8NSBFoLKdZj+T9iJpyA/CpUlhOJCNH22Nn4IEMGbYlNWFrGz7yJ8nSj+ntveo9BDCP2mWFC8rVjGFHZxCKEGUZt/HqF4sHPvYFWuIc157OKbCHECRU9gV6ewKuOrJ3OjujYOtpbSRqh+hP8IQiiYmTm+WJ3gXGsDg+UJ/jS3QHeojM/uoKhM4rO76K5rRVor/PXnW1kpuImJEWTZDZ6HEFi1iKKUyOT3kdUkqF5E7Blk8jSisogsTkF2otYUkTiCaLiZwrWuvgMuP/bcZdSmvi0jZ0IIAgP9sOr9m0gkNnVPBhpjHPj8cwhFIIQg3L6z4ewODg4OH0TeV4LM4f5i2zamaeFybW/QuRss02LxWhLNpVLXFkN3aei7NHS1ylUKUwtoQS++xjqkZSMtGzSV4sV3YW4cLVZH6ImnUVw1awK9vhn10Y8BAiUQqs19tEpIRUGt60Rx2diT34TlMwgB+kNfQi4PQbALIezaeCE9DIUrsE6QgQB3ArIvguJBuuoQucur0So3SBNZXQFXBKHeFJ3SNrDmvgKF0VrXSfevo3i3HlK+FVJKpLEEahBp5VCEVhN/gaNIO4lkBSltpLkEegKE62bhptj8X7ZUPMu12WG6Ww7g9g4yUbEZ8rixBQx53ExUbLq0RV76qd9gfPkyvfFGhFJF9Z9EUeuo91tgd2GVrkBpFKEGV+0ybDAytQkCK6egnEJKBWEbUF5BZuaQ4V7EykVYJ8iUWDvWwhjCH6vV6u2QDV2z+TKKrq6lJbd6hpmFLKquErzPpsIODg4O7wU7FmRCiH23mrQKIZ6WUr5031flcM8Yhsk/fPNVlhZTnHxskIG9O++9KBerAHh8G72arl+cZeTNKyDg2AsHqWu9veXDViTPXKIwtYBQBM0fewRXOED04UMUR0cpXZ6lkrExK2UC5dKaIANQArUoi5QSa/JlWBlDBJtQ9rwAQkNIkEYGWVpAihJCVBDeWM3Dy99Vi+jUP7lxMXYJBQO76cf4/9l7ryC5svy883fONemzMiszyxsAVQXvge5GezfdYzk9Qw7J4NBJXFLS6mEVG7Ghp42Q9LSx2tBuxGojFBqKZkTOklyRnKE4nCHH9dhGO6DhGr68d5lZWenvvefsw60uoFAF2+jpHs79vaBQlXnzZGZ154e/+T7yJxFuEdKPI0I5KF9FuRXE/NfQVguy/bMIc81nTEjQDX8mTNpot4jv2nJvCCGQ8aOoyjmUcKF2BiN6GHQdYYB2JcqdxDB9o1Rpda5VrBx/YP8m6vVJ/slXfoertsfOpsGf/pPvs62lQFjtoCrHCKsBtqeaeE4dySo7szsQwltbzdG4tTfRqoIR2osR2weR7X6e5prw063PIFZOoe02CLVBZQzdLKMrk9Asw/B/Q2/7RbTn+HNkgDHwGEbXHgjH1r93M265TGN2DjubxUpvbj+ujM8z9dolDMti+0uHCbVsjruaujTLtZPXEVJy9FMH76tdGRAQEPBR5H4qZP+fEOJPgH8PhNf+PA48/kEcLOD9UciXWJhbJt3awsXz19cFmet6TI0uEApbdPZmN90vP7/Cya+fBzQnPn2QTMcNAeA5HlIKlNIod+tttruhPYWQArRGNZp4lQrRnk5krYR7KUJz7Jq/SXlTVU+7Tbzx1/GmTwMOcuUy9DwBq7Pg1iDeC91PwdTfweq7UFiB9EH08luIzHG0bqBpIAtvou0WhL0mJGUYwj3I+hS6/VMQ7Yf6FNpKIFsfQ4383+jaGAiJTj+xLsiEMJBdv4pe+i5YKUS4z7eBEPdunSBDPWgaUL+K8ooIZ2ZNeEXACIEI4zWvIo00QkbQMobrXMBrjjCx2srOtj1IKRmbuchV28MTgqu2x+j0u2zvNvn+F/9Xxoouu9oew3HexrC6gTKmeQDtrSCEjQaUtwgihOeMYFidG41kARnpQoc70FYGXb4GK9d9IVadBp3w25VWZEPElJASYlsHgmutWTn5Jl6tTkVeI/vyixuEN8DqTB5pmbiNJvViBTMWZmWmiB21iWf996BWrCINiet4NNb+AREQEBDws8z9CLLHgP8deA1IAF8BnvwgDhXw/kmlE+TaMywtFnjs8RthCpfeGeX8W8MIIXjhleO0d22scuVnS2uzPLA0U9wgyPoP9CCk9FuWffdfHQPIHN/D6sg0Ztikeu40zsICQjcxTdCVZSJ79mG3t6FrVdyFK3iFaXR9CX3uz9eyIW74+TkAACAASURBVBwYeg65cAH2/CLa9Af0ibZBJOPnUror4FbRyZ2w8B10fQ4qw+j0I1AZWxdkQkjIPgdeFUQI5v4KjYGoTqK7fsn3BDPjgAHmxsqUDLVD9xfRzSVU/ltoYSFbn0OYt6/UKLcAqo6wsghhIYy1aCgtQKYQMoYZfRyNgUYACq2boENoXcV167zwF/9hbQ5sgJ/89n9jqO9JdjaNtQqZybauLpSeQQrYmRtCSokQLXjeNaTsQKPQogkihvKmaDpTCG8Jw96N5+YxzM3vqxASkXkCFd8DMz+E6gQi3Ibu/ByiOo9o3QuhrQXYXdGbrQQzO7upzBcJJaPE2lNMnhpl9uI00jQ48JkjRNMx+g724DQcrLBFa0/6wR47ICAg4CPE/QgyB6gBEfwK2ajW+sHKJAEfOLZt8alfeAbHcQmFblQgnKaLNATa03hbVLk6t2eZvDoHQPcOf9B67voCzWqTrt2dDBx9f+kIZiRMet8AztISjUoFr1xElUt4Xhm7qxehHOy+QYSpcSfOgRVCT56GUByqy34bzAojOp9EVK7AyDS6/zNoK4VeG7oX/b/kV6vsDNSnEDLkz0FJExH1B+K19vwIJDOOMOOglX8bt+RvEAqJaHsZsXoewr0IFO7EH4EqI3KvYMT810GtnvNtLWQc3Vy6rSDzmjO4xa/7s2OhHqzkxzHsDkT8Wf/MMrL2Zwwr+iieM0nTbXJ1/iSDrZ3Y9k7GVwR1OQoC6vIaw8uz7Grr4f/9nbe5Pvk6/Z0CLS+BSiGNNIaRXRPXdYSRwtOLqGYZw2gBvYz2GkgjidZ5tC6i1DIGtxfawi2jw22+RUfuBObgr9zxvdaug/Y8ZCh84xpC0HLiEWoTU1jp1g3LGwDK9Sgvlmjd3UtmsBNpGjSqDaRloFwPt+ECEI6H2fPsLhYn8hTmVsj2PHjuaUBAQMBHgfsRZG8BfwM8AmSA/yyE+ILW+gsfyMkC3jdSyg1iDGDfsR1Ytkk4GqJjixmwWEuE53/lkfW/56cLXPz+ZYQUNOsOQ489HB9gM5XCam+nOTOBEbERThijJUVk7xFCA3vRzRoiFEE3qhjbnkR7VYRQyN5jiMWfoBd/hLYSEO+C6iwULyAaSxDOIcJtflUHUG0vISoj6PaXoTyKrk6hrRQsfAfqcxDfjcg+7lfLch9DNBfBziKEgQh3QrgTAG/xH3yjWKXQ4pvo6O+CqqOqI+iV04AH8YPc1mLUW0F7JZSqQH0Ez3wdaXwMYWweSBcyBuYQz33ll6jKUaJqGz/+zT9md3wnh+sNzoZtDtWbDIX9/3xN02KgtxtPXUbrIlpYGOKmip6w0SqPIIamilYRhAxhmIN47hTCyCFEBClvX93zKuMw9idQPA2hDuDO7VlVLVN761W00yR04DGs9p4bxzEtyhOLuJcnaX3kALG+zvWf5UfnmXrjmn87Q5Id6qL/+A5Me4JoKkbiplmxyctznPvBVQAe+cR+OrZvbsEHBAQE/KxwP4Lsf9Bav7329RzwihDiNz+AMwV8gITCNgceubNNw80IIRDCn/2RD7EAIUyTcHsroq8N1WwSPnAcK9uGTPrtJ2FHsA5+Gt0oI+JZhDTQjRJ6dRyNhmg3VKYQ9h6wU9DM+0alzWW/gvNezFDpIqycQ9SmINoH9SmwEr4YC7VB5Ro6c8J/nmbc9xuDzbmRobWhfaHBzgJyzYpDokUI3CJq7iuoSDfSbkNrhaqeh+Y8InoAYbYhrA7wVpB2N3BDKLuex3B+nqFMB1L6jzmcn6cqRxFCUZVjDC+PsbvtIH9gd1Ccuki6aw8ifkNQCxFDihZc3UQiEWvXF0JgyAGgiVJVtDCQMoYhdyBlFCGewm1eQ5rtSOMOGZSzX4faBND0w9Tj2+74/qrVIqpexS0WafzD14g//xlCvf59msVV3HINIxamOjGzQZAJhN+Z5sbWZTgRYeDJXZsew2m4ay1fjeu4dzxPQEBAwEed+zGGfVsIkQaG8FuWAOMfyKkCPjKkOls48LF9NGsO7QM3PrCVp5g9O0qjVKPr6A7CyQfwIvNctBCIkI0RT2CkbsluDMUQIX/IXBWGUSPf8J3zw2lkehfs/i1EOIuQJqrtaXTxPKLtWYT0FwJUeRI9+de+ECtP+b5Z8R2IrgzEd0PlGqQ25x6qyhgs/ggdziHaXkRIC5nYh97+P/uRROE1B3szjmh9EcrvgrsI7gpq9SKiJYJ2FlG1Eb+VWfw2mjparSBlCyK8FyOyC2HEcT2PJ7/8y1TkMLG1uTDTMBhqbWNvU3DV1uxswraWMkoX4bf+Cy2VaVSsDSmkL05RGDKLwAFtIUUUIaL+0gAWUtoIsR+Xy2jtAA4IF60qeO4oCIFy5nEbU0irDxka2tz+C3eCfgfiOyD7JCL31B3fWpnKIiJxnCsXsXcfpfbuWeyefoQQ2K0t2K1JnNUq8aH+DfdL72hHGP5jp7fd2Xesf28nylVIQ9C5494CzQMCAgI+qtyP7cXvAv8KP2PyDHACOAm88MEcLeCjgBCC3LaNraDGao35dyeZPzdGKBll9swY25+5N/f693Dmp3EX5zDSWazOXsy2ri1vpytLeLNnULNvwPzbEMsheh5H9r504zZaQ2UGUV2G8DIkB32vsrnv+O21/GmwkpA+CM0VhBlGZB9HZ0741bSbUMUL6NE/hkgHQjt+xS3c4VfQwp3cihHtR3f+OmrhL/3FACOMV/iOn0WpG2hRwmtOA3XQdTyzi4nlArv7ffE5nJ+nIocRQlGRwwzn59mV60LW8vzZ3AQFNK1As7aEZy1hyk5ItoG28fQMWo8iRAghdiAMG0PH8P+95KC4BiSR9AIurreAYhZBFnQWaKCUC8JAN68jjF7cxkVsuw9EeMPzlN2voKLbQJrI5J510Xs7ZChM7MmP44kIqlTE6roRw2SEbNpeOOFXGOXGJq80JK07Ou547fewQhY7H9l2T7cNCAgI+KhzPy3Lf4U/P/a61vp5IcRu4N99MMcK+LBx6g6e4xFObPxgVp7i2nfOUVlYIT88R/u+XsIt91cd055H/dxbiFAIVatiHX1i0wczgG5W8C5/A1UYRVfmEV4TlINolNDKRci1X1+3CitX0JFORP4sOnfcb1naad/EtONj6FAOyiMQakfXliDWg158Awpn0am9iLanAAXLb0JsO6ycQUdfRFiptTM30Ms/AreMyD6NsG9U84zkIaSVAK3AjKGaEyCjKKOTpfxFWvUU2oji2W28+M3vUjX+iJj6I39LMtNBTA1QXauQDWU68LwlPGsKs+cgmalz6J4DiHg3AhdPT2OKXWjKaCaAMlq7CDEHhBEiiaYCFPxz6xKeVmi9gmYVKTIotYLj/BgwkKIdqQWuU8CrjSDMTnS0gpAb33chDIzWo/41q0toaSDCaT/M223gTl5ChKO+Mz++9YUwTJInnkbVKshY4pbrCQiG8AMCAgLWuR9BVtda1/2ZIhHSWl8WQmwe7Aj4yOI0HKqrdeLpGIbhCyCtNWNnp1gcW2LHsT6yvRlqpRpn/+4sTsNh51M7aR9sX7+GVhrVdImk4+T2dDPw4kGSXXe3HVD1GqvvnAGliB06hIwn8Yp5ZDyBMG/za6iVH5GU7AI0IpVDxHOIWMeNGTEAM+K78pdGIL0XIf2Bc93+HKyOQcsA0oyj8hmY/RFU/zuq+yVE4RxEOqF4ETLHEWYEFcrC3A8gPAidr6zHJtGYg8q4bxsx+01k1ysI64YvmYgOrb2eLkR2or1VfuPPHE5PpzmSe5L/+tmLTJufo2p8ZWM1LNPBa9QoTM3Q2t2FBJreJEKauL/+v2E1uxCxHgx9DXBhbW1Akwfqa98DyK39bAVI4i9ENwABuoTARgoLhF6bL1OAQEgL0SwjjS6010Sabb7pLaCdIiA3xD6pwjBq7Lv+ZcN96MICqqnQWOA0aVx5F6UN7D1HUdUmIhQi1LNFSPlHHKUUJ197k5mZeZ586jG6uu6tahcQEBDwoNyPIJsSQqSArwHfFkIUgJkP5lgBDwvP9ZgdXUIakuunJyjlK3QP5jjywh4Aaqt1Rk6NEUlGuPSjazz9xQzVYpVmrUkoFqIwld8gyAzLYMfz+8mPzNO6o514m7/NpxyX8uQ8MmQT68pu+gCuz8zQnJ1F2haNqUkix55ElYrIRAvC2PrXUIQSiO3PomfPI2I9YFno+jK07NowcC+EhO6XoKMGhm8fod06evQb0FyBah7R8yxCa7Q0fSsI5aDj22HhDUjvvyG8ZARi/YBENhbB8u0tNAJdm4XydUjuQc/9A/T80vrzVEqztLJEq74GtRGWmine5UtEBse5WO1j2fkEO/sHiamB9XmxoUwHVJcwpt4kq1yYfBOqS8hwGqXm/W3LeLdfndLbULqCFHE/VokloAVBC7Abg8TaPFkGgYEmgVKTaF0FXUMjMcRuhIiAGcJ1ryKExjT3odUwQjUQogcZHkRYOVR1Cj3/9yAksuNTiPCaIKkt+0LZc9FTpxEdR1HDbyNinahaDc9TyNZOKq//EM9IgNbIUAi77cFyKJVSDJ+eoDhfYuej22nJbay0Lc+tsLy4Qs/2NqLx8G2ucv8sLi5z7txF4ok4r732Jl/4wmcf2rUDAgICtuJ+hvo/v/blvxVCvAq0AH//gZwq4H3heYrhc5O4jodyFdfPTOI0XLSn6NieZXGysH5bK2QRSYaprlRpXxuMTrYlae1JU1up0b1vcyRQvK1lXYi9R+HiGIWLo2ig54VjRNpvbABqrWlMTFC9dAkzkyF+/BGkHUJm27kVVS7gXn0dEY5jDBxHzV7CG3ndF1NeGaNjL7r+JirRiYzfmG3zh+xvap06ZWisoN0G+tKfQyWP2P4xhFcDJKJlCF0cRRNHVIroygwgfOd9aYMw/Mrbeyy/AyIBrgYz7ccm+buAKKX51d//CaenJjmaEfzpJy6A2Y0RGQehMKITWLEMQsBPfusvGJ66wPasiVd9A0I7kb2PweQb0PsYxHIYaAyjDbDXI4yECGOsz3WV/bk5akAGQ/ibof5+4trtSaCRQApNFUECxTxoMOUA4fBjN96f8EEMexBkBCEMdGMJnX8D8v5StUrsxlgTZF5hFu/C30GyBzH4GSjNY+18HLdp4V6/hFctY0YqGNlOvPzqlsav98PqUpnRdyaxozaXXxvmsVduZJFWy3V+8PXTKE8xNbzAC587/r4e62bi8SjRWIzyapnBwe0P7boBAQEBt+OBwsW11j942AcJeHjMji5y/rVhpCGwbRNpSKyQSVtvmmbVYf/TN2wvrJDJsU8folaqkcj6H+xW2GL/ywfu6zGVtzYcrzVabfwQ1o0GXmmVxOOP4y4vY+dyOItzeMU8dk8/MhJbu10N58rr6NoKlJYQ6Q50eQkRzaCXrkE0jnZr6OURtKsxdr6Ikb3Nh2W4FZE7hLr6VcgegPoyollGtD+BrhVR+VF0dQERSkN9GXXtr/1B9fZHED2fATOCCN2y9WlF0alDqPgABWsvubXI78VynXfVvycyMM671X6WKvvIxWY5mmrj7MoCh7IDZJN78Za+hvG1/5OdsxfR7b00fuGX8ewrWL/+JUS1hI51INQKQrYgxJ3m8kyEjqC0hyCOMLduB2pt46lhf9lAJ0A5IEw0Gy0ihJBorw5uGaU8WPg2rFzz46DMNO/9b0JrjR75EaR2oouTmMl2jJ3Pgxmm8aO/x+wcgOISkaNPY6az1CcnEbaNlXvwDchQNIQVMWlWG7Rv2/h+aK19OxYpHzjK63bEYjG+8IXPUKlUyWYzd79DQEBAwPvkroJMCLGKXwrY9CNAa62DVN+PGKZtIqTfRhs42ItWmlDEYtu+rnWfq5sJRW1CtwSJ3y+t+7Zj2BZmJESkY6Ph7HtzRPWpKaK7d6PrNaqnTgIab3mR2Iln0U6D+tvfxp0fQbgVrO5BZCKL6H8Eb/YiRv9xZNsAqjCFc+qr6KmrflxRuhfcxro9xvpjConoegKiHeixVyGShmgW7Tl4V/8OnKo/h5brgkQ/YvmSHxS+dB5v8V2IdyL7n0euLQ6IjhfQ5RG0neU3/nSCU+PvcKw/zZ/93gkMs3JTNWwco//fIpa/ypd2HqTgKbK7/h2ifBLdUDDzLkIrmJtAr06jo1WaQiKMKNQuIoxWzNA+pJFD6yJgIGXLLc8tDJhIEfaH+3UTITa/f1oLhMiidRPtTuC5U4BGWgm0bFtvt+rGPCr/KqDQZpt/vlg3QgOhDkRsx9rjCug+in7zy2DGcKeuYPQcRUiJ1bON5vAlzNYcZjqLME0i299/ZSkcD/HYZ4/QqDRoadvYrowlIjz1yUMsza3QP/TwZ7xisRix2OZg84CAgIAPgrsKMq114m63CfjwUUqxslQmEg/R3tvKk585jOd6dPRnqJcbnH31MgtjSxx6fg+ReAi36XL5J9eprlTZ8/ROEpnNjvH3gxGyad2/tYu/EIL4kSPE9u9H2jaqWvF/4Lt/+l/Wq6h6FbNjAN2oYh/7NCIch3gao+uGpYbWhh9QLkBVqzhnvomqFjG3HcHs3b/psWVqB/pAL1pItFKohWuoheuIdDfCCCF7X1yLTbLRtWXU9Cl0PY+oF6FRRg+9Qr7qkI3HkelDLK82ODX+Dp4oc2pcs1xpkrFNjmZ3czZ/hcPth2lL7cFbfQ1ZOkum0UAU34RYL7r+BrpzEOZG0F17kS1DaKMVoatowqAVfu56A8+bx/NGAIll7UHKjVmRQoTXAs0FsLlCplTF/75Waz9X4JZB1XDrfw/1Gcz4Mb8CphqAB8JAWElEYi+6Ng9lF5oCCleh028PWwe/gLeyClYYKS3e+7daaGAvVvd2hG2vL1U8LKLJMNHk1vNh7T0Z2nuCClZAQMDPPg/Usgz46bAwn+f733qLRDLG8y8/QjgSuu1tz58cZvjCFJF4iOc+dxTTlMQSYaSUTF+bZ2WpjNYwP7bItv09FGZXmLu+QChiM352kv0v7MGpOxRnCkRaosQzcRavz1OYWKJjbzfJjgcMj15DCIGw/SqOjMaIPfoUXqmI1e7PqIl4CsItNCavE3n0JV+MbYFMZDAHn0JXC4jWfnR+GhlLoRZGYAtBtvbouBe/j5q7hirPI20bKlWMTBfumb/FGHwC2f0E3vQpdPX7MH8K2o/grc7zm79/ktMTK+vVsNaYSWbwD9cH89ORl2DyG/zB0AsU+BiZwX+KNEx0+gTiG/8PYmkeOi6hv/hlcEq4zz6PtP8FsucLmI13Uc4iSoNh5hBmiz/Ab3biupNo5SCkjdZNXHcMcDCMPoQIIUUPmlWECCPERk8wres4zrsI4SFECtMYwNPDePpdXz81FtFGGa96ATP5NIS7ELH9oBuI+H6EEUWXp9GFabQwfFuR915J0yZ09POopXFk2/YN4kuGIwQEBAQEPBj307LcalAlaFm+T5pNByHAsjYbbV4+P4IQsDC3zMJcnr7tm41J32NxqkAsEaGyWuPCa8PMjCxiWibP/uJR0u1JECARJLN+wTOSDGOHLZoNh5YOvyV25UdXyE8uY9oWB17ez8hrV7GjNtd+cJljv3rioT5vszWH2ZqjMTONc+0Kdi6HV65gtG3DmRojtH33lvdTtSpOI4SM9GEPnMDjTXRxBnPo8ds+lq6V0IUZMGzc4TMYqU7ktoOolUVkKII3cRq57+MorchHd5Nu18hEjkL6MKcnljZUw4S5SsMcQWhFwxwhP/EtMsUriMQ2MlKsW2sZZh96eQGhFXp+GFYnwS35CwOmC14FiKMqbyLCnQh3BTN63Bdgqo52pkEtg+hHqQqucx4hE4CFaW5DCBM/OGOL56sVQnhobQAuUtpIew8iauDW3wXTRKARpt9aFsJEJA9tvEisCzqfQjSLiOyRDT+SLW3IlgfbmgwICAgI2JqgZfkhMjMzz7f+/odYtsWnP/MCqdRGbdu3vZPxsVmi0TCp1jvr3oNPDXLuJ9cZPNBDpVDDCpk4dZdapUGup5VnvnAcIQSRNaPXeDrGo58/itt0ibf6czJO3cG0LZSr0IAdtWmUG7R0bl0da1bqFIZniKTjJHvv7wNaK0XprTcpfu87hHt6cHJZTNtGN+oYydtX45zRS+hmA6+8gl4tYu97zrexuIPPlYgkEMkcauYqRvcBRCKDkd0BjQK6UUO270Ipza9/vcmp8S6Ode/gK//sabKmQWbwRqxRa+wTSJHhcNthziyc4XBqgNbKBBACEUK0HEKItYpRLIfoPQGTbyB6H4PcE4h8DV0bhUg/SImuvguqjK6PQfyGINK6CrgYRidgoNwJtK6jvTKYO7d8jkqtAiBlAimjGMYAWq9iGDcSEIzQEIbdi4qUIP8DqF9FW93r5rcbXjMhENmDW793nocwHm5b8mFRqzV4/cdn8JTiiacOE40FVbuAgICfDe6rZblFliVa6x8+7EP9vDA6MomUBpVyjfm5xU2CbNtAN7n2VkzLIBS689B9Opfkuc8fxbRMSvkKF18fIdEapXWt+hVNbv5gCsdDuE2Dqyevo5Rm2/HtLI8tkWxPkmxLsvcTh6gWKsRzW4vBsW+dYu70MFY8xOHf+xSR1ttrd6/RRNUbmMk4QghUrUZjegYjnqA+NUVk+3ZiR47iVVYx09nbXkemsjA3CZaNjK7ZPdzFdFQYFtaBlzF3Pok3dQndqGLsOMpyXZGxXGQ8w1K5yemJAkqWOTWtWfjRX2EO7dpQDSvU8mRjOf7w439Ivp6nZf5tuPpnaDuJceo7iNmzvnXFb38dpPT/rC754kwIzPbPoZXjRxV5q+jaKMItou0ezPjjfvUMEDKJNHIoVUIafejmW6A00uhAys1WIZ67jNc8B4BhH8Aws2u2GRtFsu+OH0E4k2ivASh0ZRgtW/3oqfQeCKXv+Ho2p0apvfsOZrad6OHHEIaJU1qlOjqJnWsl8iEbqI6NTDE2MoOQcOXyGEeO7flQzxMQEBBwrwRZlh8iQ0PbGB4eJxIJYZomruti3uJaH4vf/V/4izMFXvvmOSzb5KnPHCbZGuPEp+7NtmJhdJHJd6cRQhKKhhh8/IYlRigeJnQHs83i6Dxe08GZr9NYqdxWkHm1Oguvvo5Xq5HYPUjLviFkOEyoowNcF2v/AeLHH0WGI5sidm7F6h3CSOcQVggZvvfIJiElIpJADj2KUppf+/3XOTVeWJsNy2yYDYs6fbS2/B5yfoLDucOcWXiHQ6FOkhMX0LufQwpJNpLFrZch9wiszsPsGVCe7ydWXYJ4my/K4m2+Z1h1CpQLsT7fZgLAcxEKpCcQ5o1NSiFMzJA/D6fcBYRSSMIYMru+9XkzWldu+fr2gtZ/EdPg1kB4aJlATH4LLQ3U7CkgiUj2IHc8v+VwfnP4CkYsgbc4iyqvYrSkyb/+DqpWpzIygfXyM5ixBwiaf0gkW+LrIQ6trS13vnFAQEDAR4ggy/JDpK09yy//yqf571/9Dt//3psMDPTy3Iv3P6s1M+Y78dcqTfLzKyTT976qb0dsBAKtNeH47ZcGtqL7iT1Mn7xMOB0n1nb7NqNbqeFWa1ixKPX5JVr2DSEMg+SJE6hGAxkO33O0jhACI3H3qKabUcqf/8rGbYQQLFeavD2+jLrNbFjTnqBQnqVt8Cn+c/pfMr/wZbKZQ+j8pC+61pIFZGoAVcsjMnuh51GYemvd3HUDtWn0zDd8k9TcE4jUAX9uS5vQLIM3hXIrSHOL901YCGEjMJFy60qlYbaDKgEaw+xYq8KZN2wttEYVTsPya5DYCdhQb4JlI+xWkCbaraHyE8jOx9HFMajlNzwPZ3kRd2YSmWzBmZ/BbGldr1DKkI27WkZa1ofeyuzuaeeVX3oRpRSZ7PtbRAkICAj4aRJkWX7INBsOlXKNVCrB9PT8A12jb7CdyevzxFvC5G7JlZwbX+LCT66T60lz4KmhTT5k2b4MR3/hEFppUh33V1HoenQX6cFurGgIK3p7MWenk8T6e2gs5UntH1r/vpASI7IWdaQ12vWQ1vtb/L1VfG2uhp0gtjJHZtuXqNrjW8+G5Q7T8fhvIoTEPflXZDv3oacvI1/4bT/mSSmoLiHaDmGkd/gmsnt+db09uSk0WzmA8t3/vbr/PRlF2G1ot4ywswi3ADcJMu1VQTtIM40RPuxbYphbV76ECK1X1LzSGSidhkg/Mv2Mb3Zbm4SpvwCnBI0CWFk/HN1Z9Q0x0sdxz/4lwpGohasYbbsgfON3Qbsu1VOv+WJLKeJPfxwZjqyLr9ZHD1NfWMJKJjDCIV8AOh7CkORH5kFrWne0I82fjlhL32XeMiAgIOCjSJBl+SGTbIlz5Pg+xkamePrZRx7oGum2JJ/89ScQgk2C6/Ibo5imwcSlObbt6dqUBQiQar8/Iaa1prJYQhqSaPbuH37CMGh95ABeo0llZgm9WCSSu1G9UK7L4o/fob5UIH14F8nB/vs6z3t4nuLXfv91Tk8U18XXzdWwt8cUi8slatfeoRkaR7A2G9YokHZt/mPuX1DqN+jcdQwpfd8y0dKGXAF57BXMnoO+GPvyZ24M6783LwZ+m3IrYn2QeRxUA5HyW8lCCGT2E+jCT3whZt0UNeWuoAqv+kHl4X5ozCBkCJ18FMzUhhzPm9FOETX/l772c0uQPAwy43uRmS3QyIO0oP15KF6A1oNoGcW7/mP08jRepYZsi2A+/jLCuDGz6FUqNCbGQGnCg0PISBRx0++ZEQkT6+9Zey89Jn54gZXxecxolHq1iZACp9akslpHCEnfse1Y4c1bxQEBAQE/z9yTIBN+7+N/0r51eJBl+RARQnDk6F6OHN179xvfAcPY+kO6ra+V4XNTxFoi6xuWW6G1xmm42PfwQbl0bZbxk9eQUjD00kES9+hRtnTqCqXxOaQh6f3EifVKipRQXyxgpxOUroyRGOi7awvz1kqY12hy5btvcWqsiAecGi+wXGn6s2EDf0DVGCHS7MeeNjbuqgAAIABJREFU6CLZu5f9M71ccCc5nD1EJpyh/MaP8UorRGebqI4BZLoVISX2gefR9bK/qSkEVBb9OTHlbpwXuwNCGIj0oU3fl5EedOjzviGruKl65JVBNREyjFc6g5AWujYFqxeRiUPI9DPglkA7YLchhESVr6NXL4KIAiuACcaaWI72IXq/gG7kEck9SDsFKX/YXbsNsGKopoeuV9BmHK8wCy1diFAIYZjUx0Ywc124pRL2tp0bxNitNFdrrIzNkx9boLKwQqwrC6ZJebWBEQ4jDEkkHaVrb88dX7OAgICAnzfuSZBprbUQ4mvAsbW/B1mWPyPseWwHvTs7CMdsrNDWYkspxbnvXmJpMs+2g70MHt92x2s2ynXqKxUalQbVfPm2gkx5fr6gXBOLnuMiDYlWmtpikYVTV9GeR/bQIOFcmurMIs2mYuxvfkzn04cIZ7auvm3VhmwWSsTKJQ60CM5XShzt7SMbt1muL9O0RhFa4YTGWbU90oM7+eOuP6eoKmRifoSQEYvjLi4gLGvdwBbWIph0k/VJ8VjOnxO7KQwcQDXrqIVrUC/51hqRG2fXXhMQCGPz6//eZiWAclZRc99AKxcZb0N7FYRbg9Lr4OYhvhtdH0fXxqH4hj/PljoOoS7IvwZIhIgg0seg5Rh6/nV06Tq0PY5M74Yt9iWEGcLa92l0rB09N4aItODMzlI7ew4j2UL00ecwUyka0sLM5DAzObxGE2EYG1qQXtNh5vXLNMo1ZMiiWaqR3d2L42ocpWnWmrirTVo6U4QTgRVFQEBAwK3cT8vydSHEI1rrtz6w0wQ8dIQQJFrvPORfLzdYGs+T6kgycWH6roIsnmuhvFxGGpLSXJH2LaodtXyZsVfPIaRg2/MHCadi5I7tpnR9CjudQBgS5bgYtoVTrtH2zDFKIzMsvHUJrTUrw9PrgmyrofxT4wVcpW9UwlIJzESMSM9/IKHGibYfRnOCTPjGbNih1D569vgmp2Y0Trpu4RRWsFJJwrv341TqOKUK9elZ7PY2rERivT15OzsLhMCdH8E5+2300jWMvv3QrGHu/RgAurKAd/2bCCGRg59ERDfPgamVq+j8WbSzAOVzCKWglEWE2sEy0JHt4KT8iCMr49tmaA+kiXBXfF8zYfhVtfg+ZO4laK6g8++iwxnEwklIb220CyDiOUL7P4nasYKQkvJrP8BIpnBLBVStQqhvG2ayBaRJvbhK4e23MKIh2p59FDPqV13LswVKk4sYtkV6exutO7tplGqEMkkm35kArWnf2012oJ3EbWxUAgICAn6euR9B9jzwz4UQ48BaUB5aa721e2TAzwzLMwVWlsuUS1UOPnd33yYrapMZ6MAPqt76V2h1ehHleGitWZ3JE07FsOIRMoeHKI4vUF8sE+/vAM8jvacfISWRtjRGJIxyXGLdvnDZqhqWjdsc7W/h9NQU+9M5it99C2v/DuyndnPpq+N4eJxZOEO+nicbya77hmXCGdAap1zFKZaY/tp3MMI26aP7iA/0UJ9bxskXKJ0+R3zfLtLHdmFt1Z5cs7N4DzVzHRFLouYa6GoROnehPRfcBmplHLSHVg5qdQbjFkGmGivoC/8HaNdvQyay4KyAW4faIoQSiPbnEFaLP4wf34tAQXwfeFVE4gDCjEH7p9DT34WFq2jHgs4nIZJF1JYgfW/tcBn1ZwlDO/dRv3QWu6sPGfNbtSIcZeGHb7Fy/hqhjhxaeTQLK+uCLNQSRdomynGIdbSS3uGnSmitiWaSoDUtPa1IKamt1mlUGiTbEluG3QcEBAT8PHI/guyTH9gpAj406uUGl348TKa3FbfpsuNo313vE8skGHxhH83VGq3b2/Bcj1qhQigRWR/WjndlWLo8jZQG8Y4bm5/VpRLjP7wIAtLb2+l79oZfmp2M0fuJx1herRNbi3jaqhqWiVtE+36fePgMVDqYv/CbNEs1dn/xhRubkm2HfQEG675hWmsWTp6nPDlPbWQcVa9imCbhjnmSewZ8QVGcxoin0Y6HNpLQ+xh68g1U7hBOvkEotjkVQHQMoi/NYA49g9G/H41B8+2/Bq+ObOv3Q7ilgWzpBUArF8pzYMcBZ+2fNviD/bHjkE36FhXaRdg9yNZnEPbN27MSkTq28U0x4ojKMjreC8UriI4TsO0VcMpgb1za0E7Dd9u3bOrvvo2XXyS07zhWzhdRds92rO5tG55ns7CCu1oh3JWjNrtE6sAuQpkbrepwKs7gpx7FczzCqRsVWeUqQvEw4ZbIuhh782vv4DQc+g/2MPTo1oH0t6O0UuHcqau0pOPsOzQQCLqAgIB/NNyzINNaj2/l1A+MP/RTBfzUMG2DUCxEbbVGpvvu/l6NaoPrP74GwOCTQ1hhm2vfv0h+fIlIKkbPkX7GXr9GPJNg8NOPYlgGhnXTwLrw26haqc3uEErzG18+ddtq2NGe3vW5sDOLZ/DwGI3OsjQ6T8buRhpyQzXsVuGkHJfq9ALhXIrylWHsliTadUkd2YsRssnO/F+w+hZuai+N3V/CymXht79O9exJqmOLcOoUMmRjt99wy9dOE2fsOp4Twe7fhyrmcSfOoxcuYe15Cl1cRB79Igixvh2ppk6iFy+CGcLY/Yvonf8M8hcgfwkmXwUrCQf/R6iOIeIDYKXQ1Xn0wlsQ60Jkj2wWhYaFbt2HyF+A1E4w1rzdQv57qkrLeKt5ZCRB4/xr4LkYvbtxZyeQ0TjO9Qvrggw2px/Y6RasRBxRrdH/q58i0t226TZWLMzNU3LKU1z41nnKi6tkt+fY9exuGpUGTsPBjtiUFst3/X27lXfeuMTM1CLDV11y7Wk6uu5ighsQEBDwM0Lg1P9zjmmbPPqZg5QLVVLtd48tXRpZpDCdByFYGF6g50APxZkCkVSU2kqVqVOjGKZBYXKZ9r0VWjp9QdCoNBj+0WW00nQ+OoTQmmRfjsXVxh1nw9arYZEzRNs2z4UNie0MHDjItpeP+a01BNnI1h/Shm3Rsmc7K1fG6frUM0TbW7HTSaxEDMoLiJm3QXtYK5ew+rI37CzCGWAJLfSma6pqGa9URCbSuHPjmGGBiKfRpRS6XMDc6zvee0ujqNE3EZk+cJbBivhu+W4dI/sIuvUw3mv/GqwYurkKxRlkej860Y+ePoma+i4y3olYnYJ4H2zxHGXXU+j2R0DaG8SSblRpnPkueA4aAZ5AhMLoWgkZiaNqFeyBfXd8341ImPaXnkArhbwpTaKyWGLm9DCpbTlyuzbOEjp1h/LSKrFMnPzEMkopkm0J+g/2UFosM/TY/VXHABItUZojDpZl3jVODMDzPJpNh0jk9hvGAQEBAR8FAqf+ACKJ8B0tMW4mmo6tfdgLYq3+1zue3Mn0mXF6DvVhWCYTp0YIJSJEWm5E6OTHFikvlNACUj2tdO7vveNs2KZqmN56Liwlkwh5SxXuDrQeGCS9fwCh9dpg/toZb7M9CRAZHEDaNsK2sNo2WlzIeBKzrRsvP09o7zGMRBJ34l2s7YeRHYPINfNUNfYWWBHU3BXMXU+ji9ch2gZR/3GEtJB7/ilq5KsQMSE/jC6Oo60YevRb6EYeldmO0XkczNtvKQpjo0GvMzeGtzSDbtYQdgRhWIhQAt2oYm/bi4jE0Y064jaRVZWZBeoLRRI7urGTsQ2WF1przvzJq6xMLiGk5Ol//Xni7TfamHbUpudAL/PX5tj26I719uL9tilv5tDxXbR3ZglHQqRvs4X7HvV6nb/9229TLKzwxBPH2bf/9osNAQEBAR82gVP/zyn5uRUunxqjvS/DwIF794RKd6c58jl/fima8sVMpj9Hpv+GgEn1tmLaJuZNNhuRTJyi0qQMQSyb2HpTMmbesRq21VzYvaC1prJUwgrbhBIRX4zdw/bke0jLIjKwtYgQhklo33FqFy/QXFgikunA3vsUqlHDHbkA4RhWzwAisw01dxERTSNaehGpPrzlSXRxFpHu8h8ncxCZOei3NBfO+mevLqONkN/GzB7DazkKl76LbO3H6NnsbXYzqpSneeGkvwm6UsVIxwgfeBIzfUvouLV1pckpV1l47RxCSurzS3R//ImN9xMCz/F8ga41btPd9PP+o9voP7rtjue8mXKphmkZhCNbn8kwDLr77uz79h6FQon8coFUqoXLl4cDQRYQEPCRJnDq/znl1Pcv47mKhekCue40ybtYY9zMe0LsdtzqM6WU5p//zSXeHi9ztKeFv+hIIQQbqmGN8UX+4dQ5znDmjluS95p5eTPzFyaYeWcMwzbZ9ckjhI3y1uaut2xP3ivNqUmaU/4opRFPEh4Yonn9As60n41pRBPI3qPI3CAiHEeYNu7IKdyp8wghMQ+8hJHqRFeLOJe+Byhk9iBqdQHt1ZGtQCyDUim8H/wXZOdudDWPzO5AhO/QZjZMEBJvpYBXKEI0hzM3u0mQ3Q5hSIQUKMdFbLFNq1yPjiM7mHrzKv0ndtPS3brFVe6d8WtzvPXqRayQyfOfPXZfmaxbkcmk6OxsZ2FhiWefe/x9XSsgICDgg+Z+hvo/v/Zl4NT/j4CWTJzp4QXCsRChyMONsbmdb5inNO9MrWyeDcsdZuTU79CZ6WL70nZG5egDV8O2orpUImyWqTeiNCt1wp23b0/eK9r1KJ69gLtSItJ94/4y6otVYVm+n5gQqEaV5sk3/eiho09jJGxQDkIYeAujeCe/irXzcTAUanXZv3+yE10sIuwIOr4Lc9tx1LlvIFKd6PlriF1Pg3nnMHgZSxI+9gLOzDhq+BracagNj9Is1okf3I8Ru7PgMSNhOp9/hEahRLRz8+u/MlNgZaZAy7YOzETkjg7+98L81DJW2KReaVIqVEimY37GqdYPtE1p2za/8NmXUUphfMih5wEBAQF344GSnAOn/p99jj63m217OoklI4Ru0x66F+4lzPuus2GLZ4jsiLB6fZV/0/5v6H6mm2ws+0DVsC0OSP/1/wU58xaN9CHs3Lf8duRt2pP3SnM5T21sCiMSorm0SvLJZwEw076ItHfsg3Ac3XDwqhV0ow5S4s1PYyTSGH2H0Ajc/AJGxyDu5CVEthN37DwYJubACbDC6GYdmd2OVhIRTSO1Rg49g9l/FGHe/X0zUjmMVA6zrZf65CTVkUnU8hLV68MkDt3dQjCUThJKbz2rZUVspGGgPN/a4v0ytL+Xpbkiqd5Wsp0patU63/uHtyivVnn+5Udo67j/CpwQIhBjAQEBPxPcz5ZlGPiXwFP4rkk/Bv6T1rr+AZ0t4APEtAzaem4KtNaasUszFBZWGTrUS+Ie2kVbia8H2ZQ83HaYY08eo3mkiR2x16OWHgrVJYxZf3syXDwHjQJYm9uTzWqDyvwKkUyccDJKs1wDBPZthIYRj2GEQnj1BrHB1nUhto6Q1Ecn8VZXkJEQpmkhtMbIdaGdJl61htF/FKvh4C2OY7Rv9zcYt50Ap46ItGIf+jS6UcFZmKfx1ncQdoTw4c9iJO9fmLgOrF6dpDEzQ6S/G7Pl7oHyWilWxhZw6g7RbIJIa2JDXFI8l2T3J4/gNV0SHfcXUL8V6VyST/3ak+t/nxidZWmhQCwW4fKF0QcSZAEBAQE/K9xPhey/AqvAf1z7+68BfwL88sM+VMBPn5WlMud+fA3DMqmW6jz12cObbnMvEUYPsin53mxY+CFUWVBqY+Xrlu1JL9TK2GvXqObL7HhiiFhrHK01w987Ty1fwYra9D46wNRPLiGEYNsLh4i1bRYbZixK9sWnUPUGZmpzBUl7Hl55FRmPo6pVoi9+EmFIEJLy6z/AKxUxM21Ejz2ONXgU7Ai6UoRGFRFNItNt/kZkOIH37mm0p6mfPYlbrhJ/9tMYt9mKvB2Vq8NYrWmUUsQPHiDc30dtMU/h7HUi7a2k9g9sqkiWJpcY/+EFlq74MVZdxwfZ/tyBDbd5z8D3gyCdSRKLR6jXm/Tv6Lz7HQICAgJ+hrkfQbZLa33zWterQoizD/tAAR8Opm1iGBKn7hBJbJ5N8jzFr/yn1zgzU+L4Ta3IY/3p9QpZNm6j0fe0KTl6fprZkUUGj/Yheh9CaxJ8MXaX7cnVmQLzV2exIhYT74yz50Xff8upNTEjNm7DpbpQBA1aK6pLpQ2CTHlqvYJnRMIYt/G3krZN9MAhGhNjxA4dRYb811Q1GnilIkYiiVdYRgAitDZ3Fk8TOvrypmtZAwdpfPcvMVJtoAWqmN8kyNzVVUqn3kHaNsljR9Yf7z3CPZ2snr+Enc2sG9vmT19GOx4rl0aJ9rSttybLc3mqi36upXI9mpUGLdtjlGcLG57/B00iGeOVX3ke13GJRAMfsYCAgH/c3I8ge0cIcUJr/TqAEOIx4CcfzLECftrEWyI8/cpRKqs1ct3pTdWwN14b5p2pFRTw9lo1LJcI8ZXffZTh/DxDmQ6/ala7ezWstlrn4uvDxBJhznzvMi//9hNbnkkpRWG+hB22SaTvvNkJ+KLrLtuToXgY0zZxaw7JNl+ACCEYeH4/S1dnSfVl+P/bu/PguM/7zvPvb5/objSAxn2QIHiJ4iGSEimK1GHJOixZviQ7EzvH2LGdeLyzUzNTU1uVTLnG2ZrZVNbJ1NTWTGaSKF5vnI3jmYkdW/Ep67BWtmRSoiSKN8UDvA/c99397B/dJEGyG2iAjf7h+LyqUOzj179+HvwawIfPGamIMdyZXkW+IrOch0uluLjnGL2nr1CzuYWajS3TFqekeQUlzStueMwXDhO5czNj51qJbNyKZRnf5JxjpPUUyb5+ImvXEqxbRvzD/5Thd17HgiH8iVsH2A+3niY5MMjEeA9jbe2ULL9xKZPY6pWUNNTT13qR8z/dTaSuklBFGQNnLuIvKSFQkg5wYwMjnHn1ALj0/pQrPriZWEMl4yMT1G9ZUbAwdvFsO3teOUR1XQU7H99EMMeeqMFgIOdzIiKLyUx+090HfNbMzmbuNwNHzOwA2mR8USivLqW8uvTa2LC9Z7pZVx7mf9/RwMDFXtbEApwYnGBLQ5zq0hApl+J3X/zitZavbzz5jRtaw1b61tB+aICRRIqq+nKqY+kgESwJEi2LMNg7RG1zVc7ynNx3jiNvthIMBXjwmbuJT16a4+auSZhycderIuVRtnz8HsZHxolVlV57PFZdRqz6etfj6ifvueF140Oj9LReJlpTTsfB01RvWDHrSQfhlWsIr1yT8/mJri4GDxzEAn5So6OU3XcfgUQVkZ2PM3r5CmP9Q5REbxzjF6yqZKT1DBYM4I+XZj2vPxqh/9QFQhVxhi930vjYDuKrmgjEIvgj6UBmltla0zl8AT+VqxuoXD11d+Fw/wgHXj2KYWx6ZF1eiwwfeec0oZIgF8+2093eR23jjePDzrRe4M3dB2luaeDe+zZpz0oRWfRmEsiemrNSiKemWqbiSNcw//0bv2DnzjX865YY41Xw9BM7r7eGtd3aGvbco3/Fd/7mBRLhSr73Fz9n7ZblVNaX8+ivbcfMCIYC7PrYFgZ7hiivyT0Gqad9gFBJkLHhcYYHR68HskzXpDu3h9Gquxn61N9TWZ/Ie/ZkuLRkxrMCA5Ew8YZK+s53EGusJDWexB+6/Zab8e5eet89QKCijPLNG7GAP71kht9HamyUoXMXGW7/GZHVKxg5fZa+t/fjnKPxNz5FbM3Ka+cpaUoP1De/H38k90r+5Xc007X/BCV1lQTLS28YpA/p/ShXPLqVoY4+ypvzWw7k8sm2zL6UjiutHbRsnn6h4eVr6tj3xvuUlkWIV9w6gWTPG/sJBgMcPnCCO9a1kKicelV+EZGFbkabi89lQcQbuZap2LYiwd7TXVSNjlJTVsLQwCA/XvX/sq99H997+dbWsMnrhgUCfhorG+i42E0g6CcaL2FkaBTn3LVWpZJoiJLo1Ms23LljJYd3n6S0IkpV4/Utea52TVpqglD7O7z2/Gvc/+knKK2Iznpx1+n4/D6WfWATJ376Lr2Xejj1yn7WfGjrba+91X/4fZIjI4y19hJpaiBcV0OgrIzyBx9k9Eo7fQeOMnLhEr3vHcZcCjcxgYWCjFy4eEMgAwiUZm8Zm6x8XQulK5vwBfw5yx6rLSdWW05yIkl7axvBUIDyxkTOFsGy2nh603hsyoA92R2bmmlaUUMoHCSYJdgub67n6JFWyiviRGMaPyYii58GZywhN7eEAVlnSl4dG3ai4yKnXz7HlQvdrNxRw/91ZvqZkgA+n4/7n95Mb9cA25/YQMfFXlaub5xxt1M8EeW+D9+Vc+Zk6sxuukPrGaWc5ESq4N+vm7kUjPQOEkmUMtTVT3I8SSA8szq5VIqB05dIJZPEVzYRqqlk5Eob/nAIf+z6OLlARQJfJMbw2Uv0HT5OyfIm8PtheAh/NErp+ty7ljnnGOnqwx8MEiq7deydPxS8dtzkkNVx8jLD3YPUrmskHI9w6fAFzuw9BRgbn9pMRWMi6/tVNSZ44FPbAYiU5R+eYvHcLXn3PbCFO9avpDQezWsTcRGRhU6BbInI1hLm81nWmZI3jw3782f/kpKSEFtfyH9PyVBJkJrGBDUkaFnXeDsFzzlzcvjKeS6fHuOemjjl1dO3Dt0uf9DPsh130H7sPE3b1tywV2e+Bs5epn3PAcAglaLsjlWEa6rxhUP4ozcGFF84ROUj91PSvIyB1vNEmxsovXNNembmFOG29/h52t45hvn8ND+xnXDi1lar3vMdnH39GNHqOC0PbWCkf5jW14/h8/kY7hnijsfvIjk2kZ5pmXSkpgm8Mwli+fD5fFRVV0x/oIjIIqFAtkjls2ZYTTyMmWWfKTlpbNgg/UTs9veUnJUpZk7GGprZeJvLU40OjXHh2GWiFRHqV04/ZqpyTQOVa2b/pua7+n1z6ftmBBPljA8O0/76fnzBANV334EvM7PQFwxSum41petW5/0eI939+AJBkmPjjA8OZw1kbYfOESgJ0nuhk77LPaRSjrbjVwhGQlSsSAfsxk3LMZ+PYEmQimXZW8dERKQwZhzIzOw3gY8DSdITsn7gnPt2oQsmszfVuLDJLWHAtDMlC7mnZJ6Fn3Jh19nsOzmVo7tPcuVkOwCRZ0ryHgM1U6lkirH+YSL11dTsvAuXcjifj0u7D5NYu4yBs5cZutBOKpkkUpcgvmL2oa9yfQsTgyMESkuI1mVf3b6ipZbze47Tfb6HkZ8dYGR4lPLmakb6hqlaXU/XxW762weou6N+1gv23twlKiIiuc2mhexh59xnrt4xs/8KKJB5KN/WsJtbwgC6RrqyzpT0ojXs0L7j1P70s1SPHsOad2Zd2HU2+05OxYfhHPj8Nmf1dM5x/peH6L/QQay+khWP3MXEyBitP3gDXyjI0JUuajalt04yv59A9NaxVSM9A7S9fZxQeYzau9fcsB6Yc47Bth58fj/R6jJCZVGWPXrPLeeYrGZdE75wkCvf/hUjl3u4cOAcjRuWUbu2HnzGgZ8eAhxd57u5+yMzW9FmYiLJ7p8f4NK5Tu59aAMta28Nl2Nj41y+1E55eZzyirlb7V9EZKGYTSALm9lHgHPAMiD3yFyZc/m2hk1uCVsf38Dvxf8Vm+5aQ02th61hk4yNjXNsz9usHzmGkcSd24NlWdh1NlKpFO+/e5aejgE23LuSsknrma3btYqy2jjR8ghlczQOzU0k6b/QSaSqjKErXSTHk/j8fnyhIBPDo0RrKyAUJFhbTcWaBiI1t46dan/vFCM9/Qxe7ibeVE2s4XrLV/eJS1zYcxTzGS2PbaW07tbuxfGRccxnBCbNaLx45BID3UNcOHCe9U9sxO/3s+HJu/CHgjjnuNqtOlO9XQOcO3WFiqo4B985kTWQ/eLVvZw6dY5opIRnfu0JYjH9GhGRpW02geyfA58E7gLOA/9rQUskU5pta9jkcWGHew9xauA0Vy528Jl/+rQ3Y8PSlbnW8hUMBkg0r6a9cy01Y8exZTsK1j3Z3dbP4bdaCZUE2f/6cR782PV9OkORECs2NRXkfXLxBQPUbVlFx9Gz1Ny18tpkgObHtjHa008gWkLrS+/i8/sZGzpDWXP9LeeIVMUZuNCBP+QnEA0zOjBMx9ELRBKljA0OYz4fLpVifHD0ltf2Xurm+CuH8QV93PmhzUQz6365iRSNG5dhPh+hSJjlW5oprUq3Vm1+ciP9HQPUrZr5NYiXR6moitPbPcCmbdnHvvX29hGLRhgdHWNsdEyBTESWvBkHMufcEPC3V++b2e8DXytkoSTt5vA1m9awbOPCmmjGhgLE62KYGYYVtTUsU7kbZk/a537IBz50D/07fkbKP0SgvL5g3ZPhSIhg0M/YyDil+WzBNAeqNzZTvbH5hsdCZVFCZVEmhkfx+X0kx8YIZ1kkFaBqwwpidZX4S4KE4lFaf36A/svduGSKlkc2UbFyDF8wQNnyWwNU97kuzG+MDY8x0N5PtCLGYM8QjXctZ7Cjn3UfXE+8poxgyfVZo5WNCSpzLHMxnVA4yBPP3Mfo8FjOpS0+8MgO9u87SkNTLYnKWzdvFxFZamYzqP9/Tr4LbGURB7K3336Ho0ePsn37dtatu6No75stfM2mNSzbuLDgaJjurj7qGoocwibLMnvSX1pLRVU5UNg/0KXlER755DaGBkapaijeH//keJLRwRFKyiIkxyYY6hwgWlVKsOTGdbUCkTAtj9/NcPcApfXZB+GPj4wTKI0QjKRf6w8HSI0nsYCfcGmE8l3rc5ajZnUtXafbiZRHKasvp7etj30/3o9LOdY/so6q5sJ/DgIBP4Ep1hmrrknw6BO7Cv6+IiIL1Wy6LPucc7979Y6Z/XkByzOvDA4OsmfPHqqqqnj11VdZu3bNnO2pl09X5Gxaw7KOC4tQ/IHURZ49ebN4IkY8kb31KZtUKkXXpV6C4QDl1envVX/XICP9IyQaKwgEb90UfLLkRJKjLx5goKOPqpYaRvuGGO4aIJIoZcNH7r5lHbGSRJySLMuqaB/+AAAgAElEQVRTAPRd6ubkzw9iPmPt41uIVcdp3L6GeEMlodISSnK0ql0Vq4qz9dd2pFtDzei+3EtyIkkg4GegY4C6VYXf2UBERGZmNoHsj266/5VCFGQ+CofDVFdX09HRScuKFXMaxvLpijSzay1l14LbNK1hRR8Xlr2CORd3navZk7fr9MELHP3VKczvY9fHtxAuCfHWD/YxMZak6Y46Nj6ce6V8gImRcQY6+olVldJ5poOAD8LxCCN9Q6QmUvhD6c/S+MgY/Vd6iSZKKSnL3qLUf7k73WU9kWSws49YdZxAKEhiZV3e9Zn82a1eXkXd6lomRidoXH8bi/aKiEjBzGYMWetN97sKV5z5JRAI8Mwzn6Cnp4fKyuxdSbOR78D8m8MXAOawQD+QbvXK1RqGg8NvnuDcude4/4F7WblyecHKP2NTLO46F/tOFsJQ7wi+gI+J8SQjg2P4zEiOJwmFAwz3j0z7+lAsTMPGJjpOtrFy5xqC4QDtxy6x7J6VN2xKfuKVQwx09BOMhtj0sW1ZV/+vWlVPz9lOfAEf5U1Vt72+V7AkyMYP5u7iFBGR4ss7kJnZv8nycC/wtnNuX+GKNL+EQiFqawsXGmayaKvPZ9TEw9df61J84YUv3NA96TNf1tawrq4ejh45SUWijD2/esfbQFbk7slCWL11ORPjSUpiIWqWJ/D5fazbtYa+jn5aNi+b9vVmRvO2VTRvW3XtsUTzjfV2zjEyMEIwEmJiZJxUMr090VD3IKd+eYxwPMLK+9dSUh5l4yfuxTlH6+4TtJ1sY8W2lTSodUtEZNGYSQvZ9szXDzL3PwK8BXzZzP7eOfcnhS7cYnA7rWEpl7ohaOVaxDXbmmHxeCmJRDnd3b1s2bqh2JW+sSvSbF53T2YTiZew9dE7b3iseWNhA5CZsfaDG7ly9AKJ5mpC0XT4vnjgHCMDIwx09lO9qpZEc7pV7Pjrx3n7u2/SvHUFZ95uVSATEVlEZhLIqoB7nHMDAGb2h8B3gA8AbwMKZDcpdGtYzu7JLMLhEJ949kMMDAyRSBRxWYFc48XmcfdksaWSKcyXHmBfWlNGaU3ZDc+X1pXR2dpOIBwknNm0e7h3mLbjl4mWRTm99zS7fnOnF0UXEZE5MpNA1gyMTbo/Dqxwzg2b2a2rUS5BxWgNm8lg/VAoRGVlaMpjCi7XeDEBoONMB++/dozSqlI2PLaRQPjWH8H6dY2U1ZbjDwUIx9IhPRQNESmPUrmiijUP3MHKnWuuHX/5VBt97QMsX99IpGx2+06KiIi3ZhLI/g7YbWbPk15/7KPAt80sBhyei8ItJMVqDSv2lkbTuql7MllSyWD5Bkq7D5Fs2EZwAYwXK6aLhy4QjoXpu9LLQOcAFY3Xt0mavL1R9KYlOgKhAJuf3sLIwAixROxaGB/oHuTgK8ewgI++jgG2z3DfSRERmR/yDmTOuf9gZj8GHiQdyL7snNubefq35qJw89l8aw3zRJbuyUuX2vlR8EtUNI2SWL6WD82TcieTSd54dT+Xznew8wN30bzy1u2JiqF2bR0n3zhBtCJGdNKuAd0Xuzn08mF8AT9bnrqLWJY104IlwRtW0wfw+X2YPz0DNJiltU1ERBaGmf4GnwBSpHcdHi98cRaGJdsadrMs3ZPRWIRQOEzPuI/VVde33hkZGeXA/iOURMJs3LhuztZ0y6Wnq58zJy5SXhnnvb3vz1kgmxhPcmbfWSbGk6y8u5lQ5MYu4/q19VQuq8Qf9OMPXF9ctutcF+bzMT4yTm9bX9ZAlk20LMK2pzcz2DtEzfLCLc0yOjrG23sO4VKOHQ9sJhhU2BMRmUszWfbiXwG/B3yXdAvZ35rZc865/zJXhZsPbm4JA+a8NezAgUO8//4Jtm3bysqVLZ7V/RY5Vtt35/bQFb2Dl3/4Kx59/CGe/dRTDA+NUFd/PUzu23eIfe8eJJVMES8tpaXIy3CUxqOUV6Y3vL7rnjU5j7tyvovj756lcVUNqzbOfNPxjrOdnHr3LH6/j2A4wKptLbccc3NIA6hdXUdbazvR8giJGe4hWVFXRkVd2fQHzsC+vUf59jd/zMR4kqHhEZ748P0FPb+IiNxoJs0UXwTuc879oXPuq8BO0gHttpnZPzGzQ2aWMrPthThnIVxtCdv1xy/zmed2k0o5gGutYQGfZW0NmxzGvvDCF3j87x/n8y98npRLXWsN85s/a2vY4OAgr7++m7GxcV5++VWcc95U/mZXuyf/03r464+k72eWszj7yRf5n9EvMzwyyoH9R6moKKOhsfaGVrBwOEQymcJ8PgKBqbcdmgvhkhBPPXM/n/j0w2zetjbncW+9dJjB/hH2v36coTwWgL1ZqCSIz2ekUilC0fwnVMSrS7nv13ew/dltROLeD8wfHR1nbHSCYChIZ3uv18UREVn0ZtIPYUBy0v1k5rFCOAh8EvjLAp2vIHK1hGXbwggKMzYsHA5TUVFOd3cPzc3L5s/YsSlW2483riISOc7o6BhNy7J3BW7evJ54PEY4FKZpWUORC58WDAYIlk/9kU/UxGk710W0LDLtmKz+rkEun2qnZnnltRaqyqYE93x0C6mJJIlJA/bzUexu3Kncu2sTF85epq9vkK3b1/GP33+ZRKKMXQ/cTSCg7ksRkUKbyW/W/wfYY2bfIx3EngG+UYhCOOeOAPMnfGTkGhcGczc2LBgM8swzH6W7u4eaGg/Hj81gM/DKygp+/dMfZ2xsnIqK7F1nfr+fNWtWFqv0s7bjiY10t/URT8QIhnL/eKRSKd7+yUHGxyc4e+giH/jMvQQz2x4l6ou47tsciUTC/MbvfASAF1/4JX29/Vy53M7KVctYttybQC0ispjNZJblfzKzV4EHSAeyzy3mLZOAnC1hMLczJSORCJFI9o2m59qVK+0kJ8Zp+NnvYjPYDDwajRCNelPmQgqGAtQum35wvJlhfiM1ksIfChTkPxOXTrXR3zXE8jsbiJSGp39BgQwODOFcepxdNrV11Zw+fZ5wOERpaX6TDUREZGamDWRm1k96VuW1hyY955xzeY0mNrOXgGz9WV9xzj2fzzky5/kS8CWA5ubmfF82aze3hMHimCnZ2nqWvr4+1q1bQ0lJeszSuXMX+eEPXyCS7OdznbvBJRfMZuCzlUqleP+9swwOjLDhnpVEYvkFITNj+1ObaD/fRWV9OYEpWtPy0dvRz7svH8VnRn/nINue3AhAX9cge188RDAcYPsTG4nEwre9uThAV0cvb+4+gJlx6VIbPjMee3IXTcvqbjl285Z1NDbWUhIJE48rkImIzIVp/4o45+KFeCPn3OMFOs9zwHMA27dvn/MR7ze3hAELd92wjCtX2vnpT17C4ejs6OLRDz4IQx0M9PdDyjHqL2MgsYl4z6EFsxk4wODgMJ0d3VTXVBKN5jcw/sr5Lvb96jiBoB+Xcmx/eD0APe39vPPzo5RWRLj7kTtv6L6cGE/iD/iIVUSJVaRblZLJFGbgUg7z2YzHg/l8vvQgzWQKX+D6a88eu8Tw0Bj9PUO0nesinojyxgsHiERD3P/hLURiYQb7hwmGAoTCwdxvcJO9ew7S09VH66nzxGIRKhJx2q50ZQ1kZkZNbeGW1BARkVtpdO4UsrWE+cy34FrDcjNw1xd3Xdd0Lx13fZXxiST++34CbnDBbAY+MTHBT3/0/9HT009lVTmfePbxvEJRMBTAHzAmxiYoiV0fI3jivbOMjYxz8eQAy++op6ElfV1PH7rIkd0nSdSVs/3JjQSCfno7+tn7k4MM9Y1gZpRVx7j36c0z6naMV8bY8ZH0emL1K68H4JqmBK0HLxIMBSivKuXkofM45+hq76fjUg9jE+Ps/cURSqIhHvvYvZSWZe92vFl1bSUXzrdRX19DvDxCKBxi9ZriLkUiIiLXzYtAZmbPAv8FqAF+ZGb7nHNPelysnC1hZrZgWsOyqaur4UNPPkp/fz/rlpXDG+nZk74Lb/HQp9dM6pZcON1TyWSK/r4B4qVRBnoHSaVSeQWy6voKPvix7YyOjlO//Ppm7dVNCS6eaiccDRGvuB5yTh+8QGkiStelHgZ6hqioiXP5VAepZIq2052U1cTwB3z0tPURKZ1Zy2JVYwUVdWWMj15fc7muuYrHPrMDn99HSTREw8pqzp64QiQWpqI6zr7dxzKtZCP09QzmHci2bltH0/JaotES4mUL5zqLiCxW8yKQOee+B3zP63LcLFdLGCzE1jBumDm5enVL+jHncs6eXEjC4RAPP7qTE++fZv3GNTNamqG64dblKVrWN1JZV04wHLhhXFnLxkYO7z5For6c0kxQq2up4uzRS1Q3J/D5jFh5hIqamff0T4xP8PqP9tPd1sed21q4M7OobHTSumSNK2r48G/uwuf3EQoHuXNrC7988T3qmyqprst/mQ2fz0ddfdX0B4qISFHYvFl4dBa2b9/u9u7dO/2BtyHbGLIFKcu+k1xtQbp5iQuZ0vjoOP6g/4YWuInx9BJ9zjl8fh9+/8zXFOvp6OeV7+4lUR1nZHiMD/+2VscXEVlMzOxt51zWBfDnz0qU89TVlrAFHcYg+8KuV12dPbnQ61gkwXDwlu7QQNBPIOhPj0mbRRgDiCdiNLRU09s1wLp7VhSiqCIiskDMiy5LmQMzWNhV5ge/38euJ+8imUzNOtSJiMjCpEC2GOXqnpxiYdfFbmhwhJGhURLVZUVp7eztHCAQ9BMrm/liuQpjIiJLjwLZYjTFvpOLbWHXfAz0D/PC999geGiMLfeu5a571hTs3BPjSc6fuEIoHKRhZbpr++z7l3n31WP4/cYDH9tKojavtZNFRGQJ03/FF4NUCgba0jMm4Xr3pC+g7klgsH+I4eFRorEwVy525vWaiYlkXsedPHCON374Hv/w317m0O6TAPS09eEP+BgfTTLYNzLrcouIyNKhFrKFTt2T06qqrWDlmiZOHjvP5u13THmsc479rx/n1OGLrN28nE07V095fCrpOHv0MhPJFO++9j6rNy9n1aZl9HYOUhINUbssUciqiIjIIqVAttCpe3JagYCfUCiAz4y3Xz9CbX2Csorsi6GOjU5w6tAFqhoqOPTmKWJlEWqaKigtz77g6poty2nZ0MjgwAiVtWX4/T4isTAPfeLuuaySiIgsMgpkC41mT85Kf+8Q4XCIsbFxRkfHyLULQSgcoGl1LedOXKG3s593XztGNB7m8U/fRyDgv+X4YCjAJ/7Zw7Rf6KG8upRQSf77SYqIiFylQLaQqHty1rbdv56D75wkUR2nujb7ivbOOdoudLH8jjo27FjFK995C7/fx9jIBKlkCrIEMoBIaQnN6+rnsvgz1tfXzy9e2004HOLBh+6jpCS/zdZFRMQbCmQLibonZ608UcoDj23J+fxA7xDPf/M13t9/llV3NvHwx+5hx2MbudDaxvK1dYTCC6vl69DBY1y8eJnx8XGWL29i3Z2Fm1kqIiKFp1mW85lmTxbNhdPt9PUMMj46QW/XAIffaeWXL7zH8PAYVfX57xF5u0ZHx+jvG7zt89TUVDKRnMDvD1BWPvN9NUVEpLjUQjZfqXtyzjjnaD1+kcH+YdZuaKYkEqK6voKahgQTY0m27FpL+4UeKmvKuHy2g6H+EeIV2Qf1F9LAwBA/ev7nDA2NsPP+razfOPUMz6msWbuK8opyAgE/iUTxAqWIiMyOAtl8VeDuycHBQa5cuUJdXR2xWPYB7UtF26VufvXKAcxnDA2McN/Dm6iqK+ejv/0gACWREIffbuXw2600rKghGp96/NXY6Did7b1UVMaJRMOzLldvTz8DA8PE41FOt56/rUAGUFNTdVuvFxGR4lEgm68KOHsymUzy/PM/oLu7m8rKBJ/+9K/fsjn2UuLz+zCDVDKFP3D9+1ASCV27vWHbStbetZxA0D/lVkvOOV574R2uXOqmPFHKU5/clXU2Zj5qaitpbq6no7OHLXffOatziIjIwqRANl/cvJyFWcG6J1OpFAMDA5SWltLX108ymVzSgaymroJHnt7O0OAwzasach4XDE3/4+Gco6ujn3h5lIG+IcbHJmYdyEKhIE98+MFZvVZERBY2BbL5INd4sQLNngwGgzz55BMcOXKUDRvWEwwurBmDc6FxeXVBzuPz+Xjgsc0c2X+ajXevuqHLMpVKMTGRJBTS91tERKamQDYf5BovVkArVqxgxYoVBT2npDWtqKVpxY3Xa3R0jBd//AZdXX088IGtrF7b7FHpRERkIVi6/VZe0nIWi15HezenT1+kpCTEkUOtXhdHRETmObWQFZuWs5h3RoZH2bf3GIGAn83b7ihIF+Oxw62cPH6Gk8fP8s/+xa8XoJQiIrKYKZAVm1bbn3eOHT7D8SNnSaVSVFTGWbPu9rsXL1/u4KEPbqOzo4f6hsKMVxMRkcVLXZZzTd2T816stIRUymFmRKLpNcdGR8e4crkzsxH5zN3/4FaSyRRb715PeYVWyhcRkamphWwuqXtyQVh9x3JipVH8fh+19ZWkUile+sluOtq7qalJ8NTHH5zxMiEtq5bRsmrZHJVYREQWGwWyuaTuyQXBzGhout6tODGRpLOjh/LyOJ2dvZmlK9SYLCIic0d/ZQpJ3ZOLQigUZNdDW/EHfOx8cIvWERMRkTmnFrJCUffkorJ2XTNr8xzc39XZg8/vo6KibI5LJSIii5UCWaGoe3JJaj11lpdefB2fz8dHPvoo9Q1qBRURkZlTl+VsqXtSgPb2LnzmIzmRpLu71+viiIjIAqUWstlQ96Rk3Ll+DR3tXQSCAVpWalaliIjMjgLZbKh7UjLKykp5+qOPel0MERFZ4NRlOZ2buyZB3ZOLyMGDx/ibv/4ub7213+uiiIjIEqYWsqnk6po0U/fkIpBMJtnzq3eprkqw752DbNiwhlgsCkBXVw+jI6PUN9Riur4iIjLH1EI2lWxdk1dd7Z7UH+sFy+/307yiiSttnTQ01BKJpLdNam/v5B+++2O+//0X2L//sMelFBGRpUAtZFO52jV5tYVMXZOLzqOP3U/v9n7KykqvbY80ODDE2Ng44XCI7i7NnBQRkbmnQDYVdU0uWGNjY5w8eZpYLEZzc1PO4/x+P5WVFTc8tmx5A1u2bKC/f4C777lrrosqIiKiQDYtzZxckN588132v3cYn8/HM89+mPr6/K9hIBDggQfvncPSiYiI3EhjyGRRSk4k8fl8pFIpksmU18URERGZklrIZFHacd89xEqjlJbGaGys87o4IiIiU1Igk0UpEilh+/atXhdDREQkL+qyFBEREfGYAtki1tHRwdmzZ0kmk14XRURERKagLstFqrOzk+9+5x8YHx9n2/Zt7Nq10+siiYiISA5qIVukhoeHGZ+YIBQO09ujxU1FRETmM7WQLVKNjY3cd98Ouru7ue++HV4XR0RERKagQLZI+Xw+7r13u9fFEBERkTyoy9JDR48e46WXXqajo2P6g0VERGTRUiDzSE9PD6+88nPOnj3Liy++5HVxRERExEMKZB4JBoOEQyGGhoaIx+NeF0dEREQ8pDFkHonFYjz7yWfo6emhsbHR6+KIiIiIhxTIPFRZWUllZaXXxRARERGPqctSRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMcUyEREREQ8pkAmIiIi4rF5EcjM7E/N7KiZ7Tez75lZhddlEhERESmWeRHIgBeBTc65zcD7wL/1uDwiIiIiRTMvAplz7mfOuYnM3d3AMi/LIyIiIlJM8yKQ3eQLwE9yPWlmXzKzvWa2t729vYjFEhEREZkbgWK9kZm9BNRneeorzrnnM8d8BZgAvpXrPM6554DnALZv3+7moKgiIiIiRVW0QOace3yq583sc8BHgceccwpaIiIismQULZBNxcyeAn4feNg5N+R1eURERESKab6MIfszIA68aGb7zOwvvC6QiIiISLHMixYy59war8sgIiIi4pX50kImIiIismQpkImIiIh4TIFMRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMcUyEREREQ8pkAmIiIi4jEFMhERERGPKZCJiIiIeEyBTERERMRjCmQiIiIiHlMgExEREfGYApmIiIiIxxTIRERERDymQCYiIiLiMQUyEREREY8pkImIiIh4TIFMRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMcUyEREREQ8pkAmIiIi4jEFMhERERGPKZCJiIiIeEyBTERERMRjCmQiIiIiHlMgExEREfGYApmIiIiIxxTIRERERDymQCYiIiLiMQUyEREREY8pkImIiIh4TIFMRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIiIuIxBTIRERERjymQiYiIiHhMgUxERETEYwpkIiIiIh5TIBMRERHxmAKZiIiIiMcUyEREREQ8Ni8CmZn9BzPbb2b7zOxnZtbodZlEREREimVeBDLgT51zm51zW4EfAl/1ukAiIiIixTIvAplzrm/S3RjgvCqLiIiISLEFvC7AVWb2R8BngV7ggx4XR0RERKRozLniNEaZ2UtAfZanvuKce37Scf8WKHHO/WGO83wJ+FLm7jrgWAGKVw10FOA8C5HqvjSp7kvXUq6/6r40zae6r3DO1WR7omiBLF9mtgL4kXNuUxHfc69zbnux3m8+Ud1V96VmKdcdlnb9VXfVfT6bF2PIzGztpLsfB456VRYRERGRYpsvY8j+TzNbB6SAM8CXPS6PiIiISNHMi0DmnPuUx0V4zuP395LqvjSp7kvXUq6/6r40LYi6z7sxZCIiIiJLzbwYQyYiIiKylC2ZQGZm3zCzNjM7mON5M7P/bGYnMts43VPsMs4lM3vKzI5l6vcHWZ7/HTNrz2xftc/MfteLcs6FPOoeNrP/kXl+j5m1FL+Uc8vMKs3sRTM7nvk3keO45KTPwD8Wu5xzwcz+iZkdMrOUmeWcaTXd52ShmkH9T5vZgcy131vMMs4VM/tTMzua+Z3+PTOryHHcorv2M6j7YrzueW3HaGafy/xOPG5mnyt2OW/hnFsSX8AHgHuAgzmefxr4CWDATmCP12UuYN39wElgFRAC3gM23HTM7wB/5nVZPar7Pwf+InP7M8D/8Lrcc/B9+BPgDzK3/wD4Wo7jBrwu6xzUfT3pNQtfBbbP9nOyUL/yqX/muNNAtdflLXDdPwQEMre/lu1zv1ivfT51X8TXvWzS7X959ff7TcdUAqcy/yYytxNelnvJtJA5514DuqY45BPA37i03UCFmTUUp3Rzbgdwwjl3yjk3Bvx30vVdCvKp+yeAb2Zufwd4zMysiGUshsl1/CbwjIdlKSrn3BHn3HQLSC/an5E8678oOed+5pybyNzdDSzLctiivPZ51n1Rcvltx/gk8KJzrss51w28CDxVjPLlsmQCWR6agHOT7p/PPLYY5Fu3T2Waeb9jZsuLU7Q5l0/drx2T+QXWC1QVpXTFU+ecuwSQ+bc2x3ElZrbXzHab2ZIJbSzun/98OeBnZvZ2ZkeUxeYLpHtBbrYUrn2uusMive5m9kdmdg74LeCrWQ6Zd9d9Xix7MU9kaxFZLFNQ86nbD4BvO+dGzezLpFtRHp3zks29fOq+KK79VNuTzeA0zc65i2a2CnjFzA44504WpoRzJ9+t2aY6RZbHFsxnoAD1B3ggc+1rgRfN7GimZ2Fey6fuZvYVYAL4VrZTZHlsQVz7AtQdFul1d859BfhKZjvGfwHcvB3jvLvuCmTXnQcmtwotAy56VJZCm7ZuzrnOSXf/ivSYg8Ugn+t69ZjzZhYAypm6e3tecs49nus5M7tiZg3OuUuZrvi2HOe4mPn3lJm9CtxNenzNvDZV3fO0oH/+C1D/yde+zcy+R7orb97/YZ6u7pnB2h8FHnOZwUM3WbDXvgB1X7TXfZK/A37ErYHsPPDIpPvLSI+z9Iy6LK/7R+CzmdmWO4Heq108i8BbwFozW2lmIdID12+YQXfTeLmPA0eKWL65NG3dM/evzrD5NeCVXL+8FrDJdfwccEuriZklzCycuV0NPAAcLloJvZXP52TRMrOYmcWv3iY9IDzrjPSFxMyeAn4f+LhzbijHYYvy2udT90V83fPZjvEF4EOZ33sJ0nV/oRjly8nLGQXF/AK+DVwCxkkn4y+S3qLpy5nnDfivpFsDDjDFbKSF+EV6Fun7mfp9JfPYvyf9wwrwx8Ah0jOMfg7c6XWZi1j3EuDvgRPAm8Aqr8s8B9+DKuBl4Hjm38rM49uBr2du35/57L+X+feLXpe7QHV/NvMzPwpcAV7IPN4I/Hiqz8li+Mqn/qRnGL6X+Tq0WOqf+Zk+B+zLfF2dTb3or30+dV/E1/27pIPlftLDcZoyj1/7fZe5/4XM9+kE8Hmvy62V+kVEREQ8pi5LEREREY8pkImIiIh4TIFMRERExGMKZCIiIiIeUyATERER8ZgCmYiIiIjHFMhEREREPKZAJiIFZWYDXpehECbXoxB1MrMWMxs2s323e64p3iNiZvvMbCyz24KILBAKZCKyJGW2SSv278CTzrmtc3Vy59xw5vwLYi9GEblOgUxE5oSZ/RszO5j5+teTHv93ZnbUzF40s2+b2f82y/O3ZM7zTTPbb2bfMbPopOe/b2Zvm9khM/vSpNccMbP/BrwDLM923DTvm+2892bKUJLZH/CQmW3Ks/xfz3yPvmVmj5vZ62Z23Mx25Hq/zOMxM/uRmb2Xef2nZwyynjsAAAMZSURBVPN9FJH5QVsniUhBZbr3Hgb+GthJep/YPcBvA37g68AuIEA6FP2lc+4/zuJ9WoBW4EHn3Otm9g3g8NVzmVmlc67LzCKkN5B+GIgDp4D7nXO7cx3nnOs0swHnXOnVOk26nev4/4P0vqgR4Lxz7o+zlPeHzrlNk+6fAO4mvY/gW6T3FPwi6Q2RP++ce2aK9/sU8JRz7vcy5yt3zvVmbp8mvR9vx0y/ryLiDbWQichceBD4nnNu0Dk3APwD8FDm8eczXWv9pDf+BcDMVpnZ/21m38ncj2Vav/7KzH4rx/ucc869nrn9t5nzX/Uvzew9YDewHFibefzM1TA2zXG55Dr+3wNPkN7A+E+mOcdVrc65A865FOlQ9rJL/y/5ANAyzfsdAB43s6+Z2UNXw5iILEwKZCIyF2yGj+OcO+Wc++Kkhz4JfCfTAvTxXC/Ldt/MHgEeB3Y557YA75JuvQIYvFaYqY+7tfBTH18JlJJuhct5jpuMTrqdmnQ/BQSmej/n3PvANtLB7I/N7Kt5vqeIzEMKZCIyF14DnjGzqJnFgGeBXwC/BD6WGWtVCnxkinMsA85lbidzHNNsZrsyt38jc36AcqDbOTdkZneS7jrNJt/j8jn+OeDfAd8CvjbNefKV8/3MrBEYcs79LfAfgXsK9J4i4oGA1wUQkcXHOfeOmf018Gbmoa87594FMLN/JD1W6gywF8jV1XaedCjbR+7/PB4BPmdmfwkcB/488/hPgS+b2X7gGOnuvmzyPW7K483ss8CEc+7vzMwPvGFmjzrnXpnmfNOZqnx3AX9qZilgHPhfbvO9RMRDGtQvIkVlZqXOuYHMjMjXgC9lAlwV8Eekx2F9HfjPwJ8BI8AvnXPfuuk8LUwaJD/fFbO8GtQvsvCohUxEiu05M9tAeizUN51z7wA45zqBL9907OeLXbg5lATKzWzfXK1FlpmJ+SsgSHocmogsEGohExEREfGYBvWLiIiIeEyBTERERMRjCmQiIiIiHlMgExEREfGYApmIiIiIxxTIRERERDymQCYiIiLiMQUyEREREY/9/1hElhHOYj0qAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXzU1b3w8c+Z7BtJ2EEgCRhZE0IgEnZQZJGqqFDFpbjBVeu9fe59Lt7qo1Xb+tRWr7Vqq9eqYBWhjyIWlSqiUCiKEiC4sIokgCCEbGSZbDPf54+ZjCSZSSZkJjNJvu/XCzG/+f1+5/wySfjmfM/5HiMiKKWUUkqpwLEEugNKKaWUUl2dBmRKKaWUUgGmAZlSSimlVIBpQKaUUkopFWAakCmllFJKBZgGZEoppZRSAaYBmVJKKaVUgGlAppTqtIwx9xhjcowx1caYFY1eu8MY840xptwY874xpv85r80wxmwyxpQaY/IaXdfbGLPKGHPC+fo2Y8z49nkipVRnpQGZUqozOwH8Gnj53IPGmGnA/wWuAroDR4BV55xS4bxmmZt7xgI7gLHOa18B3jPGxPq680qprsNopX6lVGdnjPk1MEBEbnF+/AQQJSI/dX7cH/gOuFBEDp9z3UzgRRFJbuH+Z4EZIrLTP0+glOrsdIRMKdUVGeefcz8GGNXqGxmTAYQD3/igX0qpLkoDMqVUV7Qe+LExJt0YEwX8AhAgujU3McZ0A14FHhGRUt93UynVVWhAppTqckTkI+AhYA2QD+QBZcBxb+/hDOTeAbaLyG/80E2lVBeiAZlSqksSkT+KSKqI9MYRmIUCX3lzrTEmAngbx7yzf/FfL5VSXYUGZEqpTssYE2qMiQRCgBBjTGT9MWPMKOMwCHgB+IOIFDuvszivC3N8aCKNMeHO18KANwEr8BMRsQfk4ZRSnYquslRKdVrGmIdxpCbP9QjwFLAFGIIjVbkceEBEbM7rpgObGl33DxGZ7iyZsRlHQHZuMDZXRLb6+BGUUl2EBmRKKaWUUgGmKUullFJKqQDTgEwppZRSKsA0IFNKKaWUCjANyJRSSimlAkwDMqWUUkqpANOATCmllFIqwDQgU0oppZQKMA3IlFI+ZYwpb8e2bMaYXGPM18aYPcaY/zDGWM55/ZNmrk0wxtzdPj1t0nayMcZqjMk952Ovtm1q4b5Rzs9HjTGmZ9t7qpRqLxqQKaU6MquIZIjISOAy4HLOqcwvIhObuTYBCEhA5nRYRDJ8eUMRsTrvecKX91VK+Z8GZEopv3COVn3l/PO/zjn+oDFmvzHmQ2PMKmPMf/qiPRE5DSwF7jHGGGdb5c6/Y4wx7zlH0b4yxlwHPAYMcY4oPe48721jzE7niNtS57FkY8w+Y8yfncc3GGOinK/9xBjzhfO+r57zjDcZYz533vt/jDEh3j6HMWawMWa3MSbL2fZ+Y8wrznbeNMZEN9e2UqpjCg10B5RSnY8xZixwKzAeMMBnxph/4Njk+1pgDI6fP7uAnb5qV0S+daYsewOnznlpDnBCROY5+xcPfAaMajRKdZuIFDkDrh3GmDXO46nAIhFZYoz5f8C1xpjdwP8BJonIGWNMd+e9hwPXOY/XGmP+BNwI/KWl/htjhgKrgVtFJNcYkwwMBW4XkW3GmJeBu40xf3fXtlKq49KATCnlD5OBtSJSAWCMeQuYgmNU/m8iYnUef6f+AmPMYBxBRryILDDGxAB/AmqAzSKy0su2jZtjXwJPGGN+C7wrIluNMYluzvs3Y8zVzv8fiCMQ+x44IiK5zuM7gWQgEXhTRM4AiEiR8/VLgbE4AjqAKOC0F/3uBfwNuFZEvj7n+DER2eb8/9eAfwOqPbStlOqgNGWplPIHd0FRc8cRkW9F5PZzDl2DI+hYAlzpVaOOoM5GowBIRA7iCJK+BH5jjPmFm2unAzOBCSIyGtgNRDpfrj7nVBuOX2YNIO66AbzinNuWISJDReRhL7pfChwDJjU63rgNaaZtpVQHpQGZUsoftgDzjTHRzpGuq4GtwD+BK4wxkcaYWGBeM/cYgCNAAUcQ1CxjTC/geeBZEZFGr/UHKkXkNeAJIBMoA+LOOS0eKBaRSmPMMCC7hSY/An5sjOnhbKP7OccXGGN61x83xiS11H8cI4HzgZ8YY2445/ggY8wE5/8vwvE59NS2UqqD0pSlUsrnRGSXMWYF8Lnz0IsishvAGLMO2APkAzk4RobcOY4jKMvF8y+PUc7SEWFAHfAq8KSb89KAx40xdqAWuEtECo0x25zlJv4OPADcaYz5AjgAbG/hGb82xjwK/MMYY8MxonaLiOw1xjwAbHDOZ6sFfup83maJSIUx5kfAh8aYChyfp33AYmPM/wCHgOecQWOTtlu6v1IqeJlGv0gqpZRfGWNiRaTcuVpwC7DUGcD1AB7FUb7iReBp4FmgCvhnK+aQBT3nZP13RWSUL85zc10eMK5+jplSKvjpCJlSqr29YIwZgWN+1isisgtARAqBOxude2t7d66d2IB4Y0yuL2uROVeHfopjxNDuq/sqpfxPR8iUUkoppQJMJ/UrpZRSSgVYhw7IjDEDjTGbnFW0vzbG/CzQfVK+4VyF97mzCvnXxphHAt0n5VvGmBBnRfp3A90X5TvGmDxjzJfOXQpyAt0f5VvGsQfsm84dJPadswJYtVFHn0NWB/xv54TgOGCnMeZDEdkb6I6pNqsGLnFO/g4D/mmM+buINLvyTXUoP8OxgrBboDuifG6GLijotP4AvO8s3hwORAe6Q51Fhx4hE5GT50wILsPxw/2CwPZK+YI4lDs/DHP+0QmPnYQxZgCOGmQvBrovSinvGGO6AVOBlwBEpEZESgLbq86jQwdk53IuDx+DY3861Qk4U1q5OKqufygi+t52Hk8B96IrATsjwVGDbadxbtCuOo3BQAGw3Dnd4EVn4WflA50iIHNW/F4D/C8RORvo/ijfEBGbsyTAAOBiY0yrajGp4OQsfHpaRHy2qbgKKpNEJBOYC/zUGDM10B1SPhOKY5eL50RkDFAB/DywXeo8OnxA5pxftAZYKSJvBbo/yvecQ+KbgTkB7oryjUnAlc7ipauBS4wxrwW2S8pXROSE8+/TwFrg4sD2SPnQceD4OdmKN3EEaMoHOnRAZowxOHLZ+0TE3XYpqoMyxvQyxiQ4/z8Kx6bP+wPbK+ULInKfiAwQkWTgeuBjEbkpwN1SPmCMiXEusMKZypoFfBXYXilfEZHvgWPGmKHOQ5cCuojORzr6KstJwM3Al865RgD3i8j6APZJ+UY/4BVjTAiOXxz+n4hoeQSlglsfYK3jd2VCgddF5P3Adkn52L8CK50rLL+l8+6m0e60Ur9SSimlVIB16JSlUkoppVRnoAGZUkoppVSAaUCmlFJKKRVgGpAppZRSSgVY0ARkupm0UkoppbqqoAnI+GEz6dFABjDHGJPtzYW6PUfnpe9t56bvb+el723npe+tfwRNQNbGzaT1i6Pz0ve2c9P3t/PS97bz0vfWD4ImIAPdTFoppZRSXVNQFoZ1bpmzFvhXEfmq0WtLcUbnISEhYyMiIqirqyM0tKNvOqDc0fe2c9P3t/PS97bzCuR7mxRTQ1SoHWudhfyKcNfxECPYxASkT61RWVlZKyLh7l4LyoAMwBjzEFAhIk94OmfcuHGSk5PTjr1SSimlVECUn4Ynh4O9Diyh8B/7ILZ3oHvVKsaYnSIyzt1rQZOy1M2klVJKKeVRTC8YON4RjA0c7/i4Ewmm8WTdTFoppZRSDnY7VJ5xBF7GOP4sfrfhsU4kaAIyEfkCGBPofiillFIqwOx2eOVHcOwzx2jY4nfBYnH86WBpSm8FTUDmK7W1tRw/fpyqqqpAd0WpgImMjGTAgAGEhYUFuitKKdV6lWccwZi9zvF35ZlOG4jV63QB2fHjx4mLiyM5ORnTyYYzlfKGiFBYWMjx48dJSUkJdHeUUqpljdOT9fPF6kfIOtl8MXc6XUBWVVWlwZjq0owx9OjRg4KCgkB3RSmlWuYpPdmJ54u5EzSrLH1JgzHV1en3gFKqw3CXnoQf5ot1kZ9nnTIgCyYPP/wwTzzhsZQab7/9Nnv37m3HHimllFIBZLc7aorV10Ht5OUsvNXpUpYdzdtvv82PfvQjRowYEeiuKKWUUv6l6UmPdITMDx599FGGDh3KzJkzOXDgAAB//vOfycrKYvTo0Vx77bVUVlbyySefsG7dOpYtW0ZGRgaHDx92e55SSinVKWh60iMNyHCsSquus/nkXjt37mT16tXs3r2bt956ix07dgBwzTXXsGPHDvbs2cPw4cN56aWXmDhxIldeeSWPP/44ubm5DBkyxO15SimlVKeg6UmPunzKUkTY/m0hh06Xk9o7luzBPdo0IXrr1q1cffXVREdHA3DllVcC8NVXX/HAAw9QUlJCeXk5s2fPdnu9t+cppZRSQa+LVdtviy4/QlZjs3PodDl94yI5dLqcGpu9zfd0F9DdcsstPPvss3z55Zc89NBDHgvXenueUkopFdTq54s9ORxWzHN8DJqe9KDLB2QRoSGk9o7l+7IqUnvHEhEa0qb7TZ06lbVr12K1WikrK+Odd94BoKysjH79+lFbW8vKlStd58fFxVFWVub62NN5SimlVIfiab6YcqvLpywBsgf3IDMpsc3BGEBmZibXXXcdGRkZJCUlMWXKFAB+9atfMX78eJKSkkhLS3MFYddffz1Llizh6aef5s033/R4nlJKKRXUtNp+mxiprwPSAY0bN05ycnIaHNu3bx/Dhw8PUI+UCh76vaCUajeeylk0DtK6OGPMThEZ5+61Lp+yVEoppVQbaTmLNtOATCmllFLea1xpH7SchQ/oHDKllFJKecdTarKDlrOw24XCihp6xoYHfA9gDciUUkop5R13qcnY3o7X6tOTHYTdLiz683Z25hczNimRVUuysVgCF5RpylIppZRS3ulEqcnCihp25hdTZxd25hdTWFET0P7oCJlSSinVwZ09e5awsDCioqJ8e+NOVGm/cXqyZ2w4Y5MSXSNkPWPDA9o/HSHzg7y8PEaNGtVu7T388MM88cQTXp17+eWXU1JS0qZ7KKWUCh6HDh1i5crXef31VRQXF/vuxp2o0n59enLCbz7i+he2Y7cLxhhWLcnm0/suZfXS7IDPIdOALIjYbL7Z4NwdEcFut7N+/XoSEhL81o5SSqn2dfToMSIiIrBarRQWFvruxp2o0r6n9KTFYugVFxHwYAw0IPO7b7/9ljFjxvDZZ5+xbNkysrKySE9P53/+538A2Lx5MzNmzOCGG24gLS2NvLw8hg8fzpIlSxg5ciSzZs3CarUCcPjwYebMmcPYsWOZMmUK+/fvb7bt+nvdfffdZGZmcuzYMZKTkzlzxvFN9eijjzJ06FBmzpzJgQMHXNft2LGD9PR0JkyYwLJly1yjfTabze0zKKWUCpz09DTCw8MZOHAgF1xwwfnfqHE5iw48X8xuFwrKqqkvfl+fngy1mKBIT7qjc8jw37LXAwcOcP3117N8+XI+//xz4uPj2bFjB9XV1UyaNIlZs2YB8Pnnn/PVV1+RkpJCXl4ehw4dYtWqVfz5z3/mxz/+MWvWrOGmm25i6dKlPP/886SmpvLZZ59x99138/HHH7fYh+XLl/OnP/2pwfGdO3eyevVqdu/eTV1dHZmZmYwdOxaAW2+9lRdeeIGJEyfy85//3HXNSy+95PYZUlJSfPY5U0op1Tq9evXipptubNtNPJWz6IDzxTytnly1JLvJv/V2sVNUVUSPyB4BHyXr8gGZv5a9FhQUcNVVV7FmzRpGjhzJr3/9a7744gvefPNNAEpLSzl06BDh4eFcfPHFDYKalJQUMjIyABg7dix5eXmUl5fzySefsHDhQtd51dXVLfYjKSmJ7OzsJse3bt3K1VdfTXR0NABXXnklACUlJZSVlTFx4kQAbrjhBt59910ANmzY4PYZNCBTSqkOzlM5iw5WygLcpyd7xUW40pP17GLntg9uI/d0Lhm9M3h59stYTOASh10+IPP0xrVVfHw8AwcOZNu2bYwcORIR4ZlnnmH27NkNztu8eTMxMTENjkVE/NB+SEgIVqsVu91OQkICubm5Hts8duwYV1xxBQB33nknc+bMaXLvc7n7baC5vU09PYNSSqkOphNtBH6+qyeLqorIPZ2LTWzkns6lqKqInlE927n3P+jyc8j8lVcODw/n7bff5i9/+Quvv/46s2fP5rnnnqO2thaAgwcPUlFR4fX9unXrRkpKCm+88QbgCI727NnT4JyBAweSm5tLbm4ud955Z7P3mzp1KmvXrsVqtVJWVsY777wDQGJiInFxcWzfvh2A1atXu65p6zMopZQKAu5WT9aXs/iPfXDLex0uPenN6km72DljPeMaeOgR2YOM3hmEmBAyemfQI7JHIB9FR8jq3zh/zCGLiYnh3Xff5bLLLuOBBx5gxIgRZGZmIiL06tWLt99+u1X3W7lyJXfddRe//vWvqa2t5frrr2f06NHn1bfMzEyuu+46MjIySEpKYsqUKa7XXnrpJZYsWUJMTAzTp08nPj4egDvuuIO8vLw2PYNSSqkA68DpycajYW1NT748++WgmUNmmktRBbtx48ZJTk5Og2P79u1j+PDhAepR51BeXk5sbCwAjz32GCdPnuQPf/hDgHulWku/F5RSbok4Rsbq05MdZETM3ZxvY+D6F344Vj8i1niy/hnrGWa+MROb2AgxIWxcuDEg6UljzE4RGefutS4/Qqaaeu+99/jNb35DXV0dSUlJrFixItBdUkopdb46SbV9T6NhjbNc7kbD6tOT9ccCnZ50RwMy1cR1113HddddF+huKKWUaitP5Sw6YHrS02T9xulJT5P1gyk96Y4GZEoppVRn5Wm+WJBrSy0xT6NhFmMJ6CrKlmhAppRSSnUWnaScRWearO8tDciUUkqpzqADV9v3Nj3ZeDTMU3oy2EfD3NGATCmllOoMOmg5C2/Tkx11sr63unxhWH+oLxlx4sQJFixYEODenL/Nmzfzox/9qM3nNPbwww/zxBNPtKVrTVx++eWUlJRQUlLSZN9Of1q3bh2PPfZYs+c09zl66qmnqKysdH1c/xxKKdVqHWQz8MYbf7tLT8IPk/XrU47uRsOMMbw8+2U2LtzI8tnLO0x60h0NyPyof//+rn0f/aWurs6v9+8o1q9fT0JCQrsHZFdeeWWDDdhbq3FAVv8cSinVIrsdyk876opBh6i2766yvqcdc7ytrF+fnuzIwRhoQOZXeXl5jBo1CoAVK1ZwzTXXMGfOHFJTU7n33ntd523YsIEJEyaQmZnJwoULKS8vB+CXv/wlWVlZjBo1iqVLl7q+KKdPn87999/PtGnTmhRsffjhh1m8eDGzZs0iOTmZt956i3vvvZe0tDTmzJnj2vboo48+YsyYMaSlpXHbbbe5Nip///33GTZsGJMnT+att95y3beiooLbbruNrKwsxowZw9/+9rdWfS4effRRhg4dysyZMzlw4IDr+OHDh5kzZw5jx45lypQp7N+/H4BbbrmFf/u3f2PixIkMHjzYFdiePHmSqVOnkpGRwahRo9i6dSsAycnJnDlzhp///OccPnyYjIwMli1bxs0339ygrzfeeCPr1q1r0LfTp08zduxYAPbs2YMxhqNHjwIwZMgQKisrKSgo4NprryUrK4usrCy2bdvmel/vuece17NkZ2eTlZXFL37xC9dIKTiK7S5YsIBhw4Zx4403IiI8/fTTnDhxghkzZjBjxowGz5GXl8fw4cNZsmQJI0eOZNasWVitVgB27NhBeno6EyZMYNmyZa6vMaVUF+Ju+yP4IT0ZpMGJu9Ewd1sd1acnZ74xk1s/uBW72DvVaJhbItJh/4wdO1Ya27t3b5NjLbLZRMpOidjtrb/WjZiYGBEROXLkiIwcOVJERJYvXy4pKSlSUlIiVqtVBg0aJEePHpWCggKZMmWKlJeXi4jIY489Jo888oiIiBQWFrruedNNN8m6detERGTatGly1113uW37oYcekkmTJklNTY3k5uZKVFSUrF+/XkRE5s+fL2vXrhWr1SoDBgyQAwcOiIjIzTffLL///e9dxw8ePCh2u10WLlwo8+bNExGR++67T1599VURESkuLpbU1FQpLy+XTZs2uc7ZsWOH3H777U36lJOTI6NGjZKKigopLS2VIUOGyOOPPy4iIpdccokcPHhQRES2b98uM2bMEBGRxYsXy4IFC8Rms8nXX38tQ4YMERGRJ554Qn7961+LiEhdXZ2cPXtWRESSkpKkoKCgwedcRGTz5s1y1VVXiYhISUmJJCcnS21tbZM+jhgxQkpLS+WZZ56RcePGyWuvvSZ5eXmSnZ0tIiKLFi2SrVu3iohIfn6+DBs2zPW+/vSnPxURkXnz5snrr78uIiLPPfec6+tg06ZN0q1bNzl27JjYbDbJzs523au+3/XOfY6QkBDZvXu3iIgsXLjQ9fkfOXKkbNu2TURE/uu//qvB857rvL4XlFIdQ9kpkUe6izzUzfF32alA98gtm80up89Wid3576vdbpcfP/+JDLnvPfnx85+4jjdWUFkgo18ZLaNWjJLRr4yWgsoCt+d1NECOeIhpdFK/p1UpfnDppZe69oUcMWIE+fn5lJSUsHfvXiZNmgRATU0NEyZMAGDTpk387ne/o7KykqKiIkaOHMkVV1wB0Gzh1rlz5xIWFkZaWho2m405c+YAkJaWRl5eHgcOHCAlJYWLLroIgMWLF/PHP/6R6dOnk5KSQmpqKgA33XQTL7zwAuAYxVu3bp1r7ldVVZVrFKneuHHjePHFF5v0Z+vWrVx99dVER0cDjjQfOEaNPvnkExYuXOg6t36kDmD+/PlYLBZGjBjBqVOnAMjKyuK2226jtraW+fPnk5GR0eznfNq0afz0pz/l9OnTvPXWW1x77bWEhjb9sp84cSLbtm1jy5Yt3H///bz//vuIiGuPz40bN7J3717X+WfPnqWsrKzBPT799FPX3p433HAD//mf/+l67eKLL2bAgAEAZGRkkJeXx+TJk5vte0pKiuv5xo4dS15eHiUlJZSVlTFx4kRXO++++26z91FKdQIdsJyFP2qJdWYakLVj0byIiB9qp4SEhFBXV4eIcNlll7Fq1aoG51ZVVXH33XeTk5PDwIEDefjhh6mqqnK9HhMT02I7FouFsLAw1xe8xWJxtemJpyFgEWHNmjUMHTq0wfH6QKkl7u5rt9tJSEggNze32eeobx9g6tSpbNmyhffee4+bb76ZZcuW8ZOf/KTZtm+++WZWrlzJ6tWrefnllwG49dZb2b17N/3792f9+vVMmTKFrVu3kp+fz1VXXcVvf/tbjDGuyfh2u51PP/2UqKgor563uWepf+9be43Vam32vVNKdVIdtJxFV6wl1hY6hyzAq1Kys7PZtm0b33zzDQCVlZUcPHjQFXz17NmT8vJyny4OGDZsGHl5ea42X331VaZNm8awYcM4cuQIhw8fBmgQJM6ePZtnnnnGFRDs3r3b6/amTp3K2rVrsVqtlJWV8c477wDQrVs3UlJSeOONNwBH0LVnz55m75Wfn0/v3r1ZsmQJt99+O7t27WrwelxcXJORq1tuuYWnnnoKgJEjRwKwfPlycnNzWb9+vauPr732GqmpqVgsFrp378769etdI5ezZs3i2Wefdd3TXRCZnZ3NmjVrAFi9erVXnxt3/W1OYmIicXFxbN++vVXtKKU6MHcDBxB088Uar570drK+u9WT0Hkm63tLA7IAr0rp1asXK1asYNGiRaSnp5Odnc3+/ftJSEhgyZIlpKWlMX/+fLKysnzWZmRkJMuXL2fhwoWkpaVhsVi48847iYyM5IUXXmDevHlMnjyZpKQk1zUPPvggtbW1pKenM2rUKB588MEm983JyeGOO+5ocjwzM5PrrruOjIwMrr32WlcaEGDlypW89NJLjB49mpEjR7a4WGDz5s1kZGQwZswY1qxZw89+9rMGr/fo0YNJkyYxatQoli1bBkCfPn0YPnw4t956q8f7JicnA47ADGDy5MkkJCSQmJgIwNNPP01OTg7p6emMGDGC559/vsk9nnrqKZ588kkuvvhiTp486UpPN2fp0qXMnTvXNanfGy+99BJLly5lwoQJiIhX7SilOpDGqyc7QDkLd6snvZ2s72n1ZFdjOnIKZNy4cZKTk9Pg2L59+xg+fHiAeqSCUWVlJWlpaezatcuvwUtlZSVRUVEYY1i9ejWrVq1q9WpUb5SXl7tWcD722GOcPHmyyWpb0O8FpTokT+nJxnPIgkxBWTUTfvMRdXYh1GL49L5LG6Ql652xnmHmGzOxiY0QE8LGhRvpGdWzyRyyzsoYs1NExrl7TUfIVKe2ceNGhg0bxr/+67/6fSRp586dZGRkkJ6ezp/+9Cf++7//2y/tvPfeew3KfjzwwAN+aUcpFQAdID3ZODUJ3qcnO3stsbbQETKlOin9XlCqAxJx1BWrHyELsgKvnlZO1r/W0lZHFmPpMqNh7jQ3QqarLJVSSqlAaZyKrJ/XHCTpycZBlqeVk0CT1ZOdaePv9qApS6WUUioQgrzafmu2OQLv05PKPR0hU0oppQKhHetgng9Po2GeCrtqLbG20REypZRSPldQUMCGDzbw9dd7Wz65K2hcygKCrpyFt3XEMIIJbVg/UWuJtZ0GZH5QX5LgxIkTLFiwIMC9OX+bN292Vapvyzm+du6m3b6wbt06HnvsMQDefvvtBlsk+dO57XrS3Of3qaeeorKy0h9dU6rNNm78iOPfnWDLP7ZQVFQU6O4ElqfUZIDrYDbs4vnXEQNNT/qCBmR+1L9/f59W2HfHmy14VPOuvPJKfv7znwPtG5Cd2+750IBMBbPEhASs1krCIyIabAPWJXkqZQFBM1/MXXrS0T3HRP36ES5PI2HGGF6e/TIbF25k+ezlOiJ2HjQg86O8vDxGjRoFwIoVK7jmmmuYM2cOqamp3Hvvva7zNmzYwIQJE8jMzGThwoWUl5cD8Mtf/pKsrCxGjRrF0qVLXcPI06dP5/7772fatGlNCoI+/PDDLF68mFmzZpGcnMxbb73FvffeS1paGnPmzKG2thaAjz76iLJESusAACAASURBVDFjxpCWlsZtt93m2tT7/fffZ9iwYUyePJm33nrLdd+Kigpuu+02srKyGDNmTKsKnubl5TF8+HCWLFnCyJEjmTVrFlarFXBsQZSdnU16ejpXX301xcXFTa4/cuQIEyZMICsrq8kOAY8//jhZWVmkp6fz0EMPtdje008/zYgRI0hPT+f66693vTf33HMPn3zyCevWrWPZsmVkZGRw+PBhMjMzXW0dOnSIsWPHNmj/9OnTrmN79uzBGOPadH3IkCFUVlZSUFDAtddeS1ZWFllZWWzbtq1BuwCHDx8mOzubrKwsfvGLXzQYBSwvL2fBggUMGzaMG2+8ERHh6aef5sSJE8yYMaNVVf6Vai+XXHoJl18+l2uumd/s3rudUgeotH++2xw1NxKm6ck2EpEO+2fs2LHS2N69e5sca4nNbpOCygKx2+2tvtadmJgYERE5cuSIjBw5UkREli9fLikpKVJSUiJWq1UGDRokR48elYKCApkyZYqUl5eLiMhjjz0mjzzyiIiIFBYWuu550003ybp160REZNq0aXLXXXe5bfuhhx6SSZMmSU1NjeTm5kpUVJSsX79eRETmz58va9euFavVKgMGDJADBw6IiMjNN98sv//9713HDx48KHa7XRYuXCjz5s0TEZH77rtPXn31VRERKS4ultTUVCkvL5dNmza5ztmxY4fcfvvtTfp05MgRCQkJkd27d4uIyMKFC133SktLk82bN4uIyIMPPig/+9nPmlx/xRVXyCuvvCIiIs8++6zr8/vBBx/IkiVLxG63i81mk3nz5sk//vGPZtvr16+fVFVVuZ6j/r356U9/KiIiixcvljfeeMPV9vTp0133ue++++Tpp59u0r8RI0ZIaWmpPPPMMzJu3Dh57bXXJC8vT7Kzs0VEZNGiRbJ161YREcnPz5dhw4Y1aXfevHny+uuvi4jIc88953rGTZs2Sbdu3eTYsWNis9kkOzvbda+kpCQpKCho0p965/O9oJRqI5tN5OW5Io90d/xts/1wvOyUiI/+nWkLm80uP37+Exly33vy4+c/EZvN7jp++myV699Cm90mi/++WEa/MloW/32x2Ow213Ff/pvZlQA54iGm6fIjZJ7y4f5w6aWXEh8fT2RkJCNGjCA/P5/t27ezd+9eJk2aREZGBq+88gr5+fkAbNq0ifHjx5OWlsbHH3/M119/7brXdddd57GduXPnEhYWRlpaGjabjTlz5gCQlpZGXl4eBw4cICUlhYsuugiAxYsXs2XLFvbv309KSgqpqakYY7jppptc99ywYQOPPfYYGRkZTJ8+naqqKtdIUL1x48bx4osvuu1TSkoKGRkZAIwdO5a8vDxKS0spKSlh2rRpDfrR2LZt21i0aBEAN998c4M+bdiwgTFjxpCZmcn+/fs5dOiQx/YA0tPTufHGG3nttdcIDW15kfEdd9zB8uXLsdls/PWvf+WGG25ocs7EiRPZtm0bW7Zs4f7772fLli1s3brVtWfnxo0bueeee8jIyODKK6/k7NmzTTYU//TTT1m4cCFAkzYuvvhiBgwYgMViISMjw/UsSqkgFISV9huPhrU1PakjYf7R5cteeCpc5w/nzqMICQmhrq4OEeGyyy5j1apVDc6tqqri7rvvJicnh4EDB/Lwww9TVVXler25FEB9OxaLhbCwMNc3jcVicbXpiadvMBFhzZo1DB06tMHxU6dOebyXuz6B49nrU4jectcvEeG+++7jX/7lXxocz8vL89jee++9x5YtW1i3bh2/+tWvGgS57lx77bU88sgjXHLJJYwdO5YePZpOVJ0yZQpbt24lPz+fq666it/+9rcYY1yT8e12O59++ilRUVGteuZ67r5ulFJBqj49WV9pPwhWTjaurF+fnqw/dm568twSFfXpyfpSFjpR37+6/AhZoFeGZGdns23bNr755hvAsUH1wYMHXcFXz549KS8v9+nigGHDhpGXl+dq89VXX2XatGkMGzaMI0eOcPjwYYAGQeLs2bN55plnXMHc7t2729yP+Ph4EhMT2bp1a4N+NDZp0iRWr14NwMqVKxv06eWXX3bNufvuu+84ffq0x/bsdjvHjh1jxowZ/O53v6OkpMR1bb24uLgGo1eRkZHMnj2bu+66i1tvvdXtfadOncprr71GamoqFouF7t27s379eiZNmgTArFmzePbZZ13n5+bmNrlHdnY2a9asAXA9a0sa91UpFQCN54sF0cpJcD8a5u3qSZ2o3766fEAW6C+4Xr16sWLFChYtWkR6ejrZ2dns37+fhIQElixZQlpaGvPnzycrK8tnbUZGRrJ8+XIWLlxIWloaFouFO++8k8jISF544QXmzZvH5MmTSUpKcl3z4IMPUltbS3p6OqNGjWoyuR4gJyeHO+64o1V9eeWVV1i2bBnp6enk5ubyi1/8osk5f/jDH/jjH/9IVlYWpaWlruOzZs3ihhtuYMKECaSlpbFgwYJmAxSbzcZNN91EWloaY8aM4d///d9JSEhocM7111/P448/zpgxY1yB6Y033ogxhlmzZrm9b3JyMuAIzAAmT55MQkICiYmJgGMhQU5ODunp6YwYMYLnn3++yT2eeuopnnzySS6++GJOnjzp1UboS5cuZe7cuTqpX6lACcJK++dbS0zTk4Gnm4sr1YInnniC0tJSfvWrX/mtjcrKSqKiojDGsHr1alatWtWqlazu6PeCUn5WftoRjNnrHCso/2NfQCvte9r425tNvw2GWz+41XVMR8T8QzcXV+o8XX311Rw+fJiPP/7Yr+3s3LmTe+65BxEhISGBl19+2a/tKaXOQ+ONwINsvpinrY683fRbtzkKLA3IlGrG2rVr26WdKVOmsGfPnnZpSyl1HurTk/XB1+J3HanJxe82DNLatUsNR77aOlm/Pj2pAkMDMqWUUqolnjYCr58v1s48pScbb/ytm353HJ1yUn9HnhenlC/o94BSbRTk1fa1lljn0+kCssjISAoLC/UfJNVliQiFhYVERkYGuitKdUzuVk8GuJyFP7Y6UsGl062yrK2t5fjx4w2KqCrV1URGRjJgwADCwsIC3RWlOp5OtHrSYixN5pCpwOkQqyyNMQOBvwB9ATvwgoj8ofmrmgoLCyMlJcXX3VNKKdVVBHj1ZONAy9PqyR9qiTlGvTytntTJ+h1D0ARkQB3wv0VklzEmDthpjPlQRPYGumNKKaU6scblLOrTkwFYPentVkfuRsN0q6OOLWgCMhE5CZx0/n+ZMWYfcAGgAZlSSin/8FTOIkCrJz2NhjVePVloLdRaYp1MUE7qN8YkA2OAz9y8ttQYk2OMySkoKGjvrimllOpM3JWzaEfnu9WRp8n6unqy4wq6Sf3GmFjgH8CjIvJWc+e6m9SvlFJKedQ4PSniWElZP0LWjisodbJ+19MhJvUDGGPCgDXAypaCMaWUUqpVgqzavk7WV+cKmpSlcYT3LwH7ROTJQPdHKaU6gk8++ZQXXvgzO3fuCnRXgp+n9GT9fDE/BmONU5PgPj1ZPxo2842Z3PrBrdjFrrXEuohgGiGbBNwMfGmMyXUeu19E1gewT0opFbSsViu5uXvo27cPO3bsYPTodEJDA/djXUSCK3UWJJuBe0pNGtN0qyOdrN91BU1AJiL/BPSrTCmlvBQREcHAgQM4duw4F144JKDB2Gef7SB39x5GZ6STnX1xwPrhEsD0pNd1xKBJelI3/u66giYgU0op1ToWi4XLL59LeXk5cXFxAetHTU0Nu3btpm/fvuzenUtGRnrgt+4K0Gbg3tYRA3Tjb9WABmRKKdWBhYSEEB8fH9A+hIWFMXhwCocPH2FwSjIREREB7Q8QsPSkt3XEQCfrq4Y0IFNKKdUmxhguu+xSJkwoJzY2NjCjOgGqtt84PelpNKxxahI8pydV1xR0dchaQ+uQKaVUYJ05c4acnF3079+PtLRRgQvG3M0X83uzbasjBmgtsS6muTpkQVP2QimlVMezefMWTpw4yT//+SlnzrRvlXuXAFXbd5eeBJpU1XeXmqynlfVVPQ3IlFJKnbeEhAQqK61ERIQTFRXVPo3a7VB+2lFlH36YL2YJ9et8MW+2OdI6Yup8acpSKaXUeautreXEiZN06xZHYmKi/xv0lJ5sPIfM5816l548Yz3DzDdmYhMbISaEjQs30jOqp6YmFaApS6WUUn4SFhZGUtKg9gnGIGDV9r1NT+qm3+p86SpLpZRSwcndqFc7lbPwZvWk1hFTvqQBmVJKqeDjKTXZDuUsPKUnvd3mSOuIqfOhKUullFLBp7mVkz5OTzaerN/W9KRS50NHyJRSSgWfdkxNerPVkaYnlb9pQKaUUirwAlRp39NWRyvvuJjDRadI7dFX05OqXWjKUimlVGDVzxd7cjismOf4GPyyctLbWmJ3fHg71/39cm7bcJvWElPtQkfIlFJKBZa7+WKxvX3eTFsn62t6UvmTjpAppZRqXwGqtK+1xFQw0xEypZRqpdraWrZv/xxrZSUTJmYTFxcX6C51HJ7KWfhhvpjWElMdiQZkSinVSvn5R8ndvYewsDCioqOZMmVSoLvUcXhKT9bPF/MRrSWmOhpNWSqlVCvFxsYQGhpKna2OhISEQHcnuLVTelJriamOTkfIlFKqlfr27cvCH19DTU0t/fr1DXR3glc7pSe1lpjqDDQgU0qp89Czp6azWtRO6UmtJaY6A01ZKqWU8o92Sk9qLTHVGZj6L+iOaNy4cZKTkxPobiillIKm1fY9HWtTE+4n6zdeUXnGeoaZb8zEJjZCTAgbF26kZ1RP7GLX9KQKGGPMThEZ5+41HSFTSikv2Gw2zpw5Q01NTaC7EjRsNhvFxSXYbLZ2q7avtcRUZ6VzyJRSygsff7yZgwe/oWfP7lxzzXzCwsIC3aWAstvtrF+/gePHviM5JYk5k9MxPq6233jUC9DJ+qrT0oBMKaW8kJ93lJ49e1BYWITVau3yAVlNdRVF+Qfp0zeZ/Pxj1F06jbCB439YUdnG+WKeUpPGGJ2srzolDciUUsoLU6dN5vPPcxg7doxW5rfbiVy9gJ8UbudUWQonZ79EWHi4T8tZeFo5WT9Z/9zRsPr0ZP0xnayvOiINyJRSygsXXZTKRRelBrobwcFZzsKIjb61efS9qL/jeBvKWXizzRFAUVWRbvytOiUNyJRSSjWv8UrJ+nIWfk5PNk5NAh5HwzQ9qTo6DciUUkp55odq+41Hw9ylJ3vEhjVJTVqMBWOMjoapTknLXiillPLMXbV98KqcRXV1NXV1dQ2O1Y+GTfjNR1z/wnbsdnFb2NVdarKelq5QnZGOkCmllPLsPNOTR47ks2HDx8TGxnDVVZcTGxsLeL/NkU7UV12NBmRKKaV+0Hi+mDEtpietVisbPviYs2XlzJ59Cb179+LAgUNERkZQXFzK/rzvGTtyiMfJ+u5WTmodMdXVaMpSKaWUw3lW2z9x4nu+++4ktro6vvpyLwAjRw6jpqaWNcV9uO71g670ZH0dsff+PYNVS8ZjjPGYntTUpOpKNCBTSinl4Gm+WAu6d08kKjqSqupqBiUNBGDgwAFcsXABR62h2M5JT+qm30q5pylLpZTqqnxUziIxMYFFixZQXVNDjYlAxDES1ic+mnGN0pOFVe6r6mt6UnV1GpAppVQXcPZsGRs+2ISxWJg1azpxMdE+LWcRHh7B4ld2t1hLTOuIKeWeBmRKKdUFfHPoWwqLihERDh/OI+PC3k3Tk7G9va6235ZaYjoaplRTOodMKaU6uKqqKj79dAe7d32BzWZze07v3j2IsZcTYiz06dPrh/SkJbTV1fbbWktMJ+sr1ZSOkCmlVAf3xRd72b37S+w2O3Hd4rjwwpSGJ9jtDNi4lBsLPsPWfxyhfW7yqpyFJ1pLTCnf04BMKaU6uIiICOw2OxZjCA8Pa3pC/Wbg9jpCT+S0OT2ptcSU8j0NyJRSqoNLSxtOXFwsYWGhDBjQv+kJbdgM3NuNvwut7ldP6mR9pbyjAZlSSnVwFouFwYOTHB/Y7VBR0DAN6eP0pLvJ+pqeVKptNCBTSqnOor7SfuNSFuDT9KTWElPK9zQgU0qpzsJdpX0vgrB63qYntZaYUr6nAZlSSnVUPqq0X09riSkVOBqQKaVUR+QpPdmKuWJtSU/qaJhSvqUBmVJKtdH33xewb+8hklMGkJIyqH0a9ZSebMVcsbakJ5VSvqUBmVKq07Pb7Rhj/JJaExE2vL8ZYzEcPpzHDTdeTXR0lM/baWt6Urc6Uiq4aUCmlOrUvjt+kg8/3EpcXCxzL5/h82DJGENMXAwFBYXEREURGhri0/sDbU5PuhsN6xkbTmZSPLuOHydzwEBNTyoVYBqQKaU6ta+/PkhYWCiFZ4o49X0BKYN9n1KcO3cGJ0+eomfPHoSHh/v8/m1NT3oaDYse9Gdio3KJ7p2BkK3pSaUCSAMypVSnlnpRCseOniAuLpaevbr7pY3o6CiGDEn2y72BVqUnG6cmAc+T9Qu0lphSwUIDMqVUp5aSMogbb+5DSIiFsDA3+zwGo8bzxbystO9por4xWktMqWCnAZlSqtOLjIwIdBcaKC0tIz/vGH379aF370ZpQU/zxbxIT7pLTfaKi9CNv5XqACyB7oBSSnUlIsL76z/m88928967G6mqqm54grv5Yk5Hvs3n8893cfZsGeAYESsoq0ZEAFwT9UPDyslMSqBnrGM+W1FVUZPJ+vDDaJgGY0oFngZkSil1nux2+3leJ1gsFkQEsdug/DQ4gyrXfDFLaIP5YkVFxWz4YBO7d3/Jpk3bXOnJCb/5iOtf2I7dLgjimKif+huik15AcNyzPj0ZYkJ0sr5SQUpTlkopdR4OHczjn1t20L9/Hy6dNZHQUO9+nBpjmHP5DA5/k8eAC/oQ9dcF3pWzMIYKsRBZZ3OsGnWTnjShZW4n6htjND2pVJDTETKlVJd2pqCY06eKWn1d7u69xCd04/jxkxQVlrbq2sTEeMZljaZvN4v79GT9fDFn4GS3C3f9v3388VgP1lcPYuq0CW7Tk82NhGl6UqngpiNkSqku69jRk3z4/ieICJfMHE/KkIFeXzt02GByPvuCHj0SSUjs5t1F51ltv340zCaw/0w1Vnso0fXpyXPqiOlEfaU6Lg3IlFJdVtnZCux2OxaLhbNnK1p1bfroYVyYmkRERDghIV5U529FtX2vN/12k57UshVKdUwakCmluqyBSf24qKAYu81O6tDkVl/fqm2YvKy2r5t+K9U1aUCmlApKpSXl5Hz6FXHdoskcP9Lne0TuztnPl7kHSB48gKmXjMVi8fOU2lamJ9tj02+r1Up5eTk9evTw//MrpZqlAZlSymf27zvMjs++JPWiZMZPGN2mOUxf7DrIqZOFHMv/nj79e2KtqKbKWsPwtBQiItu2X6SI8GXuAXr17s633xwjM2s4sXHRbbpnE15W23eXnmyPTb+rqqp48821nD1bRlraSKZOnezLp1dKtVJQ/UpkjHnZGHPaGPNVoPuilGq9zz/9gvj4WPZ+dYjystbNyWossUcctbV1hIaFUl5ayfatX/LFroN8setQm/tpjGH4qCGcPlXEoKR+RMdEtvmeDdTPF3tyOKyY5/gY3K6e9KaWmD/qiJWXl1NWVk5CQjzHj3/X5vsppdom2EbIVgDPAn8JcD+UUuch5cKBHNp/hJ69uhMV3bYgZ0TaEHr17k5kZDhWazXGGOx2ITzcNz+2srJHMWp0KpGR4b5fjehpvlgjrakl5uvVk927d2f06DSO5h9j0uQJbb6fUqptgiogE5EtxpjkQPdDKXV+Jk3OJD19KNExUV4XSvXEYrHQp59jJCg+MY6Z88ZTXVXDoJR+rb5Xwalivss/RdKQ/iT2+KFERVSUj/a49LKchTfpSWifTb8tFguTJk1g0iQNxpQKBkEVkCmlOjaLxUJ8Qpxf7n3BwOY31vakurqWj9Z/BhgOH/qOqxfN8O0Edi/LWbhbPYnRWmJKKQevfioZB+8rJvqRMWapMSbHGJNTUFAQ6O4opYKcMWAJsWCrsxESYmmf9CRgx1Ag8c7dJN2nJ4uqipqkJ0Gr6ivVFXkVkImIAG/7uS9eEZEXRGSciIzr1cv9snGllKoXHh7GzMvHM3bCcC6de/F5BzlVVdWUFJ/1ajNwd5P1W7vVkVKqa2lNynK7MSZLRHb4rTdKKeUH3XvG071n/HlfX1lp5Z23P6K8rJwf1zxHXPFXzaYnC8ur3dYS0/SkUsqT1kykmAF8aow5bIz5whjzpTHmC192xhizCvgUGGqMOW6Mud2X91dKNVVdXUNRYSn2+tIM56GspILN7+xk+8dfUVtT576dqloKThR7fD2YnS11lIjoGW0npvDLFtOT7kbDND2plGpOa0bI5vqtF04issjfbSilflBdXcN7b/+Ds6XlDB85mPGTRp/XfQ58cZTCglJqjtfRP6kXg4b0afC6zWZnyzu7OFtUQY++8Uy7MrNDBSA9eyUyJDWZUydOUds3k4jTu5ukJ1uarK9bHSmlmuN1QCYi+caY0cAU56GtIrLHP91SSrWHinIrZ0vL6ZYQy9Gj3593QJbYK47D+44TFhZKXLem+zvW1tRRXHCWsqJKTh8vZuKcdMIjwtraff9zlrMIjenFjEuynceuaDE92ZpaYmfOFFJYWMzAgf2JjvbxbgFKqQ7D65SlMeZnwEqgt/PPa8aYf/VXx5RS/peQGMfwkYOx2eyMn5B23vcZMnwAs64Zz+yF2ST26tbk9ciocLr3juf08WLCwkI4dbSwLd1uHx6q7XuTnvQ0Wb9xerKiooK3317PRxs3s/HDzQF4SKVUsGhNyvJ2YLyIVAAYY36LY77XM/7omFLK/ywWC+MnjT7vkbFzuQvEzpUyrB+lp8sQDGEdYHSspuQkYcc+w5wzX8we3cuntcRsNjt1dbWEh0dgtVa18xMqpYJJawIyA9jO+djmPKaUUi1KGXEBUbFRhIQYeg/oHujuNNSo0n5J8VnWv5vDJaGD6VN7GAaOx8T0orDc+62OvKms361bHLNmXcJ3351g5Mjh7fSwSqlg1JqAbDnwmTFmrfPj+cBLvu+SUspfis+c5dC+Y/Qf2JMByX1avqAVqq01HD3wPdGxEfQf0rvJqJDFYqF/su+2/vEZN5X2T58upNJaxaLaB6ioqiClOplVQqu2OvLW4MHJDB6c7JdHU0p1HK2Z1P+kMWYzMBnHyNitIrLbXx1TSvnelg93U1tTx7cHvuOK66cSE9u2DcDPtf/zIxzd/z0AUbGRdO97/nW/2pWbSvv9+vcmJLYb+VYbduIpOlqitcSUUn7Vqq2TRGSXiDwtIn/QYEypjic6OpJqay2hYaGEhPhwP0fAWCyIOOcxdKSgJKYXMmA8YglFnKUs4uJiWLxoNmOTE4KullhJSQlFRUV+b0cp1b68GiETETHGvA2M9XN/lFJ+NPmyDE59V0hCj25ERoX79N7DL04mrns00bGRdO/T/AT/gGo0X8wucEPN/+FIVT7JztSkxQAGYpJeJDY6eGqJnThxkr/97T1AmD17JoMHp7Rr+0op/9Gtk5RqhaqqKiwWC+Hhvg1m2ktUdATdu3ejrLiS6OgIwiN9t9oxLCKMlJEX+Ox+fuFmvlhhRS05R0ups8dT6ExN9oqLcDsa5qmWWHspLCzCbrcREhJCQcEZDciU6kSCauskpYLZ0aPHeOWV13j99b9SUlIS6O6cF2t5FVv/tpvPP/ia3Zv3t3v7NdYaCr8rpqaqtt3bBqDyDOKcLybO+WLu6ogBXtcSa09DhqSQnJxE//59GTFiWLu3r5TyH69GyIzjJ8+dQL5/u6NU8Pr2228JCwujoqKC06cLSEhICHSXWq2u1oatzk5EdBjW8up2bbu04Czv/mEjYhcGZyaRfU0mFovn3wmt5dWEhFraNorXOD0Z1ZP9ocO5qPprDoYOZ1hUT6BpHTGDwRgTdJP1o6OjmTdvTqC7oZTyg9bMIfu9iOgcMtVlDR8+jG+/zaNHj+70798v0N05L3GJMYyZPpQzJ0sYMmpAu7b9zed5lJ+pAAOFx4qx2wRP8diJw6f5ctMBwiJDGX9FBjHxUVRbaziQk4/FYhialUxYeAs/vtylJytruar858Tbz1JSG8+nlbUe64gBXtUSU0opX9A5ZEp5qU+fPtxyy80YY4JitOR8DbyoLwMv6guAiFBVXk14VBghoSF+bTexfwK9kntQVlhO2qXDCA3z3F5BfhHhUWFUVdRQXlxBTHwUR/edJH/vCUSEuB4xJA1rISh2pieNMz1pKs/QM7YXY5IS2XW8gswBiT6pI6aUUr7QmoBsBnCnMSYPqMCxul1EJN0fHVMqGDWXYvO32po6PvnwC4oKzjJhZhp9BzQNHOx2O19vO8z3eWcYMXEIFwzp3ew9j+zK50juMeJ6xJJ5eRqhLY06tUHy6AF0759ARFQ4Ud2ar3+WNKo/xSdLSezXjQTnis3I2AhEBGNwv0L0PNOTWkdMKRUMWvPTd67feqGUalFRQSknj50hLj6avbuOuA3IKkqs5O87SbfuMezb/m2LAdnJb04T1z2GssJyrGVVxPWI9Vf3sVgsruDKHRGh5PtSLCEWEnp3Y/qN4xu8PiC1D1GxkVgspmnRWbsdWfEjOO5ITxpXevJeuplTlNb2azY9qalJpVSgtebX/aPAFGCxiOQDAvh27xWllEfdEmKI7RZFRVkVAz0EWpGxEUTFRlBSUEbflF4t3nPw2CQqz1bRd0gvYhKiAbDb7JSfKaOuus6n/W/JiQPfk/PuF+x4J5eiE01XsRpj6Nk/we0OAPbyAmxHt2Psddjyt2MvL6B7TCjdL1xBdeqz9LjwZbrHhHpcOamUUoHWmhGyPwF24BLgl0AZsAbI8kO/lFKNRMVEMnvBBGqqa4mJi3J7TtGJEurKq4gMDyFlZMsLD/pd2Ie+jfadPLjlAIX5KXjFAQAAIABJREFUZ4hJjCZtXgYhoSHUVddiLbUS3T3G67lmhUfPUF1eTa/BvQlrZqWk3W7n7OkySk6VYrGA3SZUV7ZuBWgh8XxrTyXTHGSXpDKYeEx1MdWh32LETnXotxRXFwe8jphSSnnSmoBsvIhkGmN2A4hIsTGmY1bHVKqDCgsPbXZ14Xf7v6esoIzqylpKT5cREx/d4j3PDUpEhOLjRcQkxlBRUkFtVS1EwtcffIG1uJKECxIZNnNUi/csKzjL/o/2AUJFcQWpky7yeG7+7qPk5R5FgMR+CcQkRtMrqfn0od1mo6jgBD16X4CxWOgZF8E9/Z/gyHf7Sb5gBH+NiwAi3E7W1/SkUioYtSYgqzXGhOBIVWKM6YVjxEwpFSTCw0M4c7SQsPBQrKVWr64Rux3jXKxgjOHCiakc25PPoNFJRMZGUlNZjbWkkqiEaM6eKsVut7e8uEGc/zEG7NLgpeNfHefE19/Rf0R/BqQNpLyogvDIMKoqqwmLCKW6ooaqsipiu8e4vbXdZmP/b6dxUfXX7IsYybD/+gdYDFFJL1Hj2uZogk7WV0p1KK2ZQ/Y0sBbobYx5FPgn8H/90iuluhibzY6ItHxiC3ol9+DCcUkkjx5AbPfmR8dstTYOfPQVO1d9wpnDp364x5DeZF6TxcCMQQCER0cwKDMFEAZPTPVqpWlc724MnTGc5HEpJI/7YXufupo68nfmEREdQf6uPOqq60gZm4y1vIpT35zmq4/2UnKylP3bDnm8d1HBCS6s/pqSEEit/pqighNBsem3Ukq1hdcjZCKy0hizE7gUR8mL+SKyz289U6qLOJFXQM5H++jWPYYJc9OJaENl+t4pvciclwFAYr+mk9/PZS2poPS7QqITYzn51TF6DvG8Rqf/qAH0b2Uh2Z7JTRcVhISFEN8vnpITJST0S8ASZiE6IYqwiDAGZ6Xw5Yd7qSytpHfKDynFxunJxF79WHRBEgfD67ioJpRVvfphsYQ0SU/W1NRSVlpBQvc4QkL8W2NNKaXaqlVFh0RkP9D+G+Ap1Yl9++VxIqLCKTpVSknBWfoMPP+Vf8YYuvf3bkunyG5RxHSPo7K4nIGZ7jeprquuBRFCI30zXdQYw/BLRlB1torIbpGu0bY+F/bm+0OnSb9sBIMvHux6BnfpyeKaEg5Ggk0MByOhuKakyWR9m83Ohvc+obCghEHJfZkxa3xz3VJKqYDzXxVIpZRXBg3tx65/HCAuIYZ4P9YBayw0IozhczOoq64lPDqiyevW4nIOb9yD1NlImj6Kbv26+6TdkNAQohOjOXvqLMZi6Na7G0MnpZI0ehBhkWEUV9VhCXEEau7Skz36DGhxsn51VQ2FZ0pI7BHPd8cKvJv3ppRSAaQBmVIBNuiivvQZ1IOQUAuhft6+qPTo6f/P3ptG2XVd952/c+705ldvqHkGCvNUmEhwJiVRpCRKliW7LXlFkSe543TSSmd1p/OhV1bSWd2J0yvpTrp7dVu25WV5kBzH7UmWJYsaSEoESRAgQMwzap5fVb15uPec/vBAFApVhUIBKBIk728tLOC9e8+9+74Cqv7Ye5//ZvTNS8Q607Tt70MaclkxBlCcyeJVXQzLID+aIdrcwOzVSbxqjeTGVox7cPWfujLJ+ZfOIYRk+7M7SHYkccIOv/i1V7k6OEBPVw/f/PVHli1P3snQ73AkSP/+rVy+MMjDj+/2xZiPj88Djy/IfHweAO6lb+wdqvkylXwJOxyglMkRiIcJNCzeqTj65iUMx2LmwiipTe1Ljt9MtCVJIB7Cq7kkelvIjWYY/ukZAFTNpXn38mXOO6GSqyCkRHuKSr7uOTaTL/Pfjf5T9lkXODa6mZn8jxFWYVF5cmxukuJQjVgqQkvn7a0r9uzbwp59W+46xluZnZ3DdT0aG30zWR8fn/vPqoJMCJHj+ib2Ww9Rn2W58iwUHx+fd4VaqcrF7x3DLVYozeUJJSIYjsWWTz+0qP8r1plm5sIogXgYa4XM2DvYkQBbXjh4fX6koFYs1w8Iwb1uWmzZ0kIxXyLratI9dWGVFlni8iLzEvapi5giC4GmReXJgdenGB+aQSD42M8/RGwFa4z7zfj4JN/84z9jYmKKT33qWZ548pF35b4+Pj4fHlYVZFrr6LsRiI+Pz93jVWqUZnKUM/PkxmaJPr4DVfNQrrfovLb9faQ2tWOFnDsuOb5TEoy2p+h6YjtezaOht+We4jUci39xOsPRgVn2n5/lm185hA6l+LXObt42auzRDr8XTiNvKU8e/u7Je7rv3ZKdz/L222dQnuI7f/Mi+w/sIRRa3XTXx8fH505ZU8lSCJEANgGBd97TWr98v4Py8XlQGb06xdTILL3b29+17Myd4MRDGBJ0zSXV04gTD5He0oEdWTxiSUh52zLlzdTyJdxyhUAyhpASIcRthZjy1I1m/NWYKVQ5NjBFXExwdEAxU6iSnxvjhKFQQnBcuGSujzq6uVl/75NbSF+ME0tF3tXPv7unk46ONmZn52jvbPN9zXx8fO47dyzIhBC/BnwV6ACOA4eAw9RnW/r4fOApZEu8+eIZpGkwNTLLx37hwbFSEELQtLMLO2hh2CZdj23HDgdWX7gC1WyBoRePoKouyZ0bSO3csOK5ylMMv3qW3PA0zfs2kt6y1K9MKc1MoUo6YtetOUKSvT3/ggu2y76qSTL0HCHVTK/YyFV9mS3BrcsO/g6GHTb3d9/1c90tjuPwP/yzf8TAwBAtLc0Eg8vPEvXx8fG5W9aSIfsq9UHir2mtnxFCbAX+1fqE5ePz4GGYBoZpUKnUiD9A2bF3aN2/iXhXE1Y4cE9iDMAtVfAqLoZjUcnklhwvTc9Tms4S6UijXEV2cJJgKsb0qQFSm9sXZZCU0nzxt1+rlye7E3zzK4eYnb3MBdvFE4ILtsvs7GXS6a38wWe+wVhmnA1dPQ9cFioWi7Jr1/b3OgwfH58PKGsRZGWtdVkIgRDC0VqfE0Lcvy1MPj4POIGQzeOf7mduJndP5q1rQbkeY4fPUJyco+XQVqLtS93v30FaJpG2leNS1RqFoXGMoEOorem29w2kG0hs7qQynye1a3F2zC1VGP7RcTzPI3ttjK6P7SfUnKA4NYcMOLzyBy+xYWsb7Qc3IYRYtjyZTm6mH4fjukI/Dqlkffh4NBEhmuhbwyfk4+Pj88FgLYJsWAjRAPwF8H0hxCwwuj5h+fg8mMTTEeLpd8+8tTybIzs0hRMNMnPy2rKCrJYvoipV7GT8tlmluVMXyV0cQEhB8zOHcNKLHf29ShUAw7GRhqRx//L/39IalNY3bCukadD7kd1UihU+/7+/xLmix9Zrl/n/dnThhAPLlieFlHz9S6+Tmb1EKrn5xnDz9cTzPKYmM0SiISKRBy/D6ePj8+FmLbMsf/b6H/+lEOJHQBz423WJysfnAUMphfY0hvXuzkS0oyHsaIhqvkjjno1LjucuDzL85y9ixyI0PrGf2Lal57yD9lRdRGmN1mrRscrMHFOvvAlA4xMHcFIrj1+yQg4dT+2hNDVHrKsZ5XrkRmaY8zTnih6ehnNFxVzVoznMiuVJaZik01vv8pNZO4dfPcqZ05cIhQL87OefJxz2d0n6+Pg8OKylqd8BPg/03LSuH/if739YPj4PDtVSlVN/d4pStsSWJ7eQ7r69Ien9xLBNUr1pKnM54r2Lh39rz2Pqh69RmZimNpclMtlzW0HWsGszZiSEGQrgpBOLjpUnM2il0UBlKnNbQQYQbk4QbGxgplDFO3WN6ZPXQEB/S5DBycuk7TaKJ6/BkztIrVCefLeZGJ8mEgmRzxcpFcu+IPPx8XmgWEvJ8i+BeeAoUFmfcHx8HjwKM3kKmQKBaIDx8+P3RZB5lSqTr5/GK1dpengHdnz5Mmh5MkP29EWEYTB/yiJ1cOeNY8rzqGVmUMUceEEadt5e6BgBm/i25XdLhtqbKFwdBiDY3rzsOW6pglss4zRE0ULcaNTfmXD4160CrVwikX9OLV6lsWYyP/x/ALwn5cnlePyJg7z+2lts2rKB1C2C1MfHx+e9Zi2CrENr/fy6ReLj8y4xdHqU8csTdO/upKlndXEVTkUIJ0OUsiV6DvTclxiK4xnyI9MYtsX8xWEaDyxfupOWCYZEex5G8BZnfU8R2dBBqKMVI2hjJ+NrjkMrBUJgxSK0fuIJgGX70LxKlZEXj+AWS8Q2dsCWDRwdmMETeU7ORpGPbcSxxjlxuoonBG9bLtEdC+Og3u3y5HI0tzTymc9+/D2NwcfHx2cl1iLIXhVC7NJavzdW2T4+94FKocLFN64QigY4+9J50l3JVQdP20Gb/k/vRbkK8x4Gai+6ZjSEYZko1yOQXrk86KQaaH76IbxKlWDL4oZ+Ixgg+cgByiPjhPvWbhNRnc4w+/pRjGCAxKMPYQRWHqVULZSZnC/R1BCkNJGhfd9mUn1fpyAvE1Yb2XroT5Fspv/0Qmlywy5/vJCPj4/PnbKWny6PA78khLhKvWT5zizL3esSmY/POmDYJqFYgMJskWRHYlUx9g5SSqR9/0ptTjJG1ycfQbkeduz2O/5u7ffySiVq42MY8QaCHa0EO1rvKobi1QEQgtpcltpMBqN9+esopfnyn57m6LUqO2OKP/ql/cxWZqmYVxBaUTGvMHvdVf9BKE36+Pj4vB9ZiyD7xLpF4ePzLmFaBvs+uZvCXInofbSv0FpTGh5HVWuEulqRlrXiuZWJSSojYwR7urCTK/cyadfFy84jIxGkvZC9Khx7k1pmBmEYBDf2UTx9AivdROTRJ5Dmyve9lUB7K+WRcYxgALNh5XJn3UdsBiXznM5FKUWipG2TfmVwHJd+bZCy68/xIJQmfXx8fN6PrMX2YkAIsQd44vpbr2itT6xPWD4+64cdtLGD9n27nlepMP3yEeZOnifQ0oRbLNGwa3kPL1WpMP/6mwjTpDI+Qfr5j62YSSq89Sa1iTFkJErs8acRZv2fa92+wkArTf7YEdypcUoXziJjUSL9B28ba3l0jPKVKzidnQS7u2j8xEcQhoE0F74VLBlzFDYXlSeT4ecRxRm+PniNDIoUElGagUgT5WyR6YtjRJriNHS+e7tRfXx8fN7v3HFNQQjxVeCPgKbrv/5QCPGP1yswH5/3C8UrQ5RGRqlOZajNZdGeQpXLy58sJcKyUJUK0nFghb4vrTW1mSlkJIYq5FHV6o1j4b37ELbEDJpYqSResYARioBa8Barjo2SO3KY6sTYwjU9j9yxt1CVCvkTb6MqFfAU80feYu6NY6hK9caYo0f+zQ/4wtdeQym9UJ4UC+VJwo3QdpCUFqiW/fXXwNWfnGX6whhXXzpDJVe6D5+uj4+Pz4eDtZQsfxV4WGtdABBC/Cb14eL/53oE5uPzIKCVWrUXyggHMcNhwhs6CPf1oqeGmB26SHhPP4GurkXnSssi8cQjuHPzWKnkio34QgjCe/ZTuniO4NYdGKGbPLOqJWStiLAsjIYkyRc+h1YewU31UqGqVSkcP4J0HIpvHUHv2k/56hXstjashji1mRmMSBRhmuQuXWR0aJKEVNhNaQqp5hu7J48OXM+UhRJLypPK9Tgf/md4TeMYsTY2FivY4cCNjQrClAj5YM2i9PHx8XmQWYsgE4B302vv+ns+Ph9IKpNTZI8cxYhGaTh0EGkvX+YMdrbRGAwipEAol+xrryKCQUqn3sIMWhjplkXCy4xEMCO371/TnovQFUJbNmE2dSw6JpwAwrTQ1RpmPEFgy67Fx6WBDIVQ+TwyGqNw4jgy4FA8c4r4E0+jqlXMWAwtJL/6g3HeGtXsjkq++WRoUXkyWOvFGt8BLcEl5cnxMxkmTw3iVaqkt1duZOd6H9/G/MgMwYbIbQecuzWPwdMjSNOga1sr0vA3APj4+Hy4WYsg+z3gdSHEn19//Vngd+9/SD4+DwalK1cRpkUtk6GWmcVpWd4wVQiB05gEqIudZIrq1XMYpqZ45BVCBx7HbGpb071rgxepXnirfv19T2M2Lqw3IjHCjzyDrpQxEkv7tIRhEH34cbz5OYx4gvyJY9QmJzHCEYxwGDNeb+CfylU4Pp5HGXneLkTJBaOIm3ZP1uyrXDv2Jls/8hECnQ+THnodOh+GcCNucZzU5nYKE7O0HNyMHa1n8EzHxAw4aK1v+3yDp0c4//pVACzHpH3T8p+tj4+Pz4eFtTT1/wchxEvAY9QzY7+stX5r3SLz8XkPKF++SG1iFLtvC4H2NrITJzBCIcx47I7WS9sm9uhjVBobqF4+A1qh3NraA1Fevb9Ma7hp7qTWGl3MIYMhRDR+4z1vZhKkwEg0IoRAuzWMaAwZCBDd/xDu3CwiFGG65JGOGCs260u9UJ7cXYOGYLhuTvvlb0Nxut4rJgTNBzZhhhzaHt1Oom9BLI6dGmLo2FWkYbDtuT1Empb/3KRp3BBthulnx3x8fHzW5HKptT5KfXSSj8/7BjefR5XLWMnkbfvBvEKe8rlTaKEp/5ffJbTnAMknH0FGY4t2Ia6GEAKnd3O9X9+0sFo6lj1PK4UuZRFOCGEuLoda3VtAGgjTwkgvCJ7a5ZO4A2cRoSiB/R9F2A61sUHKJ14DAcG9j6OVpnT8DYSUhB5+ErMhiZFM3xh1tL87wTe/cmiJl9j07CjyjRP87sBVZoUmqQXV5zZSmSswfvg0sQ1tNGypl17tSJDWh5buJK0UKhimgecq3MrKQrRrWyt2wEQakqbu1B1/tj4+Pj4fVFb9KSOE+InW+nEhRA64uQ7xjjHsnaUOfHzukIETQ0xcHKe7v4vmvrsrZbnzWYRtoV2X2ZdeRtdcwtu2Et66vB0FgLBtRChE7eo5RCCEymdRhXnMRHLZ87XyoJyDQBQhjcXXsmycTTuXXXcjxstH8MYvIEMNWP3PI4wFDzFhWti925as8SaHIBRFFbLocgFhO+hKuZ4V05ra+BDu1CTac1GFEpWhaxjxBDOF6tJm/UiK/qZ+jk8ep7+pn8BkmXzRwA1tJlW8gOg6hNO2kdG/eAkrEiJz4iLR7laMwMqWIe27u0GDHbKJta3ssSYNSdtdfm19fHx8PoisKsi01o9f/z26/uH4fNgpFyoMHLtGOBnm4uFLNG5oREqJVgrlKoxVRhfVMhmmvvM93MlJgn0bCe/agXZdpGPjzs/fdq2QgmBvK2ZY4GXmEJaNEa+LCq0UFDNghxB2CK017vkfo2aGkYl2zO0fXfPoIjU9gAwnUYUMulJEhJY3Z9VeDZUZRwTCWH17qJ47gtnai4jUzxeOg6oUEbEEtdFBqLlUx8aYKnokhkepjQzR8PSzS73EhODrz/7ODWf96swceXmF6Y3/kvSBDTidmwAIpBsoTWRwEtF6+fI2ZAZnyM/kaG3p9Bv1fXx8fNbAHddhhBC/qbX+H1d7z8fnXijO5pm+PMHUFcnmJzYjpcSr1hj80Qkqs3laHt5KQ2/LojVuNouXz2Ol0xQvXcXL5XHLZWqzc0jbJti3EW9sgGDn4nW6lEUX5xCxJoQVwBs5gxo8jqE1Tv8TGMkOxHWHfG/gDfT4WXDCmDtfAGmiMiMIJ4g3/BZGdz8isjYjVNm7F+/8y8iWzYjgyolm9/Jx3JFzYFg4+58n9OTPLjyD8qiePYaZbMTLzSG0iTJt/sFsHydyRXYKzW8NDVAcubh01JGTRH7jMzea9Z0vf5vm554EwAwFgXoavOWx3VTn81ixMOI2IqtaqjL45mUC8SBXD18g2Z32RZmPj4/PHbKW75bPLvOeP07J574y9vYQXbvaSLVE6NxR750qz+YpZ7LYkQBzF4cXne8WS0z9zV8z+Ue/z9Sf/QlWYwoz2YAZChHs6UYUJpAjb2BVR3HPv4rKzgCga2VqJ7+Le/aH1M6/XL+Yvv5LgLCcG2IMQGfHwYlCpQDVIsK0kR078AZ+gqCIvvbSss+jb2rIvxVZnMRwBKI4Bm5lxfN0pYAwLfBq4FYXHxQSQhGm5gsYsSSBg0+Q697KufjvEtz0b7nY9i2yDS00Jtrpb+rHEAb9Tf2kAql6k/7Q66Dc+u/FacxQ8IYYuxGnZRJIN2DYtx/LZNomwYYwxdkikaa470Pm4+PjswbupIfsN4B/CGwQQrx906Eo8NP1Csznw0mstYHcVJZYU4xQoj50O5CIEEhEqcwVaHl4YU6irtXIH36ZytHDkEjhjo1hxSI0ffpT9TFDxXkqx/4ONT+NLhcxA33o2nXh49XALYMdglK9lGl0bAfTAjOATCy2qZDdD6EG3kC2bodQvafMSLagGxsRwTRaVdBaLypbqrmr6IEfQbgZ2fvxRT1iACo7BoEYVHJQK4K1vG+X2bcfd+AUMpJACwNvegSZbEFIA69U4lfeCnJ0uMb+zhjferSVYMTGODIAQmGEBog//RBWMr2oPCmEqO+Y7Hy4Lsau21ncC9KQbH12F+X5IqFkZM0lXB8fH58PM3dSsvxj4G+BfwP885vez2mtM+sSlc+Hlo7+bpLdaayb5k0atkXPx/cv6SGrTY2j8nMENm2mOjJMcE8/RjiMDNQzPMoLgmkj42lEwsTasAeZqDeSi0AUo+8xdGYI2b6j/p5hYbZvXzYuo6ENo+GzN15rr4YefhERcKAygdz++XpjvapBdR7sBHriONgRyI1AaRoirYuv2fMI3tCbyNZdELxNA3wwir31EVRulsrR76I9F6t7J6KhhZE3XuHoUAAlixwb4kaz/v7mvRyfOk5/cz9N6W5QCvmNz5AafB3VtAfxS99GBkNL7CzuFeUpRs+MIG2T3gMbMJ01beT28fHx+dByJ03988A88MX1D8fng4xSCiHEbTMnQgjCyaUu9kJKDHuhwu5Oj1N5+6e4o9ewmzuIPfkMgY2bkTeVGWUwgnPgeXSlWBdlt+yENJo2QtPGe3ggjQynINaMCKXQWqEH/gaK4xDpgkQfeuQ1RCABgXc2B7hQmAA7imxoRza03/HtdK2C8hQZz6GxnEfMTJCwBane36ZoDy5u1n/+62TKGVKBVP3zLkyhh15HaBc58RbZ114i/swnQEqINOGVKwgpkauUJVdj/OwoM0MzeDVFvDlGU1/L6ot8fHx8fNbU1P/7wFe11nPXXyeAf6+1/pX1Cs7ng0N+OsfZH5zGsE22P7uTQGTlsTq34hULFI4cRiuPyIFHMKIx1NwUwjIJbuzF2riTwMYdy66VoSiEVt8grLWHnj0GbgGR2I+wbr9GGBay95Po3AAi1ouQBtotQXECHUgjCkPIzo9DwwYwHYSs/1NTwz+BmXNghpBbP4+wwis/98ww3tUjyIY2jA0HIdbIL51q5th4hf1dgj/+ez3Mj5+j6gwiuKlZP5hGakh7N/WvhRvRbQdg+A1qkc0oGcYrV5C2RXlyhszhYwjLpPHJh7Bi9WfX18chrTbL82bsiMPk5Slq5Rqbnth8x+t8fHx8PuyspZ6w+x0xBqC1nhVC7F2HmHw+gExemkB7mtJ8kfmxOQKbbp850Z6HOz2JsB3cuQyqkAPDoDo6RHDLDszWHtzJETAM7Laee4pNu3nU+PfQcycQwW5AIpqevCWeCjp7GqSJiG5HSBMRakKEmm6cI8wguukgInMKWh6ri7BbbToKU2BF0LXi9b6x2wiya3UPZm/sPLKlj5maxbHxEkoWODoEswTpePIX6C9994aXWCqQqs+V/P0XFnrDvvxtkBL5K39L+cpp3JJAVFym/vYHWOkkblVRmc5ghkPUZrNYsSiVuRxjL71FrVCm7am9hNvvrL/MDtmEkmGsoMX8eJaWza2rL/Lx8fHxWZMgk0KIhNZ6FkAIkVzjep/3CdVqjZmpOeINEULh4OoLVqBSqDBxfoxQMkyyK8XkpQnsoE20cXUv4fLl85QvnAUhsBIh1PBpSLVhph8BQIajhB59fsk6rTx05hjUcoj0wVUzXQB6/m104QoUzqIRiNSBpefkzqLnjgIKjBAi0rfstUSkFW2HEJGeZY/LridRY0eQ6R0QXGyToZUCr4rKTqEmzuMhyczlSMejCCdCbOoCqd6vUbQHCXm9C+XJ55aWJ2/dPUmkCaQk0FcfRD7xN9/HTDRQHh2nmi0xd/wcwjJJP3UIgMLwJIXhKbID45QzWTb94scJJFf/ujnhAOFkBOUqIqmF0vPwxQnmJrL07Ggnkgiteh0fHx+fDxtrEVT/HnhVCPFfrr/+eeB/uf8h+bzXvPT9I4yOTBGNhfn055/GWsYMdHp0Ds/1aOxIIFcoaV05fJH5sTm0p9n9mb3s/7mHkIbEsIxlz78ZVSohDANVLKAmpwls3wW1MlZqlUxNcRg9fQSq06ipnyC6P4eM7bht35o2wlAZBicFwRg63IN2s2BEb6xTtRzkToAwIPkY2itCbQ7sNELWNx/o6ix65G9Ae+jSCKLlo0vuJcLNGH0vLI3Bc/EuvIiaG0HNzyDSG/nSj+CtrMm+9kb+ZL/NvKjdKE9WrWsL5UkhSd8k7nQojVhl92R4Sx/5k2dxWpupFoaxGmJY8SjFgVFC7c2EWtO4pQqGZWIEHNxiBZYfWLCISCrC3k/vxa26RBvrYjiXKXDyx+cxLIPsdJ5HP7u2xHo2m8eyTILBOy9z+/j4+LzfWMtw8W8IId4EPkLdL/JzWusz6xaZz3uC1pqZqTlisTD5XIlqpbZEkE2PzHL4r0+gNOx6vI8Nu5af1SgNifIWGvmtwPIN49p1yb99HF0pEd7VjxGJEty8DSEk2BbMXoNiDqOl+6Y4FSgXYdwyxscMgptDZw6DFUaPCnDSEFi5RCpiO9HJA+AVEVYDev4neKqECG3BiNQzSsKy0bGdoF20MFGTfweqAE4zRvpj9Zi8Cro8BsIEr7ri/VTmEnr0MDT0ItsfrT9nJYvOjkGkEcYvMTWf50z4zwg2DnC61M1U/k9o7OqnP7mD47NnFsqTUC9RFqfRToLCW2/gzs4Qev5r2FF7xd2Tkb5ewj1dCNN2ajMLAAAgAElEQVQg0DmMcl3MSJhAS13YBVJxNv/yp5g+fgknHiHUvPIu0FsJNSzOgJmWgTQNahUXJ7Ty2KXluHTxGi/96HVs2+LTP/MxGhL+pDYfH58PJmstOY4BbwABIC2EeFJr/fL9D8vnvUIIwRMf3c/J45fYtmsj4cjSkmW1XENrkIagXFjZ0HTDoT7ibQ0EY6EbnmK3oms15l78DqWTx7G6N2KEQoT37EcGQ4R2771+ziZ0MYeIvrNTsYYe/g6UJtBNjyETCw39ItAEbc+iq8Og86AVSButqqjyZZABpNNdF0HXkdJAtHwOXRkHaaBzb4IRheooUBdkMtSHKg8DElW+gJ57BUJbkXJ2wX+smgFpgluA0GIfs0XPPHoYzCB6+gyktqOcBNM1h0SsDZEdw9z/c9iWhTH0H+peYsEBDLOAlEG+/sIfLipP6loV9bWPIadPoVv2Umv/DYxonMqVi9iPPbNiDADCrGcqI70dBP/+51A1Fyu68HUKpuJ0fnT/ba9xJwSjAQ59ejeF+RLp9jsXdgDDw+M4jk2xWGJ2dt4XZD4+Ph9Y1rLL8teArwIdwHHgEHCYesbM5wNEe2cz7Z0rD35u7k6x5WAPtYrLxj2dK55nBW1atqwsTADc7Bxebg5qFapXzhJqdqidK2G0b0ZEGuvZNctBxOt2Ftoro8uTUBqvlxjnTsJNgkxrhTYq6FQ3ujKOiHajdRldGkaVr6B1DYECZ8OiMqYwwwhzI1p7iNoUVCcQkYXSmrBTyOafRVcnYPKv0XiI3FHo/ic3XUcjAo1AGszwTTFp9OQbMHsOmg5CQy966jQimESZYb74269ybHiYvR2dfOtXnsGwbBq1XuQllgrWs2G3lifdodOYUyfrzzT+FuYGjVfIE9y++7af+60YAQcj4Kx+IuBWakycG8GwTJq2tN3ReKR4Oko8vfZxuDt3bmZifJqOVAMtrfdmXOvj4+PzILOWDNlXgYPAa1rrZ4QQW4F/tT5h+awHSilGhiYwLZPWtrv/4WaYBlsO9NyXmIxIDOFVkKZX33BYGKd67DWMgSasbc9gdD1041xdmUGPfgftVUDaUJ6A9C0N+KoC1RG00wYqg7CSaHcahIXWFXRtkFpJYkqBYW9YEo8QBkbs4LKxCiHBbEDgoaWFNoKo2R8iVA4R24+IbkEjQQpEpHdhoVuA6bfQwUb02E+Z6fhFGpPbEE6UyYLHKfWbBDbWS5PTpT+h2WJ5LzG4UZ58pxQp4m140T6M3CV00x4iT38W7dbqpq/rxMiJa1x+5TxCgxbQum35kvX9IN2Y5Be+uLTnzsfHx+eDxloEWVlrXb7eD+Rorc8JIbasW2Q+950zpy7z+qsnAPjEp5+krb1plRWrUy1WqJWqhBLhRX5VXrVGcXQKKxIikG5Ycb10HMK791CLO1CZR3iVup9XJI3KXFskyFRpAl0aA6HR4Q7QOahdQpSakcGe6xcMgJVCVV8DK4DERTq9YATRuoZnSKSVRruzcEs7k9YV0B5CrixmhBFENP4sjP4WlAfROoUuXkArgbBTiNjWpRsIjCAEW9DFcX7xh10cG3+J/d0JvvmVQxhmFiM4sKg0CfUy8a3ZsOXsLMxUM96vfAcvN4nRvhVhGAjr3sxdV2PkxBBDx65RmC2CZdLQmiTY4O+c9PHx8bkX1iLIhoUQDcBfAN8XQswCo+sTls96UCpVkFLieR7VSu2er1ctVDjzt29RK1Zp291Fe3/PjWMzx86RvzaKMA3anz2EHV/svq+1Rs+NgxDYfXswwjG0E0QGAuiRY1CdQ3YuzlQJw0C7Y6AqCJFBSwW6hq5Ow3VBJoSA4EYMUQRpI61uhFkvlRmhHWCYaJVFOottK5TKUau8jRAKafQhZQAhgwixdGefNMPoyA60kYTSRVRlHio5pBFASAuC9YyRLs+g505DqB3R8ykymRmOjr+JEnmODuhlxxy9U5pclpuGgeuh1yA/iYi1YCQaIbH2jKf2FLVcATMSQpoGylN4lSpm0LntrtRwKkKkOY4ZcjBsk1K25AsyHx8fn3vkjgSZqH93/m+vG8P+SyHEj4A48N31DM7n/rJz9yY81yMQtOnsvveRNpVCmVqxih12yI7N0d6/cExVawjTQCt1w/H9ZryJK7jn6rPpzR1PY/VsWziY+OSy9xNWFJHYU7ec8LIgFEgHGd606DzDagZvEnCR9kI5TQgDM7D8rEqtS4CLxsSrnkYJE4SDFTiAEIszTsKMIiP9KExAo70yVCch2LX4GUdfZCZXIm2fQ2z8AqlkI+m+r1OQl28/5ujGh7i4PHnDbX/kDbzwRrzxSZzY3X0dtdZMvfoWpfEZnMYEjY/2M/SDY2SvjJLa2Uv7U/0rrt30zA7sSICZoWnSPc3Emv1Gex8fH5975Y4EmdZaCyH+Ath//fVL6xGMEOJ54D8CBvA7Wut/ux73+bASDDocemwPAMV8GWnUxdndEk5FadrSSn4qR8f+3kXHUvu2kr00jB2P4NyyM04rD12YW3ijVr6zGzqtiNTTCK+MlhZ4WZTp4qlZDB0DNJ43iNZ5pNOL0hO4ahBT9CLE7RvWpUwgZQpNDS08hLBRqohbfhvwMJ1tCLnQlC5DfQgzgXK/B2YNQnFEdDcE6psYlNJ88a+DHJtS7EvH+NY/NJitzFIxryD0wpijlAxCbpxUOL1UjC3jtq8+9w3Kr/4VOtwEU2PYG7YjzLX7M2vPozSRwU7EqEzPUp3PM3n0PF61Rn54msb9W9AaDNvEdBYL0lAizLaPr23TgI+Pj4/P7VnLd/LXhBAHtdZH1iMQIYQB/N/As8AwcEQI8Ve+19n9Z3Rgilf/7iSGKXnmMwdoSC0d5r0SxUwewzJwokGkIel+eNOy51mREKn+pbMMtVfDPf13qPkJMB2M1m0YTT1Lz6tOoWvziEAHwqiXDYUQiNDCueXcd1DVIahaOJEXEDKA540jpU3NPYeUQTQKz5tCyjaEKAIKiC4pyQlhYTk7AfC8OZQ7gBBBtDsBwsarXsMM7Fq8xk4h08+CKtfFolj45zSVL3Pa/h2Cfdeb9cufoCmaor+p/8aYo6STxD35l+jiHMIOYfZ/DmFcFz83lSdvdtuXDWmMTQepXDyNns9SOPwDQg89hXTWZpoqTZPEns1kz12jYecmAqk4TiJKfmiCcFsjmYujTJwZxrAtNj2/Fyd69xMbfHx8fHxWZy2C7BngvxZCDAAF6uawWmt9v/6r/BBwSWt9BUAI8S3gZwBfkN1nxocymJZBtVJjbjp7x4Js6sIog69fwjAlm5/rJ5S8cyH3DrqcQ+emkbEmdLWEtXHf0nPcHGr6RbSqIgIdGOmljve16lVc9zJCa4QEtEYI53pmq4oUKTQFII8WkyiVR4saAoEUbdQnfy2PYTRgGA1olcf1MnWrDKOhbkaLQgiz3gNXHqybyYY2orXBdL5COmIjhMAwC0ua9YUILhpzhNZQKyOsALgVUB68I8jCjdD5MHrodXRyG5Xjr2Ftewgz1UJgSz9uJgNuDS+fRRVyaxZkALFN3cQ2LZjtbvv7zzF7bohgU5zpy1MUZvK45RrF6ewSQebWPKQhVpzS8G6Sy+WwLItAwHfy9/Hxef+yqiATQvyB1vpLwNeAP1/HWNqBoZteDwMPLxPPrwO/DtDV1XXrYZ87YMO2dsaHZ4jGQzR33KaJ/BYKUzkMy8Ct1KjkSnclyEQwjkx1oWaHMXoXvrxaVdH5iyAdsJOo2jxUh9C1CWTiYYSxcC+tXZQ3imHvwauexwocrPeNAZa1A6UrCCy01iguIYiimQFtgxBovEUxeWoGpacRJJHCBARCxBEyghk8VHfnx8bLvoL2ssjwPiQmevYngEC5eb74rQrHRobZlw7wzV87QCrUvrqPmBAYWz6KmjiPCEQR5k1lVSHgy99GjV2gfOYthJTULh7HTNXndzobtlA++SZmUytGbG1mqythR0M0H6xvnJ4dnSdzbQrTsajcYv47cXWKsy9fINwQov+5nStOYHg3OH/+Aj/84Y8JBAJ8/vOfJRbz+9l8fHzen9xJhmy/EKIb+GXg96lnxtaD5a6rl7yh9deoi0MOHDiw5LjP6jSkInzyC4+ueV0wHmDs2DzJvhaiLStbWdwOIQ2M7l0Iaw6hp9FqI0Ia6Owp9PwJ0CCbP4YIdaGli7Di6FpmkSADA8NMgzeFGX4c09p60zETGEVTRAsLSQJNBk0EKRwEDvKm7JjWHkoNAw6ePo+rBAKJaW7GMFIIeT0zVJtCe3MIGUGVrzDj9pLUgK4yNZ/ltP6PBDcOcLrYzdQwtG7pWLlZ/yZkOI185ZeW9IrVD0pkYw8ydBFVzGP2LBjgGg1pnP5HsOIJhGni5vOULl7EjMex29qZP3YCVSoTP7gXKxalOpejMjNHoDmFFVl9R2S4MU7Lrm5AYN3SZzh8ZhQn5JCbzpPLFEi23d3fhfvB1atXCQaDFAoFZmYyviDz8fF533Inguz/pb6bcgNwlMXCSV9//34wDNxs+96Bb6vxwFDJlZh++xrx5giGVksavVdDaw1a1cXX+GGozkFxDKLdEGnnxl8roQGB0fAQaq4G0kFYi7N49ZLgJgyzB7BuETsuULlerqyCTIO2MWQG8IA2Fv8VlvVeMV0EbSPwrl/PXfwARhxhxPHcPF/6zwZHh95mf0cLf/jcGUTx8EJ5MjSAEY3Xr3yrj9hyrNArBqAqJWqXTyFTbditPchYXUhqzyX32suofA4r1Ujk0BMUTp6klpmlPDhIoFShMjaJsC2Kl68R2bGV8ZfeRFVrWNEwbc89eltbC4DUhqYbDvyJ7sXP0L61tZ4hS4SIJN5bu4v+/j1873vfp7OzndbWe9857OPj4/Nesaog01r/J+A/CSH+H631b6xjLEeATUKIXmAE+ALwi+t4vw8sM5PzvP7SKeKJCA89tWPJcPC7QUqBNCVu1cV0LGrZHNXMHE5jCjN8+x/KWrmoK99HZ0eRXY9BqBmRHwbDAaue+RKxnWCE6g78gXaEEMj0p6gLprow0NrFU9MILKRMrrBz0kaQQDMH1HdFCqGAeeqbd2eALkBePyYw5EY0ZQxpotQkIJBysQgR0saIPUkmV+TY0I/rXmLDEWZrcdKOx75wjBPFefYkN5BueWrlD+MmKwutPDDDiM6HFzJk4QU/MXfgHO7oFVAeRqIJEa8LU12roQsFjEgUd34WrRQyEERVJ5CWhZVoQNo22nWxUwnQGu0ppGmiau5Kkd3yvJJk7/LGwS0bm0h1JDFMeUdjk9aTlpYWvvzlL72nMfj4+PjcD+74J/U6izG01q4Q4h8B36P+k/PrWuvT63nPDypnjl2hUq4xeHmc3s1ttHXd+wxAKxyg52P9VOaLhNIRpl96Da9cwYqFaXr2ySUZF628+mBvrwpuCZ0dhkAKPX4cueO/gkgnWGGEXS8xCWkhoosHP9y8axHAU2N43ijgYrIdw1jaO1WfJNF8XZTlEARRVIA89R2WIQS3+IoJA0EYBEi5eDanUu8YuNoIIUlFgqRu9hJL/DeIqsXvHPonzGGRavnoso3u3shRmLqAfOO3EOMn0R0HqfX/A3Q5i/Hx/w0z3rjgN/YOThCtFEJKhL0gPmUgSHD7bqojgzhbNpI/dQYZChF76CBmOIzZ0ICVSKBdFzNaF7xNj++lNDZFpLv1xtfKrdYwLHPVbNlyWM69i3wfHx8fnwUeqO+qWuvvAN95r+N4v9PckWRkcIpA0CYaD6++4A4JJqMEk1FUpYr2PKRt1TMuWi8SEu7wadzLb0BxDCPRiug6iAg1oYtT0HawnvEKt675/lqD0jN1E1dpob0kgkC9AV+EqDun1BHYQBKNh0Sj6EOrufp4JGYwjNU3Myil+cL1wd/7Ojr51lceWeIlNh/bQzqYxgBWkr26mkePHgdpwtiJulAdfgPd8ylEQxdq6gq071iyzurcjBGOg2mhPU1leAC7uQ1hWTg9G3B6NpA9epzyyAja80g89ghmQ72fywgu3nEYbEoSbFronRs/eY2xY1cozhZIbGih98ntBBtW/rsyfm2KgVOjdGxpoX3TyoPnfXx8fHzujgdKkPncHzbv7Ka5LYXlmITC98cKwC2UEKaB4dhIxyb5yD4qY5MEu9oXzbAE8AZPIGwLNTwIqU6YG0RufQG8CsK6+54jQzbjeZeRsgnULFpG0AwjSCBIYIiFXbdKF1CMIsQ8mjDoAFqNoqiiuIzrdmHKHgwZX/F+U/nyjcHfp0rdTOX/ZImXWCqwvLDT1RzUSqA0hJKIUApdmIbGrTB9AToOIho34w2dRCR7UcUsMlTPFupaFZXPIqNxjHQr3vws+dd/BMrD695IaNeCVYgMOGjXq2fR7tAgNj85z+UXT+JEA2Quj2M3RJg8M0z3o8uPpi1mS/zkT48Sb4xyevIijZ1J7PdwZ6WPj4/PB5E7FmRCiO23mrQKIZ7WWv/4vkflc8/E78KSYiXy10aZPnIaw7Fo+chD9YHhTWkCTcs3rBstW3CH3kYke9BoZMtOhDTgNkO77wQpbSxzG0pNoEUrUEVRAu1gsCAKlZrG4xJQRGuFFA5Qo74Hxatn2HQBj2sYcs9N6xbKk3izSD29yEtM6hGE6FvkJbZcuU+XMqgLf454+f9CZAYQXYfg534Pdfq7eAf/MWbbTrQH5DIoJwETwxS/+9sEnvgCRqqV0tGXULlZRCyF1bsDlcvWs2qGgfYW94CFt27GSjQgHAcrubr9RbVQ5vIP3kbVakydmyKYjiGFILLCrlmtNUe/f4bJwQyjl6bY88xWDMtY9lwfHx8fn7tnLRmy/yyE+APg3wGB678fAB5Zj8B8HhyKo1MYARuvVKE2n1/VNsHo3YfRvg2sQL2UWZ1DZU4hwm0IJ4k3dxw9+X0I92G0voCQFtrLg3YRZl0YeO4UqnYFYaQxrA03hI9hNGMYzWit8dRltAIYR+kOtKwhhHW9oV8DRcChvhOzGUO2gBrGVTVgCuVV0EYFIZxF5cm9bc384c/PEReafckuTswNsifRQSpYFzyr7p6sZqEwg8hcQ2iFHnod78gf442dRcRbcKs1tKvRtTJ6fhY1PYnR0kvt7GHkwy+gcnOIUJzq1QtUJ6ZBSqzmdmQkSqB38VB0YRg4bauXf5WnqObLvOMkE21Pk97awYaP7EZ7ikB8+a+p1ppKvsKm/d1kZ/Ls+/h2jPe4kd/Hx8fng8haBNnDwG8Cr1LfvvZHwGPrEZTPg0VsczdTh+cINCVx0qt7TgkhwKn/gNfKQw9+G+0WwQyiez6PnvgO1GahdBUV24EMNuJlX6nbYoT3YgS68WoXERh4tatIowlhRJfeA5O6PYVCU1w4RpL6bsoGoAFJLwIHJEi5Ha0VWuWp7x2pC5Sby5OnS91M579EozPHbx36CvOlWZLxnUh7hfKkW0aPvwqqhmh9DCJt0LoP0n3omcvQvh9tOohgDJ2fQfQ+CdPDCNPB2vk0lZOv4VY9nEgC6QSwt+3DHbqM2dGHm81SvnKF6myewKZt1M5ewoxFCG3oueNmfK01Az89x+zAFNHWBL1Pbac4kyfR04QTuX1JW0rJ3me3M3hmjF1PbyaavH89iT4+Pj4+C6xFkNWAEhCkniG7quuzZHw+4ATSDXR++im05y3eBXhH6PpIIGnVRVllEuwUlIfBjCHMMNor1H24hAXuHNCNlEnc6nm0msWtxrACexFicd+SFM0IhgHz+rF6KU3KJKj9QAEh7CX2GJbZR6U2zrXZMpvSFlLPIWV2UXlSiCzU5pHZK6RCfYjiRXR0G8JYmknS2avozGmoVsBuQLY8jNH7MfiNj9ywuDDHz+DFWpGNmzDadqAyI6AVSglkKImqlhGxJrTWGPFGzOZOUIri6RNURifrDfxvHMHq2ohWHlZDHDu18vinRfF5irnBacKNMfLjc/Q8vpVY2+03NUyPznLt1ChtfY20bWgi9R6av/r4+Ph8GFiLIDsC/CVwEEgBvyWE+Dmt9c+tS2Q+DxSV0TFyx44hgwHseBBhGAS371kyQ1ErD+/Mn6JnLiK3fQ6jaQd0fRI99SbkTsL49xHhHkTqMbCSyGBbfWal0wmqggxuBMCwN6O8GTAbQZfQqgAyDlTQ2kAIECKAaWxE6QyCKJ53BUQYQ7YgpQks37DvKYun/vCfXreu6OGHn/l7xIwQ+5t2c3z6JP3N/TTFdyLKV1HlWahMgQ2wfKlOWBHEy78LMwPQ1g+/+oO6276UN0xejdYdGK03Oe2nOuqf1+QwmBbStBFSUjp3msqVi8hQmOhjTxHe+xDCClIeGMTZuAmvXEMYBtK686Z6aRq07e1l4tQgLbu6sAL2bc9XSvHm989imJLxgRmSLQ0EQrdf4+Pj4+Nzb6xFkP2q1vrN638eB35GCOE7Mr4LaK05c/wKEyOz7D7YR7r53c9WlK5eRQYCVAavokMmMhTAmxkhsGEzVs+2etM+oDOXUZe+C4D3k/8V8dT/hIi2Qekq5M6B3oiw48jYczeuLaSNET1447VWJVRtHGk0odQYwoghZBjPvYjnjqLUHNJoxrS2YhitSN2C651H6xJaZQCFFDGkrJc5F3uJCS5nJijIywihKMhrXB59jc3JRn77I/+aeR0h6STQhQto2YAIbkcUBkBUQJXBWFriE8JBZwYRWsHY24vc9lfDSLfh7DwErovZ1kv5pz/GCIfx8nlUsYjZ4BDetZvQzl1oz6M6MYUMBjBj0dUvfhPNOzpp3tG5+onUy8HhaIDZ6RyhiIPpN/H7+Pj4rDtrMYZ9UwiRADZRL1kCDKxLVD6LmJvJ8faRiwRCDm+8fJpP/vy707qnPQ9VrWEEAwS6u8i9dRwzkUQaLt70CCIeonapBJYNU6ehmke0bQUrhJ4+C/FW1JW/QvT9DGBAeBPoGqSfuO193eJRtJdDCAMz/DhCBgCN502hsVA6h6S5Lr6MRN0MliBKZ1HuFKqWwTAimPZOIL7ES2xTqoWw2khBXibkdbIxaiBkBEMYpANpVOEazL6OgLoxa7CzHrdXBYtFbvsIAeFGROehZd32V0NIidW2MH0ssHUnpdMncLp6MGILGT4hBMI0CbSv3b8NYPj0CJNXJuna00m6a/kNCZVSlcJ8iXg6wkOf2ElmPEs8HfEFmY+Pj8+7wFpsL34N+Cr1GZPHgUPAYeAj6xOazzs4QRsn4JCbKxBqC1Krulj23VnIaaXQmlVH3qhqjZlXXqc2nyO2cwuRzRuwm5oQhoHKZ6kNXsAbu4xG4Z3/AXrsbUSsGcOJYjzy3+Od+SZ6/jQ6cxZy+5HpA+jSBFhhmD+JNhyEs0Ifk1bU5016KDcDKoO0OjCMTlz3KlI2gpBIYyELZRidaK+Aci+jdBFBB1rXmC4s9hKbzH6D5lCVn3zpj7g8fZZeZwrhZTCsJoRVFypaK3R1BrQLRiO6loX0QwinsS7Gfv8F9OBr0LwNvvxXiGCqPhT8ZpF2l9jNrdjNdye6VqJcqHDlyP/P3p1HSXaedZ7/vvfGHpH7XlmZWfu+q0oq7ZYsWZJlyxsG3Bg8No2H6emBbs6cA4xPN8wwTA9Nn545QzMMBgx0YxsaaLzIRuANay1JtUu175VZWZX7Hnvcd/6IrCWrIvfIjKyq3+ecOpURcePGExkl5ZPv+9znuUC4PMTJV0/z6M/c2a4jncrw6jcPMToUp2VNA7s/uImmlRMTt0wmy/H3zgKwaeuaoozkEhGRvNlcv/7L5OvHLllrnwJ2Aj0LEpVMEImGeOalPcTCUQavjfD6d4/kh3XPUmokwfvfOsDhv9nHaM/wlMdmR0bJDA3jK48Sv9QBgBMIYFwXt6KK4OY9BHc+SWjnk5hACBOtxo704FS34Favwrf1s/jqN2MaH8LJxnFqduPU7sGMnoVUD7b3rUlf2xfZhRtYhRPaiU2+j810k4sfwPU1Eww9Tij8HIHAnhtbkgDGOBhccGrpH4tinFocpxrXNzZepD9erJ/4Idnh13Hi77C+cSfB6ufw1/4kTsVTGCd841xkkhDvgeFzGDeA8dL5JCbei23fh7E56DqOd/pb+QDG68Vsaoxs+1Fy/Vdm/fksFH/AR7g8RHwwTkV9ecGrM9OJDGPDCcoqo/R2DhY8z9lTlznwznH2v32cc6cvL3TYIiL3ldn8ipu01ibzswJN0Fp70hhTuLW3FF0oHAQPqmrL6esa4sq5Hiqqo7NqQzB8bZD+Sz0Mt/eS7B3moV94BneSlTZfRRnBhlrSPf1U7NqKzWbxUkmcSDT/A90YbGIYOzaEr3UnuVgtbv0q3OZNAJjyFmh7HhPvxjQ+mD+pGwI3ALkExFYVfF0A48Zww+uwNouXDGBtAuOUAebGoPH8Ctrtz2vhZ79ykUOdsKuph7/8YoqacA0PNOzkcM9hdtRvo9pnMG4Umx0iP9vSnTBy6fqZnUAdNpuBkUvYnA9TNV7jFq2D5t3Yjnehug3KJq5mZc68gR3uwWBxdr2ECU8+CeBWiStXSV5qJ7xqBaHGmdWfzZTrd9n+wjbiQwnKago3DI5WhNmwewWd53vY/sS6gscEgr78LwLGzHmFVkRECpvN/1U7jDGVwDeA7xljBoDOhQlLbhcI+tnx2DrOvX+FSCTEge8fx+d3efzjOymf5Ifsrcb6Rrj41mk69p+jrK4MDIz1jlC+rHB3d8fno+bRB7GeB7kcI2/+mNzwMMHVa4ls3IId6iV79mB+zmJFPcFdH53wfGMcTP0DE+/zl0PzxyE7AqHGaWM2xocvthebGwQTAy9BLt0FqUuY8Bqc4MQi9d644Ti/T3i8l1h3by1Njbv5yvM3O+t7qUuQvIyJbbkjEbsh0oqtfghGvoFzcD/0fQNa3ob/7rvgOJjPv4LtPw2Oi1M+MQaDcyNpKZQ0FuKl0gztP4QbDDH07kGCLzyL8RW3bisQDhAIT36lpDGGDbtWsGHXikmPWbl6OSECVFcAACAASURBVP7xqzuXt2qepYhIMc2mqP8T41/+pjHmR+R7CryyIFFJQas2NrNqYzNvfPMwvaMpTr59nkw8zWOf3EVt89Rjc/oudOML+Gna2oaDR0VTNaHK6UcZGcchNzpCbmQYt6KczNUO2LiF7OgA2YFu3Gg5TuPKGb8H4y8Hf3nBx6zNYQf3Q7oHU/kQJliHcSKAizfwT+QyvdjcME5kLemB17g4EmBN3Up8FTswxr2xPXlj1FEwv617a2d9N7QCG2yB9AA2l8K4wTviMMbBqdiEdV+Hvo58t/2Od29ePek4mNoNBd+Db90j5HovYqLVmPDN9+mlUsSPHMBmUkS278aNleFlszg+H8Z18UWipIeGscYlE08QKC/e6KticRyH1hXFrW8TEZG8Oc1Asdb+2Fr7LWttutgByfS2Pb6WcCxE7bJKYpVhOs92T/ucqtZarLVUr6xn52efYMNHHiAQuTMZKcSJlRFobsVLJAit24SXGCVz+jAmVIH1R/Gt2jHft5SX7oPR09hcCjt44Ob9uVHIDmHcavASZDNDPPmdr/HpN36Lx/72N8km86WMNeEadtVtwDUOu+rWU1eRH8JtU914va+SGzmJN3wSr/M72M5vYa99F+sV/idsHD9m7Wdg2Xas44PGreR6T2KTheurbjwvGMXXvBm38ratzO5rZLqukhsZIXX5AsNHj9H97X9g6NB74DpUPfYQxKpIJqHzB++SHUvM4xspIiJ3m2lXyIwxI1yfL3PbQ4C11hZe7pAFER9JkkqkeeQj2zjwj8dIJ7M0r51++6isvoJtn3wQY8ykdWOTMY5DdMfN7UcvMQYYTCiKU16N8c28SelUvPQwdvQCBCowNU/cvN8ppzfbRI2vB7fmY5wfShF32/N9xNzLnBseZUMYbG6UP1q3g4HUOqor1uI4LtZabM+PsBi48g1ssBHGLmJrH8OkB/P1bM74Vt54OwsbiOC1/wi8LM7PfgOGr5G79CoMnMdLjeCuf3HW780tK8f4/eDlcMrKie8/RqCmhsTFy5RtWocbDmF9fnyxCLlUmlw6gy8aJpvKkByOE6mK4RR5G1NERJaOaX8yW2tn14FSFkxyLMUb3zhEKp5m+fpGHvuJ3VjPzrhPlC9YnMTJCUcJ7XwSb6gPt6G14DG5nrN4V4/jNG7ErV877TmtzWF63oRAC+TGIJa/XsTzLJ/543c42NHJzuUtfP2zIdak9xPNtTHmXiLqrWZd3fgFAuk+nFQ3NZ4H6V4gXxtl3Sgkr8HIRUgMgi8MeFC5DXzjv0+Mt7Og/W1o3AIP/hQ4PuzgGUzlWnB9mGwKAndu83pjw3gj/TiV9TihwtvAvsoqyp94BuvlcGNlhHtHSFy8TKhlGSaQTwhrH9jE4PFzhGorCVSWkUtnOfXKYVIjcSpb61j1xKZpv48iInJ30qVSd5FUIkM6kSEcDTLcO4LrOtfHNy46t6oetyp/NaD1PLyBLow/gFNeg81l8M6/CcEyvAtv4VS3YnzBfJNVZ7Jdcgd8UUyqH4K1GCefPN4+9Lun8+dpCDm89oGPcT70IOuaNuM4DjY9iB3tgNBKDDmoutk819R/EIZPYxMD+Qav/krcts9OfPl4bz4Z87Jw7T1IfwyCMYg0YEKVuOtfgtQwVCyf8DSbzZA88ENsOokTqyT00HOTDv12IjeTtfIdWyjbtA4TCNw4PlhVRsOjN7d/s6kMqZEEofIII1en3ioVEZG722y2LAv9lNGW5SIqr4myfk8bvZ1DrN+zotTh3JC9fILM2cPgOIQeeBZTVo2JVGNHezDRWiwuuXOvYvvO4yzfhbts2x3nMMbAsufxEl30ZcupM/l/mncU6g8fwtoqfOEm1jeswjj5qxrtlb/HZMfA+jHNL2EiN69+NG44vxpmczB2GRtdg9d9GONGMNVrb3Tbt03boPMwNGzBbP0CxjGYYL5thYnWQrRAh3svh81mMP4ANp2c8ffMGIMJTl3DF4iFaNrexuClXtoeKdyKQkRE7g3asryLGGNYs7ONNTuLd870SBzH5+ILz6zAvxAvMQauD7IZbCaF4zi4G5/FxgcwkSrIJrC9ZyHWgNdxENOwGZMagkAM47vZisE6ET7ztasc7HiXXctb+PrPrqcqm2BXww6O9BxhR6yemrKV4A9jlr2EuTFX0ub/GAdjwphQ04SWFjY1DNkxTNUOqNiKPflfMD/6Pei7iG3di/ncd7A2R3bnZ/Gad8NYP27HQXxrJw6hyFw6RvbScXzL1uBbvSOfVAVCBLc9Rq6nA1/zqklXx+bCGEPT1jaatrYV7ZwiIrI0zWrLssAsS6y1rxY7KFkcQxevcfWtEzh+H23P7CRYObtWC14yvyLkX7llfNwRWDeAtRbjC2LK873GrOPDlC/DjlzFqd+Id/FNvO6zmGgN7oZnsd0nwcvSU7Z2wpijawefo37kCH9Uto6hB/411QOHMF4SKnbdkoyNd9Zf9hx29AIm0jKhlYVNDeOd+W+QS2Lqd2Dqd0FyFPou5ttZtL8zPvKoFhMsh0Q/VCzD67+AzWUwbn7rNN1+muQ//ClOVQM2k8S3fB2E8k15fbVN+GrVDkJEROZOsyzvUddOXaXz/Q4ql1XSsnMF/tCdBf1jV/txAz6yyTSpobEZJ2Q2myU7OMDo/rfAQtneR3EbVhF/90eY9ssE120jsPJmny7juLjrPwTZBPgjZPd/DROtJjPay9lTb7Li6gFMehhWPDhxezJ9EXIZTKqfmlwWs/qnIJfCBO/suWaCNYVnY2bHIBuHnAdjXRg3gLPhJ2H/f8V2HceMDwM3xuBs+Ci4Ibyha7hN228kYwBe5xmc2uXkuttxG1dBIITNZkld7cQJBPDV1pHtH8h/XaFdfBERmZ3ZrJBdn2W5z1r7lDFmA/C/LkxY96/uK/10dwzQuraR8lmMRbpVNp3l/FtnuHbqKkNXB9n64W3s+PgefLe1u6je0EKib5hodRnRxuoZnTvT38/QvrfJ9vfgj4ZwQkFSl86TOnuc9KkjBFauwR3s4/ae8MZxIJB/P86KvaQv7eep499kzHeRSGoZP4i1UdF1/pYxR9upW/FB7MXvY8pXYspbML4I+KZvZjtBuA7n7a/BtWPQvBtWfRQTbYRfePWOYeCOP4Sz6aNYL4dxJl4t4S5fjzc2jK9pJYFdz2Icl/iZEyROnshvU1bWEb90BSfgo/aZpwjUzOz7ebt0PE1iJEGsJoarNhciIvcNzbIskUw6y5F3zpBJZdm+dy2RaIhkPMWbf38U4zh0nOvmuc/snVNNkuNzyKSydBy5TCAaYKhziGwyc0dCFqoqY/VH9s7q3MkrnWAMJhDGy+XwR6KYSJTs0DC5ZIbkhQtEH39hynO4dau5TJix9/8PjPGIBzu5VP4k62tW8ZXtv3RjzJExBtv6gfE3FSDbcRRScdyWbZgC7Ses55E58Q/Y7tM4y3fi1rRhXD+m60R+S7Xz4IRu+8Tq8fo78dIJ3LrWGytitydjAP7mNfgaWsHx3bxSNJsFx+ClMwy/c4j45atYDNYfpumlD+H4Cv/nlUmm6TvbRbAsRFVb3c37U1kOvnyY5GiKulV1bP5A4WkAM5FOZ3j9hwfp7xvm8ad30tBU4IIEERFZMjTLskQ6LnZz6r1L+Hwu4WiQHXvXYRwH1+eSSWVxY8E5F4g7jkPrjjZGu4cY6R2mYX0jwbLQ9E8EMmMJnIAf11/4n0aoeRmp9g58lVVUPvIwbiyKl0qSOPQ2Xt0yAstaCvbiyuZynOvvYm1NI47jsLamkai3mjHnHFFvFRse/BRuVTPmljFHAMaXj9sb6CB38cB4smTxrX74jtfw+i/gHfk7rHHInX8Nb92HcFt34Wt5KN/SYnx78sbxg9dIH/0+XmIUU91KaMfTmODkK3C3XoAAEGhdSXpgGFwXf9IHnb34ohG8HOQSKZwyH9lUBmPADdzc/uw4cJ7+891Ya9nwwk5idfktzkwyTXI0RbgsxHDX8KRxzERP1wDtl7uIxUIcPXiGZ19UQiYispTNKCEz+czgl6y1g2iWZVFEYiFc1yGXy1Feld/KC4b8PPbiDga6h2hoKVAPNQvLt7fiuAY36GPZpuUzSu4GTrXTfegM/miYpoc3Er/aS7CqnNjy+hvH+KurqXnuWQCMm19JcoIhql76KZJnT+KEoxAMk+nvx1dVhTGGbC7Ho3/+6fHkazVvfO6v8bkub3zuryckaVNyA/mVqVwWAuHCx/hCWH8Y23sOa/xY40A2BZ97+Y7tSQA8D5tJk71yFjM8SMoXIvTAM9N+n64bOnqCVNcQxu8jtm4VxnXxLJStX4kvFmG0a4D2fzqK8bmseHoHoaqbNXrWs+CYCZ9LuDzMygdW0He5lxVTDPmeiYrKGJFoiPhYks3bp2/MKyIipTWjhMxaa40x3wAeGL/94wWN6h4wODBCLpujpq6y4OMNy6r50Cf2ksvlqG24eUxVXRlVdfPvNOIP+WnbvWpWzxlp78YfC5MZiXP1taPYTAZrofX5hwhU3Ewmridit3LCESJbd5EdHqb/x6/Rn8zSsmMT0bVrOdffxZhzLj/qyDnHuf4u1tctw+e6rK9bBoC1ltSZo2TbLxBYs4VA25qJ5y+vx7flecimMJXNBeN3y5sI9hzAdB/DiywjzScx5S14owM45fV3HG8qG3FX7yY7PIRT2YTNZWf1/cqNxXGCAWw6TdmGNVTtmTjTc7SjDxyHXCpDvHfoRkLWsns1keoYwbIw0dqbn7UxhrbtLbRtb2G+YmURPvqpD5BOZSivmFstooiILJ7ZbFnuM8bssda+u2DR3CO6u/p45eXXyWVzPP7UA6xZV7iPVHXdzK/Gs9bSe2UQ4xhqlxVO8uarevMKrr55jGhTDcbmSHQNYBwzYVXJeh7xq704fh/h+jsL1zNjY3zxaJb3Egm2X7rA3/zKGlY4QcLpNhKBS0Ryq1hb03jn+0slyVw4g1tZRer0Efwtq+7o6u+UTz6z01pL5tg/4e8+hsHDSXSCdUkffY1cfAQTqyGwahv+tptlj8ZxCKzagVNWhzfYjW/Z7BLYqj07GD1zgWBDDfj8XHv7RL6of8tKHL+PylUNDF3uxhcOEGu6+b3yBf00bFw+xZmLIxQKEArdfnmFiIgsRbNJyJ4C/ntjzCUgP106v3h2Z9v1+9zoSIJMJovf76O/dwiK0GS9/XQXh394Egw89MJWGtrmt6VZSKyphrWfyg/1ziZSjF3pIVAeJVB+c4Vl6PRl+g+fBOPQ9NTuO5KyoXAZp6v+hHDzJU4m2ugZfZzyoSG+Vf8FLmcTbNq0fcL2ZLqnBy+ZxF9fh1tVS26gB1/j8ilGLI3zPLy+S6TaOzDRMgItq8h2d+FWr8fpP4Wt34pbv5bslTNkr5zHbfGTPnMYt74ZJzyxvYevrhnqCq+6TcVfVUHVg/lVse7D5xg6fxXP8whWlVGxopFQVRnrPp6vdStmw1gREbn3zCYhm/rSObmhuaWetevaSCZTbNyyuijnTI4mx1eqPFLJdFHOORVfOEjFmjtXcXKJFMZx8XI5vHT2jmJ9XyCJG7nZS8z1jRFoaCBUUcE6r4xwy83tuMzAAENvvgWeR2j1amIPPIZNxDGRafqhjQ8CN5f34S9bTWLjv8atrMWpaiC1+X/CrawiuOsF/OkkNpvFFx8DXxATimL8QbJDg6Q7LuFvaMJfe+dW5lz4ozdndfpuWZVSIiYiIjMx44TMWnupUKd+4FLRo7rLBYMBnnh69x33x8eSHD9yjmhZhPWb26YvZL/Fis3NpJNZHNewbFVxkoi5qNiwAovFDQYI1FfdUaxfE6652UusYQc14Xz7iqqnnrrjXDaXy7ejcBxy8QTDh97LF8hv2jD1Ctn4IHBjc7jDZzE2iROO4dvxJDY5hgnF8q05gmGCmx/G1LaRPPU+/ra14PoY/vH3yY2M4MZiVL7wErl4gmT7FULLmvDPsn9Yon8E61kq1zQTKIvg+FzCtRWz/baKiMh9Tp36F9Hhd09x4UwHuZxHRVWMZcvrpn/SuEDIz5ZH10x/4G3GBsboOt9D9fIqKhvmnyj4wkFqd+b7Y53q6ZxQrH+27xob6pv5yvNfmdBLbDL+mhpiO3biJeLkEimS7Vfyvc2qqgi35lfnrLWQy2KSAzevkozWQctD2Pa3oWkXkcc/iVOWr6szkYl1eTaXI374IMbnEn//KE5lLcmLF/AScZxwFOtZhva9g815JC9fpubZD+IEZlZ3NXq1n4s/Oor1PFof20zFislr3ERERKaiTv0zMDIyykD/IA2NdQSDcx/CHQoHyGRy+HwOgcCsxojOibWWo987RiaZpePYFfZ+eg+B8NyLvKfqJRZKtRE91Y+tbcJxJvYSm4wxhvCK/AUPiUuXSVy8nO/FFh7vPZbNMrTvXaJv/Sv88TOY1r35FhaOA597GTPeymLKbUHHAcclNzaGGyvD8fkItK4iNzqKr7IS4/djfC5eMoUTCk5sizGN1EgCPIvjOKRG4jN+noiIyO3UqX8aqVSKb/7dK4yOjdHS0syLH5l5n6rbbXtgHTV1lYTCAWrr75zHuBCM4+DlPFy/M6d6pv6L3SSG4lSvaeADf/Uzd/QSe/1n/4offP07rF+5nNGOHrKJNP7ozJrQ3irU2oIbi2FcF39lfiUvNzxC5ur5fDJmc9j2txnd/yb+1nWEGuvzHfenkbhwieRgAoOl7LE9uOEwFY9/gExPN4HmZhzXpfLhvaS6ewjU1OD475z5OZmKtnr6z19jtGuIUI22KUVEZO7UqX8aqVSasXiCWCxGX1//vM7l87m0rWoqUmTTM8aw8Yl19HX0U9daW3DA+GSyuRzvnTtH+q0rOMblxNWOgr3E/H4/O7duYeBkO+WtDfjmuAJnjLlj/qNbFsOtaSETWYs/foZMbD1j10bh6gHqnv0AbmSSBrFALpHECfhJXenEX1lJdnQMm/OA/Fapv+bmVapuNEpkZZRU/xBd39tHsKaCmu3rMe70NX6jA0msP8DFt86w9RN7pr86VEREpIDZFPV/YvzL+6pTf3l5GU88uZcLFy6zY8eWUoczK4Pdwxz4+/fBQPXymRer39pZP5hawe8Ff5mVkVtHHa2e0EusYecaaje34fjzo4Icx8Gd65as593oqu/4/VQ/+Sj2kX/CZEcYefc0DOQ74zNF4jN87DSjJ8/hr6kktm4lo4ePEmyox1c59SpW/5Ez5OIphvs7iC5vKNhn7VbGGIxj8DKerqYUEZF5mdNPzfutU//GjWvZuPHuGz/Tf2UQm7NYLAOdQ1TWz6wR7a2d9VPBi7Cpmrbta3nj0clHHbkBP0NX+jn/4+O4fpd1H9pOqGLyuZAFjbezuDF38nMvY1wX44aBMJV7y0le68JfWYEbmryWb+xiO/6qCtJ9A/hiW6j78HNTv2w2x+CZDlIjCXKjCXyxML7I9NuubsDH2me2MnJtkIrlNQu+OpbNZslmc4QKvHdrrZJCEZG72GyusgwB/wJ4DLDA68AfWGuTCxSbzFP9ylo6Tl0DY6hfOXkj2akHf69m7+5tNxKw66OOChls78XxOWSSGeJ9I7NPyMbbWeBl83/Hexnpt4xcukb15pUYY+h7/yKOz0fD4zvxxwqfv2zDGoaPniDc3IgvOn0MI5e76Dl4GgtUrm6hdtvqGSVkANGaMqI18x91NZ3R0TivvPwqY2MJnnhqDytX5a9C9TyP1197h7NnL/LQ3p1s3nzPl3WKiNyTZrNC9p+BEeD3xm9/BvgvwKeLHZQUR6wywuM/tQeYvEFpUQZ/j6td08Rgey/hygixhhmMd7plexJjSNsYvmV7cDrfhZaHSOcinPiTvyKXStN76AzNT2zDZj0yyTiJrr5JE7LY6jaiK1tmvGJ1vVbMAKGaihknY4upr3eQoeFRYrEw505fvpGQjYyMcfLEOeobanln32ElZCIid6nZJGTrrbXbb7n9I2PMkWIHJMU13TbWTAZ/z1S0toxtn9qbb8o63fbZbduTwx/8U9rfOImJ/Rorv9BKuHklud5Bcqk0TsBHeniMyLJaRs534Pj9hGqmTviuJ2NeJsvQxWu4fpey1oaCSVpZSz3miW1YC2XjveG8bA7Hd+cQ9VKpq6+mpqaS0eHRCdMfotEwDY11dHf1sHFTEWZ0iYhIScwmITtkjNlrrd0HYIx5CHhjYcKShXD71iRwx/ZkocHft8qksgD4g4X/6cy4juq27clE+wWMmy+QT6TChI0hVFNBy3N7GTrTTtPj2wnXV9Py4mNgDG4gf8Wo9Tx6Dp0l3jNA/a51RG5rJzJwpoOeQ2cwgOPzESvQjNc4DmUt+aau2VSGY9/ax0jnAG2PrKdlz+yb8S6ESCTExz75QTzPw3VvJoo+n48XP/I08XiSsrLoFGcQEZGlbDYJ2UPAzxljLo/fbgVOGGPeQ0PGl7zJtiYdx5nx9uRQ9zCHXnkfgJ0vbKWibh61U+Pd9q+vkFVu3sLwwHHcoJ+ypvzVjcZxWP7UTpY/tfPG09zgxLYayf4RBk6344uG6D50lhXP7Zn4OtZiMHi5HKnRJNHx4nfreXQeOMdY1yBNu9dQ1phP5C7tO82FV08QjIXpePccTdva8AVn3i5kIRljJiRj1/l8PsrLp5n/KSIiS9psErLnFywKKTrPehPGF022NQnMeHuyv3OQnGdvfD2rhOy2ejGMyXfdH78vaAxrP/LgrN+nPxLCFw6SGUtS1nrn6KKqdS2A4eqBM3QeOEtqNMWy3WtIDIzSe+oKwViIqwfOUfZifvaoL+AjUhMj3jdCZdv6ubfvmEIqmebalT4qqmJUVi/8BQEiIrL0zWq4+EIGIsXjWY8vvPKF/IDv+h185bmvzHprspD6FbVcOXUt/3Xb5Fdt3hnQne0s8iONnBl125+KLxKk7UN7yCZSBKvuXCVy/OPblEcuEK4qY+jiNZbtXoM/EiIQDZEeTVKzYTkdhy7Qe66Lxk3NbP/JR3D8LrVrmhaklcQbPzzClcs9hEIBPvKTjxOOzH0cl4iI3BsWfqCiTMnzPA4eOEZ/7yB7HtpGVfX8R/D0xfs50HUIjMeBa4foi/dTF62d05WTt4pWRnj0J6e+arOgAu0sZpuIedkcnUcvkk1mWLZjJYFbkhhfJIhviqQmUBamalUTQ+29NO5cBYA/HGDtC7vIxFMYn8t73zxAtDrKlcOX2PWZR/PbmtbOKsaZio8lx+eaZshmsoASMhGR+53mvJTYtWu9HDpwnK6uPt7eN7eLVrO5HKd6OvG8/Gggm4uRS7RhrZP/O5dfObq+NTmXZOw6M9MrKEe74XpCc71ezPHl/47eWVh/q8RQnN4L3aTGUjfuG7rSz7Wjl+m/0E338Y7Zxew4NO/dwKZPP0b1mptbs75QgHB1GYFIkGh1jLH+UapaarCe5cQ/neTNr75F19muWb3WTDzy1HaWt9ax98mtlFWoEF9ERLRCVnLRSJhAwE8ykaR6DqtjhYr168qCbHF+lYPnOti1vIW6sslXYLLZHI5j5pWkTTDZ9uQt9WJMkdBl01mO/8N7pOMpIlVRtr20C2MMvpAfx+disx7+aHFXlByfy/oPbSM1miRcEWa0P07PhR6i1VEuHb5Mw5o7a9Pmo7q2nIef2j79gSIict+YdUJmjPlnwEtAjnwvzW9ba79e7MDuFxWVZXzsE88wFk/Q1DT1ylEhh86fLVis/5e/8Ah9Y2lqY4FJV7SutvfyxveOEi0L8eSHdxGJFqEh6mTbkzOsF7OeRzadwR/2k0mkb4wEKmuoZP3zO8ilc5Q1zn9b93au3yVSlV+tCpeHiNXEGOsbpXV7a9FfS0RE5HZzWSF70lr709dvGGN+H1BCNg+VVeVUVs1szuTtvcT6TvbgT7WRCV4inFt1o1jfccyUK2MA505cwR90Gewfpb97iMjKOSRkt189eVs7i+m2J2/nDwVY99Qm+i/20rBuYq1btHZm36P58gV8bP/wNjLJDMEir8aJiIgUMpeELGiMeRFoB5YD4eKGJJMpuD3ZUM2/vPJ5hrMpPv+pD89q63Hl+iautvdSVhGhum4Oq07z3J6cTFVzNVXN1bOPp4hcn4sbm9jzKzGaJJf1iFXOckaniIjINOaSkP0L4JPAVqAD+B+LGpHcMJNeYjt3b6C5pZ5IJER5xeyagza31fPxn30Sx3Vw3TnUkM1ze3KxZJIZus92EYgGqF1RN+MrRPuuDJBOZqlvq2Z0IM6b3z5CLuex6+kNLFu9dN6fiIjc/WadkFlr48BfXL9tjPlV4HeKGZTMvJeY4zg0NtXO+XX882l8Os/tycVy8cBFrp26CsD2F4OUN0y/Gth/dYh3vvseXs6ydncbkYowmXSWQNBP39WhCQnZYN8IR94+Q0V1GdseXF28CyREROS+MZei/v96601gB0rIim6heonNyzTd9ueyPbkYroc1m/By2RxezuLlPLrbB9i5roGGthpSiTQrNjdPOPbI22fo7xmm83IvTa01NCwr/nZrJpPB5/MtSKNaEREpvbksjwxba//59RvGmD8oYjz3rduL9a/3EnPCl/AK9BJbdAvYbX8+rLV0nrpKcjjJ8s3NBYvw23atIFwRIVQ2s9UxgJrmStY9tJK3vn2YtOfx3htn2fvC1oLHVtWW0Xm5F3/AtyBd9w8ePMr+dw6zYmULzzz7pFbgRETuQXNJyH77tttfKkYg97P59hJbFPPotu953oIlEUPXhjj9+hlc1yGTzLDhifUTHo8PJ+g+30NlYwWV07TLiI8k8Qd9+AM+HMdh2eo6qhorCZUFGewZmfR5W3avpmF5DeFIkPLK4jd6PXjgKPUNdZy/cImRkVEqKhbnalMREVk8c6khu3Db7f7ihXN/mmzw90x6iS2YIrSzyOU89v/gONcu97Ht0bWs3LiMdDLDcP8Y5TVRAkH/vMN0XAfHcchlPfxBP6P9RD3qGQAAGYhJREFUY1w8cpmK+gqWb2rive8fJz6YwLiGh39i96RtLC4e6+T4W2cJRYM88tIOQtEg0fIwmx9ZzdULvazbNXk/MsdxFmSb8rqt2zZy+ND7tLQ0E4ups7+IyL1oxgmZMeZXCtw9BByw1h4uXkj3vtu3Jycb/D2TXmILokjtLEYGxrhyoYeq2jJOHrhI67pG3nz5CEN9o1TVV/D4x3fMK9EcG4zTceIadavqqGmpora1lkOvvEd8MEH3+V4qGma+knT1fDfhWIix4QSjg3FC44nbqi3NrNpys2ZsZChOX/cgdY1VRMsWp+PLQw89wPbtmwkEAtquFBG5R81mhWz3+J9vj99+EXgX+EVjzF9ba/99sYO7FxXanvS5bmmL9W9XpHYWsYow1fXlDHQPs/6BFeSyOUYG4sQqIwz3j5LLevj87vQnmsTJN88x3DtCLp2jedMyXL9LuDzMUNcwvoAPf9DHtmc303W+h8qGcozrTLp9umZnK4d+cJL65dVU1JUVfL1MJssPXn6H+GiSssooL3760UX7rEKhIkxREBGRJWs2CVkNsMtaOwpgjPkN4G+AJ4ADgBKyAmbSS2x93bLSFetD0bvtX+fz+3j8pZ2kkxnC4ytO259Yx6XjV1n/5Ip5JWMA4ViQvisD+AMu/lB++3P9I2uoX1FLuDxEuCyfxKzY3sK5w5d58+WjVDdWsOf5zbi+ia9dt7yaD33ukSlfz3qWdCpLKBwgmUjfmJ0uIiIyX7NJyFqB9C23M0CbtTZhjEkVN6x7w0x7iZU2yIXptn+d6zo3kjGA1vWNtK4vzntetXsF0eoIVY0VRMrz24c+v0tdW80dx158v5OK2hj9nYOMDSUpr5l9LVYg6OeJ53Zy+dxVVq5fPrdmuiIiIgXMJiH7GrDPGPNN8v3HPgJ83RgTBY4vRHB3uyXZS+x2d0m3/Vw2h+M6N2rO0skM73znKGODcdY+0EZ5beFtxutWbW/h5NvnqWupJlox9+2/xuYaGpvvTPhERETmY8YJmbX2t4wx3wUeI5+Q/aK1dv/4wz+zEMHdbW7fnlxyvcQKuQu67befusp7r50hUh5m70e2E4oEiA8nGBuME62M0HmuhzW72qY8x8qtzbRsaMT1OUuqueqBA0c49v4pdu7aytatG0sdjoiIlMhs215kAQ+w5LcsZVyh7ckl10vs9loxuCu67Z87coX+rmGOvnaGxFiKZz/7MGXVURpX1tF7pZ+tT66b0Xkmq1kb7BshEPQTiS1u4XwikWD/u4epq6vhrTffZePGtfh88xhlJSIid63ZtL34ZeAXgL8lv0L2F8aYL1trf2+hgrubTLY9WdJeYrearFYMltz25O3aNjWx/x+OUbOsknQiQ3IsRawyws5n5r+idPZEB/tfO47f7+OZjz1IRfXsBrTPRzAYpLGxnqvXumlrW47rzu8iBxERuXvN5tfxnwcestaOARhjfgd4C5h3QmaM+TTwm8BG4MFbtkKXrJmOOipZL7HbzaPTfqmt3NLMJ3/5aU4fuEzz2noi5cVbyeru7CcQ9JNKpBkZGlvUhMxxHD784jMMD49SWVm+pLZSRURkcc0mITNA7pbbufH7iuF94JPAHxbpfAvqrhh1tECtLEpl1bYWVm1rKfp5N+1YycjQGA3N1TSUoFjf7/dTU1O16K8rIiJLy2wSsj8F3jbG/B35ROzjwFeKEYS19gSwJFcIbi/UhyU66mhC0AvbyuJeUllTxnOffLjUYYiIyH1uxj0XrLX/Efg80Df+53PW2v9roQJbCq4X6j/z18/w+X/4PJ71AG70ErPWKTjqqOSJZaHtyXyA+W3KUscnIiIiE0y7QmaMGSF/VeWNu255zFprZzQw0BjzfaBQR9AvWWu/OZNzjJ/ni8AXAVpbJx/4XAyTFeo7jrO0eondY9uTxZLL5TDGlP7zuU1vbx+vvPJDIuEQzz3/NNGoBoaLiNzvpk3IrLVTd9ycIWvtM0U6z5eBLwPs3r17QYfXTFaoD0uol5i2JwvqvtbPj185QDga4ukP7yESXTqzIE+cOE06nWZ4aJj29k42bFhb6pBERKTEltbSwRJzvVA/ee5/YYvza6Uv1C9E25MFnT3RjutzGewfoefaQKnDmaClpZlsJksoFKKuTl3/RURk9o1hF4Qx5hPk22fUAd8xxhy21j5X4rAwxiydQv3JLPL25KmT5zl6+CQbN69hy9aZNWQthbbVTVy+0EWsLExNXUWpw5lgxYpW/tnP/ER+zmc4XOpwRERkCTDWLuiu34LavXu33b9/ybcsK65C3fYL3VdALpebV/PRbDbLf/7Tb1BVXc5g/xCf+dmXCIWW4KrhuHQqg3EMfv+S+L1DRETuc8aYA9ba3YUe00+qu8lk9WIz6LR/7NgJXn/tbVpam3nuuafnlJi5rkvTsjo6r3RRX19DIOCf6ztZFIHg0o5PRETkOiVkd5N5dNs/sP8INTVVXLx4mYGBQWprZ1+7ZIzhmQ89wuDACBWVZZw9c5Hjx86xecta1q5bMevziYiISJ6K+pcyz4PRbri+rXy9XszxzbpebPPm9fT29tHU1EBFxYw6lRTk9/upq6/GWssbrx4kl83x+qsHyGSmnzUfH0vw1uuHOHr4FJ7nzTkGERGRe41WyJaqIrezeGD3TjZuWk8oFCpKXy6/30d1TSW9Pf3UN9TMaAv00IETnD19iWw2R1V1BS2thdrSiYiI3H+UkC1Vk21PzqBebDKRSKRo4TmOw/MvPkF//xDV1RUzSvLCkRCZTA7XdQiqvktEROQGJWRLxV3YbT8YDNDUNPO4tu9cT21tJcFQgPoG9d8SERG5TgnZUnCfdNt3XZfWFUtguoGIiMgSo6L+pUDd9kVERO5rSsiWgnlcPXk/s9ZytbOb7q6+OZ/D8zyuXe1heHi0iJGJiIjMjrYsS+H2ejFj7rntycVw8sQ5Xn/1AK7j8MJHnqRp2ewvdjh44H0OHjhGKBjgY5/8EBUVZQsQqYiIyNS0QrbYrteL/ceN8Gcv5m+DtifnYHh4DJ/rks3liMeTczpHd1cf4VCQVCrN2Gi8yBGKiIjMjFbIFts8uu3LRFu2riOVSBEMBWltm9vFAg/t3cG+Nw9SU1tFQ2NtkSMUERGZGSVkC+0ubGdxt4hGwzzx1IPzOkdNbRUvvvTBIkUkIiIyN0rIFtJ90s5CRERE5kc1ZAtJ7SxERERkBpSQFVMRh4GLiIjI/UNblsWi7UkRERGZI62QFYu2J0VERGSOlJAVi7YnRUREZI60ZTlX6rYvIiIiRaKEbC4mqxe7vj0pS04ikeTHP9xHMpnmA0/vpbKqvNQhiYiI3KAty7mYrF5Mlqz2y1e5fLmTwcEhTpw4W+pwREREJlBCNp3bW1mA6sVKaKB/mP6+oVk/r7q6An/ATzqdIRwO4V2fISoiIrIEGHtronGX2b17t92/f//CvcBkW5PXH1O92KJIxJNc6egmmUyx/51jYC0f/NBeWtqaZnWewcFh/v47P2RkZJTVa1bwwWceW6CIRURE7mSMOWCt3V3oMdWQTSXei21/G+Nl83/fOghc9WILZnholLdeO0I4EuShR7fx4x/s52pnD709g1RURAmE/PT3D09IyEaGRzl75hINjbUsa24oeF6fz2VkdJT6+houXLiM53k4jhaJRUSk9JSQTSETqKQvsIL65Hl6Q6uoi9SitbCFd+L98/R095NOZ1je2kgylSYQ8FNVXU5jUw2hcJC161onPOdH399HX/8gxhh+4iefJ1YWveO80WiEbds3cerEOR5++AElYyIismQoIZtCJpvlGxX/nKr6HKNehM+DErJFUFNXwfH3c/j8PsrKIzz59G5On7hI47Ja2lYuK/gc4zhgwUyxfWyMYe/eXezdu2uhQhcREZkT1ZBN49y5c5w9e5YtW7bQ3Ny8oK91L8lms4yOxCmviM1pJaqvZxCf30dFZWxGx4+OjHHhfAd1DTU0NtbO+vVEREQW2lQ1ZErIpOhyuRx///KP6e7qY/WaVp58+qFShyQiIlJyUyVkKqKRokskUnR391FXX82F8x1qMSEiIjINJWRSdNFomC1b1zE8NMqDD29X8byIiMg0VNQvRWeM4cG923lw7/ZShyIiInJX0NKFzJu1lhPHz/LGawcYGR4tdTgiIiJ3Ha2Qybx1d/fxxqsH8ftdxkYTfOgFdcAXERGZDSVkMmNv7zvM8WNn2LlrMzt2brpxf8Dvx/U5pNIZItFwCSMUERG5OykhkxmJxxMcPXKCxoY69r97lC1b15FOZzl14hzl5TE+/NEPEB9LsrylsdShioiI3HVUQyYzEgoFaV7exLWuHlauasHn8/HOW0c4dOA4P/rBPgBWrlqO368cX0REZLb001NmxHEcnnv+cUZH45SNz4l0fQ45z8N1HByj3F5ERGSulJDJjLmuS0VF2Y3bD+7dTn1DDbFYhLr66hJGJiIicndTQiZzFgwGWL9hVanDEBERuetpn0kWlbWWrmu99PUOlDoUERGRJUMrZLKoTp+6wI//6W0cY3jxo0/TtKy+1CGJiIiUnFbIZFENDgzhug65XI7R0bFShyMiIrIkaIVMFtXmresZHRkjEArStmJ5qcMRERFZErRCJotmaGiE737nB/QNDLBt+wYCAX+pQxIREVkSlJDJorlw/hLDwyMMD49w4fylUocjIiKyZGjLUhZNU1MDjuPc+FpERETylJDJrA0NjXDwwPtUV1ewdduGG0nWdBoa6/jpz3wMgEhEQ8hFRESuU0Ims/b2vkNcab/K6dNZ6upqWNY889UuJWIiIiJ3Ug2ZzFpZWYxUOoPPdQmGgqUOR0RE5K6nFTKZtT0PbmNZcwPRSJiamspShyMiInLXU0Ims+bz+Whray51GCIiIvcMJWT3Ac/zePONd+lo7+SRR/fQ2qaGrCIiIkuJasjuA319Axx7/xQWeOvN/aUOR0RERG6jhOw+UFYWpbw8xvDwCMtbtdUoIiKy1GjL8j4QCoX4xKc+zOhonOpqFeGLiIgsNUrI7hOhUIhQKFTqMERERKQAbVmKiIiIlJgSsnvAwMAg/f0DpQ5DRERE5khblne5zs5rfOtb38V68NzzT7Nq1YpShyQiIiKzpBWyRZTL5RgbGyvqOfv7+/FyHo7j0NvbV9Rzi4iIyOLQCtkiSafTfPvbL9Pd3cOePbvZvfuBopx39eqVtLd3kslk2LhxfVHOKSIiIotLCdkiGRoaoqurm9raGo4fP1G0hCwcDvPCC88U5VwiIiJSGtqyXCTV1dWsXLmC/v4B9uzZXepwREREZAlZEitkxpjfBT4KpIFzwOettYOljaq4XNflhReex/Py9V4iIiIi1y2VzOB7wBZr7TbgNPDrJY5nwSgZExERkdstiezAWvuP1trs+M19wPJSxiMiIiKymJZEQnabLwB/P9mDxpgvGmP2G2P29/T0LGJYIiIiIgtj0WrIjDHfBxoLPPQla+03x4/5EpAFvjrZeay1Xwa+DLB79267AKGKiIiILKpFS8istVP2ZjDGfA74CPBBa60SLREREblvLJWrLJ8HfhV40lobL3U8IiIiIotpqdSQ/SegDPieMeawMeb/K3VAIiIiIotlSayQWWvXlDoGERERkVJZKitkIiIiIvctJWQiIiIiJaaETERERKTElJCJiIiIlJgSMhEREZESU0ImIiIiUmJKyERERERKTAmZiIiISIkpIRMREREpMSVkIiIiIiWmhExERESkxJSQiYiIiJSYEjIRERGRElNCJiIiIlJiSshERERESkwJmYiIiEiJKSETERERKTElZCIiIiIlpoRMREREpMSUkImIiIiUmBIyERERkRJTQiYiIiJSYkrIREREREpMCZmIiIhIiSkhExERESkxJWQiIiIiJaaETERERKTElJCJiIiIlJgSMhEREZESU0ImIiIiUmJKyERERERKTAmZiIiISIkpIRMREREpMSVkIiIiIiWmhExERESkxJSQiYiIiJSYEjIRERGRElNCJiIiIlJiSshERERESkwJmYiIiEiJKSETERERKTElZCIiIiIlpoRMREREpMSUkImIiIiUmBIyERERkRJTQiYiIiJSYkrIREREREpMCZmIiIhIiSkhExERESkxJWQiIiIiJaaETERERKTElJCJiIiIlJgSMhEREZESU0ImIiIiUmJKyERERERKTAmZiIiISIkpIRMREREpMSVkIiIiIiWmhExERESkxJSQiYiIiJSYEjIRERGRElNCJiIiIlJiSshERERESmxJJGTGmN8yxhw1xhw2xvyjMWZZqWMSERERWSxLIiEDftdau81auwN4Gfi3pQ5IREREZLEsiYTMWjt8y80oYEsVi4iIiMhi85U6gOuMMb8N/BwwBDxV4nBEREREFo2xdnEWo4wx3wcaCzz0JWvtN2857teBkLX2NyY5zxeBL47fXA+cAmqB3uJGLEuEPtt7mz7fe5c+23uXPtu5a7PW1hV6YNESspkyxrQB37HWbpnFc/Zba3cvYFhSIvps7236fO9d+mzvXfpsF8aSqCEzxqy95eZLwMlSxSIiIiKy2JZKDdn/aYxZD3jAJeAXSxyPiIiIyKJZEgmZtfZT8zzFl4sSiCxF+mzvbfp87136bO9d+mwXwJKrIRMRERG53yyJGjIRERGR+9ldnZAZY75ijOk2xrxf6lik+IwxzxtjThljzhpjfq3U8UjxGWM+bYw5ZozxjDG6auseY4z5XWPMyfHReH9njKksdUxSHBp5WHx3dUIG/BnwfKmDkOIzxrjA7wMvAJuAzxhjNpU2KlkA7wOfBF4tdSCyIL4HbLHWbgNOA79e4nikeDTysMju6oTMWvsq0F/qOGRBPAictdaet9amgb8EPlbimKTIrLUnrLWnSh2HLAxr7T9aa7PjN/cBy0sZjxSPRh4W35K4ylKkgGag/ZbbHcBDJYpFRObvC8BflToIKR6NPCwuJWSyVJkC9+k3sLvQTMemyd1pJp+vMeZLQBb46mLGJvMz3Wdrrf0S8KXxkYf/Eig48lBmRgmZLFUdQMstt5cDnSWKRebBWvtMqWOQhTPd52uM+RzwEeCDVn2W7iqz+G/3a8B3UEI2L3d1DZnc094F1hpjVhpjAsBPA98qcUwiMgvGmOeBXwVestbGSx2PFI9GHhbfXd0Y1hjzdeAD5CfPdwG/Ya39k5IGJUVjjPkw8H8DLvAVa+1vlzgkKTJjzCeA3wPqgEHgsLX2udJGJcVijDkLBIG+8bv2WWs1Gu8eYIz5W2DCyENr7ZXSRnV3u6sTMhEREZF7gbYsRUREREpMCZmIiIhIiSkhExERESkxJWQiIiIiJaaETERERKTElJCJiIiIlJgSMhEREZESU0ImIkVljBktdQzFcOv7KMZ7MsasMMYkjDGH53uuKV4jbIw5bIxJG2NqF+p1RKT4lJCJyH3J5C32/wPPWWt3LNTJrbWJ8fNr7qvIXUYJmYgsCGPMrxhj3h//869uuf/fGGNOGmO+Z4z5ujHmf57j+VeMn+fPjTFHjTF/Y4yJ3PL4N4wxB4wxx4wxX7zlOSeMMf8vcBBoKXTcNK9b6Lx7xmMIGWOi449tmWH8fzz+PfqqMeYZY8wbxpgzxpgHJ3u98fujxpjvGGOOjD//p+byfRSRpUGjk0SkqMa3954E/gzYCxjgbeCz5OeS/jHwMOAjnxT9obX2P8zhdVYAF4DHrLVvGGO+Ahy/fi5jTLW1tt8YEyY/rP5JoAw4Dzxird032XHW2j5jzKi1Nnb9Pd3y9WTH/+9ACAgDHdbaf1cg3pettVtuuX0W2AkcGz/XEeDnyQ9r/ry19uNTvN6ngOettb8wfr4Ka+3Q+NcXgd3W2t7Zfl9FpDS0QiYiC+Ex4O+stWPW2lHgvwGPj9//zfGttRHg29efYIxZZYz5E2PM34zfjo6vfv2RMeZnJnmddmvtG+Nf/8X4+a/7JWPMEWAf0AKsHb//0vVkbJrjJjPZ8f8b8CywG/j305zjugvW2vestR75pOwHNv9b8nvAimle7z3gGWPM7xhjHr+ejInI3UkJmYgsBDPL+7HWnrfW/vwtd30S+JvxFaCXJntaodvGmA8AzwAPW2u3A4fIr14BjN0IZurj7gx+6uOrgRj5VbhJz3Gb1C1fe7fc9gDfVK9nrT0NPEA+Mft3xph/O8PXFJElSAmZiCyEV4GPG2Mixpgo8AngNeB14KPjtVYx4MUpzrEcaB//OjfJMa3GmIfHv/7M+PkBKoABa23cGLOB/NZpITM9bibHfxn4N8BXgd+Z5jwzNenrGWOWAXFr7V8A/wHYVaTXFJES8JU6ABG591hrDxpj/gx4Z/yuP7bWHgIwxnyLfK3UJWA/MNlWWwf5pOwwk//yeAL4nDHmD4EzwB+M3/8K8IvGmKPAKfLbfYXM9LgpjzfG/ByQtdZ+zRjjAm8aY5621v5wmvNNZ6r4tgK/a4zxgAzwP8zztUSkhFTULyKLyhgTs9aOjl8R+SrwxfEErgb4bfJ1WH8M/D/AfwKSwOvW2q/edp4V3FIkv9QtZrwq6he5+2iFTEQW25eNMZvI10L9ubX/fzt3iMMwDARRdAyKc8ay3rQsykVyhMoFDQpPR5HewwaGX9Z655okc849yet09vnvy13ok2QZY2xX7SI7fmK+kzzym0MDbsILGQBAmaF+AIAyQQYAUCbIAADKBBkAQJkgAwAoE2QAAGWCDACgTJABAJR9AWR72bLjcAuPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAFFCAYAAADfBPg6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e7xsRXnn/avuvc/9HC6CN+ANCCqKMOLAgDEiiSZivOcV1MSIJqiZMePljbmYT2ZERxNzcUYzahL1TdCoUWGGiRMVjVG8ooFgFFGRl6gBYQJEbue29+5e9f7RXftU1661VlU9T126d/347A/7nNOrevXq1Wt9+/d76ikhpURVVVVVVVVVVRWvBrl3oKqqqqqqqqpqEVUhq6qqqqqqqqoqgipkVVVVVVVVVVVFUIWsqqqqqqqqqqoIqpBVVVVVVVVVVRVBFbKqqqqqqqqqqiKoQlZV1SaVEOJFQogvan+WQoiTHLb7bSHEeyLv214hxENiPkdVVVVVbFXIqqqaQwkhvi+EWBVCHGX8/T9OYen4WM8tpfxdKeVFscafPscuKeU/xXwOqoQQFwsh1qZAeLcQ4stCiMdq/36uEOIW7c9XCiEOCiGO0/7uSUKI7xvjPk8I8VUhxD4hxO3T3/+DEEIkeWFVVVVsqpBVVTW/+h6A56s/CCFOBbA93+5sSn1YSrkLwFEAPgvg0p7H7wPwn9r+UQjxawDeBuAPATwQwAMA/AqAxwHYwrHDVVVV6VQhq6pqfvWXAF6o/flCAO/THyCEOEwI8T4hxB1CiB8IIX5HCNH5uRdCnC2E+D9CiKH2d88WQnxj+vvFQoj3G4//8tTN+boQ4tzp3/+kEOI67XGfFkL8vfbnLwohntWyD+vRpRDiEiHEO4UQn5i6Rl8SQjxQCPFWIcRdQojvCCFO17b9LSHETUKI+4QQ3xJCPFv7t6EQ4i1CiDuFEN8TQvzq9LmWtOP1/wohbhNC/FAI8Ub9OLRJSjkC8AEAxwghju546B8DeL4tlhVCHAbgDQD+g5TyMinlfXKir0kpf0FKudK3H1VVVWWpQlZV1fzqKwD2CCEeMQWB5wJ4v/GY/w7gMAAPAfAETKDsxV2DSim/gonj8lPaX/88gA+ajxVCHAPgYwDeCOBIAK8B8D+moHEVgJOEEEdNIeZRAI4VQuwWQmwH8G8BfMHxtV4A4HcwcYxWpmNfO/3zZQD+q/bYmwA8fvq6Xw/g/UKIB03/7SUAngLg0QAeA8CEvPcCGAE4CcDpAH4GQG80KoTYgsmx/VcAd3U89IcA3g3gYsu/PRbAVgB/3fd8VVVV86EKWVVV8y3lZv00gO9gchMHMHFtMAGv105dke8DeAuAX3QY968wjSKFELsB/Oz070y9AMDHpZQfl1I2Usq/BXANgJ+VUh6c/n4OgDMAfAPAFzGJvs4GcKOU8l8dX+flUsp/mI55OYCDUsr3SSnHAD6MCRABAKSUl0opb53uz4cB3Ajg303/+QIAb5NS3iKlvAvAm9V2QogHYAJgr5JS7pNS3g7gvwF4Xsd+XSCEuBvAAUwA7jlTV6tLvwfg6UKIU4y/PwrAnfr2mkN4QAhxTs+4VVVVhalCVlXVfOsvMXGZXgQjKsTkpr0FwA+0v/sBgGMcxv0ggJ8TQmwF8HMArpVS/sDyuB8DcP4UBO6eAsdPAFDO0ecAnIsJaH0OwJWYOGpPmP7ZVf+i/X7A8udd6g9CiBdOJwCo/XkUJscCAB4M4GZtW/33HwOwDOA2bds/A3D/jv36iJTycExqp76JiTvXKSnlHQDejkk0qOtfASjXTz32x6fj/yvq9bqqau5UP7RVVXOsKfh8DxOn6X8a/3wngDVM4EHp/4LmdnWM+y1MgOwpaIkKp7oZwF9KKQ/XfnZKKZVDZELW5xAGWU4SQvwYJnHcrwK43xRQvglAzcy7DcCx2ibHab/fjEkUeZT2WvZIKU3HaYOklHcCeBmAi7Voskt/COAnMQtlV02f/5kO21dVVc2BKmRVVc2/fhnAT0kp9+l/OY3SPgLgTdM6qB8D8P9gY91Wmz4I4BWYAFLbrLn3YxJ9PXlaVL5t2rpAgcyXATwck7ju76WU12MCfWcB+Lz7S3TWTgASwB0AIIR4MSZOltJHALxSCHGMEOJwAL+p/kFKeRuATwF4ixBijxBiIIQ4UQjxBJcnllJ+B8AnAfyGw2PvxiS6/Q3j714P4J1CiOcIIXZN9+HR09dVVVU1Z6qQVVU155JS3iSlvKbln/8jJkXs/4RJPdQHAfy549B/hYkL9ZmpU2N77psxcV5+GxOwuRnAr2N6bZmC37UArpdSrk43uwrAD6Y1T6yaOnBvmT7HvwA4FcCXtIe8GxOQ+gaArwH4OCaF7uPpv78Qk4j1W5gUsF+GQ9Gni/4QwEuFEF0Ro9LbtOdV+/8HmIDwbwC4ffoa/gwTGPyyx35UVVUVICGlzL0PVVVVVVkkhHgKgD+VUv5Y74OrqqqqPFWdrKqqqk0jIcR2IcTPCiGWpu0nXofJbMWqqqoqdlUnq6qqatNICLEDk4L7kzGZlfgxAK+UUt6bdceqqqoWUhWyqqqqqqqqqqoiqMaFVVVVVVVVVVURVCGrqqqqqqqqqiqClvofAmDSd6aqqqqqqqqqqmpWou0fXCGrqqpqk+jf7ngh63j/hG+wjvcr9+Nfwu+m+3jH+8jdf8w7YFVV1VzKtfC9OllVVXMubniyiRuobIoBWTZxg5dNFcaqqhZCrU5WhayqqgVRCogylQKqTKWCLFMpoMtUhbCqqrlQhayqqnnT6Tt/EQAwkK2f32S6Cf+4/rvINF9GogEAvOzIc9f/bpDp0DTaFfF7e/Psg00VyqqqsqhCVlVVqVIwZVNOwNLBylRs0FJAZZMOWTbFBq+m42pYEnDpqvBVVRVVFbKqqkpQF1CZygVYXXBlihO2usBKVx9k6eIEri64MlUqbOmq4FVVxaYKWVVVMeUDT11KDVY+QNUmX9Byhak2+UBWm3zhywew2jQP4GVThbGqql5VyKqq4hQXVCnNI1zp6gMtKljp4oAsXX3AxQFYuuYVtpQqdFVVbVCFrKoqirihSldKwOKGKyUbZHGClS5uyNJlAy5uyFKad9hSqtBVVVUhq6qqU6ftfD6GCXvzxgarRkjc1Fxz6PnEctTnSyUpx3jJkU8EAAzzT7pkkX5xvek+iaGIfG5MnzDFzMxGApfdUyGsauFVIauqStdpO5+/4e9SQFYsuGrE7EdUByxgviFLyvHMnxVk6Zpn4DIvrjfdN/s3saDLdOhiQJfNBazQVbWAqpBVtTllgylTseGKClYmQNlkQlXrvhQOWyZQ2WSDLJtKBy/Xi6oJXTZRQawvEqUCmEvkWuGrao5VIatqc8gFqnSV6F65QJUuV8BSKhG0XOBKyRWylEqELd8Lqgto6fKFLt+6sxDo8n2OCl1Vc6QKWVWLK1+wUirFwfKFKiVfuFIqCbJ84ErJF7KUSoKt0AuqL2wpuUJXaJG/K3SFjl+Bq6pwVciqmn+FwpRNMQHLBlehIGUqFKxsSg1bIUBlUyhk2ZQavDgvpKHAZcoGYFwzKmPP1qzwVVWIKmRVzac4wUopBWBxQZUuTsAC0kEWF1wpcUKWUirY4j4ruEBLl4KuGK0rFHTFGLsCV1VGVciqmh/FACsgTf1VDHHDlVJsyOKGK6UYkKUUG7ZiXUhjwBYAiPZ7B1kDEa8HWQWuqsSqkFVVpmIBlSlOwGqMJpsDpvX7zHFvGut9ruItyMwFW7GgytRFR8xCVsy2UlzQleoCeuO9s8/E1ZbBhCHOthLSODqxwK6CV1VEVciqKkepwEqJClgm/ChxwJVtbB2uZp6vYNBKBVjARshSigVbVNDKcfE0YQvgAa4254kKXSZoKVXgqpoTVciqyq/UcAWEA1YbWCmFAlbfuG2Atf68kUArFLJSwpVSG2TpigFcobCV6+JpAy1dodDVF/GFAFcbZOmKAVwVtqqYVCGrKq1yAJUpV8DqAx9drnDlM2YfWG3Yhwig5QNZOcBKlwtk6coNXCVcPPuAS1eMdgyu4OUCW7oqeFUVotYTcT4rgauKVAlgpdQHWD4Q5KNY4848h2zYQauRa72glRuuQqW+R3LC1ng6Zh9slQBYvoqxtuFY+zLfBVwCwgu09MdyAddzDnvF+u8VuKqoqk5WVbBKgiolE644oMfmXlHH9XWvbErhaJUIVr5Olk0p3K1SL5o+rpZNMXpf2cDL19UyVV2uqoSqcWEVn0qEK2AWsDgdJQVZXGNyABYQH7JKBCyAB7KUuGFLB62SL5pU0FKK0fdKBy4qaClxA1eFrSpDFbKqaCoVrHQJplYKSgMM2OM/LsBSigFa3MeRW5yQBcRxtTijtljiAi2lGH2vuI9jdbeqIqlCVpWfjt993vrve5ojWMZUwMLd+qDUJqNrYnX99xsPfn79961Lh7M+DwdoNVI7noJ+PKX2/nBB21pzAADwi4c9ff3vdi3xX5o4oEu/rA4ZXr4OLxzgsTI+NMi3711b/33ncEgfPIL0d5mzYSwXdK02h873j973dpYxq+ZKFbKq3KTDlRIFsmxOEAWyzPFKAywdrJR0wAL4IQuggZYOWAAdsqTlPaeAloIrJR2ylLhhiwpa5mWVAlo2d4gKWjpkAbOgpVQacJmHgbs7PwW4dMhSqrC1qVQhq6pbNrgCwgGLu4Fn23glQJYNrJRMwFIqwc0y4UpXCGjZ4EopBLJMuFKyQZZSCbDVdUkNga22CC4UtEzAUrKBllIJwNV2WEuBLRtoARW2NokqZFXNqg2qTLlClkvtEmePqVxw1QVUutrgSlcu0OqCKyVXyOoCK12ukNUGVrq6IEtXLuByuaS6wpZrjZMrcLUBlq4u2NKVC7xcDkmOSLENskxV6FpIVciqmsgVrgA3wOJs5OkzVmrIcoUrwA2wlDhBywWyXABLqQ+0XAELcIMsF8AC3CELSA9abpfTiVxAy6eQvA+0XABLyRW0gPSw5fOOpoYtV9ACKmwtmCpkbVb5QJUuG2CFzrRrg6vQ8WIDlg9Q6fKBK10pQMsHrpTaIMsHrpTaIMsVrHT5QJYuTuBqgy0fyFJqg63QmXo22PIBLF0+sKUrNniFvpMpokUf0NJVoWuu1XpmlT1Xu4qkUMCyibOVQTP9L0QxAWtNrCYHrNhqZBMEWDZJNEGAZdNacyAIsCjaOxLYO+K5y0oZBlQ2jZvJD5c42yg8Yk/Ympb7xmPsG8frsxb6Lo7loW79HOLq4wUAz9j9q2xjVZWj6mQtmDjASnexqHClu1jUsWIBVihYKVEBK5aTRYUr3cmiwpXuZFHhKtTJ0hXL1aKCl+5qUWFJd7RCnSylUEdLKZazRX0XY8WJoW6WrupszZVqXLjI4nSsAGBXcxjLOI1oMJA8ZikXYK2Ig2x9um46+HlwmsEcsCUxhgDPDU1ijKHHwtFdGjUrLOMAwAsOezprS0ku4GogMGC6VDYQGAr6WGsNbz52/b2rGDAc/QYSu4c8n2nOmxMXdK00kjUmqsBVvCpkLaK44QrgAaxGTJuOFgRYK+IgAHojVOXG3TTjXvG8Ti7IAkAGLTUOB2RxAhYwgSwlLoTgAK1mujdU0FLjlAhZwAS0AJBhq5keJw7Y4r5BccDWytSKrLC1KVRrshZNMQCLokY06z9AOYC1Ig6yABaljsxVK6O7g7eVGK+DEVX6OGNJi4m4AcsU182VWqvVaNfYhgn9xlJgLMPHigFYuppplV6oFKTdNx7hvvGItC/cr1TVbnHUbzXTHw7Vuq35U3Wy5kQpoMrXxVJAZYoLsAA/yFIwZZMvYLUB1U2t9Vd53KwusPJxs7rG8XWzYoPVCzpqsnI5W11g5eNsdY3j62zFhizlaJnydbi6QM3H5Upxk/J1uFZaCuuqu7Vwqk7WPKs0wNIdq5hyBSzdrbLJpwlquGPFczx83Cwu54pTsQGrTxI8N1uuWYic8nG1YgNWl5TD5epydUGZj8uV4hX7ultbW5qXVXdr86g6WQUrZSToAlkuYJUyJuwCKyUXwHKBqnYHa+MzUuXqZvVBlouT5QpqfW5WSrjqcrKUUhbGu8aDLo5W31iublZKyGpztHT1uVuuQObibKW8Wbk4W21uli4ut6O6WtlUC9/nRblqrdogy8exig1YLlCli6sJqjtgTZ6VSzbY8nWv2kDLd5w2yMrhXLlAlq7YEaJvDVYbbPmOYwOuXA6WC2jpaoMu3xqvNujKccNqAy4XyNJVgWsuVSGrdOUsZLcBVkgcGAuyfOEKsANWSAzoB1iHnp1DsSArJGa0QVauaNAXspQ48MMGWiGF7jbQmmfIAvxBC7DDVkgxvQlbOW9YNtjyBS2gwtacqUJWiSphhqACLGqNFQdgKbgKgaqZfZleniizAcPganYvqFKQRa29UqBFGUeHrNx1V6GQpcQNW5TZhAq2qDMSFXDlhCylENhSUtBFmbUIHIKuEm5cCrpCQEupAlfxqoXvpakEwFJKUcTuqhIAqxRRWjqY4iqSzw1YHCqpMJ6r3QNQBmBRpeCK2oOL2hKCUyW1gahF8ulVnazEOm73k1iaazZoyI01d8jd5P0AeFysFXEw+sLPrrrxwGcwaFkc2V0831+2LPG8R1SNm1WGY8IjqpOlxIEkEsDOMg4L65qFFEkA3yK4WZxqpMSeJZ5VCzg0YljwkuPK0gD4m+pqcarGhbl13O4nAaA119TdmVDA0sfYJend3UMBS3escsOVWpfv/ztw5frf8QFF6CXx0Pu0ZYlnmaMQjZtDN0vKMdHXPhSBx0SN8fN7nrn+dxyduSlD6BfGnLC1ptkcocdEfy1cx+S6eyaf86HIG5o02n0uFLr0MQYi7AitaGsaDgPH0EU5qmpPKmyxqMaFOaUAiyJq/JWiY7mrqJEgl1Q3H5samTNuKON90gErVF3HmGMMjq7cXL219hWSUHHEU6FDtG03lg3GxAXLuXTviLaKATALXKEaS4kxcRyOI/q0GiFGVXWyIsoGV76ujQ2MOLqXc7hYgJ+TZYOrHC6W7Yatu1i6eBwtn/dr477lcLLaAMv3eNiOtY+TZdted7J0UV0t383bLoo5HK01y93W53jYXgvX8VBulq4czpYNjHxcrTaw8nW1dDdLKYerZQO06moFq8aFqdTnWrlARZ/jxNFgM1VU2OdapYCsPielDbCU0tVnte9nStDqcrBcjkXf8XaBrK4x2iBLKVWE2HVRTAlaNsBScj0WXa+FeiwAO2jpSgFdfe6TC3D1jeECXDbI0pUKuPpcsApcXqpxYQqliAX7AMslFkwBWH1L3QBlAFYa9e0D5yIb4Ro3q+SIkON4U8fIGZcp7RuVER+6xKl9rzXFN+wUUWIfAN07WuuNEvvGaKTsBbGtg+5rZ40RF0sVsphEBSyOmqlUNVcugNWn2IDlWgvU52KVotXRPVHH56q/KmEMoAzQAuKDVpeLVZJOPWxb72NS1G25OE1U0AL4arYo4vjqVkGLrhoXEhQCViZc+IKR6WSFgBXVyTIhy7eQPRZg+dygQ+CKPzb0f++4Y8MQuDKPgy8Y2eJCnzH64kJTMeLDkAsid4QYAljmsfB9HRzHoS861BUrRvSFIDNK9N3eBLO+yNAmaoxIv/rUCLFDNS7kVg7AMpUDsEzlnimoHKsyYsE+lbWPJbhXKd47rhmIVJUQH+oKeU2pv20rdyv3zETqjEQzRuyLDG3ijhBDbv7V2fJXdbI8RYkFh1gigdUAA9L2XLVYFLDicrEoN2ZKRMjjZoXvO5eTRQGsgVgiHX+BAWl7XyfLFMcsRMoFkcvRokSFQ0F7DdRj4ONmmeJytyiR3p6lZdL2ytkKcbSUOJwtCrpWV2tGdXYhVcfs+kkMxMbFdn0U2oSRS1TIWgPN+aACFofjQa3Byt31nAOyqA6WyNxYkgpZAE+ESBEHaFHrsQaZjwEFtJSowEWtndo1pL2Ra8Tn55iJSJGUEh/b+46s+1CIalxIERWwGjlGI2lrx+WOw1aQPxakiqPIndqkVBJjj5W1u0jbj8a095G6/9TtuUSND6lL2NxH7Ie5SjyM1G/NHEv4nHrYNvKnOneMuDfzGonUCFFKCUejxSohBJ666+WkfVh0VSerQ8fs+sn130MgSwerofBfyoFjKRKlEBdLByvqOomAv5PFCZbcswi9m3IaNwNfN8jcfuvyEV7b63AV4kTpzz8Y+H9717enOmEcTpauEFdLh4wQR0jffrfnpcEELGrTUN/XbwIW1RH7+j36dYYmX2eLYxagrhBni+pm6QpxtnQGEMTtN7GrVZ0sX+mAFaJ5dq5WcJDdufIBrPkpZHdTae6P73il7T+3Urta3As5U4fL7erNjEXc3rdIPnQNwjbtHY+yulsczhZF1dXaqApZFlEAixoN5gaMGLGgL2Bxq8ReWCnBgxIR2vazadxvIqUDlpIPaNigggIa1OjQRyVGEv/G6KHVaD+hyglaQN4YkdrMlBohVtCaVY0LNXXBVV9c2AVWLlEhx1IkbXKJCrvgihIVugBWTKiMCVh9kWEfYPTFZn3b90WGXXDlEtl1PX9fZNi1bWlxoam++KwLqFyis67t+6LDvlqsvqfvu5DHfu1d+npPITzlrHGJEbmjQyWXCJEzMjTlEiF2cUBfhNi17SaKD1sPUt6pUoVos0eDXeKoxerSPMeCjRy1glZuB6fPvZKy6YQdyv73bdv33Lk1luGzDxvZDRt9jtd9a/41Wpzqeu19+9732qlqEA5aY9lkWZQaOORqUWcihmosJWkWopQyqFYLOORqbSLY2qByr3RzohTRYKzWDzlnDKaIRUuMCV1FgZzcMwg3u3LOPMwdOVBeuxkbWscPHz57U9N5jxCrwrRp40If98oWFfrAlRkXcixD4iozKvQFK86oMKVrlRKwNiwz43EhNx0dn21tcaEPYFGeG5iNDH23pThZseNCU7qz4wsRprPjs73N0fJp3UBZAsd0s3z2O3ZsOPNctKfa4G7FigxtMp2tmJGhKdPZ8oEom6vls/2Culp1dqGunPHgPAEWp+Y5FvRRypl7Zs8s7gL3Kro4C+IpvbF8d4My45B79mTncyFdgTy3TGdrOWFj0Zyu1mYrjN9UTlYoXCknKxSuhmI5GDKokEUBK6qLlQOsckWEA7EUDCpCDIK3VW5WCGApNyn0uQcD2msOVWonS2kowgFCuTsh2ytHKxSyKEvgUF4zQHO1fBytmecMf0oMxSCpm6Vr13ApqZulNBQiGJyUqxW6/QK5WtXJyt2WIYdyAdaAuDbdPCpmoXiXVtbuCnawpGyqg5VIjQyHlfvW0rpYuqg9tHKI6mzJTJ5Crpqt2u4hrjYFZH3naU/I8rwSDWk5HoqLtSr3B2+bU5QFsN9+CmFaFgU2MoJKI1eyPfe4CX9uCtyddVT4uU1xZahrBVK0L2EvLVO5osPLL/xs+POGPy1ZFEi7j7iuaKgaAKNMDl6u+3MqLXRcqN68J16ZliWVixOylI6uEMjS4Won/JZe0eXrZOlwtBTQGUTf3ve5dbg675q/9X7udUgKibBmlotJO0VbB6zl4eHJnlfikKs7oJ7jnsf8bQ/56fXfv3rnDq9tOZfCSbnA9Egjhp2J2ztwveaQ433xsz6x/vuz3xueRIRc/XVIG3ouXKRDlvDcdlX7bO0ebPHaFpgt3A9psqq2X0q88PRbzv0mAODkv/lc0udl1OaLC3O6Vzm0KvcXAVi+aqb/hYrkXgHVwZoj6YAF5HO0cmozOloA3dUiRYieHoMOVr6u1hYcSj7ua1ZJzhaltqy6WnxaWMhSSuVi5VwOJ2c0SAEkqsjxYAUsb+kuFgA0MuNdnyifG7/52Jy1SvMMWrniQ6p8QUsXtcaLClqhsDWSMhls/dqVj0ryPDm0UHGhScGxAasPqihxoUtU2AVXsZ2sLrjqiwv7wKzv+bvgyikubAMkl+iqd6mcuJFhG2CliAtNwNJFiQ1dIkPTxdLlEhtSloPp2jZFbDhqOeViR4d9QBQ7PtTjQlOU+BDodxe6PuUu8WEXWPVFiKsdnzOXCLELqvoixD4gix0jqthQaY7iw80XF8ZWztlzZjRoigJYLppb9wrohqTCZ9p1OVhr47ujPncXYJHHjnzcY0aDsR2tNsAC8jpaVOWMD6miuFpAv7OlR4amckaIQL4YcZ61MJCV0sVyASxq0Xubcs8a3LT1VxzbE7ToNVhdoNXlYgHdtVkuN/N5rc8C5jc6BDZXnZapUiNEl2L5mKBlxoaLUKM193Fh25vADVm+zhV3VOgDV1QnyxbX+cCRLS702d58fl+42hAZ+sCRLbryWiaHPy70ASzu2NDHwYox07APsHTZYkPqcjA+23NHh10ulqkY0WHK124e+66o0Cbu2Yc+V3tbfOgDUbb4sCsyNGWLEH0cKxOsfN0u7gjRjAyVCo8Oa1xIUUrAsil3YXt1r/KppCL3PlGL4LljQ6pT4rv9Zi2GB/I3Lc3tas1rYTywEap8Wz/UCLFbc+tkddmIHC4WpeaKqz9WKFxxOVmhcLSEJRJYDTAgwdV51/wtDY7EgLQ9l5sVClgcbhalBovD0fJxsEx99c4d5KVgKNtzOFo+LpYuLkcr5+sfCH8nSxdHUXzop1+5WqHgpFwtHydLl3K1QmuvFGBRarc4nK02Nwso1tFaLCcrdk6be0mYvsL22OJwrygiu1cLoHlysLhFASyA1j8LoDtgm9nRKkHUovjcrha1Y3yulg9KsZ2teavTmjvI6jvAUtIougTAqqLpijNoN2lJjr1oa5A18gBp+7Xxj0jbV+UVZZ1CYLLWIUW5IfN1z7yCNkAV9lGvYcTnp4JW3318nkBrruLCtgOrvyFP+pw/ZHGCVUhUqIMVZb1CpZC4sBHasjbSfx/07ZdkWFz2zlO2Bm1n03lXf9J7G93BER3TqF0UEhnOwlXoeXDofVgeHum9NaeLFRIbvu0h563/LgTtsnPVHX7L7gCAfjmkph4hsZkOWPQzANgdYApzzrYMOQavf9YhyKKeA6HRYaPd8gaeS+OY2y8FbL/G/GV/Z8BnUT/y1AAwJEL8oydcf+j5W86DgqLD+Y8LXQCrKkw6IOXYHuAFrIp2BsoAACAASURBVBDljsg2ulchx5T2PuQ+BjpgAfTP9mOPprnC1NSD3OKAYRuqq0UV9RhQzwGOfloN0WMYleFRzLXazoN5cLTmArJiAVbOpXCA/LVXQH7AeucpWytgEePB6SikrWMcg3lbcscGVfMIWqYqaH2WoU5rvkFrn1wjRYgStDiLY4meeQWt4iHLPIBSivUfUy5RoQKrClcNCZCo2wNluFdtcEGFDte6rJiA5VqblRsygY0ullJuN2uyD7TtXSGjrRYrJWjFasw6ljTYarvm+4gDtCiwNYKssDWFLRfges3nTtn4/C33/5JBq2jIsgEWRbmL2oEyCttju1cj0Q0YKdyrK858cue/lwAW/YDl8j6V52DpcnGz2gBLKQVoxW71k8LR6ntMbkcL6D8Oej2WTSlcrT6QmndXC8hfGA/wF8eXClrFQlYFrDjiqJ+qchN1lmG/+t/LLjcrFWh2gVYfYHGpC7RcrvUcENYFGC4zCmN/cud5eaF5UwWtiTYDaBU5u1AdKF+wssWFqeHKNrvQB65izS70hStzhqHv9rYZhjniQXOWoS9YUGcZAhtnGvpHhNSFPzbONEzt5NlmGvoCFnWmGWCfcehznedYQcSccefbsoF+NmycdZgDsMzj0Odi2RRj9qGvU2XOPvTd3jb7kHt2YZ9ssw99j2yMGYj6DEOnfZieDxlmHc7P7MJQwDKVu+5Kyde9irHPOdwrMzLMXX8FhIEFN4wsapF7nziK4GPMJPb9Ih3b0XLRIhTDA/mX4gE21mlRo8AQLYKrBfD01uJytkpytIpysr791HNJ2z/pcyI7WA3FMjkW5HKzKHClnCzKGEtyKTtcnXf1J8lQwdUziwZY6pwIfz+Wh0dmr0UbiGVyRMjlaFGu51yOFqXxKP2MOORo5Y4K3/hsegNSDleLAlnK0aKMsQSR3MWyaadYJt30Ob4OLQnh7WSZesTHrmTYEyeV72RRAQuodVe6OIrb5332IFBGgbuUIwYHi7qMLbA2upO4D3SV0taB6khxOFoHiFYO/YyYOFq5AasU5Z59CJThagGLUa8F8HAFVcVAFlUlNCUtAbBKiUn/5ORdGDe096RheE8/ccZTyWNQ1ciDuXeBtmC2GkI2kMRx3vqQZzDsB/28eOzR9NiWJzrMf1MtITpsxvRbEbnERAr8rxfm7yA+whgj4pdD6vqxALCXuH4qx5ndNPOPKGHrnzCKQpocF9tGO5kHgbFQKXBVgv7k5F3kMTjgimMMJYlxUGSow5WUYwhBL6IPkgZGo9FdWFryX3aJE67GUmBIjHbUZz8kIlLbKtC66o7thP0Iiw5XNftoLCWGHPljgNRuKNDiWIZnEPhSFGgNhuHnGuW8UFKg9az35a3rUaC1FHhf0kFrEOinKNDaJcJSCY6leXTQGgz8zw3FGAmjwxnNLSZyA1aoTMAasxQQ0oFpv7yLPIavYgBWCCyZ23C4Wb6xo829kjJDdMngYG0YkmHMcSbnuQTH26YcjpYtJvR1tTiixjc841OzYxbgagHI4mqtgd72hcPFMsegulrA5nW2su5xqIsVC7B8oKuEru1KJbhYi+hgLapGIz8At0HVPIJWLMDy5aPVBS+C4nh5mxm0TFGjQ4AvPpznCDFXfVa22YUhL7jvQ/Okz3efSC4Q1RcZuoCVrVeWr1xmGPbB1Q7hHwv5ygWuhoOeDsoOF8OBg/3fN85TrvlY7xh96osNXeqvksWGPSDUFxu6gJQQ3eepSw0WNTqc7Ef3GC43XEpseGg/uv+9D7BSxYYuINQXHbqM0Rcdmi7Whu0J0aEujvMjRXzY52S5RId9QOUSHbpAWWiEqKvvqP/Xc77T+e8h8WGk2LCs2YW+gMWxbtW8qQugSilu55Cr89T3uOpgGYoQE5asRbk+lFAIX5I4HC1gcc6PvqJ4Fzhqpv8tgppm4O1spXa0kjtZPi/Qu+N7i5PlEwPanKyQWDCWm+UDV7GcrJBo0OZm+YKRzc3yHSOWmxUygzCKo+UJVzY3KyQKNB2tkFmEVEfL5laE3FxjOVq+MWEMVyskyrM5Wr7j2BytPhdrwxgMrhbXORLL1fKpybK5WiHwZDpbIWNQXa22d6DPyTLl42wxO1plOVku4qq78i1u5yiGj6EQ9ypH8XubzHYO81x/ZRbBF9GiIVC+9Vku4mjTECIut4KjvYOpea7DMovhQ15KqXVaJTlcvkXvHK0eAJ56LaokFrcwPukeubpYJc0cLKW4vRTNe4F7CX2zoikwItRBi6OgPVQchfD6tSPnDVQPCEIBa9GiQ/0w+LpY62PUgvgixVEUD6QFrVSxYbK40OUFcZz8P/V5eguFEcPJAvBEhhziiA054CpTKyCrqLGhlCvg+I7CFhkS4Wg4PIxlN9524rPIY3AUwnOIIzYEgDUiLHHFhlxm2k5id8U3PjMMsExxFcVTxREdcrRuADYuVp1LHEXx/80zKrTJJT5kig3LjwtLsW25AItDVDcuJC616R0P300eg0NS8nTZLkksvbM42imM7yGPwQFYXKK6pY0UOOsoegy8wkA2HI7WHKeVreIqiqfq8hd8njwGx5I8HItbc+wHwNNXiyXxKCA+TLIHXS5WSTMHFwmwdO2V4WvWcQBWIwUaKcjL7CjlBi25fp4U8E2aMd6jgBYnYFFjQ3Vx5rhIU0BLARYH4JQUHe7jMV2ySzZi/YcqCmitgG9doxHTNWnRQKsLtmLHhtHjwrYXEBOsfCPDWHAVEhfa4Mp3uR/bGLvEUV5j2ODKpVfVhn2xvM99fbNM2U5RjgQlJDKU1nMlU2wYqX7KNzqM6WD5RIe2c43rnP3qndu8xmhzsEKXnFEKiQ5juVghsSFXVGjKNzq0gZXwvC61jfPs95/jNYYNsnxjPxsULQVcl2zjcESQvvHhWx5/w8b9YCojaIsQibFhWXFhKc4VsHjuVcx40PdbBce3kJhf4H2L4O2AlUmF9MEqKSK0ieuc5YgOOTTPjlYswAKYCuI9Ha22x3PFh1Qtoqs1jxFi1GezuVibCbBc1zHsq51yBaeS2k/EBiyue40raMUGLK/arMiAxVGfVZK4Gt66qqsOK3V0GLsWyxW0YgKWUg7QiilXuOl63AiNM2x1jVMKaHHJBlqxYsNocaG5w6nhqisyTO1edcWGrmDUFRm6jtEVGfrUXnXZtq43qq7I0AegUsSG7oAVOTZM7F51xYapHayu2ND1nOuLG1zH6YoOXQvdqbGhUld8mLLYvS86TAFZurriQ1eQ6ooPfWCsKz50rcfqiuxcAagrPvSBqNjxoS0qbN0XhgjRjA8DY8O0cWFuwGrTSK5s6niQUgDvIh8ngKsIPraKiQgLiQeBPBFhWzG8zznX9VifcTiiQy4AKiU+nJdieB84iu1q+RS8L2J8WFJhvC5uR4vY8aRbpcAVMP+1Vw3GG9yskHH2yjtnHK2Q2YONFDPfIEJP9HEjZhytkPuFlHQ3S0WGuqMVBlcNqN9bVGw442hlAiwVG+qOVs4arLEUM45WyHmntqGev2cddXDG0Qpp1aA2obpaYylnHK1c7RoUaOmuVmoHS0lFh7qjFQJNahvd1fIdR9Vo6Y5WyIzCBnKDi+QLPAq0Qori+/YlRHvlCrmnlu0z7T3GFLRCFpzuUxQnq6S2DMD8A5ZtjFL6X3HVsRTyhRxAQe4VUISDpWCrhCJ35WhxnXeUcZSjxdELi6pSHC2gLFeLbYHpzG0elLj6WHG4WiX11ALStHsIETtkpV7huk2fOWdSB1UCYKkC+FKaiwJ0wOJcN5B6f+C8v9ABiweKpBwXAVhKJQBWiSotOiyA9wAsJmgBdNjiAC2AB3AUaJXQBFWBlk89lnVfmO5LnBzDClnXnfdEsoPF5YKtjZbIgBWyKHPbOCXAntIfPuR+LONwnNAjpm8NHKD116dzLWzMAUfNhoWofSW1/6i6b41eWcA1BXuN4Zxh2xc2R40OW43kcbS4zpn/9MQv0velGUAyvN9jhvOXq0brsud9mWUcDq1hjHEhrtZeuYIDB/360Vn3heGz3TQDXHfeE8n7AkRwssaEDwRXxLg2mnyg/u5xh4fvC5cjUUJX8Kn+5MSH409OfDgAYP/alsx7A8hppj+W+Zc+WB1PaqA++pjzM+8JUEQneU2/d8IvA6CBFne8x7GYNFUKsB579GrmPZlVCdHhm588AayVvTtYxqOAltq2GTOtE0rQeHpv+t/Puxr/+3lXZ96bQ+IALYDmar313/0fAGABLYB2zeFMavLf3abicq8UYHEqFJTM7RqZz0NXcFWCJMQ6YLGOG/j5XjUuvjygFXrRmt0u1M3icCKAQ4ClxOVocWyXE7RMB4sLtELdLHO7UNDSz5vQc0gBllIoaHE4WKaa8bAI2FLKCVrm+8sFWhw6cHAbm6uVW2xncai11hYP+kJXG1z5uFly3fTceLL5gBZXzMil0gDLJi43y/feYgIWrxr4wZb9sT6g1Rb1hERAJmCFqM2697X02x5bgqOlxAlaPrDV9lgf0OI8b2zyBS0bYIVEh22Pr6Bl13ha+UtRSHSoXCxTueNDjsgwq5PVB1IuoBXLvQpVaXDVBVipI8MY7pX1eRw/312AlT427D5vqPVZh8ZxOzhdgMXhZvmo7wKZGrS66rBSR4d9MJY6OjRdLF2uoNUHUlwOV2rQGnfcpxYxPuQoiAfm39ViOVtN2nOpyyqpxYOr88QBUDkjQ5tKqM1SSlmb5eJgpQMtrvq/OBGhTS6gxTKl2nGMVKDlUuieOzo0xVUM36cuwFJKWaMVI24MVRdg5RDXtaJPXG0euORyPTEfQ3WzyMvqdO3A0NLYyxeuREuDMV/36olfutv6977gJCxcGgJfAxHvQxcSD+5YjvcN3NfBGgoe6LA1KQ2JB59x7aUMewPYv9P4nn/2/fe9aIqW98Q3Ity9vPFLQwhctTUS9Bmra+kdDvnOJLzqDp4vMG3NSn0hzLYET8jN1nbuuACWqa279m/cH08wEi3NI33HGQzjrfsaAlhP/9CZEfZkopD3fMjgx7Q1L22LCtu0fRvPYu22a07X9ebUK/6ua7i0y+q0iXv2oI/M2qzcdVOxHK2S6q+AdBGh9bmNz1Dc+qsQ+Z9/ttgw5KJp2yakBosrOmyr2/JRTDcrpFVDTEcrxOUqYdahLtPVCnGe5jU67FOs6DCVg2WTzdXyBSygjNmHPorqYY6bAYaDhgRXalshJFvtFQWuJBoIDIqqvQLocLV/bQurm0WBKxUbcjlaAA2wVGxId7T0ZXco5+AYAkPyBVNCrrsSlCL3+9aWsHt5RO9NM12uiTKOAi1OV4vSC+uxR6+yOFr6EjyUGFFfgif0/FHbCYggB0vXyt4d2LprP0uLBjFoSOMo0OJ0tSgxoQKtmK6Wq/QaLaqrxbEkjwItqqulL8kTC7pIR8slq8zpXpn6u8cdztZctKpdOd0rU1KW5mD5zji0i7MQnmsWIYdKmHLNLc5ieI46rbHkmTHI5Ypw1WlxqTRXaxHVQAa5WKZSulqhtVlR40IuwBoVdtI3kucGxxUZvuPEk8ljNBDYu0ZbqJNbHIXwq+MltvOQpxBeoqPE0XMcut58wkUs4+wb8XxGub6+cEWHqwxxlJQCZx/lvyCwfSyeMcYMB/r3n/wl+iCMasbDoiZUjVaXWbrEf/SCaxj2hg+Kufppcb1XXKAV69wJLnzvojpzZ20F8C6KBVc/9aUfBW1nwtVA8OxfaBG8CVeDwA9RYzhPu5bDlgCK5WCFxoar49nj2jaJwlfhsaH5/CHHy/Yaws5DLsAytXMp7EuI/i5zffsLjQ1tcBV6/ujXw6/cuRw4xsa/s03s8B1nGHigYwHWlh1h8Y95z+H6rIdGh6PV2fdZDALPHQPSnvGRM8LGiVSLFRodvu3M22f+zPV+hcaHPudPSwF83sL3kKV2YrpXn3nckd7b2NwrLkcrRDb3yoQlF4VsY1NJESGwEbDyK2bBqf95GAuwQmVidGmOVqjMi3eIoxWzXp3D0eLU6v6yXAmu6DDE0bJtw+VqcSnE1TIBi1MhrlZs95MVsrgWdy5NsWHKNzbkiAeBdsDyjQ1jAxZfN/hcsWHbXdL37llWRNgm3+iw7TKdC7Q4IkKg/XzLFR22Pd4XtEqLCduOcy7QMl0sJa4Fpn1BK/aMQo74sDR24NyfoLjQFhW67FBfbJi69solNnQBrJSxoQtgucSGLg6WS2yY0sHqiw1d3au0saHLc/UdQ9f97T8PUzpYLrGhy+U5ZXToAlgu54/L9dAlOnQFqb7o0GUcl+gwNWD1xYcuxzlldNgGWLpcokMXIHOJDlO2bHCJDl1cLK73C+iPD0PPH0tkGC8uLI1AfdQVGzZynDwO7HO0YjtYpvocrdIiQlelc7RS96TpPl9TR4R9jpbr999Ujparg8WxHBjQ72ilbmvV52iV5mC5KpWj5QJYQDpHK3VPrL51D11jwtJ4gso4SZuRdtVmlTaD0EcpYMwHsLogap5rsLpiw1w1WO2g5XOB63rsfESEvvIFp3mp0fK9GKeIDn1grQ20cgFWV42Wz7GepxotHwgrrUaLSylmHqaCuWDICqU7E7RG42FWwDLdrFAHK1Zbh3eceHKQg2XCVAMRBFg2NyungzWWgxnYWh0vBQFWXAc2BIxsrR1CxhnDdLRyAta+0XCDoxUKTLFAa7UZeNdhcZ4/JmhJGeZimduEjlNiMbwOW6HHnus9s4GWq4s1sz+N2ABUIS7XRy+4ZgNs5ezsbnO0Qordud4v2wLTKc8fb8i67rwn1v5XkbY/NM4EtLjiQap00JrXiDCmZt0srosbdZzJuTjvDhb39kpcjpZ+LaRcFxVoUSNCrohRB615jQnbxA1aIYAVQwq0cgJWDJXYT8unMal34fs3nvykgN2a1Wi0hGHEBTl9JafOyE9+6V/IY3EVwb/9IadiGNhbJYYaKbB7S1j/LHOctsWAfbQ6HrItncJVaCmlwDO/9mGWsTj05hNexjKOvhgQdZzQHlqmOPZntRlEX1TaV1fdUcYNGwB+/8lXBfc4jCUpRXAvLVMcn/vx6hLEsJxjJKXAMy59TO7dWNfbzphMLuNYIo3zOs2xyPRpn/y0/scyFojWNSa6WFIO1n9KEoeb9faHnMqwJ3xSSw7ct0rrCM+9ZEoMNyLnGJx60/Evw5jhmsR1+1DjlNIZXsWDufto6WoAnHU0T40Wl0J6HJriin24P2PU8carkzIFOS7rHvTR868lj9FM/ytJHOdRjuu019nB5WIpUUGLQzEgjQJaOmCNmWahUBRjLTnqmDHWIuRYxBwA/vr053LsDklvOv6Qg0UBrabl91JU4j6FSn8tJYDW7z/5qvXfKaDFFafq4mpYyqkSQEs/vhTQ0uGKAlrKxQL4eh1SpB8fjujQlYeSvfLRaGkGsEJlc69CHC3bNp993APw2cc9gLyPQBho2RysnKBlg6EQN6uRYsNYtr/r0+p4uAGwxlJkcyPavlnlBC0dsJRCQMt2aQ1Z2tq2ja0YPpVsRe45zyHAfkxzgpYOWErjZsDmaoVsY25nFsNT9idoAtfqxntZTtCyvYYQ0LJBVQho6YClZE5aClXMgvgYSnJWdMGVj5tVWjTIpbc/5NTOiDAHaHUBkA9oxXDCbOK4SeaYEs4pG2Ap+YBWKoeIA7R89pWrkzunuva/BEfLlA9ocXRiT/U583keG2Ctj5MBtLr2/aPnX8sWH5YmrvMoNmg5nxGhUaGLe5U6NuyDtZxuVglyASNqfZbPcwFxIkKbuC7qqd2sLsBS4qjRAtI3EU31PKndLJf9Tg1aNhcrRFwNW/uUOjrsAiylEqLDEPWBlGudls3F0pU6OnQ510JBy4WLnGcXhkCWbzzYNuPQ18ESLTMZfMfhmG0ItM84DClwjz3j0Nd5aptx6DtO24xDX7iKPeMw5OYQe8ahC2DpGra8BF9Yafs0+Y6TYsahr4sVe9ah7zH6auRZhyFw1Tbz0Ocz0jVjzPezFnvWoQtgzYwTedZhyLWobeahr1M1aPm09QGWKY5ZhwDf9Tpk1uF0lmH62YUc9VdAWERo2yZknM3maHFFeyHjcD13STMOU8gXsAC7oxVyqeO6hcSecVhaTBhy3EqMDm3y/dzEXtw5RFzPPS+OVkgUaNvGF7AAPlertF5auqKcBaGAZcaGXDVYlHG4QMtUqW0afMUVG9oUGhHGAq3QD3Ks6DAEsGIrFLxigVYoYJXU2kEpFmiFRoRmfVbo54PrcxYzOvR1sZRKAy2O+iybQgBLKRZohZ5H3KDFegZwzCBUoEUFLLV9KcXyarmeviL3Po0bwV4IT3WRFGiFzBg096ORwjqL0FecoMUxm4UbtKiApdyskBmDuhrjhyJu0KI6WDFmHVKPETdoUWuw1KxDjv5FHJ+zGLMOQwFrfSxm0KIeJ1UMT+2FxdlLixu0qOcR58zDMgjEEFfUyFVQH8vNoogLtLhiupiOVqhKcyMuP/15LOP8l+N/hWWctcKOD8AHWgcLcxAAvniVC7Te/NNfZRmHS9QvaTE0WtnCMg4XaJVYxkBxsXRxgVZTiLGixFL4vrY2W5QZ2v7ePIGGhMLBRoOQAWOxeGgx/NtPPH3mzwOm9aUohfCxLmg7l1eDthtFqJ2hFDCbC2qHvmfmOM/+2oeC90kHLMo5ZO5T6HEyLx+C6ZSiFMOvaje0AeMpHnqMYpU/U4rhTcASgcvnSOMzG7pcmnkt4lh6Cwgvhh+vmvc0pgJtwj0tFmA97dJHB23338+4m3lPJqIUw5tr64rAa6Q5zo5tB1ofG73w3QQsTo0D6b8xXB7zz6llAhaw8SYXqlBHq7RvjLEU6mbZ3h+u9yzU0TIdrND94XodNnEtUBzqaK0a14ymrKUJWRXqaHE5WCZgAXzpQWnXJ7b64MB7WkwH62/O/8doY4co1NEywYhT+w9uD942iq8W2tWXQ21AxQVaJUaHvirtAgbEcbGU8nbztj+3L2i1RYRssB70mWV56lb5gpYJWEpcoBVyjGL3CvMFrTbAsgFTKrVdjziuU3UJnjiK5WIpsdVoBVwfuWEtOC50cbBcYkMXuHKNDftAKnVsaHOwTKWODVMClktsGBOuTLnEPa7Q0ve+uY7jEh261GC5nEeu+9R3nFzhKmV02AZYulJGh6n7Y7tEh64OVl906ApkLtFh3/WIKzYE3KJDMya0KXV0mLIOyyU6jA1YulyjQxcwcokOXcYxo8MocaFrRMh1crjEhi5OVe7Y0KaUsWFqB2vfGk/RKJdKK4QH+h0t1yL3vvMoZkTYplTRoQtgAZs7OiytyB1wux6lvGa5ABaQNjossdA9pVwcLS7nyXUc3+gwq2/ptV5UxwnpA0+pYkMXF4tbXaC12SLCNnWBlg+IdD2WC2h8ZxGmiA5jR4RtagMtV8BSShEd5lrljWvWYZdT5RMrdtVn+VyPuK5d8xYd5gCsvvqslC6WUhdo+QBWzJqtLnnFhZQidz06pJw8ZnQYCk2xokMKXMWKDksALD06zAFXpsy4hwIo+vtGGceMDkNbNXDtz3DmMxs8DIA40aEvYOmKFR3mXkbXjA0pDpYeG1JqtszYMPR6FCs6dHWwbIoVHZbgYOnRYQ64MmVGhxRo0qNDyjg7th3giwupswhjRIcUV2qzRIclABZQdnSYI0qzSY8OKb2wchbDx5ZytCiABcSJDnMDFjDrZpUSEeqOFrVZMbcogAXEiQ5LAKwSpTtaqSPCNrlEh8ktBY4TaDwesEASd3SYIyJs07gpr7EfUIaLpcQFEQpqcsWENjUQLPvD1zmfZRgAdMCKoRIAS4k7NuSaechxPVr06LAkwFLRYQkultJYDlgAK2V0mPRqxbbwphRouD74DKD1qFd/E3dcdgee+/ufou8P082xAc+SIFLy3SDvWtmG+xgcLa7O0I0UWOM6j5g+tCt/tAW/8at/zjIWhxoJrDF9GWErhGeCrEbyOFprTEtdcSwrAwCv+O5P4AN3nUUeB+ADrNFoCU1BPbTW1pax757dDHszcbM4HC0pB5Acx6gRkx+idl/8UHzu+n047b30Xphc57aUYsOamcFjJQIt573dX8iyKfobVRJocYty09a3LcWJoK4jp6RfYLmiB+61IEP1s7/wP9d/LwG0YkRq9PNo8l5xgRanuM4jys3oFd/9ifXfj/vIKzh2h6yZa3ZBoAUABw+U4WjpkEYCLf0cLOS6pr//lHNbzlyzy/j8rzm8V16LBCrQ2rFlJWyPiLK9QU0zwCBwSYjZcYR3MfyjXv3NDX+n3KwP/+bP0PcJwrsY3gZnYym8lwSx3QzV3/kUMdvgSrlZuz2X37FdWBspvAtibeOMG0FaoogiHa5KkQlYo+kxW2IoPpYyrBB+1bhp7BsPsJOwTImSeq2+xfA2CA05j2zXNSlF8PJkuhRo3XzBH5PHCpH1mj0eYhC4/M7MOAGffVttsQKtbdvDluBRUqDkWwxvc8HkeAjhe4xsUKX+zuOc3H3xQzf8nXKzvnGhexTdBlQh57ZtrHEzwJDh3h8iF7hSKgMHHdRFwDkcLRtg6eKIDgG+tgI+jlaqafo+0WHXN1eu6eClOFpKudysLgdrlMkZNQFLKZej1XWMcjlauotVgjqv2RkcrZhLwOnyiQ67HuvlaDGdczbA0sURHQJ+53bXY0txtLoUtIepo0OXN2SzR4cuj0kdHcaICGM/JrX6XKwSYsNYcj+Put83zhqt1Oq7trnejPoAq5ToUNdmjw5dYMwJtFzuWYnvay7nLddjUoOWj4sFePTJ+sJPPMv6D7GjQ99vcxzR4WSc9uPS52KZ4ogOgfY+Wr71W23RYYiDZYt9QuCqLTr0uYB2RQe+F+IU0aFPTPgHb/+liHsykS9kcESHQHd02AdYujiiQ6W26ND3GLWdR77Xta54xcfBShEbel+zGaJDoP3zH+JgUaNDpbbo0LdQAxke/wAAIABJREFUvjU69IWnlvOxz8Ey1RUb+rz/Xee173kUOzpsg6vHf/F/AdzL6pSs2I6WL2BxKmb/o1ydvJVs0aEvGMVcaJZbvnVYsR2tEBcndnToA1hA/Ogw5BjFjg59I8LN5miligjbZK23YuqtlbOwvS029AWjrrqtRRH53Y4ZHYYe6NKiQ676LJtCwauUWYdtCgUjc7vQcWLWZ4UWum+m6NAXsJTmIToMva6Z24XWYMUErdw3xxK/UOkKBSyW1g6AFcx8Xaw2cZ3XoePEjA19I0Jd5LhQF2d0yPFh5YwOuRwszuiQw9kaCskCSkLw1WDtXKI3U1TRAcdFlzM65JhJyBkdcsEEZ3QYCli6OKNDLg0HkuW6JoRkKXLnjA5ZrtdMsSEAjEdeE+dbxRkbcjhYYjjmK3J/w0ks43zjwjW285pjHM7Y0AWu5jIu5Po2xOVoPeqV32AZh1Muq5O7iKsDOxdgcYmrYSmnuFo1cDlaOQq9+3SQyYkqsY8WV1NXrlmEpUWHXLEhp7iK4ZuGKRJlgkdOcc045HKiSptxyLY3UgrsW9mGfSu0k5LbbuYCLTTN5Ie4/XN/7wo89/euCB5G75xLPVZqeyqwrXHVGEy1b7SMfSP6WplcXYbHDB29uXthUUGLG7BGUpBrtFamn1UuOKaCVmP8UMcBgBHxuL/yxsfRBjBEBS2uz5gSFbRGq8sYrS5DNgKSCWqpoMV9vW6aIQna9lx8AvZcfAJEM4Zo+NxDitRnnuuzTwWt1dESVkdLPA4teQRsPHlCQStWnk8BrdNe/XXGPTkkCmjp4srBQ0GLG7B0hYIWV8ZvKhS0YjUbLbFGKxS0VozPaG7QKi9s5AcspVDQina9DgStEXGx5y6FghbXtYjrWO+5+ASWcUz9m/eFO2yxEodQ0Fo13ELqsSffIdt2gOpocSsEtKyAFeJmURwwB7FBRERgSqXNMFtFVwholRYTmoCllBu0TIV8im3bhLhZsQCrVHFFh1xuVtBzs00uivsauNysENBqW8Ujl0zAUqK8B+TC974n37nVrXAw5U3QpSC+18EaOF64HQDrw689r/cxLsfHdamCvrGGjstCxHSxTLkUw3Meoz65FMOnXC7HtRg+JWC5FMO3AZYu36VT2uRSDO9y5ruc9S7jLDle8lIClksxfNJrtUMxvIuDJZgmr7gWwvcdI65rNQAMBv3HyMXBkgMesP36C0e9j3EFKY7PvmshfBtgKbW9Z2yF79OBZuRyArg4Wqldhj5XyykidKnRiuxgmWLroOsATykBCwiPDk2lOtdSr0fo4mildrC4+mil+mbr+mnl+lS7OFqpHazSiuH75BoRpqzPStntnFOpHK3UTpVLbNgHWID9/bBxkangO6XPCdAFWnMf4zCAVF8xfA7buQu0UgOWi7jWwnJVaescAt2gVVpECLi5WEocF+ZUMw59rghdoFViRJj8C/GczThMfR0CumcuqiL3za4u0HIBLKWQ9yzoqhPyRBwzDznVNIMNjtZpr/56WKG7DbQC4MsGWiEddG0zfkLeMxto5QQs26zD0NlNMWcdpnaxdNlAKydg2WYdrjQDL8Di1L7xYANshcwebNsm5CuXDbRyApbNzeKeReijZjzcAFtqFqGPYs845LgOhc6KtoFWCFzFdLNC2urEbMWjZhD6ynvZKJ8Hu1hjfdJBqwQXi7XFg+13T+mgVcLxKbEYvrToUAetnIClpINWiQ5WqErrewbMQhXF09ZBqwQHSwetEq5DuqizCGMUw5dwjHTQorhXMUCrhM+u7maFwJUpVx7yvoPOy4yJLKL20pqKu70D9Vgr0CotJuQ4h3K3d4il3/jVPy8KsJSbRXWwuGccctVXcYwzkmUAlq6SrtOlRYfKzeLqf1VSm4ZS+mcpldI/S8lrEWzX2YXql88/7tkBuzQrdcB2Oc487BuLOgPh0a+6evLLsKBuuk2DD/32U3PvxbrWpicndckCKQXLDD91knMswQPQZx0+7fmTbzViiXZxktPjLBiWhpDNAL//jhfRxpj+n3qJU0vlDJnu2Ryzjpr1c6iMG8qrvnsGhgP6WrCNnMzuGgja9UyNc8sFf0IaR31WqZ+x0drk9XAtl0adcagcsW07eJbe4dARr3sA5JBnPWHqbEMd1K69kLo3PJ955WBxLL1zzpcu1/9In13YMjBJe4k1WtxdYjHun3qaRFM37Hm/+7HMOzLRmkb/lG8C3N/YOEXZJwVYACBHXP19aN+41Pa/+fJLwsdo+Z2iMdNA1M98CfGFrld99wwAwLihrf+qwIgqfZxjP/Lvg8cp8bOuRIkN9W0P7i+j1viI1z0AACDGPGsIL5qbxRERKvlwUPL8xzxQe1e2BcGWOU5ogdy6i6U0HuWFLSNufN7vfiwrbK1ZbvYcliulYF3fjmMJHn1slnECQEs2gw1gFQJatnEooDUzNvxha7URGxZ8zg1a5nb7RkPsY4LjECnAUho3K0GwZQJWI0dB0MUFam1F3b4arS2tu1iAfdJSStngLCdoHfG6B6wDllJO0LIt1/OY97LsTtBn3lbgnnJ9w6RnatcBorpaLs8xzyrF1VLyPUk5OrF3PTYXaOku1sw4HjftLpiiOlpKvqAVu5wrF2iVdn0wAStUXWDkA01tj/V1s7i+sOhwZYoDtHzdrJwd5G0y4SqGSnO0fNTlXqUCrbIqmR3Vd6F0vZBucLF05XC0eormU4OWzcXS5XqS9l1wS4sUXPenDbDWx0nsjvQBmSto9fGPKx+ZDpap1KDV97jUblYfYFGjQ1/1wZgraM3d590RnPoel9rN6gMsLjfLVX0LTud0s3LKu/BdybcA3vfAtBXF+4zTVSjXCVimUhTEe8xKTFEQ3wdYurqKCL1mYXS8X74XZo6C+K796QOsmXE6Cqt9nKquYnifcbqK4X25p+1d6QMsXSmK4X2uGykK4X0crK5ieB+XqqsQ3mecrkJ4js97l3tlU4pCeB8HK0UhvI+DlaIQ3sft4iiCB9o/7761V75F8C31WHyF7zmVrZFZbEfLs+1DbEfLB7CA+NNic33zbXteH8AC2h0t3ygwdnTIFRH6ABYQ39HyvQbEdrRSRIQ+j/cdp83RCmmczKHY9Vm+EWFsR8s3IoztaOWKE+fF0UoCWSEHg6tGyyYvF0uplJmHU81DjVauTuxAeQ1LY0aHIfBlglbullqxQKu0C3EIYMWMDWMVuYfK18XilA2mNmMNVptsMBUCWFyxoU0hMwhj12YFx4WAW2TIcZFT0SF1rIGQYYBlijM+ZGheyhkf+rpYNg0HDfmiq6IE6jjcfbR8XawN40yjKKorJQYNi7OlokMq4wj4O1g2cUaHHNcezuiQw8EaDraSwUjFhtRxVGzI8VnngCvO2JADrjhjQw644owNOdwrzt5ZHO0ZXGLDjtYN8x0X7l3ZxnLBLK6fFgNgAXyuFtd6clyd2Dm+YXA6WlTAAiaOFgcccUaHHCYSB2AB+ds7mOKKDnNFhG1jcIxz7Ef+fVGrLnDFhlzu1YF921nG4XKvFrF/ViMFa/+rGCKdlZyNSfu0f5VO4Y955VfYwGZRxbM8SFkWOxdogeN1SQGMGW4GjDHGbzH10SpJbgZ9mnFeccOj2WI5juhQyjGkLOdGOc7Yo8ymksCxSHGcy3KEx1xCH2ctIWCF8g4pLgS6I8NY9RA7toRdaB7zyq8c+sOA0cQLjQ8jAF9odGi6WKFHx3xFSwFLIdjOG44lFUKjw6fbHKyQ/TFf1zDw/TcBi7g8iNKbA5fgWYtUtxISHZqXMxG4a+Y4u5bDoOQVNzx65s+hS92YkBa6/I4JV0LwAM7N5/9p0HaxACskOjTBKHQZIHOc7TsPBI0To/4qODK0gVXosk3aWNe+KGwMG1xxLNfWFRn2QNZ8x4WmQlytGcAC2BZzDlak5+aKDkP2zrYNl6vFAexsjhaXQhwtG9AwQU6IoxULsAD/6ND2fZHL0dq75g8DJmABYXGfbZsQR6sk9wooy8GyOU85J+7EKnBP3TtrRnK0AdZC3KyU7hWHyE4WYHezUs3qcXG1NgCWqdSuViK4c3W1+mqxXI6OyytycbX6zhsORwtwd7WsLpYul/3p+yy4Olp9QJPY0YoJWEo+blbfpczF1eobw9XRsgGWLldHqw/KXB2tPsDicLRc3axUcOXiZrlAkYtD0jeOq5uVavagk6PV94XAx8nqGcvF0eqDKw4nC7C7WQ5RYVwny9yB0qZN9yqlq1VYTZhLsXuqPXY5b/gKmvtdrV7AAnjqtDhqtICkjlYKwALc3SwOx8plDBdHqw+wXMXXXiGNg3Xcpb/S+5iU7lWq9Q1dQI2rCJ5LLI6Wy/lpca9Klznhilp7Ppdxoa79q1tZiuLZVFA/rb7FpblmE7qqpOgQ6AYtJ8DiVB9oJe7X0wVaqQBLqQ+0uCJBV3WBlitgpSqETx0RdoFWSfEgkL44vQu0bIs8ZxVTcTuH1kZLThFhqZMN2O6yKWca2tQGWr1RoS7laFHdphzrHnaIo06rgd3Ravv7NrWBVq5u/ix1WlLYHa22v29TG2j5QE0jstZoxVIbaPkAlpTtdVtcswh91NZKwbfFQhto+QBW7BmHuQCrzc3yXZi+rWaL48ZeHFz5wJHtsQHuVVttlm/9FTdocXDN3DtZuop3tTJGhTkL4k2NpCiqzYMJWsEulv6aQl+fCVqhwBQJtFK7WLpM0AoFIw6gMt2s3BGhCVqhwMQBWqabVZKDxQVGpRe4u2hDZBjqPEWIA13dq3kQO2SVUI+lQMvLxTLFBUSFOVoKtihRIRcqKtCinDPc0WHymNAmrhotJinQyglYSgq0SuiDpUCLC7C4VMIsQgVaJQCWcrPYlsgijKMiw4WMB4njKDerBLjiXGqH9Wp+zpcuT1Zs2Kf9q1uBe/fRBuEqiB+PgLVV+jhMet7r/gd5DN+YsE0cy/hwRYdPedonyWN4R4RtGg/obhRjdMgBWFwuwohlX+I4WiFS8SC1TmvcrLAAFhekPfCDzyePISXP/WQ8pt+4uc7fo15JHoJNYm0/X/0Vdbmn1QNFABYwea+5SqDYieinvnIZeQyOk/knXvbxyS9U0ALooKW2p7paspn8MOjC11/KMg6HxgW4n0qj+8qYBSQbAVnQrMPfeen7GXZk8fSa64/IvQvrknKEccOzXh4VtNbW7mHZD4AOWlygxqHjfjusMekGNePJD3UMAGKU3wAYrE6Oy2P//C7yWBwgzMExSlHOvqYZsDhabEVsXKDF5WpRxQRbiwZaXNFhKaAFgA+0KPuwMolSKaDFHdWUAOYKsFYP3JJ5TyaAVYq4AIsDjhYOsDjgSo1TiBRglSAut1IXSzNSU585+zkzf/ZZ4qDtBfo2Glt3snTt2ek1Rqt8m5e2wZnPcjxtUCU892XF/k33va87328cBrW910OGpnI+TUuf86y/af23pd1pLwBti9OK0CV4THk0LFVwZeqN73qB11NyfaZt43CcKyFqc7C2bD828Z60A9ZwsI08tk+T0i64+uEFH3Eepw2MhPC5j9jHGAzSw0UbXI0P96zJagOjgUdk3TKGXNrity9MsgHWVb/E4w77XF/Ma0uAk5V2WR1zB4txte7dV0Z8qMTlarmqBbByKHZPk0VzteY1Oux6n32n0duUw9EqLSIsQSW5V11qmvyF+ErDu//F/cEL6F6V4mAxAFanojhZSqajBXS7Wj4X3S5KtbpYNnE4W32ulguQuThaLjDV5Wp5AFZsV8v1fU7laHU5WUopHK02F8sUi6vV42i1uVim+lwt6rIlPteE2K6WK1ylcLNc4YrDzQK6HS0XwOpzslzhqs/Nch0ntqPlEw12OlouYOTiZDmMk8LNcgWrFG6W7dpCAKw8C0TbdriU2YcA4rtaro5XX/NSV7eKqSi+FKWo03IBLCC+o+UKWACTq9XxfK6A1SdXQCq1U3OoYtdo+bhXXIXwbXJ1sI75yAUsz9cFUSXVX7HI1XnqepxHDVfsAvhSnCuAHbA6leWs5IoP2SJEquY1PmzRZimIdwUspVKiQ6CMgnigPTr0/WyWDlqlRISlxIOAf0TYBlq1wN2iBYwHS1Hqa03UuFDJFhsq6fEh5cUrW9A5KrSJOz6kwJeKECnQpMeHgfVY3NEh5T3mjA99AUsXd3To42KZ4o4OQ10sPTYMfY91az/3eaIrFLC4Y0MKYHEXwVNqsFR0GApGemRIgSvuyDAUrmbiQgoYqdiQMAZ3ZEiBK47I0PWawuBi5YkLlbpeQFHtHhbN1VIiFLxzuloluBUcBfEL52hNIY8SE3L00VLnB/U84SyGpzhYnLFhCQ6W6p3FUeROgSMu14qzCJ7iXnkVwPepulcb1Jd6xYoJlYrxWBcOtDhgixr9LVg/La6bZwlLPylRXKz1MRhAi6MO63de+n7yZ7AEEFfiiAg5QIsDsGLXZvmIKx4sJSIspv9VBawNKuF6kiQuVOqKDQGgmTpuQ49+KLoe/1JtEWSOzx8lPtQhy7evlm2MpcDlBlZ5ixkp8SHnCU+JhM5/1uQ88em7Y0q/wC/vCQNzDsDSRYkOmylkCY8+Wm36L3/2i+H7Mf0/x8eXco685rrdh/4wCPzsNRM42rLz+OD94HawQmPDtbW7138Xgr70yS3nh7sHjfa5GRDPV0pkyNa9farxnqOCthMaXEmfnlktokSGg4N7p78Q9kN7PVddFHZMFEsMetCF0cXKGxcqub6gMcc3FI7Ujquv1gJp3l0tBVhAWcWyHAp1tBrNxeIGP6/9aPk9VFm7wjeH4Gh13/eDhighIoylYy/t/sLdpqaARcoBfsCadw0O7j0EWBQxuHFNO+/MKHZMqFTsXYYNtEroasARHY5Gkx8fMbtYFMWwbTluoiGgZW6zdi/TSgIZ1DC1a9D1n172lyzj5ProzrhYTAoFrRKku1hAPviLAVhFNSe9906vx4tmPONiFSXf/WJaLsgVsFIqaVyoZIsNuw6Oa3w4ExfalCpC7IIqn+iwbRzX6DABZLnEhylycZdoSHexbHKJD/ugzCU6TOEWuUSHfYCVKjrs2lOub4Eu50cvXLnEhk03gLhEhykgxiU2NOHKVKrYsAuuqHHhoXH6b/Ap3CvXyLANrjjiQsAtMux1rhiapLrGhV38YIsMI7hYZcSFSr4vcCwHPM5WCXItiu96TIirteAqYcHgklRKHy2qSjCiU2qRI8IQ9blXpcSHqdTnXhXrbEVSA+HtXqWKCZWyOFlKuqPlc6DanK1eJ0sX9R7U5Wj5xINtzpbPGG3OVsK4sM3RSj27o82x6HOxdLU5Wj7RYpujlbrmqc3R8okJYzpaPhBF/ci2nRte8WCbm9XjYOlqc7NSA1abm9XnYOmK6Wb5ABSHo9XmZqWsv2pzsnzgKXbxu3PtVdt+eLyWNifLhxd0JysiYJXlZCmFvuAiCuNLWmy6AFdr3gvidS1aQbwp3zqsWGCY2qVicTttMOUBWMB812elUikOVQkF7qW4UyzF7RnrrlI7WEpzezcpArSAjaDFAU0cY2Qoei8VtHxcrDb5gpetGD7HzL1SY8NcMWA00CIqR0xo653l42IBPPttzjQMAawYUJYDsHyL323igDJzHcN5mzlYkrLGhbo+fTZt+ZahaPziQps4IkQqIA0GtDFUdJh5ZqGKD3M3gxsKyQJZFC3v2Ze1NQJwKDakzCbkig2pgMXVQ4s0i1DFhgTgUrFh7jqs4WCbN1yZosaGt5x/GRmUuHpm5XavVGRIgSWuyJAEV4MhGayuuugoMlg96StJvvyXGRfq6msa1qciCuNLiA8LKYq/8PWXZgcsgMfFoqqEFg8sXeEZQJGrvQNV5DYNzYjF0coNWIC/exVDJcSDTTPMDlhAOa0Z5jkaVKJyBYcKIJOJWPLSMfGAcvTVujf/hxQAMKIu0SAnPwS96OIP0/aBQXJUwCneCIyooNUMJj8EjffTFwmmghYHqHFEjTv3nMIwCk2r991I2l42I0gi6I1W70YzLmfJnZw6/rfuIm0vmgaC+CWZuj2XBgfzN+HmAM1cdVi6iokLlSix4bkXffTQH4YM34xC7mnmZ2RPhsWEV9dm/7wUYB2bgDUIOJ7aGJdc/Fz/zY0/h7wdz336x9d/F0uZLmAaWCyFLMFjwtXA/3U0K4dmC4khQ81GQDRjAtYb3v0C0j6EnA9v+OezZv68797rSfsQrObQZ3R51wnem5twJQKW/hmtHnKwBkMagIfGhbqTd/Nz/pq0D0BYZKjDlVzyj9NNMJIBy6iZY4z33M97jNl98L/mm2AVciw4pMPVF1/6wOBxEsWESuXHhUpsB2YseZwtqkpwtqiuVogMSKuu1kRkRwsgO1pyzFCv4elIxahJm1tHq1nrf0yHqO4VMAtYHAqJPUuISk33Soxo702IYrhXvi5QKc4VV0yaGLA6VZyTpRTiaM04WaZSOVtdn5dUrpbpZOlycbX6YkIXV6tjDBdXq++y4/JW6C6WqWSuVgdcOLlaXUDl6GjpLpaulI5WG2RR3SzA/Zui6WIpJXWzWgDL1c3qAiwXN6sLrqhuFuDmaHXBVSo3qysadHFw+sDIxc3qGoPqZE32of9a3wVXqZysLrAKcbIyAdb8OFlK7AeK6moBi1GvlcPV2qyKXczr4Gi1ARaQztHqesx/fsn7yfvgojbAAhK6WR0O1tre7/VuzuFgdanWZqVTCbVXpbhXnCrJwVIqFrKAClrRxFEUT/j3F138YXJ82Pc2dLlYwJxEhy6xYAHRYef4DhBGBa2+c6ELsJSig1aCiLDvMdwRYYj6IsLjLntm1Oc//rfu6i1w74sMF6G4vQJWOuW/0/TI58Bd+Z5n9D9I1WpRgIs6C/HeA/lhazSmwVbE2Yeuh5b6NsjRIB5sObpYMWu0ulwsXVTQ4qi3igVaLoAVXY6A1eZmpazBorpZbRAl5ShZDVZbO4jcswc5Zh9SNTi4LytgqborF8DyiQpLBSxgDiALiHgAK2zFd7V6lMLV6lNuV2sRiuFtoJW7AauvorhZC1jk7qvcBe4u7lWf5t29KgWuYqhkwALmBLKA8g/kXCszaAH02YcLB1oh0FQgaPmI283K7mJlACxzmwpYNLgC5h+wFlnzwAXFzi5sk8usw85Zhn2izkIcgHbH55iB2DW70EUBfV449ecBPbV0DdBfk9UllpmHBOBY2rOPBkyDxjkqtIlj1iFFHDMO30gELPKMQwJgLe86geRgicESCa44emZR4IpjhuFDfvtHtAEYlqWhiKNPFsW54phZSHGuXKLCwgBr/mYXtin6gc3dWyt3fLgAeu7TriBtT3a1iI4ONT6kAFZVfrnMNOwS1b2i1mU1loWnfXTspU8lbV+Vv7A99rJAhQFWp+YOsoA5AC0pJz+humf/5CdU1KJ0clE8jTR/qYDGpbk12pthpYCpyDMOiWtW/ueLPkDa/rVfy2y8E2NCisYj4npzC6CH/NadtAEo169mzLJmX6hy114BFbBMzV1caKotPiRFhqZ8I0TzmAri9oft8Nv+4Orsn32XxNEBLWhJHu0iRYweQ6LD5+tOliDWU/hGh8zF3ku7/JzNZi1seRObgmJDE7CE56XD2P4N7/kF501NuNp5v7P9nttQUGTICFhLO47zejw3YPnGhmZE6LPUjrntLef7L+w+A1ch1x39uhUSl+lwQYwbfePCDUviEJ/fNy7kBKu2qLBwuFqcuDCLfJ0tE6oorhZAc7WA/K4W4Zsh2dWSxGLw3AXx8+RoER0s8vaG9v3rV0jbe8823MQOVu4Cd5J7RbxGleBecSonYC2i5t7JUjIdLVYny5SLs9V2XF1drbbtXVwt08nSRVwSx21ZnpYLVgJX6/ld9VgpXK1IbQtcHC1OF8tUr6vVBUiublbLGC5uVltESHWzAAdHKyJcubhZsQDLxcnqgivqEjsublYrXLlea9quVS6g0QUXCZysNrhK4WLFBCvTySrcwVJafCfLfCOcGpOGysXZaoMpjnotiqjtFqqrlUU5HS2yXByqjsf01Wh11WBR3azSldPBorpX1O2zu1cZFavuqgIWvxYGspKLozg+VH2F8dt6ZpflBC2icoNWTnWBVkwXC4i8/A5zTGgqKmhFjghH+29u/bfcEWGfuiAqK2BRFRmwulys3IXtNRr018LEhaZUfBg1NtRlixBdQarL9XKRLULsigxNmRGiD4TZ4kOfb4iECNEWH3bGhbpiRIeJOpzbosPYkKVkjQ1dIckWG3oAli029JlJaIsO9911zeTfjjij9d8AAEML4CaqwbJFhqkAyxYZ+gCSLTJ03d4WFzrDle264nNdsjk6PoBBiOxskOUKVjGiwlRgpVysOXWvFj8ubFPU2FAXZYmeeY4Q59XVkgOSq7VZo8MNjpaPCxXZsfKVDlEzQGX5M8YG2G7SIneKA0Vdv3CR3asu5XKuYi6FY8pnncJ508JCVjYapsSInBFiX2RoSgct35YPm7ROa7OCFkkE0DJrsyj9sDZA1JxongGLormqv2JysXJGg7liwTl1sTq1sHGhrk+ffX662FDXUNDbN4TqsB1+kaGugaC5W76QNrMtLT50jgtNEeJDsdQkiwpNLe06kCwqNCWG43BoEjJ42ze85xeCAWvn/c7uBKydR5zR/u/D7dkcrKUdx2UDrMFwWzAkUZbYueX8j4XD1WBAAyvKTGgiZJGWwyE8t1xazgJXX3zpAxcBrlovZpsCsgBg9J6t+Z48l+GxNc/NlwRZAOkCd+Caw8KflwJag3wfkcHWTNFVIyCW0l+U117+87QBBoGfi2YEENf1C5XYckSW5wUmayHm0JZ/eG+W5wWQDbLklvDzi1SPlXG92m2nfSHbczNq89ZkKS1dtBK+cQPamoSZ+vTJ+zI9cSOzLsuTQ5TZd5Lggo1XlrF2r+eKAEqNyObAbTrJ0eQnRKt3Q1LWM6REdZmbjKYzIV7mAAAYoklEQVSWaJpsgCUOEmtrQ5+X4l4Ro9gFAaxOZbI68kiBVrCrpc6lkM+gulYlPuI6aIndCZ98MJgFLd/leQKX5tl+xj0AAh0tVZ/l62hNt5PjYdhSNDgEWqGO2Nq9O7C8J/Ai3Qgg8HnlaPK+5nC0kqkhggYFVCiLPVMBabq9HB+ESOjgpXawhHatkUuEa2QAYOUCK4ABrgjaDHCltGmcLF0kVwuYG1dLGLXv2ZwtIGtxvLcoxfCejhbVxdIV7GgB1dGKJUbASupmbRIHS2R0zU3AavYcGTyWb1RYASudNk1NVpecnK2288rlfty2bSJjSbbUvydxtlqXrSA2t3Rwt5LUZ7UAmYuj1QVYLo6WCVlKzo5W2/O7uFpd+x7Z1UpSk9XlXrm4Om2Q4rpocouDJXadEP7crs/fsn0KNyuFi9UGViQXC3BystqcKwpgAe6Q1QZXTusVEpZL2wRgVWuyoonqamX8wpjd2Ypct6WiwyBl7gxPcbhIjhZQXS2qqC5Qzogwo2IDlmiaopwrLrkAFrnn1RzWyZaiTVWT1SaWWi3KPXmEbO+EAq2k9Vq6RuNwV4tapNonOeh2tDpAjFKfxaHeGq0+kCLWaRVdo9WMut0sSg1WH+TIUbebRAEsDnUthZO4NotT0eGqA3Ry1l0BDD2vamE7STUutMgKW67nWdt913X7SKzTFhmaigJbXstZ8E9DJsWGgB20PJyuNthydats0WFbVGiTFbZc3ao20HLd9wiwRY4LATtkucJVG2i4ukg2yPKAK2tkSHlun+0RJzaM4WL5gFWMgndXuIoVFbrCVWtU6Hr8LNfdTQhXNS70UfZ2D4sWIfq4TRwF8sbFgRQbRhIlDvQVe0G8x76r2YfFy8e9Gh/c+He5ZhD6qsA4ca4Bq+35M88arG0ZylGFrBZlnYEIZActdtjyBS3qmoic8QCxPovSQwuIAGS+4xGfv3jQSt2igRt0mFo1LIJ86664AUsc3J8dsEiqMwfZVeNCB43es5UGTeoeTRmD4VrgGhnaxBIjUj7ADLMRybEhMIkOCdAlhmMSNImB9IoKTS3v2U+DpoEkbc8RH7LFhRS4Gm6jwYlYIjlYYtcJ9OcnbM8VGXK4WJR6K44ZhRSo4ogKKWC1HhUSlyCqcFXjQpKWLlqhHSlqhAhkdbaAzDMRARZna/tj7qLvB9XVIrpCFMAC8s88LMbVytlgFCBHhKSeWQB5/6UtMvVUbsDi0EIUtVfAiqoKWY5aumgFSy+lRYgyN2gRYU/eN4K8h7AT1JmAKkYkABcVtKiQRI0OObS2dztpe/IxyA1aVMCibr+WZ6FnXaGLNnOJAlgqEqQCFsXFEgcPQKwSS0qoIgMWbfttj/5SBSwH1RYOnlKgNXpXWLsHHbQEZXkewPvdE9sAeRC05YEGmAEtcZjnTgwGPPVSCrQCYsTtj7kLB671X3BXwYVsBGlBaAVaWVs87N2O5V0HgrenLgOUZTme3HAFZAcsTrgKbekQClicrlUIYImD2ueFoXVMUFSog1HIOolUMMMErqrcVZ2sQIW4WiZU5XC2hH5NZIgxSc4WhxjcrRCFuDkpZxS6iOpoATyuVnRnqxlVwLIot5vlIi7XirwfB8O/kNhEBqygJ53dXi5taXlguypg+asWvjPJ1dlqA6sgV8uU45cz2VVOQVkmaCondyv2RdPR4XJxtPpAwsXN6VxCx9HRatbiGc+urhZ1KaA+uThbzoXvXWDksrRO3xhLji5ORLgSO49zelwXUAnXpX669sPB0XJ1sGIDlYuL1QtVRCfLGbK6wMrVyWpdSscNsipYOakWvscWR71W9potwM3Z6jlrnNytmJ3aAWd3i6UYPoFiAhZQhqsFMNZrcThPc+BeyX03Rx2fSy6AlcKxKgGwnMXhXDHUXVXRVCGLUVTQAphAq+feIPq+dLrEiA6g1QtbKS5WCWLEPrjo/ffxsJiC+NxF8QADaJUAWGt7i4gHpRz1xoIlxIYp4sA+wBIHDyQBrF4XywWO+lysWntVjGpcGFG2CNEXomLFiJ2RoU3U5YLQEiPmqLWwRIltsaEvNNgiM58xbNFhbBfLprb4kON4eG1viQ9b40IfMKIsq6PUFhdmgCtbbOgDTzEjQ5uLlaPGygZZXrVWTF8KrZDlC0U2yPIcwxYXVrAKVo0Lc2jppTxtH2LEiL1ulimmIvkN7lYq612XJUq0xYYsroznGCU4WoA9PsxRuO/sanG4V74aWb6pFOBeAf7uFIebZeudZQJWriJ2E7CcXKsIigJYTLFgBaw4qpCVQPMSIzqJ4fqYfUaiUkfdVihQsIBZwaDlK9mIuDMQuWYOzkH9latyxn9tTUpLmCGolAOurGKAoxoLlq8aFybW6F1b6cAEnhixgFKMdYnDlvJEhxYd+MZRxbRbKGU/lncdYNkXjhmIo//4f5PHYNPStmLgCjsexDIMNToUw23YevVfsOwLVXJpiQequKLCXcSlvQZDFrCSS1sqXPGq9eJYISuT1v40rJmpLhbQOiiApULe3gYQhxFfVDN9LQMaEOz/x6Np+8GkZm2J3rRUCkAQ32M5OZ5LO+k3LCpolQJZYm0fAEAu0T7LohlBuraU6Bpjl1s7h96xiJC17dq/ou2AgoiQZpuaxMH9h9bmo4gDsJoGzR7/BsgxtPWMq3PvwiKq1mSVpuVf4YkQOVwxjMpwSwBA3kN8QQqumkLAkSDWgnfJ8x6P9pXR6iG3FGCRx2GsJRN756OdQ6cYAasYFeLQAxWwcqg6WYWIw9kCwtwtedBy08vpbhnXpCB3ywZZAe5WTkfLBlnerpYNrkJcLcs4uVytnE6WDa5CnCwbXPm6WdYxMrpZQQ6WLfoKACwTqlgcLCDMxbJAVU4Xq4JVErXeXOrahYVIOVtU2FLOlg9siW1yI2gpd6uAKFG5W16wNRAbQSsgStzx6DuKiQ7ZxBEfYuJqUUGLugZiSpXoXsWSlCMv0PIGrLa6Ik/AmgfHKhdgVbgqQ9XJKlgp3S2rm2UqJXA5OOxO0OUSGzpAV0rQco0Je10tl4jQFbZ6xuJwtZT6gCu1k9UHV65Olgtc9blZroDG4Wi5QpYTYFGba07lAlVJXSyHKDAlZFWwyqbqZM2jcrpbVqV0twboBS0nh8vmaJlycLh2PPoOAOUUxLNJwVMXbDnAmqrV4oSt3HJ1rsRopRO05sG5sqnPzWKBK0e5OlbJAKugOiugwlXJqoXvcyCOInmgu1BebPMAp5FIUyzveHbKe5rugnnXeLCRh34yyafYvZR+Wrq4CuNzF8dzRYOc8oE1riL4oJ5bqv+TK2B1uFji4P70gNWlpvECrBQuVgWsslXjwjlVrCjRKTa0KZa7RfzCOONyUeDJALVYjlbojMIN0SFlNqHpahHG4nK29AgxVlxIASvTyaK4V2ZkGDoWVxE8MBsdbnCwKG6VBljU+qpoLlagaxULsCpUFanawmHRlMLd8pJyt7gdLuIZOuNyUXpnJXC4KC0bWBeZ1qGK2PqBw9kC4rd9oDpXYnTo88gVD4pmRBoreksHasfyKWD5uFVtYgcs5VjVWLCKqFqTNcfiqtkCtLot20xDX3HXbjnUZ/Vppn6LAkvTbYuedcjRE4tpBiLAMwsRiAdanNEgB2BxNCfllqrP2nbtX/HUWQ2GbDMDWQGLCaq4XawKV/OrGhcumFiAa+WQfSSYbrQA6NAV6Uul2E3sDv+N+5O2H68euklQj7fUAGtA7BQvG+08GPAdfCpwjV/5c+R9GKzcs/47R7f19bGI3d9nAIbYkFMXNTrc/g8fIm0vVnmcd1NkwNKhitrZXRurOfx+tLFQwWrOVGcXbhbpMWIocImtzTpoqZs2C2xRHS4GR8smed9kf0Jha8dpt5NBa31fpGAD22Y8JIOWkmwGbKDF5WyFSgcsqlhnDjLNxOMWBbBiwRVABCzTsaIAljEWBbAqWC2eak3WAourbguYdUjIotRuRTxj5X1yHbh8teO02/n2g/FYN+MhGqZaLdkMZtwtikb7trPVa7lqsHIPG2BR66VmRK1tiqhQwBKrK2UCFnedFeNYFbAWUzUu3GTycbf02LBN2eLExPWoPi6Xj6ulR4XW5/U4vi5w5uNs9QEVZ4QIuMeIPnGhC1T5xIV9YOUVF7qAVabI0AeuYsKUTV6A1QdBPg6WS+NRDxerQtVCqfXiWyFrk8oVtlxAC8gAW5km/bjClgto9QHW+nM6HltXB8wFtFwdqxyg5QpZrq6VK2Q5d1t3AS2GHlIhcgEtV8BKDVdKTpDl6jAxdXUH3AGrwtVCqkJWVbfaoMsVskyxQhfQDl4FzLDuAq822HIFrA3P1XJcQyLGLtgKiQVTAVcXZIXEgV2QFRIJdkJWSCyYCLS64CoXUOlqhavQyK4NsEL7YrVAVoWqTaEKWVVussFWKGgBCWCrAMjSZQMuE7RCAWv9OSzHlFLHZcIWte4qNmzZIItSa2WDLGq91QbQYmrYySUTtGyAVQJY6doAWZR6KBtgEcazAVaFq02lOruwyk2cvbeA2Zt/lBmKkWYchkovnFfAxTn7ENg4A5FaKM85CxHgnYkIdK+LyFHIbvalYl9rkFrU3oyjgJaSDlilgZXSDGAVWriuVOGqSld1sqqctPo2/plg7C7XgHm8RrCPufeGY1nHiyH29wW87tbw136cbaxYitJMlBm0tl/3Gdbx0DT0XlOGZES45NLyk/4p9y5U5VeNC6v4xA1cXDf1GddsyPltdzouE3CVDFp6V/UB5zEEH2gVDVmaa0VuTGoTE3SwAZZygjjhSnOXkiz6HKAKVlWGKmRV8atEd8uMzlhgy7acCxG4SgUtc+kabtAC6LBVLGQZsWCpkEUGLFvExtgtXalEwKpwVdWiCllV8VUSdPXVKQXDV9/6eQHwVQpw9a0NWApwFQVZPfVWpYBWEFhx9pjyGLckuKpQtbg699xz8bnPfQ5PeMITcOWVVzpvd/HFF+P1r389AEDjp9aLZ+34XsWmLa88sP7DJSnF+o+P+uBMjgfrP6xqRD+IFSiXxZeb8QAN8/Hi7CKfVI5d2sUoQiF57O7w3F3R9THnALCWn/RP6z+bReeeey6EENafSy65JNt+vehFL4IQAscffzz72I985CNx1lln4ZGPfCT72Lrq7MKqKLKBFtXpsoFWF0wJIZ3gzAZarU6Xcqr6oKTt3y1O166H37L+eymuVpd00OJyt2ItRs2qkpa+cZhx2OtecfeXIoybC642E0i5aMuWLTj99NNn/u7oo4/OtDdxNBqNMBwO8c53vjPJ883hV8iqeRW3ywX0O13BcWOf0xVak6WcrhbHSweueVBMd6sYh6vUtQU79skKWLqbFKOBZwwHLJI2m1Plqgc96EH4yle+MvPz1Kc+FQBw+eWX42EPexi2bduGc845Bx//+Mc3uF2XXHLJ+t99//vfBwB8//vf3/C4H/zgB3jKU56C4447Dtu3b8f27dvxqEc9Cm9961vXI7jjjz8e733ve9cfr8ZQ0d4///M/44UvfCEe+MAHYnl5Gccccwxe+tKX4vbbD60jqzthl1xyCU444QRs2bIF99xzz7p7d+65564//td//ddxyimn4PDDD8fy8jIe/OAH48ILL8Rtt90WfEyrk1WVXDpocdZxtfXkcnW0Wsc1IGLd5XJ1tbqkbzsdT4FWKlfLJSrsUzMeRKnZUqCVzd1igCsxWolTmwVscLQ2wBUX9JhwxQhTqVysClXhuu6663D++edjPB5j9+7duP3223HBBRcEj3fHHXfgiiuuwLHHHotHPOIR+OEPf4jrr78er371q7G8vIyXv/zlOP3007Fv3z7ceeedMw7bnj17cPvtt+Oxj30sbr31VmzduhUPe9jDcOONN+Ld7343rrzySlx77bXYtWvX+vPdeuut+OVf/mWcdNJJuP/923sWfuITn8APf/hDHHfccRiNRrjhhhvwvve9D9/+9rfx93//90GvtZCvilWbVXodF6fTpTtc64DFdF/QXS45HgTVjFlluFy7HvpD7HroD+njtkg2ggWwlJSrNdfulnKtmN0rMVqJU58FAM0Y27/+aWz/+qd53Crrc8QZNxZg6XVV1bVyl+4YqZ+7774bf/RHf4TxeIxdu3bhW9/6Fr7zne/gVa96VfDznHTSSfje976Hm2++Gddeey1uu+02nHPOOQCAD31o0hz38ssvX3fRdIftMY95DN7xjnfg1ltvhRACX/jCF3D99dfjox/9KADgxhtvxF/8xV/MPN/a2hre+c534oYbbsBtt92Gww47zLpfH/zgB/GjH/0I1113Hb797W/jXe96FwDg6quvxk033RT0WquTVVWcYjld618pGuPPTJJSrI8thnwTchVo7b3xGLYxU0iBVgyHi10lxoEO2n7dZ/kHjdH7ylAMuKogRZetJmtpaQnXXXcdAODHf/zHceyxE4f9uc99Lt70pjcFPc/y8jL+4A/+AB/72Mdw6623YjQ6tMrCrbfe2rv91VdPuuqfdNJJOPPMMwEA5513Ho444gjcdddduOaaa2Yev337drzkJS8BAAjR/sXy61//Ol784hfjhhtuwL59+2b+7dZbb8WJJ57o9gI1VciqKlpRgEstxWPe+znuKdOx5djs10WHrl0P/eHcgRZQOGzNKVwBjIAVo+9VhzgBq4IVr5Rj5CJb+ycdYMbjyWfrnns2Ln31qle9Cu95z3sAAA996ENx5JFH4qabbsKdd965vp2LuoBJ1/3vf38Mes7pL37xi7jwwgshpcT97nc/PPKRj8TevXvx7W9/e+b1+KpCVtXcqC1KDIIv25qHbQzge78xHTNshC5dPgCmx4ehwMUZEfrIFiEmBa8CgEpFhqE1WsFg5RrxRYQrIBywKkzl1amnnoqvfe1r+PKXv4xbb70VD37wg3HZZZdteJxe73TTTTfhxBNPxOWXX77hcQrkfuZnfgaf/OQncfDgQZx99tm48847Zx63Y8cOAMD+/fshpVyHqjPPPBOf+MQncOONN+Lqq6/GmWeeiSuuuAJ33XUXAOCMM87wfo1f/epX18Hxuuuuw4Me9CC8+c1vxmtf+1rvsXRVyKqaewW7Xa6LS4c6XhbYsinU9ZrXGFFXEperALiiyhuufOumIsMV4A9YFazS67bbbsPZZ58983cXXXQRXvOa1+ADH/gA9u7di5NPPhnHHHMMbr755g3bn3XWWdi1axf27t2L5z//+TjllFPw5S9/ecPjTjvtNHzzm9/Epz71KTz84Q/Hj370IzSWc/bkk08GMCmUP/nkk3HEEUfgs5/9LF7+8pfj3e9+N2677TY8/vGPx0knnYTvfve7ACYR4otf/GLv137aaaet/37qqafi6KOPnpmpGKpa+F61UPIuog/5BDTGD7PkWMz89MmnOD6Xi9WnGMXyxbZegF+TUifAilXwziQXwKqF6vm1urqKr371qzM/t9xyC0499VRceumleOhDH4rV1VUceeSR+PCHP7xh+yP///buX0WNIIDj+C+HHBciKAdaCClMo02qNHkBIQTEwloQ8RW8d7AxpaWV+BhpImgdQlBS+A6eCCF7SZGTnPtHd3Mzu65+P6Usu1u5X2Z2Z25vNZlMVKlUtNls5DiOxuOx57jBYKBGo6FsNqv1eq1er6d6ve45rtPpqNlsKpfLablcaj6fy3EcFYtFzWYztVot5fN5LRYLFQoFdbtdTafTvS8Lw6rVaur3+yqVStput6pWqxoOh5HP48a2OrhIviNeNp5N7m6w9Pxzj365R7dONa7CcI9yZXrvvQedaEyF4Z469ESVrWhKaPSKgDoPq9VK5XJZkjQajdRut5O9oWQF/sEyXYiL5B7lsrHvoqTgqUbDz033iFdaX5L3E7jCfIrDKsjLr5/tj0TFEFdPEVW4ZEQWoOCX6nd+fjIUYTHN5Px2XujVG++n0Pc/LIWX3/pVFhYQfXCu7MbVwy/vb1d2/iZvvn2xcl5fFsMq88H7bg6Av5guBP6DsehKiPHYOrZIqMHgur57Z+xckvzD6inDkRVrXEnGA4uoAjwCpwuJLMCAtEaXkdiKugr7M4PLSGQdCys3A6GV1rgiqoCjiCzgFKQhxiKFl8ltbkLGV6TIihpTh0QIrdiDaidCWBFPgDFEFnCqTjW8DsaW7T0EDwTX0cgyGVZ+DsRWYnElHQwsggqwisgC0uaU4msvuGwHVpDH8NqLLNtBFXgv/0Ir0bDaeQwsYgpIBJEFnLskoux++Tr2a17fvY39mpJ08z3cnm4mZT6GX2gWQGKILODSxRFhcURXXJEVR1QRUcBZILIAhGM6xkyHl43IMh1UxBNwUYgsAAAAC569rU56Nz4DAABIQEKfCQEAAJw3IgsAAMACIgsAAMACIgsAAMACIgsAAMACIgsAAMACIgsAAMACIgsAAMCCP+VsTlNZpihHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU9bX//9eacAk3CSZgqyBQD3JNDJcoKIhYRKwtaoGv9yoo1Nu3nLYH2/rrBdv6U6vHWrW1pQpYtdJa0KJwrNVC4aAoIEEL4oUShGrlfgkkQDLr+8dMxpBMwgyZyUwm7+fjkYeZPXv2XntIxpX1+ez1MXdHRERERFInkOoARERERJo7JWQiIiIiKaaETERERCTFlJCJiIiIpJgSMhEREZEUU0ImIiIikmJKyERERERSTAmZiGQsM2ttZo+b2WYz229ma8zsomrP32hmH5pZqZm9ZGYnV3vOzOxeM9sZ/vqZmVn4uRHh11T/cjMbn4rrFJGmTwmZiGSyFsAWYCTQEfgB8Ecz62FmI4H/H7gEOBHYBDxT7bVTgUuBM4AC4MvA1wHcfZm7t6/6Cj9XCrzUKFclIhnH1KlfRJoTM3sbuBMYBrRx91vD208G/gX8h7tvNLPXgDnuPjP8/A3AFHcfGuWYswHcfVIjXYaIZBhVyESk2TCzk4DTgXWAhb8iT4f/OyD83/7A2mrPrw1vq3nMtsAE4IlExysizYcSMhFpFsysJfA08IS7bwAWAf/HzArMrA3wQ8CBtuGXtAf2VjvEXqB91TyyasYDO4C/JzN+EclsSshEJOOZWQB4EjgM3Abg7q8CPwLmAZuBEmA/sDX8slLghGqHOQEo9drzPK4Dfhdlu4hIzJSQiUhGC1e0HgdOAsa7+5Gq59z9l+7ey927EErMWgD/CD+9jtCE/ipnhLdVP3Y34Dzgd0m7ABFpFpSQiUimexToC3zF3cuqNppZtpkNCLe3OBWYCfzC3XeHd/kd8C0zOyU84f/bwJwax74WeM3dNyb9KkQko+kuSxHJWGbWndBQ5CGgotpTXwcWAkuB0wgNVc4Gvu/uleHXGnAvcGP4NY8B36k+NGlmG4D73P3x5F6JiGQ6JWQiIiIiKaYhSxEREZEUU0ImIiIikmJKyERERERSTAmZiIiISIopIRMRERFJMSVkIiIiIimmhExEREQkxZSQiUhCmVlpI56r0syKzWydma01s2+F162sev61el6bY2a3NE6ktc7dw8zKzKy42uN/HOt1MRy3Tfj9OGxmeQ2PVEQaixIyEWnKyty90N37AxcAXyK0YDgA7n52Pa/NAVKSkIVtdPfCRB7Q3cvCx/w4kccVkeRTQiYiSRGuVv0j/PWf1bb/wMw2mNlfzewZM/uvRJzP3bcBU4HbwsseRap1ZtbOzBaGq2j/MLPLgXuA08IVpfvC+z1vZqvDFbep4W09zOxdM/ttePvLZtYm/NzXzOzt8HGfrHaN15jZm+Fj/8bMsmK9DjP7gpmtMbOi8Lk3mNkT4fP8ycza1nduEWmaWqQ6ABHJPGY2GJgEnAUY8IaZ/R3IAsYDAwl9/rwFrE7Ued39n+Ehyy7Ap9WeGgt87O4Xh+PrCLwBDKhRpZrs7rvCCddKM5sX3t4LuNLdp5jZH4HxZrYG+P+Ac9x9h5mdGD52X+Dy8PYjZvYr4GpCi5XXy8x6A3OBSe5ebGY9gN7ADe6+3MxmAbeY2f9EO7eINF1KyEQkGYYDz7n7AQAzmw+MIFSV/7O7l4W3v1D1AjP7AqEko6O7TzCzdsCvgMPAEnd/OsZzW5Rt7wD3m9m9wIvuvszMOkXZ7xtmdln4+26EErF/A5vcvTi8fTXQA+gE/MnddwC4+67w818EBhNK6ADaANtiiLsz8GdgvLuvq7Z9i7svD3//FPANQoulRzu3iDRRGrIUkWSIlhTVtx13/6e731Bt01cJJR1TgHExnTSU1FVSIwFy9/cJJUnvAHeb2Q+jvPY8YDQwzN3PANYA2eGnD1XbtZLQH7MGeLQwgCfCc9sK3b23u8+IIfy9wBbgnBrba57D6zm3iDRRSshEJBmWApeaWdtwpesyYBnwv8BXzCzbzNoDF9dzjK6EEhQIJUH1MrPOwK+BR9zdazx3MnDQ3Z8C7gcGAfuBDtV26wjsdveDZtYHGHqMU74K/B8zyw2f48Rq2yeYWZeq7WbW/VjxE6oEXgp8zcyuqrb9VDMbFv7+SkLvYV3nFpEmSkOWIpJw7v6Wmc0B3gxveszd1wCY2QJgLbAZWEWoMhTNVkJJWTF1//HYJtw6oiVQATwJPBBlv3zgPjMLAkeAm919p5ktD7eb+B/g+8BNZvY28B6w4hjXuM7M7gL+bmaVhCpq17v7ejP7PvByeD7bEeDW8PXWy90PmNmXgb+a2QFC79O7wHVm9hvgA+DRcNJY69zHOr6IpC+r8YekiEhSmVl7dy8N3y24FJgaTuBygbsIta94DHgIeAQoB/43jjlkaS88Wf9Fdx+QiP2ivK4EGFI1x0xE0p8qZCLS2GaaWT9C87OecPe3ANx9J3BTjX0nNXZwjaQS6GhmxYnsRRa+O/R1QhXDYKKOKyLJpwqZiIiISIppUr+IiIhIiikha2Rm1s3MFoc7f68zs2lR9uloZi+EO3CvM7OMGbYJ3133ZrVruzPKPq3N7A9m9qGZvRGeR5MxYnwPvmVm68Od2F+N8S69JiGW66+27wQzczMb0pgxJlOs129m/yf8M7DOzH7f2HEmU4y/A6eGPyvXhH8PvpSKWJPJzLLC1/dilOcy+nMQjnn9GfsZWBclZI2vAvi2u/cldFv9reH5NNXdCqwP90I6D/hvM2vVuGEmzSHg/PC1FQJjzaxme4EbCLUf+A/g58C9jRxjssXyHqwhNCm7APgT8LNGjjGZYrl+zKwDoSaobzRyfMl2zOs3s17A9wh14u8P/GftwzRpsfwMfB/4o7sPBK4g1CQ400wjdBdtNJn+OQj1X38mfwZGpYSskbn7J9UmMe8n9MN4Ss3dgA5mZkB7YBehRK7J85DS8MOW4a+aExkvAZ4If/8n4Ivh9yIjxPIeuPtidz8YfriCUPuHjBDjzwDATwh9CJc3VmyNIcbrnwL80t13h18TS6f/JiPG98CBE8LfdyTDFkw3s66E+vA9VscuGf05eKzrz+TPwLooIUuhcAl6ILUrAI8AfQl9AL0DTHP3jLljKlymLibUTf2v7l7z+k8h3BDU3SsI9anKbdwokyuG96C6Gwj1ycoYx7p+MxsIdHP3WkMZmSCGf//TgdPDfdJWmNnYxo8yuWJ4D2YA15jZVmAR8H8bOcRkexC4nbrvhs30z8FjXX91GfcZGI0SshSxUJfyecB/uvu+Gk9fSKgZ5smEyvmPmNkJZAh3rwzf6t8VONPMavZYivZXYEbdDhzDewCAmV0DDAHua8z4kq2+6w83U/058O1UxZdsMfz7tyC0juZ5hLrzP2ZmOY0bZXLF8B5cCcxx967Al4Anwz8bTZ6Fmv9uc/fV9e0WZVtGfA7GeP1V+2bkZ2A0GfHD3dSYWUtCydjT7j4/yi6TgPnhsv6HwCagT2PG2BjcfQ+wBKj51/9WQgs7Y2YtCA1XZOTiyfW8B5jZaEKLbY9z90M1n88EdVx/B2AAsCTc4HQosCCTJvZXOcbvwJ/d/Yi7byK0ckCvRg6vUdTzHtwA/DG8z+uE+tblNWpwyXMOMC788z0XON/MnqqxTyZ/DsZy/c3iM7A6JWSNLDwH4HHgXXePtsQLwEfAF8P7nwT0Bv7ZOBEml5l1rvpL30JNLEcDG2rstgC4Lvz9BOBvNdcmbMpieQ/CQ3a/IfRBlFHzh451/e6+193z3L2Hu/cgNH9knLuvSknACRbj78DzwKjwPnmEhjAz4jMAYn4Pqn8O9iWUkG1vzDiTxd2/5+5dwz/fVxD6jLumxm4Z+zkYy/Vn8mdgXdSpv/GdA1wLvBOePwFwB3AqgLv/mtBk5jlm9g6hsvV3MmgJlM8DT5hZFqE/CP7o7i+a2Y+BVe6+gFDC+qSZfUjoL8IrUhduUsTyHtxH6IaOZ8PzeD9y93EpizixYrn+TBbL9f8FGGNm6wl19Z8eXskgU8TyHnwb+K2ZfZPQUN31mZKQ1KWZfQ7W0ow+A6NSp34RERGRFNOQpYiIiEiKKSETERERSTElZCIiIiIppoRMREREJMXSJiGzOBYcFhEREckkaZOQEeOCw5nMzKamOoZUa+7vga6/eV8/6D3Q9Tfv64fm+x6kTUIWx4LDmaxZ/hDW0NzfA12/NPf3QNcvzfI9SJuEDOJecFlEREQkI6RlY9jwkhrPAf/X3f9R47mphLPnrKyswa1bt05BhMlRUVFBixbNe/GE5v4e6Pqb9/WD3gNdf/O+fsjs9+DgwYNH3L1VtOfSMiEDMLMfAQfc/f669hkyZIivWpURy9uJiIhIhjOz1e4+JNpzaTNkGeNisyIiIiIZJ51qglEXm01xTCIiIiJJlzYJmbu/DQxMdRwiIiIijS1tEjIREWn6jhw5wtatWykvL091KCIpk52dTdeuXWnZsmXMr1FCJiIiCbN161Y6dOhAjx49MLNUhyPS6NydnTt3snXrVnr27Bnz69JmUr+IiDR95eXl5ObmKhmTZsvMyM3NjbtKrIRMREQSSsmYNHfH8zughExERDLajBkzuP/+Olta8vzzz7N+/fpGjEikNiVkIiLSrCkhk3SghExERDLOXXfdRe/evRk9ejTvvfceAL/97W8pKirijDPOYPz48Rw8eJDXXnuNBQsWMH36dAoLC9m4cWPU/USSTQmZiIiklLtzqKIyYcdbvXo1c+fOZc2aNcyfP5+VK1cC8NWvfpWVK1eydu1a+vbty+OPP87ZZ5/NuHHjuO+++yguLua0006Lup9IsqnthYiIpIy7s+KfO/lgWym9urRn6BcafofmsmXLuOyyy2jbti0A48aNA+Af//gH3//+99mzZw+lpaVceOGFUV8f634iiaQKmYiIpMzhyiAfbCvlcx2y+WBbKYcrgwk5brSk7vrrr+eRRx7hnXfe4Uc/+lGdbQli3U8kkZSQiYhIyrRukUWvLu359/5yenVpT+sWWQ0+5rnnnstzzz1HWVkZ+/fv54UXXgBg//79fP7zn+fIkSM8/fTTkf07dOjA/v37I4/r2k8kmTRkKSIiKTX0C7kM6t4pIckYwKBBg7j88sspLCyke/fujBgxAoCf/OQnnHXWWXTv3p38/PxIEnbFFVcwZcoUHnroIf70pz/VuZ9IMpm7pzqG4zZkyBBftWpVqsMQEZGwd999l759+6Y6DJGUi/a7YGar3X1ItP01ZCkiIiKSYkrIRERERFJMCZmIiIhIiikhExEREUkxJWQiIiIiKaaETERERCTFlJCJiEhGKSkpYcCAAY12vhkzZnD//ffHtO+XvvQl9uzZ06BjSGZSY1gRERGgsrKSrKzENKetyd1xdxYtWpSU40vTpwqZiIhkrH/+858MHDiQN954g+nTp1NUVERBQQG/+c1vAFiyZAmjRo3iqquuIj8/n5KSEvr27cuUKVPo378/Y8aMoaysDICNGzcyduxYBg8ezIgRI9iwYUO956461i233MKgQYPYsmULPXr0YMeOHQDcdddd9O7dm9GjR/Pee+9FXrdy5UoKCgoYNmwY06dPj1T7Kisro16DZAYlZCIiklLBoLN9/yESvXLMe++9x/jx45k9ezZr166lY8eOrFy5kpUrV/Lb3/6WTZs2AfDmm29y1113sX79egA++OADbr31VtatW0dOTg7z5s0DYOrUqTz88MOsXr2a+++/n1tuuSWmGL72ta+xZs0aunfvHtm+evVq5s6dy5o1a5g/fz4rV66MPDdp0iR+/etf8/rrrx9VsXv88cfrvAZp+jRkKSIiKRMMOlf+dgWrN+9mcPdOPDNlKIGANfi427dv55JLLmHevHn079+fn/70p7z99tv86U9/AmDv3r188MEHtGrVijPPPJOePXtGXtuzZ08KCwsBGDx4MCUlJZSWlvLaa68xceLEyH6HDh06Zhzdu3dn6NChtbYvW7aMyy67jLZt2wIwbtw4APbs2cP+/fs5++yzAbjqqqt48cUXAXj55ZejXkP12KXpUkImIiIps/PAYVZv3k1F0Fm9eTc7Dxymc4fWDT5ux44d6datG8uXL6d///64Ow8//DAXXnjhUfstWbKEdu3aHbWtdevPzp+VlUVZWRnBYJCcnByKi4vrPOeWLVv4yle+AsBNN93E2LFjax27OrPaiWd9VcK6rkEyg4YsRUQkZfLat2Jw9060CBiDu3cir32rhBy3VatWPP/88/zud7/j97//PRdeeCGPPvooR44cAeD999/nwIEDMR/vhBNOoGfPnjz77LNAKDlau3btUft069aN4uJiiouLuemmm+o93rnnnstzzz1HWVkZ+/fv54UXXgCgU6dOdOjQgRUrVgAwd+7cyGsaeg2S3lQhExGRlDEznpkylJ0HDpPXvlXUqtHxateuHS+++CIXXHAB3//+9+nXrx+DBg3C3encuTPPP/98XMd7+umnufnmm/npT3/KkSNHuOKKKzjjjDOOK7ZBgwZx+eWXU1hYSPfu3RkxYkTkuccff5wpU6bQrl07zjvvPDp27AjAjTfeSElJSYOuQdKXJXoSZWMaMmSIr1q1KtVhiIhI2Lvvvkvfvn1THUaTVlpaSvv27QG45557+OSTT/jFL36R4qgkXtF+F8xstbsPiba/KmQiIiJpZOHChdx9991UVFTQvXt35syZk+qQpBEoIRMREUkjl19+OZdffnmqw5BGpkn9IiIiIimmhExEREQkxZSQiYiIiKSYEjIRERGRFFNCJiIiGaWqZcTHH3/MhAkTUhzN8VuyZAlf/vKXG7xPTTNmzOD+++9vSGi1fOlLX2LPnj3s2bOHX/3qVwk9dn0WLFjAPffcU+8+9b1HDz74IAcPHow8rrqOVFBCJiIiGenkk0+OrPuYLBUVFUk9flOxaNEicnJyGj0hGzduHN/97neP+/U1E7Kq60gFJWQiIpKRSkpKGDBgAABz5szhq1/9KmPHjqVXr17cfvvtkf1efvllhg0bxqBBg5g4cSKlpaUA/PjHP6aoqIgBAwYwderUyDqT5513HnfccQcjR46s1bB1xowZXHfddYwZM4YePXowf/58br/9dvLz8xk7dmxk2aNXX32VgQMHkp+fz+TJkyMLlb/00kv06dOH4cOHM3/+/MhxDxw4wOTJkykqKmLgwIH8+c9/juu9uOuuu+jduzejR4/mvffei2zfuHEjY8eOZfDgwYwYMYINGzYAcP311/ONb3yDs88+my984QuRxPaTTz7h3HPPpbCwkAEDBrBs2TIAevTowY4dO/jud7/Lxo0bKSwsZPr06Vx77bVHxXr11VezYMGCo2Lbtm0bgwcPBmDt2rWYGR999BEAp512GgcPHmT79u2MHz+eoqIiioqKWL58eeTf9bbbbotcy9ChQykqKuKHP/xhpFIKoWa7EyZMoE+fPlx99dW4Ow899BAff/wxo0aNYtSoUUddR0lJCX379mXKlCn079+fMWPGUFZWBsDKlSspKChg2LBhTJ8+PfIz1mDu3mS/Bg8e7CIikj7Wr18f/4sqK933f+oeDCYkhnbt2rm7+6ZNm7x///7u7j579mzv2bOn79mzx8vKyvzUU0/1jz76yLdv3+4jRozw0tJSd3e/5557/M4773R39507d0aOec011/iCBQvc3X3kyJF+8803Rz33j370Iz/nnHP88OHDXlxc7G3atPFFixa5u/ull17qzz33nJeVlXnXrl39vffec3f3a6+91n/+859Htr///vseDAZ94sSJfvHFF7u7+/e+9z1/8skn3d199+7d3qtXLy8tLfXFixdH9lm5cqXfcMMNtWJatWqVDxgwwA8cOOB79+710047ze+77z53dz///PP9/fffd3f3FStW+KhRo9zd/brrrvMJEyZ4ZWWlr1u3zk877TR3d7///vv9pz/9qbu7V1RU+L59+9zdvXv37r59+/aj3nN39yVLlvgll1zi7u579uzxHj16+JEjR2rF2K9fP9+7d68//PDDPmTIEH/qqae8pKTEhw4d6u7uV155pS9btszd3Tdv3ux9+vSJ/Lveeuut7u5+8cUX++9//3t3d3/00UcjPweLFy/2E044wbds2eKVlZU+dOjQyLGq4q5S/TqysrJ8zZo17u4+ceLEyPvfv39/X758ubu7f+c73znqequL9rsArPI6cho1hhURkdQJBuGJL8OWN6DbWXDdixBIzuDNF7/4xci6kP369WPz5s3s2bOH9evXc8455wBw+PBhhg0bBsDixYv52c9+xsGDB9m1axf9+/fnK1/5CkC9jVsvuugiWrZsSX5+PpWVlYwdOxaA/Px8SkpKeO+99+jZsyenn346ANdddx2//OUvOe+88+jZsye9evUC4JprrmHmzJlAqIq3YMGCyNyv8vLySBWpypAhQ3jsscdqxbNs2TIuu+wy2rZtC4SG+SBUNXrttdeYOHFiZN+qSh3ApZdeSiAQoF+/fnz66acAFBUVMXnyZI4cOcKll15KYWFhve/5yJEjufXWW9m2bRvz589n/PjxtGhRO/U4++yzWb58OUuXLuWOO+7gpZdewt0ja3y+8sorrF+/PrL/vn372L9//1HHeP311yNre1511VX813/9V+S5M888k65duwJQWFhISUkJw4cPrzf2nj17Rq5v8ODBlJSUsGfPHvbv38/ZZ58dOc+LL75Y73FipYRMRERS5+COUDIWrAj99+AOaN8lKadq3bp15PusrCwqKipwdy644AKeeeaZo/YtLy/nlltuYdWqVXTr1o0ZM2ZQXl4eeb5du3bHPE8gEKBly5aRBdMDgUDknHWpa3F1d2fevHn07t37qO1VidKxRDtuMBgkJyeH4uLieq+j6vwA5557LkuXLmXhwoVce+21TJ8+na997Wv1nvvaa6/l6aefZu7cucyaNQuASZMmsWbNGk4++WQWLVrEiBEjWLZsGZs3b+aSSy7h3nvvxcwik/GDwSCvv/46bdq0iel667uWqn/7eF9TVlZW779dQ2kOmYiIpE67zqHKWKBF6L/tOjfq6YcOHcry5cv58MMPATh48CDvv/9+JPnKy8ujtLQ0oTcH9OnTh5KSksg5n3zySUaOHEmfPn3YtGkTGzduBDgqSbzwwgt5+OGHIwnBmjVrYj7fueeey3PPPUdZWRn79+/nhRdeAOCEE06gZ8+ePPvss0Ao6Vq7dm29x9q8eTNdunRhypQp3HDDDbz11ltHPd+hQ4dalavrr7+eBx98EID+/fsDMHv2bIqLi1m0aFEkxqeeeopevXoRCAQ48cQTWbRoUaRyOWbMGB555JHIMaMlkUOHDmXevHkAzJ07N6b3Jlq89enUqRMdOnRgxYoVcZ0nFkrIREQkdcxCw5TfeheuXxh63Ig6d+7MnDlzuPLKKykoKGDo0KFs2LCBnJwcpkyZQn5+PpdeeilFRUUJO2d2djazZ89m4sSJ5OfnEwgEuOmmm8jOzmbmzJlcfPHFDB8+nO7du0de84Mf/IAjR45QUFDAgAED+MEPflDruKtWreLGG2+stX3QoEFcfvnlFBYWMn78+MgwIMDTTz/N448/zhlnnEH//v2PebPAkiVLKCwsZODAgcybN49p06Yd9Xxubi7nnHMOAwYMYPr06QCcdNJJ9O3bl0mTJtV53B49egChxAxg+PDh5OTk0KlTJwAeeughVq1aRUFBAf369ePXv/51rWM8+OCDPPDAA5x55pl88sknkeHp+kydOpWLLrooMqk/Fo8//jhTp05l2LBhuHtM54mFJbP8lmxDhgzxVatWpToMEREJe/fdd+nbt2+qw5A0cvDgQfLz83nrrbcSlrzUdZ42bdpgZsydO5dnnnkm7rtRY1FaWhq5g/Oee+7hk08+qXW3LUT/XTCz1e4+JNpxNYdMREREkuKVV15h8uTJfOtb30pqMgawevVqbrvtNtydnJycyHy1RFu4cCF33303FRUVdO/enTlz5iTkuKqQiYhIwqhCJhISb4VMc8hEREREUkwJmYiIiEiKKSETERERSTElZCIiIiIppoRMREQySlVLgo8//pgJEyakOJrjt2TJkkin+obsk2jVF+1OhAULFnDPPfcA8Pzzzx+1RFIyVT9vXep7fx988EEOHjyYsHiUkImISEY6+eSTE9phP5pYluCR+o0bN47vfve7QOMmZNXPezyUkImIiMSgpKSEAQMGADBnzhy++tWvMnbsWHr16sXtt98e2e/ll19m2LBhDBo0iIkTJ1JaWgrAj3/8Y4qKihgwYABTp06NLFt03nnncccddzBy5MhaDUFnzJjBddddx5gxY+jRowfz58/n9ttvJz8/n7Fjx3LkyBEAXn31VQYOHEh+fj6TJ0+OLOr90ksv0adPH4YPH878+fMjxz1w4ACTJ0+mqKiIgQMHxtXwtKSkhL59+zJlyhT69+/PmDFjKCsrA0JLEA0dOpSCggIuu+wydu/eXev1mzZtYtiwYRQVFdVaIeC+++6jqKiIgoICfvSjHx3zfA899BD9+vWjoKCAK664IvJvc9ttt/Haa6+xYMECpk+fTmFhIRs3bmTQoEGRc33wwQcMHjz4qPNv27Ytsm3t2rWYWWTR9dNOO42DBw+yfft2xo8fT1FREUVFRSxfvvyo8wJs3LiRoUOHUlRUxA9/+MOjqoClpaVMmDCBPn36cPXVV+PuPPTQQ3z88ceMGjUqri7/9VFCJiIiKRX0IDvKdiR14WYIJR9/+MMfeOedd/jDH/7Ali1b2LFjBz/96U955ZVXeOuttxgyZAgPPPAAALfddhsrV67kH//4B2VlZbz44ouRY+3Zs4e///3vfPvb3651no0bN7Jw4UL+/Oc/c8011zBq1Cjeeecd2rRpw8KFCykvL+f666+PxFJRUcGjjz5KeXk5U6ZM4YUXXmDZsmX8+9//jhzzrrvu4vzzz2flypUsXryY6dOnc+DAgaPOW9fSSRBKZm699VbWrVtHTk5OZM3Hr33ta9x77728/fbb5Ofnc+edd/hX3skAACAASURBVNZ67bRp07j55ptZuXIln/vc5yLbX375ZT744APefPNNiouLWb16NUuXLq33fPfccw9r1qzh7bffrrX80dlnn824ceO47777KC4u5rTTTqNjx46RdStnz57N9ddff9RrunTpQnl5Ofv27WPZsmUMGTIkskh5ly5daNu2LdOmTeOb3/wmK1euZN68eVHfo2nTpjFt2jRWrlzJySeffNRza9as4cEHH2T9+vX885//ZPny5XzjG9/g5JNPZvHixSxevDjqex4vJWQiIpIyQQ8y+S+TGf3saCb9ZRJBDybtXF/84hfp2LEj2dnZ9OvXj82bN7NixQrWr1/POeecQ2FhIU888QSbN28GYPHixZx11lnk5+fzt7/9jXXr1kWOdfnll9d5nosuuoiWLVuSn59PZWUlY8eOBSA/P5+SkhLee+89evbsyemnnw7Addddx9KlS9mwYQM9e/akV69emBnXXHNN5Jgvv/wy99xzD4WFhZx33nmUl5dHKkFVhgwZwmOPPRY1pp49e1JYWAjA4MGDKSkpYe/evezZs4eRI0ceFUdNy5cv58orrwTg2muvPSqml19+mYEDBzJo0CA2bNjABx98UOf5AAoKCrj66qt56qmnaNHi2IsF3XjjjcyePZvKykr+8Ic/cNVVV9Xa5+yzz2b58uUsXbqUO+64g6VLl7Js2bLImp2vvPIKt912G4WFhYwbN459+/bVWlD89ddfZ+LEiQC1znHmmWfStWtXAoEAhYWFkWtJNC2dJCIiKbOrfBfF24qp9EqKtxWzq3wXeW3yknKu1q1bR77PysqioqICd+eCCy7gmWeeOWrf8vJybrnlFlatWkW3bt2YMWMG5eXlkefbtWt3zPMEAgFatmyJhRdMDwQCkXPWxepYXN3dmTdvHr179z5q+6efflrnsaLFBKFrrxpCjFW0uNyd733ve3z9618/antJSUmd51u4cCFLly5lwYIF/OQnPzkqyY1m/Pjx3HnnnZx//vkMHjyY3NzcWvuMGDEiUhW75JJLuPfeezGzyGT8YDDI66+/Tps2beK65irRfm6SQRUyERFJmdzsXAq7FJJlWRR2KSQ3u/b/cJNp6NChLF++nA8//BAILVD9/vvvR5KvvLw8SktLE3pzQJ8+fSgpKYmc88knn2TkyJH06dOHTZs2sXHjRoCjksQLL7yQhx9+OJLMrVmzpsFxdOzYkU6dOrFs2bKj4qjpnHPOYe7cuQA8/fTTR8U0a9asyJy7f/3rX2zbtq3O8wWDQbZs2cKoUaP42c9+xp49eyKvrdKhQ4ejqlfZ2dlceOGF3HzzzUyaNCnqcc8991yeeuopevXqRSAQ4MQTT2TRokWcc845AIwZM4ZHHnkksn/VEGh1Q4cOjQyrVl3rsdSMtaGUkImISMqYGbMunMUrE19h9oWz66wQJUvnzp2ZM2cOV155JQUFBQwdOpQNGzaQk5PDlClTyM/P59JLL6WoqChh58zOzmb27NlMnDiR/Px8AoEAN910E9nZ2cycOZOLL76Y4cOH071798hrfvCDH3DkyBEKCgoYMGBArcn1UP8csro88cQTTJ8+nYKCAoqLi/nhD39Ya59f/OIX/PKXv6SoqIi9e/dGto8ZM4arrrqKYcOGkZ+fz4QJE+pNUCorK7nmmmvIz89n4MCBfPOb3yQnJ+eofa644gruu+8+Bg4cGElMr776asyMMWPGRD1ujx49gFBiBjB8+HBycnLo1KkTELqRYNWqVRQUFNCvX79ac9cgdMfkAw88wJlnnsknn3wS00LoU6dO5aKLLkrYpH4tLi4iIgmjxcUl0e6//3727t3LT37yk6Sd4+DBg7Rp0wYzY+7cuTzzzDNx3ckaTbyLi2sOmYiIiKSlyy67jI0bN/K3v/0tqedZvXo1t912G+5OTk4Os2bNSur5olFCJiIiImnpueeea5TzjBgxgrVr1zbKueqiOWQiIiIiKaaETEREEqopz00WSYTj+R1QQiYiIgmTnZ3Nzp07lZRJs+Xu7Ny5k+zs7LhepzlkIiKSMF27dmXr1q1s37491aGIpEx2djZdu3aN6zVpk5CZWTfgd8DngCAw091/Uf+rREQknbRs2ZKePXumOgyRJidtEjKgAvi2u79lZh2A1Wb2V3dfn+rARERERJIpbeaQufsn7v5W+Pv9wLvAKamNSkRERCT50iYhq87MegADgTeiPDfVzFaZ2SrNURAREZFMkHYJmZm1B+YB/+nu+2o+7+4z3X2Iuw/p3Llz4wcoIiIikmBplZCZWUtCydjT7j4/1fGIiIiINIa0ScjMzIDHgXfd/YFUxyMiIiLSWNImIQPOAa4Fzjez4vDXl1IdlIiIiEiypU3bC3f/X8BSHYeIiIhIY0unCpmIiIhIs6SETERERCTFlJCJiIiIpJgSMhEREZEUU0ImIiIikmJKyERERERSTAmZiIiISIopIRMRERFJMSVkIiIiIimmhExEREQkxZSQiYiIiKSYEjIRERGRFFNCJiIiIpJiSshEREREUkwJmYiIiEiKKSETERERSTElZCIiItIsBYPO9v2HcPdUh0KLVAcgIiIi0tiCQefK365g9ebdDO7eiWemDCUQsJTFowqZiIiIZLya1bCdBw6zevNuKoLO6s272XngcErjU0ImIiIiGa2qGjbs7le5YuYKgkEnr30rBnfvRIuAMbh7J/Lat0ppjBqyFBERkYwSDDo7Dxwmr30rzCxqNaxzh9Y8M2XoUfulkipkIiIikjHiqYYFAkbnDq1TnoyBKmQiIiLShDXFalg0qpCJiIhIk9RUq2HRqEImIiIiTVJTrYZFowqZiIiINAk1W1c01WpYNKqQiYiISNqrq5FrU6yGRaMKmYiIiKSdWBu5NsVqWDRKyERERCStNIVGrommIUsRERFJqUxpXdEQqpCJiIhIymRS64qGUIVMREREGo2qYdGpQiYiIiKNQtWwuqlCJiIiIkmhaljsVCETERGRhFM1LD6qkImIiEjCqRoWH1XIREREpMEyeVmjxqAKmYiIiDRIpi9r1BhUIRMREZGY1ayEQeYva9QYlJCJiIhITKJN1Ie6hycldhqyFBERkahibVthpuHJhlKFTERERGqJd4FvDU82jCpkIiIioiauKaYKmYiISDOnJq6ppwqZiIhIM6dqWOqpQiYiItLMqIlr+lGFTEREpBlRE9f0pAqZiIhIBqtZDVMT1/SkhExERCRDxdu6QlJHQ5YiIiIZQq0rmi5VyERERDKAWlc0baqQiYiINEGqhmUWVchERESaGFXDMo8qZCIiImlO1bDMpwqZiIhIGlM1rHlQhUxERCSNqRrWPKhCJiIikka0rFHzpAqZiIhImtCyRo0r6EF2le8iNzs35e+rKmQiIiIpomWNUifoQSb/ZTKjnx3NpL9MIujBlMajhExERCQFtKxR4wp6kB1lOyLJ767yXRRvK6bSKyneVsyu8l0pjU9DliIiIklWs20FaLJ+MtUciqyqhhVvK6awSyGzLpxFbnYuhV0KI9tys3NTGrMSMhERkSSqa15YVTWsanvNyfpyfKIlX9GqYXlt8iLPpcMcMiVkIiIiCRRrE1czTdZPhJrVsGjJV13VsIAFyGuTl+IrCEmrhMzMZgFfBra5+4BUxyMiIhKPaNWwuiphoGpYQ8U6FGlmaVUNiyatEjJgDvAI8LsUxyEiIhI3zQtLrliqYXUNRaZTNSyatLrL0t2XAqm9zUFERCRGauKaPDXviozWpqKqGpZlWVGHIpvS+51uFTIREZEmQU1ck6epTsxviJgqZBbSLdnBxMLMpprZKjNbtX379lSHIyIizYSauCZPLD3CMqkaFk1MFTJ3dzN7Hhic5HhiiWUmMBNgyJAhnuJwRESkGYh3sr7ELpMm5jdEPEOWK8ysyN1XJi0aERGRNBBr6woNT8YvkyfmN0Q8k/pHAa+b2UYze9vM3jGztxMZjJk9A7wO9DazrWZ2QyKPLyIicizxLGmk4cn4pN3E/GAQSreBp37ALZ4K2UVJiyLM3a9M9jlERESqUzUseRpSDUt8MEE4uAPadQaz0OMnvgxb3oBuZ8F1L0Igdc0nYj6zu28GcoCvhL9ywttERESaJFXDEiet21RUJV8P9IU5F3+WnG15A4IVof8e3JGcc8co5gqZmU0DpgDzw5ueMrOZ7v5wUiITERFJMFXDkiPt2lTUrIZFS77adQ5VxqoqZO06JyeWGMUzZHkDcJa7HwAws3sJzfdSQiYiImkvnjsltaRR3WoOQ0L9bSqSvn5kLEOR0ZIvs9Bz1V+bQvEkZAZUVntcGd4mIiKS9lQNa7holbCABVLXpiJa8hWtGta+S/TkKxAIPZcG4knIZgNvmNlz4ceXAo8nPiQREZGGqzk8qWpY/GKdlF9X8pX0alg8Q5FplHxFE3NC5u4PmNkSYDihytgkd1+TrMBERESOl5Y1il/N5CvWhq1VNBTZMDElZBb6qe3q7m8BbyU3JBERkfjEOllf1bDo0nJSfoYMRcYqprYXHrqH9fkkxyIiIhK3eFpXSEjarR1Zs0FrfUORgRbRhyKbSCWsLlo6SUREmhS1rmiYlK8d2cyGImMVT0I2Cvi6mW0GDhCaR+buXpCUyERERGpQ64r4pdXakWk2FLlp0ybef/99+vfvT9euXRN23OMRzxyymwB15hcRkUZRsxIGal1xLA2ZmJ+UhbvT+K7IQ4cO8fLLfyU7O5uPPtrC5MmTyMrKStr5jiWmhMzd3cx+7u6Dkx2QiIhIXXdJqhpWt5RPzG9iQ5FZWVm0a9eOvXv3kZt7YsoTec0hExGRtFNXJcxMrSuqxDIU2ajd8tNoKDIWLVq04JJLxrF9+3ZOOukkAilcWBzin0N2k5mVoDlkIiKSQLE2cQVVwyDFE/NrVsIgrYYi49GhQwc6dOiQ6jCA+BKyi5IWhYiINFtq4npsKZuYH8swZCCQVkORTVU89bmPgBHAde6+GXDgpKREJSIiGSsYdLbvPxTpgRVteBI+q4QpGQtVw0Y/O5pJf5lE0ION0yOsKvl6oC/Mufiz5KxmJQw+S76+9S5cv7D2UGQz/zeMRTwVsl8BQeB84MfAfmAeUJSEuEREJAPF07aiuWpINaxhJ27AHZGQVkORTVE8CdlZ7j7IzNYAuPtuM2vevzUiIlIvNXGtX8raVDSxOyKbg3gSsiNmlkVoqBIz60yoYiYiIlKLmrjWL2VtKprgHZHNQTwJ2UPAc0AXM7sLmAB8PylRiYhIk6NqWN1qVsKg/vUjk1oNa6J3RGa6mBMyd3/azFYDXyTU8uJSd383aZGJiEiToWpY3aJVwgIWSE6bCg1FNlnxVMhw9w3AhiTFIiIiTYSqYXWLdVJ+XcnXcVfDNBTZpKW2La2IiDQ5VdWwYXe/yhUzVxAMeqQa1iJgUathmZqMBT3IjrIdkRYe8bSogAa2qQgGoXQbhM9d71BkoEX0ocgM/XdpiuKqkImIiKgaFtKok/I1FJnxVCETEZF61WzkqmpY6H2ob1J+Qhu2xtqgVc1Zm7RjVsjMbD/hVhc1nyK0luUJCY9KRETSgpY1CmnUtSN1V2SzdMyEzN3TY9VNERFJulgn62f6nZKNtnakhiIlLK45ZGbWCegFZFdtc/eliQ5KREQaX3Nd1iil3fJ1V6SExZyQmdmNwDSgK1AMDAVeJ7S2pYiINDFqXdGIE/NrVsJAQ5FylHgm9U8jtJD4ZncfBQwEticlKhERSarm2rqiUSbm12xHEW1SPkRvSVHXxHzJePEMWZa7e7mZYWat3X2DmfVOWmQiIpIwqoY10sT8eIYh65oHpmpYsxRPQrbVzHKA54G/mtlu4OPkhCUiIonSXJc1apSJ+Q25IxKUfElEPGtZXhb+doaZLQY6Av+TlKhERCRhVA1L0MR83REpSRTPpP7WwHigR7XXFQI/TnxYIiJyPGoOTQKqhiViYr7uiJQki2fI8s/AXmA1cCg54YiIyPGqq4mrWWY1cm2UNhVqziqNLJ6ErKu7j01aJCIiEpdYJ+pD5lTDktKmQkORkgbiaXvxmpnlJy0SERGJWTxtK5qqmi0qIAltKrROpKSJeCpkw4HrzWwToSHLqrUsC5ISmYiIRDS3thXRKmEBCzS8TYWGIiVNxZOQXZS0KEREpE7NoW1FrJPy60q+os4N01CkNCHxtL3YbGZnACPCm5a5+9rkhCUi0nxlejWsIZPyIcaJ+borUpqYeNpeTAOmAPPDm54ys5nu/nBSIhMRaYYyvRqWtLUjNRQpTVw8Q5Y3AGe5+wEAM7uX0OLiSshERI5Tc6uG1TcpP+YWFRqKlAwUT0JmQGW1x5XhbSIichyaYzUsIZPyNRQpGSiehGw28IaZPRd+fCnweOJDEhFpHppjNSyutSNrVsJAQ5GSsWLuQ+buDwCTgV3AbmCSuz+YrMBERDJNMOhs338o0lerrr5hVdWwdE7GavYIq6qGjX52NJP+MomgB+PrDxYMQuk2qOo5Fq0/GHyWfAVa1B6KrNkjTKQJseoN95qaIUOG+KpVq1IdhojIMdW1rFG0tSfTXV0T80c/O5pKryTLsnhl4ivktcmrVTWLfsA6hiEf6BuqhAVahJKtqmpXtMqZSBNgZqvdfUi0545ZITOz/w3/d7+Z7av2td/M9iU6WBGRTFCzGhZteBKaZjWswd3ya1bD6huGrF4Jq6Lu+JKBjjmHzN2Hh//bIfnhiIg0ffFM1k93DZ6YrzsiRWISTx+ye939O8faJiLS3GRS64qETszXHZEiMYtncfELomzTckoi0qzFs8h3ug9PJnxifjxDkRqGlGbumBUyM7sZuAX4gpm9Xe2pDsDyZAUmIpKOmlo1rOzAIXZ+specvPa0z2l71HMNqYZpKFIksWIZsvw98D/A3cB3q23f7+67khKViEgaaoqNXN/8n3fYs2M/rdq2pPCS/+BzJ5wU9/qRGooUSb5YJvXvBfYCVyY/HBGR9JXu1bCa3J2yg4dp2aYlj1b+Nx/9edPxrR+pdSJFki7mOWRm9oSZ5VR73MnMZiUnLBGR1GuKjVyrt6gwM866cABtu7Xgo6xNsbWpcMirDH62Ll60Bq1qziqScPEsnVTg7nuqHrj7bjMbmISYRERSrq5GrulaDYPoLSo6nXQCI7ucReFfYmhToaFIkZSJJyELmFknd98NYGYnxvl6EZG0FK1bfl3Dk+kyNwxin5RfV4+wqmpYhIYiRVImnoTqv4HXzOxP4ccTgbsSH5KISOOpqxKWbo1cayZf8UzKhyjJl+6KFEkrMSdk7v47M1sFnA8Y8FV3X5+0yEREkiDWthVm6TM8WdfakXFNytdQpEhai6cxLMAnwJvAWiDPzM5NfEgiIskRTxNXSN1k/QatHVlzUj6oQatIExDP0kk3AtOArkAxMBR4nVDFTEQk7TS1Jq4Q59qRFzzGrt0fknvi6XVPyg8ENBQp0gTEM4dsGlAErHD3UWbWB7gzOWGJiDRMU2nietzd8oNBAr8bR14sw5B1JV8aihRJG/EkZOXuXm5mmFlrd99gZr2TFpmISByaQjWsIRPzG3RHJCj5Eklz8SRkW8ONYZ8H/mpmu4GPkxOWiEjsmkI1LK6J+bEMRWoYUiSjxJSQWejPyG+EG8POMLPFQEfgpWQGJyISi6ZQDatvYv5R1bB4hiI1DCmSMWK6y9JDt/o8X+3x3919gbsfTmQwZjbWzN4zsw/N7LvHfoWINEfpvqRRVTVs9LOjmfSXSQQ9GPWuyKqJ+a98aS6zx8wKxak7IkWapXiGLFeYWZG7r0xGIGaWBfwSuADYCqw0swXqdSYi1aXjkkYxT8yPMhRZqxqmoUiRZimehGwU8HUz2wwcINQc1t29IEGxnAl86O7/BDCzucAlgBIykWYs1sn66TQ3TEORIhKvYyZkZvaku18LzASeS2IspwBbqj3eCpwVJZ6pwFSAU089NYnhiEiqxTNZv9FiOt5q2IHtWidSROoUS4VssJl1ByYBTwDJqpVHO67X2uA+k1ByyJAhQ2o9LyJNV7q1roi5TUXnQoq3H6MapqFIEalHLAnZrwndTfkFYDVHJ04e3p4IW4Fu1R53RW01RJqNdGtdEXObitYnMuvfn7LrX/8it/LzmLuGIkUkbsdMyNz9IeAhM3vU3W9OYiwrgV5m1hP4F3AFcFUSzyciKZRO1bCalTCoZ/3ImtWwA9sJbHmTvGAFbHlTQ5EiclxintSf5GQMd68ws9uAvwBZwCx3X5fMc4pIaqRTNSxaJSxggajJl7nXroZpKFJEEiCeuyyTzt0XAYtSHYckn7sT3LcbWrQkq12HVIcjSZbO1bC6JuVHTb4O7qhdDdNQpIgkQEyNYUUS7fBH/6T0tb9xYPkrVO7dnepwJAaH9h7gcGlZ3K+rqoYNu/tVrpi5gmDQG62Ra9CD7CjbEWkgW2fD1s5HN2wFPku+Kg5jNYci1aBVRBIs5gqZmfWr2aTVzM5z9yUJj0oyXnDvbiyrBX7kMMGyg2R17JTqkKQe+zZ/ysevrceyjFO/OIg2uSfE/NpUVcMaNCnfTEORItKo4qmQ/dHMvmMhbczsYeDuZAUmma3Vab3JyjmRVqf2pEXeSakOR46hbMc+LMsIHqnk0N4Dde5Xc0kjaLxljWpWw6JOym/VicJgFlnuFAazyG3VKXolDD5Lvr71Lly/sPZQpJIxEUmgeOaQnQXcC7wGdACeBs5JRlCS+bLadaDdmeemOgyJUadep1C2cy9ZrVrS/uTcqPvUtaSRWfKXNYq1P5gd2M6sj0rYRZBcAljZzrrviATNAxORRhNPQnYEKAPaANnAJncPJiUqEUkrrU5oS48xQ47aFutEfUj8nZIxTcyPNhTZrjOBbmd91rBVw5AikibiSchWAn8GioBc4DdmNsHdJyQlMhFJW6lc0ihqNSw8FFlMBYVeYyhSd0SKSBMQT0J2g7uvCn//b+ASM7s2CTGJSJpJZduKmKphlcHYhyKVfIlIGoqnMewqM+sE9CI0ZAmwOSlRiUjaaMwmrlHXjnxpcmQeWJ3VsEBAQ5Ei0qTF0/biRmAaoTUmi4GhwOvA+ckJTURSIVXVsKhtKg7upPjT1VQaFP97NbsO7iTPvXY1TEORItLExdP2Yhqh+WOb3X0UMBDYnpSoRCQlGrOJa0xtKoJBCg8dCrWpOHSI3GDws4n5BDA1ZxWRDBHPHLJydy83M8ystbtvMLPeSYtMRBpdo1bDYhiKtOwAs1qdxq6tq8g9ZQhWlXBpKFJEMkw8CdlWM8sBngf+ama7gY+TE5aINIaaw5ONNTcsnqHIwHULydNQpIhkuHgm9V8W/naGmS0GOgIvJSUqEUm6uhq5NqQaVjPxqtpWqxoWHoosbt2KwkOHQ0OR7bvUnpgPSr5EpFmIp0IW4e5/T3QgIpJcsU7WP95qWLTEK2CB6NWw9l00FCkiUs0xEzIz2w94tKcAd/fYVxmWuHmwkspPN4IZWV2+gAWyUh2SNEHJaOQa0zBku87Rq2FmGooUEanmmAmZu3dojEAkusp/f0DFB6+HHwVo8bnTUhqPNA3Jbl0R8zAkYNGqYaDkS0SkmuMashSR9JWMRq7Bygp27f6Q3BNPxwJxDENC3dUwERGJiGfIMtqnqIYskyzrc73AAuEhyx6pDkfSUKKrYbW65VdWMPnJsyjmEIW0Zta1b8Q3DAmqhomIHIOGLNOcBbJo8fnTUx2GpKlEV8OiDUXu2v0hxRyi0oxiP8Su3R+Sl9tbw5AiIgkU15BllLUscfeliQ5KRKJLeDUshqHI3BNPp5DWFHuoQpZ74ukahhQRSTCtZSnSRCS8GhbjUKQFAsy69o2jErfwSVQNExFJkHgqZFVrWa5w91Fm1ge4MzlhiUhNCa+GxTEUGchqQV5en8a6VBGRZkdrWYqkqQYtaxQMHtVgNWo1TEORIiJpQ2tZiqShBi1rFAwSfOJidv0rXOW6bmH0alheHw1FioikiUAsO1nok/8b7r7H3WcAPwAeBy5NYmwizUIw6Gzffwj3zxbEiDY8CZ9Vw6onY8HKCnbs2ICHG7EGD2xj8uGNjO56EpMObyR4YFukGpbl/lk1jM+GIiPJmIiIpERMFTJ3dzN7Hhgcfqy1LEUSoK5KWJ3LGsUwFLkrqwXFrVuH7pRs3ZpdWS3Iq2tivoiIpIV4hixXmFmRu69MWjQiGS7WthVmUYYnYxyKzM3tTeFJg0O9xE4qJLdNLqCJ+SIi6SyehGwU8HUz2wwc4LPFxQuSEplIhol3ge8ATmfbC3QOvT48FFnc9SQKD21kVrWhyOoT882MWWNnHdVtX0RE0ls8CdlFSYtCJAPF3MT1xjPZtf1jcruc8lnyFK0aFsdQZMAC5LXJS+HVi4hIPGKeSOLum4F9wElA92pfIlJDVTVs2N2vcsXMFQSDHqmGtQjYZ9WwYBB+92V4bBA8cXHoMXVMzG+TS+FJg8myLAo/N7jWUKTmhYmINF3q1C+SBLFWw4Kln9Yahgx0+Fz0apiGIkVEMlY8f1JXderf7O6jgIHA9qREJdLE1Gxdkde+FUNO7chJgb0MPjWnzmrYZ4mXRRIvoO5qWHgoUsmYiEhmUad+kQaK2roC55lWd0H2G9D6LMxfjD4pv/1JUe+I1MR8EZHmRZ36ReIUbbL+W5t3khPcx+rNoec621586xvsIkjuljfg4I64hyE1MV9EpPmIOSFz98vC384ws8VAR+ClpETVTAV3vw97N0JeAYH2p6Q6HIkiGHSumvkamz7aTI9Te/DM1GHktWvBc+3vpnPFBna06ENeu7EEyWXyqT0+a9jaNpdcC0TvD5bgxMuPHCZ4YB+B9jlYi3j+5hIRkVQ5rk9rdepPPD9civ9rCbRoC5tfxvtdr2GqNFCrGlZazjc//haDWr7PWx+fzs7SJeTaXu7P3U5x689TeGg7sw5sZ1eLFhQHKql0o9gq2XVoN3lti/JyyQAAGi5JREFU8pI+DOmVFRxcuYTK/Xtpmfc52gwekfBziIhI4sVzl2U2cAswHHDgf4FH3b08SbE1L1mtQsnYkf3Q9mQlY2kgajXM9tEx8AF7AzAo+AEtbB87owxF5mbnUtilkOJtxRR2KSQ3OznVsJr8yBGC+/cR6NCRil3b8WBQ7TBERJqAeCpkvwP2Aw+HH18JPAlMTHRQ6cTL9uIHdmInfA5r1TZp57GsVgS+cAmU74K2JyXtPFK3YGXlZy0pAoHo1bD2eUzt0fOzoch2eVGHIs2MWRc2/qT8QHYbWvfO58i/Smg9YLCSMRGRJiKehKy3u59R7fFiM1ub6IDSiVccpmL9/+CHDmLtc2mRPy6p/2O1Vh2gVYekHV/qFqysZMO9Izn90Drebd2fPt/5e/Rq2KGsmIciUzUpv1WP3rTqoRugRUSaknj+fF5jZkOrHpjZWcDyxIeURrwSP3IYa9UGDpdBuMeUNH3Bykp2/HsLHu6Mv2v7x5x+aB0tLMjph9axa/vHeLtQNWz0qacwpUdPvF1eZCgyy7KiDkVqqFlERI5HPBWys4CvmdlH4cenAu+a2Ttk6CLj1rINWaePwnd/RKDL6Rr+aaqCQTi4A9p1BrOo1bDcLqewrnW/yJ2S/bqcws5Du6JXw1IwFCkiIpktnoRsbNKiSGNZJ3aDE7ulOgw5XsEgPPFl2PIGdDsLrnuRXds/5j8OrWNPFvQKV8NOPOkU7h/Yi+LtByjs3ItZRsom5ouISPMTTx+yzckMRCQhalTDOLgD3/IGFqwI/ffgDjp1/jxXntKd91tVcPrhFjzT+fPsKt9F8fZiKr2S4u3F7CrfpWqYiIg0Go3BSdMUDELptqPn9VVVwx7oC3NCa0UG2+SxrkUfPg20YH2LPgTb5PH/2rv/KLvr+s7jz/edye8ETCYJMfwIUiPFpTQ0EcUfpa3p0arLov2la48ICIe152x73O7RLtt2j67HRbu2p7XbNY2sdEXahUrRUleQ2tqyBksgghKFRJuCWiSZgOQH+XXf+8f9Thhm7szcmbn3fu7MPB/nzMl87/3O976/X4Z7X/P+fL7f7/6jT/HIQjgRwSMLYf/Rp5wbJkkqyst4a+ZpMgxJrda0G/ZkfRm/tHyAvkVncOLwAF86eITVy0YPRZa6TIUkSWAg00zQZBiSx+6F+vHGv4f2wtLV1Bet5OH+Hz05Mf+8RSvpOzJI36I9EHX6Fu2hr/8gEYuahi/nhkmSSpl0IIuIfwtcCpwAAvhcZt7c7sI0R40MX826YUtWceKMi9j/vftYcfomaktWAfDkwSNNu2EbT7uw4/ePlCRpOqbSIbskM986tBARfwQYyDR9zcJXk27Y8UUDvIpFHDpjLYvri7inXqe/r4++/oPNu2Edvn+kJEnTNZVJ/Qsi4o0RcUFEvAFY1O6iNEeMnJjfbCiy6obt7Z9P/cyLYMkqdg8+wcHabog6B2u72T34BAADixrdsL7oY+OaC0d1wwxjkqReNZUO2buBtwA/BjwO/GpbK9Ls1OJQJGe+/LnHlqzieL0+qhu2fmANS+o/wsHabpbUf4T1A2sAGhPz7YZJkmagSQeyzDwEfGpoOSLeC1zfzqI0y7Q4FMnS1dTf8VkG9+9iYMVLiIiT3bAY1g07d9Va7rn8FnYPPsH6gTXUht1BwblhkqSZaCqT+v/P8EVgAwYyDdfKWZFLVlE/8yIGv3sfA6dvIpasop51rrzzXY0J+Ks3cMPrbhizG9bf18e5q9YW3lFJktpjKkOWP8zMdw0tRMQft7EezTRTHIqsk1y55jR29J3OhtWncQPJvkODbH/iAYg62//lAfYdGmTVkpVjdsMkSZotphLIPjhi+bp2FKIZaBpDkYOH9z13q6IfNG5VlCeWcuLwOmqL9lA/vI48sRSwGyZJmv0m3W7IzO+MWB5sXznqaS2eFcmZL4da/3PdsKxz5V3vYvNfv5Ur7rySetZZPn8FC46fQ2aNBcfPYfn8FaxatoDza+/l2d3/ifNr72PVsgVl91eSpC5puUMWEe9p8vDTwPbM3NG+ktQTpjgUSUTzbtgPRnTDji9j364rOREHeDaXMXjoGKuWLeDPrn4l+w4eZeXS+Z4lKUmaMyYzZLmp+vpctfxG4B+BayPilsz8cLuLUyGTGIo8+dxQGKu6YUP3ibzhdTec7IYdrO1mwYlGN6y2MNi4boDte2psXLeclUvnA1CrhZ0xSdKcM5lANgD8RGYeAIiI3wFuBX4S2A4YyGaqFs+KHNUNA+oBg301Bmiccjv47GDL3bCbr36F3TBJkphcIDsLODps+RiwLjMPR8SR9paljhgZvIYem+JQZD3rXPmFK+2GSZI0TZMJZJ8GtkXE7TSaIW8Cbo6IJcDDnShObdQseNVq0xqKtBsmSVJ7tHyWZWZ+ALgaeKr6ujYz35+ZBzPz7Z0qUFPUyhmR0PSsSGgMRe7tq1H9dNPw1exMyZVL57Nx3QB9eQob160Y1Q0zjEmSNNpkr0N2HKgDSWPIUr1gqmdEQmP9Zt2wEUORAwsH2LB6w8nHBhYOsPfAUbthkiS1wWQue/FrNDpkf0FjyPJTEbElM/+wU8WpBdM4I/LkJlqYmL9y0Uq2/uwnTl4xPyJOdsOcGyZJ0vRMpkN2FfDyzDwIEBHXA18Bph3IIuIXgf8CnAdclJn3TXebs1Ybz4gEWu6G1evJ27d+le179rNx3XJuvvoV1GphN0ySpDaYTCAL4MSw5RM897k+XV8H3gJ8vE3bmx2mcXHWVoYha1FruRu298ARtu/Zz/F6sn3PfvYdPMqqZQvshkmS1AaTCWT/C7g3Im6jEcQuA25oRxGZuROwwzLcNIciWx2GbLUb1hieXH7ysaHhSUmSNH0tB7LM/GhE/C3wKhqf8Zd7y6Q2msZQJLVaI5gNbarFYUhohOBWu2EOT0qS1BkTBrKIeAZOXv0Ahg1TRkRm5imtvFBEfBFY0+Sp6zLz9la2UW3nGuAagLPOOqvVH+stbRyKhEYAG3x2sBGyju5n3+DOpt2woWuHDSwcOBmoJtMNc3hSkqTOmDCQZeaydrxQZm5u03a2AFsANm3alBOs3nvaPBT5vG7Yqh9n6/rXsuL4YTYsW8uOZ773vG4YGeTx5//n3HfwqN0wSZIKm+x1yDRZHR6KfN7csCe/xv6zXsbA/MVsPf+XeGrtzzGweHXjNkf15G1/sm3UWZJ2wyRJKq8nAllEvJnG5TNWAXdExI7MfF3hsiavg0OREdF0Yv6ouWEv+gU4+E/0LTuHlQufC3NjdcIivHSFJEml9UQgy8zbgNtK1zEt071A6xQn5kfE6Llhi9dQryd7nzlyMmSNd5ak3TBJksrqiUA2I7VxKBJa64aNNTG/FjVWLlo5rLTmw5N2wiRJ6k0t31x8zhp5k+6hx258E3z0PPjkGxvLzW7SPTQU+Z6d8M47nne7oue9RNUN23zLZq74whXUs36yG9YXfc+bmD8UvoYHqno9efKZI2RVY7PhSZi7N/hO6tR5nDq7qHOgdDmSJI1ih2w8zYYha7VpDUXC9Lpho0sc3Q3zIq4jPQscBOYDg8DSsuVIkjSCgWw8YwWvaQxFTuairSOHIqERwIYPO3rZilbMB+YBx4AXFK5FkqTRDGTjGSt4jXFW5EgTXqaig90wJ+o/J+gH1gF1gnmly5EkaRQD2XjGC15THIq0G1ZG0Af0lS5DkqSmDGQTaRK8mpnWZSqabc9umCRJc4aBbIraeZkKsBsmSdJc5mUvJlDPOnsP7z15SYmhx6ZzmYpRr1F1wy7+0N28dcs26vU82Q3rr0XTbphhTJKk2cMO2TiaDUPWojatifnN2A2TJGlus0M2jmbBC5hWNwxGX8jVbpgkSXObHbJxjHVGZKsT85vxtkaSJGkkA9k4xgtezSbmN9PqZH3PlJQkae5yyHICrQ5DNjOZyfqSJGnuskPWRuN1w+7bs58nv/t3rDplMZ++aiODh9PhSUmSBNgha5sJu2Gn9zPQ/wPy0C5qx/7FyfqSJOkkO2RTNNkLua6o7YFn7gf6oW9J6fJ7SmYdSCK8tZEkaW4ykE3BVG5rlLke5g1A9BPzTi28B70j8xj13AMcJ/J0arVlpUuSJKnrDGRTMJULuUYEzB8oVHEvOwwcBeaRPA0YyCRJc49zyCYw8iKu4IVc22sRsAA4QfCC0sVIklSEHbJxjHUR1wgv5NouEfOocQ6NOWT+fSBJmpv8BBxHs6HJIXbD2iciDGOSpDnNT8FxeBFXSZLUDQ5ZjsOhSUmS1A0Gsgl4j8mpO3H0u9QPf4va/LXUFp5roJUkaQwOWapj6oceguinfmQX1A+VLkeSpJ5lIFPHxLzT4MTTRG0Z1OwySpI0Focs1TF9iy+AhedALCbCXzVJksbip6Q6JqIP+rxNlCRJE3HIUpIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBrI2yPox8vih0mVIkqQZyntZTlMeO0h+53Y4foB84U9RW/6S0iVJkqQZxg7ZdB3ZRx59muxfAk8/UroaSZI0AxnIpmvhamLxGuLEszBwQelqJEnSDOSQ5TRF/0J40WVAEmG+lSRJk2cga4OIAKJ0GZIkaYaypSNJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmE9Ecgi4iMR8c2IeDAibouIF5SuSZIkqVt6IpABdwHnZ+YFwCPAbxauR5IkqWt6IpBl5p2Zebxa3AacUbIeSZKkbuqJQDbClcDnx3oyIq6JiPsi4r4nn3yyi2VJkiR1Rn+3XigivgisafLUdZl5e7XOdcBx4KaxtpOZW4AtAJs2bcoOlCpJktRVXQtkmbl5vOcj4nLgTcBrM9OgJUmS5oyuBbLxRMTrgfcCl2TmodL1SJIkdVOvzCH7GLAMuCsidkTE/yxdkCRJUrf0RIcsM19cugZJkqRSeqVDJkmSNGcZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYT0RyCLiAxHxYETsiIg7I2Jt6ZokSZK6pScCGfCRzLwgMzcAfwX8dumCJEmSuqUnAllm/nDY4hIgS9UiSZLUbf2lCxgSER8E3gE8Dfx04XIkSZK6JjK704yKiC8Ca5o8dV1m3j5svd8EFmbm74yxnWuAa6rFc4FvtbvWglYCe0sXUdhcPwbu/9zef/AYuP9ze/9hdh+DdZm5qtkTXQtkrYqIdcAdmXl+6Vq6LSLuy8xNpesoaa4fA/d/bu8/eAzc/7m9/zB3j0FPzCGLiPXDFi8FvlmqFkmSpG7rlTlk/y0izgXqwB7g2sL1SJIkdU1PBLLM/PnSNfSILaUL6AFz/Ri4/5rrx8D915w8Bj03h0ySJGmu6Yk5ZJIkSXOZgayAiHh9RHwrInZFxPuaPP+eiHi4up3U3dWZp7NGC/u/ICL+vHr+3og4u/tVdkdErIiIuyLi0erf5U3W2RARX4mIb1S/E79cotZOaGX/h617SkR8NyI+1s0aO63VYxARZ1W3lttZvT+c3d1KO2MS+//h6v+BnRHxBxER3a61EyLiF6v9qkfEmGcWTvS+OZO1cgwi4syI+FL13/8bEfFr3a6z0wxkXRYRfcAfAT8HvBR4W0S8dMRqDwCbMvMC4Fbgw92tsnNa3P+rgP2Z+WLg94Dru1tlV70PuDsz1wN3V8sjHQLekZn/Cng98PsR8YIu1thJrez/kA8Af9eVqrqr1WPwpzRuM3cecBHwgy7V12kT7n9EvBJ4FXABcD7wMuCSbhbZQV8H3gJ8eawVWnzfnMkmPAbAceA/VL//rwB+dZYdAwNZARcBuzLz25l5FPgz4N8MXyEzv5SZh6rFbcAZXa6xkybc/2r5xur7W4HXzpa/hpsYvq83ApeNXCEzH8nMR6vvv0fjg7jphQVnoAn3HyAiNgKnAXd2qa5umvAYVB88/Zl5F0BmHhj2HjHTtfI7kMBCYD6wAJgHPNGV6josM3dm5kQXOG/lfXPGauUYZOb3M/P+6vtngJ3A6d2or1sMZN13OvDYsOXHGf+X6irg8x2tqLta2f+T62TmcRq30xroSnXdd1pmfh8abzjA6vFWjoiLaHwo7e5Cbd0w4f5HRA3478B/7HJt3dLK78BLgKci4jMR8UBEfKTqmswGE+5/Zn4F+BLw/errC5m5s6tVljXZz41ZrRquvxC4t2wl7dUTl72YY5p1epqe6hoRvwJsYva05qG1/W/5GM0E4902bJLbeSHwv4HLM7Pejtq6oQ37/27grzPzsZnaKG3DMegHXkPjQ+ifgT8H3gl8oh31ddp09z8iXgycx3OjBXdFxE9m5nhDXD2j1VsHjreJJo/NqPfENhyDoe0sBf4C+PXM/GG76usFBrLuexw4c9jyGcD3Rq4UEZtpvFldkplHulRbN7Sy/0PrPB4R/cCpwGB3ymu/zNw81nMR8UREvDAzv18FrqbzgiLiFOAO4D9n5rYOldoRbdj/i4HXRMS7gaXA/Ig4kJkzZmJzG47B48ADmfnt6mf+ksY8mhkRyNqw/28GtmXmgepnPk9j/2dEIBtv/1vU0udGL2vDMSAi5tEIYzdl5memX1Vvcciy+/4RWB8RL4qI+cBbgc8OXyEiLgQ+DlyambNl4u6QCfe/Wr68+v4XgL/J2XvBvOH7ejkw6i/F6jjdBvxpZt7Sxdq6YcL9z8y3Z+ZZmXk28Bs0jsOMCWMtmPAY0Pj/ZnlEDM0d/Bng4S7U1g2t7P8/A5dERH/1oXwJjTlEc0Ur75uzWjWP+BPAzsz8aOl6OiIz/eryF/AG4BEa84Cuqx57P40ABvBFGhNWd1Rfny1dc5f3fyFwC7AL+CpwTumaO3gsBmicWfZo9e+K6vFNwNbq+18Bjg37fdgBbChde7f2f8T67wQ+VrruEscA+FngQeAh4JPA/NK1d2v/gT4af6TupBFEP1q67jbu/5tpdMCOVO/7X6geX0tjqH5ovVHvm7Plq5VjALyaxjDtg8PeB99QuvZ2fnmlfkmSpMIcspQkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJaquIOFC6hnYYvh/t2KeIODsiDkfEjulua5zXWBQROyLiaESs7NTrSGo/A5mkOSkauv0euDszN3Rq45l5uNr+jLrPoSQDmaQOiYj3RMTXq69fH/b4b0XENyPiroi4OSJ+Y4rbP7vazo0R8WBE3BoRi4c9/5cRsT0ivhER1wz7mZ0R8T+A+4Ezm603wes22+7LqhoWRsSS6rnzW6x/a3WMboqIzRFxT0Q8GhEXjfV61eNLIuKOiPha9fO/PJXjKKk3eOskSW1VDe9dQuN+i68AAriXxj05+4CtwMVAP41Q9PHM/N0pvM7ZwHeAV2fmPRFxA/Dw0LYiYkVmDkbEIho3Z74EWAZ8G3hlZm4ba73M3BcRBzJz6dA+Dft+rPX/K437sC4CHs/MDzWp968y8/xhy7uAC4FvVNv6GnAVcClwRWZeNs7r/Tzw+sy8utreqZn5dPX9PwGbMnPvZI+rpDLskEnqhFcDt2Xmwcw8AHwGeE31+O3V0NozwOeGfiAizomIT0TErdXykqr79ScR8fYxXuexzLyn+v5T1faH/PuI+BqwDTgTWF89vmcojE2w3ljGWv/9NG4Avgn48ATbGPKdzHwoM+s0Qtnd2fgr+SHg7Ale7yFgc0RcHxGvGQpjkmYmA5mkTohJPk5mfjszrxr20FuAW6sO0KVj/Viz5Yj4KWAzcHFm/jjwAI3uFcDBk8WMv97o4sdffwWwlEYXbsxtjHBk2Pf1Yct1oH+818vMR4CNNILZhyLit1t8TUk9yEAmqRO+DFwWEYsjYgnwZuDvgX8A/nU112op8MZxtnEG8Fj1/Ykx1jkrIi6uvn9btX2AU4H9mXkoIn6UxtBpM62u18r6W4DfAm4Crp9gO60a8/UiYi1wKDM/Bfwu8BNtek1JBfSXLkDS7JOZ90fEJ4GvVg9tzcwHACLiszTmSu0B7gPGGmp7nEYo28HYfzzuBC6PiI8DjwJ/XD3+f4FrI+JB4Fs0hvuaaXW9cdePiHcAxzPz0xHRB/y/iPiZzPybCbY3kfHq+zHgIxFRB44B/26aryWpICf1S+qqiFiamQeqMyK/DFxTBbgB4IM05mFtBf4A+BjwLPAPmXnTiO2czbBJ8r2um/U6qV+aeeyQSeq2LRHxUhpzoW7MzPsBMnMfcO2Ida/odnEddAI4NSJ2dOpaZNWZmF8B5tGYhyZphrBDJkmSVJiT+iVJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmF/X+OItup8zEMSQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU9bX//9eacAlCIMhFS9GAHMo1MVyiICBiFbC2qEWO9yoo1Nu3ntNz8LR+e8G2/qrVr8dqe2y9AFateCxgUTnWarFwUCogwQuCiiaFeuGOhCQCmfX7YyZjSCZhhsxkT5L38/HIg8yePXuv2QzJYq3P/nzM3RERERGR4ISCDkBERESktVNCJiIiIhIwJWQiIiIiAVNCJiIiIhIwJWQiIiIiAVNCJiIiIhIwJWQiIiIiAVNCJiItlpm1N7OHzazUzPaZ2TozO6fG89eY2ftmVmZmz5tZrxrPmZndYWY7o1+/MDOr8fyZZva6mX1mZh+Y2aymfn8i0nIoIRORlqwNsAUYD3QBfgj8t5n1MbPxwP8HnAccC3wIPFHjtbOA84GTgQLg68C3AcysLbAY+G30uBcBd5vZyU3wnkSkBTLN1C8irYmZvQHcCowGOrj7DdHtvYB/AP/k7pvN7BVgvrs/EH3+amCmu48ys+OAT4CO7l4efX41cLe7P1H3rCIiDVOFTERajWgi9RXgbcCiX7Gno38Ojf45BFhf4/n10W24+6dEqmnTzSzLzEYDecD/pi96EWnJlJCJSKsQbTM+Djzi7huBpcA/m1mBmXUAfgQ4cEz0JZ2AvTUOsRfoVGMc2RPR13wOrAD+r7tvSf87EZGWSAmZiLR4ZhYCHgUOADcCuPtLwI+BhUApUALsA7ZGX1YGdK5xmM5Ambu7mQ0EngS+BbQjUjm72czOTfubEZEWSQmZiLRo0YrWw8BxwFR3P1j9nLv/2t37u3tPIolZG+Ct6NNvExnQX+3k6DaItDU3ufuf3D3s7puA54BzEBE5CkrIRKSlux8YBHzD3SuqN5pZtpkNjU5vcSLwAPBLd98d3eV3wHfN7MvRAf//BsyPPrcO6B+d+sLMrB+RuzBrjjkTEUmY7rIUkRbLzPKItCI/Bw7VeOrbRCpay4F+RFqV84AfuHtV9LUG3AFcE33NQ8B/ePSHppn9M5ExZHlExpc9Dnzf3cPpfVci0hIpIRMREREJmFqWIiIiIgFTQiYiIiISMCVkIiIiIgFTQiYiIiISMCVkIiIiIgFTQiYiIiISMCVkIiIiIgFTQiYiKWVmZU14riozKzazt81svZl9N7puZfXzrzTw2lwzu75pIq1z7j5mVmFmxTUev3Wk1yVw3A7R63HAzLo3PlIRaSpKyESkOatw90J3HwKcDXyNyILhALj7aQ28NhcIJCGL2uzuhak8oLtXRI/5USqPKyLpp4RMRNIiWq16K/r1LzW2/9DMNprZn83sCTP791Scz923AbOAG6PLHsWqdWbW0cyei1bR3jKzi4DbgX7RitKd0f2eNrO10YrbrOi2Pmb2jpk9GN3+gpl1iD73LTN7I3rcR2u8x8vN7LXosX9rZlmJvg8zO8nM1plZUfTcG83skeh5/mBmxzR0bhFpntoEHYCItDxmNgKYDpwKGPA3M/srkAVMBYYR+fnzOrA2Ved19w+iLcuewKc1npoMfOTu50bj6wL8DRhaq0o1w913RROu1Wa2MLq9P3CJu880s/8GpprZOuD/AmPcfYeZHRs99iDgouj2g2b2X8BlRBYrb5CZDQAWANPdvdjM+gADgKvdfaWZzQWuN7P/iXduEWm+lJCJSDqMBRa7+34AM1sEjCNSlf+ju1dEtz9T/QIzO4lIktHF3S80s47AfwEHgJfd/fEEz21xtr0J3GVmdwDPuvsKM+saZ7/vmNkF0e9PIJKIfQJ86O7F0e1rgT5AV+AP7r4DwN13RZ//KjCCSEIH0AHYlkDcPYA/AlPd/e0a27e4+8ro948B3yGyWHq8c4tIM6WWpYikQ7ykqKHtuPsH7n51jU3fJJJ0zASmJHTSSFJXRa0EyN3fJZIkvQn83Mx+FOe1ZwBnAaPd/WRgHZAdffrzGrtWEfnPrAEeLwzgkejYtkJ3H+DucxIIfy+wBRhTa3vtc3gD5xaRZkoJmYikw3LgfDM7JlrpugBYAfwv8A0zyzazTsC5DRyjN5EEBSJJUIPMrAfwG+BX7u61nusFlLv7Y8BdwHBgH5BTY7cuwG53LzezgcCoI5zyJeCfzaxb9BzH1th+oZn1rN5uZnlHip9IJfB84FtmdmmN7Sea2ejo95cQuYb1nVtEmim1LEUk5dz9dTObD7wW3fSQu68DMLMlwHqgFFhDpDIUz1YiSVkx9f/nsUN06oi2wCHgUeDuOPvlA3eaWRg4CFzn7jvNbGV0uon/AX4AXGtmbwCbgFVHeI9vm9ltwF/NrIpIRe0qd99gZj8AXoiOZzsI3BB9vw1y9/1m9nXgz2a2n8h1ege40sx+C7wH3B9NGuuc+0jHF5HMZbX+IykiklZm1sndy6J3Cy4HZkUTuG7AbUSmr3gIuBf4FVAJ/G8SY8gyXnSw/rPuPjQV+8V5XQkwsnqMmYhkPlXIRKSpPWBmg4mMz3rE3V8HcPedwLW19p3e1ME1kSqgi5kVp3Iusujdoa8SqRiGU3VcEUk/VchEREREAqZB/SIiIiIBU0KWgczsBDNbFp0d/G0zuynOPmeY2d7oTODFNW/jN7PJZrbJzN43s+81bfRNJ8HrNLvGNXrLImsfVk/gWWJmb0afW9P076BpRO9ofC06o/vbZnZrnH3am9mT0c/M36Jjl6qf+350+yYzm9SUsTeVBK/Rd81sQ3R2/Jdq3jlpX6ypWRy9aaFFSvA6XWVm22tcj2tqPHelmb0X/bqyaaNvOglep/+scY3eNbM9NZ5rFZ+namaWZZHVKZ6N81zr+dnk7vrKsC/gS8Dw6Pc5wLvA4Fr7nEFksG/t12YBm4GTgHZE7tIanO6YM/U61dr/G8BfajwuAboH/T6a4DoZ0Cn6fVsiM9SPqrXP9cBvot9fDDwZ/X5w9DPUHugb/WxlBf2eArpGE4Bjot9fV32Noo/Lgn4PGXSdriIy9Ujt1x4LfBD9s2v0+65Bv6egrlOt/f8PMLe1fZ5qvN/vAr+v53daq/nZpApZBnL3j/2Lgc77iNz2/uUEX34K8L5HJtk8QGQZlvPSE2mwjuI6XQI80RSxZRKPKIs+bBv9qj149Dzgkej3fwC+amYW3b7A3T939w+B94l8xlqURK6Ruy9z9/Low1VEpuRoVRL8LNVnEvBnd9/l7ruBPxNZ0qrFOYrr1Cp/NgGYWW8i8xE+VM8ureZnkxKyDBctzw4j8j+s2kZHS+L/Y2ZDotu+zBeTaUJkLqdEk7lm6wjXiegUC5OBhTU2O5G5otZadCHpliraEigmMoP9n9299nWKfW7c/RCRucG60Yo+Twlco5quJjJ3WbVsM1tjZqvM7Py0BhqwBK/TVPtiMfQTottazWcJEv88RVvffYG/1Njcaj5PwD3AzdR/V3Cr+dmkhCyDWWQm84XAv7j7Z7Wefh3I88gSL/cBT1e/LM6hWvSttEe4TtW+Aaz0w9f8G+Puw4FzgBvM7PQ0hxoYd6/yyPQKvYFTzKz2vFb1fW5azecpgWsEgJldDowE7qyx+UR3HwlcCtxjZv3SHnBAErhOzwB93L0AeJEvqhut5rMEiX+eiLTh/uDuNVejaBWfJ4tMgrzN3dc2tFucbS3yZ5MSsgxlZm2JJBmPu/ui2s+7+2fVJXF3Xwq0NbPuRP6XcEKNXXsDHzVByIE40nWq4WJqtQTc/aPon9uAxTTzcnci3H0P8DJ1W0Wxz42ZtSGyjNAuWtnnCRq8RpjZWUQWQJ/i7p/XeE31Z+mD6GuHNUWsQarvOrn7zhrX5kEia4hCK/wsQcOfp6iGfja19M/TGGCKRSYyXgCcaWaP1dqn1fxsUkKWgaL98YeBd9w93jIwmNnx0f0ws1OI/F3uBFYD/c2sr5m1I/KPvUXepZPIdYru1wUYD/yxxraOZpZT/T0wEXgrvREHw8x6mFlu9PsORBbQ3lhrtyVA9V1vFxK5+cGj2y+O3unUF+jPF8shtRiJXCMzGwb8lkgytq3G9q5m1j76fXciv2Q2NFXsTSnB6/SlGg+nEBnbCfAnYGL0enUl8m/uT+mPuukl+G8OMxtA5AaHV2tsazWfJ3f/vrv3dvc+RH5X/cXdL6+1W6v52aSZ+jPTGOAK4M3oGASAW4ATAdz9N0Q+mNeZ2SGgArg4+iE9ZGY3EvlBl0Xkzp23m/oNNJFErhNEFrZ+wd3313jtccDiaE7bBvi9uz/fJFE3vS8Bj5hZFpHE/b/d/Vkz+wmwxt2XEElsHzWz94n87/NiiK3X+N9EfiEcAm6o1VppKRK5RncCnYCnop+bv7v7FGAQ8FuLrJMZAm539xb5C5TErtN3zGwKkc/LLqJrbLr7LjP7KZH/NAL8pNYQgpYkkesEkcH8C6I/u6u1ps9TXK31Z5Nm6hcREREJmFqWIiIiIgFTQiYiIiISMCVkIiIiIgFTQiYiIiISsIxJyCyBxVhFREREWqKMSciAz4EzozPPFwKTzWxUwDFlvJa+5E8q6BolRtcpMbpOidF1OjJdo8S0luuUMQlZIxetbc1axQe1kXSNEqPrlBhdp8ToOh2ZrlFiWsV1ypiEDJJe3FdERESkRcjIiWGjS04sBv6Pu79V67lZRLPlrKysEe3btw8gwsxx6NAh2rTRggsN0TVKjK5TYnSdEqPrdGS6RolpSdepvLz8oLu3i/dcRiZkAGb2Y2C/u99V3z4jR470NWvWNGFUIiIiIkfHzNa6+8h4z2VMyzLRxVhFREREWppMqgHGXYw14JhERERE0i5jEjJ3fwMYFnQcIiIiIk0tYxIyERFp/g4ePMjWrVuprKwMOhSRwGRnZ9O7d2/atm2b8GuUkImISMps3bqVnJwc+vTpg5kFHY5Ik3N3du7cydatW+nbt2/Cr8uYQf0iItL8VVZW0q1bNyVj0mqZGd26dUu6SqyETEREUkrJmLR2R/NvQAmZiIi0aHPmzOGuu+qd0pKnn36aDRs2NGFEInUpIRMRkVZNCZlkAiVkIiLS4tx2220MGDCAs846i02bNgHw4IMPUlRUxMknn8zUqVMpLy/nlVdeYcmSJcyePZvCwkI2b94cdz+RdFNCJiIigXJ3Pj9UlbLjrV27lgULFrBu3ToWLVrE6tWrAfjmN7/J6tWrWb9+PYMGDeLhhx/mtNNOY8qUKdx5550UFxfTr1+/uPuJpJumvRARkcC4O6s+2Ml728ro37MTo05q/B2aK1as4IILLuCYY44BYMqUKQC89dZb/OAHP2DPnj2UlZUxadKkuK9PdD+RVFKFTEREAnOgKsx728o4Pieb97aVcaAqnJLjxkvqrrrqKn71q1/x5ptv8uMf/7jeaQkS3U8klZSQiYhIYNq3yaJ/z058sq+S/j070b5NVqOPefrpp7N48WIqKirYt28fzzzzDAD79u3jS1/6EgcPHuTxxx+P7Z+Tk8O+fftij+vbTySd1LIUEZFAjTqpG8PzuqYkGQMYPnw4F110EYWFheTl5TFu3DgAfvrTn3LqqaeSl5dHfn5+LAm7+OKLmTlzJvfeey9/+MMf6t1PJJ3M3YOO4aiNHDnS16xZE3QYIiIS9c477zBo0KCgwxAJXLx/C2a21t1HxttfLUsRERGRgCkhExEREQmYEjIRERGRgCkhExEREQmYEjIRERGRgCkhExEREQmYEjIREWlRSkpKGDp0aJOdb86cOdx1110J7fu1r32NPXv2NOoY0jJpYlgRERGgqqqKrKzUTE5bm7vj7ixdujQtx5fmTxUyERFpsT744AOGDRvG3/72N2bPnk1RUREFBQX89re/BeDll19mwoQJXHrppeTn51NSUsKgQYOYOXMmQ4YMYeLEiVRUVACwefNmJk+ezIgRIxg3bhwbN25s8NzVx7r++usZPnw4W7ZsoU+fPuzYsQOA2267jQEDBnDWWWexadOm2OtWr15NQUEBo0ePZvbs2bFqX1VVVdz3IC2DEjIREQlUOOxs3/c5qV45ZtOmTUydOpV58+axfv16unTpwurVq1m9ejUPPvggH374IQCvvfYat912Gxs2bADgvffe44YbbuDtt98mNzeXhQsXAjBr1izuu+8+1q5dy1133cX111+fUAzf+ta3WLduHXl5ebHta9euZcGCBaxbt45FixaxevXq2HPTp0/nN7/5Da+++uphFbuHH3643vcgzZ9aliIiEphw2LnkwVWsLd3NiLyuPDFzFKGQNfq427dv57zzzmPhwoUMGTKEn/3sZ7zxxhv84Q9/AGDv3r289957tGvXjlNOOYW+ffvGXtu3b18KCwsBGDFiBCUlJZSVlfHKK68wbdq02H6ff/75EePIy8tj1KhRdbavWLGCCy64gGOOOQaAKVOmALBnzx727dvHaaedBsCll17Ks88+C8ALL7wQ9z3UjF2aLyVkIiISmJ37D7C2dDeHws7a0t3s3H+AHjntG33cLl26cMIJJ7By5UqGDBmCu3PfffcxadKkw/Z7+eWX6dix42Hb2rf/4vxZWVlUVFQQDofJzc2luLi43nNu2bKFb3zjGwBce+21TJ48uc6xazKrm3g2VCWs7z1Iy6CWpYiIBKZ7p3aMyOtKm5AxIq8r3Tu1S8lx27Vrx9NPP83vfvc7fv/73zNp0iTuv/9+Dh48CMC7777L/v37Ez5e586d6du3L0899RQQSY7Wr19/2D4nnHACxcXFFBcXc+211zZ4vNNPP53FixdTUVHBvn37eOaZZwDo2rUrOTk5rFq1CoAFCxbEXtPY9yCZTRUyEREJjJnxxMxR7Nx/gO6d2sWtGh2tjh078uyzz3L22Wfzgx/8gMGDBzN8+HDcnR49evD0008ndbzHH3+c6667jp/97GccPHiQiy++mJNPPvmoYhs+fDgXXXQRhYWF5OXlMW7cuNhzDz/8MDNnzqRjx46cccYZdOnSBYBrrrmGkpKSRr0HyVyW6kGUTWnkyJG+Zs2aoMMQEZGod955h0GDBgUdRrNWVlZGp06dALj99tv5+OOP+eUvfxlwVJKseP8WzGytu4+Mt78qZCIiIhnkueee4+c//zmHDh0iLy+P+fPnBx2SNAElZCIiIhnkoosu4qKLLgo6DGliGtQvIiIiEjAlZCIiIiIBU0ImIiIiEjAlZCIiIiIBU0ImIiItSvWUER999BEXXnhhwNEcvZdffpmvf/3rjd6ntjlz5nDXXXc1JrQ6vva1r7Fnzx727NnDf/3Xf6X02A1ZsmQJt99+e4P7NHSN7rnnHsrLy2OPq99HEJSQiYhIi9SrV6/Yuo/pcujQobQev7lYunQpubm5TZ6QTZkyhe9973tH/fraCVn1+wiCEjIREWmRSkpKGDp0KADz58/nm9/8JpMnT6Z///7cfPPNsf1eeOEFRo8ezfDhw5k2bRplZWUA/OQnP6GoqIihQ4cya9as2DqTZ5xxBrfccgvjx4+vM2HrnDlzuPLKK5k4cSJ9+vRh0aJF3HzzzeTn5zN58uTYskcvvfQSw4YNIz8/nxkzZsQWKn/++ecZOHAgY8eOZdGiRbHj7t+/nxkzZlBUVMSwYcP44x//mNS1uO222xgwYABnnXUWmzZtim3fvHkzkydPZsSIEYwbN46NGzcCcNVVV/Gd73yH0047jZNOOimW2H788cecfvrpFBYWMnToUFasWAFAnz592LFjB9/73vfYvHkzhYWFzJ49myuuuOKwWC+77DKWLFlyWGzbtm1jxIgRAKxfvx4z4+9//zsA/fr1o7y8nO3btzN16lSKioooKipi5cqVsb/XG2+8MfZeRo0aRVFRET/60Y9ilVKITLZ74YUXMnDgQC677DLcnXvvvZePPvqICRMmMGHChMPeR0lJCYMGDWLmzJkMGTKEiRMnUlFRAcDq1aspKChg9OjRzJ49O/YZazR3b7ZfI0aMcBERyRwbNmxI/kVVVe77PnUPh1MSQ8eOHd3d/cMPP/QhQ4a4u/u8efO8b9++vmfPHq+oqPATTzzR//73v/v27dt93LhxXlZW5u7ut99+u996663u7r5z587YMS+//HJfsmSJu7uPHz/er7vuurjn/vGPf+xjxozxAwcOeHFxsXfo0MGXLl3q7u7nn3++L1682CsqKrx3796+adMmd3e/4oor/D//8z9j2999910Ph8M+bdo0P/fcc93d/fvf/74/+uij7u6+e/du79+/v5eVlfmyZcti+6xevdqvvvrqOjGtWbPGhw4d6vv37/e9e/d6v379/M4773R39zPPPNPfffddd3dftWqVT5gwwd3dr7zySr/wwgu9qqrK3377be/Xr5+7u991113+s5/9zN3dDx065J999pm7u+fl5fn27dsPu+bu7i+//LKfd9557u6+Z88e79Onjx88eLBOjIMHD/a9e/f6fffd5yNHjvTHHnvMS0pKfNSoUe7ufskll/iKFSvc3b20tNQHDhwY+3u94YYb3N393HPP9d///vfu7n7//ffHPgfLli3zzp07+5YtW7yqqspHjRoVO1Z13NVqvo+srCxft26du7tPmzYtdv2HDBniK1eudHf3//iP/zjs/dYU798CsMbryWk0MayIiAQnHIZHvg5b/gYnnApXPguh9DRvvvrVr8bWhRw8eDClpaXs2bOHDRs2MGbMGAAOHDjA6NGjAVi2bBm/+MUvKC8vZ9euXQwZMoRvfOMbAA1O3HrOOefQtm1b8vPzqaqqYvLkyQDk5+dTUlLCpk2b6Nu3L1/5ylcAuPLKK/n1r3/NGWecQd++fenfvz8Al19+OQ888AAQqeItWbIkNvarsrIyVkWqNnLkSB566KE68axYsYILLriAY445Boi0+SBSNXrllVeYNm1abN/qSh3A+eefTygUYvDgwXz66acAFBUVMWPGDA4ePMj5559PYWFhg9d8/Pjx3HDDDWzbto1FixYxdepU2rSpm3qcdtpprFy5kuXLl3PLLbfw/PPP4+6xNT5ffPFFNmzYENv/s88+Y9++fYcd49VXX42t7XnppZfy7//+77HnTjnlFHr37g1AYWEhJSUljB07tsHY+/btG3t/I0aMoKSkhD179rBv3z5OO+202HmeffbZBo+TKCVkIiISnPIdkWQsfCjyZ/kO6NQzLadq37597PusrCwOHTqEu3P22WfzxBNPHLZvZWUl119/PWvWrOGEE05gzpw5VFZWxp7v2LHjEc8TCoVo27ZtbMH0UCgUO2d96ltc3d1ZuHAhAwYMOGx7daJ0JPGOGw6Hyc3Npbi4uMH3UX1+gNNPP53ly5fz3HPPccUVVzB79my+9a1vNXjuK664gscff5wFCxYwd+5cAKZPn866devo1asXS5cuZdy4caxYsYLS0lLOO+887rjjDswsNhg/HA7z6quv0qFDh4Teb0PvpfrvPtnXVFRUNPh311gaQyYiIsHp2CNSGQu1ifzZsUeTnn7UqFGsXLmS999/H4Dy8nLefffdWPLVvXt3ysrKUnpzwMCBAykpKYmd89FHH2X8+PEMHDiQDz/8kM2bNwMcliROmjSJ++67L5YQrFu3LuHznX766SxevJiKigr27dvHM888A0Dnzp3p27cvTz31FBBJutavX9/gsUpLS+nZsyczZ87k6quv5vXXXz/s+ZycnDqVq6uuuop77rkHgCFDhgAwb948iouLWbp0aSzGxx57jP79+xMKhTj22GNZunRprHI5ceJEfvWrX8WOGS+JHDVqFAsXLgRgwYIFCV2bePE2pGvXruTk5LBq1aqkzpMIJWQiIhIcs0ib8rvvwFXPRR43oR49ejB//nwuueQSCgoKGDVqFBs3biQ3N5eZM2eSn5/P+eefT1FRUcrOmZ2dzbx585g2bRr5+fmEQiGuvfZasrOzeeCBBzj33HMZO3YseXl5sdf88Ic/5ODBgxQUFDB06FB++MMf1jnumjVruOaaa+psHz58OBdddBGFhYVMnTo11gYEePzxx3n44Yc5+eSTGTJkyBFvFnj55ZcpLCxk2LBhLFy4kJtuuumw57t168aYMWMYOnQos2fPBuC4445j0KBBTJ8+vd7j9unTB4gkZgBjx44lNzeXrl27AnDvvfeyZs0aCgoKGDx4ML/5zW/qHOOee+7h7rvv5pRTTuHjjz+OtacbMmvWLM4555zYoP5EPPzww8yaNYvRo0fj7gmdJxGWzvJbuo0cOdLXrFkTdBgiIhL1zjvvMGjQoKDDkAxSXl5Ofn4+r7/+esqSl/rO06FDB8yMBQsW8MQTTyR9N2oiysrKYndw3n777Xz88cd17raF+P8WzGytu4+Md1yNIRMREZG0ePHFF5kxYwbf/e5305qMAaxdu5Ybb7wRdyc3Nzc2Xi3VnnvuOX7+859z6NAh8vLymD9/fkqOqwqZiIikjCpkIhHJVsg0hkxEREQkYErIRERERAKmhExEREQkYErIRERERAKmhExERFqU6ikJPvroIy688MKAozl6L7/8cmym+sbsk2o1F+1OhSVLlnD77bcD8PTTTx+2RFI61TxvfRq6vvfccw/l5eUpi0cJmYiItEi9evVK6Qz78SSyBI80bMqUKXzve98DmjYhq3neo6GETEREJAElJSUMHToUgPnz5/PNb36TyZMn079/f26++ebYfi+88AKjR49m+PDhTJs2jbKyMgB+8pOfUFRUxNChQ5k1a1Zs2aIzzjiDW265hfHjx9eZEHTOnDlceeWVTJw4kT59+rBo0SJuvvlm8vPzmTx5MgcPHgTgpZdeYtiwYeTn5zNjxozYot7PP/88AwcOZOzYsSxatCh23P379zNjxgyKiooYNmxYUhOelpSUMGjQIGbOnMmQIUOYOHEiFRUVQGQJolGjRlFQUMAFF1zA7t2767z+ww8/ZPTo0RQVFdVZIeDOO++kqKiIgoICfvzjHx/xfPfeey+DBw+moKCAiy++OPZ3c+ONN/LKK6+wZMkSZs+eTWFhIZs3b2b48OGxc7333nuMGDHisPNv27Yttm39+vWYWYVI6RsAACAASURBVGzR9X79+lFeXs727duZOnUqRUVFFBUVsXLlysPOC7B582ZGjRpFUVERP/rRjw6rApaVlXHhhRcycOBALrvsMtyde++9l48++ogJEyYkNct/Q5SQiYhIoMIeZkfFjrQu3AyR5OPJJ5/kzTff5Mknn2TLli3s2LGDn/3sZ7z44ou8/vrrjBw5krvvvhuAG2+8kdWrV/PWW29RUVHBs88+GzvWnj17+Otf/8q//du/1TnP5s2bee655/jjH//I5ZdfzoQJE3jzzTfp0KEDzz33HJWVlVx11VWxWA4dOsT9999PZWUlM2fO5JlnnmHFihV88sknsWPedtttnHnmmaxevZply5Yxe/Zs9u/ff9h561s6CSLJzA033MDbb79Nbm5ubM3Hb33rW9xxxx288cYb5Ofnc+utt9Z57U033cR1113H6tWrOf7442PbX3jhBd577z1ee+01iouLWbt2LcuXL2/wfLfffjvr1q3jjTfeqLP80WmnncaUKVO48847KS4upl+/fnTp0iW2buW8efO46qqrDntNz549qays5LPPPmPFihWMHDkytkh5z549OeaYY7jpppv413/9V1avXs3ChQvjXqObbrqJm266idWrV9OrV6/Dnlu3bh333HMPGzZs4IMPPmDlypV85zvfoVevXixbtoxly5bFvebJUkImIiKBCXuYGX+awVlPncX0P00n7OG0neurX/0qXbp0ITs7m8GDB1NaWsqqVavYsGEDY8aMobCwkEceeYTS0lIAli1bxqmnnkp+fj5/+ctfePvtt2PHuuiii+o9zznnnEPbtm3Jz8+nqqqKyZMnA5Cfn09JSQmbNm2ib9++fOUrXwHgyiuvZPny5WzcuJG+ffvSv39/zIzLL788dswXXniB22+/ncLCQs444wwqKytjlaBqI0eO5KGHHoobU9++fSksLARgxIgRlJSUsHfvXvbs2cP48eMPi6O2lStXcskllwBwxRVXHBbTCy+8wLBhwxg+fDgbN27kvffeq/d8AAUFBVx22WU89thjtGlz5MWCrrnmGubNm0dVVRVPPvkkl156aZ19TjvtNFauXMny5cu55ZZbWL58OStWrIit2fniiy9y4403UlhYyJQpU/jss8/qLCj+6quvMm3aNIA65zjllFPo3bs3oVCIwsLC2HtJNS2dJCIigdlVuYvibcVUeRXF24rZVbmL7h26p+Vc7du3j32flZXFoUOHcHfOPvtsnnjiicP2rays5Prrr2fNmjWccMIJzJkzh8rKytjzHTt2POJ5QqEQbdu2xaILpodCodg562P1LK7u7ixcuJABAwYctv3TTz+t91jxYoLIe69uISYqXlzuzve//32+/e1vH7a9pKSk3vM999xzLF++nCVLlvDTn/70sCQ3nqlTp3Lrrbdy5plnMmLECLp161Znn3HjxsWqYueddx533HEHZhYbjB8Oh3n11Vfp0KFDUu+5WrzPTTqoQiYiIoHplt2Nwp6FZFkWhT0L6ZZd9xduOo0aNYqVK1fy/vvvA5EFqt99991Y8tW9e3fKyspSenPAwIEDKSkpiZ3z0UcfZfz48QwcOJAPP/yQzZs3AxyWJE6aNIn77rsvlsytW7eu0XF06dKFrl27smLFisPiqG3MmDEsWLAAgMcff/ywmObOnRsbc/ePf/yDbdu21Xu+cDjMli1bmDBhAr/4xS/Ys2dP7LXVcnJyDqteZWdnM2nSJK677jqmT58e97inn346jz32GP379ycUCnHssceydOlSxowZA8DEiRP51a9+Fdu/ugVa06hRo2Jt1er3eiS1Y20sJWQiIhIYM2PupLm8OO1F5k2aV2+FKF169OjB/PnzueSSSygoKGDUqFFs3LiR3NxcZs6cSX5+Pueffz5FRUUpO2d2djbz5s1j2rRp5OfnEwqFuPbaa8nOzuaBBx7g3HPPZezYseTl5cVe88Mf/pCDBw9SUFDA0KFD6wyuh4bHkNXnkUceYfbs2RQUFFBcXMyPfvSjOvv88pe/5Ne//jVFRUXs3bs3tn3ixIlceumljB49mvz8fC688MIGE5Sqqiouv/xy8vPzGTZsGP/6r/9Kbm7uYftcfPHF3HnnnQwbNiyWmF522WWYGRMnTox73D59+gCRxAxg7Nix5Obm0rVrVyByI8GaNWsoKChg8ODBdcauQeSOybvvvptTTjmFjz/+OKGF0GfNmsU555yTskH9WlxcRERSRouLS6rddddd7N27l5/+9KdpO0d5eTkdOnTAzFiwYAFPPPFEUneyxpPs4uIaQyYiIiIZ6YILLmDz5s385S9/Set51q5dy4033oi7k5uby9y5c9N6vniUkImIiEhGWrx4cZOcZ9y4caxfv75JzlUfjSETERERCZgSMhERSanmPDZZJBWO5t+AEjIREUmZ7Oxsdu7cqaRMWi13Z+fOnWRnZyf1Oo0hExGRlOnduzdbt25l+/btQYciEpjs7Gx69+6d1GsyJiEzsxOA3wHHA2HgAXf/ZcOvEhGRTNK2bVv69u0bdBgizU7GJGTAIeDf3P11M8sB1prZn919Q9CBiYiIiKRTxowhc/eP3f316Pf7gHeALwcblYiIiEj6ZUxCVpOZ9QGGAX+L89wsM1tjZms0RkFERERagoxLyMysE7AQ+Bd3/6z28+7+gLuPdPeRPXr0aPoARURERFIsoxIyM2tLJBl73N0XBR2PiIiISFPImITMzAx4GHjH3e8OOh4RERGRppIxCRkwBrgCONPMiqNfXws6KBEREZF0y5hpL9z9fwELOg4RERGRppZJFTIRERGRVkkJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIiIBEwJmYiIiEjAlJCJiIhIqxT2MDsqduDuQYeihExERERan7CHmfGnGZz11FlM/9N0wh4ONB4lZCIiItLi1a6G7arcRfG2Yqq8iuJtxeyq3BVofErIREREpEWpnXzFq4Z1y+5GYc9CsiyLwp6FdMvuFmjMbQI9u4iIiEgKVSdfxduKKexZyNxJc+NWw7p36B57rlt2N8ws0LgzqkJmZnPNbJuZvRV0LCIiIpL5EmlF1lcNC1mI7h26B56MQeZVyOYDvwJ+F3AcIiIikuHiVcOqk6/qbdXVr0yqhsWTUQmZuy83sz5BxyEiIiKZJ+zhw5KqZFqR1dWwTJVRLUsRERGReJIZmJ9JrchEJVQhs8g76u3uW9IcTyKxzAJmAZx44okBRyMiIiLp0JhqWHOUUIXMIyPlnk5zLAlx9wfcfaS7j+zRo0fQ4YiIiEiKtfRqWDzJjCFbZWZF7r46bdGIiIhIq9PaqmHxJDOGbALwqpltNrM3zOxNM3sjlcGY2RPAq8AAM9tqZlen8vgiIiISrMZM2tpSqmHxJFMhOydtUUS5+yXpPoeIiIgEo7lO2toUEq6QuXspkAt8I/qVG90mIiIiUkemT9q6ceMmFi1azObNm9N2jkQlXCEzs5uAmcCi6KbHzOwBd78vLZGJiIhIs5Xpk7ZWVlby8ssvk5OTw4svvkReXh5t2gQ3PWsyZ74aONXd9wOY2R1ExnspIRMREWnlmtukrW3btiU3N5ddu3Zx3HHHkZWV1aTnry2ZhMyAqhqPq6LbREREpBVLtBoGmTNjflZWFuedN4WdO3fSo0ePwMepJZOQzQP+ZmaLo4/PBx5OfUgiIiKSqWpXwiD+2LDmMDC/ffts2nfpQbt27YIOJalB/XcD04FdwG5gurvfk67AREREJLPEm6ICaBbTVITDzvZ9n38x3UbYueTBVYz++Utc/MAqwmEPNL5kl056HXg9vSGJiIhIJkh0XFhQA/MTVZ18rS3dzYi8rjwxcxQ79x9gbeluDoWdtaW72bn/AD1y2gcWY7NbOklERERSrzETtkJmV8PiJV/dO7VjRF5X2oSMEXld6d4p2Lallk4SERFp5ZrzhK3hsMcSLDOLWw2rTr6qt1Xv+8Q1p7Br+0d06/nlwN9LMgnZBODbZlYK7Cdyh6W7e0FaIhMREZG0SKQVmYl3SSaSfNXXiqx+rvq1hMOEfvcNum/5G5xwKlz5LISSWVEytZIZQ3YtoJn5RUREmrFMn7C13rgTTL7iVcMAQjg9bC/QI3LA8h2w5W8QPhT5s3wHdOoZ2PtLKCFzdzez/3T3EekOSERERFKnuU3YGou7VjUs0eQrbisyHIZHvh5JvKqrYR17RL6v3taxRyDvs5rGkImIiLRQzWXC1kaNA0ukFVlfNaz6uY49oJmNIbvWzErQGDIREZGM05hqWGAxN2YcGAm2IuurhoVCgbYpa0omITsnbVGIiIhIozTXalijxoEl2oo0y6hqWDzJJGR/By4DTnL3n5jZicDxaKC/iIhIk2sO1bBUtyLrJF/JtCIzqBoWTzIJ2X8BYeBM4CfAPmAhUJSGuERERCSqdvKVidWwlE5JQctpRSYqmYTsVHcfbmbrANx9t5kFvxqniIhIC9YcJm1N+ZQULagVmahkErKDZpYFOICZ9SBSMRMREZEUyfRJW2tXwqDhpYlaeysyUckkZPcCi4GeZnYbcCHwg7REJSIi0gpl2qStibQhQyFLPPmi9bUiE5VwQubuj5vZWuCrRKa8ON/d30lbZCIiIi1cJk/amswYsISTr1bYikxUMhUy3H0jsDFNsYiIiLQamTYwvzHTUQCEQkaPnPY1D6hWZBKSSshEREQkebUrYUCgA/NTOh3FFwc9PKlSKzIpSshERERSKJEpKkIWarJqWNqno4icRK3IRlJCJiIikiLJTFHRFAPzGz0dRSJtyFBIrcgUOGJCZmb7iE51UfspImtZdk55VCIiIs1AY6aogPRXwxo1HUXkgEduQ3bqqVZkChwxIXP3nKYIREREpDkJeoqKVI8DO+o7IkGtyBRIqmVpZl2B/kB29TZ3X57qoERERDJNJk1R0ehxYKm+IzJyUFXDGiGU6I5mdg2wHPgTcGv0zznpCUtERCRzVFfDznrqLKb/aTphD8eqYVmWFXdQfirHhIXDzvZ9n+MeGUHUUCuyTcjijgOrc0dk2TaIHq/BOyJDbeK3IVUFS6lkKmQ3EVlIfJW7TzCzgUQSMxERkRalMdWwRp871VNS1B4HpjsiM1IyCVmlu1eaGWbW3t03mtmAtEUmIiISgCAnbM24VqTakE0mmYRsq5nlAk8Dfzaz3cBH6QlLRESkaWRSNaxRU1JEDqjJWZupZNayvCD67RwzWwZ0Af4nLVGJiEjG27N7H2+tf5cex3VlwKCTgg4nIYlM2pqOaljtxKt6m1qRUi3hhMzM2gNTgT41XlcI/CT1YYmISKZbuXwtu3d9xnvvltK9x7F0654bdEgNSmbS1sZUwxIZAxYKxa+GqRXZeiV8lyXwR+A84BCwv8aXiIi0Qp06deTzAwdp0yaLdu3aBh1OHWEPs6NiR+zOxIYmbU3VnZLVydfon7/ExQ+siiVntRMvQHdFymGSGUPW290npy0SERFpVkaPKySvby9yOnckp3PHoMM5TFNN2tqYMWBqRUpNySRkr5hZvru/mbZoRKTZ2v/RDvaVfkLnvr045vhjgw5HmkC7dm3pc9KXgw4DaJpJW1M+HQVqRcoXkknIxgJXmdmHwOd8sZZlQVoiE5Fmo+rAQT5Z+Sahdm3Y/9EO+p5/OqGsZEZEiBy9phiYn/LpKL44MGUf/Z1w+2507pGjuyJbsWQSsnPSFoWINGsWCpGV3Y6D+yto16WTOiWSVk0xTUXap6OIbjv4wGSO+WQNe9oN4pOLFnL8ScepFdlKJTPtRamZnQyMi25a4e7r0xOWiDQnoTZZfPnM4Xy+6zOyu+ViIVXHJD3SUQ1LRyuy1gnqtiFDISjfQZtP12BUkXvgHbZ8+hH0O16tyFYqmWkvbgJmAouimx4zswfc/b60RCYizUrbjh1o27FD0GFIC1K7Egbx75RMphqWSPLV6FZkIpOzduoJHXvgvU+Bra+xPyef4wsGEz2okq9WKJmW5dXAqe6+H8DM7gBeBZSQiYhIoyQyYWvIQo2qhiWafDWqFZnoHZEAZoSmL4XyHeSoFdnqJZOQGVBV43FVdJuIiMhRS2bC1mSmqTjacWCNakUmc0ckqBomMckkZPOAv5nZ4ujj84GHUx+SiIi0ZIkMyq+vEgbxq2GpHgemdSKlqSUzqP9uM/srMIZIZWy6u69LW2QiItLipGPC1iYZB6bJWSXNkqmQ4e5rgbVpikVERFqYdEzYmvIpKeqeQJOzSpM7YkJmZv/r7mPNbB/gNZ8iMjFs57RFJyIizVZjp6ionXhVb0vplBSRg6oVKYE7YkLm7mOjf+akPxwREWmuUjlha7zEKxSKXw1TK1JagoRnb4xOc3HEbSIi0vpUV8POeuospv9pOmEPx6phWZYVtxpWMxkLh53t+z7HPdKIiZd4AbFqWJuQxW1FHrES9sjX4e5BMP/cL5Kz2tWw6uTru+/AVc/VbUUqGZM0SGYM2dnAf9Tadk6cbSIi0sI1php2tHdEAmpFSouVyBiy64DrgZPM7I0aT+UAK9MVmIiIZIZEJm2td5oKN/zQFyNeGntHJLSsVmRlxQHeev192rVry6DCvrRtm9S9dtKCJPI3/3vgf4CfA9+rsX2fu+9KS1QiIpIRkpm0tXY1LC0z48cNsvneFfnuW6W8+9bfqaoK0zm3I3369wokDgleIoP69wJ7gUvSH46IiASpUZO21qqGpXxm/FiQLacV2aFje8LhMBYy2mW3CzocCVAyi4s/Atzk7nuij7sC/8/dZ6QrOBERaTrJTNr60NkPs3nXp/TvdnzTzYxfva0ZtCIT1W9gbzrmHENWVojjeh0bdDgSoGSa1QXVyRiAu+82s2FpiElERJrA0Q7MD4edyx56LbUz49cJLk7iFQo1m1ZkokKhEL1OaHhRdGkdEp72AghFq2IAmNmxJDnTv4iIZIZkpqlIphV5VNNRQCQBK9sG0Wkv4iZe8EU1LNQmfisyQythIkeSTEL1/4BXzOwP0cfTgNtSH5KIiKRaotWwVLci4wdzlHdEQrNpRYokK5nFxX9nZmuAM4ksm/RNd9+QtshERCRptROv6m1xx4b1KKR4+xdjwwJrRSbThoycKONbkSLJSqZlCfAx8BqwHuhuZqenPiQRETka8dqQQNxqmDuU/30mZe99n/LSWbgH2IpUG1IkqbssrwFuAnoDxcAo4FUiFTMREWliibYh41XDdpQd4PXSvRwKd+L10j2pmZKimU7OKpIJkhlDdhNQBKxy9wlmNhC4NT1hiYhIQxJtQwJfVMO2bqW84gTcafyUFHUCar6Ts4pkgmQSskp3rzQzzKy9u280swFpi0xERGISqYYd275bncTLLNKKrF0Na9Q4MGhRk7OKZIJkxpBtNbNc4Gngz2b2R+Cj9IQlIiLV6p2iosfhU1TEEq+DXyReQOrHgVVXw+4eBPPPjTyONw6suhX53XfgqufUihRpQEIVMov8a/1OdGLYOWa2DOgCPJ/O4EREWqOjrYbVtyZk0ksTHRaMWpEiTSGhhMzd3cyeBkZEH/81HcGY2WTgl0AW8JC7356O84iIZKqwh5nx/IzYOLC5k+bStd2xtD90EvtDm2lfdRJd2x2bVBsS1IoUyXTJjCFbZWZF7r46HYGYWRbwa+BsYCuw2syWaK4zaWmccpzPMXIwLXbR6tWuhu0s38XaT9eBhVn7yTp2lu+CcA47359BlZVR6TnsKj9YbzUs4cQLdFekSAZJ5rfBBODbZlYK7CcyOay7e0GKYjkFeN/dPwAwswXAeYASMmkxnAM4WwHH2Y/RO+iQpAnVTr7iVcO8qhNVFXmEOpQSrsjDqzrRI6cdI/K6sbY0dHTTUcQNRq1IkUxyxITMzB519yuAB4DFaYzly8CWGo+3AqfGiWcWMAvgxBNPTGM4Iung0S+L/imtRbzkK141rEdON4aG/oPXN29leO8TYoPuG3VHJKgVKZLhEqmQjTCzPGA68AiR3yTpEO+4dX5jufsDRJJDRo4cqd9o0qwY7XG+DFRidAk6HEmjRFqR8aphZsaCmaelbjqK6m1qRYpktEQSst8QuZvyJGAthydOHt2eCluBE2o87o2m1ZAWKEQnoFPQYUgaJd6KbF+nGgZJVr4OO3GcxCsUUitSpBk4YkLm7vcC95rZ/e5+XRpjWQ30N7O+wD+Ai4FL03g+EWkED4f5fNMbHNr+Me0Hnkzbnr2CDikwh6qq2LzrU/p3O55QKJRUKzJeNSxhibQhO/VUK1KkGUh4UH+akzHc/ZCZ3Qj8ici0F3Pd/e10nlNEjl647DMOlL5HqGNnPt+4vtUmZIeqqhjzyDT2hzbTMdyPlVc+1TStyETbkKBWpEgzkFH33Lv7UmBp0HGIyJGFsjsQ6piDl++jzQn9gg6nydSuhm3e9Sn7Q5sxC7M/tJnNuz7lK92/lP5WZDJtyMjJVQ0TyWAZlZCJAHj4EF5eAqH2WIfeybdxpElYu/Z0PHUC4coKQp06Bx1OWoTDflhFK141rH+34+kY7hfb1r/b8U3TilQbUqRFSTghM7PBtSdpNbMz3P3llEclrZrvexvf83rkl1iPs6HDl4MOSeph7dqT1e4oKj4ZpnbiVb3t4gdf4fWtkSrXgpmj41bDBvToxcornzqsagZN0IpUG1KkRUmmQvbfZvYo8AsgO/rnSGB0OgKTVsyrwEI4jhEOOhpp4eIlXqGQsb2skrfCd5Ddr5S3KvLYXvZk3GoYQJusLAb0OIoxdJqcVUSikknITgXuAF4BcoDHgTHpCEpaN+s8BCwLQtmQreqYpFbtali8xOu4zh3IarOfrA6lYGGyOpSS1WY/oVCHuNWwJE6uVqSIxJVMQnYQqAA6EKmQfejuKl9IylmoPdbl5KDDkBagdvIVrxoWL/GCDnTr0I0Rxw2LzCV2XCHdOnQDkqiGqRUpIklIJiFbDfwRKAK6Ab81swvd/cK0RCYi0gjhsHPJg6tii28/MXNU3GpYz5z4iZeZMXfy3MNm20/i5GpFikhSkknIrnb3NdHvPwHOM7Mr0hCTiEjSalfDdu4/wNrSnVRZGWtLI8/Fq4aZdag38QpZiO4duidycrUiRaRRkpkYdo2ZdQX6E2lZApSmJSoRkQbEa0XWroYd27EN3f5pbmwA/rEdJxOy+NWwhBOvyMnVihSRlEtm2otrgJuIrDFZDIwCXgXOTE9oIiKJJV/xqmHWZh+ft/kA8zCft/mA3Z/vpnuH7kffhowEo1akiKRFMrcI3URk/Fipu08AhgHb0xKViAhfjAMb/fOXuPiBVbHkbG3pbg6FnbWlu9m5/0CsGtax/8/p9k8PRx5nd6OwZyFZlkVhz0K6ZR9eDUsoGQuHoWwbuEceN9SKDLWJ34pUJUxEEpDMGLJKd680M8ysvbtvNLMBaYtMRFqd+OPADk++undqx/C8LrE7Jbt3asfOyp3xq2GTEqyG1W5DVm9TK1JEmkgyCdlWM8sFngb+bGa7gY/SE5aItHSJtCLjJV+Oc8yJD9KpQzHH9CzEGRWrhhVvK45bDTtCIHUTr1BIrUgRaVLJDOq/IPrtHDNbBnQBnk9LVCLSotU/Duzwali3Tm3rJF+7KndRvL2YKq+ieFsxuyp3Na4aVl/ipbsiRaQJJTnNdIS7/9Xdl7j7gVQHJM2XhyupqvyAqgPbgg5FMkw47Gzf9zkeHYvVUCuyTdsyhufl0r1Tu7jJV1Jjw2qPAauuht09COafG3lc3xiw6lbkd9+Bq55TK1JE0uqIFTIz2wd4vKcAd/fOKY9KmqWq8jfxg5+AGaGs8VhWTtAhSROrb5HueK3IEXldY9uSaUWaWWLVsMbeEQmqholIkzliQubu+q0qCXIieXr199KSJTIGLBSKPzC/R057Hr/mlNiakGbGzoqdCbci444N0+SsItKMJTOoX6RBWccUED6wBUKdsSwVTluyRMeA9chpH7caFvYw1/z56ljla+6kuckNzNfkrCLSwiTTsoz3k0stS4mxUDZZ2f2DDkPSINHpKGonXhBZEzJuNWzbUQ7M1+SsItICqWUpIodJdDqK2slXvMQLSH01TK1IEWmBkmpZxlnLEndfnuqgRCQYybQiq5+LJW5xEq+QhSJ3SiZaDVMrUkRaKa1lKdKKNaYViTnWZh8QqW7Vl3glXA1TK1JEWrFkKmTVa1mucvcJZjYQuDU9YYlIqjWmFRmvGjbjTzMSakPWO02FWpEiIjFay1KkFWhMKxJIuBpW36D8kEP3qnDNgNSKFBGpQWtZirRAjWlFhkJGj5z2XxwriWpYvYPy1YoUEWlQQgmZRf6r+x1334PWsmzxvKoCDuyG9t2xULugw5EjSGUrEiIJWM0qV6MG5YNakSIiCUgoIXN3N7OngRHRx39Na1QSGA8fxD/5H/zQZ1j2l7DjJgUdktSQSPKVTCuyUdWwRNqQoZBakSIiUd960QAAGzpJREFUCUimZbnKzIrcfXXaopHghQ/CoX3QJgc+34G71z9BpzSpRJOvRFuR0IhqWDJtyPqSL1XDRERikknIJgDfNrNSYD9fLC5ekJbIJBDW5hi86ylY+YfQ9RQlYwE62nFgibYiG1UNS6YNCUq+RESOIJmE7Jy0RSEZJdR5EHQeFHQYrUbtxKt6W2PGgSXSiqy3Gnb2Q+za/T7djv1K/dUwtSFFRFIq4YTM3UvjzdQPlKY8KpFWIl7iFQrFr4YlOg4MEmtFxq2GhcOEfjeF7rojUkSkSWmmfpEmlEgbskdO+6TGgdU5R4KtSDOrWw3bv113RIqIBEAz9YukydFORwHU24qMe55EB+bHaUXWqYapFSkiEgjN1C+SAqmejgJSWw1TK1JEJLNppn6RRkrHdBT1nutoq2FqRYqIZLRkBvVfEP1WM/VLq5bq6SgSPm991bAehRRvP0I1TK1IEZGMlkyFLEYz9UtrkepliVJeDWt/LHM/+ZRd//gH3aq+hLmrFSki0gwlc5dlNnA9MBZw4H+B+929Mk2xiQQq1csS1XueWolX9baEqmH7txPa8hrdw4dgy2tqRYqINFP/f3v3HiTXWd55/Pv0jKSRJWGskSyDLfmy+ALLZQgKhpCsgSjBiVmH68aEBMWCuAxbld2itipQ3iRbZClioLJbG2oDDqvYwYQkdtbhYogxF28SwAYbBgwYkGxjbGMsy2OMZUlja/rZP/qM3J7pnukZ9fTb0/p+qqbU5/Tp00+/dab1m/d9zzkL6SH7a+AR4M+r5TcAHwFe3+2ipBIWOxQJC+v5etJ7tghetah13hvmUKQkDYSFBLIzM/N5TctfjIhvdrsgqRe6PRTZ8ft2OCl/dOVxjNWHGOcQYznE6MrjYP/e2b1hDkVK0kBYSCD7RkS8KDNvBIiIs4EvLU1ZOtpNHThIbcUKYnjoiPfV7UtSdLM3rOUwJBAHHmTnj37IBHVGqREHHnQoUpIG2EIC2dnAmyLiR9XyFuC2iLgVbzKuLtq36w4e+fb3GF63jtFfOpvaqpWL3lcvL0kx670XOyk/AtZspLb57CfOlHQoUpIG2kIC2blLVoXU5MCP7mV43Voe/9kjHNr3KCsXEMhKXZJiVh2tesMWMgzZLnzZGyZJA2lBNxdfykKkaWvPOI2Hb7mVVZs2MHzsupbbzAxe0+t6dUmKWfV00hs2Ve98GLJRkOFLko4Si7oOmbSUVm8+kZETn0bUai2fbxW8arX2N+rudviaVU+nvWG1msOQkqSWDGTqS81hrJNhyI3rVi3JPLBWFt0b5hmRkqQ2DGTqK4u9HAXQ9XlgMDt81bPOjn/acfisyAX1hoHhS5LU0oIDWUT8FnA+MAUE8MnM/Fi3C9PR50gvRwFLPxQ5sf9Bxu+/hamA8Z/cwsT+B9mQ2XlvmCRJLbSepDO3czLzgsx8Y2b+Fo1bKUkLVq8nDzwySWYCzHlG5HAtWg5DdqMX7HA9WWfvgb2H62k1FDlarzM2OclQJmOTk4zW609cooIa0ao3zDAmSZrHYoYsV0XEecDdwEnA6u6WpEFU6sr4HdfX4VBkjNTYufLfMHHPzYyeuJWY6xIVOuzQoSl+8J0fUa9PceazT2HFCmdLSFKzxXwrvg14DfAc4B7gP3a1Ii17/XJl/DlrnDkxfwFDkbXt17LBifkL8qPb7+OWL3+XiKBWG+JZzzu1dEmS1FcWPGSZmfsz88rM/NPMvBL4/SWoS8vUdPh68Xs+zwWX3Xg4nJUcipxVY9Ubtu2qbVx43YXUs+5Q5BKrDdUgoZ7J8Iojvx2WJA2axUzq//vmRWAMuLRrFWlZ6Zcr489Z49QhJh7azej6M4harXVv2NrjHYpcQltOO4GX/tpW6vU6m0/dVLocSeo7ixmy/FlmvmV6ISL+oov1qI91ex5YL4Yi61OH2PGRsxlnkjFWsfN3bjrcGza+aiVjk481esMiHIpcQrVazSAmSXNYTCB794zlS7pRiPpbP84Dm1Vji4n5Ew/tZpxJpiIYz0kmHtrNhtEzZ/eGNYo0fEmSilhwIMvMO2csT3SvHPWLxQ5FQo/C14xhSKDlUOTo+jMYYxXj2eghG11/RvveMEmSCuk4kEXE21usfhi4JTPHu1eSeq3fL0kxq94Ww5C1oeGWQ5FRq7Hzd26aFd7sDZMk9ZOF9JBtrX4+WS2fB3wNuDgirsrM93a7OHXXzOA1va7vhyJnTspvNQy54Syi1cR8oDY0zIYNZy1pjZIkHYmFBLJR4Ocycx9ARPwxcDXw74BbAANZH2sVvGq1/huKpF5/0lmNLSfltxqGBIciJUnL1kIC2Rbgsablx4GTM/NAREx2tywdqU7mgG1ct6qvhiKp16lfcR4T91Y9XNuvbdsb1nIYEhyKlCQtSwsJZH8D3BgRH6dx/bFXAh+LiDXAd5eiOHVmsXPAgJ5ekqJF4U/uDXt0Dzseu53xkzYxNnk7Ox/d07Y3zGFISdIg6TiQZeafRMSnadxMPICLM/Pm6uk3LkVxmt+RzgGDMuGrZW/Y0DDjq1Y1zpJctYqJoWE2tJuUL0nSAFno/26HgHr17+PdL0fzqdeTBx6ZJDMB+u62RG2Kpn7Feez9n/+WvPzXG8tVb9i2kzZx4WO3U390D6OrRxnb9AKGYoixE17A6OrRRt1Vb5hhTJI0qBZy2Yv/BPwe8A80esiujIjLMvPPl6q4o91yuxxFU+HzDkW27A2LYOe5O590pX1Jko4GC5lD9mbg7Mx8FCAiLgW+AhxxIIuI1wP/DXgm8MKmodCj1nK4HEVV6KKGIqd7w8YfGGds09gTvWFRY8PqDUtftyRJfWQhgSyAqablqWpdN3wbeA3woS7tb9np9yvjtykarngl3H0TbD4btn+q9cT8tZtmha+wN0ySpMMWEsj+CrgpIq6hEcReBezsRhGZeRtw1PynPChDkezfS/3um5igzujdNxH79y5oKNLeMEmSGhZyluWfRcQNwEtoBLLt3jJpfp2Er+UyFDmrN+yYUXZsOeWJi7YeM8po1ByKlCRpgeYNZBHxCJDNq5qey8x8SidvFBGfA05o8dQlmfnxTvZR7eci4CKALVu2dPqyIjoNX8thKLJ1b1iN8doUUxmMxxQTkw+xYfUGhyIlSVqgeQNZZq7rxhtl5rYu7ecy4DKArVu35jyb99Ri54H141Akd98E9UONf/fvbd8bdvwY43vGGTt+jNERe8MkSVqMhcwhU5NuzwMrcnHW6XUze8PWbKS++YVPnCm5ZiMTBx9s3Rv2CnvDJEk6Un0RyCLi1TQun7ERuDYixjPzFYXLamvZzAN7ctGzg1et1nIosr5mAztO2MT40ImMHb+JnSSjI6P2hkmStET6IpBl5jXANaXraGVmTxjMfXX8vpoHNs8wJGuPbzkUOXFwgvEHxpnKKcb3jDNxcMLeMEmSllBfBLJ+1aonrFaL/psH1sEZka2GIQEmJh+aNRRpb5gkSb1lIJtDu2HIovPAZmpzRuSsSfkthiFrRMvwFRH2hh2h/Q89yu1f2cXIuhFOe9HpDK0YKl2SJKmPGcjm0G4YEvp8KLLdpPwWw5Dtwpe9YUfm3lvv5sDD+/nZTx5m9OSNrN8yWrokSVIfM5DNoe8uR9FmKJLNZz+xbs1G6mTHk/LB8LUU1m58Cnvv3MPwqmFG1o2ULkeS1OcMZPPot4uztpyY/6ZPMPHQbkbXn0FEMHGgdW+Yw5C9c8JZT2Pd8esYXjnMyLrVpcuRJPW5WukCVKnXYd8eyOpat22GItl8NtSGn+gNyzo7rn8L2z59ARd+dgf1rB/uDRuKoZaT8g1jSy8iWDu6zjAmSeqIPWQlLHIokojWvWF77A2TJGk5M5D12hEMRU73hk3PA9v5ip1eokKSpAFgIFtqHZ4VOWtifovwNXFwwt4wSZIGkHPIumnmPLDp3rA/eyZcfl5jucU8sOmhyL1v+xK5/VMQ0TJ8OTdMkqTBZA9ZtyxgKPLwc9NhrMOhSC/YKknSYDKQLdYihyIB6gETQzVGgYAFDUU6N0ySpMFjIJvPzOA1va7DsyJb9oZdt8OJ+ZIk6TAD2VxaBa9areOhSDiy3jBJknR0cFL/XFoFL2g9MZ9G+No7VKOa0n+4N2zbVdu48LoLvWirJElqyR6yubSZA9bpUKS9YZIkqRMGsrm0CF7TOhmKdG6YJEnqhIFsPrVaY35Yk04n5nuZCkmS1AkD2TzqWZ8VqLxMhSRJ6iYn9c+h1aR8YNbE/KcMHQs4MV+SJC2OPWRzaNcTdngo8sAEu2+8j3+8/P/xzOefwnN+/hmlS5YkScuQPWRzaHeJCmj0hh1TX8tdu+5nwwnHcts3fki9Xi9YrSRJWq7sIZvDfJPyR45ZyYmnbuTHd+7hGc/ZQq1mvpUkSQtnIJvHXJPya7UaL/mV5zJ58HFWjazocWWSJGlQGMiOUEQwsnpl6TIkSdIy5hibJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQKYiJh78Kbt33cWjjx4oXYokScUNly5AR58DBw7y6U/dwMGDkxx//Cjnv3pb6ZIkSSrKHjL13NRUnccfP8SqkVUcOHCwdDmSJBVnD5l6bu3aY3j5thdz7z33c+ZZp5YuR5Kk4gxkKuLkU07k5FNOLF2GJEl9wSHLedy16yf8y2fGuf/eidKlSJKkAWUgm8OB/ZN87Ybv8PDEPr58/beo1+ulS5IkSQPIQDaH4RVDjKwZYf++gzzlqWuo1WwuSZLUfc4hm8OKFcO8/PwX8NMHH2F007Gly5EkSQPKQDaPY9aOcMzakdJlSJKkAeYYnCRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUWF8Esoh4X0R8LyK+FRHXRMRTS9ckSZLUK30RyIDrgWdn5nOBHwDvLFyPJElSz/RFIMvMz2bmoWrxRuCkkvVIkiT1Ul8Eshl2AJ9p92REXBQRN0fEzQ888EAPy5IkSVoaw716o4j4HHBCi6cuycyPV9tcAhwCPtpuP5l5GXAZwNatW3MJSpUkSeqpngWyzNw21/MRsR14JfDLmWnQkiRJR42eBbK5RMS5wB8A52Tm/tL1SJIk9VK/zCH7ALAOuD4ixiPig6ULkiRJ6pW+6CHLzGeUrkGSJKmUfukhkyRJOmoZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYX0RyCLiTyLiWxExHhGfjYinl65JkiSpV/oikAHvy8znZuYY8Cngj0oXJEmS1Ct9Ecgy82dNi2uALFWLJElSrw2XLmBaRLwbeBPwMPCywuVIkiT1TGT2pjMqIj4HnNDiqUsy8+NN270TGMnMP26zn4uAi6rFM4Hvd7vWZWYDsLd0EX3ONuqM7dQZ26kzttP8bKPODFI7nZyZG1s90bNA1qmIOBm4NjOfXbqW5SAibs7MraXr6Ge2UWdsp87YTp2xneZnG3XmaGmnvphDFhGnNy2eD3yvVC2SJEm91i9zyP40Is4E6sBdwMWF65EkSeqZvghkmfna0jUsY5eVLmAZsI06Yzt1xnbqjO00P9uoM0dFO/XdHDJJkqSjTV/MIZMkSTqaGcj6VEScGxHfj4jdEfGOFs//bkQ8UN1uajwi3tL03PaI2FX9bO9t5b3VQTu9PSK+W92a6/PVWbzTz001td8nelt5b3XQTqsi4u+q52+KiFOanntntf77EfGKXtZdSkSsj4jrq9+h6yPiuBbbjEXEVyLiO9Xx9ZtNz10eEXc2HV9jvf0ES6+TNqq2a/l7FhGnVsfarurYW9m76nunw2PpZU1tNB4RByPiVdVzA38sAUTE66vfpXpEtD2jst132UAcT5npT5/9AEPA7cBpwErgm8CzZmzzu8AHWrx2PXBH9e9x1ePjSn+mgu30MuCY6vFbgb9rem5f6c/QR+30NuCD1eMLptsJeFa1/Srg1Go/Q6U/Uw/a7L3AO6rH7wAubbHNGcDp1eOnA/cBT62WLwdeV/pzlG6j6rmWv2fA3wMXVI8/CLy19Gcq2U5N268HJpq+twb+WKo+5zNpXFv0BmBrm23afpcNwvFkD1l/eiGwOzPvyMzHgL8FfqPD174CuD4zJzLzIeB64NwlqrO0edspM7+YmfurxRuBk3pcYz/o5Hj6DeCK6vHVwC9HRFTr/zYzJzPzTmB3tb9B19weVwCvmrlBZv4gM3dVj38M7AFaXvBxQM3bRu1Ux9bLaRxrC379MrPQdnod8Jmm762jQmbelpnzXei95XfZoBxPBrL+dCJwd9PyPdW6mV5bDZVcHRGbF/jaQbDQz/pm4DNNyyMRcXNE3Dg9PDCgOmmnw9tk5iEatzAb7fC1g2hTZt4HUP17/FwbR8QLafzFfnvT6ndXv5//IyJWLV2pxXTaRq1+z0aBn1bHGgz2cbWgY4lGD/XHZqwb9GOpU+2+jwbieOqLy15olmixbubpsJ8EPpaZkxFxMY2/CF7e4WsHRcefNSJ+G9gKnNO0ektm/jgiTgO+EBG3ZubtrV6/zHXSTu22GdjjKea4ndsC9/M04CPA9sysV6vfCfyERki7DPgD4F2Lr7aMLrXRrN8z4Gcttlu2x1WXj6XnANc1rR6IYwk6v4XiXLtosW5gvqcMZP3pHmBz0/JJwI+bN8jMB5sW/xK4tOm1L53x2hu6XmF/mLedACJiG40vxnMyc3J6fTXMRGbeERE3AM/nyT0cg6KTdpre5p6IGAaOpTGPpaM2Xo4yc1u75yLi/oh4WmbeV/0nuafNdk8BrgX+a2be2LTv+6qHkxHxV8B/6WLpPdONNmrze/YPwFMjYrjq1VjWx1U32qnyH4BrMvPxpn0PxLEEc7dTh9p9H+1lAI4nhyz709eA06uzRlbS6MJ+0lmA1S/2tPOB26rH1wG/GhHHVWfz/CpP/mtrkHTSTs8HPgScn5l7mtYfN931HxEbgJcA3+1Z5b01bztVy9Nn5L4O+EI2Zsd+ArggGmdhngqcDny1R3WX1Nwe24FZf71XbXkN8NeZedWM555W/Rs05rJ8e0mrLaOTNmr5e1YdW1+kcay1ff2AmLedmryBGcOVR8mx1KmW32UDczyVPqvAn9Y/wK8DP6DRY3NJte5dNIIFwHuA79A4y+SLwFlNr91BY/L1buDC0p+lcDt9DrgfGK9+PlGt/wXg1qr9bgXeXPqzFG6nEeCq6pj5KnBa02svqV73feDXSn+WHrXXKPB5YFf17/pq/Vbgw9Xj3wYebzq2xoGx6rkvVMfVt4ErgbWlP1OhNmr7e0bjTLmvVsfcVcCq0p+pVDtVy6cA9wK1Ga8f+GOp+pyvptEDNll9Z19XrX868Omm7WZ9lw3K8eSV+iVJkgpzyFKSJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmqasiYl/pGrqh+XN04zNFxCkRcSAixo90X3O8x+qIGI+Ix6or40taJgxkko5K0dDr78DbM3NsqXaemQeq/S+7+/hJRzsDmaQlERFvj4hvVz//uWn9H0bE9yLi+oj4WEQs6mbJVY/T9yLiioj4VkRcHRHHND3/jxFxS0R8JyIuanrNbRHxv4GvA5tbbTfP+7ba789XNYxExJrquWd3WP+Hqzb6aERsi4gvRcSuiHhhu/er1q+JiGsj4pvV639zMe0oqT946yRJXVUN750DXA68CAjgJhr3fhwCPgy8GBimEYo+lJnvX8T7nALcCfxiZn4pInbSuHH1+6vn12fmRESspnFT4nOAdcAdwC9k5o3ttsvMByNiX2aunf5MTY/bbf/fadwTdDVwT2a+p0W9n8rMZzct7waeT+O+tF+jcc/HNwPn07gP7avmeL/XAudm5u9V+zs2Mx+uHv8Q2JqZexfarpLKsIdM0lL4ReCazHw0M/cB/xf4pWr9x6uhtUeAT06/ICJOi4j/ExFXV8trqt6vv4yIN7Z5n7sz80vV4yur/U/7/Yj4JnAjsBk4vVp/13QYm2e7dtpt/y7gV2jcNPq98+xj2p2ZeWtm1mmEss9n46/kW2ncbHqu97sV2BYRl0bEL02HMUnLk4FM0lKIBa4nM+/IzDc3rXoNcHXVA3R+u5e1Wo6IlwLbgBdn5vOAb9DovQJ49HAxc283u/i5t18PrKXRC9d2HzNMNj2uNy3XgeG53i8zfwC8gEYwe09E/FGH7ympDxnIJC2FfwZeFRHHRMQa4NXAvwD/Cvz7aq7VWuC8OfZxEnB39XiqzTZbIuLF1eM3VPsHOBZ4KDP3R8RZNIZOW+l0u062vwz4Q+CjwKXz7KdTbd8vIp4O7M/MK4H3Az/XpfeUVMBw6QIkDZ7M/HpEXA58tVr14cz8BkBEfILGXKm7gJuBdkNt99AIZeO0/+PxNmB7RHwI2AX8RbX+n4CLI+JbwPdpDPe10ul2c24fEW8CDmXm30TEEPDliHh5Zn5hnv3NZ676ngO8LyLqwOPAW4/wvSQV5KR+ST0VEWszc191RuQ/AxdVAW4UeDeNeVgfBv4X8AHgIPCvmfnRGfs5haZJ8v2ul/U6qV9afuwhk9Rrl0XEs2jMhboiM78OkJkPAhfP2PbCXhe3hKaAYyNifKmuRVadifkVYAWNeWiSlgl7yCRJkgpzUr8kSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpsP8P+tj30DQ4ipkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3hU5bn38e+dcAgnCXLQUhSQjRwTAyQaBETUAtYWUeD1fBbqaZfddmNbd1Ws+larr9uqra1WwCoVWwFFYVtrC4WiWIIEDxxUJAjVCnIyASIhud8/ZpgdYIAZMjNrkvl9risXmWfWrHWvLA4/nvWs5zF3R0RERESCkxV0ASIiIiKZToFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRabDMrKmZPWVm682s3MyWm9m5td6/3sw+MrMKM3vVzDrWes/M7H4z2xL++rmZWa33v21m74U/+4aZ9U71+YlIw6FAJiINWSNgAzAUaA3cDvzBzLqY2VDg/wLnA8cC64Dnan12AjAaOAXIB74FfAfAzLoD04EbgFzgZWCOmTVKwTmJSANkmqlfRDKJmb0D3AUMBJq5+83h9o7AP4F/c/e1ZvYGMM3dnwi/fx0w3t2LzewW4Fx3Py/8XhawE/iWu/8l9WclIvWdeshEJGOY2XHAycD7gIW/Im+Hf+0b/rUPsKLW+yvCbfu2PfCzVuuzIiJxUSATkYxgZo0J3WZ82t1XA/OA/2Nm+WbWDLgDcKB5+CMtgR21drEDaBkeR/ZnYKiZnWlmTYDbgCa1PisiEhcFMhFp8MK3FJ8B9gC3AIRvLd4JzATWA2VAObAx/LEK4JhauzkGqPCQ1cBVwGPAZ0A7YGWtz4qIxEVjyESkQQv3aE0BugDfdPfdh9juZGA50Mndt4XHkE119yfD718LTHD34iifzSX08EBROKyJiMRFPWQi0tA9DvQCvl07jJlZjpn1DU9vcSLwBPALd98W3uR3wPfN7OvhAf8/AKbV+vwAM8s2s/bAb4CXFcZE5Giph0xEGiwz60zoVuRXwN5ab30HmAssBLoRulU5FfiJu1eHP2vA/cD14c/8Fvihh//SNLO/E5oSowr4I/B9d9+Z5FMSkQZKgUxEREQkYLplKSIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEQkocysIoXHqjazUjN738xWmNn3w+tW7nv/jcN8NtfMbkpNpQcdu4uZ7Taz0lqv30vAfpuFfx57zKxd3SsVkVRRIBOR+my3uxe4ex/gG8A3CS0YDoC7n36Yz+YCgQSysLXuXpDIHbr77vA+P03kfkUk+RTIRCQpwr1V74W//qNW++1mttrM/mxmz5nZfybieO6+CZgA3BJe9ijSW2dmLcxsbrgX7T0zuwi4D+gW7lF6ILzdi2a2LNzjNiHc1sXMVpnZk+H218ysWfi9K83snfB+n6l1jpeb2T/C+/6NmWXHeh5mdpKZLTezovCxV5vZ0+HjvGBmzQ93bBGpnxoFXYCINDxmNgC4BjgNMOAtM/sbkA2MAfoR+vvnbWBZoo7r7h+Hb1l2AD6v9dZI4FN3Py9cX2vgLaDvAb1U17r71nDgWmpmM8Pt3YFL3H28mf0BGGNmy4H/Aga5+xdmdmx4372Ai8LtVWb2K+AyQouVH5aZ9QBmANe4e6mZdQF6ANe5+2IzmwLcZGb/E+3YIlJ/KZCJSDIMBmbvW2zbzGYBQwj1yr/k7rvD7S/v+4CZnUQoZLR297Fm1gL4FbAHWODu02M8tkVpexd40MzuB15x90Vm1ibKdt81swvC359AKIj9C1jn7qXh9mVAF6AN8IK7fwHg7lvD758NDCAU6ACaAZtiqLs98BIwxt3fr9W+wd0Xh79/FvguocXSox1bROop3bIUkWSIFooO1467f+zu19VqupBQ6BgPjIrpoKFQV80BAcjdPyAUkt4FfmZmd0T57JnAOcBAdz8FWA7khN/+qtam1YT+M2uARysDeDo8tq3A3Xu4++QYyt8BbAAGHdB+4DH8MMcWkXpKgUxEkmEhMNrMmod7ui4AFgF/B75tZjlm1hI47zD76EQooEAoBB2WmbUHfg085u5+wHsdgV3u/izwINAfKAda1dqsNbDN3XeZWU+g+AiH/Avwf8ysbfgYx9ZqH2tmHfa1m1nnI9VPqCdwNHClmV1aq/1EMxsY/v4SQj/DQx1bROop3bIUkYRz97fNbBrwj3DTb919OYCZzQFWAOuBEkI9Q9FsJBTKSjn0fx6bhaeOaAzsBZ4BHoqyXR7wgJnVAFXAje6+xcwWh6eb+B/gJ8ANZvYOsAZYcoRzfN/M7gX+ZmbVhHrUrnb3lWb2E+C18Hi2KuDm8PkelrvvNLNvAX82s52Efk6rgKvM7DfAh8Dj4dB40LGPtH8RSV92wH8kRUSSysxauntF+GnBhcCEcIBrC9xLaPqK3wKPAI8BlcDf4xhDlvbCg/Vfcfe+idguyufKgMJ9Y8xEJP2ph0xEUu0JM+tNaHzW0+7+NoC7bwFuOGDba1JdXIpUA63NrDSRc5GFnw59k1CPYU2i9isiyaceMhEREZGAaVC/iIiISMAUyAAzO8HM5odn437fzCYeZtsiC62fNzaVNWaaWK+JmZ1p/7uW4d9SXWemieW6mFlrM3s5PIP8+2bWUG87poXwE6v/qPXzvivKNk3N7Hkz+8jM3gqPTZMkifGafN/MVoZXW/hLjE/iSh3Ecl1qbTvWzNzMClNWn25Zgpl9DfhaeGBxK0ITP45295UHbJcN/JnQIOMp7v5C6qvNDLFcEzPLBd4ARrr7J2bWIbx8jiRJjNflNkKTu/4wPBXFGuB4d98TTNUNm4Vmn20RflCiMaFpMSa6+5Ja29wE5Lv7DWZ2MXCBu18UUMkNXozXZBjwVviJ2RuBM3VNkiuW6xLerhUwF2gC3OLuJamoTz1kgLt/VmtgcTmhx8y/HmXTfwdmEtus21IHMV6TS4FZ7v5JeDtdlySL8bo40Cr8l19LYCuhKSkkCTykIvyycfjrwP9pnw88Hf7+BeDs8PWRJIjlmrj7fHffFX65hNAUL5JEMf5ZAbgb+DmhzpeUUSA7QLgrvx+hde5qt3+d0OSWv059VZntUNcEOBloY2YLLLQg9JWpri2THea6PAb0Aj4lNDP+RHfXE39JZGbZ4fnYNgF/dvcDr8nXCU+y6+57Cc391ja1VWaWGK5JbdcRmgtPkuxI18XM+gEnuPsrqa5NgawWC80cPhP4D3f/8oC3HwZ+6O5HnDFcEucI16QRoeVwzgNGALeb2ckpLjEjHeG6jCA0mWtHoAB4zMyOSXGJGcXdq8PTZ3QCTjWzA+cti9YbpvEqSRTDNQHAzC4HCoEHUllfpjrcdQlP5PzfwA+CqE2BLCx8P3kmMN3dZ0XZpBCYEZ5wcSzwKzMbncISM04M12Qj8Kq77wxPgLkQOCWVNWaiGK7LNYRuJbu7fwSsA3qmssZM5e7bgQXAyAPe2khosXTMrBGhZaK0IHkKHOaaYGbnAP8FjHL3rw58X5LnENelFdAXWBD+t74YmJOqgf0KZEQG+j0FrHL3aMuu4O5d3b2Lu3chNAbjJnd/MYVlZpRYrgnwEjDEzBpZaNb30wiNaZIkifG6fAKcHd7+OKAH8HFqKsw8ZtY+/IDLvolhzwFWH7DZHOCq8Pdjgb8euN6nJE4s1yR8a+w3hMKYxr+mwJGui7vvcPd2tf6tX0Lo+qRkUL9m6g8ZBFwBvBu+twxwG3AigLtr3FjqHfGauPsqM3sVeIfQrOS/dff3Aqk2c8TyZ+VuYJqZvUvoVtkPtYRPUn0NeDr8FHgW8Ad3f8XMfgqUuPscQiH6GTP7iFDP2MXBlZsRYrkmDxB66OWP4ecrPnH3UYFVnBliuS6B0bQXIiIiIgHTLUsRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFLm0AWz6KfIiIiIg1J2gQy4CvgLHc/hdDs3iPNrDjgmjCzCUHXIPvTNUlPui7pR9ck/eiapKd0uC5pE8jiWPQz1QK/SHIQXZP0pOuSfnRN0o+uSXoK/LqkTSCDuBdjFREREWkQ0nJi2PDSBrOBfz9w5vVwt+IEgOzs7AFNmzZNai179+6lUSMtaJBOdE3Sk65L+tE1ST+6JukpVddl165dVe7eJNp7aRnIAMzsTmCnuz94qG0KCwu9pCQlS0yJiIiI1ImZLXP3qIuVp80tyxgXyBURERFpcNKp3zTqop8B1yQiIiKSdGkTyNz9HaBf0HWIiIiIpFraBDIREan/qqqq2LhxI5WVlUGXIhKYnJwcOnXqROPGjWP+jAKZiIgkzMaNG2nVqhVdunTBzIIuRyTl3J0tW7awceNGunbtGvPn0mZQv4iI1H+VlZW0bdtWYUwylpnRtm3buHuJFchERCShFMYk0x3NnwEFMhERadAmT57Mgw8eckpLXnzxRVauXJnCikQOpkAmIiIZTYFM0oECmYiINDj33nsvPXr04JxzzmHNmjUAPPnkkxQVFXHKKacwZswYdu3axRtvvMGcOXOYNGkSBQUFrF27Nup2IsmmQCYiIoFyd77aW52w/S1btowZM2awfPlyZs2axdKlSwG48MILWbp0KStWrKBXr1489dRTnH766YwaNYoHHniA0tJSunXrFnU7kWTTtBciIhIYd2fJx1v4cFMF3Tu0pPikuj+huWjRIi644AKaN28OwKhRowB47733+MlPfsL27dupqKhgxIgRUT8f63YiiaQeMhERCcye6ho+3FTB8a1y+HBTBXuqaxKy32ih7uqrr+axxx7j3Xff5c477zzktASxbieSSApkIiISmKaNsuneoSX/Kq+ke4eWNG2UXed9nnHGGcyePZvdu3dTXl7Oyy+/DEB5eTlf+9rXqKqqYvr06ZHtW7VqRXl5eeT1obYTSSbdshQRkUAVn9SW/p3bJCSMAfTv35+LLrqIgoICOnfuzJAhQwC4++67Oe200+jcuTN5eXmREHbxxRczfvx4HnnkEV544YVDbieSTObuQddw1AoLC72kpCToMkREJGzVqlX06tUr6DJEAhftz4KZLXP3wmjb65aliIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiItKglJWV0bdv35Qdb/LkyTz44IMxbfvNb36T7du312kf0jBpYlgRERGgurqa7OzETE57IHfH3Zk3b15S9i/1n3rIRESkwfr444/p168fb731FpMmTaKoqIj8/Hx+85vfALBgwQKGDRvGpZdeSl5eHmVlZfTq1Yvx48fTp08fhg8fzu7duwFYu3YtI0eOZMCAAQwZMoTVq1cf9tj79nXTTTfRv39/NmzYQJcuXfjiiy8AuPfee+nRowfnnHMOa9asiXxu6dKl5OfnM3DgQCZNmhTp7auuro56DtIwKJCJiEigamqczeVfkeiVY9asWcOYMWOYOnUqK1asoHXr1ixdupSlS5fy5JNPsm7dOgD+8Y9/cO+997Jy5UoAPvzwQ26++Wbef/99cnNzmTlzJgATJkzg0UcfZdmyZTz44IPcdNNNMdVw5ZVXsnz5cjp37hxpX7ZsGTNmzGD58uXMmjWLpUuXRt675ppr+PWvf82bb765X4/dU089dchzkPpPtyxFRCQwNTXOJU8uYdn6bQzo3IbnxheTlWV13u/mzZs5//zzmTlzJn369OGee+7hnXfe4YUXXgBgx44dfPjhhzRp0oRTTz2Vrl27Rj7btWtXCgoKABgwYABlZWVUVFTwxhtvMG7cuMh2X3311RHr6Ny5M8XFxQe1L1q0iAsuuIDmzZsDMGrUKAC2b99OeXk5p59+OgCXXnopr7zyCgCvvfZa1HOoXbvUXwpkIiISmC0797Bs/Tb21jjL1m9jy849tG/VtM77bd26NSeccAKLFy+mT58+uDuPPvooI0aM2G+7BQsW0KJFi/3amjb93+NnZ2eze/duampqyM3NpbS09JDH3LBhA9/+9rcBuOGGGxg5cuRB+67N7ODgebhewkOdgzQMumUpIiKBadeyCQM6t6FRljGgcxvatWySkP02adKEF198kd/97nf8/ve/Z8SIETz++ONUVVUB8MEHH7Bz586Y93fMMcfQtWtX/vjHPwKhcLRixYr9tjnhhBMoLS2ltLSUG2644bD7O+OMM5g9eza7d++mvLycl19+GYA2bdrQqlUrlixZAsCMGTMin6nrOUh6Uw+ZiIgExsx4bnwxW3buoV3LJlF7jY5WixYteOWVV/jGN77BT37yE3r37k3//v1xd9q3b8+LL74Y1/6mT5/OjTfeyD333ENVVRUXX3wxp5xyylHV1r9/fy666CIKCgro3LkzQ4YMibz31FNPMX78eFq0aMGZZ55J69atAbj++uspKyur0zlI+rJED6JMpcLCQi8pKQm6DBERCVu1ahW9evUKuox6raKigpYtWwJw33338dlnn/GLX/wi4KokXtH+LJjZMncvjLa9eshERETSyNy5c/nZz37G3r176dy5M9OmTQu6JEkBBTIREZE0ctFFF3HRRRcFXYakmAb1i4iIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIg0KPumjPj0008ZO3ZswNUcvQULFvCtb32rztscaPLkyTz44IN1Ke0g3/zmN9m+fTvbt2/nV7/6VUL3fThz5szhvvvuO+w2h/sZPfzww+zatSvyet95BEGBTEREGqSOHTtG1n1Mlr179yZ1//XFvHnzyM3NTXkgGzVqFD/60Y+O+vMHBrJ95xEEBTIREWmQysrK6Nu3LwDTpk3jwgsvZOTIkXTv3p1bb701st1rr73GwIED6d+/P+PGjaOiogKAn/70pxQVFdG3b18mTJgQWWfyzDPP5LbbbmPo0KEHTdg6efJkrrrqKoYPH06XLl2YNWsWt956K3l5eYwcOTKy7NFf/vIX+vXrR15eHtdee21kofJXX32Vnj17MnjwYGbNmhXZ786dO7n22mspKiqiX79+vPTSS3H9LO6991569OjBOeecw5o1ayLta9euZeTIkQwYMIAhQ4awevVqAK6++mq++93vcvrpp3PSSSdFgu1nn33GGWecQUFBAX379mXRokUAdOnShS+++IIf/ehHrF27loKCAiZNmsQVV1yxX62XXXYZc+bM2a+2TZs2MWDAAABWrFiBmfHJJ58A0K1bN3bt2sXmzZsZM2YMRUVFFBUVsXjx4sh1veWWWyLnUlxcTFFREXfccUekpxRCk+2OHTuWnj17ctlll+HuPPLII3z66acMGzaMYcOG7XceZWVl9OrVi/Hjx9OnTx+GDx/O7t27AVi6dCn5+fkMHDiQSZMmRX6P1Zm719uvAQMGuIiIpI+VK1fG/6Hqavfyz91rahJSQ4sWLdzdfd26dd6nTx93d586dap37drVt2/f7rt37/YTTzzRP/nkE9+8ebMPGTLEKyoq3N39vvvu87vuusvd3bds2RLZ5+WXX+5z5sxxd/ehQ4f6jTfeGPXYd955pw8aNMj37NnjpaWl3qxZM583b567u48ePdpnz57tu3fv9k6dOvmaNWvc3f2KK67w//7v/460f/DBB15TU+Pjxo3z8847z93df/zjH/szzzzj7u7btm3z7t27e0VFhc+fPz+yzdKlS/266647qKaSkhLv27ev79y503fs2OHdunXzBx54wN3dzzrrLP/ggw/c3X3JkiU+bNgwd3e/6qqrfOzYsV5dXe3vv/++d+vWzd3dH3zwQb/nnnvc3X3v3r3+5Zdfurt7586dffPmzfv9zN3dFyxY4Oeff767u2/fvt27dOniVVVVB9XYu3dv37Fjhz/66KNeWFjozz77rJeVlXlxcbG7u19yySW+aNEid3dfv3699+zZM3Jdb775Znd3P++88/z3v/+9u7s//vjjkd8H8+fP92OOOcY3bNjg1dXVXlxcHNnXvrr3qX0e2dnZvnz5cnd3HzduXOTn36dPH1+8eLG7u//whz/c73xri/ZnASjxQ2QaTQwrIiLBqamBp78FG96CE06Dq16BrOTcvDn77LMj60L27t2b9evXs337dlauXMmgQYMA2LNnDwMHDgRg/vz5/PznP2fXrl1s3bqVPn368O1vfxvgsBO3nnvuuTRu3Ji8vDyqq6sZOXIkAHl5eZSVlbFmzRq6du3KySefDMBVV13FL3/5S84880y6du1K9+7dAbj88st54okngFAv3pw5cyJjvyorKyO9SPsUFhby29/+9qB6Fi1axAUXXEDz5s2B0G0+CPUavfHGG4wbNy6y7b6eOoDRo0eTlZVF7969+fzzzwEoKiri2muvpaqqitGjR1NQUHDYn/nQoUO5+eab2bRpE7NmzWLMmDE0anRw9Dj99NNZvHgxCxcu5LbbbuPVV1/F3SNrfL7++uusXLkysv2XX35JeXn5fvt48803I2t7Xnrppfznf/5n5L1TTz2VTp06AVBQUEBZWRmDBw8+bO1du3aNnN+AAQMoKytj+/btlJeXc/rpp0eO88orrxx2P7FSIBMRkeDs+iIUxmr2hn7d9QW07JCUQzVt2jTyfXZ2Nnv37sXd+cY3vsFzzz2337aVlZXcdNNNlJSUcMIJJzB58mQqKysj77do0eKIx8nKyqJx48aRBdOzsrIixzyUQy2u7u7MnDmTHj167Ne+LygdSbT91tTUkJubS2lp6WHPY9/xAc444wwWLlzI3LlzueKKK5g0aRJXXnnlYY99xRVXMH36dGbMmMGUKVMAuOaaa1i+fDkdO3Zk3rx5DBkyhEWLFrF+/XrOP/987r//fswsMhi/pqaGN998k2bNmsV0voc7l33XPt7P7N69+7DXrq40hkxERILTon2oZyyrUejXFu1Tevji4mIWL17MRx99BMCuXbv44IMPIuGrXbt2VFRUJPThgJ49e1JWVhY55jPPPMPQoUPp2bMn69atY+3atQD7hcQRI0bw6KOPRgLB8uXLYz7eGWecwezZs9m9ezfl5eW8/PLLABxzzDF07dqVP/7xj0AodK1YseKw+1q/fj0dOnRg/PjxXHfddbz99tv7vd+qVauDeq6uvvpqHn74YQD69OkDwNSpUyktLWXevHmRGp999lm6d+9OVlYWxx57LPPmzYv0XA4fPpzHHnssss9oIbK4uJiZM2cCMGPGjJh+NtHqPZw2bdrQqlUrlixZEtdxYqFAJiIiwTEL3ab8/iq4em7odQq1b9+eadOmcckll5Cfn09xcTGrV68mNzeX8ePHk5eXx+jRoykqKkrYMXNycpg6dSrjxo0jLy+PrKwsbrjhBnJycnjiiSc477zzGDx4MJ07d4585vbbb6eqqor8/Hz69u3L7bffftB+S0pKuP766w9q79+/PxdddBEFBQWMGTMmchsQYPr06Tz11FOccsop9OnT54gPCyxYsICCggL69evHzJkzmThx4n7vt23blkGDBtG3b18mTZoEwHHHHUevXr245pprDrnfLl26AKFgBjB48GByc3Np06YNAI888gglJSXk5+fTu3dvfv3rXx+0j4cffpiHHnqIU089lc8++yxye/pwJkyYwLnnnhsZ1B+Lp556igkTJjBw4EDcPabjxMKS2f2WbIWFhV5SUhJ0GSIiErZq1Sp69eoVdBmSRnbt2kVeXh5vv/12wsLLoY7TrFkzzIwZM2bw3HPPxf00aiwqKioiT3Ded999fPbZZwc9bQvR/yyY2TJ3L4y2X40hExERkaR4/fXXufbaa/n+97+f1DAGsGzZMm655Rbcndzc3Mh4tUSbO3cuP/vZz9i7dy+dO3dm2rRpCdmveshERCRh1EMmEhJvD5nGkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiINCj7piT49NNPGTt2bMDVHL0FCxZEZqqvyzaJVnvR7kSYM2cO9913HwAvvvjifkskJVPt4x7K4X6+Dz/8MLt27UpYPQpkIiLSIHXs2DGhM+xHE8sSPHJ4o0aN4kc/+hGQ2kBW+7hHQ4FMREQkBmVlZfTt2xeAadOmceGFFzJy5Ei6d+/OrbfeGtnutddeY+DAgfTv359x48ZRUVEBwE9/+lOKioro27cvEyZMiCxbdOaZZ3LbbbcxdOjQgyYEnTx5MldddRXDhw+nS5cuzJo1i1tvvZW8vDxGjhxJVVUVAH/5y1/o168feXl5XHvttZFFvV999VV69uzJ4MGDmTVrVmS/O3fu5Nprr6WoqIh+/frFNeFpWVkZvXr1Yvz48fTp04fhw4eze/duILQEUXFxMfn5+VxwwQVs27btoM+vW7eOgQMHUlRUdNAKAQ888ABFRUXk5+dz5513HvF4jzzyCL179yY/P5+LL744cm1uueUW3njjDebMmcOkSZMoKChg7dq19O/fP3KsDz/8kAEDBux3/E2bNkXaVqxYgZlFFl3v1q0bu3btYvPmzYwZM4aioiKKiopYvHjxfscFWLt2LcXFxRQVFXHHHXfs1wtYUVHB2LFj6dmzJ5dddhnuziOPPMKnn37KsGHD4prl/3AUyEREJFA1XsMXu79I6sLNEAofzz//PO+++y7PP/88GzZs4IsvvuCee+7h9ddf5+2336awsJCHHnoIgFtuuYWlS5fy3nvvsXv3bl555ZXIvrZv387f/vY3fvCDHxx0nLVr1zJ37lxeeuklLr/8coYNG8a7775Ls2bNmDt3LpWVlVx99dWRWvbu3cvjjz9OZWUl48eP5+WXX2bRokX861//iuzz3nvv5ayzzmLp0qXMnz+fSZMmsXPnzv2Oe6ilkyAUZm6++Wbef/99cnNzI2s+Xnnlldx///2888475OXlcddddx302YkTJ3LjjTeydOlSjj/++Ej7a6+9xocffsg//vEPSktLWbZsGQsXLjzs8e677z6WL1/OO++8c9DyR6effjqjRo3igQceoLS0lG7dutG6devIupVTp07l6quv3u8zHTp0oLKyki+//JJFixZRWFgYWaS8Q4cONG/enIkTJ/K9732PpUuXMnPmzKg/o4kTJzJx4kSWLtDXSYAAACAASURBVF1Kx44d93tv+fLlPPzww6xcuZKPP/6YxYsX893vfpeOHTsyf/585s+fH/VnHi8FMhERCUyN13Dtn67lnD+ewzV/uoYar0nasc4++2xat25NTk4OvXv3Zv369SxZsoSVK1cyaNAgCgoKePrpp1m/fj0A8+fP57TTTiMvL4+//vWvvP/++5F9XXTRRYc8zrnnnkvjxo3Jy8ujurqakSNHApCXl0dZWRlr1qyha9eunHzyyQBcddVVLFy4kNWrV9O1a1e6d++OmXH55ZdH9vnaa69x3333UVBQwJlnnkllZWWkJ2ifwsJCfvvb30atqWvXrhQUFAAwYMAAysrK2LFjB9u3b2fo0KH71XGgxYsXc8kllwBwxRVX7FfTa6+9Rr9+/ejfvz+rV6/mww8/POTxAPLz87nssst49tlnadToyIsFXX/99UydOpXq6mqef/55Lr300oO2Of3001m8eDELFy7ktttuY+HChSxatCiyZufrr7/OLbfcQkFBAaNGjeLLL788aEHxN998k3HjxgEcdIxTTz2VTp06kZWVRUFBQeRcEk1LJ4mISGC2Vm6ldFMp1V5N6aZStlZupV2zdkk5VtOmTSPfZ2dns3fvXtydb3zjGzz33HP7bVtZWclNN91ESUkJJ5xwApMnT6aysjLyfosWLY54nKysLBo3boyFF0zPysqKHPNQ7BCLq7s7M2fOpEePHvu1f/7554fcV7SaIHTu+24hxipaXe7Oj3/8Y77zne/s115WVnbI482dO5eFCxcyZ84c7r777v1CbjRjxozhrrvu4qyzzmLAgAG0bdv2oG2GDBkS6RU7//zzuf/++zGzyGD8mpoa3nzzTZo1axbXOe8T7fdNMqiHTEREAtM2py0FHQrItmwKOhTQNufgf3CTqbi4mMWLF/PRRx8BoQWqP/jgg0j4ateuHRUVFQl9OKBnz56UlZVFjvnMM88wdOhQevbsybp161i7di3AfiFxxIgRPProo5Ewt3z58jrX0bp1a9q0acOiRYv2q+NAgwYNYsaMGQBMnz59v5qmTJkSGXP3z3/+k02bNh3yeDU1NWzYsIFhw4bx85//nO3bt0c+u0+rVq32673KyclhxIgR3HjjjVxzzTVR93vGGWfw7LPP0r17d7Kysjj22GOZN28egwYNAmD48OE89thjke333QKtrbi4OHJbdd+5HsmBtdaVApmIiATGzJgyYgqvj3udqSOmHrKHKFnat2/PtGnTuOSSS8jPz6e4uJjVq1eTm5vL+PHjycvLY/To0RQVFSXsmDk5OUydOpVx48aRl5dHVlYWN9xwAzk5OTzxxBOcd955DB48mM6dO0c+c/vtt1NVVUV+fj59+/Y9aHA9HH4M2aE8/fTTTJo0ifz8fEpLS7njjjsO2uYXv/gFv/zlLykqKmLHjh2R9uHDh3PppZcycOBA8vLyGDt27GEDSnV1NZdffjl5eXn069eP733ve+Tm5u63zcUXX8wDDzxAv379IsH0sssuw8wYPnx41P126dIFCAUzgMGDB5Obm0ubNm2A0IMEJSUl5Ofn07t374PGrkHoicmHHnqIU089lc8++yymhdAnTJjAueeem7BB/VpcXEREEkaLi0uiPfjgg+zYsYO77747acfYtWsXzZo1w8yYMWMGzz33XFxPskYT7+LiGkMmIiIiaemCCy5g7dq1/PWvf03qcZYtW8Ytt9yCu5Obm8uUKVOSerxoFMhEREQkLc2ePTslxxkyZAgrVqxIybEORWPIRERERAKmQCYiIglVn8cmiyTC0fwZUCATEZGEycnJYcuWLQplkrHcnS1btpCTkxPX5zSGTEREEqZTp05s3LiRzZs3B12KSGBycnLo1KlTXJ9Jm0BmZicAvwOOB2qAJ9z9F4f/lIiIpJPGjRvTtWvXoMsQqXfSJpABe4EfuPvbZtYKWGZmf3b3lUEXJiIiIpJMaTOGzN0/c/e3w9+XA6uArwdblYiIiEjypU0gq83MugD9gLeivDfBzErMrERjFERERKQhSLtAZmYtgZnAf7j7lwe+7+5PuHuhuxe2b98+9QWKiIiIJFhaBTIza0wojE1391lB1yMiIiKSCmkTyMzMgKeAVe7+UND1iIiIiKRK2gQyYBBwBXCWmZWGv74ZdFEiIiIiyZY20164+98BC7oOERERkVRLpx4yERERkYykQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJWFoFMjObYmabzOy9oGsRERERSZW0CmTANGBk0EWIiIiIpFJaBTJ3XwhsDboOERERkVRKq0AmIiIikoliCmQWckKyi4mFmU0wsxIzK9m8eXPQ5YiIiIjUWUyBzN0deDHJtcTE3Z9w90J3L2zfvn3Q5YiIiIjUWTy3LJeYWVHSKhERERHJUPEEsmHAm2a21szeMbN3zeydRBZjZs8BbwI9zGyjmV2XyP2LiIiIpKNGcWx7btKqCHP3S5J9DBEREZF0E3MPmbuvB3KBb4e/csNtIiIiIlIHMQcyM5sITAc6hL+eNbN/T1ZhIiIiIpkinluW1wGnuftOADO7n9B4r0eTUZiIiIhIpohnUL8B1bVeV4fbRERERKQO4ukhmwq8ZWazw69HA08lviQRERGRzBJzIHP3h8xsATCYUM/YNe6+PFmFiYiIiGSKmAKZmRnQyd3fBt5ObkkiIiIimaXeLZ0kIiIi0tBo6SQRERGRgMUzqH8Y8B0zWw/sJDSOzN09PymViYiIiGSIeMaQ3QBoZn4RERGRBIspkLm7m9l/u/uAZBckIiIikmk0hkxEREQkYPGOIbvBzMrQGDIRERGRhIknkJ2btCpEREREMlg8tyw/AYYAV7n7esCB45JSlYiIiEgGiSeQ/QoYCFwSfl0O/DLhFYmIiIhkmHhuWZ7m7v3NbDmAu28zsyZJqktEREQkY8TTQ1ZlZtmEblViZu2BmqRUJSIiIpJB4glkjwCzgQ5mdi/wd+D/JqUqERERkQwS8y1Ld59uZsuAswlNeTHa3VclrTIRERGRDBHPGDLcfTWwOkm1iIiIiGSkeG5ZioiIiEgSKJCJiIiIBEyBTERERCRgRxxDZmblhKe6OPAtQmtZHpPwqkREREQyyBEDmbu3SkUhIiIiIpkqrqcszawN0B3I2dfm7gsTXZSIiIhIJok5kJnZ9cBEoBNQChQDbwJnJac0ERERkcwQz6D+iUARsN7dhwH9gM1JqUpEREQkg8QTyCrdvRLAzJqGJ4ntkZyyRERERDJHPGPINppZLvAi8Gcz2wZ8mpyyRERERDJHPGtZXhD+drKZzQdaA/+TlKpEREREMkg8g/qbAmOALrU+VwD8NPFliYiIiGSOeG5ZvgTsAJYBXyWnHBEREZHME08g6+TuI5NWiYiIiEiGiucpyzfMLC9plYiIiIhkqHh6yAYDV5vZOkK3LPetZZmflMpEREREMkQ8gezcpFUhIiIiksFivmXp7uuBXODb4a/ccJuIiIiI1EHMgczMJgLTgQ7hr2fN7N+TVZiIiIhIpojnluV1wGnuvhPAzO4ntLj4o8koTERERCRTxPOUpQHVtV5Xh9tEREREpA7i6SGbCrxlZrPDr0cDTyW+JBEREZHMEs9alg+Z2d+AQYR6xq5x9+VJq0xEREQkQ8TTQ4a7LyO0dJKIiIiIJMgRA5mZ/d3dB5tZOeC13yI0MewxSatOREREJAMcMZC5++Dwr62SX46IiIhI5olnHrL7Y2kTERERkfjEM+3FN6K0aTklERERkTqKZQzZjcBNwElm9k6tt1oBi5NVmIiIiEimiOUpy98D/wP8DPhRrfZyd9+alKpEREREMkgsg/p3ADuAS5JfjoiIiEjmiWdQ/9NmllvrdRszm5KcskREREQyRzyD+vPdffu+F+6+DeiX+JJEREREMks8gSzLzNrse2FmxxLnTP8iIiIicrB4AtX/A94wsxfCr8cB9ya+JBEREZHMEs/i4r8zsxLgLELLJl3o7iuTVpmIiIhIhojnliXAZ8A/gBVAOzM7I/EliYiIiGSWmHvIzOx6YCLQCSgFioE3CfWYiYiIiMhRiqeHbCJQBKx392GEnrDcnJSqRERERJJs27ZtrFq1ii+//DLoUuIa1F/p7pVmhpk1dffVZtYjaZWJiIiIJElVVRUvvTSHnTt30rp1ay699BKysuIdyZU48QSyjeGJYV8E/mxm24BPk1OWiIiISPK4O1VVVeTk5LBnzx7cPdB6YgpkZmbAd8MTw042s/lAa+DVZBYnIiIikgxNmjThvPO+ydq1H3Pyyd3Jzs4OtJ6YApm7u5m9CAwIv/5bMooxs5HAL4Bs4Lfufl8yjiMiIiLSsWNHOnbsGHQZQHyD+peYWVGyCjGzbOCXwLlAb+ASM+udrOOJiIiIpIt4xpANA75jZuuBnYQmh3V3z09QLacCH7n7xwBmNgM4H9DksyIiItKgHTGQmdkz7n4F8AQwO4m1fB3YUOv1RuC0KPVMACYAnHjiiUksR0RERCQ1YrllOcDMOgPXAF8C5Qd8JYpFaTvokQd3f8LdC929sH379gk8vIiIiEgwYrll+WtCT1OeBCxj/+Dk4fZE2AicUOt1JzSthohIym3//EtK/7KKlrnNyT+rJ01yGgddkkiDd8QeMnd/xN17AVPc/SR371rrK1FhDGAp0N3MuppZE+BiYE4C9y8iIjEoe3cjBnzxz+1s3xT8DOYimSDmpyzd/cZkFuLue4FbgD8Bq4A/uPv7yTymiIgcrP2JbflqdxU5LZrQMrdF0OWIZIR4nrJMOnefB8wLug4RkUz29ZOPo83xrWnUJFu3K0VSJK0CmYiIpIfmx+QEXYJIRon5lmW0SVrN7MyEViMiIiKSgeKZqf8PZvZDC2lmZo8CP0tWYSIiIiKZIp5AdhqhaSneIPRE5KfAoGQUJSIiIpJJ4glkVcBuoBmQA6xz95qkVCUiIiKSQeIJZEsJBbIiYDChxb9fSEpVIiIiIhkknqcsr3P3kvD3/wLON7MrklCTiIiISEaJOZC5e4mZtQG6E7plCbA+KVWJiIiIZJCYA5mZXQ9MJLTGZClQDLwJnJWc0kREREQyQzxjyCYSGj+23t2HAf2AzUmpSkRERCSDxBPIKt29EsDMmrr7aqBHcsoSERERyRzxDOrfaGa5wIvAn81sG6G5yERERESkDuIZ1H9B+NvJZjYfaA28mpSqRERERDLIUS0u7u5/S3QhIiIiIpnqiIHMzMoBj/YW4O5+TMKrEhEREckgRwxk7t4qFYWIiIiIZKp4nrIUERERkSSI55alRXm7wd+yLC/fyZYvtnHc8e1o1iznyB8QERERiZNuWR5GVVUV816eT0X5Ttq1b8uoC87GLFouFRERETl6cT1lGWUtS9x9YaKLShdVVXvZtauS5i2b8+WX5bi7AplQsaWCj95aS4s2Leh26klkZevOv4iI1I3WsjyM5s2bMXTYqaxbu4FefbuTlaV/eAXWLStj1/bd7PhsB+1ObEubr7cJuiQREann4ukh27eW5RJ3H2ZmPYG7klNW+jip24mc1O3EoMuQNHJMh2PYunEbjZo2pmnLpkGXIyIiDUA8gazS3SvNLLKWpZlpLUvJOCeecgK5HXNp0qwJzVrpQQ8REak7rWUpEiczo3WHBv1wsYiIpFhMgcxCI9m/6+7b0VqWIiKSAl5VDtW7oWl7PVAlDV5Mgczd3cxeBAaEX2stSxERSRrfsx3/9GWo2QPHFmG5+UGXJJJU8Tw2uMTMipJWSbqqqYGKTeB+5Pb62JZu9ehcgj+2ziX4Y+tcYG9FqHdszx6o/Lx+n8uh2tKtHp1LoOIJZMOAN81srZm9Y2bvmtk7ySosLdTUwNPfgod6wbTzQq8P1V4f23Qu6dmmcwm+rb7W3ZDOpWkH7C9PY8/fhs39ef0+l4Z0XTLhXAISz6D+c5NWRbra9QVseAtq9oZ+3fUFtOwQvR3qX5vOJT3bdC7Bt9XXuhvQuRjAv1aD18A/367X59KQrktGnEtAYu4hc/f1wJfAcUDnWl8NV4v2cMJpkNUo9GuL9odur49tOpf0bNO5BN9WX+vWudSfNp1LerYFyd1j+gKuB94FtgHzgd3AX2P9fDK+BgwY4ElXXe1e/rl7Tc2R2+tjW7rVo3MJ/tg6l+CPrXPRudS3tnSrp67nkiRAiR8i05jHOJDNzN7lf2fqL9g3U7+7X5SMoBiLwsJCLykpSeox9lZXs3br53Rve/x+SydFa4/WVlPjbNm5h3Ytm0Qe2461TURERBoOM1vm7oXR3otnUH+lu1eGd9jU3VcDDXqm/r3V1Qx6ehxj5p7LwGlj2Vtdfcj2aG01Nc7FT77BwJ+/yEVPvElNjcfctu84azZ/Sk2tgYaJbotn25oaZ3P5V9QO8enUJiIiUl9ppv7DWLv1c3ZmrcWshp1Za1m79XN6tO8YtR04qC23aRveq7mfnG7reW93ZzZXPA8QU1vbFk0Y9PQ4dmatpUVNNxZf9UeAhLY1ys6OBMkjbZtlWVz85Bu8vXEj/TudwIzxAwHSpi0rK9SrmOheyqDaUnkcEREJXsyBzN0vCH+bMTP1d297PC1qukWCSfe2xx+2/cC2rZVbyW62HqyG7GbryW60EyCmtrVbt8UU+urSlqpwmYq2445pFjVcpnuQjNaWlWWRXtMDt73kySUsW7+NAZ3b8Nz44jq17TtOQwmXqapbRCQZ4ukhi/AMmak/KyuLxVf98aAel0O1H9jWtllbBhzXj9LNpRQcV0DbZm0BYmo7NsdjCn11bUtFuExNW7Oo4TLdg2S0tuOOacbmisqD2rMsi2Xrt1BtFSxbHwoKwFG3tW3RJGXhMpFBMhVth6o7VSG2oYdiETlYzIHMzHKAm4DBgAN/Bx7fN66soWqUnU2P9h1jaj+wzcyYMnIKWyu30janbeQvo1jazCym0FfXtlSEy1S1RQuX6R8ko4fL7EY7D2pvk9OGtv82JXJ+x7YYCXDUbdFCHyQ+XG7ZuSehQTIVbe1bNY1ad9sWTdImNMbalm6huK6hNp5t070t3m2lYYunh+x3QDnwaPj1JcAzwLhEF9WQZFkW7Zq1O6q2WEJfXdti3bYu4TJVbdHCZX0IktHaotW9pXILXzX6GPMavmr0Mdu+2gZw1G3ZjVITLo9t0SihQTJVbdHqrt/hcht7a5xl67fV2jb1bXUJtekWLuvSFs+51Iee2XSsp76JJ5D1cPdTar2eb2YrEl2QpK+6hMtUtEH9DJLR2qLV3TanLQUdCijdVEpBhwLa5oTCW13aUhEut321LaFBMhVt7Zq1i1r3sS0S20uZqrZ2LZvQv3PryO3kdi2bAATS9kXF0YfadAuXdWmL51zSvWc23YJyInphgxBPIFtuZsXuvgTAzE4DFienLJHESafQGE+4PLDdzJgyIkqgq0tbCsJlMoJkKtqi1Z3oXspUtLVr1g7HaX7ik7RsVkrzDgU4oX/Igmira49pOoXLeNoGdG4TCQ372tq1bBK1/cC2UIhNjyAZrS3dgnJde2GDEk8gOw240sw+Cb8+EVhloQlj3d3zE16diOwnnUJjrG1JCZIpaItWd30Nl1srt1K6uZRqr6Z0UylbK7cCBNbWUMJlrG1ZlsX060+NDKeo/XssWvuBbUGG0FgCI8QeLlPRVpcA275VU4ISTyAbmbQqRKRBS6eAmHa9lCloq69Bsj6Ey1jajs05luv/fF3kXKaMmEKWZVHjNQe1A1Hb0ilI1iVcpqLtUAE21oAXlHjmIVufzEJEROqDdAqNDb2XsqGEyy2VWyjdtH9Ia9esXShcbooS6KK1pUmQhIMDY7zhMhVtdQmXQTmqechERKR+SaeAmGnh8lAhMt3DZbQgCQcHxrjDZSra6hAug6JAJiIi9Uo6BcRY2g4VItM9XMYTGA+5bbt8Sr94p16Fy6BYfV6cubCw0EtKSoIuQ0REpEGq8ZqDglu0tmjt5e+vpnzNh+w6tiknDT6LrEaN4tpnItvcnWv+dE0kpE0dMRXgoLZk37Y0s2XuXhj1vXgDmZldCowCqgEDXnb35+pc5VFQIBORTFRTvQ28Gss+FgvwFovI4Xz+yp9o1LIVVdu20e6coTRq1TLQeuIJl8lyuEB2NLcsh7r7xbV2/ksgkEAmIpJpaqq3srfybdyd7CY9aNTkxKBLEomqRY9/Y+f7a2ja8XiyWzQPupy4nrAOwtEEsqZmdh6wAegENEtsSSIicki+F/Bwz9ieoKsROaSW3bvRomsXrFF20KXUC0fT130T0Ab4JnAscHNCKxIRkUOy7HZkNf43shqdQHZj9Y5JelMYi13cPWTuvgt4dt9rM/shcH8iixIRkejMsmjUpGvQZQTGqQZ2AU0xgp3IUySR4g5kZvaH2i+BAhTIREQkBZzPgJ1ANtAF0+xN0kAcze/kL939+n0vzOzxBNYjIiJyGHsJhbGa8JdIw3A0gezeA17/VyIKERERORLjeJytQHPdspQG5WjGkK074PXWxJUjIiJyaEYORsegyxBJuJgDmZl9P0rzDmCZu5cmriQRERGRzBLPtBeFwA3A18NfE4AzgSfN7NbElyYiIiKSGeK5ZdkW6O/uFQBmdifwAnAGsAz4eeLLExEREWn44ukhO5H9p4WuAjq7+27gq4RWJSIiIpJB4ukh+z2wxMxeIjT/2LeA58ysBbAyGcWJiIiIZIKYA5m7321m84DBhALZDe5eEn77smQUJyIiIpIJ4p32Yi+hmfic0C1LEREREamjmMeQmdlEYDrQDugAPGtm/56swkREREQyRTyD+q8DTnP3O939DqAYGJ+IIsxsnJm9b2Y1ZlaYiH2KiIiI1BfxBDIDqmu9rg63JcJ7wIXAwgTtT0RERKTeiGcM2VTgLTObTSiIjQamJKIId18FYJaofCciIiJSf8TzlOVDZrYAGEQokF2lJZNERERE6u6IgczMygk9VRlpqvWeu/sxsRzIzF4Hjo/y1n+5+0ux7CO8nwmElm3ixBNPjPVjIiIiImnriIHM3Vsl4kDufk6C9vME8ARAYWGhH2FzERERkbQXz6B+EREREUmCtAhkZnaBmW0EBgJzzexPQdckIiIikirxztSfFO4+G5gddB0iIiIiQUiLHjIRERGRTKZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEQk4+zauZsVy1ezYf1nQZciIgKkyUz9IiKptHjRcv654V84xugxZ9Pm2GOCLklEMpx6yEQk45gZ7mAWdCUiIiHqIRORjHP6kH6s69iO3DbHqHdMRNKCApmIZJzmzXPok9c96DJERCJ0y1JEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIR+f/t3X+sZGddx/H3x661ZbcU2yoFu7AaFkxda5FrY5W6IEuyRl2qEJBAumDDphJDSAORpoIJSKAtBmOK2nUxVCn+YGNpbUVaCgpUtrK22639uaW16QqRUmp1WX6V/frHnFsnt/fOnS13zjPtvF/JZufMPPc53zvfnLmfOfPMjCSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGpuKQJbkoiR3JNmb5PIkT2tdkyRJUl+mIpAB1wIbquoU4C7gvMb1SJIk9WYqAllVXVNVj3Sbu4CTWtYjSZLUp6kIZAv8JvDxpW5Msi3J7iS7H3jggR7LkiRJmoxVfe0oySeBExe56fyquqIbcz7wCHDZUvNU1XZgO8Dc3FxNoFRJkqRe9RbIqmrTqNuTbAV+BXhJVRm0JEnSzOgtkI2SZDPwO8DGqjrYuh5JkqQ+TcsasouBY4Brk+xJ8qetC5IkSerLVJwhq6rntK5BkiSplWk5QyZJkjSzDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMSEGDDQAACaFJREFUZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhozkEmSJDVmIJMkSWrMQCZJktSYgUySJKkxA5kkSVJjBjJJkqTGDGSSJEmNGcgkSZIaM5BJkiQ1ZiCTJElqzEAmSZLUmIFMkiSpMQOZJElSYwYySZKkxgxkkiRJjRnIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqbGpCGRJ3pVkb5I9Sa5J8szWNUmSJPVlKgIZcFFVnVJVpwJXAe9oXZAkSVJfpiKQVdX/DG2uBqpVLZIkSX1b1bqAeUneDZwFPAy8uHE5kiRJvUlVPyejknwSOHGRm86vqiuGxp0HHFVVv7fEPNuAbd3m84A7V7rWBU4Avjrhfejw2JPpZF+mjz2ZPvZkOvXVl2dX1Q8tdkNvgWxcSZ4NXF1VG1rXApBkd1XNta5D/8+eTCf7Mn3syfSxJ9NpGvoyFWvIkqwf2twC3NGqFkmSpL5Nyxqy9yZ5HnAIuA84p3E9kiRJvZmKQFZVL29dwwjbWxegx7An08m+TB97Mn3syXRq3pepW0MmSZI0a6ZiDZkkSdIsM5B1kmxOcmeSu5O8bYkxr0xyW5Jbk3yk7xpnzTg96ca9Ikkl8Z1LE7ZcT5Kc2x0je5Nc171rWhM2Rl9+IMnfdLffkGRd/1XOpiTHJbk2yb7u/x9cZMypST7f/W3Zm+RVLWqdJeP0ZWjsU5P8Z5KLJ1mTgQxIcgTwAeCXgJOBVyc5ecGY9cB5wM9X1U8Ab+690BkyTk+6cccAbwJu6LfC2TNmT24C5qrqFGAncGG/Vc6eMftyNvBQVT0HeD9wQb9VzrS3AddV1Xrgum57oYPAWd3fls3AHyZ5Wo81zqJx+jLvXcA/T7ogA9nAacDdVXVPVX0b+GvgZQvGvAH4QFU9BFBVX+m5xlkzTk9gcKBcCHyzz+Jm1LI9qapPV9XBbnMXcFLPNc6icY6VlwGXdpd3Ai9Jkh5rnGXD9/2lwJkLB1TVXVW1r7v8JeArwKIfHqoVs2xfAJK8AHg6cM2kCzKQDfwIcP/Q9v7uumHPBZ6b5Poku5Js7q262bRsT5I8H1hbVVf1WdgMG+c4GXY28PGJViQYry+PjqmqRxh8Rd3xvVSnp1fVlwG6/3941OAkpwFHAl/sobZZtmxfknwf8AfAW/soaCo+9mIKLPZMceHbT1cB64EXMXjW/9kkG6rqvydc26wa2ZPuQHk/8Lq+CtJYx8lgYPJaYA7YONGKBOP1Zeze6fCN+mrAw5znGcBfAlur6tBK1DbLVqAvbwT+oaru7+OEsoFsYD+wdmj7JOBLi4zZVVXfAe5NcieDgPaFfkqcOcv15BhgA/BP3YFyInBlki1Vtbu3KmfLOMcJSTYxeMDbWFXf6qm2WTbu49daYH+SVcCxwNf6Ke/Jr6o2LXVbkv9K8oyq+nIXuBZd7pLkqcDVwO9W1a4JlTpTVqAvpwNnJHkjsAY4MsmBqhq13uxx8yXLgS8A65P8aJIjgd8Arlww5mPAiwGSnMDgJcx7eq1ytozsSVU9XFUnVNW6qlrHYL2SYWyylj1OupeRL2HQC9dZ9mOcx68rga3d5VcAnyo/hLIvw/f9VuCKhQO6vl0O/EVVfbTH2mbZsn2pqtdU1bO6vzFvYdCfiYQxMJABj66p+G3gE8DtwN9W1a1J3plkSzfsE8CDSW4DPg28taoebFPxk9+YPVGPxuzJRQyeSX40yZ4kC4OBVtiYffkgcHySu4FzGf2OMq2s9wIvTbIPeGm3TZK5JDu6Ma8EfgF4XXfc7ElyaptyZ8Y4femVn9QvSZLUmGfIJEmSGjOQSZIkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJJWVJIDrWtYCcO/x0r8TknWJflGkj3f61wj9nF096Gi3+6+UUTSE4SBTNJMykDfj4FfrKqJfQJ7VX2jm/8x3zEqaboZyCRNRJJzk/x79+/NQ9e/PckdSa5N8ldJ3vI451/XzXNpkr1JdiZ5ytDtH0vyb0luTbJt6GduT/LHwI3A2sXGLbPfxeb9ma6Go5Ks7m7bMGb9O7r76LIkm5Jcn2RfktOW2l93/eokVye5ufv5Vz2e+1HSdPCrkyStqO7lvY3Ah4CfBQLcALwWOALYAZwOrGIQii6pqvc9jv2sA+4FXlhV1yf5c+C2+bmSHFdVX0tyNIMv4N4IHAPcA/xcVe1aalxVPZjkQFWtmf+dhi4vNf73gaOAo4H9VfWeReq9qqo2DG3fDTwfuLWb62bgbGAL8PqqOnPE/l4ObK6qN3TzHVtVD3eX/wOYq6qvHu79KqkNz5BJmoQXApdX1der6gDwd8AZ3fVXdC+t/S/w9/M/kOTHknwwyc5ue3V39uvPkrxmif3cX1XXd5c/3M0/701JbgZ2AWuB9d31982HsWXGLWWp8e9k8CXFc8CFy8wx796quqWqDjEIZdfV4FnyLcC6ZfZ3C7ApyQVJzpgPY5KemAxkkiYhh3k9VXVPVZ09dNWvAzu7M0BblvqxxbaTvAjYBJxeVT8F3MTg7BXA1x8tZvS4xxY/evxxwBoGZ+GWnGOBbw1dPjS0fQhYNWp/VXUX8AIGwew9Sd4x5j4lTSEDmaRJ+AxwZpKnJFkN/BrwWeBzwK92a63WAL88Yo6TgPu7y99dYsyzkpzeXX51Nz/AscBDVXUwyY8zeOl0MeOOG2f8duDtwGXABcvMM64l95fkmcDBqvow8D7gp1don5IaWNW6AElPPlV1Y5IPAf/aXbWjqm4CSHIlg7VS9wG7gaVeatvPIJTtYeknj7cDW5NcAuwD/qS7/h+Bc5LsBe5k8HLfYsYdN3J8krOAR6rqI0mOAP4lyS9W1aeWmW85o+r7SeCiJIeA7wC/9T3uS1JDLuqX1Kska6rqQPeOyM8A27oAdzzwbgbrsHYAfwRcDHwT+FxVXbZgnnUMLZKfdn3W66J+6YnHM2SS+rY9yckM1kJdWlU3AlTVg8A5C8a+vu/iJui7wLFJ9kzqs8i6d2J+Hvh+BuvQJD1BeIZMkiSpMRf1S5IkNWYgkyRJasxAJkmS1JiBTJIkqTEDmSRJUmMGMkmSpMYMZJIkSY0ZyCRJkhr7P7oKlOP6gmLpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU5bn3/881CZBwkEMAlYIBKXIMBkKUo4hVwNqiFtmeq6JQT0/Z7d64W58etK2/avVxW+3RKmiVSncLWlRqrS0WNooFJKggqGgQigpyDkkgyVy/P2YyhjCBGTKTlcP3/XrxIlmzZq1rFkP4cq177tvcHREREREJTijoAkRERERaOgUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEpNkyszZm9qiZbTaz/Wa2xszOr/H4DWb2npmVmNkLZtajxmMTzGyJme01s+I4x+4dfbzUzDaY2bkN9LJEpBlSIBOR5iwT2AKMBzoC3wX+JxqmxgP/H3Ah0AX4AHiqxnMPAHOA2XUc+ylgDZAD/F/gj2bWLR0vQkSaP9NM/SLSkpjZG8CdwCgg291viW7vAfwL+Ly7b6qx/7nAI+7eu8a204A3ga7uvj+6bRkwz91/1VCvRUSaD3XIRKTFMLMTgdOAdYBFf8Uejv4+JIFDDQberw5jUWuj20VEkqZAJiItgpm1AuYBj7v7BmAx8G9mNtTMsoHvAQ60TeBw7YG9tbbtBTqksGQRaUEUyESk2TOzEPAEcAi4FcDd/wZ8H1gAbAaKgf3A1gQOWQKcUGvbCdHni4gkTYFMRJo1MzPgUeBEYKq7V1Q/5u4/d/d+7t6dSDDLBN5K4LDrgFPNrGZH7PTodhGRpCmQiUhz90tgIPBldy+r3mhmWWY2xCJOAR4Gfuruu6OPh8wsC2gV+dayzKw1gLu/AxQB349uvxgYSiTUiYgkTZ+yFJFmy8xyidyKPAhU1njoa8DzwFKgL5FbjXOB77h7VfS5ZwNLah3yH+5+dvTx3sBjwJnAh8At7v5SOl6HiDR/CmQiIiIiAdMtSxEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiKWVmJQ14riozKzKzdWa21sy+GV23svrxV47y3E5mdnPDVHrEuXubWZmZFdX4PpElm4513Ozo9ThkZl3rX6mINBQFMhFpysrcPd/dBwPnAV8ksmA4AO4++ijP7QQEEsiiNrl7fioP6O5l0WNuS+VxRST9FMhEJC2i3aq3or/+vcb275rZBjP7q5k9ZWb/mYrzuft2YCZwa3RB8Vi3zszamdnz0S7aW2Z2KXA30DfaUbo3ut8zZrY62nGbGd3W28zeNrPfRLe/aGbZ0ce+amZvRI/7RI3XeJWZ/TN67F+bWUair8PMTjWzNWZWGD33BjN7PHqeP5pZ26OdW0SapsygCxCR5sfMCoDriKzzaMBrZvYPIAOYCgwj8vPndWB1qs7r7u9Hb1l2Bz6p8dBkYJu7XxCtryPwGjCkVpdqurvvigaulWZWvVh4P+Byd59hZv8DTDWzNcD/Bca4+6dm1iV67IHApdHtFWb2C+BK4LfHqt/M+gPzgevcvSi6XmZ/4Hp3X25mc4CbzezP8c4tIk2XApmIpMNY4Gl3PwBgZguBcUS68n9y97Lo9mern2BmpxIJGR3d/RIzawf8AjgEvOzu8xI8t8XZ9iZwn5ndAzzn7svMrHOc/b5uZhdHv+5FJIh9DHzg7kXR7auB3kBn4I/u/imAu++KPv4FoIBIoAPIBrYnUHc34E/AVHdfV2P7FndfHv36SeDrRBZLj3duEWmidMtSRNIhXig62nbc/X13v77Gpq8QCR0zgCkJnTQS6qqoFYDc/R0iIelN4Mdm9r04zz0bOBcY5e6nA2uArOjDB2vsWkXkP7MGeLwygMejY9vy3b2/u9+RQPl7gS3AmFrba5/Dj3JuEWmiFMhEJB2WAheZWdtop+tiYBnwv8CXzSzLzNoDFxzlGD2JBBSIhKCjMrNuwK+An7m713qsB1Dq7k8C9wHDgf1Ahxq7dQR2u3upmQ0ARh7jlH8D/s3McqLn6FJj+yVm1r16u5nlHqt+Ip3Ai4CvmtkVNbafYmajol9fTuQa1nVuEWmidMtSRFLO3V83s8eAf0Y3PeLuawDMbBGwFtgMrCLSGYpnK5FQVkTd/3nMjk4d0QqoBJ4A7o+zXx5wr5mFgQrgJnffaWbLo9NN/Bn4DnCjmb0BbARWHOM1rjOzu4B/mFkVkY7ate6+3sy+A7wYHc9WAdwSfb1H5e4HzOxLwF/N7ACR6/Q2cI2Z/Rp4F/hlNDQece5jHV9EGi+r9R9JEZG0MrP27l4S/bTgUmBmNMDlAHcRmb7iEeBB4GdAOfC/SYwha/Sig/Wfc/chqdgvzvOKgRHVY8xEpPFTh0xEGtrDZjaIyPisx939dQB33wncWGvf6xq6uAZSBXQ0s6JUzkUW/XToq0Q6huFUHVdE0k8dMhEREZGAaVC/iIiISMAUyNLIzHqZ2ZLoLN/rzGxWnH3ONrO90Rm9i2p+HN/MJpvZRjN7z8y+1bDVN6wEr9XsGtfpLYusY1g9GWexmb0ZfWxVw7+ChhP9hOI/ozO0rzOzO+Ps08bMfh9977wWHYtU/di3o9s3mtmkhqy9oSV4rb5pZuujs97/reYnIu2ztTKLoh9GaNYSvF7XmtmOGtflhhqPXWNm70Z/XdOw1TesBK/Vf9e4Tu+Y2Z4aj7Wo9xaAmWVYZBWK5+I8pp9Z7q5fafoFnAwMj37dAXgHGFRrn7OJDNqt/dwMYBNwKtCayKetBqW75sZ8rWrt/2Xg7zW+Lwa6Bv06GuhaGdA++nUrIjPOj6y1z83Ar6JfXwb8Pvr1oOh7qQ3QJ/oeywj6NQV8rSYAbaNf31R9raLflwT9Ghrh9bqWyNQitZ/bBXg/+nvn6Nedg35NQV6rWvv/H2BOje9b1Hsr+pq/Cfyujn/zWvzPLHXI0sjdP/LPBizvJ/Lx9c8l+PQzgPc8MlnmISLLqVyYnkqDdxzX6nLgqYaorbHxiJLot62iv2oPBr0QeDz69R+BL5iZRbfPd/eD7v4B8B6R91qzlMi1cvcl7l4a/XYFkak2WqQE31t1mQT81d13uftu4K9Elqxqlo7jWrXYn1kAZtaTyLyDj9SxS4v/maVA1kCi7ddhRP4XVduoaNv7z2Y2OLrtc3w2KSZE5mRKNMw1ace4VkSnS5gMLKix2YnM+7TaootCN2fR1n8RkRnp/+ruta9V7P3j7pVE5vrKoQW+rxK4VjVdT2ROsmpZZrbKzFaY2UVpLbSRSPB6TbXPFjvvFd2m91Yd763obfA+wN9rbG5p760HgNuo+9O/Lf5nlgJZA7DIjOQLgH939321Hn4dyPXIUi0PAc9UPy3OoZr9R2KPca2qfRlY7oev3zfG3YcD5wO3mNlZaS41UO5e5ZHpEnoCZ5hZ7Xmq6nr/tLj3VQLXCgAzuwoYAdxbY/Mp7j4CuAJ4wMz6pr3ggCVwvZ4Ferv7UOAlPutq6L1Vx3uLyC24P7p7zRUnWsx7yyKTHW9399VH2y3Othb1M0uBLM3MrBWRgDHP3RfWftzd91W3vd19MdDKzLoS+V9Arxq79gS2NUDJgTnWtarhMmq1/t19W/T37cDTNNOWdm3uvgd4mSNvDcXeP2aWSWRZoF20wPdVtaNcK8zsXCILm09x94M1nlP9vno/+txhDVFrY1DX9XL3nTWu0W+IrBEKem+9TN23aI/2M6slvLfGAFMsMmHxfOAcM3uy1j4t/meWAlkaRe9/Pwq87e7xlnPBzE6K7oeZnUHkz2QnsBLoZ2Z9zKw1kb/QzfaTOIlcq+h+HYHxwJ9qbGtnZh2qvwYmAm+lt+LgmFk3M+sU/TqbyILYG2rttgio/pTbJUQ+AOHR7ZdFP9HUB+jHZ8sbNTuJXCszGwb8mkgY215je2czaxP9uiuRf1TWN1TtQUjwep1c49spRMZ7AvwFmBi9bp2J/D38S/qrDkaCfw8xs/5EPuTwao1tLeq95e7fdvee7t6byL9lf3f3q2rt1uJ/Zmmm/vQaA1wNvBkdZwBwO3AKgLv/isgb7yYzqwTKgMuib8JKM7uVyA+0DCKfzlnX0C+gASVyrSCySPWL7n6gxnNPBJ6O5tpM4Hfu/kKDVB2Mk4HHzSyDSID/H3d/zsx+AKxy90VEwu0TZvYekf9lXgax9Rf/h8gP/0rgllq3UZqbRK7VvUB74A/R99CH7j4FGAj82iLrX4aAu9292f6jGZXI9fq6mU0h8v7ZRXQNTXffZWY/JPKfSYAf1BpW0Nwkcq0gMph/fvTnerWW+N46gn5mHU4z9YuIiIgETLcsRURERAKmQCYiIiISMAUyERERkYApkImIiIgErNEEMktgoVYRERGR5qjRBDLgIHBOdMb6fGCymY0MuKYG0RKW+kkVXavk6HolTtcqcbpWidO1Sk5Lvl6NJpDVc1Hbpq7FvgGPg65VcnS9EqdrlThdq8TpWiWnxV6vRhPIIOlFgEVERESahUY5MWx0OYqngf/j7m/Vemwm0QSdkZFR0KZNmwAqTK3KykoyM7VoQiJ0rZKj65U4XavE6VolTtcqOc39epWWlla4e+t4jzXKQAZgZt8HDrj7fXXtM2LECF+1alUDViUiIiJyfMxstbuPiPdYo7llmehCrSIiIiLNTWPqC8ZdqDXgmkRERETSrtEEMnd/AxgWdB0iIiIiDa3RBDIREWn6Kioq2Lp1K+Xl5UGXIhKYrKwsevbsSatWrRJ+jgKZiIikzNatW+nQoQO9e/fGzIIuR6TBuTs7d+5k69at9OnTJ+HnNZpB/SIi0vSVl5eTk5OjMCYtlpmRk5OTdJdYgUxERFJKYUxauuP5O6BAJiIizdodd9zBfffVOaUlzzzzDOvXr2/AikSOpEAmIiItmgKZNAYKZCIi0uzcdddd9O/fn3PPPZeNGzcC8Jvf/IbCwkJOP/10pk6dSmlpKa+88gqLFi1i9uzZ5Ofns2nTprj7iaSbApmIiATK3TlYWZWy461evZr58+ezZs0aFi5cyMqVKwH4yle+wsqVK1m7di0DBw7k0UcfZfTo0UyZMoV7772XoqIi+vbtG3c/kXTTtBciIhIYd2fF+zt5d3sJ/bq3Z+Sp9f+E5rJly7j44otp27YtAFOmTAHgrbfe4jvf+Q579uyhpKSESZMmxX1+ovuJpJI6ZCIiEphDVWHe3V7CSR2yeHd7CYeqwik5brxQd+211/Kzn/2MN998k+9///t1TkuQ6H4iqaRAJiIigWmTmUG/7u35eH85/bq3p01mRr2PedZZZ/H0009TVlbG/v37efbZZwHYv38/J598MhUVFcybNy+2f4cOHdi/f3/s+7r2E0kn3bIUEZFAjTw1h+G5nVMSxgCGDx/OpZdeSn5+Prm5uYwbNw6AH/7wh5x55pnk5uaSl5cXC2GXXXYZM2bM4MEHH+SPf/xjnfuJpJO5e9A1HLcRI0b4qlWrgi5DRESi3n77bQYOHBh0GSKBi/d3wcxWu/uIePvrlqWIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIi0qwUFxczZMiQBjvfHXfcwX333ZfQvl/84hfZs2dPvY4hzZMmhhUREQGqqqrIyEjN5LS1uTvuzuLFi9NyfGn61CETEZFm6/3332fYsGG89tprzJ49m8LCQoYOHcqvf/1rAF5++WUmTJjAFVdcQV5eHsXFxQwcOJAZM2YwePBgJk6cSFlZGQCbNm1i8uTJFBQUMG7cODZs2HDUc1cf6+abb2b48OFs2bKF3r178+mnnwJw11130b9/f84991w2btwYe97KlSsZOnQoo0aNYvbs2bFuX1VVVdzXIM2DApmIiAQqHHZ27D9IqleO2bhxI1OnTmXu3LmsXbuWjh07snLlSlauXMlvfvMbPvjgAwD++c9/ctddd7F+/XoA3n33XW655RbWrVtHp06dWLBgAQAzZ87koYceYvXq1dx3333cfPPNCdXw1a9+lTVr1pCbmxvbvnr1aubPn8+aNWtYuHAhK1eujD123XXX8atf/YpXX331sI7do48+WudrkKZPtyxFRCQw4bBz+W9WsHrzbgpyO/PUjJGEQlbv4+7YsYMLL7yQBQsWMHjwYH70ox/xxhtv8Mc//hGAvXv38u6779K6dWvOOOMM+vTpE3tunz59yM/PB6CgoIDi4mJKSkp45ZVXmDZtWmy/gwcPHrOO3NxcRo4cecT2ZcuWcfHFF9O2bVsApkyZAsCePXvYv38/o0ePBuCKK67gueeeA+DFF1+M+xpq1i5NlwKZiIgEZueBQ6zevJvKsLN68252HjhEtw5t6n3cjh070qtXL5YvX87gwYNxdx566CEmTZp02H4vv/wy7dq1O2xbmzafnT8jI4OysjLC4TCdOnWiqKioznNu2bKFL3/5ywDceOONTJ48+Yhj12R2ZPA8WpewrtcgzYNuWYqISGC6tm9NQW5nMkNGQW5nurZvnZLjtm7dmmeeeYbf/va3/O53v2PSpEn88pe/pKKiAoB33nmHAwcOJHy8E044gT59+vCHP/wBiISjtWvXHrZPr169KCoqoqioiBtvvPGoxzvrrLN4+umnKSsrY//+/Tz77LMAdO7cmQ4dOrBixQoA5s+fH3tOfV+DNG7qkImISGDMjKdmjGTngUN0bd86btfoeLVr147nnnuO8847j+985zsMGjSI4cOH4+5069aNZ555JqnjzZs3j5tuuokf/ehHVFRUcNlll3H66acfV23Dhw/n0ksvJT8/n9zcXMaNGxd77NFHH2XGjBm0a9eOs88+m44dOwJwww03UFxcXK/XII2XpXoQZUMaMWKEr1q1KugyREQk6u2332bgwIFBl9GklZSU0L59ewDuvvtuPvroI376058GXJUkK97fBTNb7e4j4u2vDpmIiEgj8vzzz/PjH/+YyspKcnNzeeyxx4IuSRqAApmIiEgjcumll3LppZcGXYY0MA3qFxEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERFpVqqnjNi2bRuXXHJJwNUcv5dffpkvfelL9d6ntjvuuIP77ruvPqUd4Ytf/CJ79uxhz549/OIXv0jpsY9m0aJF3H333Ufd52jX6IEHHqC0tDT2ffXrCIICmYiINEs9evSIrfuYLpWVlWk9flOxePFiOnXq1OCBbMqUKXzrW9867ufXDmTVryMICmQiItIsFRcXM2TIEAAee+wxvvKVrzB58mT69evHbbfdFtvvxRdfZNSoUQwfPpxp06ZRUlICwA9+8AMKCwsZMmQIM2fOjK0zefbZZ3P77bczfvz4IyZsveOOO7jmmmuYOHEivXv3ZuHChdx2223k5eUxefLk2LJHf/vb3xg2bBh5eXlMnz49tlD5Cy+8wIABAxg7diwLFy6MHffAgQNMnz6dwsJChg0bxp/+9KekrsVdd91F//79Offcc9m4cWNs+6ZNm5g8eTIFBQWMGzeODRs2AHDttdfy9a9/ndGjR3PqqafGgu1HH33EWWedRX5+PkOGDGHZsmUA9O7dm08//ZRvfetbbNq0ifz8fGbPns3VV199WK1XXnklixYtOqy27du3U1BQAMDatWsxMz788EMA+vbtS2lpKTt27GDq1KkUFhZSWFjI8uXLY3+ut956a+y1jBw5ksLCQr73ve/FOqUQmWz3kksuYcCAAVx55ZW4Ow8++CDbtm1jwoQJTJgw4bDXUVxczMCBA5kxYwaDBw9m4sSJlJWVAbBy5UqGDh3KqFGjmD17duw9Vm/u3mR/FRQUuIiINB7r169P/klVVe77P3EPh1NSQ7t27dzd/YMPPvDBgwe7u/vcuXO9T58+vmfPHi8rK/NTTjnFP/zwQ9+xY4ePGzfOS0pK3N397rvv9jvvvNPd3Xfu3Bk75lVXXeWLFi1yd/fx48f7TTfdFPfc3//+933MmDF+6NAhLyoq8uzsbF+8eLG7u1900UX+9NNPe1lZmffs2dM3btzo7u5XX321//d//3ds+zvvvOPhcNinTZvmF1xwgbu7f/vb3/YnnnjC3d13797t/fr185KSEl+yZElsn5UrV/r1119/RE2rVq3yIUOG+IEDB3zv3r3et29fv/fee93d/ZxzzvF33nnH3d1XrFjhEyZMcHf3a665xi+55BKvqqrydevWed++fd3d/b777vMf/ehH7u5eWVnp+/btc3f33Nxc37Fjx2HX3N395Zdf9gsvvNDd3ffs2eO9e/f2ioqKI2ocNGiQ79271x966CEfMWKEP/nkk15cXOwjR450d/fLL7/cly1b5u7umzdv9gEDBsT+XG+55RZ3d7/gggv8d7/7nbu7//KXv4y9D5YsWeInnHCCb9myxauqqnzkyJGxY1XXXa3m68jIyPA1a9a4u/u0adNi13/w4MG+fPlyd3f/r//6r8Neb03x/i4Aq7yOTKOJYUVEJDjhMDz+JdjyGvQ6E655DkLpuXnzhS98IbYu5KBBg9i8eTN79uxh/fr1jBkzBoBDhw4xatQoAJYsWcJPfvITSktL2bVrF4MHD+bLX/4ywFEnbj3//PNp1aoVeXl5VFVVMXnyZADy8vIoLi5m48aN9OnTh9NOOw2Aa665hp///OecffbZ9OnTh379+gFw1VVX8fDDDwORLt6iRYtiY7/Ky8tjXaRqI0aM4JFHHjminmXLlnHxxRfTtm1bIHKbDyJdo1deeYVp06bF9q3u1AFcdNFFhEIhBg0axCeffAJAYWEh06dPp6Kigosuuoj8/PyjXvPx48dzyy23sH37dhYuXMjUqVPJzDwyeowePZrly5ezdOlSbr/9dl544QXcPbbG50svvcT69etj++/bt4/9+/cfdoxXX301trbnFVdcwX/+53/GHjvjjDPo2bMnAPn5+RQXFzN27Nij1t6nT5/Y6ysoKKC4uJg9e/awf/9+Ro8eHTvPc889d9TjJEqBTEREglP6aSSMhSsjv5d+Cu27p+VUbdq0iX2dkZFBZWUl7s55553HU089ddi+5eXl3HzzzaxatYpevXpxxx13UF5eHnu8Xbt2xzxPKBSiVatWsQXTQ6FQ7Jx1qWtxdXdnwYIF9O/f/7Dt1UHpWOIdNxwO06lTJ4qKio76OqrPD3DWWWexdOlSnn/+ea6++mpmz57NV7/61aOe++qrr2bevHnMnz+fOXPmAHDdddexZs0aevToweLFixk3bhzLli1j8+bNXHjhhdxzzz2YWWwwfjgc5tVXXyU7Ozuh13u011L9Z5/sc8rKyo76Z1dfGkMmIiLBadct0hkLZUZ+b9etQU8/cuRIli9fznvvvQdAaWkp77zzTix8de3alZKSkpR+OGDAgAEUFxfHzvnEE08wfvx4BgwYwAcffMCmTZsADguJkyZN4qGHHooFgjVr1iR8vrPOOounn36asrIy9u/fz7PPPgvACSecQJ8+ffjDH/4ARELX2rVrj3qszZs30717d2bMmMH111/P66+/ftjjHTp0OKJzde211/LAAw8AMHjwYADmzp1LUVERixcvjtX45JNP0q9fP0KhEF26dGHx4sWxzuXEiRP52c9+FjtmvBA5cuRIFixYAMD8+fMTujbx6j2azp0706FDB1asWJHUeRKhQCYiIsExi9ym/ObbcO3zke8bULdu3Xjssce4/PLLGTp0KCNHjmTDhg106tSJGTNmkJeXx0UXXURhYWHKzpmVlcXcuXOZNm0aeXl5hEIhbrzxRrKysnj44Ye54IILGDt2LLm5ubHnfPe736WiooKhQ4cyZMgQvvvd7x5x3FWrVnHDDTccsX348OFceuml5OfnM3Xq1NhtQIB58+bx6KOPcvrppzN48OBjfljg5ZdfJj8/n2HDhrFgwQJmzZp12OM5OTmMGTOGIUOGMHv2bABOPPFEBg4cyHXXXVfncXv37g1EghnA2LFj6dSpE507dwbgwQcfZNWqVQwdOpRBgwbxq1/96ohjPPDAA9x///2cccYZfPTRR7Hb00czc+ZMzj///Nig/kQ8+uijzJw5k1GjRuHuCZ0nEZbO9lu6jRgxwletWhV0GSIiEvX2228zcODAoMuQRqS0tJS8vDxef/31lIWXus6TnZ2NmTF//nyeeuqppD+NmoiSkpLYJzjvvvtuPvrooyM+bQvx/y6Y2Wp3HxHvuBpDJiIiImnx0ksvMX36dL75zW+mNYwBrF69mltvvRV3p1OnTrHxaqn2/PPP8+Mf/5jKykpyc3N57LHHUnJcdchERCRl1CETiUi2Q6YxZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIizUr1lATbtm3jkksuCbia4/fyyy/HZqqvzz6pVnPR7lRYtGgRd999NwDPPPPMYUskpVPN89blaNf3gQceoLS0NGX1KJCJiEiz1KNHj5TOsB9PIkvwyNFNmTKFb33rW0DDBrKa5z0eCmQiIiIJKC4uZsiQIQA89thjfOUrX2Hy5Mn069eP2267Lbbfiy++yKhRoxg+fDjTpk2jpKQEgB/84AcUFhYyZMgQZs6cGVu26Oyzz+b2229n/PjxR0wIescdd3DNNdcwceJEevfuzcKFC7ntttvIy8tj8uTJVFRUAPC3v/2NYcOGkZeXx/Tp02OLer/wwgsMGDCAsWPHsnDhwthxDxw4wPTp0yksLGTYsGFJTXhaXFzMwIEDmTFjBoMHD2bixImUlZUBkSWIRo4cydChQ7n44ovZvXv3Ec//4IMPGDVqFIWFhUesEHDvvfdSWFjI0KFD+f73v3/M8z344IMMGjSIoUOHctlll8X+bG699VZeeeUVFi1axOzZs8nPz2fTpk0MHz48dq53332XgoKCw86/ffv22La1a9diZrFF1/v27UtpaSk7duxg6tSpFBYWUlhYyPLlyw87L8CmTZsYOXIkhYWFfO973zusC1hSUsIll1zCgAEDuPLKK3F3HnzwQbZt28aECROSmuX/aBTIREQkUGEP82nZp2lduBki4eP3v/89b746tnAAACAASURBVL75Jr///e/ZsmULn376KT/60Y946aWXeP311xkxYgT3338/ALfeeisrV67krbfeoqysjOeeey52rD179vCPf/yD//iP/zjiPJs2beL555/nT3/6E1dddRUTJkzgzTffJDs7m+eff57y8nKuvfbaWC2VlZX88pe/pLy8nBkzZvDss8+ybNkyPv7449gx77rrLs455xxWrlzJkiVLmD17NgcOHDjsvHUtnQSRMHPLLbewbt06OnXqFFvz8atf/Sr33HMPb7zxBnl5edx5551HPHfWrFncdNNNrFy5kpNOOim2/cUXX+Tdd9/ln//8J0VFRaxevZqlS5ce9Xx33303a9as4Y033jhi+aPRo0czZcoU7r33XoqKiujbty8dO3aMrVs5d+5crr322sOe0717d8rLy9m3bx/Lli1jxIgRsUXKu3fvTtu2bZk1axbf+MY3WLlyJQsWLIh7jWbNmsWsWbNYuXIlPXr0OOyxNWvW8MADD7B+/Xref/99li9fzte//nV69OjBkiVLWLJkSdxrniwFMhERCUzYw0z/y3TO/cO5XPeX6wh7OG3n+sIXvkDHjh3Jyspi0KBBbN68mRUrVrB+/XrGjBlDfn4+jz/+OJs3bwZgyZIlnHnmmeTl5fH3v/+ddevWxY516aWX1nme888/n1atWpGXl0dVVRWTJ08GIC8vj+LiYjZu3EifPn047bTTALjmmmtYunQpGzZsoE+fPvTr1w8z46qrrood88UXX+Tuu+8mPz+fs88+m/Ly8lgnqNqIESN45JFH4tbUp08f8vPzASgoKKC4uJi9e/eyZ88exo8ff1gdtS1fvpzLL78cgKuvvvqwml588UWGDRvG8OHD2bBhA++++26d5wMYOnQoV155JU8++SSZmcdeLOiGG25g7ty5VFVV8fvf/54rrrjiiH1Gjx7N8uXLWbp0KbfffjtLly5l2bJlsTU7X3rpJW699Vby8/OZMmUK+/btO2JB8VdffZVp06YBHHGOM844g549exIKhcjPz4+9llTT0kkiIhKYXeW7KNpeRJVXUbS9iF3lu+ia3TUt52rTpk3s64yMDCorK3F3zjvvPJ566qnD9i0vL+fmm29m1apV9OrVizvuuIPy8vLY4+3atTvmeUKhEK1atcKiC6aHQqHYOetidSyu7u4sWLCA/v37H7b9k08+qfNY8WqCyGuvvoWYqHh1uTvf/va3+drXvnbY9uLi4jrP9/zzz7N06VIWLVrED3/4w8NCbjxTp07lzjvv5JxzzqGgoICcnJwj9hk3blysK3bhhRdyzz33YGaxwfjhcJhXX32V7OzspF5ztXjvm3RQh0xERAKTk5VDfvd8MiyD/O755GQd+Q9uOo0cOZLly5fz3nvvAZEFqt95551Y+OratSslJSUp/XDAgAEDKC4ujp3ziSeeYPz48QwYMIAPPviATZs2ARwWEidNmsRDDz0UC3Nr1qypdx0dO3akc+fOLFu27LA6ahszZgzz588HYN68eYfVNGfOnNiYu3/9619s3769zvOFw2G2bNnChAkT+MlPfsKePXtiz63WoUOHw7pXWVlZTJo0iZtuuonrrrsu7nHPOussnnzySfr160coFKJLly4sXryYMWPGADBx4kR+9rOfxfavvgVa08iRI2O3Vatf67HUrrW+FMhERCQwZsacSXN4adpLzJ00t84OUbp069aNxx57jMsvv5yhQ4cycuRINmzYQKdOnZgxYwZ5eXlcdNFFFBYWpuycWVlZzJ07l2nTppGXl0coFOLGG28kKyuLhx9+mAsuuICxY8eSm5sbe853v/tdKioqGDp0KEOGDDlicD0cfQxZXR5//HFmz57N0KFDKSoq4nvf+94R+/z0pz/l5z//OYWFhezduze2feLEiVxxxRWMGjWKvLw8LrnkkqMGlKqqKq666iry8vIYNmwY3/jGN+jUqdNh+1x22WXce++9DBs2LBZMr7zySsyMiRMnxj1u7969gUgwAxg7diydOnWic+fOQOSDBKtWrWLo0KEMGjToiLFrEPnE5P33388ZZ5zBRx99lNBC6DNnzuT8889P2aB+LS4uIiIpo8XFJdXuu+8+9u7dyw9/+MO0naO0tJTs7GzMjPnz5/PUU08l9UnWeJJdXFxjyERERKRRuvjii9m0aRN///vf03qe1atXc+utt+LudOrUiTlz5qT1fPEokImIiEij9PTTTzfIecaNG8fatWsb5Fx10RgyERERkYApkImISEo15bHJIqlwPH8HFMhERCRlsrKy2Llzp0KZtFjuzs6dO8nKykrqeRpDJiIiKdOzZ0+2bt3Kjh07gi5FJDBZWVn07Nkzqec0mkBmZr2A3wInAWHgYXf/6dGfJSIijUmrVq3o06dP0GWINDmNJpABlcB/uPvrZtYBWG1mf3X39UEXJiIiIpJOjWYMmbt/5O6vR7/eD7wNfC7YqkRERETSr9EEsprMrDcwDHgtzmMzzWyVma3SGAURERFpDhpdIDOz9sAC4N/dfV/tx939YXcf4e4junXr1vAFioiIiKRYowpkZtaKSBib5+4Lg65HREREpCE0mkBmZgY8Crzt7vcHXY+IiIhIQ2k0gQwYA1wNnGNmRdFfXwy6KBEREZF0azTTXrj7/wIWdB0iIiIiDa0xdchEREREWiQFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiEjAFMhEREZGAKZCJiIiIBEyBTERERCRgCmQiIiIiAVMgExEREQmYApmIiIhIwBTIRERERAKmQCYiIiISMAUyERERkYApkImIiIgETIFMREREJGAKZCIiIiIBUyATERERCZgCmYiIiEjAFMhEREREAqZAJiIiIhIwBTIRERGRgCmQiYiIiARMgUxEREQkYApkIiIiIgFTIBMREREJmAKZiIiISMAUyEREREQCpkAmIiIiLVM4DCXbwT3oShTIREREpAUKh+HxL8H9A+GxCyLfB0iBTERERJq/2t2w0k9hy2sQroz8XvppoOUpkImIiEjzFq8b1q4b9DoTQpmR39t1C7TEzEDPLiIiIpJq4XCk49WuG5jF74a17w7XPHf4fgFSh0xERESaj2S6YaFQJJgFHMZAHTIRERFpyppgNywedchERESkaWqi3bB41CETERGRpqGZdMPiUYdMREREGr9m1A2LRx0yERERaXyacTcsHnXIREREJFi1J21t5t2weNQhExERkeBUh68tr0WCVnXHqxl3w+JRh0xEREQaTiJLGDXzblg86pCJiIhIw4jXDasOX9XbqrtfzbgbFk+jCmRmNgf4ErDd3YcEXY+IiIjUQ30G5ld3w1qIxnbL8jFgctBFiIiISD21wIH59dGoOmTuvtTMegddh4iIiCSphU1TkWqNrUMmIiIiTY26YfWWUIfMzAzo6e5b0lxPIrXMBGYCnHLKKQFXIyIi0nyUl5fz8cc7yMnpTIcO7ePvVLsTBuqGpUBCHTJ3d+CZNNeSEHd/2N1HuPuIbt26BV2OiIhIs/GXvyzhz4v/yjPP/JlDhw4lNmErqBuWAsmMIVthZoXuvjJt1YiIiEgg3J3du/bSvkN7ykpLOXTwIK3nXZTYhK0tcJqKVEtmDNkE4FUz22Rmb5jZm2b2RiqLMbOngFeB/ma21cyuT+XxRUREJD5zZ9LYwXTt0pnxZ4+hvZUlPmErqBtWT8l0yM5PWxVR7n55us8hIiIitURvRZ685TVO7nUmnP9cJFhpwtYGk3Agc/fNZnY6MC66aZm7r01PWSIiIpI2mrC10Un4lqWZzQLmAd2jv540s/+TrsJEREQkDTRFRaOUzC3L64Ez3f0AgJndQ2S810PpKExERERSQBO2NgnJDOo3oKrG91XRbSIiItIYqRvWZCTTIZsLvGZmT0e/vwh4NPUliYiIyHFRN6zJSrhD5u73A9cBu4DdwHXu/kC6ChMREZGjSGTSVnXDmoxkl056HXg9vSWJiIjIUVWHr0QmbVU3rElocksniYiItDi1u2Hxwpe6YU2alk4SERFpzOJ1w6rDlyZtrZewh9lVvoucrBws4OuVTCCbAHzNzDYDB4h8wtLdfWhaKhMREWmJNGlrWtQOX2EPM/0v0ynaXkR+93zmTJpDyJKZfCK1khlDdiOwOb3liIiItGCJdsNA4SsJ8cLXrvJdFG0vosqrKNpexK7yXXTN7hpYjQkFMnd3M/tvdy9Id0EiIiIthqapSIva3bB44SsnK4f87vmxkJaTlRNozRpDJiIiEgR1w1IikVuR8cKXmcU6ZU1xDNmNZlaMxpCJiIgkrnYnDNQNOw6JhK+6bkXGC18hCwV6m7KmZALZ+WmrQkREpLmK1wkLhdQNS1Ki4auuW5GNKXzFk0wg+xC4EjjV3X9gZqcAJ6GB/iIiIp9JdFyYpqk4quMdB9bYbkUmKplA9gsgDJwD/ADYDywACtNQl4iISONXO3wlMy4M1A2LSvU4sMbeDYsnmUB2prsPN7M1AO6+28xap6kuERGRxk3LFx2X5jwOrD6SmQGtwswyAAcws25EOmYiIiLNn5Yvqrfq8HXuH87lur9cFwtndd2KzLCMuOPAmsptyGQk0yF7EHga6G5mdwGXAN9JS1UiIiKNiZYvOi4tbRxYfSQcyNx9npmtBr5AZMqLi9z97bRVJiIiEhQtX5Q0jQOrn2Q6ZLj7BmBDmmoREREJniZsPap4C3JrHFj9JRXIREREmh0tX1SnRBfkbqrzgYXDzs4Dh+javnXgt0UVyEREpOVSN6xOyXS9msI4sNrhKxx2Lv/NClZv3k1BbmeemjGSUCi4GhXIRESk5VA3rE71WZC7sY0DSyR87TxwiNWbd1MZdlZv3s3OA4fo1qFNg9da7ZiBzMz2E53qovZDRNayPCHlVYmIiNRXfSZtbebdsHQsyN3UwlfX9q0pyO0c269r+2CnVj1mIHP3Dg1RiIiISMpo0taY5jQRayrDl5nF9m9yY8jMrDPQD8iq3ubuS1NdlIiISFISuRXZCLth4XAYd8jISGae9iSO34QX5G6I8BUKWaC3KWtKOJCZ2Q3ALKAnUASMBF4lsraliIhIMJropK2l+8tZsfhNDpUd4ozzh9DlxI71PmZTnYi1pYWveJLpkM0ispD4CnefYGYDgDvTU5aIiEgdmsmkrbs+3kvJ7gO0aduGLRs/TjqQNdWJWBW+4ksmkJW7e7mZYWZt3H2DmfVPW2UiIiK1NaOB+Z27n0B2hywqDlbSo+/R62yq48AUvhKXTCDbamadgGeAv5rZbmBbesoSEZEWr3YnDJrVwPx2HbM559JCwmGnVeu6/zluKuPAFL7qJ5m1LC+OfnmHmS0BOgJ/TktVIiLSssXrhIVCTbYbVpeMzAwyam1r7OPA4s1ur/BVf8kM6m8DTAV613hePvCD1JclIiItSqLjwhrZwPz6auzjwBKd3V7hq/6SuWX5J2AvsBo4mJ5yRESk2avPhK3QJLthTWFB7vrMbq/wVX/JBLKe7j45bZWIiEjz1wImbG0KC3KnenZ7ha/6SyaQvWJmee7+ZtqqERGR5qWJTth6vBrjgtwNNbu9wlf9JBPIxgLXmtkHRG5ZVq9lOTQtlYmISNPWRCdsTUZjW5Bbn3RsupIJZOenrQoREWn6msmErXVpbAtyK3w1L8lMe7HZzE4HxkU3LXP3tekpS0REmpRmNGErNL6JWBW+mr9kpr2YBcwAFkY3PWlmD7v7Q2mpTEREGq/6dMMauaAnYlX4apmSuWV5PXCmux8AMLN7iCwurkAmItKSNPNuWENOxKrwJdWSCWQGVNX4viq6TUREmrNm1A0LaiJWzW4vx5JMIJsLvGZmT0e/vwh4NPUliYhIo9GEu2FBjQPT7PZyPJIZ1H+/mf0DGEOkM3adu69JW2UiItLwmkk3rKHGgWl2e0mVZDpkuPtqIksniYhIU1efJYwaeTcsHePANLu9pNMxA5mZ/a+7jzWz/YDXfIjIxLAnpK06ERFJjya8hFFDjAOrHb6qqsJM+8Vy1m7bT0HvzszX7PbNQkVFBfv27aNTp05kZGQEWssxA5m7j43+3iH95YhIsg598hFl696k1YknkT1wCBYKBV2SNEZNcAmjhlqQO5HO14a3P6LoX/sIA6uLd2m8VzMQDod57rnn+eijj8jNzeWLXzw/JUtVHa9k5iG7x93/61jbRKRhla17E8swDha/R+uep5DZsVPQJUlj0wSWMGqoBbmP97Zju7DTNyuDTeVVDOnWTuGrGTh48CAff/wx3bt3Z8uWLVRVVZGZmdRIrpRK5sznAbXD1/lxtolIA2rVvTsHN39AqG0HQtnZQZcjQavdCYNGv4RRuhbkTuWYr46nncgD55ax91AVBaNOVfhqBrKzsznjjELefPMtRo8eHWgYg8TGkN0E3AycamZv1HioA7A8XYWJSGKyBw2lda/ehLKzCbXWPwwtWrxOWCjU6G9FpmJBbtzwys9G1qR6jq/WWa0YPLZfg18rSa+CggIKCgqCLgNIrEP2O+DPwI+Bb9XYvt/dd6WlKhFJmIVCDXqb0qsORs6bofAXuESnqGjktyKT/vRjmsMXqPMlDS+RQf17gb3A5ekvR0QaMy/9BN/8HFgIcr+EZXcLuqSWK5kpKqBBumGpnoi1dvCKvGyFL2mekhnU/zgwy933RL/vDPw/d5+eruJEJDkergAMC6VnLISXbME9DF4FB7YqkDWkRj5ha30nYk2k66XZ7aU5S+an9tDqMAbg7rvNbFgaahKR4xA+8C/Y+gJktIFTpmCtUz9FoJ1wKuzZEPm6Q++UH1+imsCErfWZiPWR8x5l065P6Jdzkma3F4lKJpCFzKyzu+8GMLMuST5fRNJp33sQyoSK/VD2CaQjkGV1gX5XRL42zXeWFo1wwtZUjgMLh50rH/mnZrcXqSWZQPX/gFfM7I/R76cBd6W+JBE5HtbxNHz/+9C6I2SfmL7zKIilViObsDXd48A0u71IfMksLv5bM1sFnENk2aSvuPv6tFUmIkmxtifD568GCyk0NRUBT9h6vOGrPuPAdMtRJL5kbzl+BPwTyAK6mtlZ7r409WWJyPFI12D+huBl+yCzNdYqK+hS0qc+A/NT3A2rT/iq7zgwhS+RIyXzKcsbgFlAT6AIGAm8SqRjJiJy3Ko+2kBV8T+xVllk5n0Ra9M+6JJSL+CB+akehF+fcWAKXyJHSua/07OAQmCFu08wswHAnekpS0RaEt+9BWvdFi/fj5fubR6BLKBpKhJdkLshwtfRxoGJyOGSCWTl7l5uZphZG3ffYGb901aZiLQY9rk8/N2lhLr0wjo0g7nNGqgbVp8Fubtmd22Q8KVumEhikglkW82sE/AM8Fcz2w1sS09ZItKSZHQ8iYwR/xZ0GccvgG5Y0gtyd8unaMdn3TCFL5HGJaFAZpG/bV+PTgx7h5ktAToCL6SzOBGRRiegSVsTHgNWK3gBuEPphzMo2bqV0rJeuNd/+gmFL5HUSiiQubub2TNAQfT7f6SjGDObDPwUyAAecfe703EeEZHj0kCTtiY8EWut8BUveJlFwtfrm/dSGW7P65v3KHyJNELJ3LJcYWaF7r4yHYWYWQbwc+A8YCuw0swWaa4zEQlMA0zaerxzgXVpkxO361U7eGm5IZGmIZlANgH4mpltBg4QmRzW3X1oimo5A3jP3d8HMLP5wIWAApmINLwGmLQ10fDVuXUX2lSeyoHQJtpUnUrn1l0S7nqBlhsSaQqOGcjM7Al3vxp4GHg6jbV8DthS4/utwJlx6pkJzAQ45ZRT0liOiLQYtTthkJZJWxMZBxYvfO0qrWDne9OpshLKvQO7Siu03JBIM5NIh6zAzHKB64DHiXTG0iHecf2IDe4PEwmHjBgx4ojHRUSSEq8TFgql51bkC9NjY77mTJqTZPjKYfXmkG45ijRTiQSyXxH5NOWpwGoOD04e3Z4KW4FeNb7viabVEJFUS3SKiiRuRSYSvnaW7mL1J2vAwqz+eA07S3dBuIPCl4gACQQyd38QeNDMfunuN6WxlpVAPzPrA/wLuAy4Io3nE5GWJpkpKiBuN+x4w5dXtaeqLJdQ9mbCZbl4VXu6dVD4EpGIhAf1pzmM4e6VZnYr8Bci017Mcfd16TyniDRzKZ6wtX7hqw1DQv/F65u2MrxnL7p1aKPwJSIxyXzKMu3cfTGwOOg6RKQZSMGErZVVVbGlhUKhUL3D1/wZo1t0+Dqw+wDvrXiP7A7Z9D2zLxmtMoIuSaTRaFSBTETkuNWjG1Y7eFVvG/P4NA6ENtEu3Jfl1/xB4auePnxjCyW7DrBn2x5ycnPI6ZUTdEkijUbCgczMBtWepNXMznb3l1NelYjI0dRj+aJKdzaVVdKvrRMyixu8MjMy2LTrEw6ENmEW5kBoE5t2fcJpXU9W+KqHE7p2YMf7O8hsnUlWu6ygyxFpVJLpkP2PmT0B/ATIiv4+AhiVjsJEROJKYvmi8FefZdeObeR0/xxWR/iKF7z6d+tBv5yTaBfuG9u3X85JCl/11GNQD0448QQyW2eSfUJ20OWINCrJBLIzgXuAV4AOwDxgTDqKEhGJSXD5Iu95JmyNhDRr141w2LnskRW8vjXSzZo/Y1Tc8BUveAGEQqFYYKt5K1Ph6/iZGR26dgi6DJFGKZlAVgGUAdlEOmQfuHs4LVWJtHDuh4j8dWuLWaugywlOHbcijwhfDpcf+jYfVGyg98FBzHfYUVLOW+F7yOq7mbfKctlR8vu44auu4AWQmZFB/249ArwAItJSJBPIVgJ/AgqBHODXZnaJu1+SlspEWij3MGHfjPtBzNoQ4vOHLYHTrMXphvmW17BwZeT30k8Jt+0WN3y96fcSqhG+MjIPkJG9GSxMRvZmMjIPEAplxw1fCl4iErTQsXeJud7dv+fuFe7+sbtfSCSgiUhKOU4l0Cr6ewtZISwcxh/7En7/QPyxCyAcJpzdlbczB1LpId7OHEg4u2ssfJX2/Rlv+T3sKCmPhS+rEb5ysnMoOHEYGZZBwUnDyMmOfKKvOnzV7ISJiAQtmYlhV5lZZ6AfkVuWAJvTUpXIMbhXEq78BGhFKLNbs+ogmWUQ8l647cHohFnzDA7hqqrPBtyHQoRLdhD+cAWZVFG5eQWhkh3stE5cWHIbJ9gn7K04mVdLK+J2vqrDV9GOIvJPzCcnOzKL/pzJcw6bVV9EpLFKZtqLG4BZRNaYLAJGAq8C56SnNJG6VVV8SPjQJhyjVWgYltG85jMKhdoD7YMuI2XCYT/sk4nhqio23DOe0w6u4+02gxnwX/9gJx15L/x5+mRuoriyL33pSJd2mXT5/GMcCG0iJ9yXLu3OJ2SJh6+Qheia3TXgVy8icmzJjCGbRWT82Ap3n2BmA4A701OWyLGEiaxz7+Dxb+mFKQF2AR0I0bkBa2u5agev6m1XPPwKH3y4md6n9OapmaPYtWMbnz+4jj0Z0O/gOnbt2EaX7j349949KQ0dpG24J6+0b8Xug7s5mPk+5mEOZr7P7oO76ZrdVeFLRJqdZAJZubuXmxlm1sbdN5hZ/7RVJnIUGa1ygUzMWmMZXerY62Miy6LuwGmP0YI/rZgGR3S94gSvUMjYWVLOrG3foE/WJoq39WVnyT/o0u1kLv9cLu+0ruS0Q5k81e3kWPiiRvjKycohv3s+Rdsja0fmZEU6oQpfItLcJBPItppZJ+AZ4K9mthvYlp6yRI7OrBWZrXsfY68s4ADQiuQ+vyK1xQtfl/9mBas376Ygt3NkgeyScr6x7ZsMb/UOr287jZ0lL9PthGy6sIdf9djD2qyTOb18D3PYw+5DrXgnC6rceCcLdh/aEzd8mRlzJmkcmIg0f8kM6r84+uUdZrYE6Ai8kJaqRFLA6AGUA60xtIhxohIKXwcO8frmnXQK72P15uj+to+OoXfZG4Lh4XfJtH1ANrszW7E2qw1VBmuz2rA7s1VS4UvdMBFpCY5rcXF3/0eqCxFJNSMEtA26jEYt0fC1evNuKsPO6s27I/u3y+Tp9j+mW+UGPs0cQNd2k3G6MrN3H4o4SD5tmNOuKwbkZOeQf2LBkYPwFb5ERGKOGcjMbD/xJ0IywN39hJRXJSIpd9zhq31rCk7pwAf/2kDvzw2ia/vWeMkn3Jezg6I2J5N/cAdzDuxgV2YmRaEqqtwosip2RQfg6xOQIiLHdsxA5u5aeEykialX+MrtHNuva/vWeLiK7Kx/51Dfg7SlDR5+jV0ZmRS1idyGLGrThl0ZmXUOwAeFLxGRYzmuW5Yi0nikMnyZGfOuH8H7/3qbz/ccjJmxc/d7FHGQKjOK/CC7dr9HTk7/hG9DiojIsSVzyzLeT1fdshRpQCkPXzecEVvXMTJhayU3PDnys3FgV79GTpfTyKcNRR7ZltPlNN2GFBFJMd2yFGmk0h6+PMwNL14f6XJ1z490t+J0w7p2HcCcq1+LdMa6nIZF14BU+BIRSZ2kblnGWcsSd1+a6qJEkuXuQGn0u7ZN6nZZXbPbpz18le6k6JPVkXFgH69mV+nOuN0wgFBGJl27DgjyMomINGtay1KaBfd9hNkCQIhTMGucd9IT6XqFQpZU+KoOa7Fjepgb/np9bHB9neErHCb/4EGK2rQm/+AhcsJhLBSK2w0TEZH00lqW0iw4FZ9NzmIVgdZSLdlbjquiwatbhzYJhy8AzLHM/UDkU427yndRtL2IKq+iaHtRZJxXvPDVvjtzWvdl19ZV5HxuBNa+O6BumIhIELSWZYqEq8JUHKygTds2QZfSwaKecwAAGkBJREFUIoWsE2EiQSyywlfDqs94r+G9OrD6w70U5BykS+UW4PMJh6+wh5n+l+mHdcNyWncmP5xBEZXkewY5rTtjWaEjw5cZoWuep2vpp9CuGzSh27wiIs2N1rJMgcpDlbzxlzcp2XmAPgW59MrrFXRJLY5ZJhl28v/f3r0HyXWWdx7/Pj0zGkmjmyVZNrZkbC/mtgZsEDgQsw7EJM7COlw3sEnhJASvYauyW9TWAuVNskWWYg1UtmrDLuB4iSEQJ8FZh1tYYi6uLA7GGCNjjC1f8Q0by5JvkoykUT/7R5+xW6PumW5Nd789Pd9P1ZT6nD59+jlvnWn95j1vv2cg79XrwfaXvfU4Hr7lZjasWg6P3Q1HPas6qPnDV6vesI0H63zqnp+wizobqBFP7oRVm1qHr1oNqp4xSVI5HQWyaPx5/vuZ+Sjey/IwTz7+JLsf3s3U+ikevPVBA9kI6Xn4atHrVVt9HBs3boL9u6kdfWrjfTsMX616w6jVqG05g433fhe2nNEIYGD4kqQh1lEgy8yMiL8DXlItey/LJivXrWT95vU8+sCjnPKKZ5UuR0doIOGrFhy9+tDL2jk2ySObzzxkPq+W4Wv5Bk47+rSnvim5YfkGYs+Olr1hnPdl8FKkJC0a3VyyvCYiXpqZ3+tbNYvU2PgYp77mn1Ov16n5rbRFoVT4qmf9kMlUW/WE1aLW8jZEkcmnHvwZu+6/nw0Hn0FkwtTR9oZJ0gjoJpC9Cvi3EXE3sIenby7+wr5UtggZxobTMIevlmPAZm7I/ZpLnp5+IgL27KB277VsrE/Dvdc2esDsDZOkkdBNIPu1vlUh9Uip8HVYHZ2OAWt3Q+56ndpnzn265+u8LzcC15YzwN4wSRo5HQeyzLy71Uz9wN09r0qaRz9mtz/S8AWH94Z1Gr5a9oRBo8fr3u9Cfbrxr71hS8q+J57knn/azvjkBFte/mzGJydKlySpz5ypX0NvELPbw5GHr5ZzgXUavlr1hNVq9oYtcQ9vv5+9Ox+nPn2QNVs2sOGfHVu6JEl95kz9GipHesmx29ntexm+2o0Dm3nuqW9Ptgpf7XrCIuwNW8JWblxN3pLUJsZZvnZl6XIkDYAz9auYXo73AoqFr3bjwGoJGw/Wn36DVuGrXU9Yo3B7w5aoo048huXrVlEbqzG5ekXpciQNgDP1ayAGMdgeOg9fh9W3gPAVES17w/j0654OWu0G5dsTpjZWrJsqXYKkAepmUP8bqofO1K85Dcs3HeescSGD8GeHLzrsDWs3KN+eMEla8rrpIXuKM/VrxmIMX10Nwm8VvqLGxhUbmxuhs96wxsEYviRJh+nmW5bLgXcDZwIJfBv4eGb+vE+1aciMSvjqeBA+LcJXoyEO7eVyigpJ0gJ100P2GeAJ4E+r5bcBfwG8pddFqbzFEL4Oq3mhg/Bbha/DG8beMElSz3UTyJ6TmS9qWv5WRNzQ64I0eIs1fM3uzVroOLA2jWNvmCSp77oJZD+IiF/IzGsAIuIM4Or+lKV+GLbZ7TuueyE35O50HFijMQ4NVfaGSZIGpJtAdgbw9oi4p1o+Abg5Im7Em4wPnWGb3b7juhd6Q+5Ow9fhDXZ4+LI3TJI0IN0EsnP6VoUWZNhmtz/i41joDbnpMHxBZ5ci7Q2TJA1IVzcX72ch6sywzW6/oGPp8Vxgnb+xk7ZKkobLEc1DpsEY9tntuzqWfs8FNuebL2Bgvr1hkqQBMJANicX4Tce2xzKIucA6LsaB+ZKk4WcgK8DwtcC5wOYsyGkqFqPpPXt57PobqU2Ms/b0F1CbXFa6JEkaqK4DWUT8G+Bc4CAQwJcy87JeFzYqRil8HXZsvb4h94ILsjdssdp7193s37mLnD7IsmM3MXXiltIlSdJAHUkP2VmZ+daZhYj4n4CBjMUXvur79nLgzpuIieVMnPQ8Ymzu06HnN+Re6KXI2T1c9oYtWhPr1kI9qU2MM7F6VelyJGngjiSQTUbEa4F7gc3Ait6WtDgMU/jK6Wmmd+6gNrWKsVWrOz6GA3ffwvRP74CDB6mtOYrxTZufPr6Sg/Bn62TC1lrN3rBFbMXm4xhfvYqo1RifFch23/Mgj996N6tOPp41J29uswdJWtyOJJC9G3gj8ALgPuDf9bSiIbMYZrffe+MP2H//PdSWTbL6la+mtmJlR6+rTa6Eep161Nh1cDdHZ5YfhD9bNxO2Ok3Fojaxds1h6+rTB9lx7U1MTC1n5/W3MHX8JsYcXyZpBHUdyDJzL/DZmeWIeC9wUS+LGhaLZnb7PU8Qk8up799PHjjQcZ/l+JZnw9Rq3nnNf2LblReVGYR/2MEsYMJWsDdsxMRYjcn1q9n38GMsW7uK2rjfQ5I0mo5kUP/fNC8CpzGigWwxzG4PsPKFL+bnt29nfP1GaqsP72WYMfsyZNRqPDY1ybZdN5UZhH9YgU7YqkNFBMeceTr7H32CZWtXEWO10iVJUl8cyZ+bj2fm780sRMTHe1jPUBnG2e1bGVuzjqkXn3HIuoHdkHshnLBVHRhbNsGKTetLlyFJfXUkgeyDs5Yv7EUhw6j07PadKnZD7gUV3bspKqYffYQ9N1zP2Jq1TL3gNMLLWpKkReZIxpDdNWt5V+/KGT7DFLxaGegNuRdUaP8mbH3y1luo79/P9H33Mnn8FiY2HdPfY5Ekqcc6DmQR8Z4Wqx8Dvp+Z23pXkuZS7IbcCyq6vxO2TmzcxP6HHqI2OUltaqoPB7BwWX2DVZKkVrrpIdta/XypWn4t8D3ggoj4fGZ+uNfFLXVDNRdYV4UP9vZFkyedzPjGjdSWLaO2fPimxdu/82H2XPc9alOrWP2yM6gtc9oGSdKhuglkG4AXZ+ZugIj4I+By4F8A3wcMZAswVDfkXtCBDP72RRHB+Jq1C95Pv/z8jtuJWo3pXTuZfmQXy445tnRJkqQh000gOwHY37R8AHhmZj4ZEft6W9ZoG7obci/oYLyZ93wmjzuePTseorZyJWNzTEsiSVq6uglkfwlcExFfoDH/2OuAyyJiCvhxP4obRUN3Q+6uiu/gFkbevugwk5u3MLFxI4yNU5uYKF2OJGkIdRzIMvOPI+LvgTNpBLILMvO66unf7Edxo2Cobsi9oAPp4hZGS7g3rJ1hHNsmSRoe3U57MQ3UgaRxyVJNFu0g/JYHs4BbGC3h3jBJko5EN9Ne/HvgncDf0ugh+2xEXJyZf9qv4obZyAzCb8VbGEmSNFDd9JC9AzgjM/cARMRFwHeABQeyiHgL8F+A5wEva7oUOpQW9SD8VryFkSRJRXUTyAI42LR8sFrXCz8C3gh8skf765nZPWHA4hmE3wkH5kuSVFw3gezPge9GxBU0gtjrgU/1oojMvBkYusAylDfkXojZPWHgwHxJkoZAN9+y/JOIuAr4RRqB7LxRv2XS0N2QeyFa9YTVavaGSZI0BOYNZBHxBI1vVT61qum5zMyOZrqMiK8DraYovzAzv9DJPqr9nA+cD3DCCSd0+rIjUvyG3AvR6bgwB+ZLklTcvIEsM1f34o0y8+we7edi4GKArVu35jybL8iiGAMGC5uwFewNkySpsG7nIVtyFkVPmBO2SpK0qNVKFwAQEW+IiPuAlwNfiYivla5paNXrsPshyKpzcK4JW2vjrceFGcYkSRoqQ9FDlplXAFeUrmPoOWGrJEkjaSgCmdpwwlZJkpaEobhkqRZmesP+5Hlw6Wsby16KlCRpJNlDNiwW0hsmSZIWNXvIhoG9YZIkLWn2kJVgb5gkSWpiD1m/zZ6mwt4wSZI0iz1k/eSkrQN1cP80O264k/qBAxx92rOYWDlZuiRJkjpiD1kvOWlrUbvv38Gu7ffw+D0P8cj2e0uXI0lSx+wh6xUnbS1ufOVyarUaeTCZWL2idDmSJHXMQHaknLR16EwdcxQnnvNS6tMHWXH02tLlSJLUMS9ZHgkH5g+t5etXs3LTOsL2liQtIvaQzWd2Txg4MF+SJPWUPWRzadUTBvaGSZKknrKHbC7tesIcmC9JknrIHrK5tOsJA3vDJElSz9hDNhd7wiRJ0gAYyObjFBWSJKnPvGQpSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJtHZjJ94GDpMiRJ0ggbL13AMKvX6/zwqu08cOfDnPyizTznpSeVLkmSJI0ge8jmsG/vAR6842HWH7uGu264j3q9XrokSZI0ggxkc5hcOcGmEzew64HHeOapx1Or2VySJKn3vGQ5h1qtxulnP48D+6ZZtnyidDmSJGlE2eUzj4gwjEmSpL4ykEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFOTFsB+68+X5uuf4nnPjc43j+S7yfpSRJ6i17yOZRr9fZdvWtLJuc4Obv38WTe/aVLkmSJI0YA9k8arUax27ZwKM7d7Pu6DXO2i9JknrOS5YdOOPsU3l8125Wr1vJ2JgZVpIk9ZaBrANjYzWOOnpN6TIkSdKIsrtHkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBU2FIEsIj4SEbdExA8j4oqIWFe6JkmSpEEZikAGXAmcmpkvBG4F3l+4HkmSpIEZikCWmf+QmdPV4jXA5pL1SJIkDdJQBLJZfhf4arsnI+L8iLguIq7bsWPHAMuSJEnqj/FBvVFEfB04tsVTF2bmF6ptLgSmgc+1209mXgxcDLB169bsQ6mSJEkDNbBAlplnz/V8RJwHvA745cw0aEmSpCVjYIFsLhFxDvBe4KzM3Fu6HkmSpEEaljFkHwNWA1dGxLaI+ETpgiRJkgZlKHrIMvNZpWuQJEkqZVh6yCRJkpYsA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmFGcgkSZIKM5BJkiQVZiCTJEkqzEAmSZJUmIFMkiSpMAOZJElSYQYySZKkwgxkkiRJhRnIJEmSCjOQSZIkFWYgkyRJKmwoAllE/HFE/DAitkXEP0TEcaVrkiRJGpShCGTARzLzhZl5GvBl4A9LFyRJkjQoQxHIMvPxpsUpIEvVIkmSNGjjpQuYEREfBN4OPAa8qnA5kiRJAxOZg+mMioivA8e2eOrCzPxC03bvB5Zn5h+12c/5wPnV4nOA7b2utYCNwMOli1gkbKvu2F6ds606Z1t1zrbqzqi31zMz8+hWTwwskHUqIp4JfCUzTy1dy6BExHWZubV0HYuBbdUd26tztlXnbKvO2VbdWcrtNRRjyCLilKbFc4FbStUiSZI0aMMyhuy/RcRzgDpwN3BB4XokSZIGZigCWWa+qXQNhV1cuoBFxLbqju3VOduqc7ZV52yr7izZ9hq6MWSSJElLzVCMIZMkSVrKDGR9FhHnRMT2iLg9It7X4vnfjogd1W2jtkXE7zU9d15E3Fb9nDfYygevg7Z6T0T8uLrN1jeqb+TOPHewqQ2/ONjKB6+DtpqMiL+unv9uRJzY9Nz7q/XbI+JXB1l3aRGxPiKurH6nroyIo1psc1pEfCcibqrOtd9oeu7SiLir6Vw7bbBHMDidtFW1XcvfvYg4qTr3bqvOxWWDq36wOjyvXtXUTtsi4ucR8frquaV0Xr2l+t2qR0Tbb1O2+4wb6fMqM/3p0w8wBtwBnAwsA24Anj9rm98GPtbiteuBO6t/j6oeH1X6mAq31auAldXjdwF/3fTc7tLHMGRt9W7gE9Xjt860FfD8avtJ4KRqP2Olj2mAbfdh4H3V4/cBF7XY5tnAKdXj44AHgHXV8qXAm0sfx7C0VfVcy9894G+At1aPPwG8q/QxlW6rpu3XA7uaPs+W0nn1PBpziF4FbG2zTdvPuFE+r+wh66+XAbdn5p2ZuR/4K+DXO3ztrwJXZuauzHwEuBI4p091DoN52yozv5WZe6vFa4DNA65xWHRyXv068Onq8eXAL0dEVOv/KjP3ZeZdwO3V/paK5nb5NPD62Rtk5q2ZeVv1+KfAQ0DLiRxH3Lxt1U51rr2axrnX9esXoW7b6s3AV5s+z5aMzLw5M+eb0L3lZ9yon1cGsv46Hri3afm+at1sb6oujVweEVu6fO2o6PZ43wF8tWl5eURcFxHXzFwGGGGdtNVT22TmNI1bkm3o8LWj7JjMfACg+nfTXBtHxMto/IV+R9PqD1a/r/89Iib7V2pxnbZVq9+9DcCj1bkHo3+edXVe0ei1vmzWuqVyXnWi3efUSJ9XQzHtxQiLFutmf631S8BlmbkvIi6gkfhf3eFrR0nHxxsRvwVsBc5qWn1CZv40Ik4GvhkRN2bmHa1ePwI6aat224z8eRVz3Katy/08A/gL4LzMrFer3w88SCOkXQy8F/jAkVdbVo/a6rDfPeDxFtst6vOsx+fVC4CvNa1eMudVNt0qca5dtFg38p9fBrL+ug/Y0rS8Gfhp8waZubNp8c+Ai5pe+0uzXntVzyscHvO2FUBEnE3jA/CszNw3s766tERm3hkRVwGnc2ivxijppK1mtrkvIsaBtTTGrHTUzotZZp7d7rmI+FlEPCMzH6j+Y3yozXZrgK8A/zkzr2na9wPVw30R8efAf+xh6QPXi7Zq87v3t8C6iBivejMW/XnWi7aq/Gvgisw80LTvJXNedajd59TDjNh51cxLlv31PeCU6lshy2h0Ux/yDcDql3fGucDN1eOvAb8SEUdV39j5FQ79i2rUdNJWpwOfBM7NzIea1h8108UfERuBXwR+PLDKB2/etqqWZ76Z+2bgm9kYBftF4K3R+BbmScApwLUDqnsYNLfLecBhf61XbXoF8JnM/Pys555R/Rs0xq78qK/VltVJW7X83avOtW/ROPfavn6EzNtWTd7GrMuVS+y86kTLz7iRP69Kf6tg1H+AfwncSqO35sJq3QdohAqADwE30fgWybeA5za99ndpDLq+Hfid0scyBG31deBnwLbq54vV+lcAN1ZteCPwjtLHMgRttRz4fHXuXAuc3PTaC6vXbQd+rfSxDLjdNgDfAG6r/l1frd8KXFI9/i3gQNN5tg04rXrum9U59iPgs8Cq0sdUuK3a/u7R+IbctdU5+HlgsvQxlWyravlE4H6gNuv1S+m8egONHrB91ef516r1xwF/37TdYZ9xo35eOVO/JElSYV6ylCRJKsxAJkmSVJiBTJIkqTADmSRJUmEGMkmSpMIMZJIkSYUZyCRJkgozkEnqqYjYXbqGXmg+jl4cU0ScGBFPRsS2he5rjvdYERHbImJ/NXO+pEXCQCZpSYqGQX8G3pGZp/Vr55n5ZLX/kbm/n7RUGMgk9UVEvCciflT9/Iem9X8QEbdExJURcVlEHNGNlKsep1si4tMR8cOIuDwiVjY9/3cR8f2IuCkizm96zc0R8b+A64Etrbab531b7felVQ3LI2Kqeu7UDuu/pGqjz0XE2RFxdUTcFhEva/d+1fqpiPhKRNxQvf43jqQdJQ0Hb50kqaeqy3tnAZcCvwAE8F0a94gcAy4BXg6M0whFn8zMjx7B+5wI3AWcmZlXR8SnaNzY+qPV8+szc1dErKBxs+KzgNXAncArMvOadttl5s6I2J2Zq2aOqelxu+3/K417iK4A7svMD7Wo98uZeWrT8u3A6TTuZ/s9GveEfAdwLo37175+jvd7E3BOZr6z2t/azHysevwTYGtmPtxtu0oqwx4ySf1wJnBFZu7JzN3A/wFeWa3/QnVp7QngSzMviIiTI+J/R8Tl1fJU1fv1ZxHxm23e597MvLp6/Nlq/zN+PyJuAK4BtgCnVOvvnglj82zXTrvtPwC8hsYNpT88zz5m3JWZN2ZmnUYo+0Y2/kq+kcaNqOd6vxuBsyPiooh45UwYk7Q4Gcgk9UN0uZ7MvDMz39G06o3A5VUP0LntXtZqOSJ+CTgbeHlmvgj4AY3eK4A9TxUz93aHFz/39uuBVTR64druY5Z9TY/rTct1YHyu98vMW4GX0AhmH4qIP+zwPSUNIQOZpH74R+D1EbEyIqaANwD/D/g28K+qsVargNfOsY/NwL3V44NttjkhIl5ePX5btX+AtcAjmbk3Ip5L49JpK51u18n2FwN/AHwOuGie/XSq7ftFxHHA3sz8LPBR4MU9ek9JBYyXLkDS6MnM6yPiUuDaatUlmfkDgIj4Io2xUncD1wHtLrXdRyOUbaP9H483A+dFxCeB24CPV+v/L3BBRPwQ2E7jcl8rnW435/YR8XZgOjP/MiLGgH+KiFdn5jfn2d985qrvBcBHIqIOHADetcD3klSQg/olDVRErMrM3dU3Iv8ROL8KcBuAD9IYh3UJ8D+AjwE/B76dmZ+btZ8TaRokP+wGWa+D+qXFxx4ySYN2cUQ8n8ZYqE9n5vUAmbkTuGDWtr8z6OL66CCwNiK29WsusuqbmN8BJmiMQ5O0SNhDJkmSVJiD+iVJkgozkEmSJBVmIJMkSSrMQCZJklSYgUySJKkwA5kkSVJhBjJJkqTCDGSSJEmF/X90KKEyRAqYggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAITCAYAAACpNgDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU5bn3/8814RBOEkjAakGgFDkmhkMUBEQ8INYWtcjjuSgK9bTLbvfG3fprLbb6VKuP22pbW6uAVSvdLagIbGttsVAUC0hQQRDRIBQrZyGQAMlcvz9mMuQwCTMwk5WE7/v1youZNetwrcXKcHHd97pvc3dEREREJDihoAMQEREROdEpIRMREREJmBIyERERkYApIRMREREJmBIyERERkYApIRMREREJmBIyERERkYApIRORJsvMWprZU2a2ycz2mdkqM7u40uc3m9mHZlZsZq+Y2amVPhttZovM7HMzK4qz7x+b2btmVmZm0+vnjESkqVJCJiJNWTNgMzAKaA/8APgfM+tuZqOA/wtcCnQEPgaer7TtfmAGMK2WfX8I3AksSE/oInIiMY3ULyInEjN7B7gHGAa0cvfbo8tPBf4JfNndN1Za/wLgSXfvXsv+ngU+dPfpaQ5dRJowVchE5IRhZicDpwNrAIv+xD6O/jmgvuMSEVFCJiInBDNrDjwHPO3u64CFwP8xszwzawXcDTjQOsAwReQEpYRMRJo8MwsBzwCHgDsA3P0vwA+BOcAmoAjYB2wJJkoROZEpIRORJs3MDHgKOBkY7+6HKz5z91+4ey9370wkMWsGvBdMpCJyIlNCJiJN3eNAX+Br7l5SsdDMMs1sgEWcBjwB/Mzdd0c/D5lZJtA88tYyzaxFpe2bRz8PAc2in2fU54mJSNOhpyxFpMkys25EmiIPAmWVPvomkeEqFgM9iTRVzgS+7+7l0W3PBRZV2+Xf3P3c6OezgInVPr/R3Wel8BRE5AShhExEREQkYGqyFBEREQmYEjIRERGRgCkhExEREQmYEjIRERGRgCkhExEREQmYEjIRERGRgCkhExEREQmYEjIRSSkzK67HY5WbWaGZrTGz1Wb2nei8lRWfv1HHtllmdlv9RFrj2N3NrMTMCiu9P+4pm8ysVfR6HDKznOOPVETqixIyEWnMStw93937AxcCXyEyYTgA7n52HdtmAYEkZFEb3T0/lTt095LoPremcr8ikn5KyEQkLaLVqveiP/9eafkPzGydmf3ZzJ43s/9MxfHcfRswBbgjOqF4rFpnZm3MbEG0ivaemV0J3A/0jFaUHoyu96KZrYxW3KZEl3U3s/fN7DfR5a+aWavoZ98ws3ei+32m0jleZ2b/iO7718nMcWlmXzKzVWZWED32OjN7OnqcP5pZ67qOLSKNU7OgAxCRpsfMBgM3AmcBBrxlZn8DMoDxwEAi3z9vAytTdVx3/yjaZNkZ+KzSR2OBre5+STS+9sBbwIBqVapJ7r4rmnAtN7M50eW9gKvdfbKZ/Q8w3sxWAf8fMNzdd5hZx+i++wJXRpcfNrNfAtcCvz1a/GbWG5hNZE7MQjPrDvQGbnL3pWY2A7jNzP433rFFpPFSQiYi6TACeMHd9wOY2VxgJJGq/EvuXhJd/nLFBmb2JSJJRnt3v8LM2gC/BA4Br7v7cwke2+Isexd4yMweAOa7+xIz6xBnvW+Z2eXR112JJGL/Aj5298Lo8pVAd6AD8Ed33wHg7ruin58PDCaS0AG0ArYlEHcn4CVgvLuvqbR8s7svjb5+FvgWkcnS4x1bRBopNVmKSDrES4rqWo67f+TuN1Va9HUiScdkYFxCB40kdeVUS4Dc/QMiSdK7wE/M7O44254LXAAMc/czgFVAZvTjg5VWLSfyn1kDPF4YwNPRvm357t7b3acnEP7nwGZgeLXl1Y/hdRxbRBopJWQikg6LgcvMrHW00nU5sAT4O/A1M8s0s7bAJXXsowuRBAUiSVCdzKwT8Cvg5+7u1T47FTjg7s8CDwGDgH1Au0qrtQd2u/sBM+sDDD3KIf8C/B8zy44eo2Ol5VeYWeeK5WbW7WjxE6kEXgZ8w8yuqbT8NDMbFn19NZFrWNuxRaSRUpOliKScu79tZrOAf0QXPenuqwDMbB6wGtgErCBSGYpnC5GkrJDa//PYKjp0RHOgDHgGeDjOernAg2YWBg4Dt7r7TjNbGh1u4n+B7wO3mNk7wHpg2VHOcY2Z3Qf8zczKiVTUbnD3tWb2feDVaH+2w8Dt0fOtk7vvN7OvAn82s/1ErtP7wEQz+zWwAXg8mjTWOPbR9i8iDZdV+4+kiEhamVlbdy+OPi24GJgSTeCygfuIDF/xJPAo8HOgFPh7En3IGrxoZ/357j4gFevF2a4IGFLRx0xEGj5VyESkvj1hZv2I9M962t3fBnD3ncAt1da9sb6DqyflQHszK0zlWGTRp0PfJFIxDKdqvyKSfqqQiYiIiARMnfpFREREAqaELAXMrKuZLYqO5r3GzKbGWefa6Kja75jZG2Z2RqXPiszs3eio3ivqN/rUSvBanGtmn0fPt7DyEARmNtbM1pvZh2b23fqNPvUSvB7TKl2L9ywyP2PFIKNN6d7ItMjo9auj1+KeOOu0NLPfR//+34r2oar47HvR5evN7KL6jD3VErwW3zGztdHvjL9UflLTjszhWRh9SKLRSvBa3GBm2yud882VPptoZhuiPxPrN/rUS/B6/Hela/GBme2p9FmTuTcqmFmGRWavmB/ns6bzneHu+jnOH+AUYFD0dTvgA6BftXXOBjpEX18MvFXpsyIgJ+jzqMdrcS6RjsrVt80ANgJfAloQecKsX7pjDvp6VFv/a8Bfm+i9YUDb6OvmREbKH1ptnduAX0VfXwX8Pvq6X/R+aAn0iN4nGUGfU5qvxWigdfT1rRXXIvq+OOhzqOdrcQOR4Uyqb9sR+Cj6Z4fo6w5Bn1O6r0e19f8NmNEU741K5/Qd4He1/LvRZL4zVCFLAXf/1I90TN5H5DH1L1Zb5w133x19u4zI4/xNTiLXog5nAh96ZIDQQ0SmkLk0PZHWj2O4HlcDz9dHbPXNI4qjb5tHf6p3Yr0UeDr6+o/A+WZm0eWz3f2gu38MfEjkfmmUErkW7r7I3Q9E3zbl74xE7ovaXAT82d13Rb9f/0xkmqxG6xiuR5P9zgAwsy5Exit8spZVmsx3hhKyFIuWSwcS+V9NbW4iMu5RBScyZtFKi05o3BQc5VoMi5bk/9fM+keXfZEjA4FCZByqRJO5Bu9o94ZFhoEYC8yptLhJ3RvRpodCIiPp/9ndq1+L2D3g7mVExijLpgneGwlci8qqf2dkmtkKM1tmZpelNdB6kOC1GG9HJljvGl3W5O4LSPzeiDZj9wD+Wmlxk7o3gEeAO6n9qeEm852hhCyFLDLy+Bzg3919by3rjCby5fpflRYPd/dBRJoybzezc9IebJod5Vq8DXTzyPQ0jwEvVmwWZ1dN4jHgRO4NIs2VS73qvIRN6t5w93KPDPPQBTjTzKqPr1XbPdDk7o0ErgUAZnYdMAR4sNLi09x9CHAN8IiZ9Ux7wGmUwLV4Geju7nnAaxypiDS5+wISvzeINNH90d0rz2TRZO4NiwySvM3dV9a1WpxljfI7QwlZiphZcyL/4D7n7nNrWSePSNn1Uo+MuQSAu2+N/rkNeIEGXlY9mqNdC3ffW1GSd/eFQHMzyyHyP5iulVbtAmyth5DTKpF7I+oqqjU9NLV7o4K77wFep2bzUuweMLNmRKYz2kUTvTegzmuBmV1AZML1ce5+sNI2FffFR9FtB9ZHrOlW27Vw952Vzv83ROYlhSZ8X0Dd90ZUXd8ZTeHeGA6Ms8hAx7OB88zs2WrrNJnvDCVkKRBtr34KeN/d403bgpmdBswFrvfIRMcVy9uYWbuK18AY4L30R50eCV6LL0TXw8zOJHIf7gSWA73MrIeZtSDyZdOonxJK5HpE12sPjAJeqrSsqd0bncwsK/q6FZGJvNdVW20eUPGk3BVEHnDw6PKrok9U9QB6cWRapkYnkWthZgOBXxNJxrZVWt7BzFpGX+cQ+UdrbX3FnmoJXotTKr0dR6QvJsCfgDHRa9KByO/In9Ifdfok+HuCmfUm8iDDm5WWNal7w92/5+5d3L07kX8P/uru11Vbrcl8Z2ik/tQYDlwPvBtt9we4CzgNwN1/BdxNpF37l9FcpCxaVj4ZeCG6rBnwO3d/pX7DT6lErsUVwK1mVgaUAFdFf4HKzOwOIl+oGUSeHFpT3yeQYolcD4hMvv2qu++vtG1TuzdOAZ42swwiSfj/uPt8M/sRsMLd5xFJXp8xsw+J/C/3KojNG/k/RP5xKQNur9ZM09gkci0eBNoCf4jeA5+4+zigL/Bri8zLGQLud/dG+48uiV2Lb5nZOCJ/97uIztvp7rvM7MdE/jMH8KNqTf6NUSLXAyKd+WdHvzsrNLV7I66m+p2hkfpFREREAqYmSxEREZGAKSETERERCZgSMhEREZGAKSETERERCViDScgsgQlVRURERJqiBpOQAQeB86Kjt+cDY81saMAxpVRTmPomlXQ9jtC1OELXoipdjyN0LY7QtTiiqVyLBpOQHecEs41Fk7hpUkjX4whdiyN0LarS9ThC1+IIXYsjmsS1aDAJGSQ92a6IiIhIk9AgB4aNThvxAvBv7v5etc+mEM2GMzIyBrds2TKACI9NWVkZzZppcoQKuh5H6FocoWtRla7HEboWR+haHNGYrsWBAwcOu3uLeJ81yIQMwMx+COx394dqW2fIkCG+YsWKeoxKRERE5NiY2crotIk1NJgmy0QnVBURERFpahpSjS/uhKoBxyQiIiKSdg0mIXP3d4CBQcchIiIiUt8aTEImIiKN3+HDh9myZQulpaVBhyISmMzMTLp06ULz5s0T3kYJmYiIpMyWLVto164d3bt3x8yCDkek3rk7O3fuZMuWLfTo0SPh7RpMp34REWn8SktLyc7OVjImJywzIzs7O+kqsRIyERFJKSVjcqI7lt8BJWQiItKkTZ8+nYceqnVIS1588UXWrl1bjxGJ1KSETERETmhKyKQhUEImIiJNzn333Ufv3r254IILWL9+PQC/+c1vKCgo4IwzzmD8+PEcOHCAN954g3nz5jFt2jTy8/PZuHFj3PVE0k0JmYiIBMrdOVhWnrL9rVy5ktmzZ7Nq1Srmzp3L8uXLAfj617/O8uXLWb16NX379uWpp57i7LPPZty4cTz44IMUFhbSs2fPuOuJpJuGvRARkcC4O8s+2smGbcX06tyWoV86/ic0lyxZwuWXX07r1q0BGDduHADvvfce3//+99mzZw/FxcVcdNFFcbdPdD2RVFKFTEREAnOoPMyGbcV8oV0mG7YVc6g8nJL9xkvqbrjhBn7+85/z7rvv8sMf/rDWYQkSXU8klZSQiYhIYFo2y6BX57b8a18pvTq3pWWzjOPe5znnnMMLL7xASUkJ+/bt4+WXXwZg3759nHLKKRw+fJjnnnsutn67du3Yt29f7H1t64mkk5osRUQkUEO/lM2gbh1SkowBDBo0iCuvvJL8/Hy6devGyJEjAfjxj3/MWWedRbdu3cjNzY0lYVdddRWTJ0/m0Ucf5Y9//GOt64mkk7l70DEcsyFDhviKFSuCDkNERKLef/99+vbtG3QYIoGL97tgZivdfUi89dVkKSIiIhIwJWQiIiIiAVNCJiIiIhIwJWQiIiIiAVNCJiIiIhIwJWQiIiIiAVNCJiIiTUpRUREDBgyot+NNnz6dhx56KKF1v/KVr7Bnz57j2oc0TRoYVkREBCgvLycjIzWD01bn7rg7CxcuTMv+pfFThUxERJqsjz76iIEDB/LWW28xbdo0CgoKyMvL49e//jUAr7/+OqNHj+aaa64hNzeXoqIi+vbty+TJk+nfvz9jxoyhpKQEgI0bNzJ27FgGDx7MyJEjWbduXZ3HrtjXbbfdxqBBg9i8eTPdu3dnx44dANx333307t2bCy64gPXr18e2W758OXl5eQwbNoxp06bFqn3l5eVxz0GaBiVkIiISqHDY2b7vIKmeOWb9+vWMHz+emTNnsnr1atq3b8/y5ctZvnw5v/nNb/j4448B+Mc//sF9993H2rVrAdiwYQO33347a9asISsrizlz5gAwZcoUHnvsMVauXMlDDz3EbbfdllAM3/jGN1i1ahXdunWLLV+5ciWzZ89m1apVzJ07l+XLl8c+u/HGG/nVr37Fm2++WaVi99RTT9V6DtL4qclSREQCEw47V/9mGSs37WZwtw48P3kooZAd9363b9/OpZdeypw5c+jfvz/33nsv77zzDn/84x8B+Pzzz9mwYQMtWrTgzDPPpEePHrFte/ToQX5+PgCDBw+mqKiI4uJi3njjDSZMmBBb7+DBg0eNo1u3bgwdOrTG8iVLlnD55ZfTunVrAMaNGwfAnj172LdvH2effTYA11xzDfPnzwfg1VdfjXsOlWOXxksJmYiIBGbn/kOs3LSbsrCzctNudu4/RKd2LY97v+3bt6dr164sXbqU/v374+489thjXHTRRVXWe/3112nTpk2VZS1bHjl+RkYGJSUlhMNhsrKyKCwsrPWYmzdv5mtf+xoAt9xyC2PHjq2x78rMaiaedVUJazsHaRrUZCkiIoHJaduCwd060CxkDO7WgZy2LVKy3xYtWvDiiy/y29/+lt/97ndcdNFFPP744xw+fBiADz74gP379ye8v5NOOokePXrwhz/8AYgkR6tXr66yTteuXSksLKSwsJBbbrmlzv2dc845vPDCC5SUlLBv3z5efvllADp06EC7du1YtmwZALNnz45tc7znIA2bKmQiIhIYM+P5yUPZuf8QOW1bxK0aHas2bdowf/58LrzwQr7//e/Tr18/Bg0ahLvTqVMnXnzxxaT299xzz3Hrrbdy7733cvjwYa666irOOOOMY4pt0KBBXHnlleTn59OtWzdGjhwZ++ypp55i8uTJtGnThnPPPZf27dsDcPPNN1NUVHRc5yANl6W6E2V9GjJkiK9YsSLoMEREJOr999+nb9++QYfRqBUXF9O2bVsA7r//fj799FN+9rOfBRyVJCve74KZrXT3IfHWV4VMRESkAVmwYAE/+clPKCsro1u3bsyaNSvokKQeKCETERFpQK688kquvPLKoMOQeqZO/SIiIiIBU0ImIiIiEjAlZCIiIiIBU0ImIiIiEjAlZCIi0qRUDBmxdetWrrjiioCjOXavv/46X/3qV497neqmT5/OQw89dDyh1fCVr3yFPXv2sGfPHn75y1+mdN91mTdvHvfff3+d69R1jR555BEOHDgQe19xHkFQQiYiIk3SqaeeGpv3MV3KysrSuv/GYuHChWRlZdV7QjZu3Di++93vHvP21ROyivMIghIyERFpkoqKihgwYAAAs2bN4utf/zpjx46lV69e3HnnnbH1Xn31VYYNG8agQYOYMGECxcXFAPzoRz+ioKCAAQMGMGXKlNg8k+eeey533XUXo0aNqjFg6/Tp05k4cSJjxoyhe/fuzJ07lzvvvJPc3FzGjh0bm/boL3/5CwMHDiQ3N5dJkybFJip/5ZVX6NOnDyNGjGDu3Lmx/e7fv59JkyZRUFDAwIEDeemll5K6Fvfddx+9e/fmggsuYP369bHlGzduZOzYsQwePJiRI0eybt06AG644Qa+9a1vcfbZZ/OlL30plth++umnnHPOOeTn5zNgwACWLFkCQPfu3dmxYwff/e532bhxI/n5+UybNo3rr7++SqzXXnst8+bNqxLbtm3bGDx4MACrV6/GzPjkk08A6NmzJwcOHGD79u2MHz+egoICCgoKWLp0aezv9Y477oidy9ChQykoKODuu++OVUohMtjuFVdcQZ8+fbj22mtxdx599FG2bt3K6NGjGT16dJXzKCoqom/fvkyePJn+/fszZswYSkpKAFi+fDl5eXkMGzaMadOmxe6x4+bujfZn8ODBLiIiDcfatWuT36i83H3fZ+7hcEpiaNOmjbu7f/zxx96/f393d585c6b36NHD9+zZ4yUlJX7aaaf5J5984tu3b/eRI0d6cXGxu7vff//9fs8997i7+86dO2P7vO6663zevHnu7j5q1Ci/9dZb4x77hz/8oQ8fPtwPHTrkhYWF3qpVK1+4cKG7u1922WX+wgsveElJiXfp0sXXr1/v7u7XX3+9//d//3ds+QcffODhcNgnTJjgl1xyibu7f+973/NnnnnG3d13797tvXr18uLiYl+0aFFsneXLl/tNN91UI6YVK1b4gAEDfP/+/f755597z549/cEHH3R39/POO88/+OADd3dftmyZjx492t3dJ06c6FdccYWXl5f7mjVrvGfPnu7u/tBDD/m9997r7u5lZWW+d+9ed3fv1q2bb9++vco1d3d//fXX/dJLL3V39z179nj37t398OHDNWLs16+ff/755/7YY4/5kCFD/Nlnn/WioiIfOnSou7tfffXVvmTJEnd337Rpk/fp0yf293r77be7u/sll1ziv/vd79zd/fHHH4/dB4sWLfKTTjrJN2/e7OXl5T506NDYvirirlD5PDIyMnzVqlXu7j5hwoTY9e/fv78vXbrU3d3/67/+q8r5VhbvdwFY4bXkNBoYVkREghMOw9Nfhc1vQdezYOJ8CKWn8eb888+PzQvZr18/Nm3axJ49e1i7di3Dhw8H4NChQwwbNgyARYsW8dOf/pQDBw6wa9cu+vfvz9e+9jWAOgduvfjii2nevDm5ubmUl5czduxYAHJzcykqKmL9+vX06NGD008/HYCJEyfyi1/8gnPPPZcePXrQq1cvAK677jqeeOIJIFLFmzdvXqzvV2lpaayKVGHIkCE8+eSTNeJZsmQJl19+Oa1btwYizXwQqRq98cYbTJgwIbZuRaUO4LLLLiMUCtGvXz8+++wzAAoKCpg0aRKHDx/msssuIz8/v85rPmrUKG6//Xa2bdvG3LlzGT9+PM2a1Uw9zj77bJYuXcrixYu56667eOWVV3D32Byfr732GmvXro2tv3fvXvbt21dlH2+++WZsbs9rrrmG//zP/4x9duaZZ9KlSxcA8vPzKSoqYsSIEXXG3qNHj9j5DR48mKKiIvbs2cO+ffs4++yzY8eZP39+nftJlBIyEREJzoEdkWQsXBb588AOaNs5LYdq2bJl7HVGRgZlZWW4OxdeeCHPP/98lXVLS0u57bbbWLFiBV27dmX69OmUlpbGPm/Tps1RjxMKhWjevHlswvRQKBQ7Zm1qm1zd3ZkzZw69e/eusrwiUTqaePsNh8NkZWVRWFhY53lUHB/gnHPOYfHixSxYsIDrr7+eadOm8Y1vfKPOY19//fU899xzzJ49mxkzZgBw4403smrVKk499VQWLlzIyJEjWbJkCZs2beLSSy/lgQcewMxinfHD4TBvvvkmrVq1Suh86zqXir/7ZLcpKSmp8+/ueKkPmYiIBKdNp0hlLNQs8mebTvV6+KFDh7J06VI+/PBDAA4cOMAHH3wQS75ycnIoLi5O6cMBffr0oaioKHbMZ555hlGjRtGnTx8+/vhjNm7cCFAlSbzooot47LHHYgnBqlWrEj7eOeecwwsvvEBJSQn79u3j5ZdfBuCkk06iR48e/OEPfwAiSdfq1avr3NemTZvo3LkzkydP5qabbuLtt9+u8nm7du1qVK5uuOEGHnnkEQD69+8PwMyZMyksLGThwoWxGJ999ll69epFKBSiY8eOLFy4MFa5HDNmDD//+c9j+4yXRA4dOpQ5c+YAMHv27ISuTbx469KhQwfatWvHsmXLkjpOIpSQiYhIcMwizZTfeR9uWBB5X486derErFmzuPrqq8nLy2Po0KGsW7eOrKwsJk+eTG5uLpdddhkFBQUpO2ZmZiYzZ85kwoQJ5ObmEgqFuOWWW8jMzOSJJ57gkksuYcSIEXTr1i22zQ9+8AMOHz5MXl4eAwYM4Ac/+EGN/a5YsYKbb765xvJBgwZx5ZVXkp+fz/jx42PNgADPPfccTz31FGeccQb9+/c/6sMCr7/+Ovn5+QwcOJA5c+YwderUKp9nZ2czfPhwBgwYwLRp0wA4+eST6du3LzfeeGOt++3evTsQScwARowYQVZWFh06dADg0UcfZcWKFeTl5dGvXz9+9atf1djHI488wsMPP8yZZ57Jp59+GmuersuUKVO4+OKLY536E/HUU08xZcoUhg0bhrsndJxEWDrLb+k2ZMgQX7FiRdBhiIhI1Pvvv0/fvn2DDkMakAMHDpCbm8vbb7+dsuSltuO0atUKM2P27Nk8//zzST+Nmoji4uLYE5z3338/n376aY2nbSH+74KZrXT3IfH2qz5kIiIikhavvfYakyZN4jvf+U5akzGAlStXcscdd+DuZGVlxfqrpdqCBQv4yU9+QllZGd26dWPWrFkp2a8qZCIikjKqkIlEJFshUx8yERERkYApIRMREREJmBIyERERkYApIRMREREJmBIyERFpUiqGJNi6dStXXHFFwNEcu9dffz02Uv3xrJNqlSftToV58+Zx//33A/Diiy9WmSIpnSoftzZ1Xd9HHnmEAwcOpCweJWQiItIknXrqqSkdYT+eRKbgkbqNGzeO7373u0D9JmSVj3sslJCJiIgkoKioiAEDBgAwa9Ysvv71rzN27Fh69erFnXfeGVvv1VdfZdiwYQwaNIgJEyZQXFwMwI9+9CMKCgoYMGAAU6ZMiU1bdO6553LXXXcxatSoGgOCTp8+nYkTJzJmzBi6d+/O3LlzufPOO8nNzWXs2LEcPnwYgL/85S8MHDiQ3NxcJk2aFJvU+5VXXqFPnz6MGDGCuXPnxva7f/9+Jk2aREFBAQMHDkxqwNOioiL69u3L5MmT6d+/P2PGjKGkpASITEE0dOhQ8vLyuPzyy9m9e3eN7T/++GOGDRtGQUFBjRkCHnzwQQoKCsjLy+OHP/zhUY/36KOP0q9fP/Ly8rjqqqtifzd33HEHb7zxBvPmzWPatGnk5+ezceNGBg0aFDvWhg0bGDx4cJXjb9u2LbZs9erVmFls0vWePXty4MABtm/fzvjx4ykoKKCgoIClS5dWOS7Axo0bGTp0KAUFBdx9991VqoDFxScmLCwAACAASURBVMVcccUV9OnTh2uvvRZ359FHH2Xr1q2MHj06qVH+66KETEREAhX2MDtKdqR14maIJB+///3veffdd/n973/P5s2b2bFjB/feey+vvfYab7/9NkOGDOHhhx8G4I477mD58uW89957lJSUMH/+/Ni+9uzZw9/+9jf+4z/+o8ZxNm7cyIIFC3jppZe47rrrGD16NO+++y6tWrViwYIFlJaWcsMNN8RiKSsr4/HHH6e0tJTJkyfz8ssvs2TJEv71r3/F9nnfffdx3nnnsXz5chYtWsS0adPYv39/lePWNnUSRJKZ22+/nTVr1pCVlRWb8/Eb3/gGDzzwAO+88w65ubncc889NbadOnUqt956K8uXL+cLX/hCbPmrr77Khg0b+Mc//kFhYSErV65k8eLFdR7v/vvvZ9WqVbzzzjs1pj86++yzGTduHA8++CCFhYX07NmT9u3bx+atnDlzJjfccEOVbTp37kxpaSl79+5lyZIlDBkyJDZJeefOnWndujVTp07l29/+NsuXL2fOnDlxr9HUqVOZOnUqy5cv59RTT63y2apVq3jkkUdYu3YtH330EUuXLuVb3/oWp556KosWLWLRokVxr3mylJCJiEhgwh5m0p8mccEfLuDGP91I2MNpO9b5559P+/btyczMpF+/fmzatIlly5axdu1ahg8fTn5+Pk8//TSbNm0CYNGiRZx11lnk5uby17/+lTVr1sT2deWVV9Z6nIsvvpjmzZuTm5tLeXk5Y8eOBSA3N5eioiLWr19Pjx49OP300wGYOHEiixcvZt26dfTo0YNevXphZlx33XWxfb766qvcf//95Ofnc+6551JaWhqrBFUYMmQITz75ZNyYevToQX5+PgCDBw+mqKiIzz//nD179jBq1KgqcVS3dOlSrr76agCuv/76KjG9+uqrDBw4kEGDBrFu3To2bNhQ6/EA8vLyuPbaa3n22Wdp1uzokwXdfPPNzJw5k/Lycn7/+99zzTXX1Fjn7LPPZunSpSxevJi77rqLxYsXs2TJkticna+99hp33HEH+fn5jBs3jr1799aYUPzNN99kwoQJADWOceaZZ9KlSxdCoRD5+fmxc0k1TZ0kIiKB2VW6i8JthZR7OYXbCtlVuoucVjlpOVbLli1jrzMyMigrK8PdufDCC3n++eerrFtaWsptt93GihUr6Nq1K9OnT6e0tDT2eZs2bY56nFAoRPPmzbHohOmhUCh2zNpYLZOruztz5syhd+/eVZZ/9tlnte4rXkwQOfeKJsRExYvL3fne977HN7/5zSrLi4qKaj3eggULWLx4MfPmzePHP/5xlSQ3nvHjx3PPPfdw3nnnMXjwYLKzs2usM3LkyFhV7NJLL+WBBx7AzGKd8cPhMG+++SatWrVK6pwrxLtv0kEVMhERCUx2Zjb5nfPJsAzyO+eTnVnzH9x0Gjp0KEuXLuXDDz8EIhNUf/DBB7HkKycnh+Li4pQ+HNCnTx+Kiopix3zmmWcYNWoUffr04eOPP2bjxo0AVZLEiy66iMceeyyWzK1ateq442jfvj0dOnRgyZIlVeKobvjw4cyePRuA5557rkpMM2bMiPW5++c//8m2bdtqPV44HGbz5s2MHj2an/70p+zZsye2bYV27dpVqV5lZmZy0UUXceutt3LjjTfG3e8555zDs88+S69evQiFQnTs2JGFCxcyfPhwAMaMGcPPf/7z2PoVTaCVDR06NNasWnGuR1M91uOlhExERAJjZsy4aAavTXiNmRfNrLVClC6dOnVi1qxZXH311eTl5TF06FDWrVtHVlYWkydPJjc3l8suu4yCgoKUHTMzM5OZM2cyYcIEcnNzCYVC3HLLLWRmZvLEE09wySWXMGLECLp16xbb5gc/+AGHDx8mLy+PAQMG1OhcD3X3IavN008/zbRp08jLy6OwsJC77767xjo/+9nP+MUvfkFBQQGff/55bPmYMWO45pprGDZsGLm5uVxxxRV1Jijl5eVcd9115ObmMnDgQL797W+TlZVVZZ2rrrqKBx98kIEDB8YS02uvvRYzY8yYMXH32717dyCSmAGMGDGCrKwsOnToAEQeJFixYgV5eXn069evRt81iDwx+fDDD3PmmWfy6aefJjQR+pQpU7j44otT1qlfk4uLiEjKaHJxSbWHHnqIzz//nB//+MdpO8aBAwdo1aoVZsbs2bN5/vnnk3qSNZ5kJxdXHzIRERFpkC6//HI2btzIX//617QeZ+XKldxxxx24O1lZWcyYMSOtx4tHCZmIiIg0SC+88EK9HGfkyJGsXr26Xo5VG/UhExEREQmYEjIREUmpxtw3WSQVjuV3QAmZiIikTGZmJjt37lRSJicsd2fnzp1kZmYmtZ36kImISMp06dKFLVu2sH379qBDEQlMZmYmXbp0SWqbBpOQmVlX4LfAF4Aw8IS7/6zurUREpCFp3rw5PXr0CDoMkUanwSRkQBnwH+7+tpm1A1aa2Z/dfW3QgYmIiIikU4PpQ+bun7r729HX+4D3gS8GG5WIiIhI+jWYhKwyM+sODATeivPZFDNbYWYr1EdBREREmoIGl5CZWVtgDvDv7r63+ufu/oS7D3H3IZ06dar/AEVERERSrEElZGbWnEgy9py7zw06HhEREZH60GASMjMz4CngfXd/OOh4REREROpLg0nIgOHA9cB5ZlYY/flK0EGJiIiIpFuDGfbC3f8OWNBxiIiIiNS3hlQhExERETkhKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGAKSETERERCZgSMhEREZGANaiEzMxmmNk2M3sv6FhERERE6kuDSsiAWcDYoIMQERERqU8NKiFz98XArqDjEBEREalPDSohExERETkRJZSQWUTXdAeTCDObYmYrzGzF9u3bgw5HRERE5LgllJC5uwMvpjmWhLj7E+4+xN2HdOrUKehwRERERI5bMk2Wy8ysIG2RiIiIiJygkknIRgNvmtlGM3vHzN41s3dSGYyZPQ+8CfQ2sy1mdlMq9y8iIiLSEDVLYt2L0xZFlLtfne5jiIiIiDQ0CVfI3H0TkAV8LfqTFV0mIiIiIsch4YTMzKYCzwGdoz/Pmtm/pSswERERkRNFMk2WNwFnuft+ADN7gEh/r8fSEZiIiIjIiSKZTv0GlFd6Xx5dJiIiIiLHIZkK2UzgLTN7Ifr+MuCp1IckIiIicmJJOCFz94fN7HVgBJHK2I3uvipdgYmIiIicKBJKyMzMgC7u/jbwdnpDEhERETmxNLqpk0RERESaGk2dJCIiIhKwZDr1jwa+aWabgP1E+pG5u+elJTIRERGRE0QyfchuATQyv4iIiEiKJZSQubub2X+7++B0ByQiIiJyolEfMhEREZGAJduH7BYzK0J9yERERERSJpmE7OK0RSEiIiJyAkumyfITYCQw0d03AQ6cnJaoRERERE4gySRkvwSGAVdH3+8DfpHyiEREREROMMk0WZ7l7oPMbBWAu+82sxZpiktERETkhJFMheywmWUQaarEzDoB4bREJSIiIpJu4TAUbwP3oCNJKiF7FHgB6Gxm9wF/B/5vWqISERERSadwGJ7+KjzcF2ZdEnkfoISbLN39OTNbCZxPZMiLy9z9/bRFJiIiIpIq4TAc2AFtOoFZ5PXmtyBcFvnzwA5o2zmw8JLpQ4a7rwPWpSkWERERkdSrqIZtfgu6ngUT50cSs65nHVnWplOgISaVkImIiIg0eAlWw8LfeJld27eS3fmLRKbtDk4yfchEREREGrZ4fcMqqmGhZrFqWDjsXPXkMob+4g2u/M0ywuFgO/arQiYiIlLNvi07+Oey92ndKYsuZ/cl1Fz/XDYaCVbDtu8r4b3wA2T23MR7Jd3YXvx7Tj6pVWBhH7VCZmb7zGxvnJ99Zra3PoIUERGpT9vfKyKjZQv2/XMHJbuLgw5H6lJ96Io2nfAuZ+GhZngd1bCMZvvJaLUJszAZrTaR0Wx/oKdx1JTf3dvVRyAiIiINxUmndWZb4UZatG1Fy3bBVU3kKMJhfNZXYUukY75NnE8Y4+pD3+Pjw+vofrAfsx22F5fWqIZ1bpfN4JMHUri9kPyT88lulR3oqSRVgzWzDkAvILNimbsvTnVQIiIiQcrpdxonndaJjBbNyWih5soGo1pn/XDxdsKfLKMZ5ZRtWkaoeDvbOYl3/UFClZKvimoYlaphZq2YMXYGu0p3kZ2Z3Xg69ZvZzcBi4E/APdE/p6cnLBERkWC1aNsqpclY+NAhDn62jfKS0pTt84QSrYb5w33xaGf9nbRnefjL/CvUjBXhL7OT9nGbIrNbRaphGZbB4C8MjFXDQhYip1VO4MkYJFchmwoUAMvcfbSZ9SGSmImIiMhR7Fm2gsO7dpHRujUdzzuHUDNV3uoSLi8/0gk/FIpbDevYNod/796FA6GDtA534Y22zQlZzaZIM2tQ1bB4krkbSt291Mwws5buvs7MeqctMhERkSbCw2HK9u4lo3VrwiUleFkZKCGrVbi8nHUPjOL0g2t4v2V/+vzX39hJez4Mf5kezTZSVNaTnrTHDu7mYLOPwMMcbPYRuw/uJqdVTtzkq6Ia1lAlczdsMbMs4EXgz2a2G9ianrBERESaDguFaH/mYA58+BFt+vQiIzPz6BudQKpXw3Zt38qXD65hTwb0OriGXdu30rHzqXGrYfmd8yncVkh+53yyM6s2RTYmycxleXn05XQzWwS0B/43LVGJiIg0MS07d6Jl52Cn52kIwmFn5/5D5LRtgZnFrYZ16HQKV3+xGx+0KOP0Q814vtMp7K6tGnZRw26KTFTCCZmZtQTGA90rbZcP/Cj1YYmIiEhTEw471zzxBh9/sonup3Xn+SnD4lbDaN+KDzKh3I0PMmH3oT1kZzadalg8yTRZvgR8DqwEDqYnHBEREWkqqlfDdhaX8u2t32FQ8w94e+vp7Cx+nY5xqmGhUEaN5MvMmkw1LJ5kErIu7j42bZGIiIhIo1WjKTJONSzH9tI+tIHPQzAovIFmtpedhzJqVMNqa4psKtWweJJJyN4ws1x3fzdt0YiIiEiDVj3xqlh29W+WsXLTbgZ368Dzk4eys7iUqVu/TY/MjRRt7cnO4r+R3TaHKd17UMhB8mnJjDY5ZFuoSTdFJiqZhGwEcIOZfUykydIAd/e8tEQmIiIiDUq8xCsUMnbuP8Tbm3aSFd7Lyk2RhK0je/jVqXtYnXkKZ5TuYQZ72HWwOYWhcsrdKLRydjWxjvnHI5mE7OK0RSEiIiINTo0+YPsPsXLTbsrCzspNu9m5/xCd2rUkp00zXmj7EzqVrWNHsz7ktBnLztLmrM5sSbnB6syW7G7WvMl3zD8eyQx7scnMzgBGRhctcffV6QlLRERE6lO8PmDVq2E5bVsw5LT2sX5hOW1bAOD7t/NQ9nYKW55C/sHtzNi/ney2J5N/8uCaI+arGhZXMsNeTAUmA3Oji541syfc/bG0RCYiIiL1Im4fsHjVsDbNea7FvexuvYKOLYdgvgDM2JXRjMKWkWpYYcuW7MpoRk4t0xU1pGpYaWkpO3fupFOnTrRo0SLQWBKeXBy4CTjL3e9297uBoUQSNBEREWlEwmFn+76DuDtA3OQrp20LBp/Wjs7NtzLotPbktG1BeP82bjq8kQu6nMykQxsJ798GQHarbPJPHkyGZZD/hcENcvLu6srLy3nppXm89NI85s9fELsWQUmmD5kB5ZXel0eXiYiISAOVaFPk4G4dYsty2rbAw+W0yvx3DvU8SGta4uG34lfCoFFM3l3d4cOH2b17N1lZWWzbtp3y8nKaBTi/aDJHngm8ZWYvRN9fBjyV+pBEREQkFRJuimzXkuduGsJH/3yfL3fpH+nAv/tDCjlIuRmFfpBduz8kO7t3jX5hFRpSU2QiMjMzOeecc1i7di3nnz860GQMkuvU/7CZ/Q0YTqQydqO7r0pbZCIiIpKURJ6KjFcNC5eXcfOzQ4+MD3b9W2R3PJ18WlLokWXZHU9vlJWwuvTr15d+/foGHQaQXIUMd19JZOokERERCdCxNkWaWULVsJycPsy4/q1IZazj6Vgo0u28sVXCGoujJmRm9nd3H2Fm+4DKPd4qBoY9KW3RiYiISELJV61NkTefycZdn9Er+wuRbROshgGEMpqRk9Mn4LM/MRw1IXP3EdE/26U/HBEREaks0eQrblOkh7n51Zsifb4650fGAEuiGib1J+ErbmYPJLJMREREjl3CQ1J060CzkFVtirz5TBZ8O5/nJ5+FmbHrwE4KP1tJuZdT+K+V7DqwM1YNy3CPWw1TMhaMZPqQXQj8V7VlF8dZJiIiIgk4nn5gFZWy2LZxqmHZ4TD5Bw9S2LIF+QcPkR0OY6GQqmENUCJ9yG4FbgO+ZGbvVPqoHbA0XYGJiIg0Zcn0A6uefAFgjjXbB0SGnohVw4xYNSynbWdmtOjJri0ryP7iEKxtZ0B9wxqiRCpkvwP+F/gJ8N1Ky/e5+660RCUiItKEVK+EQd1NkZWrYUCN5CvsYSa9Mumo1TDMCE1cQM6BHdCmEzTyYSqaskQ69X8OfA5cnf5wREREGrdEmiFDIUuqKXLSnyZRuK1Sx/wkqmGEQlDxWhqsZCYXfxqY6u57ou87AP/P3SelKzgRkcoOFZdwcNdeMnPa07x1ZtDhiNSQTDNkvOQLqNkUWbqLwm2FkY752wojg7KqGtbkJNOTL68iGQNw993AwNSHJCJSU7isnC2LVrH17++x5fVCPBwOOiSRY34iskIoZLHkDIhVwy74wwXc+KcbCXuY7BYdyA9nRJ6KDGeQ3aIDFq2GvbblM2a26FmzGqZkrNFJ5inLkJl1iCZimFnHJLcXETlm7k5Z6SGatW5J2YGDeNgxPRwm9SiVT0TG9unhKtMQxauG5ZSHmfFJEbsIk00IK9kJbTurGtbEJJNQ/T/gDTP7Y/T9BOC+1IckIlJTRvNmnDoil31Fn3HSl75AqFlG0CFJE3Y8I+Mn0gwJxO0bVlENK6SMfI9UwwiFCHU9i5zNb0HXsyIJGKhvWBOTzOTivzWzFcB5RKZN+rq7r01bZCIi1bQ9JZu2p2QffUWR43A8I+PDkWbI2P7iJF4hCyVVDWPifFA1rElLtsnxU+AfQCaQY2bnuPvi1IclIiJSP6pXwxJNvmprikyoGbJVjqphUkUyT1neDEwFugCFwFDgTSIVMxERkQYv5f3A4o0PVr0ZMjOb/E75sTHDsjMj61rJTlXDJCaZCtlUoABY5u6jzawPcE96whIREUmt4+0HlkhTZNxqWMuOzPjXZ+z65z/JLj8Fc48kWm06qRomMck8o1Tq7qUAZtbS3dcBvdMTloiIyPE5niEpqg9HAZEEbEfJjtj+4o4PFq2GZVjGkWrYgR2ENv+DnLJD2OZ/RKpfEEnKJs6H77wPNyxQNewEl0yFbIuZZQEvAn82s93A1vSEJSIikrh0DElRZf+1NUV2zo8ty87MxtxrVsPadIpUwKpXwkDVMIlJKCGzyB36rejAsNPNbBHQHnglncGJiIgcTaqbIiHxjvkzLnySXbs/JLvj6ZH97d8eqYaFy6CiGqZ+YZKAhJosPVKffbHS+7+5+zx3P5TKYMxsrJmtN7MPzey7R99CRERONOluiow7Wn60GlalKTIcJvTbceT8cjj29FchHD5SDQs1i98vTMmY1CKZJstlZlbg7svTEYiZZQC/AC4EtgDLzWyexjoTETkxVW+GrFiW7qbIZKphbH4LwmWRP1UNk+OQTEI2GvimmW0C9hMZHNbdPS9FsZwJfOjuHwGY2WzgUkAJmYjICSZe4hUKxR8jLNVNkfH6hsWqYRX9wCbOr71vmPqFyTE4akJmZs+4+/XAE8ALaYzli8DmSu+3AGfFiWcKMAXgtNNOS2M4IiJSXxIZnLVTu5YJj44f9xiJdsw3UzVM6l0iFbLBZtYNuBF4mkhlLB3i7ddrLHB/gkhyyJAhQ2p8LiIiDduxPhEJJNwUCUl0zI82U1asp2qYBCGRhOxXRJ6m/BKwkqqJk0eXp8IWoGul913QsBoiIo1ayifpJrGmyESrYQAhh5zy8JGdHdihapjUu6MmZO7+KPComT3u7remMZblQC8z6wH8E7gKuCaNxxMRkTRK9STdtR4nmY75caphPP3VI5UvVcMkIAl36k9zMoa7l5nZHcCfgAxghruvSecxRUQkdVI9SXetxznWjvmoGiYNVzJPWaaduy8EFgYdh4iI1C3VI+MfTzWs1o75qoZJI9KgEjIREWn40jEyftzjVKuEQfz5I+M2RaJqmDQuCU8ubmb94iw7N6XRiIhIg5PqkfHjHiOB0fKB+CPmAyELkdMq58hxKqphD/eFWZdoFH1p8JKpkP2PmT0D/BTIjP45BBiWjsBERKT+uIeBA4TDzdh1wNI2SXc8yXTKj9sUCZGEq3KVS9UwaWSSScjOAh4A3gDaAc8Bw9MRlMiJaM+H/2TfJ9vo2Pc02pySHXQ4coIJ+6eEw7u59snPWPnJQYbUY1NkMp3y4Ug17MgO1TdMGr9kErLDQAnQikiF7GN3D9e9iYgk4vD+Ej5buZ7mrTPZ+sYavvz1kUlVGESOReWO+XCQXftDrPyklPIwKRuSosYxj6NTfnjvGtj7LrTpRah5V1XDpElJJiFbDrwEFADZwK/N7Ap3vyItkYmcQEItmtO8dSaHikto84WOSsYk5Y72VOTvbj6D7LY7GHxaO1Z+UpySpkg4jtHyqVoJ83AZ7Hkbb55FaPYUfHsRpmqYNCHJJGQ3ufuK6Ot/AZea2fVpiEnkhJPRvBmnnT+Yg3v3k5l9UtDhSCNWPfGqWHa0pyJ3HcigU7vTmD2la8qaIpMaLb96M2Qk8EoVrgxo9UVs5xrY9jHm5aqGSZOSzMCwK8ysA9CLSJMlwKa0RCVyAmrWuiXNWiffBCRSIV7iFQolPkArpLYpMplqWJyTqdIvzCbOh5xRcNJA6LoQtvxD1TBpUhJOyMzsZmAqkTkmC4GhwJvAeekJTURE6pLIyPid2rVM+VORcJyj5R+1Gha/X5i17QwtO8ANC1QNkyYnmSbLqUT6jy1z99Fm1ge4Jz1hiYhIZcc6Mj5w3KPj14jleEbLj39yiT8lGQlc1TBpcpJJyErdvdTMMLOW7r7OzHqnLTIRSUj44EFKP9pAqGUmLbt/CQslPN6zNBLHOzI+HHvyBanrmF/phDRmmEg1yXxzbzGzLOBF4M9m9hKwNT1hiUiiSjes4+BHGzjwXiGHt38WdDiSAvUxMn6tx05gxPyER8uPf3IaQV8kjmQ69V8efTndzBYB7YFX0hKViCTMWrTAy8IQCmEZmp62sUn1JN3HFUuVpsj+PHXRTHaX7j32jvmRE1Q1TCQBx/Tt7e5/S3UgInJsMnueTka7k7DmzWme0+noG0iDUV+TdNd6/DqbItewq7SInMxeiXfMr3mCGkFfJEFHTcjMbB/g8T4C3N01aJJIgCwjgxanfDHoMCQBiTwVmerhKGLHTniMsDwKt71DfufedMzslHjH/MgJqhomcoyOmpC5e7v6CEREpClpuE2RRxsjbBa7Sv9Jx8wOmLUBVA0TqQ/qcCIicpwSSb7qqymyeiUMOIYxwromctKqhomkUDJNlvF+k9RkKSIntESTr3Q1RVaJJU4lLGSh4xsjLP5JqxomkmJqshQRScKx9gNLV1NkIuOD1ZZ8JdQUGTlpVcNE0iypJss4c1ni7otTHZSISEOQ6n5gqWyKTGbibkgi+ap5EVQNE6kHmstSRCSOoIekqBJLqifurvvEVQ0TCUAyI/VXzGW5yd1HAwOB7WmJSkSkHlUfGR/qd3T8GvFUGy2/rk75xzRafq0H1ij6IkHRXJYickJJpBkyFLJ66wdWI75UT9xd98VQNUykgUgmIas+l+VuNJeliDQiyTRDpqMfWNyYUj1xd8IHVt8wkYYkoYTMIr/933L3PWguSxFpJI5nZHxIf/KVTMf840q+QNUwkQYuoYTM3d3MXgQGR99rLksRaVAa0sj4ceOrz475NQ6uaphIQ5dMk+UyMytw9+Vpi0ZEJAENaWT8WmNMoCkyLdWw6pUwUDVMpBFIJiEbDXzTzDYB+zkyuXheWiITEYmjIY2MX2uM9dkxv8qB41TCQiFVw0QagWQSsovTFoWISC0a0sj4tcYYZMf8RPqFmakaJtLAJZyQufumeCP1A5tSHpWInJAa0sj4tcYYZMf8KoEk0S8MVA0TaeA0Ur+INAgNsR9YjRiD7pivpyRFmiyN1C8igag+On6QI+PXGmNQI+bXCEQj6Is0dRqpX0TSrqEPSRE35qA65oOqYSInII3ULyJp1ViaIqsnVPXWMb9GMBozTORElEyn/sujLzVSv4jEVb0SBnU3RQY1JMXROuWHLFQ/HfNBxOVkwwAAGgdJREFU1TARAZKrkMVopH4RaeiTdMeNOYlO+WlpiqwRkKphIhKRzFOWmcBtwAjAgb8Dj7t7aZpiE5EG4nhGxq/PISlqxH0co+WDqmEiUn+SqZD9FtgHPBZ9fzXwDDAh1UGJSMNxvCPjQ/0kXzXiDrJTftyAVA0Tkdolk5D1dvczKr1fZGarUx2QiAQrFSPjZ7dp/v+3d/fBktXlgce/z52BmeGdAQ0gb45LEhRZlFGCmkXIbGSXhOBLNiSmRCChMKl9M7ulFptsyqxlUMtUZa2NTliDuxiSgMuiEpfwomViHJTIAAryOuogoIKADAPzcu+zf/S53KbndN/ue7v7nNP9/VTdmj4vffp3fpzbPPf5/c5zYNtWMmdh/2OIGKTCzhLbXVW1/K4NMhu2mN27Zlm514qqmyHVwiAB2W0R8XOZuQkgIk4BvjKaZkkah1FVxp/7yRbyO9eREcRL3kisfcVw212XavldG2g2rJfM5I4v38dD9z7KuhOP5PhT1lXdJKlygwRkpwDviIjvFctHA3dHxJ34kHGpcUZajmJ2JxkAAbuHO8200mr5XRtlNmwQO57dxUP3Psohhx3Ilju+z0+ffAwrVpop03QbJCA7c2StkDRySx2KhMHngMWBL4Nd22BuF3HICctr9zIm5psNq6dVa/bi8HWH8siDj3HM8YcbjEkM+HDxUTZE0vBUXRk/ZlYSLz558HYvcShybBPzwWzYEEQErzrjeF7xul3svXqvqpsj1cKS6pBJqq8mVMYvbfcyhyLNhjVLRLBqzd6L7yhNidHf+iRppJrwkO7Sdtflwd09GzkH234IRRtLs2ERrcDs3XfDO68zGyZpScyQSQ1S9VDk0M6jjkORezTSbJik8Rk4IIuI3wDOBmaBAD6XmVcOu2HStFtOdfw6DUVCDWuE7dHAuT3nezk3TNIYLWXI8rTMPDcz356Zv0HrUUqShmg++Dr1gzdx7sZNzwdndR+K7ByGnF93wfUXsOGqDZx//fnM5Vz1Q5EvaHSRCfvo8XD5Wa1lWMiGzawsz4YZjEkaoqUMWa6KiLOArcCRwJrhNkmaLp2ZMOg9D6yuQ5Flw5AzMVN9jbA9GtrnXZLzc8PMhkkag6UEZL8DvAV4JfAQ8LtDbZE0wfoZhpyZiSVVxx/7ufQ5DFlpjbA9Gj3AvDBwbpiksRk4IMvM7cAV88sR8R7g0mE2SppEg8wBq1vw1WmQRxVVPjHfmmGSGmApk/r/pn0ROAkDMmkPy6mMD/UJvmB5k/KhAdkwM2GSKraUIcufZOZvzS9ExJ8NsT1S4zz3xNM889hT7Dxgfw578QGNLkcBDXhwd9eGmw2T1FxLCcg+0LF8yTAaIjXR7I5dfOfGb/Cfv72du7bPsf7YtY0qR9Gplg/u7qvhZsMkNdvAZS8yc0vH8o+H1xyp/tor4+fcHE/unOOuZ+aYTbi1puUoumlEtfzShltBX9Jk6TtDFhHvLln9FPBPmbl5eE2S6qOfuyJPOONETnz0du54/DnW13goslMjquWXNtxsmKTJM8iQ5fri53PF8lnA14GLI+KqzPzQsBsnVanvuyIPP4TP/MfTaz0UCQ2olt+14c4NkzT5BhmyPAR4dWb+Xmb+Hq3g7EXAvwDeOYK2SWPV1Id0l+kciqx9tfxuyqroW0Ff0gQaJEN2NLCzbXkXcExmPhsRO4bbLGm0JuUh3WUaOzEfzIZJmlqDBGR/CWyKiGtp1R/7JeDKiNgXuGsUjZOGYZIe0l2mn6HIupSpyN3bYfdzxOq1JSfi3DBJ06vvgCwz/ygi/pbWw8QDuDgzby02v30UjZOWq9/gq1uB1roFX52aNDE/dz5FbrkGZneQh72OmYNeYTZMkgqD1iHbDcwBSWvIUqqVpVbHb8JQJDR4Yj7AzqdaGbKV+xJPfw+ufY/ZMEkqDFL24t8Dvw18hlaG7IqI2JiZ/31UjZO66Qy85tctZx5Y3bJhja2YX2ZuDuZWEAe8DHY8QexzrNkwSWozSIbsQuCUzHwGICIuBb4KLDsgi4hfBf4QOB54bdtQqLSHssBrZqY8G9aUeWCdGj0xv1MxNyy23kLMZ8MizIZJUptByl4EMNu2PFusG4ZvAm8Bvjyk42mC9FOOAmhMSYpOnSUqoEEV8zt1VtAHq+hLUh8GyZD9BXBLRFxDKxA7B/jkMBqRmXcD9fgfiiq11HIUQGPmgbUry4TNxExtJ+b3VHaX5MyMc8MkqQ+D3GX50Yj4EvB6WgHZeT4yScO03HIU0IyhyH4m5XcLvmo1N6zfmmHz2TDnhklSV4sGZBHxNK27Kp9f1bYtM/OAfj4oIm4EDivZdElmXtvPMYrjXARcBHD00Uf3+zbV0FLviIT6B16wvEn5ULPgq9MgNcPAbJgkLWLRgCwz9x/GB2XmhiEdZyOwEWD9+vW5yO6qiUmujF9moiblgxX0JWnEBq1DJi1q0ivjl2lStfyBWUFfkkauFgFZRLyZVvmMFwHXRcTmzHxTxc3SEkx6ZfwyTaqW3xezYZI0drUIyDLzGuCaqtuhwU16Zfwyja6WvxizYZJUiVoEZGqGYc8Da0I2bKKq5ZcxGyZJtWBApr5MwzywThM3Mb+T2TBJqo1BKvVrivRTHb+plfG76ayY39hq+d10VtG3gr4k1YYZMk1dSQpY+lBkYybmdzIbJkm1ZkA25RyKHHwo0rlhkqRhc8hyinQOQ4JDkRMxFNlpPhv20ePh8rNay/PZsJmV5dmwJp2fJE0gM2QTqp9hyJmZmLihyE4TPxQJZsMkaQIYkE2A5VTGb3JJijITXSOsjHPDJGkiGJA13HIr40Mzg6/OwGt+3UTVCCtjNkySJpIBWcNMY2X8TmWB10zMTFaNsDJmwyRpYhmQ1dg0VsYv0+8wpNkws2GS1FQGZDU1jeUoygwyDNnoifmdzIZJ0lQxIKuJpQ5FwuQEX7C8SfnQ0GxYZyYMzIZJ0pQxIKvANFbGLzPxD+7uR1kmbGbGbJgkTRkDsjFzKLJl4h/c3U2/88LmnylpNkySpoKV+kdsGh/SXWbqquWXGaSCPlhFX5KmiBmyIXIostxUVMsv412SkqQ+GZAt0XKq40/yUCRMYbX8Mt4lKUkagAHZEiy3Ov4kB19TOTEfzIZJkpbFgGwRnZkw6D0PbNqHIqdiYn4ns2GSpGUyIOuhLBM2MxNTUR2/TD9DkWbDzIZJkgZnQNZDtzlg0xB8dZraifmdzIZJkkbAgKyHbnPAYLKDL3Bi/vPMhkmSxsCArIdJnwM2z4n5XZgNkySNiQHZIqYhE+bE/ILZMElSRazUP0U6q+XDlFbMLzNIFX0r6EuShswM2ZQoy4TNxMx0TswHs2GSpFoxIJtQ/U7K7xZ8OTds6XPDcnaWHQ8/DASrXnIEMWMiWpLUmwHZBFjOpHyY8OALxp4Ne27rVrbddhtkACez+qijhncukqSJZEDWcE7KX0QVd0rOJUmrf3MuF9lZkiQDssaxWv4iajA3bPUxR0POQcyw+siXDPXYkqTJZEBWY0sdipyKSfllalI3LFasYM3LXjaSY0uSJpMBWU0tdyhy4rNhnZkw8E5JSVJjeftXTXTWCLM+WA9lNcPAumGSpMYyQ1YDDkUuot95YRFmwyRJjWRAVgEf3D2AQeaFgc+UlCQ1kgHZiPng7gHV4C5JSZLGzYBshKwRNqCa3CUpSdK4GZANkTXCBmQ2TJIkwIBsaJyYPyCzYZIkPc+AbImcmD8gs2GSJHVlHbJFdNYHm193wfUXsOGqDZx//fnM5Zw1wnopqxtmzTBJkp5nhqyHsmHImZhxYv5izIZJkjQQM2Q9lAVegNmwXsyGSZI0MDNkPXS7I9KJ+W3MhkmStGwGZD30CrymcmJ+J++UlCRpKAzIFmHg1aZG2bBdT2/n6e89yupDD2Kfn1o7ks+QJGlcnEOm/tRsbtij/3gHT9z1HR75+9vZvf25kX2OJEnjYIZM5WqUDSsXZGZrGNk5aZKkhjMg054aMDfssNefyLatP2D1oQexcs2qsX++JEnDZECmBmTD9rTXfms4+PhjK22DJEnD4hyyaVezuWGSJE0jM2TTpDMTBo3IhkmSNOnMkE2LskwYmA2TJKkGzJBNqn7nhUWYDZMkqWJmyCbRIPPCwGyYJEkVM0M2CRp4l6QkSVpghqzpvEtSkqTGM0PWNGbDJEmaOGbImsRsmCRJE8kMWZ2ZDZMkaSqYIasrs2GSJE0NM2R1YTZMkqSpZYasDsyGSZI01WqRIYuIDwO/DOwEHgDOz8wnq23VCJkNkyRJbeqSIbsBOCEzTwTuBd5XcXtGx2yYJEnqUIsMWWb+XdviJuBtVbVl6MyGSZKkRdQlQ9buAuAL3TZGxEURcWtE3PqjH/1ojM1aArNhkiSpD2PLkEXEjcBhJZsuycxri30uAXYDn+52nMzcCGwEWL9+fY6gqUtnNkySJC3B2AKyzNzQa3tEnAf8EvALmVmvQKsf89mwrbe0Ml/nfX4hGza/rjMbJkmSRE3mkEXEmcB7gNMyc3vV7emL2TBJkjQkdZlD9jFgf+CGiNgcER+vukE9OTdMkiQNUS0yZJn5z6puQ1edmTAwGyZJkoaqLhmyeirLhIHZMEmSNFS1yJDVVrdMWITZMEmSNDRmyHrplgkDs2GSJGlozJD1YiZMkiSNgQHZYqwZJkmSRswhS0mSpIoZkEmSJFXMgEySJKliBmSSJEkVMyBbxO7dszz15Dbm5ovCSpIkDZl3WfYwOzvLTV/YxA8eeZx1xx3JG05/ddVNkiRJE8gMWQ/PPbuTRx95nBe9+CC2PPB9s2SSJGkkDMh62Gff1bz8let48oltnHzKK5iZsbskSdLwOWTZQ0TwmlNP4DWnnlB1UyRJ0gQz5SNJklQxAzJJkqSKGZBJkiRVzIBMkiSpYgZkkiRJFTMgkyRJqpgBmSRJUsUMyCRJkipmQCZJklQxAzJJkqSKGZBJkiRVzIBMkiSpYgZkkiRJFTMgkyRJqpgBmSRJUsUMyCRJkipmQCZJklQxAzJJkqSKGZBJkiRVzIBMkiSpYgZkkiRJFTMgkyRJqpgBmSRJUsUMyCRJkipmQCZJklQxAzJJkqSKGZBJkiRVzIBMkiSpYgZkkiRJFTMgkyRJqpgBmSRJUsUMyCRJkipmQCZJklQxAzJJkqSKGZBJkiRVzIBMkiSpYgZkkiRJFTMgkyRJqpgBmSRJUsUMyCRJkipmQCZJklQxAzJJkqSKGZBJkiRVzIBMkiSpYgZkkiRJFTMgkyRJqpgBmSRJUsUMyCRJkipmQCZJklSxWgRkEfFHEXFHRGyOiL+LiCOqbpMkSdK41CIgAz6cmSdm5knA54E/qLpBkiRJ41KLgCwzf9K2uC+QVbVFkiRp3FZW3YB5EfEB4B3AU8DpFTdHkiRpbCJzPMmoiLgROKxk0yWZeW3bfu8DVmfmf+1ynIuAi4rFnwHuGXZbR+hQ4LGqG1Ej9scC+2KBffFC9scC+2KBfbGgSX1xTGa+qGzD2AKyfkXEMcB1mXlC1W0Ztoi4NTPXV92OurA/FtgXC+yLF7I/FtgXC+yLBZPSF7WYQxYRx7Utng18u6q2SJIkjVtd5pD9cUT8DDAHfBe4uOL2SJIkjU0tArLMfGvVbRiTjVU3oGbsjwX2xQL74oXsjwX2xQL7YsFE9EXt5pBJkiRNm1rMIZMkSZpmBmRDEhFnRsQ9EXF/RLy3ZPufFI+G2hwR90bEk23bZtu2fXa8LR++PvrinRHxo7Zz/q22bedFxH3Fz3njbflo9NEf746Iu4rHh91U3Gk8v23aro1VEfHXxfZbIuLYtm3vK9bfExFvGme7Ryki1kbEDcU1f0NEHFyyz0kR8dWI+FZxnfxa27bLI2JL23Vy0njPYLj66Y9iv9LfjYh4aXHt3FdcS3uPr/XD1ee1cXpbP2yOiOci4pxi28RcGxHxq8X1PxcRXe+o7PYd04jrIjP9WeYPsAJ4AFgH7A3cDry8x/7/Fvhk2/K2qs9hnH0BvBP4WMl71wIPFv8eXLw+uOpzGkN/nA7sU7x+F/DXU3xt/A7w8eL1ufN9Aby82H8V8NLiOCuqPqch9cuHgPcWr98LXFqyz08DxxWvjwAeAQ4qli8H3lb1eYyzP4ptpb8bwN8A5xavPw68q+pzGnVftO2/Fvhx2/fJxFwbwPG0ao9+CVjfZZ+u3zFNuC7MkA3Ha4H7M/PBzNwJ/BXwKz32/3XgyrG0bPwG7Yt2bwJuyMwfZ+YTwA3AmSNq57gs2h+Z+cXM3F4sbgKOHHMbx6Wfa+NXgE8Vr68GfiEiolj/V5m5IzO3APcXx5sE7ef8KeCczh0y897MvK94/TDwQ6C0uOQEWLQ/uimulTNoXTsDv7+GBu2LtwFfaPs+mRiZeXdmLlYIvvQ7pinXhQHZcLwE2Nq2/FCxbg/FcNRLgZvbVq+OiFsjYtN8qrnB+u2LtxZDL1dHxFEDvrdJBj2nC4EvtC1P27Xx/D6ZuZvWo9QO6fO9TfVTmfkIQPHvi3vtHBGvpfXX/wNtqz9Q/D79SUSsGl1Tx6Lf/ij73TgEeLK4dqD518lA1watrHLnH/uTdG0sptv3RCOui1qUvZgAUbKu2+2r5wJXZ+Zs27qjM/PhiFgH3BwRd2bmA13eX3f99MXngCszc0dEXEzrr5Uz+nxv0/R9ThHxm8B64LS21dN2bXTbp9HXRvR4dNyAxzkc+N/AeZk5V6x+H/AorSBtI/Ae4P1Lb+3oDak/9vjdAH5Ssl+tr5MhXxuvBK5vW92oa6NXX2TbIxZ7HaJkXWO+PwzIhuMh4Ki25SOBh7vsey7wu+0riiEIMvPBiPgS8Cpe+NdvkyzaF5n5eNvinwOXtr33jR3v/dLQWzhefV0bEbGB1hfwaZm5Y379tF0bbfs8FBErgQNpzYkZ5HesdjJzQ7dtEfGDiDg8Mx8p/qf6wy77HQBcB/yXzNzUduxHipc7IuIvgP80xKaPxDD6o8vvxmeAgyJiZZENqf11Moy+KPwb4JrM3NV27EZdG736ok/dviceowHXhUOWw/F14LjiLo69aQVde9wRF62nERwMfLVt3cHzaeSIOBR4PXDXWFo9Gov2RfHFMu9s4O7i9fXALxZ9cjDwi7zwr70m6qc/XgV8Ajg7M3/Ytn7qro1ief7u2rcBN2drFu5ngXOjdRfmS4HjgK+Nqd2j1n7O5wF7ZAKK/roG+F+ZeVXHtsOLf4PWvJhvjrS1o9dPf5T+bhTXyhdpXTtd398gi/ZFmz3mJk/gtbGY0u+YxlwXVd9VMCk/wL8G7qWVvbikWPd+Wv+Tnd/nD4E/7njf64A7ad0NcidwYdXnMuq+AD4IfKs45y8CP9v23gtoTdi+Hzi/6nMZU3/cCPwA2Fz8fHaKr43VwFXFf/+vAeva3ntJ8b57gH9V9bkMsU8OAW4C7iv+XVusXw9cVrz+TWBX2zWyGTip2HZzcX18E7gC2K/qcxpDf3T93aB1h93XimvoKmBV1ec0yr4olo8Fvg/MdLx/Yq4N4M20MmA7iu/L64v1RwB/27bfHt8xTbkurNQvSZJUMYcsJUmSKmZAJkmSVDEDMkmSpIoZkEmSJFXMgEySJKliBmSSJEkVMyCTJEmqmAGZpKGKiG1Vt2EY2s9jGOcUEcdGxLMRsXm5x+rxGWsiYnNE7Cwq2EtqCAMySVMpWsb9HfhAZp40qoNn5rPF8Wv3nD5JvRmQSRqJiHh3RHyz+PkPbet/PyK+HRE3RMSVEbGkBx4XGadvR8SnIuKOiLg6IvZp2/5/I+KfIuJbEXFR23vujoj/AXwDOKpsv0U+t+y4rynasDoi9i22ndBn+y8r+ujTEbEhIr4SEfdFxGu7fV6xft+IuC4ibi/e/2tL6UdJ9eCjkyQNVTG8dxpwOfBzQAC30Hoe4wrgMuBUYCWtoOgTmfmRJXzOscAW4A2Z+ZWI+CStB0x/pNi+NjN/HBFraD10+DRgf+BB4HWZuanbfpn5eERsy8z95s+p7XW3/f8brWdxrgEeyswPlrT385l5Qtvy/cCraD3b9eu0ns14IXA2rWe5ntPj894KnJmZv10c78DMfKp4/R1gfWY+Nmi/SqqGGTJJo/AG4JrMfCYztwH/B/j5Yv21xdDa08Dn5t8QEesi4n9GxNXF8r5F9uvPI+LtXT5na2Z+pXh9RXH8ef8uIm4HNgFHAccV6787H4wtsl833fZ/P/AvaT34+UOLHGPelsy8MzPnaAVlN2Xrr+Q7aT0wutfn3QlsiIhLI+Ln54MxSc1kQCZpFGLA9WTmg5l5YduqtwBXFxmgs7u9rWw5It4IbABOzcx/DtxGK3sF8Mzzjem9356N773/WmA/Wlm4rsfosKPt9Vzb8hywstfnZea9wMm0ArMPRsQf9PmZkmrIgEzSKHwZOCci9omIfYE3A38P/APwy8Vcq/2As3oc40hga/F6tss+R0fEqcXrXy+OD3Ag8ERmbo+In6U1dFqm3/362X8j8PvAp4FLFzlOv7p+XkQcAWzPzCuAjwCvHtJnSqrAyqobIGnyZOY3IuJy4GvFqssy8zaAiPgsrblS3wVuBboNtT1EKyjbTPc/Hu8GzouITwD3AX9WrP9/wMURcQdwD63hvjL97tdz/4h4B7A7M/8yIlYA/xgRZ2TmzYscbzG92vdK4MMRMQfsAt61zM+SVCEn9Usaq4jYLzO3FXdEfhm4qAjgDgE+QGse1mXAnwIfA54D/iEzP91xnGNpmyRfd+Nsr5P6peYxQyZp3DZGxMtpzYX6VGZ+AyAzHwcu7tj3/HE3boRmgQMjYvOoapEVd2J+FdiL1jw0SQ1hhkySJKliTuqXJEmqmAGZJElSxQzIJEmSKmZAJkmSVDEDMkmSpIoZkEmSJFXMgEySJKliBmSSJEkV+//BcPsj22sdkgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAITCAYAAABR1vsyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU5bn3/881ISScJBDAiiBQNnJMDIcoCIhYRawtaoHt+YRCPe3ytHtjW58esNWnWv25rdraWgWtWuluQUVhW2sLQhEUkKCCoCJBECrIMSEJJJnr98cMQ0hCmIGZTCb5vl+vvMysWbPWNTfJ+M291n3f5u6IiIiISGoIJLsAEREREYmewpuIiIhIClF4ExEREUkhCm8iIiIiKUThTURERCSFKLyJiIiIpBCFNxEREZEUovAmIo2WmWWY2VNmtsnMisxslZldVOX5m83sEzMrNrPXzKxzledGm9kCM9trZoXVjtvJzF4ws63h55eY2Vn1+NZEpAlTeBORxqwZsBkYBbQFfgz8j5l1N7NRwP8DLgHaAxuBF6q8dj8wA5hWy3FbA8uBweHXPgPMM7PWCXofIiIRphUWRKQpMbP3gLuBYUALd789vL0z8Dnwb+6+ocr+5wNPunv3Yxx3HzDa3VcmqnYREVDPm4g0IWZ2MnA6sAaw8Ffk6fB/BxzHcfOA5sAnJ1qjiMixKLyJSJNgZunA88Az7r4OmA/8u5nlmlkL4CeAAy1jPO5JwLPA3e6+N85li4jUoPAmIo2emQUIBayDwB0A7v534KfAbGATUAgUAVtiOG4L4BVgmbv/Ir5Vi4jUTuFNRBo1MzPgKeBkYLy7lx96zt1/7e693L0ToRDXDPggyuNmAC8Ruk/u23EvXETkKBTeRKSxexzoC3zT3UsPbTSzTDMbYCGnAU8Av3L33eHnA2aWCaSHHlqmmTUPP5cO/AUoBa5z92A9vycRacI02lREGi0z60bocugBoKLKU98G5gGLgJ6ELpfOBH7k7pXh154LLKh2yDfd/dzwNCMLCYW3qsHtIndfHPc3IiJShcKbiIiISArRZVMRERGRFKLwJiIiIpJCFN5EREREUojCm4iIiEgKUXgTERERSSEKbyIiIiIpROFNREREJIUovIlIXJlZcT2eq9LMCsxsjZmtNrPvhdcxPfT8W3W8NsvMbqufSmucu7uZlZpZQZXHUS3LdYzjtgi3x0Ez63DilYpIQ6TwJiKprNTd89y9P3AB8HVCi80D4O5n1/HaLCAp4S1sg7vnxfOA7l4aPubWeB5XRBoWhTcRSYhwL9gH4a//U2X7j81snZn9zcxeMLP/isf53H07MAW4I7wYfaQX0Mxamdm8cO/cB2Z2OXAf0DPcU/VAeL+XzGxluCdvSnhbdzP70Mx+H97+upm1CD93nZm9Fz7us1Xe4zVm9k742L8zs7Ro34eZfdXMVplZfvjc68zsmfB5/mJmLes6t4g0fs2SXYCIND5mNhi4ETgLMOBtM3sTSAPGAwMJff68C6yM13nd/dPwZdNOwBdVnhoLbHX3i8P1tQXeBgZU6/2a5O67wuFsuZnNDm/vBVzp7pPN7H+A8Wa2Cvi/wHB3/9LM2oeP3Re4PLy93Mx+A1wN/OFY9ZtZb2AWcKO7F5hZd6A3cJO7LzGzGcBtZva/tZ1bRJoGhTcRSYQRwIvuvh/AzOYAIwn19r/s7qXh7a8ceoGZfZVQIGnr7hPMrBXwG+AgsNDdn4/y3FbLtveBB83sfuBVd19sZu1q2e87ZnZZ+PuuhELbv4CN7l4Q3r4S6A60A/7i7l8CuPuu8PNfAwYTCn8ALYDtUdTdEXgZGO/ua6ps3+zuS8LfPwd8BzhwlHOLSBOgy6Yikgi1Bai6tuPun7r7TVU2fYtQQJkMjIvqpKEAWEm1sOTuHxEKVO8DvzCzn9Ty2nOB84Fh7n4GsArIDD99oMqulYT+8DXAaysDeCZ8L16eu/d29+lRlL8X2AwMr7a9+jm8jnOLSBOg8CYiibAIuNTMWoZ70C4DFgP/BL5pZplm1hq4uI5jdCEUZiAUmOpkZh2B3wKPubtXe64zUOLuzwEPAoOAIqBNld3aArvdvcTM+gBDj3HKvwP/bmbZ4XO0r7J9gpl1OrTdzLodq35CPYyXAteZ2VVVtp9mZsPC319JqA2Pdm4RaQJ02VRE4s7d3zWzp4F3wpuedPdVAGY2F1gNbAJWEOpxqs0WQgGugKP/odkiPN1GOlABPAs8VMt+OcADZhYEyoFb3X2nmS0JT9Hxv8CPgFvM7D1gPbDsGO9xjZndC7xpZpWEeupucPe1ZvYj4PXw/XflwO3h91snd99vZt8A/mZm+wm104fA9Wb2O+Bj4PFwwKxx7mMdX0QaB6v2B6qISEKZWWt3Lw6PmlwETAmHvWzgXkJTfjwJPAI8BpQB/4zhnrcGLzwQ4VV3HxCP/Wp5XSEw5NA9cSLSuKjnTUTq2xNm1o/Q/WTPuPu7AO6+E7il2r431ndx9aQSaGtmBfGc6y08SnYpoZ7IYLyOKyINi3reRERERFKIBiyIiIiIpJAmF97MrKuZLQjPmL7GzKbWsW++hdZOnFCfNdaXaNvCzM61w+tHvlnfddaHaNrCzNqa2SvhGe3XmFmjvKQXHgn6TpX3eXct+2SY2Z/M7BMzezt8b1ajE2VbfM/M1oZXO/h7lCNLU040bVFl3wlm5mY2pD5rrE/RtoeZ/Xv452ONmf2xvuusD1H+npwW/oxdFf5d+Xoyaq0vZpYWfq+v1vLciX9+unuT+gJOAQaFv28DfAT0q2W/NOAfwHxgQrLrTlZbEFr/cS1wWvhxp2TXncS2uAu4P/x9R2AX0DzZtSegLQxoHf4+ndBKBEOr7XMb8Nvw91cAf0p23Ulsi9FAy/D3tzbltgg/14bQQJRlhAZNJL32JP5s9CI0Erhd+HFj/fyMpi2eIDTKG6AfUJjsuhPcJt8D/khowFH1507487PJ9by5+zY/fIN0EaFh+KfWsut/ALOJbmb0lBRlW1wFzHH3z8L7Ncr2iLItHGhjZga0JhTeKuq10HrgIcXhh+nhr+o3x14CPBP+/i/A18Lt0qhE0xbuvsDdS8IPlxGa3qTRifLnAuDnwC8JjRJutKJsj8nAr919d/g1jfXzM5q2cOCk8Pdtga31VF69M7MuhOawfPIou5zw52eTC29VhbsqBxL6K6Hq9lMJTSr62/qvKjmO1hbA6UA7M1tooQW7r6vv2upbHW3xGNCX0IfO+8BUd2+UI/rCXf4FhP54+Zu7V2+LUwlPoOvuFYTmasuu3yrrRxRtUdVNhOaMa5SO1RZmNhDo6u41LhU1RlH8bJwOnB6eT3CZmY2t/yrrRxRtMR24xsy2ELqi9R/1XGJ9ehi4k6OP+D7hz88mG94sNLv7bOD/uPu+ak8/DHzf3Y85q3tjcIy2aEZoWaGLgQuBH5vZ6fVcYr05RltcSGjC2M5AHvCYmZ1EI+TulR6awqILcKaZVZ9nrLa/Ehvl0PUo2gIAM7sGGAI8UJ/11ae62sJCExL/N/CfyaqvvkXxs9GM0KXTcwmtjvGkmWXVb5X1I4q2uBJ42t27AF8Hng3/zDQqFppke7u7r6xrt1q2xfT52egaLhpmlk7of9DPu/ucWnYZAsyy0ESXE4DfmNml9VhivYmiLbYAr7n7fg9N+LkIOKM+a6wvUbTFjYQuIbu7fwJsBPrUZ431zd33AAuB6j0GWwgt3I6ZNSN0GaRRL45eR1tgZucD/xcY5+4Hqj/f2BylLdoAA4CF4c/OocDcxjxo4ZBj/J687O7l7r6R0Modveq5vHpVR1vcBPxPeJ+lhOZ57FCvxdWP4cC48O/ALOA8M3uu2j4n/PnZ5MJb+LryU8CH7l7bMjq4ew937+7u3Qldj77N3V+qxzLrRTRtAbwMjDSzZhaaEf8sQveDNSpRtsVnwNfC+58M9AY+rZ8K64+ZdTzUO2ChSV/PB9ZV220ucH34+wnAPzx8921jEk1bhC8V/o5QcGuU9zTBsdvC3fe6e4cqn53LCLXJiqQUnGBR/p68RGhAC2bWgdBl1Kb6mVH187MvofC2oz7rrA/u/kN37xL+HbiC0GfjNdV2O+HPz6a4wsJw4Frg/fD1eQiNIjwNwN2bzH1uRNEW7v6hmb0GvEfo+v2T7v5BUqpNrGh+Ln4OPG1m7xPq9v6+N87lh04BnjGzNEJ/4P2Pu79qZj8DVrj7XEJB91kz+4TQX4xXJK/chIqmLR4gNIDlz+F7jj9z93FJqzhxommLpiSa9vgrMMbM1hJaVWOah1YSaWyiaYv/BH5vZt8ldInwhsb4B9/RxPvzUyssiIiIiKSQJnfZVERERCSVKbyJiIiIpBCFNxEREZEUovAmIiIikkIaTHiLZmFbERERkaauwYQ34ABwnrufQWj2+rFmNrQ+CzCzKfV5voZMbXGY2uIwtcVhaosjqT0OU1scprY4LJ5t0WDCWwyLHieSfsgOU1scprY4TG1xmNriSGqPw9QWh6ktDmt84Q1iXgBaREREpMlpkJP0hpfZeBH4j+qz+Ye7HacApKWlDc7IyIjbeSsqKmjWrCkuOlGT2uIwtcVhaovD1BZHUnscprY4TG1xWEVFBQcPHix39+YneqwGGd4AzOynwH53f/Bo+wwZMsRXrGiUy+aJiIhII2NmK919yIkep8FcNo1yYVsRERGRJq0h9WXWurBtkmsSERERaVAaTHhz9/eAgcmuQ0RERKQhazDhTUREUl95eTlbtmyhrKws2aWIJE1mZiZdunQhPT09IcdXeBMRkbjZsmULbdq0oXv37phZsssRqXfuzs6dO9myZQs9evRIyDkazIAFERFJfWVlZWRnZyu4SZNlZmRnZye091nhTURE4krBTZq6RP8OKLyJiEijNn36dB588KhThvLSSy+xdu3aeqxI5MQovImISJOm8CapRuFNREQanXvvvZfevXtz/vnns379egB+//vfk5+fzxlnnMH48eMpKSnhrbfeYu7cuUybNo28vDw2bNhQ634iDYnCm4iIJJW7c6CiMm7HW7lyJbNmzWLVqlXMmTOH5cuXA/Ctb32L5cuXs3r1avr27ctTTz3F2Wefzbhx43jggQcoKCigZ8+ete4n0pBoqhAREUkad2fZpzv5eHsxvTq1ZuhXT3yk6uLFi7nsssto2bIlAOPGjQPggw8+4Ec/+hF79uyhuLiYCy+8sNbXR7ufSLKo501ERJLmYGWQj7cX85U2mXy8vZiDlcG4HLe2AHjDDTfw2GOP8f777/PTn/70qFM5RLufSLIovImISNJkNEujV6fW/KuojF6dWpPRLO2Ej3nOOefw4osvUlpaSlFREa+88goARUVFnHLKKZSXl/P8889H9m/Tpg1FRUWRx0fbT6Sh0GVTERFJqqFfzWZQt3ZxCW4AgwYN4vLLLycvL49u3boxcuRIAH7+859z1lln0a1bN3JyciKB7YorrmDy5Mk88sgj/OUvfznqfiINhbl7sms4bkOGDPEVK1YkuwwREQn78MMP6du3b7LLEEm62n4XzGyluw850WPrsqmIiIhIClF4ExEREUkhCm8iIiIiKUThTURERCSFKLyJiIiIpBCFNxEREZEUovAmIiKNSmFhIQMGDKi3802fPp0HH3wwqn2//vWvs2fPnhM6hogm6RUREQEqKytJS4vPRMHVuTvuzvz58xNyfGla1PMmIiKN1qeffsrAgQN5++23mTZtGvn5+eTm5vK73/0OgIULFzJ69GiuuuoqcnJyKCwspG/fvkyePJn+/fszZswYSktLAdiwYQNjx45l8ODBjBw5knXr1tV57kPHuu222xg0aBCbN2+me/fufPnllwDce++99O7dm/PPP5/169dHXrd8+XJyc3MZNmwY06ZNi/QiVlZW1voepOlReBMRkaQKBp0dRQeI94o/69evZ/z48cycOZPVq1fTtm1bli9fzvLly/n973/Pxo0bAXjnnXe49957Wbt2LQAff/wxt99+O2vWrCErK4vZs2cDMGXKFB599FFWrlzJgw8+yG233RZVDddddx2rVq2iW7duke0rV65k1qxZrFq1ijlz5rB8+fLIczfeeCO//e1vWbp06RE9gU899dRR34M0LbpsKiIiSRMMOlf+fhkrN+1mcLd2vDB5KIGAnfBxd+zYwSWXXMLs2bPp378/99xzD++99x5/+ctfANi7dy8ff/wxzZs358wzz6RHjx6R1/bo0YO8vDwABg8eTGFhIcXFxbz11ltMnDgxst+BAweOWUe3bt0YOnRoje2LFy/msssuo2XLlgCMGzcOgD179lBUVMTZZ58NwFVXXcWrr74KwOuvv17re6hauzQNCm8iIpI0O/cfZOWm3VQEnZWbdrNz/0E6tsk44eO2bduWrl27smTJEvr374+78+ijj3LhhRcesd/ChQtp1arVEdsyMg6fPy0tjdLSUoLBIFlZWRQUFBz1nJs3b+ab3/wmALfccgtjx46tceyqzGqG1Lp6H4/2HqTp0WVTERFJmg6tmzO4WzuaBYzB3drRoXXzuBy3efPmvPTSS/zhD3/gj3/8IxdeeCGPP/445eXlAHz00Ufs378/6uOddNJJ9OjRgz//+c9AKEitXr36iH26du1KQUEBBQUF3HLLLXUe75xzzuHFF1+ktLSUoqIiXnnlFQDatWtHmzZtWLZsGQCzZs2KvOZE34M0Hup5ExGRpDEzXpg8lJ37D9KhdfNae6OOV6tWrXj11Ve54IIL+NGPfkS/fv0YNGgQ7k7Hjh156aWXYjre888/z6233so999xDeXk5V1xxBWecccZx1TZo0CAuv/xy8vLy6NatGyNHjow899RTTzF58mRatWrFueeeS9u2bQG4+eabKSwsPKH3II2DxfsG0fo0ZMgQX7FiRbLLEBGRsA8//JC+ffsmu4yUVlxcTOvWrQG477772LZtG7/61a+SXJXEqrbfBTNb6e5DTvTY6nkTERFpQObNm8cvfvELKioq6NatG08//XSyS5IGRuFNRESkAbn88su5/PLLk12GNGAasCAiIiKSQhTeRERERFKIwpuIiIhIClF4ExEREUkhCm8iItKoHJpmY+vWrUyYMCHJ1Ry/hQsX8o1vfOOE96lu+vTpPPjggydSWg1f//rX2bNnD3v27OE3v/lNXI9dl7lz53LffffVuU9dbfTwww9TUlISeXzofTR0Cm8iItIode7cObIOaKJUVFQk9PipYv78+WRlZdV7eBs3bhw/+MEPjvv11cPboffR0Cm8iYhIo1RYWMiAAQMAePrpp/nWt77F2LFj6dWrF3feeWdkv9dff51hw4YxaNAgJk6cSHFxMQA/+9nPyM/PZ8CAAUyZMiWy7ui5557LXXfdxahRo2pMnjt9+nSuv/56xowZQ/fu3ZkzZw533nknOTk5jB07NrK01d///ncGDhxITk4OkyZNiixy/9prr9GnTx9GjBjBnDlzIsfdv38/kyZNIj8/n4EDB/Lyyy/H1Bb33nsvvXv35vzzz2f9+vWR7Rs2bGDs2LEMHjyYkSNHsm7dOgBuuOEGvvOd73D22Wfz1a9+NRKCt23bxjnnnENeXh4DBgxg8eLFAHTv3p0vv/ySH/zgB2zYsIG8vDymTZvGtddee0StV199NXPnzj2itu3btzN48GAAVq9ejZnx2WefAdCzZ09KSkrYsWMH48ePJz8/n/z8fJYsWRL5d73jjjsi72Xo0KHk5+fzk5/8JNIDC6GJjydMmECfPn24+uqrcXceeeQRtm7dyujRoxk9evQR76OwsJC+ffsyefJk+vfvz5gxYygtLQVg+fLl5ObmMmzYMKZNmxb5GatX7p6yX4MHD3YREWk41q5dG/uLKivdi75wDwbjUkOrVq3c3X3jxo3ev39/d3efOXOm9+jRw/fs2eOlpaV+2mmn+WeffeY7duzwkSNHenFxsbu733fffX733Xe7u/vOnTsjx7zmmmt87ty57u4+atQov/XWW2s9909/+lMfPny4Hzx40AsKCrxFixY+f/58d3e/9NJL/cUXX/TS0lLv0qWLr1+/3t3dr732Wv/v//7vyPaPPvrIg8GgT5w40S+++GJ3d//hD3/ozz77rLu7796923v16uXFxcW+YMGCyD7Lly/3m266qUZNK1as8AEDBvj+/ft979693rNnT3/ggQfc3f28887zjz76yN3dly1b5qNHj3Z39+uvv94nTJjglZWVvmbNGu/Zs6e7uz/44IN+zz33uLt7RUWF79u3z93du3Xr5jt27Diizd3dFy5c6Jdccom7u+/Zs8e7d+/u5eXlNWrs16+f79271x999FEfMmSIP/fcc15YWOhDhw51d/crr7zSFy9e7O7umzZt8j59+kT+XW+//XZ3d7/44ov9j3/8o7u7P/7445GfgwULFvhJJ53kmzdv9srKSh86dGjkWIfqPqTq+0hLS/NVq1a5u/vEiRMj7d+/f39fsmSJu7t///vfP+L9VlXb7wKwwuOQfzRJr4iIJE8wCM98Aza/DV3PgutfhUBiLgp97Wtfi6wT2q9fPzZt2sSePXtYu3Ytw4cPB+DgwYMMGzYMgAULFvDLX/6SkpISdu3aRf/+/fnmN78JUOckuhdddBHp6enk5ORQWVnJ2LFjAcjJyaGwsJD169fTo0cPTj/9dACuv/56fv3rX3PuuefSo0cPevXqBcA111zDE088AYR6B+fOnRu5V62srCzSO3XIkCFDePLJJ2vUs3jxYi677DJatmwJhC41Qqg36q233mLixImRfQ/1AAJceumlBAIB+vXrxxdffAFAfn4+kyZNory8nEsvvZS8vLw623zUqFHcfvvtbN++nTlz5jB+/HiaNasZPc4++2yWLFnCokWLuOuuu3jttddw98iar2+88QZr166N7L9v3z6KioqOOMbSpUsja71eddVV/Nd//VfkuTPPPJMuXboAkJeXR2FhISNGjKiz9h49ekTe3+DBgyksLGTPnj0UFRVx9tlnR87z6quv1nmcRFB4ExGR5Cn5MhTcghWh/5Z8Ca07JeRUGRkZke/T0tKoqKjA3bngggt44YUXjti3rKyM2267jRUrVtC1a1emT59OWVlZ5PlWrVod8zyBQID09HTMLPL40DmP5tC+1bk7s2fPpnfv3kdsPxSqjqW24waDQbKysigoKKjzfRw6P8A555zDokWLmDdvHtdeey3Tpk3juuuuq/Pc1157Lc8//zyzZs1ixowZANx4442sWrWKzp07M3/+fEaOHMnixYvZtGkTl1xyCffffz9mFhloEAwGWbp0KS1atIjq/db1Xg7928f6mtLS0jr/7eqT7nkTEZHkadUx1OMWaBb6b6uO9Xr6oUOHsmTJEj755BMASkpK+OijjyJBrUOHDhQXF8d14EOfPn0oLCyMnPPZZ59l1KhR9OnTh40bN7JhwwaAIwLlhRdeyKOPPhoJD6tWrYr6fOeccw4vvvgipaWlFBUV8corrwBw0kkn0aNHD/785z8DoYC2evXqOo+1adMmOnXqxOTJk7npppt49913j3i+TZs2NXrEbrjhBh5++GEA+vfvD8DMmTMpKChg/vz5kRqfe+45evXqRSAQoH379syfPz/SIzpmzBgee+yxyDFrC5xDhw5l9uzZAMyaNSuqtqmt3rq0a9eONm3asGzZspjOE28KbyIikjxmoUul3/sQbpgXelyPOnbsyNNPP82VV15Jbm4uQ4cOZd26dWRlZTF58mRycnK49NJLyc/Pj9s5MzMzmTlzJhMnTiQnJ4dAIMAtt9xCZmYmTzzxBBdffDEjRoygW7dukdf8+Mc/pry8nNzcXAYMGMCPf/zjGsddsWIFN998c43tgwYN4vLLLycvL4/x48dHLkUCPP/88zz11FOcccYZ9O/f/5gDIRYuXEheXh4DBw5k9uzZTJ069Yjns7OzGT58OAMGDGDatGkAnHzyyfTt25cbb7zxqMft3r07EApxACNGjCArK4t27doB8Mgjj7BixQpyc3Pp168fv/3tb2sc4+GHH+ahhx7izDPPZNu2bZFL5HWZMmUKF110UWTAQjSeeuoppkyZwrBhw3D3qM4Tb9ZQugCPx5AhQ3zFihXJLkNERMI+/PBD+vbtm+wypAEpKSkhJyeHd999N6FBp6SkhBYtWmBmzJo1ixdeeCHmUbnRKC4ujoxkve+++9i2bVuNUcdQ+++Cma109yEnWoPueRMREZGEeOONN5g0aRLf+973Et5DtXLlSu644w7cnaysrMj9dfE2b948fvGLX1BRUUG3bt14+umnE3KeuqjnTURE4kY9byIhiex50z1vIiIiIilE4U1EREQkhSi8iYiIiKQQhTcRERGRFKLwJiIijcqhaRy2bt3KhAkTklzN8Vu4cGFkhYET2Sfeqi74Hg9z587lvvvuA+Cll146YhmsRKp63qOpq30ffvhhSkpKElHaMSm8iYhIo9S5c+e4roxQm2iWWZK6jRs3jh/84AdA/Ya3quc9HgpvIiIicVZYWMiAAQMAePrpp/nWt77F2LFj6dWrF3feeWdkv9dff51hw4YxaNAgJk6cSHFxMQA/+9nPyM/PZ8CAAUyZMiWyNNW5557LXXfdxahRo2pMzjp9+nSuv/56xowZQ/fu3ZkzZw533nknOTk5jB07lvLycgD+/ve/M3DgQHJycpg0aVJkQfjXXnuNPn36MGLECObMmRM57v79+5k0aRL5+fkMHDgwpslnCwsL6du3L5MnT6Z///6MGTOG0tJSILTM1NChQ8nNzeWyyy5j9+7dNV6/ceNGhg0bRn5+fo2VHR544AHy8/PJzc3lpz/96THP98gjj9CvXz9yc3O54oorIv82d9xxB2+99RZz585l2rRp5OXlsWHDBgYNGhQ518cff8zgwYOPOP/27dsj21avXo2Z8dlnnwHQs2dPSkpK2LFjB+PHjyc/P5/8/HyWLFlyxHkBNmzYwNChQ8nPz+cnP/nJEb2LxcXFTJgwgT59+nD11Vfj7jzyyCNs3bqV0aNHx7Q6Q7wovImISFIFPciXpV8mfNHvgoIC/vSnP/H+++/zpz/9ic2bN/Pll19yzz338MYbb/Duu+8yZMgQHlrM4SIAACAASURBVHroIQDuuOMOli9fzgcffEBpaSmvvvpq5Fh79uzhzTff5D//8z9rnGfDhg3MmzePl19+mWuuuYbRo0fz/vvv06JFC+bNm0dZWRk33HBDpJaKigoef/xxysrKmDx5Mq+88gqLFy/mX//6V+SY9957L+eddx7Lly9nwYIFTJs2jf379x9x3qMtjwWh4HP77bezZs0asrKyImuAXnfdddx///2899575OTkcPfdd9d47dSpU7n11ltZvnw5X/nKVyLbX3/9dT7++GPeeecdCgoKWLlyJYsWLarzfPfddx+rVq3ivffeq7HE1dlnn824ceN44IEHKCgooGfPnrRt2zayjunMmTO54YYbjnhNp06dKCsrY9++fSxevJghQ4ZEFrjv1KkTLVu2ZOrUqXz3u99l+fLlzJ49u9Y2mjp1KlOnTmX58uV07tz5iOdWrVrFww8/zNq1a/n0009ZsmQJ3/nOd+jcuTMLFixgwYIFtbZ5Iim8iYhI0gQ9yKS/TuL8P5/PjX+9kaAHE3aur33ta7Rt25bMzEz69evHpk2bWLZsGWvXrmX48OHk5eXxzDPPsGnTJgAWLFjAWWedRU5ODv/4xz9Ys2ZN5FiXX375Uc9z0UUXkZ6eTk5ODpWVlYwdOxaAnJwcCgsLWb9+PT169OD0008H4Prrr2fRokWsW7eOHj160KtXL8yMa665JnLM119/nfvuu4+8vDzOPfdcysrKIj1MhwwZMoQnn3yy1pp69OhBXl4eAIMHD6awsJC9e/eyZ88eRo0adUQd1S1ZsoQrr7wSgGuvvfaIml5//XUGDhzIoEGDWLduHR9//PFRzweQm5vL1VdfzXPPPUezZsde5Onmm29m5syZVFZW8qc//Ymrrrqqxj5nn302S5YsYdGiRdx1110sWrSIxYsXR9ZwfeONN7jjjjvIy8tj3Lhx7Nu3r8Zi9EuXLmXixIkANc5x5pln0qVLFwKBAHl5eZH3kkxaHktERJJmV9kuCrYXUOmVFGwvYFfZLjq06JCQc2VkZES+T0tLo6KiAnfnggsu4IUXXjhi37KyMm677TZWrFhB165dmT59OmVlZZHnW7VqdczzBAIB0tPTMbPI40PnPJpD+1bn7syePZvevXsfsf2LL7446rFqqwlC7/3QZcxo1VaXu/PDH/6Qb3/720dsLywsPOr55s2bx6JFi5g7dy4///nPjwjEtRk/fjx333035513HoMHDyY7O7vGPiNHjoz0tl1yySXcf//9mFlkoEEwGGTp0qW0aNEipvd8SG0/N8mmnjcREUma7Mxs8jrlkWZp5HXKIzuz5v+cE2no0KEsWbKETz75BAgtbv7RRx9FglqHDh0oLi6O68CHPn36UFhYGDnns88+y6hRo+jTpw8bN25kw4YNAEcEygsvvJBHH300EvxWrVp1wnW0bduWdu3asXjx4iPqqG748OHMmjULgOeff/6ImmbMmBG5R/Dzzz9n+/btRz1fMBhk8+bNjB49ml/+8pfs2bMn8tpD2rRpc0SvWGZmJhdeeCG33norN954Y63HPeecc3juuefo1asXgUCA9u3bM3/+fIYPHw7AmDFjeOyxxyL7H7oMW9XQoUMjl3YPvddjqV5rfVJ4ExGRpDEzZlw4gzcmvsHMC2cetecpUTp27MjTTz/NlVdeSW5uLkOHDmXdunVkZWUxefJkcnJyuPTSS8nPz4/bOTMzM5k5cyYTJ04kJyeHQCDALbfcQmZmJk888QQXX3wxI0aMoFu3bpHX/PjHP6a8vJzc3FwGDBhQY+AA1H3P29E888wzTJs2jdzcXAoKCvjJT35SY59f/epX/PrXvyY/P5+9e/dGto8ZM4arrrqKYcOGkZOTw4QJE+oMM5WVlVxzzTXk5OQwcOBAvvvd75KVlXXEPldccQUPPPAAAwcOjITYq6++GjNjzJgxtR63e/fuQCjEAYwYMYKsrCzatWsHhAZJrFixgtzcXPr161fjXjsIjRx96KGHOPPMM9m2bRtt27ato9VCpkyZwkUXXZSUAQtamF5EROJGC9NLvD344IPs3buXn//85wk7R0lJCS1atMDMmDVrFi+88EJMI3prk8iF6XXPm4iIiDRIl112GRs2bOAf//hHQs+zcuVK7rjjDtydrKwsZsyYkdDznSiFNxEREWmQXnzxxXo5z8iRI1m9enW9nCsedM+biIiISApReBMRkbhK5XupReIh0b8DCm8iIhI3mZmZ7Ny5UwFOmix3Z+fOnWRmZibsHLrnTURE4qZLly5s2bKFHTt2JLsUkaTJzMykS5cuCTt+gwlvZtYV+APwFSAIPOHuv6r7VSIi0pCkp6fTo0ePZJch0qg1mPAGVAD/6e7vmlkbYKWZ/c3d1ya7MBEREZGGosHc8+bu29z93fD3RcCHwKnJrUpERESkYWkw4a0qM+sODATeruW5KWa2wsxW6J4KERERaWoaXHgzs9bAbOD/uPu+6s+7+xPuPsTdh3Ts2LH+CxQRERFJogYV3swsnVBwe97d5yS7HhEREZGGpsGENzMz4CngQ3d/KNn1iIiIiDREDSa8AcOBa4HzzKwg/PX1ZBclIiIi0pA0mKlC3P2fgCW7DhEREZGGrCH1vImIiIjIMSi8iYiIiKQQhTcRERGRFKLwJiIiIpJCFN5EREREUojCm4iIiEgKUXgTERERSSEKbyIiIiIpROFNREREJIUovImIiIikEIU3ERERkRSi8CYiIiKSQhTeRERERFKIwpuIiIhIClF4ExEREUkhCm8iIiIiKUThTURERCSFKLyJiIiIpBCFNxEREZEUovAmIiIikkIU3kRERERSiMKbiIiISApReBMRERFJIQpvIiIiIilE4U1EREQkhSi8iYiIiKQQhTcRERGRFKLwJiIiIpJCFN5EREREUojCm4iIiEgKUXgTERERSSEKbyIiIiIpROFNREREJIUovImIiIikEIU3ERERkRSi8CYiIiKSQhTeRERERFKIwpuIiIhIClF4ExEREUkhCm8iIiIiKUThTURERCSFKLyJiIiIpBCFNxEREZEUovAmIiIikkIU3kRERERSiMKbiIiISApReBMRERFJIQpvIiIiIilE4U1EREQkhSi8iYiIiKQQhTcRERGRFKLwJiIiIpJCFN5EREREUojCm4iIiEgKUXgTERERSSEKbyIiIiIpROFNREREJIUovImIiIikEIU3ERERkRSi8CYiIiKSQhTeRERERFKIwpuIiIhIClF4ExEREUkhDSq8mdkMM9tuZh8kuxYRERGRhqhBhTfgaWBssosQERERaagaVHhz90XArmTXISIiItJQNajwJiIiIiJ1iyq8WUjXRBcTDTObYmYrzGzFjh07kl2OiIiISL2KKry5uwMvJbiWqLj7E+4+xN2HdOzYMdnliIiIiNSrWC6bLjOz/IRVIiIiIiLHFEt4Gw0sNbMNZvaemb1vZu/FsxgzewFYCvQ2sy1mdlM8jy8iIiKS6prFsO9FCasizN2vTPQ5RERERFJZ1D1v7r4JyAK+Gf7KCm8TERERkXoSdXgzs6nA80Cn8NdzZvYfiSpMRERERGqK5bLpTcBZ7r4fwMzuJ3R/2qOJKExEREREaoplwIIBlVUeV4a3iYiIiEg9iaXnbSbwtpm9GH58KfBU/EsSERERkaOJOry5+0NmthAYQajH7UZ3X5WowkRERESkpqjCm5kZ0MXd3wXeTWxJIiIiInI0Kbc8loiIiEhTpuWxRERERFJILAMWRgPfNrNNwH5C9725u+cmpDIRERGRBHr//Q9Yu3YteXl59O59erLLiVos97zdAmhFBREREUl5ZWVl/POf/yQrqx0LFiykZ8+v0qxZLH1ayRNVle7uZvbf7j440QWJiIiIJFp6ejodOnRg+/YdnHpqZ9LS0pJdUtRiiZjLzCzf3ZcnrBoRERGRepCWlsa4cd9k165dZGdnE7rImBpiveftFjMrRPe8iYiISIrLyMjglFNOSXYZMYslvF2UsCpEREREJCqxTBXyGTASuN7dNwEOnJyQqkRERESkVrGEt98Aw4Arw4+LgF/HvSIREREROapYLpue5e6DzGwVgLvvNrPmCapLRERERGoRS89buZmlEbpcipl1BIIJqUpEREREahVLeHsEeBHoZGb3Av8E/l9CqhIRERGRWkV92dTdnzezlcDXCE0Tcqm7f5iwykRERESkhpjWgXD3dcC6BNUiIiIiIscQy2VTEREREUkyhTcRERGRFKLwJiIiIpJCjnnPm5kVEZ4epPpThNY2PSnuVYmIiIhIrY4Z3ty9TX0UIiIiIiLHFtNoUzNrB/QCMg9tc/dF8S5KRERERGoXdXgzs5uBqUAXoAAYCiwFzktMaSIiIiJSXSwDFqYC+cAmdx8NDAR2JKQqEREREalVLOGtzN3LAMwsIzxhb+/ElCUiIiIitYnlnrctZpYFvAT8zcx2A1sTU5aIiIiI1CaWtU0vC3873cwWAG2B/01IVSIiIiJSq1gGLGQA44HuVV6XB/ws/mWJiIiISG1iuWz6MrAXWAkcSEw5IiIiIlKXWMJbF3cfm7BKREREROSYYhlt+paZ5SSsEhERERE5plh63kYAN5jZRkKXTQ+tbZqbkMpEREREpIZYwttFCatCRERERKIS9WVTd98EZAHfDH9lhbeJiIiISD2JOryZ2VTgeaBT+Os5M/uPRBUmIiIiIjXFctn0JuAsd98PYGb3E1qY/tFEFCYiIiIiNcUy2tSAyiqPK8PbRERERKSexNLzNhN428xeDD++FHgq/iWJiIiIyNHEsrbpQ2b2JjCcUI/bje6+KmGViYiIiEgNsfS84e4rCS2PJSIiIiJJcMzwZmb/dPcRZlYEeNWnCE3Se1LCqhMRERGRIxwzvLn7iPB/2yS+HBERERGpSyzzvN0fzTYRERERSZxYpgq5oJZtWjJLREREUlLQg3xZ+iXufuydG5Bjhjczu9XM3gd6m9l7Vb42Au8lvkQRERGRE1M9qAU9yKS/TuL8P5/PjX+9kaAHk1xh9KIZbfpH4H+BXwA/qLK9yN13JaQqERERkeMU9CC7ynaRnZmNmUWCWsH2AvI65THjwhnsKttFwfYCKr2Sgu0F7CrbRYcWHZJdelSO2fPm7nvdvdDdr3T3TVW+FNxEREQkqaLpUastqGVnZpPXKY80SyOvUx7ZmdlJfifRi2XAwjNmllXlcTszm5GYskRERESOFM+gZmbMuOBJ3vj6LGaOmYFZ6qz4GcskvbnuvufQA3ffbWYDE1CTiIiINHHHe+nzUFA7tF/VoLZr9ydktz89FNSCQQJ/GEeHzW9D17Pg+lchEMs4zuSJJbwFzKydu+8GMLP2Mb5eRERE5JjqJaiVfAmb34ZgRei/JV9C607JfutRiSV8/X/AW2b2l/DjicC98S9JREREmpLqvWz1EtRadQw9f2i/Vh2T3QxRi2Vh+j+Y2QrgPEJLY33L3dcmrDIRERFpdKK5HFovQc3s8P6HHqeIWC97bgPeATKBDmZ2jrsvin9ZIiIikupOZMqOeglqgUDKXCqtKurwZmY3A1OBLkABMBRYSqgnTkRERJqwExpg0DGPgh2He9kU1OoWS8/bVCAfWObuo82sD3B3YsoSERGRhqh6SDu07XiDmrkz419fsOvzz8muPAVzV1A7hljCW5m7l5kZZpbh7uvMrHfCKhMREZGkiqY3LWCB6AcYHCWoBTa/Q4dgBWx+R0EtCrGEty3hSXpfAv5mZruBrYkpS0RERJIplvvToh5gsH+HglocRBXeLNQv+p3wJL3TzWwB0BZ4LZHFiYiISP043uk6gOhHgiqoxUVU4c3d3cxeAgaHH7+ZiGLMbCzwKyANeNLd70vEeURERJqyuE7XAbFNgqugdsJiuWy6zMzy3X15IgoxszTg18AFwBZguZnN1VxyIiIixy/h03UEArFNgqugdsJiWcRrNLDUzDaY2Xtm9r6ZvRfHWs4EPnH3T939IDALuCSOxxcREWnUTmjh9o5HLtweCWq/GY498w0IBmsPaXA4qAWa1bwc+r0P4YZ5KTUJbkN3zJ43M3vW3a8FngBeTGAtpwKbqzzeApxVSz1TgCkAp512WgLLERERabjiOa/aCU3XAbpvrZ5Fc9l0sJl1A24EniG0NFYi1HZcr7HB/QlCQZIhQ4bUeF5EjlSxvwQvLyc9q22ySxGR41QfQe2ERoGCglo9iia8/ZbQqNKvAis5MmR5eHs8bAG6VnncBU1FInJCyvfsZdeit/DKSk4amEvL7uqtlvrjwQoALBDrSoxSVYMLagppSXfM3yh3fwR4xMwed/dbE1jLcqCXmfUAPgeuAK5K4PlEGr3K/SV4eQWWkU75rj2g8CbVuAfBg3EPWF66A980DywA3S7GwlNKyLFFPWVHAwpqRbv2s2ntNrI7n8QpX1WwS7Sof1sTHNxw9wozuwP4K6GpQma4+5pEnlOksWvesQOZp51KsKSUVr3i1UkujYVXluLbXoPyfXin8wi06nrsF0V77KJNeLAccCjerPB2FFFP2dGAglpt3lu4npJ9pWxZt42T2remVVbLOLaSVNeg+rLdfT4wP9l1iDQWgebpZOUPSnYZ0lCV7YCDOyGtDez7EOIY3qxNN9j1Plga1jp+x01VJ7IeaIeM9g0qqNWmeWY6e3cUkZ6RTqBZWtyOK7VrUOFNRETqUUY2pGdBeRG0OTOuh7YWHeH0a0PfN7F73k5oPdDm7cgLplFABXmeRnbzdg0uqNUmd3Rvdm7dQ+uslrRonZHQc0kM4c3M+lWfMNfMznX3hXGvSkREEs6atYJTLwWvwNIy43/8JhDaTmQC3NqCmpXuZMZnhewiSDYBrHRngwtqtclo0ZzOPVPvXrdg0Nm5/yAdWjc/vFpECojlN+t/zOxZ4JdAZvi/Q4BhiShMREQSLxSwGn/Iiofjnq6jtt40OGpQC3Q96/AKBg0wqKWC2kJZ9W3BoHPl75exctNuBndrxwuThxIIpEaAi+U39izgfuAtoA3wPDA8EUWJiEjj5e540ftQ8hm0zSPQokuySzqmEwlqtYa01p0U1I7D8YYyoMa2nfsPsnLTbiqCzspNu9m5/yAd26TGJd9Ywls5UAq0INTzttHdgwmpSqQBOrhtC5V7d9G8aw/SWrVJdjkiqauyCPatxtPaYruXQouJya6ohqim64jhsmeNkAYKascQz1AG1NjWoXVzBndrF3lth9bNk/l2YxJLeFsOvAzkA9nA78xsgrtPSEhlIg1IZfE+yla/DYEAwd07aTVsdLJLEkldgUxIa4NV7IWW3ZJdTe2XQ1+bFJmaY8aFM04sqGlVgiMcb+/ZiYay6tvMLHLcxnzP203uviL8/b+AS8zs2gTUJNLgWFoaBNLwynJIT092OZIkwQP/wg9+TiCzO5auecuOlwWaQ6exUFEE6e3q9dzRBLVdJTsp+GIllQYF/1rJrpKddHDX/WnHkOhLmicaymrbFghYylwqrSqWSXpXmFk7oBehy6YAmxJSlUgDE2jRilZnnkNF8V7SO56S7HIkCTx4gOC+pWDNCB74nED2NzALxP887oTuUGmOWeMdSGBpmZCAEa5VHW9Qyw4GyTtwgIKM5uQdOEh2MAitOymohR0tpCX6kuaJhrJUDWq1iWWqkJuBqYTWHC0AhgJLgfMSU5pIw5KW1Z60rPYJObYHy/Hd6yDQDMvqnZBQICfI0jBLx4NloUltScwllmBwK0HfAdacZoHTG3WAi6d4BjVr3YkZzXuya8sKsk8dgrXu1CSC2omM0KyvS5qNPZRFK5ZPhamE7ndb5u6jzawPcHdiyhJpWnzXGvxf/wQMAulY239LdklSjVkzAu3Oxct3YekdEnZ/TJB9QHPwg8BBNI1HTfUR1ALXz6NDIwlq9TFCU5c061csnwpl7l5mZphZhruvM7PeCatMpCmx8Jc7ierRkRNnaa2xtNYJPUfATiXI5xgdCA3ul6oU1OqWrBGauqRZv2IJb1vMLAt4Cfibme0GtiamLJGmxdoNAGseumx6Uo9klyNJlBY4iTROSnYZDUKwsoJduz8hu/3pWCB0K0FTDWqpMEJToaz+xDJg4bLwt9PNbAHQFngtIVWJNDEWaIa175fsMiRBnDKgEmiJqWe1VtWDWrCygknPnkUBB8gjgxnXvk0grVmjC2oaoSnH47hupnD3N+NdiIhIY+SU4XwGONABQ1OM1LhnrZagtmv3JxRwgEozCvwAu3Z/QocOfVI2qGmEpsTTMcObmRUR+tSp8RTg7q7+fRGRo6oAgkCA0EI1TUtUgwtqCWrZ7U8njwwKPBTostufHjpgAwtqGqEpyXDM8ObuWgdIROS4tSS0KE1Fo+91O+5RoLUENQsEIj1wVe95A+olqGmEpjRkGoMuchw8WB6e90vzsTUF7uU4pRgtY553zQhgdExQZckT1+k6jhLUAmnN6NChT+Lfi0ZoSoqJ5bJpbXfZ6rKpNDnB0i2w801Iaw2dLsDSWia7JEkg9yAVwQ1AGUYL0gKnp9QaiIkQ9+k6SExQ0whNaax02VQkVvs/wQMZUL4XO/AltDwt2RVJQgXBDwDNcQ5y9L9lG6/qI0ETMl1HLPVohKY0cTH1/9eytinuvijeRTUkFRUVFO3bT9usNgQCukQmQKt/w8o+h/S2kNEh2dVIgpk1IxDohvtOzDo0+kvl0UzZkYjpOqIJZIe2JXOE5hebt9Cuogg/UIpltlTPmSSF1jatQ2VlJa/NW8T2L3bS46tdGH3+sGSXJA1AoEUXvPO/6563JiQtkAVkJbuMuIsmqNU6ZUd277gGtWgDWbxHaLa3/VBaGn1PWWkxrde/TTkQ3LWDlvmjEvePI1IHrW1ah9LSA2z/YhcdO7VnU+FWgsGget8EAAukJ7sEkZgcb1CrdcqOowS1IMZOb0sHDl9Yjuc9ZvEcodmubBuVq1+l0qBZ/zF0bPuV6BrSgGBts2eJ1B+tbVqHVq1akJvXm/UffsqZw85QcBORBq+2JaWqB7Wnrl3A7l2fRhXULBDgyWuW8ennH/JvXfofPma1oFYf95hB/EZoVuzaFZrANBgkWLKXQBThLdCqDS0GjSS4bw/NTul6gv9SIsdPa5vWwcwYcmYOQ87MSXYpkiLcKwEwS0tyJdIURLukVPUete3b/0b7dl2jCmrBoHP1UyvCIWp/0lcBgPiM0Ew7+XS8+EsINCOtQ7eoX9cs+2TIPjnq/UUSIarwZqHfmu+4+x60tqlIrbx8N8G9i4E0AlkjsWaaRUfiKBiEKpcpY1lS6sgetea0b3cqFjB+e+WLfPavPXUGtca6CoBltia9/5iEHFsk0aIKb+7uZvYSMDj8WGubilTjBzaDB8EP4ge/UHiT41ctqBEMEnzmYnZ9Hh4gcP28mJaUcozSsodp/vk69p/aFwu0B+C6pzfz7qa9dQY1TZsh0vDEctl0mZnlu/vyhFUjksIs41S89FMIZGDNG8Zi2JICoghqwf3bmXRwAwVdTibvwAZm7N9Ou6xenH6wGR81r+D0g81ol9XriJBWcmo/HMMgFMo+K6Ii2Jldn+1j74F8AN7d9IkWNo/SgS1bKFm7huanfIWW/XOOXK5LpJ7FEt5GA982s03Afg4vTJ+bkMpEUoylZxPI/gYYMS+hJE1ELUGt8umL2b11Be1PHULgKEFtp6VRkJERmhQ3I4OdlgalFawq/Bkn2Re866ewq7QCoEpI2xu3EZqNOZRFq2TtB1jzDMo2biSjew+atVHPuiRPLP+HuShhVYikKA9WENy5GMp3EuhwLtZck/ZKSLCykl07tpLd6dRQL00tQa2i6AtuOriB1V1O5oyyDTxV9AW705rVCGoebMPB0h6ktdjEwdJueLANHds0Z1C3jqzc1CzhIzQFmp9yCmWFhaSd1JZAZotklyNNXNThzd031bbCArAp7lWJpAjf/xG+7UUINKMyWEmzLpcnuyRJgupBLVhZydr7z6FjxTrWNutD3+8vIli8vUZQ23AgSEFmBkGDgswMNhwI0i6ztqCWwYDA93l3wxYGdelKxzYZSRmh2ZS17J9DRvceBDJbEEjXPI+SXFphQeQEeGU5WADCU4RI41Lr8kxRBLUd29bxQPsdrM48hTPKdvDA9i2hHrVqQa1Xh1PIDPaiJLCBzGBPenU4BTOrNajNmny2LmcmkQUCulQqDYZWWJC48soKwLC0pjHPWaBNL4IdzoWKYqzjBckuR6IQyxqaVz3xFhs/20T307rzwpRh4EHW3T+K0w+s4cOM/vT5/pt8uX3LEUHtl1uW46yLBLXVmRkETmpJrxbZNYJaIBBgyfV/ZsOuL+iV/ZXIRODRBjURaZq0woLETeXe3exf8U8IpNFqyAjSmsBfqZbWkrRTLk12GXIU0a6hWT2kBQLGzuIyvrv1ewxK/4h3t57OzuKFWMmX/NuBNexJg14H1rBrx1YCJ7VkdWboHrXVmRmQuZ9sa0te+9NYvWcLeZ0Gkt2yA2ZWa1BrlpZG746dj6hbQU1E6qIVFiRuDv7/7d17kFxneefx7zOj++hmjS6+YCHjGwbZCCNsDAZDcAonEAcIbGDJYrCDi2WrsikqW4HyJtkKSyVAQrYSCIvX8QbCJVm8MTa3gCGwXGIbfBlsY+Er2BIYW9LIErqMLtPP/tEtz3jUM9M9092nz/T3UzWlPt1nTj/zqqf7N+857/v+4ufkaAUOH+HIzsd7IrypGI30nk22huYdj+xkZWUPtz9S3Z+sHBPS1ixfzOrYw4q+B9jdB+dWHmBe7KGy5gTefNIzn5qe47NrTqCvr59N617A0PYhNq3dxJpVm8m9t3HNy97D7vmnMrjkhKdqrBfUJKlZzQxYeF3tpissqK4F607k8NaHYd686hIyUpNmGsqg/nJNE4Pa6oF53LD0zznj4I+4f+FzWT1wCezbcUxIg8XkwGqu3HDK2AoGA6vZnVLtZgAAGgtJREFUdXAX9y+C0QzuXwS7Dj3J6sWrufaSaxkeGWZw0WC17uNeST/g2GNJ7TCjyahcYUH19K88jmUv/7XqPGf9znOmqc0mlNVbrqmRoBb7d3LmkS3s6odnH9lC7N9JpU5IC2D44C6G+kYZzWAoRhk+uIvBRYNsWruJoSeqvWyDiwYB6Is+Vi9+elTLzKeN9pSkVmlmtOki4F3AhUAC3wU+lpkjbapNJRTzDG29rF7PWb37Jzul2egampvXr3jqGrXVSxdAVhoLaksGuWL9hrGgtmSwbkhbvXh13aAWEVz7qgm9bPXa4cm7Ycf3yWWnEWtfSoSz8UtqnWY+aT8J/BL4m9r2m4F/AN7Y6qIkdZeZns7s62s8qE22CsDEoBaZfHbB+2HRrbDwfCK/CLMIapP1pk0W1Or1sh1jxw9g4RrYcx+sej7M9/pPSa3TTHg7MzOfN277mxHxw1YXJKlYrTyduWbZwoaDWt1JZyuVOkFtB7ntVoapMLj1Vti/Y1ZBbaretIaCWj3Lz4Td98LiE6F/oFX/NZIENBfe7oyIF2XmLQARcT7wvfaUJanVZjNCs9HTmfV6zppZ7LyPZE3sBtZUi96/g9h2K1SOwLigdnmLg9qMQ9okYs2L4bhzoH8J0dcbcx5K6pxmwtv5wFsj4tHa9npgS0TcjQvUS4Vp9QjNRkNZo4Gs4aBWqcAnXlMNaSefD5d9EQbWUDn5PIZ/dhuDJ20mBtYwPLKzq4JaPREB85e19Tkk9a5mwtslbatCUkNaPUJzxqczaW5R84aC2v4dVLaOnQ6N/TuoDKzm8uPXMdR/EpvWruNasuuCmiR1WlML07ezEKlXdWqE5mx6zxpeQ7NSgf07YGANHP1ZGg1q9U6HjgwztH2I0Rxl6IkhhkeGq/OqGdQk9TDndZDapMgRmu3oPavzAz49qNULaX19jQe1Wc6rJkm9wvAmtUBXjdCk8VDW0qBWJ6SxdG1bBhhIUi8zvEnjZCZHdj1J38KF9A8sKccIzdmEsnpmGNTqhbQ+Gl+pwOvWJKkxTYe3iPj3wKXAKBDAFzLzs60uTGqnyULZ1rt/zMKHHqB/4QJWvOwl/IfP3NNdIzRnE8rqN0RDQY2tM5uuo9mVCgxqkjS9mfS8XZSZbzq6EREfBQxv6lrNnNK87afDnLN8Hn975iG2b99T7AjNLglqs5muA2a5UoEk6RgzCW8LI+LVwFbgGcDi1pYkTa9dIzRHE+7ak4yceDLPXL+uMyM029NALQtqFXJW03WAQU2SWmkm4e1dwOuBs4FtwH9qaUXqad0yQnPD+ZvaM0KzPY3W1qDmdB2S1F2aDm+ZuR/41NHtiPhD4AOtLEq9Yc6P0GyHAoKa03VIUneZyYCF/zN+E9iE4U3j9OQIzXbokqDmdB2S1F1mctp0T2b+7tGNiPhYC+tRFyvtGprdFsomamJVgqKCmr1sktQ9ZhLe3j9h+6pWFKLitDuUQYlHaLZaE6sS1AtqnHz+2L4GNUnqSTO55u0nE7aHW1eO2mmykNbuUAYlGaHZajM97bl0bd2gRgSVt97I8K4HGVx1BhHB8IGdBjUVYmT7ML+89wEWHb+GpWec4ul0qYMaDm8R8e46d+8Gbs/ModaVpGbNZoRmp0JZKU9nNmMW16cdE9KgblCrZIXLb/rdp0LZta+61qA2B4zu30dl/z7mHbeK6C/PojdP3nEPWRllzz33seiENcxfvqzokqSe0cw7xeba1xdq268GfgC8MyI+l5kfbHVxva7dpzPXLFvYsVBmUJskqNUJaUDdoDY8MszQE07ZMZdUDo6w99++RR4cYf5J6xnY9MKiS2rYguOWs//Rx+hfsoi+hQuKLkfqKc2Et0Hg3MzcCxARfwJcB7wMuB0wvM1CEdeYweQX+fdkKKunzUGtXkjri766Qc0pO+aePHiQPHiQWLSEyp4niy6nKSvPPZuBU06mf2AJ/Qvn8HuA1IWaCW/rgUPjtg8Dz8zMAxFxsLVlzR1FTZvRaM8Z9Ggoq6eAoDZZb5pTdvSGvmXLWfTsjRze8TiLz3hO0eU0pW9ePwvXDBZdhtSTmglvnwFuiYgbqM7v9hrgsxExANzbjuK6WbdPmzHnrzGbrS4Jaq4H2tsigkWnnsGiU88ouhRJJdJweMvM90XEl4ELqYa3d2bmbbWH39KO4rpBUSM0PZ3ZQi0Oak/tfzS4zSKouR6oJKlZzQ5tOgJUgKR62nROK3qEpqFsBtoc1AAqAcP9fQxS/StmtkHNkCZJakYzU4X8Z+AdwP+l+pn1qYi4OjP/pl3FFa3oEZqawixXJZhpUKtkhcu/ernTdUiSCtNMz9sVwPmZuQ8gIj4A3AzMOrxFxBuB/wacBZw37nRsoco4QvPI4VEO7B1hYMVi+vr62vIchZvlqgSzCWpO1yFJKloz4S2A0XHbo7X7WuEe4PXAx1t0vJYo2wjN0SOj3Pzluxh+fA/rz1jH81/+7MJqaamJvWxNrkrQyqDmdB2SpKI1E97+N3BrRFxP9fPutcC1rSgiM7cAXTn1QdGBrBkj+w8x/PhuVq5Zxs8e2s6mi87syjadUiPXrE2xKkG7g5rTdUiSitbMaNMPR8S3gJdQ/Qy8zGWxusuSZYs49eyT2Xb/L9j44lO7P1jMZu3POiENOhPU7GWTJBVp2vAWEb+kOrr0qbvGPZaZubyRJ4qIrwPH13noqsy8oZFj1I5zJXAlwPr16xv9tp4QEWy84FQ2XnBq0aUcq9Vrf/b1VUPc+KcwqElTOrBrL0dGDjGwdiV9/XP0mlipB0wb3jKzJasNZ+bFLTrO1cDVAJs3b85pdlcROjFdR1aOCVoGNWlyI0/u48F/uYPKkVHWnv1MTtj0rKJLkjRDzc7zJj1dAfOq1eth64s+g5o0hSMjh6gcGaV/wXwO7t5fdDmSZqErwltEvI7qlCNrgC9FxFBmvqrgsjRRlwS1yabrMKhJkxtYu4J152xgZPc+e92kkuuK8JaZ1wPXF12HxunioDbZdB1gUJMmE319HP+8U4ouQ1ILdEV4U8FKFtScrkOS1MsMb72ki5aUcnBBOVQqFX56x6Ps3bmXZ73wFJauGii6JEnqeYa3uaqR3rQWLCk1ccoOg9rcsueJX/LIDx9lwaL5PPT9h3neJWcXXVLXGD10hCOHDrNw6eKiS5HUYwxvc8FsJrudRVCDY6fsMKjNLQuXLGDegnkcGjnM0kF73Y46vP8gD35tiEP7RjjxBaex5tknFV2SpB5ieCubVk92O4ugVq+XzaA2tyxevpgXXLqJg/sPsWJdQ/Nx94SRPfs5tPcAC5YtZvfW7YY3SR1leOtmHRhIAMw4qE02ZYdBbW5ZsmIJS1YsKbqMrrJkcDnLTlrFgZ17WbvRlV4kdZbhrVt0IqjVCWkw86A22ZQdBjXNdf3z+3nWK84pugxJPcrwVoSCglq9JaWcskOSpHIxvLVblwS1yZaUcoCBJEnlYnhrpQJPfT6tjCauTzOoSZJULoa3meqSoAYzn64DMKhJklQyhrfpdGhVgpkGtdlO1wEGNUmSysTwNpUOrUow6dM7XYckSZqgr+gCulq9kAZjQa1v3rFB7d1b4G1fOjaoTTMSs5IVdhzYQWY+tX35Vy/n4s9dzNu/+vangtxkp0P7o7/udB2OAJUkaW6x520qLViVoJ5WzqvmdB2SJPUWw9tUmlyVoJ5OBDVPh0qS1DsMb9NpMKTVY1CTJEmtZnhroZlO2WFQkyRJjTK8zVCrp+wwqEmSpEYY3qYxm/VAnbJDkiS1mlOFTKHedB2AU3ZIkqTC2PM2hVasBypJktRKhrcpuB6oJEnqNoa3KbgeqCRJ6jaGt2kY0iRJUjdxwIIkSVKJGN4kSZJKxPAmSZJUIoY3SZKkEjG8SZIklYjhTZIkqUQMb5IkSSVieJMkSSoRw5skSVKJuMKC1GZHDh/h9u/cx57hvWy+6CyOW7O86JIkSSVmz5vUZjt+sZtH7/sFI/sOseX2nxZdjiSp5AxvUpstXb6YhYvnMzJyiNUnriy6HElSyXnaVGqzpSuW8KtvPJ+DBw6xYnBp0eVIkkrO8CZ1wOKBhSweWFh0GZKkOcDTppIkSSVieJMkSSoRw5skSVKJGN4kSZJKxPAmSZJUIoY3SZKkEjG8SZIklYjhTZIkqUQMb5IkSSXiCgs9ZuTAQX7w3Xs5MjrKeRc+l4Gli4suSZIkNcGetx7z6E9+wSMPP8ZjW3fw0I+3FV2OJElqkuGtx6xYuZS+/iBJVq5ykXRJksrG06Y9Zt2Jg/z66y+kUklWrV5edDmSJKlJhrcetHLVsqJLkCRJM+RpU0mSpBIxvEmSJJWI4U2SJKlEDG+SJEklYniTJEkqEcObJElSiRjeJEmSSsTwJkmSVCKGN0mSpBIxvKkpO57Yxc+3badSqRRdiiRJPcnlsdSwxx/bydduvJnM5IUv2chZZ59SdEmSJPWcruh5i4gPRcSPI+KuiLg+IlYWXZOOdWD/QSqVpL+/j3179xddjiRJPakrwhtwE7AxM88B7gfeW3A9quOk9Ws5+9zTOOX0Z/Ccc04tuhxJknpSV5w2zcyvjdu8BXhDUbVocvPnz+Pc888qugxJknpat/S8jXc58JXJHoyIKyPitoi4bfv27R0sS5IkqXgd63mLiK8Dx9d56KrMvKG2z1XAEeDTkx0nM68GrgbYvHlztqFUSZKkrtWx8JaZF0/1eERcBrwGeGVmGsokSZLq6Ipr3iLiEuAPgYsy02GMkiRJk+iWa94+AiwDboqIoYj4n0UXJEmS1I26ouctM08rugZJkqQy6JaeN0mSJDXA8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iRJkkrE8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iRJkkrE8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iRJkkrE8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iRJkkrE8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iRJkkrE8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iRJkkrE8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iRJkkrE8CZJklQihjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKpGuCG8R8b6IuCsihiLiaxFxYtE1SZIkdaOuCG/AhzLznMzcBHwR+OOiC5IkSepGXRHeMnPPuM0BIIuqRZIkqZvNK7qAoyLi/cBbgd3AKwouR5IkqStFZmc6uSLi68DxdR66KjNvGLffe4FFmfknkxznSuDK2uaZwH0tLHM1sKOFxysz22KMbTHGthhjWzyd7THGthhjW4xZDQxk5prZHqhj4a1REfFM4EuZubGA574tMzd3+nm7kW0xxrYYY1uMsS2ezvYYY1uMsS3GtLItuuKat4g4fdzmpcCPi6pFkiSpm3XLNW9/HhFnAhXgEeCdBdcjSZLUlboivGXmbxVdQ83VRRfQRWyLMbbFGNtijG3xdLbHGNtijG0xpmVt0XXXvEmSJGlyXXHNmyRJkhrTc+EtIi6JiPsi4sGIeM8k+/y7iLg3In4UEZ/pdI2d1Eh71PZ7Q0RkRMzZUUPTtUVEvLv2urgrIr5RGxk9JzXQFgsj4p9qj98aERs6X2VnRcSqiLgpIh6o/XtcnX02RcTNtfeOuyLit4uotRMaaY9x+y6PiJ9FxEc6WWOnNNoWEbG+tgTkltp7yYbOVtp+TbTFB2u/J1si4q8jIjpda7tFxBtrP2Nlqs/ORj+Hx+up8BYR/cBHgV8DngO8OSKeM2Gf04H3Ai/JzOcCv9/xQjukkfao7bcM+D3g1s5W2DkNtsWdwObMPAe4DvhgZ6vsjAbb4gpgV2aeBvwV8IHOVlmI9wDfyMzTgW/UtifaD7y19t5xCfA/ImJlB2vspEba46j3Af+vI1UVo9G2+CTV5SDPAs4DnuhQfZ00bVtExIuBlwDnABuBFwIXdbLIDrkHeD3w7cl2aPRzeKKeCm9Uf1kezMyHM/MQ8I/Ab07Y5x3ARzNzF0BmzsVfrqMaaQ+ovvF+EBjpZHEdNm1bZOY3M3N/bfMW4BkdrrFTGnld/Cbwidrt64BXzsW/nCcY/zN/AnjtxB0y8/7MfKB2++dUP5xnPSFnl5q2PQAi4gXAOuBrHaqrCNO2Re0DeV5m3gSQmXvHvZ/MJY28LhJYBCwAFgLzgcc7Ul0HZeaWzJxuIYFGP4efptfC20nA1nHb22r3jXcGcEZEfC8ibomISzpWXedN2x4R8Xzg5Mz8YicLK0Ajr43xrgC+0taKitNIWzy1T2Yeobqs3WBHqivOusx8DKD279qpdo6I86h+OD3UgdqKMG17REQf8JfAf+lwbZ3WyGvjDODJiPjniLgzIj5U63WZa6Zti8y8Gfgm8Fjt66uZuaWjVXaPZj97gC6ZKqSD6vUMTBxuOw84HXg51Z6V70TExsx8ss21FWHK9qi98f4V8LZOFVSgRl4b1R0jfgfYzNzs5ofG2qLh9iqTqZbxa/I4JwD/AFyWmZVW1FaEFrTHu4AvZ+bWsnfMtqAt5gEvBZ4PPAr8E9X31r9rRX2dNNu2iIjTgLMYO3txU0S8LDMnPb3YraZqi/FLf051iDr3Tfte2mvhbRtw8rjtZwA/r7PPLZl5GPhJRNxHNcz9oDMldtR07bGM6vUI36q98R4P3BgRl2bmbR2rsjMaeW0QERdTfYO6KDMPdqi2Tmv09+RkYFtEzANWAMOdKa99MvPiyR6LiMcj4oTMfKwWzupeUhERy4EvAf81M29pU6kd0YL2uAB4aUS8C1gKLIiIvZnZ0EXZ3aQFbbENuDMzH659z+eBF1HC8NaCtngd1c/ZvbXv+QrVtihdeJuqLRrU0GfPRL122vQHwOkRcUpELADeBNw4YZ/PA68AiIjVVLu6H+5olZ0zZXtk5u7MXJ2ZGzJzA9XrvOZicIMGXhu1U8gfp9oGc/layEZ+T24ELqvdfgPwrzn3J40c/zNfBhzzV3Wtva4HPpmZn+tgbUWYtj0y8y2Zub72/vEHVNuldMGtAdO2BdXfq+Mi4ug1kL8C3NuB2jqtkbZ4FLgoIuZFxHyqZzF69bRpI++3x8rMnvoCfh24n+p1KFfV7vtTqh/IUO3C/DDVX6q7gTcVXXOR7TFh329RHW1ZeN0FvTa+TvWi2qHa141F11xgWywCPgc8CHwfeFbRNXegTQapjp57oPbvqtr9m4Frard/Bzg87jUyBGwquvai2mPC/m8DPlJ03UW2BfCrwF21z5a/BxYUXXsRbQH0U/1DeEvts/bDRdfdprZ4HdWetYO1z46v1u4/kerlBEf3O+b9drovV1iQJEkqkV47bSpJklRqhjdJkqQSMbxJkiSViOFNkiSpRAxvkiRJJWJ4kyRJKhHDmyRJUokY3iS1VETsLbqGVhj/c7TiZ4qIDRFxICKGZnusKZ5jcUQMRcSh2goxkuYgw5uknhRVnX4PfCgzN7Xr4Jl5oHb8addGlFRehjdJbRER746Ie2pfvz/u/j+KiB9HxE0R8dmI+IMZHn9D7TifiIi7IuK6iFgy7vHPR8TtEfGjiLhy3PdsiYi/Be4ATq633zTPW++4L6zVsCgiBmqPbWyw/mtqbfTpiLg4Ir4XEQ9ExHmTPV/t/oGI+FJE/LD2/b89k3aUVD4ujyWppWqnGC+iunbji6iuF3wr1XU/+4FrgAuAeVQD1Mcz8y9m8DwbgJ8AF2bm9yLiWuDeo8eKiFWZORwRi6ku/nwRsAx4GHhxZt4y2X6ZuTMi9mbm0qM/07jbk+3/36mu+boY2JaZf1an3i9m5sZx2w8Czwd+VDvWD4ErgEuBt2fma6d4vt8CLsnMd9SOtyIzd9du/5TqOsQ7mm1XSd3PnjdJ7XAhcH1m7svMvcA/Ay+t3X9D7fTeL4EvHP2GiHhWRPxdRFxX2x6o9ar9r4h4yyTPszUzv1e7/ana8Y/6vYj4IXALcDJweu3+R44Gt2n2m8xk+/8p1YXHNwMfnOYYR/0kM+/OzArVAPeNrP5FfTewYZrnuxu4OCI+EBEvPRrcJM19hjdJ7RBN3k9mPpyZV4y76/XAdbWepUsn+7Z62xHxcuBi4ILMfB5wJ9VeMYB9TxUz9X7HFj/1/quApVR79yY9xgQHx92ujNuuAPOmer7MvB94AdUQ92cR8ccNPqekkjO8SWqHbwOvjYglETEAvA74DvBd4Ddq14YtBV49xTGeAWyt3R6dZJ/1EXFB7faba8cHWAHsysz9EfFsqqdv62l0v0b2vxr4I+DTwAemOU6jJn2+iDgR2J+ZnwL+Aji3Rc8pqcvNK7oASXNPZt4REX8PfL921zWZeSdARNxI9dquR4DbgMlO922jGuCGmPwPzS3AZRHxceAB4GO1+/8FeGdE3AXcR/WUYz2N7jfl/hHxVuBIZn4mIvqBf4uIX8nMf53meNOZqr6zgQ9FRAU4DPzHWT6XpJJwwIKkjoqIpZm5tzYy9NvAlbWwNwi8n+p1Y9cAfw18BBgBvpuZn55wnA2MGwDQ7TpZrwMWpLnNnjdJnXZ1RDyH6rVbn8jMOwAycyfwzgn7vr3TxbXRKLAiIobaNddbbUTqzcB8qtfNSZqD7HmTJEkqEQcsSJIklYjhTZIkqUQMb5IkSSVieJMkSSoRw5skSVKJGN4kSZJKxPAmSZJUIoY3SZKkEvn/Se3ZAJYQuoEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "warnings.filterwarnings('ignore', category=FutureWarning)\n", + "groups_of_setofids = [(307,308,309,310,311,312),\n", + " (807,808,809,810,811,812), \n", + " (1907,1908,1909,1910,1911,1912), \n", + " (2907,2908,2909,2910,2911,2912)]\n", + "\n", + "groups_of_setofids = [(807,808,809,810,811,812,813,814,815,816,817,818)]\n", + "\n", + "NSIDE = hp.order2nside(4) # converts norder to nside\n", + "cm = plt.set_cmap('inferno')\n", + "print(\n", + " \"Approximate resolution at NSIDE {} is {:.2} deg\".format(\n", + " NSIDE, hp.nside2resol(NSIDE, arcmin=True) / 60\n", + " )\n", + ")\n", + "\n", + "\n", + "for setofids in tqdm.tqdm(groups_of_setofids):\n", + " job = Gaia.launch_job_async(f\"\"\"\n", + " SELECT\n", + " source_id, GAIA_HEALPIX_INDEX(4, source_id) AS healpix4,\n", + " parallax AS parallax, parallax_error AS parallax_error,\n", + " ra, ra_error AS ra_err,\n", + " dec, dec_error AS dec_err\n", + "\n", + " FROM gaiadr2.gaia_source\n", + "\n", + " WHERE GAIA_HEALPIX_INDEX(4, source_id) IN {setofids}\n", + " AND parallax >= 0\n", + " AND random_index < 1000000\n", + " \"\"\", dump_to_file=False, verbose=False, )\n", + " r = job.get_results()\n", + " rgr = r.group_by(\"healpix4\")\n", + " print(rgr)\n", + " \n", + " NPIX = hp.nside2npix(NSIDE)\n", + " m = np.arange(NPIX)\n", + " m[setofids[0]:setofids[-1]] = m.max()\n", + " hp.mollview(m, title=\"Mollview image RING\", nest=True, coord=[\"C\"], cbar=False, cmap=cm)\n", + " \n", + " for j in range(0,len(setofids)):\n", + " rg = rgr[rgr['healpix4']==setofids[j]]\n", + " \n", + " print(setofids[j], len(rg))\n", + "\n", + " # DOING STUFF HERE\n", + " #with catch_warnings(UserWarning):\n", + " df = table.QTable(rg)\n", + "\n", + " df = df[np.isfinite(df[\"parallax\"])] # filter out NaN\n", + " df = df[df[\"parallax\"] > 0] # positive parallax\n", + "\n", + " # add the fractional error\n", + " df[\"parallax_frac_error\"] = df[\"parallax_error\"] / df[\"parallax\"]\n", + "\n", + " X = np.array(\n", + " [\n", + " df[\"ra\"].to_value(u.deg),\n", + " df[\"dec\"].to_value(u.deg),\n", + " np.log10(df[\"parallax\"].to_value(u.mas)),\n", + " ]).T\n", + " y = np.log10(df[\"parallax_frac_error\"].value.reshape(-1, 1))[:,0]\n", + "\n", + " xy = np.vstack([X[:,2],y])\n", + " kde = gaussian_kde(xy)(xy)\n", + "\n", + " ykr, kr = kernel_ridge(X, y, train_size=int(len(rg)*0.8))\n", + " #ygp, gpr = Gauss_process(X,y, train_size)\n", + " ysv, svr = support_vector(X,y, train_size=int(len(rg)*0.8))\n", + " yreg, reg = linear(X, y, train_size=int(len(rg)*0.8))\n", + " yreg1, reg1 = linear(X, y, train_size=int(len(rg)*0.8), weight=False)\n", + " \n", + " with open(\"pk_reg/pk_\"+str(setofids[j])+\".pkl\", mode=\"wb\") as f:\n", + " pickle.dump(reg, f)\n", + "\n", + " plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, setofids[j])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"pk_\"+str(setofids[-1])+\".pkl\", mode=\"rb\") as f:\n", + " testreg = pickle.load(f)\n", + " \n", + "Xp = np.array(\n", + " [\n", + " np.ones(100) * np.median(X[:, 0]), # ra\n", + " np.ones(100) * np.median(X[:, 1]), # dec\n", + " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", + " ]\n", + ").T\n", + "yreg = testreg.predict(Xp)\n", + " \n", + "fig = plt.figure(figsize=(10,8))\n", + "ax = fig.add_subplot(\n", + " xlabel=r\"$\\log_{10}$ parallax [mas]\",\n", + " ylabel=r\"$\\log_{10}$ parallax fractional error\",\n", + ")\n", + "# distance label\n", + "secax = ax.secondary_xaxis(\n", + " \"top\",\n", + " functions=(\n", + " lambda logp: np.log10(\n", + " coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc)\n", + " ),\n", + " lambda logd: np.log10(\n", + " coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas)\n", + " ),\n", + " ),\n", + ")\n", + "secax.set_xlabel(r\"$\\log_{10}$ Distance [kpc]\")\n", + "\n", + "Xpred = np.array(\n", + "[\n", + " np.ones(100) * np.median(X[:, 0]), # ra\n", + " np.ones(100) * np.median(X[:, 1]), # dec\n", + " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", + "]\n", + ").T\n", + "\n", + "ax.scatter(X[:, -1], y, s=2, label=\"data\", alpha=0.3, c=kde)\n", + "#ax.scatter(Xpred[:, -1], ypred1, s=2, label=\"kernel-ridge\")\n", + "#ax.scatter(Xpred[:, -1], ypred2, s=2, label=\"linear model: density-weighting\")\n", + "ax.scatter(Xpred[:, -1], yreg, s=2)\n", + "#ax.set_title(str(fids))\n", + "\n", + "ax.set_ylim(-3, 3)\n", + "ax.invert_xaxis()\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gaia Querying with different healpix levels" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " 0%| | 0/1 [00:00= 0\n", + " AND random_index < 2000000\n", + " \"\"\", dump_to_file=False, verbose=False, )\n", + " r = job.get_results()\n", + " #rgr = r.group_by(\"healpix7\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Approximate resolution at NSIDE 128 is 0.46 deg\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "NSIDE = hp.order2nside(7) # converts norder to nside\n", + "cm = plt.set_cmap('inferno')\n", + "print(\n", + " \"Approximate resolution at NSIDE {} is {:.2} deg\".format(\n", + " NSIDE, hp.nside2resol(NSIDE, arcmin=True) / 60\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "hp.order2nside?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 4cf86a3b14758d4bd2b6f15687d9254b555ac292 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 3 Sep 2021 15:01:19 -0400 Subject: [PATCH 02/74] start script Signed-off-by: Nathaniel Starkman (@nstarman) --- .pre-commit-config.yaml | 22 +- discO/data/err_field/__init__.py | 2 + discO/data/err_field/script.py | 502 +++++++++++++++++++++++++++++++ 3 files changed, 515 insertions(+), 11 deletions(-) create mode 100644 discO/data/err_field/__init__.py create mode 100644 discO/data/err_field/script.py diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index b5a9e9ee..b333d2fa 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,6 +1,6 @@ repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v3.4.0 + rev: v4.0.1 hooks: - id: check-added-large-files - id: check-case-conflict @@ -17,7 +17,7 @@ repos: - id: trailing-whitespace - repo: https://github.com/pre-commit/pygrep-hooks - rev: v1.7.0 + rev: v1.9.0 hooks: - id: python-check-blanket-noqa - id: python-check-mock-methods @@ -29,12 +29,12 @@ repos: - id: text-unicode-replacement-char - repo: https://github.com/asottile/add-trailing-comma - rev: v2.0.2 + rev: v2.1.0 hooks: - id: add-trailing-comma - repo: https://github.com/jumanjihouse/pre-commit-hooks - rev: 2.1.4 + rev: 2.1.5 hooks: - id: check-mailmap - id: forbid-binary @@ -43,12 +43,12 @@ repos: - id: shfmt - repo: https://github.com/mgedmin/check-manifest - rev: "0.46" + rev: '0.46' hooks: - id: check-manifest - repo: https://github.com/pre-commit/mirrors-autopep8 - rev: v1.5.4 + rev: v1.5.7 hooks: - id: autopep8 @@ -57,13 +57,13 @@ repos: hooks: - id: seed-isort-config - repo: https://github.com/pre-commit/mirrors-isort - rev: v5.7.0 + rev: v5.9.3 hooks: - id: isort additional_dependencies: ["toml"] - repo: https://gitlab.com/pycqa/flake8 - rev: 3.8.4 + rev: 3.9.2 hooks: - id: flake8 args: # arguments to configure flake8 @@ -79,17 +79,17 @@ repos: - "--exclude=*/_astropy_init.py docs/conf.py" - repo: https://github.com/psf/black - rev: 20.8b1 + rev: 21.8b0 hooks: - id: black additional_dependencies: ["toml"] - repo: https://github.com/asottile/blacken-docs - rev: v1.9.1 + rev: v1.11.0 hooks: - id: blacken-docs additional_dependencies: [black==20.8b1] - repo: https://github.com/nbQA-dev/nbQA - rev: 0.5.6 + rev: 1.1.0 hooks: - id: nbqa-black additional_dependencies: [black==20.8b1] diff --git a/discO/data/err_field/__init__.py b/discO/data/err_field/__init__.py new file mode 100644 index 00000000..59820a88 --- /dev/null +++ b/discO/data/err_field/__init__.py @@ -0,0 +1,2 @@ +# -*- coding: utf-8 -*- +# see LICENSE.rst diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py new file mode 100644 index 00000000..c001c138 --- /dev/null +++ b/discO/data/err_field/script.py @@ -0,0 +1,502 @@ +# -*- coding: utf-8 -*- + +"""Gaia Error Field Script. + +This script can be run from the command line with the following parameters: + +Parameters +---------- + +""" + +__all__ = [ + # script + "make_parser", + "main", + # functions + "fit_kernel_ridge", + "fit_gaussian_process", + "fit_support_vector", + "fit_linear", +] + + +############################################################################## +# IMPORTS + +# BUILT-IN +import argparse +import typing as T +import warnings + +# THIRD PARTY +import healpy as hp +import matplotlib.pyplot as plt +import numpy as np +import numpy.typing as npt +from astroquery.gaia import Gaia +from sklearn.gaussian_process import GaussianProcessRegressor +from sklearn.kernel_ridge import KernelRidge +from sklearn.linear_model import LinearRegression +from sklearn.svm import SVR +from sklearn.utils import shuffle + +############################################################################## +# PARAMETERS + +RandomStateType = T.Union[None, int, np.random.RandomState, np.random.Generator] + +# General +_PLOT: bool = True # Whether to plot the output + +# Log file +_VERBOSE: int = 0 # Degree of logfile verbosity + +############################################################################## +# CODE +############################################################################## + + +def fit_kernel_ridge( + X: npt.NDArray, y: npt.NDArray, train_size: int, random_state: RandomStateType = None +) -> (npt.NDArray, KernelRidge): + """Kernel-Ridge Regression code. + + Parameters + ---------- + X : ndarray + y : ndarray + train_size : int + random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) + + Returns + ------- + ykr : ndarray + kr : `~sklearn.kernel_ridge.KernelRidge` + """ + # construct grid-search for optimal parameters + kr = GridSearchCV( + KernelRidge(alpha=1, kernel="linear", gamma=0.1), + param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}, + ) + + # randomize the data order + idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) + + # Fitting using the Kernel-Ridge Regression + kr.fit(X[idx], y[idx]) + # get predictions: ra & dec are at median value. parallax is linear + Xp = np.array( + [ + np.ones(100) * np.median(X[:, 0]), # ra + np.ones(100) * np.median(X[:, 1]), # dec + np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p + ] + ).T + ykr = kr.predict(Xp) + + return ykr, kr + + +# /def + + +def fit_gaussian_process( + X: npt.NDArray, y: npt.NDArray, train_size: int, random_state: RandomStateType = None +) -> (npt.NDArray, GaussianProcessRegressor): + """Gaussian-Process Regression code. + + Parameters + ---------- + X : ndarray + y : ndarray + train_size : int + random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) + + Returns + ------- + ykr : ndarray + kr : `~sklearn.gaussian_process.GaussianProcessRegressor` + """ + # estimator + gpr = GaussianProcessRegressor(kernel=None) + + # randomize the data order + idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) + + # fit + gpr.fit(X[idx], y[idx]) + ygp = gpr.predict(Xp) + + return ygp, gpr + + +# /def + + +def fit_support_vector( + X: npt.NDArray, y: npt.NDArray, train_size: int, random_state: RandomStateType = None +) -> (npt.NDArray, SVR): + """support-vector regression. + + Parameter + --------- + X : ndarray + y : ndarray + train_size : int + random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) + + Returns + ------- + ysv : ndarray + svr : `~sklearn.svm.SVR` + """ + svr = GridSearchCV( + SVR(kernel="linear", gamma=0.1), + param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}, + ) + + # randomize the data order + idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) + + # Fitting using the Support Vector + svr.fit(X[idx], y[idx]) + # get predictions: ra & dec are at median value. parallax is linear + Xp = np.array( + [ + np.ones(100) * np.median(X[:, 0]), # ra + np.ones(100) * np.median(X[:, 1]), # dec + np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p + ] + ).T + ysv = svr.predict(Xp) + + return ysv, svr + + +# /def + + +def fit_linear( + X: npt.NDArray, + y: npt.NDArray, + train_size: int, + weight: bool = True, + random_state: RandomStateType = None, +) -> (npt.NDArray, LinearRegression): + """Linear regression model. + + Parameters + ---------- + X : ndarray + y : ndarray + train_size : int + weight : bool, optional + random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) + + Returns + ------- + ysv : ndarray + svr : `~sklearn.linear_model.LinearRegression` + """ + lr = LinearRegression() + + # randomize the data order + idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) + + # fit, optionally with weights + if weight == True: + xy = np.vstack([X[:, 2], y]) + kde = gaussian_kde(xy)(xy) + lr.fit(X[idx], y[idx], sample_weight=(1 / kde)[idx]) + else: + lr.fit(X[idx], y[idx]) + + # get predictions: ra & dec are at median value. parallax is linear + Xp = np.array( + [ + np.ones(100) * np.median(X[:, 0]), # ra + np.ones(100) * np.median(X[:, 1]), # dec + np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p + ] + ).T + ylr = lr.predict(Xp) + + return ylr, lr + + +# /def + + +# =================================================================== + + +def plot_parallax_prediction( + Xtrue: npt.NDArray, + ytrue: npt.NDArray, + kde, + ypred1: npt.NDArray, + ypred2: npt.NDArray, + ypred3: npt.NDArray, + fids, +) -> plt.Figure: + """Plot predicted parallax. + + Parameters + ---------- + Xtrue + ytrue + kde + ypred1 + ypred2 + ypred3 + fids + + Returns + ------- + `matplotlib.pyplot.Figure` + """ + fig = plt.figure(figsize=(10, 8)) + ax = fig.add_subplot( + xlabel=r"$\log_{10}$ parallax [mas]", + ylabel=r"$\log_{10}$ parallax fractional error", + ) + # distance label + secax = ax.secondary_xaxis( + "top", + functions=( + lambda logp: np.log10(coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc)), + lambda logd: np.log10(coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas)), + ), + ) + secax.set_xlabel(r"$\log_{10}$ Distance [kpc]") + + Xpred = np.array( + [ + np.ones(100) * np.median(Xtrue[:, 0]), # ra + np.ones(100) * np.median(Xtrue[:, 1]), # dec + np.linspace(Xtrue[:, 2].min(), Xtrue[:, 2].max(), 100), # p + ] + ).T + + ax.scatter(Xtrue[:, -1], ytrue, s=5, label="data", alpha=0.3, c=kde) + ax.scatter(Xpred[:, -1], ypred1, s=5, label="kernel-ridge") + ax.scatter(Xpred[:, -1], ypred2, s=5, label="linear model: density-weighting") + ax.scatter(Xpred[:, -1], ypred3, s=5, label="linear model: no density weight") + ax.set_title(str(fids)) + + ax.set_ylim(-3, 3) + ax.invert_xaxis() + ax.legend() + + return fig + + +# /def + + +def plot_mollview(setofids, nside): + + npix = hp.nside2npix(nside) + m = np.arange(npix) + m[setofids[0] : setofids[-1]] = m.max() + + hp.mollview( + m, + title="Mollview image RING", + nest=True, + coord=["C"], + cbar=False, + cmap=cm, + ) + + fig = plt.gcf() + return fig + + +def query_and_fit_patch_set(): + """Query and fit a set of sky patches. + + Parameters + ---------- + + """ + + job = Gaia.launch_job_async( + f""" + SELECT + source_id, GAIA_HEALPIX_INDEX(4, source_id) AS healpix4, + parallax AS parallax, parallax_error AS parallax_error, + ra, ra_error AS ra_err, + dec, dec_error AS dec_err + + FROM gaiadr2.gaia_source + + WHERE GAIA_HEALPIX_INDEX(4, source_id) IN {setofids} + AND parallax >= 0 + AND random_index < 1000000 + """, + dump_to_file=False, + verbose=False, + ) + + r = job.get_results() + rgr = r.group_by("healpix4") + + plot_mollview(setofids, opts.nside) + + for j in range(0, len(setofids)): + rg = rgr[rgr["healpix4"] == setofids[j]] + + print(setofids[j], len(rg)) + + # DOING STUFF HERE + # with catch_warnings(UserWarning): + df = table.QTable(rg) + + df = df[np.isfinite(df["parallax"])] # filter out NaN + df = df[df["parallax"] > 0] # positive parallax + + # add the fractional error + df["parallax_frac_error"] = df["parallax_error"] / df["parallax"] + + X = np.array( + [ + df["ra"].to_value(u.deg), + df["dec"].to_value(u.deg), + np.log10(df["parallax"].to_value(u.mas)), + ] + ).T + y = np.log10(df["parallax_frac_error"].value.reshape(-1, 1))[:, 0] + + xy = np.vstack([X[:, 2], y]) + kde = gaussian_kde(xy)(xy) + + ykr, kr = kernel_ridge(X, y, train_size=int(len(rg) * 0.8)) + # ygp, gpr = Gauss_process(X,y, train_size) + ysv, svr = support_vector(X, y, train_size=int(len(rg) * 0.8)) + yreg, reg = linear(X, y, train_size=int(len(rg) * 0.8)) + yreg1, reg1 = linear(X, y, train_size=int(len(rg) * 0.8), weight=False) + + with open("pk_reg/pk_" + str(setofids[j]) + ".pkl", mode="wb") as f: + pickle.dump(reg, f) + + plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, setofids[j]) + + +############################################################################## +# Command Line +############################################################################## + + +def make_parser( + *, inheritable: bool = False, plot: bool = _PLOT, verbose: int = _VERBOSE +) -> argparse.ArgumentParser: + """Expose ArgumentParser for ``main``. + + Parameters + ---------- + inheritable: bool, optional, keyword only + whether the parser can be inherited from (default False). + if True, sets ``add_help=False`` and ``conflict_hander='resolve'`` + + plot : bool, optional, keyword only + Whether to produce plots, or not. + + verbose : int, optional, keyword only + Script logging verbosity. + + Returns + ------- + parser: |ArgumentParser| + The parser with arguments: + + - plot + - verbose + + .. + RST SUBSTITUTIONS + + .. |ArgumentParser| replace:: `~argparse.ArgumentParser` + + """ + parser = argparse.ArgumentParser( + description="", + add_help=not inheritable, + conflict_handler="resolve" if not inheritable else "error", + ) + + # plot or not + parser.add_argument("--plot", action="store", default=_PLOT, type=bool) + + # script verbosity + parser.add_argument("-v", "--verbose", action="store", default=0, type=int) + + return parser + + +# /def + + +# ------------------------------------------------------------------------ + + +def main( + args: T.Union[list, str, None] = None, + opts: T.Optional[argparse.Namespace] = None, +): + """Script Function. + + Parameters + ---------- + args : list or str or None, optional + an optional single argument that holds the sys.argv list, + except for the script name (e.g., argv[1:]) + opts : `~argparse.Namespace`| or None, optional + pre-constructed results of parsed args + if not None, used ONLY if args is None + + - nside + + """ + if opts is not None and args is None: + pass + else: + if opts is not None: + warnings.warn("Not using `opts` because `args` are given") + if isinstance(args, str): + args = args.split() + + parser = make_parser() + opts = parser.parse_args(args) + + # /if + + if hasattr(opts, "norder"): + norder = opts.norder + opts.nside = hp.order2nside(norder) # converts norder to nside + + breakpoint() + + return + + for setofids in tqdm.tqdm(groups_of_setofids): + query_and_fit_patch_set(setofids) + + +# /def + + +# ------------------------------------------------------------------------ + +if __name__ == "__main__": + + # call script + main(args=None, opts=None) # all arguments except script name + + +# /if + + +############################################################################## +# END From 2b15415c54947d51c4b53d1dc5828016f37dc277 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 3 Sep 2021 14:59:09 -0400 Subject: [PATCH 03/74] move notebook Signed-off-by: Nathaniel Starkman (@nstarman) --- .../error_field/healpix_gaia_query.ipynb | 322 ++++++------------ 1 file changed, 103 insertions(+), 219 deletions(-) rename healpix_gaia_query.ipynb => notebooks/error_field/healpix_gaia_query.ipynb (99%) diff --git a/healpix_gaia_query.ipynb b/notebooks/error_field/healpix_gaia_query.ipynb similarity index 99% rename from healpix_gaia_query.ipynb rename to notebooks/error_field/healpix_gaia_query.ipynb index 2b4561c7..947d5313 100644 --- a/healpix_gaia_query.ipynb +++ b/notebooks/error_field/healpix_gaia_query.ipynb @@ -2,189 +2,56 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Created TAP+ (v1.2.1) - Connection:\n", - "\tHost: gea.esac.esa.int\n", - "\tUse HTTPS: True\n", - "\tPort: 443\n", - "\tSSL Port: 443\n", - "Created TAP+ (v1.2.1) - Connection:\n", - "\tHost: geadata.esac.esa.int\n", - "\tUse HTTPS: True\n", - "\tPort: 443\n", - "\tSSL Port: 443\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/cal/ccarr/anaconda3/lib/python3.7/site-packages/pandas/compat/_optional.py:138: UserWarning: Pandas requires version '2.7.0' or newer of 'numexpr' (version '2.6.9' currently installed).\n", - " warnings.warn(msg, UserWarning)\n" + "ename": "ModuleNotFoundError", + "evalue": "No module named 'seaborn'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/k1/2dc5x9j10c553vvp6f40r89h0000gn/T/ipykernel_72567/449606315.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterpolate\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0minterp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignal\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mseaborn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'seaborn'" ] } ], "source": [ - "import warnings\n", - "import healpy as hp\n", - "from astroquery.gaia import Gaia\n", - "import tqdm\n", + "# BUILT-IN\n", "import pickle\n", - "from astropy import table\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", + "import warnings\n", + "\n", + "# THIRD PARTY\n", "import astropy.coordinates as coord\n", "import astropy.units as u\n", + "import healpy as hp\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import scipy.interpolate as interp\n", + "import scipy.signal as sig\n", + "import seaborn as sns\n", "import sklearn\n", - "from sklearn import metrics\n", - "from sklearn.svm import SVR\n", - "from sklearn import linear_model\n", - "from sklearn.model_selection import GridSearchCV\n", - "from sklearn.model_selection import learning_curve\n", + "import tqdm\n", + "from astropy import table\n", + "from astroquery.gaia import Gaia\n", + "from scipy.stats import gaussian_kde\n", + "from sklearn import linear_model, metrics\n", + "from sklearn.gaussian_process import GaussianProcessRegressor\n", + "from sklearn.gaussian_process.kernels import ExpSineSquared, WhiteKernel\n", "from sklearn.kernel_ridge import KernelRidge\n", + "from sklearn.model_selection import GridSearchCV, learning_curve\n", "from sklearn.svm import SVR\n", - "from sklearn.utils import shuffle\n", - "from sklearn.gaussian_process import GaussianProcessRegressor\n", - "from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared\n", - "from sklearn.utils import shuffle\n", - "import scipy.signal as sig\n", - "import seaborn as sns\n", - "import scipy.interpolate as interp\n", - "from scipy.stats import gaussian_kde" + "from sklearn.utils import shuffle" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "def plot_parallax_prediction(Xtrue, ytrue, kde, ypred1, ypred2, ypred3, fids):\n", - " \"\"\"\"\"\"\n", - " fig = plt.figure(figsize=(10,8))\n", - " ax = fig.add_subplot(\n", - " xlabel=r\"$\\log_{10}$ parallax [mas]\",\n", - " ylabel=r\"$\\log_{10}$ parallax fractional error\",\n", - " )\n", - " # distance label\n", - " secax = ax.secondary_xaxis(\n", - " \"top\",\n", - " functions=(\n", - " lambda logp: np.log10(\n", - " coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc)\n", - " ),\n", - " lambda logd: np.log10(\n", - " coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas)\n", - " ),\n", - " ),\n", - " )\n", - " secax.set_xlabel(r\"$\\log_{10}$ Distance [kpc]\")\n", - " \n", - " Xpred = np.array(\n", - " [\n", - " np.ones(100) * np.median(Xtrue[:, 0]), # ra\n", - " np.ones(100) * np.median(Xtrue[:, 1]), # dec\n", - " np.linspace(Xtrue[:, 2].min(), Xtrue[:, 2].max(), 100), # p\n", - " ]\n", - " ).T\n", - "\n", - " ax.scatter(Xtrue[:, -1], ytrue, s=5, label=\"data\", alpha=0.3, c=kde)\n", - " ax.scatter(Xpred[:, -1], ypred1, s=5, label=\"kernel-ridge\")\n", - " ax.scatter(Xpred[:, -1], ypred2, s=5, label=\"linear model: density-weighting\")\n", - " ax.scatter(Xpred[:, -1], ypred3, s=5, label=\"linear model: no density weight\")\n", - " ax.set_title(str(fids))\n", - " \n", - " ax.set_ylim(-3, 3)\n", - " ax.invert_xaxis()\n", - " ax.legend()\n", - "\n", - " return fig\n", - "\n", - "def kernel_ridge(X, y, train_size):\n", - " \"Kernel-Ridge Regression code\"\n", - " rng = np.random.default_rng()\n", - " kr = GridSearchCV(\n", - " KernelRidge(kernel=\"linear\", gamma=0.1),\n", - " param_grid={\n", - " \"alpha\": [1e0, 0.1, 1e-2, 1e-3],\n", - " \"gamma\": np.logspace(-2, 2, 5),\n", - " },\n", - " )\n", - " \n", - " # randomize the data order\n", - " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", - "\n", - " # Fitting using the Kernel-Ridge Regression\n", - " kr.fit(X[idx], y[idx])\n", - " Xp = np.array(\n", - " [\n", - " np.ones(100) * np.median(X[:, 0]), # ra\n", - " np.ones(100) * np.median(X[:, 1]), # dec\n", - " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", - " ]\n", - " ).T\n", - " ykr = kr.predict(Xp)\n", - " return ykr, kr\n", - "\n", - "def Gauss_process(X,y, train_size):\n", - " \"Gaussian-Process Regression code\"\n", - " rng = np.random.default_rng()\n", - " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", - " gpr = GaussianProcessRegressor(kernel=None)\n", - " gpr.fit(X[idx], y[idx])\n", - " ygp = gpr.predict(Xp)\n", - " return ygp, gpr\n", - "\n", - "def support_vector(X,y, train_size):\n", - " \"support-vector regression code\"\n", - " rng = np.random.default_rng()\n", - " svr = GridSearchCV(SVR(kernel='linear', gamma=0.1),\n", - " param_grid={\"C\": [1e0, 1e1, 1e2, 1e3],\n", - " \"gamma\": np.logspace(-2, 2, 5)})\n", - " \n", - " # randomize the data order\n", - " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", - "\n", - " # Fitting using the Kernel-Ridge Regression\n", - " kr.fit(X[idx], y[idx])\n", - " Xp = np.array(\n", - " [\n", - " np.ones(100) * np.median(X[:, 0]), # ra\n", - " np.ones(100) * np.median(X[:, 1]), # dec\n", - " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", - " ]\n", - " ).T\n", - " svr.fit(X[idx], y[idx])\n", - " ysv = svr.predict(Xp)\n", - " return ysv, svr\n", - "\n", - "def linear(X, y, train_size, weight=True):\n", - " \"linear regression model\"\n", - " reg = linear_model.LinearRegression()\n", - " \n", - " # randomize the data order\n", - " idx = shuffle(np.arange(0, len(X)), n_samples=train_size)\n", - " xy = np.vstack([X[:,2],y])\n", - " kde = gaussian_kde(xy)(xy)\n", - " if weight==True:\n", - " reg.fit(X[idx], y[idx], sample_weight=(1/kde)[idx])\n", - " else:\n", - " reg.fit(X[idx], y[idx])\n", - " Xp = np.array(\n", - " [\n", - " np.ones(100) * np.median(X[:, 0]), # ra\n", - " np.ones(100) * np.median(X[:, 1]), # dec\n", - " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", - " ]\n", - " ).T\n", - " yreg = reg.predict(Xp)\n", - " return yreg, reg " + "hp.order2nside(4)" ] }, { @@ -196,7 +63,6 @@ "name": "stderr", "output_type": "stream", "text": [ - "\r", " 0%| | 0/4 [00:00= 0\n", " AND random_index < 1000000\n", - " \"\"\", dump_to_file=False, verbose=False, )\n", + " \"\"\",\n", + " dump_to_file=False,\n", + " verbose=False,\n", + " )\n", " r = job.get_results()\n", " rgr = r.group_by(\"healpix4\")\n", " print(rgr)\n", - " \n", + "\n", " NPIX = hp.nside2npix(NSIDE)\n", " m = np.arange(NPIX)\n", - " m[setofids[0]:setofids[-1]] = m.max()\n", - " hp.mollview(m, title=\"Mollview image RING\", nest=True, coord=[\"C\"], cbar=False, cmap=cm)\n", - " \n", - " for j in range(0,len(setofids)):\n", - " rg = rgr[rgr['healpix4']==setofids[j]]\n", - " \n", + " m[setofids[0] : setofids[-1]] = m.max()\n", + " hp.mollview(\n", + " m,\n", + " title=\"Mollview image RING\",\n", + " nest=True,\n", + " coord=[\"C\"],\n", + " cbar=False,\n", + " cmap=cm,\n", + " )\n", + "\n", + " for j in range(0, len(setofids)):\n", + " rg = rgr[rgr[\"healpix4\"] == setofids[j]]\n", + "\n", " print(setofids[j], len(rg))\n", "\n", " # DOING STUFF HERE\n", - " #with catch_warnings(UserWarning):\n", + " # with catch_warnings(UserWarning):\n", " df = table.QTable(rg)\n", "\n", " df = df[np.isfinite(df[\"parallax\"])] # filter out NaN\n", @@ -957,23 +836,24 @@ " df[\"parallax_frac_error\"] = df[\"parallax_error\"] / df[\"parallax\"]\n", "\n", " X = np.array(\n", - " [\n", - " df[\"ra\"].to_value(u.deg),\n", - " df[\"dec\"].to_value(u.deg),\n", - " np.log10(df[\"parallax\"].to_value(u.mas)),\n", - " ]).T\n", - " y = np.log10(df[\"parallax_frac_error\"].value.reshape(-1, 1))[:,0]\n", + " [\n", + " df[\"ra\"].to_value(u.deg),\n", + " df[\"dec\"].to_value(u.deg),\n", + " np.log10(df[\"parallax\"].to_value(u.mas)),\n", + " ]\n", + " ).T\n", + " y = np.log10(df[\"parallax_frac_error\"].value.reshape(-1, 1))[:, 0]\n", "\n", - " xy = np.vstack([X[:,2],y])\n", + " xy = np.vstack([X[:, 2], y])\n", " kde = gaussian_kde(xy)(xy)\n", "\n", - " ykr, kr = kernel_ridge(X, y, train_size=int(len(rg)*0.8))\n", - " #ygp, gpr = Gauss_process(X,y, train_size)\n", - " ysv, svr = support_vector(X,y, train_size=int(len(rg)*0.8))\n", - " yreg, reg = linear(X, y, train_size=int(len(rg)*0.8))\n", - " yreg1, reg1 = linear(X, y, train_size=int(len(rg)*0.8), weight=False)\n", - " \n", - " with open(\"pk_reg/pk_\"+str(setofids[j])+\".pkl\", mode=\"wb\") as f:\n", + " ykr, kr = kernel_ridge(X, y, train_size=int(len(rg) * 0.8))\n", + " # ygp, gpr = Gauss_process(X,y, train_size)\n", + " ysv, svr = support_vector(X, y, train_size=int(len(rg) * 0.8))\n", + " yreg, reg = linear(X, y, train_size=int(len(rg) * 0.8))\n", + " yreg1, reg1 = linear(X, y, train_size=int(len(rg) * 0.8), weight=False)\n", + "\n", + " with open(\"pk_reg/pk_\" + str(setofids[j]) + \".pkl\", mode=\"wb\") as f:\n", " pickle.dump(reg, f)\n", "\n", " plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, setofids[j])" @@ -985,9 +865,9 @@ "metadata": {}, "outputs": [], "source": [ - "with open(\"pk_\"+str(setofids[-1])+\".pkl\", mode=\"rb\") as f:\n", + "with open(\"pk_\" + str(setofids[-1]) + \".pkl\", mode=\"rb\") as f:\n", " testreg = pickle.load(f)\n", - " \n", + "\n", "Xp = np.array(\n", " [\n", " np.ones(100) * np.median(X[:, 0]), # ra\n", @@ -996,8 +876,8 @@ " ]\n", ").T\n", "yreg = testreg.predict(Xp)\n", - " \n", - "fig = plt.figure(figsize=(10,8))\n", + "\n", + "fig = plt.figure(figsize=(10, 8))\n", "ax = fig.add_subplot(\n", " xlabel=r\"$\\log_{10}$ parallax [mas]\",\n", " ylabel=r\"$\\log_{10}$ parallax fractional error\",\n", @@ -1017,18 +897,18 @@ "secax.set_xlabel(r\"$\\log_{10}$ Distance [kpc]\")\n", "\n", "Xpred = np.array(\n", - "[\n", - " np.ones(100) * np.median(X[:, 0]), # ra\n", - " np.ones(100) * np.median(X[:, 1]), # dec\n", - " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", - "]\n", + " [\n", + " np.ones(100) * np.median(X[:, 0]), # ra\n", + " np.ones(100) * np.median(X[:, 1]), # dec\n", + " np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p\n", + " ]\n", ").T\n", "\n", "ax.scatter(X[:, -1], y, s=2, label=\"data\", alpha=0.3, c=kde)\n", - "#ax.scatter(Xpred[:, -1], ypred1, s=2, label=\"kernel-ridge\")\n", - "#ax.scatter(Xpred[:, -1], ypred2, s=2, label=\"linear model: density-weighting\")\n", + "# ax.scatter(Xpred[:, -1], ypred1, s=2, label=\"kernel-ridge\")\n", + "# ax.scatter(Xpred[:, -1], ypred2, s=2, label=\"linear model: density-weighting\")\n", "ax.scatter(Xpred[:, -1], yreg, s=2)\n", - "#ax.set_title(str(fids))\n", + "# ax.set_title(str(fids))\n", "\n", "ax.set_ylim(-3, 3)\n", "ax.invert_xaxis()\n", @@ -1066,9 +946,10 @@ } ], "source": [ - "groups_of_setofids = [(807,808,809,810)]\n", + "groups_of_setofids = [(807, 808, 809, 810)]\n", "for setofids in tqdm.tqdm(groups_of_setofids):\n", - " job = Gaia.launch_job_async(f\"\"\"\n", + " job = Gaia.launch_job_async(\n", + " f\"\"\"\n", " SELECT\n", " source_id, GAIA_HEALPIX_INDEX(5, source_id) AS healpix5,\n", " parallax AS parallax, parallax_error AS parallax_error,\n", @@ -1080,9 +961,12 @@ " WHERE GAIA_HEALPIX_INDEX(5, source_id) IN {setofids}\n", " AND parallax >= 0\n", " AND random_index < 2000000\n", - " \"\"\", dump_to_file=False, verbose=False, )\n", + " \"\"\",\n", + " dump_to_file=False,\n", + " verbose=False,\n", + " )\n", " r = job.get_results()\n", - " #rgr = r.group_by(\"healpix7\")" + " # rgr = r.group_by(\"healpix7\")" ] }, { @@ -1108,8 +992,8 @@ } ], "source": [ - "NSIDE = hp.order2nside(7) # converts norder to nside\n", - "cm = plt.set_cmap('inferno')\n", + "NSIDE = hp.order2nside(7) # converts norder to nside\n", + "cm = plt.set_cmap(\"inferno\")\n", "print(\n", " \"Approximate resolution at NSIDE {} is {:.2} deg\".format(\n", " NSIDE, hp.nside2resol(NSIDE, arcmin=True) / 60\n", @@ -1136,7 +1020,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -1150,9 +1034,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.9.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From bc7052d32b02ce3109f6fccc4e513bde7be6c963 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 3 Sep 2021 15:02:00 -0400 Subject: [PATCH 04/74] add script entry point Signed-off-by: Nathaniel Starkman (@nstarman) --- setup.cfg | 17 ++++++++++++----- 1 file changed, 12 insertions(+), 5 deletions(-) diff --git a/setup.cfg b/setup.cfg index c64c7ece..af9df24e 100644 --- a/setup.cfg +++ b/setup.cfg @@ -14,20 +14,27 @@ github_project = nstarman/discO [options] zip_safe = False packages = find: -python_requires = >=3.7 +python_requires = >=3.8 setup_requires = setuptools_scm install_requires = astropy - numpy - PyYAML - scipy + numpy>1.20 typing_extensions + importlib-metadata + scikit-learn>0.18 + healpy>=1.15.0 + tqdm + astroquery + Cython + +[options.entry_points] +console_scripts = + make_gaia_err_field = discO.data.err_field.script:main [options.extras_require] all = gala galpy @ git+https://github.com/jobovy/galpy.git - tqdm test = pytest-astropy docs = From 6fe5619702bc3aaa35c978dbd5ac9db949b94b45 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Sun, 5 Sep 2021 00:22:58 -0400 Subject: [PATCH 05/74] update script Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 282 +++++++++++++++++++++------------ 1 file changed, 181 insertions(+), 101 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index c001c138..c723a685 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -18,6 +18,8 @@ "fit_gaussian_process", "fit_support_vector", "fit_linear", + # querying + "query_and_fit_patch_set", ] @@ -26,18 +28,24 @@ # BUILT-IN import argparse +import pickle import typing as T import warnings # THIRD PARTY +import astropy.coordinates as coord +import astropy.units as u import healpy as hp import matplotlib.pyplot as plt import numpy as np import numpy.typing as npt +from astropy import table from astroquery.gaia import Gaia +from scipy.stats import gaussian_kde from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.linear_model import LinearRegression +from sklearn.model_selection import GridSearchCV from sklearn.svm import SVR from sklearn.utils import shuffle @@ -58,7 +66,10 @@ def fit_kernel_ridge( - X: npt.NDArray, y: npt.NDArray, train_size: int, random_state: RandomStateType = None + X: npt.NDArray, + y: npt.NDArray, + train_size: int, + random_state: RandomStateType = None, ) -> (npt.NDArray, KernelRidge): """Kernel-Ridge Regression code. @@ -77,7 +88,10 @@ def fit_kernel_ridge( # construct grid-search for optimal parameters kr = GridSearchCV( KernelRidge(alpha=1, kernel="linear", gamma=0.1), - param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}, + param_grid={ + "alpha": [1e0, 0.1, 1e-2, 1e-3], + "gamma": np.logspace(-2, 2, 5), + }, ) # randomize the data order @@ -91,7 +105,7 @@ def fit_kernel_ridge( np.ones(100) * np.median(X[:, 0]), # ra np.ones(100) * np.median(X[:, 1]), # dec np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p - ] + ], ).T ykr = kr.predict(Xp) @@ -101,41 +115,47 @@ def fit_kernel_ridge( # /def -def fit_gaussian_process( - X: npt.NDArray, y: npt.NDArray, train_size: int, random_state: RandomStateType = None -) -> (npt.NDArray, GaussianProcessRegressor): - """Gaussian-Process Regression code. - - Parameters - ---------- - X : ndarray - y : ndarray - train_size : int - random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) - - Returns - ------- - ykr : ndarray - kr : `~sklearn.gaussian_process.GaussianProcessRegressor` - """ - # estimator - gpr = GaussianProcessRegressor(kernel=None) - - # randomize the data order - idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) - - # fit - gpr.fit(X[idx], y[idx]) - ygp = gpr.predict(Xp) - - return ygp, gpr - - -# /def +# def fit_gaussian_process( +# X: npt.NDArray, +# y: npt.NDArray, +# train_size: int, +# random_state: RandomStateType = None, +# ) -> (npt.NDArray, GaussianProcessRegressor): +# """Gaussian-Process Regression code. +# +# Parameters +# ---------- +# X : ndarray +# y : ndarray +# train_size : int +# random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) +# +# Returns +# ------- +# ykr : ndarray +# kr : `~sklearn.gaussian_process.GaussianProcessRegressor` +# """ +# # estimator +# gpr = GaussianProcessRegressor(kernel=None) +# +# # randomize the data order +# idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) +# +# # fit +# gpr.fit(X[idx], y[idx]) +# ygp = gpr.predict(Xp) +# +# return ygp, gpr +# +# +# # /def def fit_support_vector( - X: npt.NDArray, y: npt.NDArray, train_size: int, random_state: RandomStateType = None + X: npt.NDArray, + y: npt.NDArray, + train_size: int, + random_state: RandomStateType = None, ) -> (npt.NDArray, SVR): """support-vector regression. @@ -167,7 +187,7 @@ def fit_support_vector( np.ones(100) * np.median(X[:, 0]), # ra np.ones(100) * np.median(X[:, 1]), # dec np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p - ] + ], ).T ysv = svr.predict(Xp) @@ -181,7 +201,7 @@ def fit_linear( X: npt.NDArray, y: npt.NDArray, train_size: int, - weight: bool = True, + weight: T.Union[bool, npt.NDArray] = True, random_state: RandomStateType = None, ) -> (npt.NDArray, LinearRegression): """Linear regression model. @@ -191,7 +211,7 @@ def fit_linear( X : ndarray y : ndarray train_size : int - weight : bool, optional + weight : bool or ndarray, optional random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) Returns @@ -205,10 +225,11 @@ def fit_linear( idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) # fit, optionally with weights - if weight == True: - xy = np.vstack([X[:, 2], y]) - kde = gaussian_kde(xy)(xy) - lr.fit(X[idx], y[idx], sample_weight=(1 / kde)[idx]) + if weight is True or isinstance(weight, np.ndarray): # True or kde + if weight is True: + xy = np.vstack([X[:, 2], y]) + weight = gaussian_kde(xy)(xy) + lr.fit(X[idx], y[idx], sample_weight=(1 / weight)[idx]) else: lr.fit(X[idx], y[idx]) @@ -218,7 +239,7 @@ def fit_linear( np.ones(100) * np.median(X[:, 0]), # ra np.ones(100) * np.median(X[:, 1]), # dec np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p - ] + ], ).T ylr = lr.predict(Xp) @@ -239,6 +260,7 @@ def plot_parallax_prediction( ypred2: npt.NDArray, ypred3: npt.NDArray, fids, + ax=None ) -> plt.Figure: """Plot predicted parallax. @@ -256,11 +278,16 @@ def plot_parallax_prediction( ------- `matplotlib.pyplot.Figure` """ - fig = plt.figure(figsize=(10, 8)) - ax = fig.add_subplot( - xlabel=r"$\log_{10}$ parallax [mas]", - ylabel=r"$\log_{10}$ parallax fractional error", - ) + if ax is None: + fig = plt.figure(figsize=(10, 8)) + ax = fig.add_subplot() + else: + fig = ax.figure + + ax.set_xlabel(r"$\log_{10}$ parallax [mas]") + ax.set_ylabel(r"$\log_{10}$ parallax fractional error") + ax.set_title(f"Patch={fids}") + # distance label secax = ax.secondary_xaxis( "top", @@ -276,14 +303,13 @@ def plot_parallax_prediction( np.ones(100) * np.median(Xtrue[:, 0]), # ra np.ones(100) * np.median(Xtrue[:, 1]), # dec np.linspace(Xtrue[:, 2].min(), Xtrue[:, 2].max(), 100), # p - ] + ], ).T ax.scatter(Xtrue[:, -1], ytrue, s=5, label="data", alpha=0.3, c=kde) ax.scatter(Xpred[:, -1], ypred1, s=5, label="kernel-ridge") ax.scatter(Xpred[:, -1], ypred2, s=5, label="linear model: density-weighting") ax.scatter(Xpred[:, -1], ypred3, s=5, label="linear model: no density weight") - ax.set_title(str(fids)) ax.set_ylim(-3, 3) ax.invert_xaxis() @@ -295,93 +321,135 @@ def plot_parallax_prediction( # /def -def plot_mollview(setofids, nside): - +def plot_mollview(patch_ids, order, fig=None): + """Plot Mollweide view with patches on sky.""" + nside = hp.order2nside(order) npix = hp.nside2npix(nside) - m = np.arange(npix) - m[setofids[0] : setofids[-1]] = m.max() + # background plot + m = np.arange(npix) + alpha = np.zeros_like(m) + 0.5 + alpha[patch_ids[0] : patch_ids[-1]] = 1 hp.mollview( m, - title="Mollview image RING", nest=True, coord=["C"], cbar=False, - cmap=cm, + cmap="inferno", + fig=fig, + alpha=alpha, ) + # patch plot + m[patch_ids[0] : patch_ids[-1]] = 3 * npix // 4 + alpha[:patch_ids[0]] = 0 + alpha[patch_ids[-1]:] = 0 + hp.mollview( + m, + title=f"Mollview image (RING, order={order})\nPatches {patch_ids}", + nest=True, + coord=["C"], + cbar=False, + cmap="Greens", + fig=fig, + reuse_axes=True, + alpha=alpha, + ) fig = plt.gcf() + return fig -def query_and_fit_patch_set(): +def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): """Query and fit a set of sky patches. Parameters ---------- - - """ + patch_ids : tuple[int] + Set of patch ids (int). + order : int + The healpix order. See :func:`healpy.order2nside` + """ + # create Gaia query + hpl = f"healpix{order}" # column name job = Gaia.launch_job_async( f""" SELECT - source_id, GAIA_HEALPIX_INDEX(4, source_id) AS healpix4, + source_id, GAIA_HEALPIX_INDEX({order}, source_id) AS {hpl}, parallax AS parallax, parallax_error AS parallax_error, ra, ra_error AS ra_err, dec, dec_error AS dec_err FROM gaiadr2.gaia_source - WHERE GAIA_HEALPIX_INDEX(4, source_id) IN {setofids} - AND parallax >= 0 + WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} + AND parallax > 0 AND random_index < 1000000 """, dump_to_file=False, verbose=False, ) + # perform query and + r = table.QTable(job.get_results(), copy=False) + rgr = r.group_by(hpl) # group stars by patch + + # plot the patches + if plot: + fig = plot_mollview(patch_ids, order) + fig.savefig(f"figures/mollview-{'-'.join(map(str, patch_ids))}.pdf") + + # parallax plot + if plot: + rows, remainder = np.divmod(len(patch_ids), 4) + if rows == 0: + width = remainder + else: + width = 4 + if remainder > 0: + rows += 1 + fig, axs = plt.subplots(rows, width, figsize=(5 * width, 5 * rows)) + else: + axs = np.zeros(len(rgr.groups)) - r = job.get_results() - rgr = r.group_by("healpix4") - - plot_mollview(setofids, opts.nside) - - for j in range(0, len(setofids)): - rg = rgr[rgr["healpix4"] == setofids[j]] - - print(setofids[j], len(rg)) - - # DOING STUFF HERE - # with catch_warnings(UserWarning): - df = table.QTable(rg) - - df = df[np.isfinite(df["parallax"])] # filter out NaN - df = df[df["parallax"] > 0] # positive parallax + key: table.Row + group: table.Table + for grp, ax in zip(rgr.groups, axs.flat): + patch_id: int = grp[hpl][0] + grp = grp[np.isfinite(grp["parallax"])] # filter out NaN # TODO! in query + # group = group[group["parallax"] > 0] # positive parallax + # add the fractional error - df["parallax_frac_error"] = df["parallax_error"] / df["parallax"] + grp["parallax_frac_error"] = grp["parallax_error"] / grp["parallax"] X = np.array( [ - df["ra"].to_value(u.deg), - df["dec"].to_value(u.deg), - np.log10(df["parallax"].to_value(u.mas)), - ] + grp["ra"].to_value(u.deg), + grp["dec"].to_value(u.deg), + np.log10(grp["parallax"].to_value(u.mas)), + ], ).T - y = np.log10(df["parallax_frac_error"].value.reshape(-1, 1))[:, 0] + y = np.log10(grp["parallax_frac_error"].value.reshape(-1, 1))[:, 0] xy = np.vstack([X[:, 2], y]) kde = gaussian_kde(xy)(xy) - ykr, kr = kernel_ridge(X, y, train_size=int(len(rg) * 0.8)) - # ygp, gpr = Gauss_process(X,y, train_size) - ysv, svr = support_vector(X, y, train_size=int(len(rg) * 0.8)) - yreg, reg = linear(X, y, train_size=int(len(rg) * 0.8)) - yreg1, reg1 = linear(X, y, train_size=int(len(rg) * 0.8), weight=False) + # fit a few different ways + ykr, kr = fit_kernel_ridge(X, y, train_size=int(len(grp) * 0.8)) + ysv, svr = fit_support_vector(X, y, train_size=int(len(grp) * 0.8)) + yreg, reg = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=kde) + yreg1, reg1 = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=False) + + with open("pk_reg/pk_" + str(patch_id) + ".pkl", mode="wb") as f: + pickle.dump(reg, f) # the weighted linear regression - with open("pk_reg/pk_" + str(setofids[j]) + ".pkl", mode="wb") as f: - pickle.dump(reg, f) + if plot: + plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, patch_id, ax=ax) - plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, setofids[j]) + if plot: + plt.tight_layout() + fig.savefig(f"figures/parallax-{'-'.join(map(str, patch_ids))}.pdf") ############################################################################## @@ -390,7 +458,8 @@ def query_and_fit_patch_set(): def make_parser( - *, inheritable: bool = False, plot: bool = _PLOT, verbose: int = _VERBOSE + *, inheritable: bool = False, plot: bool = _PLOT, + # verbose: int = _VERBOSE ) -> argparse.ArgumentParser: """Expose ArgumentParser for ``main``. @@ -426,11 +495,23 @@ def make_parser( conflict_handler="resolve" if not inheritable else "error", ) + # order + parser.add_argument("-o", "--order", action="store", default=4, type=int) + + # patches are done in batches. Need to decide the size + parser.add_argument("batch_size", action="store", type=int) + + # which patches + group = parser.add_mutually_exclusive_group(required=True) + group.add_argument("--allsky", action="store_true") + # group.add_argument() # TODO! option to specify a list of patches + # group.add_argument() # TODO! option to specify a start/stop patch index + # plot or not parser.add_argument("--plot", action="store", default=_PLOT, type=bool) - # script verbosity - parser.add_argument("-v", "--verbose", action="store", default=0, type=int) + # # script verbosity + # parser.add_argument("-v", "--verbose", action="store", default=0, type=int) return parser @@ -472,16 +553,15 @@ def main( # /if - if hasattr(opts, "norder"): - norder = opts.norder - opts.nside = hp.order2nside(norder) # converts norder to nside - breakpoint() + # construct the list of batches of sky patches + # [ (patch_1, patch_2, ...), (patch_i, patch_i+1, ...)] + return - for setofids in tqdm.tqdm(groups_of_setofids): - query_and_fit_patch_set(setofids) + for batch in tqdm.tqdm(list_of_batches): + query_and_fit_patch_set(batch, order=opts.order, plot=opts.plot) # /def From 02efbd311b950d7aea8ef343d75398b66c2a6265 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Sun, 5 Sep 2021 00:23:15 -0400 Subject: [PATCH 06/74] update known packages Signed-off-by: Nathaniel Starkman (@nstarman) --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 5898f0f4..092013df 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -10,7 +10,7 @@ force_grid_wrap = 0 use_parentheses = "True" ensure_newline_before_comments = "True" sections = [ "FUTURE", "STDLIB", "THIRDPARTY", "FIRSTPARTY", "LOCALFOLDER",] -known_third_party = ["agama", "astropy", "erfa", "extension_helpers", "gala", "galpy", "numpy", "pytest", "scipy", "setuptools", "typing_extensions"] +known_third_party = ["agama", "astropy", "astroquery", "erfa", "extension_helpers", "gala", "galpy", "healpy", "matplotlib", "numpy", "pytest", "scipy", "setuptools", "sklearn", "typing_extensions"] known_firstparty = [ "astronat", "utilipy",] known_localfolder = "discO" import_heading_stdlib = "BUILT-IN" From 82f65cf402abe615632acfef418aac0329a97e14 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Sun, 5 Sep 2021 00:23:25 -0400 Subject: [PATCH 07/74] and requirements Signed-off-by: Nathaniel Starkman (@nstarman) --- setup.cfg | 1 + 1 file changed, 1 insertion(+) diff --git a/setup.cfg b/setup.cfg index af9df24e..80f733a7 100644 --- a/setup.cfg +++ b/setup.cfg @@ -26,6 +26,7 @@ install_requires = tqdm astroquery Cython + scipy [options.entry_points] console_scripts = From 9c8b574592f8a81173902c410af57affbc314127 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 10 Sep 2021 15:01:27 -0400 Subject: [PATCH 08/74] functional Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 80 +++++++++++++++++++++++----------- 1 file changed, 55 insertions(+), 25 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index c723a685..dac3c135 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -28,6 +28,7 @@ # BUILT-IN import argparse +import pathlib import pickle import typing as T import warnings @@ -39,12 +40,14 @@ import matplotlib.pyplot as plt import numpy as np import numpy.typing as npt +import tqdm # TODO! make optional from astropy import table from astroquery.gaia import Gaia from scipy.stats import gaussian_kde from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.linear_model import LinearRegression +from sklearn.metrics._regression import UndefinedMetricWarning from sklearn.model_selection import GridSearchCV from sklearn.svm import SVR from sklearn.utils import shuffle @@ -57,8 +60,12 @@ # General _PLOT: bool = True # Whether to plot the output -# Log file -_VERBOSE: int = 0 # Degree of logfile verbosity +THIS_DIR = pathlib.Path(__file__).parent +PLOT_DIR = THIS_DIR / "figures" +PLOT_DIR.mkdir(exist_ok=True) + +DATA_DIR = THIS_DIR / "pk_reg" +DATA_DIR.mkdir(exist_ok=True) ############################################################################## # CODE @@ -360,7 +367,7 @@ def plot_mollview(patch_ids, order, fig=None): return fig -def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): +def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool, random_index: T.Optional[int]=1000000) -> None: """Query and fit a set of sky patches. Parameters @@ -373,8 +380,7 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): """ # create Gaia query hpl = f"healpix{order}" # column name - job = Gaia.launch_job_async( - f""" + query = f""" SELECT source_id, GAIA_HEALPIX_INDEX({order}, source_id) AS {hpl}, parallax AS parallax, parallax_error AS parallax_error, @@ -384,9 +390,13 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): FROM gaiadr2.gaia_source WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} - AND parallax > 0 - AND random_index < 1000000 - """, + AND parallax >= 0 + """ + if random_index is not None: + query += f"AND random_index < {random_index}" + + job = Gaia.launch_job_async( + query, dump_to_file=False, verbose=False, ) @@ -397,7 +407,8 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): # plot the patches if plot: fig = plot_mollview(patch_ids, order) - fig.savefig(f"figures/mollview-{'-'.join(map(str, patch_ids))}.pdf") + # TODO! allow for plot directory + fig.savefig(PLOT_DIR / f"mollview-{'-'.join(map(str, patch_ids))}.pdf") # parallax plot if plot: @@ -441,7 +452,7 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): yreg, reg = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=kde) yreg1, reg1 = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=False) - with open("pk_reg/pk_" + str(patch_id) + ".pkl", mode="wb") as f: + with open(DATA_DIR / f"pk_{patch_id}.pkl", mode="wb") as f: pickle.dump(reg, f) # the weighted linear regression if plot: @@ -449,7 +460,7 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): if plot: plt.tight_layout() - fig.savefig(f"figures/parallax-{'-'.join(map(str, patch_ids))}.pdf") + fig.savefig(PLOT_DIR / f"parallax-{'-'.join(map(str, patch_ids))}.pdf") ############################################################################## @@ -459,7 +470,6 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool): def make_parser( *, inheritable: bool = False, plot: bool = _PLOT, - # verbose: int = _VERBOSE ) -> argparse.ArgumentParser: """Expose ArgumentParser for ``main``. @@ -496,22 +506,27 @@ def make_parser( ) # order - parser.add_argument("-o", "--order", action="store", default=4, type=int) + parser.add_argument("-o", "--order", default=4, type=int) # patches are done in batches. Need to decide the size - parser.add_argument("batch_size", action="store", type=int) + parser.add_argument("-b", "--batch_size", default=10, type=int) # which patches group = parser.add_mutually_exclusive_group(required=True) - group.add_argument("--allsky", action="store_true") - # group.add_argument() # TODO! option to specify a list of patches - # group.add_argument() # TODO! option to specify a start/stop patch index + group.add_argument("--allsky", action="store_true", + help="Do all sky patches.") + group.add_argument("--patches", action="append", type=int, nargs='+', + help="sky patch ids.") + group.add_argument("-r", "--patches_range", type=int, nargs=2) + + # stars in gaia + parser.add_argument("--random_index", default=None, type=int) # plot or not parser.add_argument("--plot", action="store", default=_PLOT, type=bool) # # script verbosity - # parser.add_argument("-v", "--verbose", action="store", default=0, type=int) + parser.add_argument("--filter_warnings", action="store_true") return parser @@ -553,15 +568,30 @@ def main( # /if - breakpoint() - # construct the list of batches of sky patches # [ (patch_1, patch_2, ...), (patch_i, patch_i+1, ...)] - - return - - for batch in tqdm.tqdm(list_of_batches): - query_and_fit_patch_set(batch, order=opts.order, plot=opts.plot) + if opts.allsky: + nside = hp.order2nside(opts.order) + npix = hp.nside2npix(nside) # the number of sky patches + nbatches = npix // opts.batch_size + list_of_batches = np.array_split(np.arange(npix), nbatches) + elif opts.patches_range: + pi, pf = opts.patches_range + if pi >= pf: + raise ValueError("`patches_range` must be [start, stop], with stop > start.") + nbatches = (pf - pi) // opts.batch_size + list_of_batches = np.array_split(np.arange(pi, pf), nbatches) + elif opts.patches: + list_of_batches = opts.patches + + # optionally ignore warnings + with warnings.catch_warnings(): + if opts.filter_warnings: + warnings.simplefilter("ignore", category=UndefinedMetricWarning) # TODO! + warnings.simplefilter("ignore", category=UserWarning) # TODO! + + for batch in tqdm.tqdm(list_of_batches): + query_and_fit_patch_set(tuple(batch), order=opts.order, plot=opts.plot, random_index=opts.random_index) # /def From efd6452f549967890ed132c7fedf09e4b274e801 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 7 Oct 2021 14:04:26 -0400 Subject: [PATCH 09/74] fixup mypy Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 376 ++++++++++++++++++++------------- pyproject.toml | 2 +- 2 files changed, 231 insertions(+), 147 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index dac3c135..18410945 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -55,17 +55,15 @@ ############################################################################## # PARAMETERS -RandomStateType = T.Union[None, int, np.random.RandomState, np.random.Generator] +RandomStateType = T.Union[ + None, + int, + np.random.RandomState, + np.random.Generator, +] # General -_PLOT: bool = True # Whether to plot the output - THIS_DIR = pathlib.Path(__file__).parent -PLOT_DIR = THIS_DIR / "figures" -PLOT_DIR.mkdir(exist_ok=True) - -DATA_DIR = THIS_DIR / "pk_reg" -DATA_DIR.mkdir(exist_ok=True) ############################################################################## # CODE @@ -73,11 +71,11 @@ def fit_kernel_ridge( - X: npt.NDArray, - y: npt.NDArray, + X: npt.NDArray[np.float_], + y: npt.NDArray[np.float_], train_size: int, random_state: RandomStateType = None, -) -> (npt.NDArray, KernelRidge): +) -> T.Tuple[npt.NDArray[np.float_], KernelRidge]: """Kernel-Ridge Regression code. Parameters @@ -102,7 +100,11 @@ def fit_kernel_ridge( ) # randomize the data order - idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) + idx = shuffle( + np.arange(0, len(X)), + random_state=random_state, + n_samples=train_size, + ) # Fitting using the Kernel-Ridge Regression kr.fit(X[idx], y[idx]) @@ -122,48 +124,12 @@ def fit_kernel_ridge( # /def -# def fit_gaussian_process( -# X: npt.NDArray, -# y: npt.NDArray, -# train_size: int, -# random_state: RandomStateType = None, -# ) -> (npt.NDArray, GaussianProcessRegressor): -# """Gaussian-Process Regression code. -# -# Parameters -# ---------- -# X : ndarray -# y : ndarray -# train_size : int -# random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) -# -# Returns -# ------- -# ykr : ndarray -# kr : `~sklearn.gaussian_process.GaussianProcessRegressor` -# """ -# # estimator -# gpr = GaussianProcessRegressor(kernel=None) -# -# # randomize the data order -# idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) -# -# # fit -# gpr.fit(X[idx], y[idx]) -# ygp = gpr.predict(Xp) -# -# return ygp, gpr -# -# -# # /def - - def fit_support_vector( - X: npt.NDArray, - y: npt.NDArray, + X: npt.NDArray[np.float_], + y: npt.NDArray[np.float_], train_size: int, random_state: RandomStateType = None, -) -> (npt.NDArray, SVR): +) -> T.Tuple[npt.NDArray[np.float_], SVR]: """support-vector regression. Parameter @@ -184,7 +150,11 @@ def fit_support_vector( ) # randomize the data order - idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) + idx = shuffle( + np.arange(0, len(X)), + random_state=random_state, + n_samples=train_size, + ) # Fitting using the Support Vector svr.fit(X[idx], y[idx]) @@ -205,12 +175,12 @@ def fit_support_vector( def fit_linear( - X: npt.NDArray, - y: npt.NDArray, + X: npt.NDArray[np.float_], + y: npt.NDArray[np.float_], train_size: int, - weight: T.Union[bool, npt.NDArray] = True, + weight: T.Union[bool, npt.NDArray[np.float_]] = True, random_state: RandomStateType = None, -) -> (npt.NDArray, LinearRegression): +) -> T.Tuple[npt.NDArray[np.float_], LinearRegression]: """Linear regression model. Parameters @@ -229,13 +199,18 @@ def fit_linear( lr = LinearRegression() # randomize the data order - idx = shuffle(np.arange(0, len(X)), random_state=random_state, n_samples=train_size) + idx = shuffle( + np.arange(0, len(X)), + random_state=random_state, + n_samples=train_size, + ) # fit, optionally with weights - if weight is True or isinstance(weight, np.ndarray): # True or kde - if weight is True: - xy = np.vstack([X[:, 2], y]) - weight = gaussian_kde(xy)(xy) + if weight is True: + xy: npt.NDArray[np.float_] = np.vstack([X[:, 2], y]) + wgt: npt.NDArray[np.float_] = gaussian_kde(xy)(xy) + lr.fit(X[idx], y[idx], sample_weight=(1 / wgt)[idx]) + elif isinstance(weight, np.ndarray): lr.fit(X[idx], y[idx], sample_weight=(1 / weight)[idx]) else: lr.fit(X[idx], y[idx]) @@ -256,18 +231,18 @@ def fit_linear( # /def -# =================================================================== +# ============================================================================ def plot_parallax_prediction( - Xtrue: npt.NDArray, - ytrue: npt.NDArray, - kde, - ypred1: npt.NDArray, - ypred2: npt.NDArray, - ypred3: npt.NDArray, - fids, - ax=None + Xtrue: npt.NDArray[np.float_], + ytrue: npt.NDArray[np.float_], + kde: gaussian_kde, + ypred1: npt.NDArray[np.float_], + ypred2: npt.NDArray[np.float_], + ypred3: npt.NDArray[np.float_], + patch_id: int, + ax: T.Optional[plt.Axes]=None, ) -> plt.Figure: """Plot predicted parallax. @@ -279,7 +254,7 @@ def plot_parallax_prediction( ypred1 ypred2 ypred3 - fids + patch_id Returns ------- @@ -293,14 +268,18 @@ def plot_parallax_prediction( ax.set_xlabel(r"$\log_{10}$ parallax [mas]") ax.set_ylabel(r"$\log_{10}$ parallax fractional error") - ax.set_title(f"Patch={fids}") + ax.set_title(f"Patch={patch_id}") # distance label secax = ax.secondary_xaxis( "top", functions=( - lambda logp: np.log10(coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc)), - lambda logd: np.log10(coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas)), + lambda logp: np.log10( + coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc), + ), + lambda logd: np.log10( + coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas), + ), ), ) secax.set_xlabel(r"$\log_{10}$ Distance [kpc]") @@ -328,8 +307,16 @@ def plot_parallax_prediction( # /def -def plot_mollview(patch_ids, order, fig=None): - """Plot Mollweide view with patches on sky.""" +def plot_mollview(patch_ids: tuple[int, ...], order: int, fig: T.Optional[plt.Figure]=None) -> plt.Figure: + """Plot Mollweide view with patches on sky. + + Parameters + ---------- + patch_ids : tuple[int] + Set of patch ids (int). + order : int + The healpix order. See :func:`healpy.order2nside` + """ nside = hp.order2nside(order) npix = hp.nside2npix(nside) @@ -337,20 +324,12 @@ def plot_mollview(patch_ids, order, fig=None): m = np.arange(npix) alpha = np.zeros_like(m) + 0.5 alpha[patch_ids[0] : patch_ids[-1]] = 1 - hp.mollview( - m, - nest=True, - coord=["C"], - cbar=False, - cmap="inferno", - fig=fig, - alpha=alpha, - ) + hp.mollview(m, nest=True, coord=["C"], cbar=False, cmap="inferno", fig=fig, alpha=alpha) # patch plot m[patch_ids[0] : patch_ids[-1]] = 3 * npix // 4 - alpha[:patch_ids[0]] = 0 - alpha[patch_ids[-1]:] = 0 + alpha[: patch_ids[0]] = 0 + alpha[patch_ids[-1] :] = 0 hp.mollview( m, title=f"Mollview image (RING, order={order})\nPatches {patch_ids}", @@ -362,12 +341,21 @@ def plot_mollview(patch_ids, order, fig=None): reuse_axes=True, alpha=alpha, ) - fig = plt.gcf() return fig +# /def + + +# ============================================================================ -def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool, random_index: T.Optional[int]=1000000) -> None: + +def query_and_fit_patch_set( + patch_ids: tuple[int, ...], + order: int, + plot: bool, + random_index: T.Optional[int] = 1000000, +) -> None: """Query and fit a set of sky patches. Parameters @@ -376,9 +364,20 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool, r Set of patch ids (int). order : int The healpix order. See :func:`healpy.order2nside` - """ - # create Gaia query + # create directories + FOLDER = THIS_DIR / f"order_{order}" + FOLDER.mkdir(exist_ok=True) + + PLOT_DIR = FOLDER / "figures" + PLOT_DIR.mkdir(exist_ok=True) + + DATA_DIR = FOLDER / "pk_reg" + DATA_DIR.mkdir(exist_ok=True) + + # ----------------------- + # Query batch + hpl = f"healpix{order}" # column name query = f""" SELECT @@ -392,6 +391,7 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool, r WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} AND parallax >= 0 """ + if random_index is not None: query += f"AND random_index < {random_index}" @@ -400,37 +400,42 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool, r dump_to_file=False, verbose=False, ) - # perform query and - r = table.QTable(job.get_results(), copy=False) - rgr = r.group_by(hpl) # group stars by patch + # perform query and... + result = table.QTable(job.get_results(), copy=False) + if len(result) == 0: + warnings.warn(f"no data in patches: {patch_ids}") + return + + rgr: table.QTable = result.group_by(hpl) # group stars by patch # plot the patches if plot: - fig = plot_mollview(patch_ids, order) - # TODO! allow for plot directory + fig = plt.figure() + plot_mollview(patch_ids, order, fig=fig) fig.savefig(PLOT_DIR / f"mollview-{'-'.join(map(str, patch_ids))}.pdf") - # parallax plot - if plot: + # ----------------------- + # Fits to each patch + + ax: T.Union[plt.Axes, None] + axs: npt.NDArray[np.object_] # axes or 0s + if plot: # set up parallax plots rows, remainder = np.divmod(len(patch_ids), 4) - if rows == 0: - width = remainder - else: - width = 4 + width = remainder if (rows == 0) else 4 if remainder > 0: rows += 1 fig, axs = plt.subplots(rows, width, figsize=(5 * width, 5 * rows)) else: - axs = np.zeros(len(rgr.groups)) + axs = np.array([None] * len(rgr.groups)) # noop for iteration key: table.Row - group: table.Table - for grp, ax in zip(rgr.groups, axs.flat): + grp: table.Table + for grp, ax in zip(rgr.groups, axs.flat): # iter thru patches patch_id: int = grp[hpl][0] grp = grp[np.isfinite(grp["parallax"])] # filter out NaN # TODO! in query # group = group[group["parallax"] > 0] # positive parallax - + # add the fractional error grp["parallax_frac_error"] = grp["parallax_error"] / grp["parallax"] @@ -462,15 +467,15 @@ def query_and_fit_patch_set(patch_ids: tuple[int, ...], order: int, plot=bool, r plt.tight_layout() fig.savefig(PLOT_DIR / f"parallax-{'-'.join(map(str, patch_ids))}.pdf") +# /def + ############################################################################## # Command Line ############################################################################## -def make_parser( - *, inheritable: bool = False, plot: bool = _PLOT, -) -> argparse.ArgumentParser: +def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: """Expose ArgumentParser for ``main``. Parameters @@ -487,17 +492,10 @@ def make_parser( Returns ------- - parser: |ArgumentParser| + parser: `~argparse.ArgumentParser` The parser with arguments: - - plot - verbose - - .. - RST SUBSTITUTIONS - - .. |ArgumentParser| replace:: `~argparse.ArgumentParser` - """ parser = argparse.ArgumentParser( description="", @@ -506,27 +504,66 @@ def make_parser( ) # order - parser.add_argument("-o", "--order", default=4, type=int) + parser.add_argument("-o", "--order", default=6, type=int, help="healpix order") # patches are done in batches. Need to decide the size - parser.add_argument("-b", "--batch_size", default=10, type=int) + parser.add_argument( + "-b", + "--batch_size", + default=30, + type=int, + help="number of patches in a batch", + ) # which patches group = parser.add_mutually_exclusive_group(required=True) - group.add_argument("--allsky", action="store_true", - help="Do all sky patches.") - group.add_argument("--patches", action="append", type=int, nargs='+', - help="sky patch ids.") - group.add_argument("-r", "--patches_range", type=int, nargs=2) + group.add_argument("--allsky", action="store_true", help="fit all sky patches") + group.add_argument( + "--patches", + action="append", + type=int, + nargs="+", + help="only fit specified sky patches by ID", + ) + group.add_argument( + "-r", + "--patches_range", + type=int, + nargs=2, + help="fit specified sky patches within range", + ) # stars in gaia - parser.add_argument("--random_index", default=None, type=int) + parser.add_argument( + "-i", + "--random_index", + default=None, + type=int, + help="limit queried stars within random index", + ) + + # random number generator + parser.add_argument("--rng", default=0, type=int, help="random number generator") # plot or not - parser.add_argument("--plot", action="store", default=_PLOT, type=bool) + parser.add_argument("--plot", default=True, type=bool, help="plot") + + # script verbosity + parser.add_argument("--filter_warnings", action="store_true", help="filter warnings") - # # script verbosity - parser.add_argument("--filter_warnings", action="store_true") + # parallelize + parser.add_argument( + "--parallel", + action="store_true", + default=False, + help="whether to parallelize fitting the batches", + ) + parser.add_argument( + "--numcores", + type=int, + default=None, + help="number of computer cores to use, if parallelizing", + ) return parser @@ -538,9 +575,9 @@ def make_parser( def main( - args: T.Union[list, str, None] = None, + args: T.Union[list[str], str, None] = None, opts: T.Optional[argparse.Namespace] = None, -): +) -> None: """Script Function. Parameters @@ -553,10 +590,10 @@ def main( if not None, used ONLY if args is None - nside - """ + ns: argparse.Namespace if opts is not None and args is None: - pass + ns = opts else: if opts is not None: warnings.warn("Not using `opts` because `args` are given") @@ -564,34 +601,81 @@ def main( args = args.split() parser = make_parser() - opts = parser.parse_args(args) + ns = parser.parse_args(args) # /if + # random number generator + rng = np.random.default_rng(ns.rng) + # construct the list of batches of sky patches # [ (patch_1, patch_2, ...), (patch_i, patch_i+1, ...)] - if opts.allsky: - nside = hp.order2nside(opts.order) + if ns.allsky: + nside = hp.order2nside(ns.order) npix = hp.nside2npix(nside) # the number of sky patches - nbatches = npix // opts.batch_size + nbatches = npix // ns.batch_size + all_patches = np.arange(npix) + rng.shuffle(all_patches) # shuffle up the patches + list_of_batches = np.array_split(np.arange(npix), nbatches) - elif opts.patches_range: - pi, pf = opts.patches_range + elif ns.patches_range: + pi, pf = ns.patches_range if pi >= pf: - raise ValueError("`patches_range` must be [start, stop], with stop > start.") - nbatches = (pf - pi) // opts.batch_size + raise ValueError( + "`patches_range` must be [start, stop], with stop > start.", + ) + nbatches = (pf - pi) // ns.batch_size list_of_batches = np.array_split(np.arange(pi, pf), nbatches) - elif opts.patches: - list_of_batches = opts.patches + elif ns.patches: + list_of_batches = ns.patches + + list_of_batches = np.array(list_of_batches, dtype=object) # optionally ignore warnings with warnings.catch_warnings(): - if opts.filter_warnings: - warnings.simplefilter("ignore", category=UndefinedMetricWarning) # TODO! + if ns.filter_warnings: + warnings.simplefilter( + "ignore", + category=UndefinedMetricWarning, + ) # TODO! warnings.simplefilter("ignore", category=UserWarning) # TODO! - for batch in tqdm.tqdm(list_of_batches): - query_and_fit_patch_set(tuple(batch), order=opts.order, plot=opts.plot, random_index=opts.random_index) + if ns.parallel: + # TODO! not have galpy dependency just for this util + # THIRD PARTY + from .multi import parallel_map + + def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: + if len(batch) != 0: # skip empty batch + query_and_fit_patch_set( + tuple(batch), + order=ns.order, + plot=False, # FIXME! doesn't work with parallel map + random_index=ns.random_index, + ) + pbar.update(n=1) + pbar.refresh() + return batch + + # /def + + with tqdm.tqdm(total=len(list_of_batches)) as pbar: + # TODO! switch to + # https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool.map + parallel_map( + wrapped_query_and_fit_patch_set, + list_of_batches, + numcores=ns.numcores + ) + + else: + for batch in tqdm.tqdm(list_of_batches): + query_and_fit_patch_set( + tuple(batch), + order=ns.order, + plot=ns.plot, + random_index=ns.random_index, + ) # /def diff --git a/pyproject.toml b/pyproject.toml index 092013df..052ba4b3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -10,7 +10,7 @@ force_grid_wrap = 0 use_parentheses = "True" ensure_newline_before_comments = "True" sections = [ "FUTURE", "STDLIB", "THIRDPARTY", "FIRSTPARTY", "LOCALFOLDER",] -known_third_party = ["agama", "astropy", "astroquery", "erfa", "extension_helpers", "gala", "galpy", "healpy", "matplotlib", "numpy", "pytest", "scipy", "setuptools", "sklearn", "typing_extensions"] +known_third_party = ["agama", "astropy", "astroquery", "erfa", "extension_helpers", "gala", "galpy", "healpy", "matplotlib", "numpy", "pytest", "scipy", "setuptools", "sklearn", "tqdm", "typing_extensions"] known_firstparty = [ "astronat", "utilipy",] known_localfolder = "discO" import_heading_stdlib = "BUILT-IN" From 785af9aaf77d795a92a69922a8a767b24368b4f3 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 19:39:23 -0400 Subject: [PATCH 10/74] sky distributed pixels Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/_astropy_init.py | 3 +- discO/conftest.py | 5 +- discO/core/common.py | 6 +- discO/core/fitter.py | 12 +- discO/core/measurement.py | 30 +- discO/core/residual.py | 16 +- discO/core/sample.py | 15 +- discO/core/tests/test_fitter.py | 10 +- discO/core/tests/test_measurement.py | 32 +- discO/core/tests/test_pipeline.py | 14 +- discO/core/tests/test_residual.py | 5 +- discO/core/tests/test_sample.py | 24 +- discO/core/wrapper.py | 20 +- discO/data/err_field/script.py | 109 +++++-- discO/data/err_field/sky_distribution.py | 280 ++++++++++++++++++ .../galpy_potentials/self_consistent_field.py | 22 +- discO/plugin/agama/fitter.py | 5 +- discO/plugin/agama/sample.py | 4 +- discO/plugin/agama/tests/test_fitter.py | 4 +- discO/plugin/agama/tests/test_sample.py | 4 +- discO/plugin/agama/tests/test_wrapper.py | 8 +- discO/plugin/gala/tests/test_wrapper.py | 8 +- discO/plugin/galpy/fitter.py | 19 +- discO/plugin/galpy/sample.py | 12 +- discO/plugin/galpy/tests/test_fitter.py | 8 +- discO/plugin/galpy/tests/test_residual.py | 4 +- discO/plugin/galpy/tests/test_sample.py | 8 +- discO/plugin/galpy/tests/test_wrapper.py | 8 +- discO/plugin/galpy/wrapper.py | 4 +- discO/utils/coordinates.py | 6 +- discO/utils/tests/test_coordinates.py | 29 +- discO/utils/tests/test_random.py | 4 +- discO/utils/tests/test_vectorfield.py | 13 +- discO/utils/vectorfield.py | 39 +-- docs/conf.py | 3 +- setup.cfg | 15 +- 36 files changed, 474 insertions(+), 334 deletions(-) create mode 100644 discO/data/err_field/sky_distribution.py diff --git a/discO/_astropy_init.py b/discO/_astropy_init.py index 2cfe0112..ac776cbf 100644 --- a/discO/_astropy_init.py +++ b/discO/_astropy_init.py @@ -63,8 +63,7 @@ update_default_config(__package__, config_dir) except ConfigurationDefaultMissingError as e: wmsg = ( - e.args[0] - + " Cannot install default profile. If you are " + e.args[0] + " Cannot install default profile. If you are " "importing from source, this is expected." ) warn(ConfigurationDefaultMissingWarning(wmsg)) diff --git a/discO/conftest.py b/discO/conftest.py index f9c54958..ca044508 100644 --- a/discO/conftest.py +++ b/discO/conftest.py @@ -22,10 +22,7 @@ try: # THIRD PARTY - from pytest_astropy_header.display import ( - PYTEST_HEADER_MODULES, - TESTED_VERSIONS, - ) + from pytest_astropy_header.display import PYTEST_HEADER_MODULES, TESTED_VERSIONS ASTROPY_HEADER = True except ImportError: diff --git a/discO/core/common.py b/discO/core/common.py index 0e046f45..e7ad0e95 100644 --- a/discO/core/common.py +++ b/discO/core/common.py @@ -137,11 +137,7 @@ def registry(cls) -> T.Mapping: # else, filter registry by subclass return MappingProxyType( - { - k: v - for k, v in cls._registry.items() - if issubclass(v, cls) and v is not cls - }, + {k: v for k, v in cls._registry.items() if issubclass(v, cls) and v is not cls}, ) # /def diff --git a/discO/core/fitter.py b/discO/core/fitter.py index 7e94e4e1..a69aec09 100644 --- a/discO/core/fitter.py +++ b/discO/core/fitter.py @@ -28,10 +28,7 @@ # PROJECT-SPECIFIC import discO.type_hints as TH from .common import CommonBase -from discO.utils.coordinates import ( - resolve_framelike, - resolve_representationlike, -) +from discO.utils.coordinates import resolve_framelike, resolve_representationlike from discO.utils.pbar import get_progress_bar ############################################################################## @@ -114,16 +111,13 @@ def __new__( if key not in cls._registry: raise ValueError( - "PotentialFitter has no registered fitter for key: " - f"{key}", + "PotentialFitter has no registered fitter for key: " f"{key}", ) # from registry. Registered in __init_subclass__ kls = cls._registry[key] kwargs.pop("key", None) # it's already used. - return kls.__new__( - kls, potential_cls=potential_cls, key=None, **kwargs - ) + return kls.__new__(kls, potential_cls=potential_cls, key=None, **kwargs) elif key is not None: raise ValueError( diff --git a/discO/core/measurement.py b/discO/core/measurement.py index 7267400a..460330fd 100644 --- a/discO/core/measurement.py +++ b/discO/core/measurement.py @@ -37,12 +37,7 @@ import astropy.units as u import numpy as np import scipy.stats -from astropy.coordinates import ( - BaseCoordinateFrame, - BaseRepresentation, - SkyCoord, - concatenate, -) +from astropy.coordinates import BaseCoordinateFrame, BaseRepresentation, SkyCoord, concatenate from astropy.utils.decorators import classproperty # PROJECT-SPECIFIC @@ -173,8 +168,7 @@ def __new__( elif method is not None: raise ValueError( - f"Can't specify 'method' on {cls}," - " only on MeasurementErrorSampler.", + f"Can't specify 'method' on {cls}," " only on MeasurementErrorSampler.", ) return super().__new__(cls) @@ -398,9 +392,7 @@ def _run_batch( else: # (Nsamples, Niter) samples = list( - self._run_iter( - c, c_err=c_err, random=random, progress=progress, **kwargs - ), + self._run_iter(c, c_err=c_err, random=random, progress=progress, **kwargs), ) sample = concatenate(samples).reshape(c.shape) @@ -457,9 +449,7 @@ def run( if not isinstance(random, np.random.RandomState): random = np.random.RandomState(random) - return run_func( - c, c_err=c_err, random=random, progress=progress, **kwargs - ) + return run_func(c, c_err=c_err, random=random, progress=progress, **kwargs) # /def @@ -698,15 +688,12 @@ def __new__( # a cleaner error than KeyError on the actual registry if not cls._in_registry(method): raise ValueError( - "RVS_Continuous has no registered " - f"measurement resampler '{method}'", + "RVS_Continuous has no registered " f"measurement resampler '{method}'", ) # from registry. Registered in __init_subclass__ # don't pass rvs, b/c not all subclasses take it - return super().__new__( - cls[method], c_err=c_err, method=None, **kwargs - ) + return super().__new__(cls[method], c_err=c_err, method=None, **kwargs) elif method is not None: raise ValueError( @@ -846,10 +833,7 @@ def __call__( # re-build representation new_rep = rep.__class__( - **{ - n: attr_classes[n](p * unit) - for p, (n, unit) in zip(new_posT, units.items()) - } + **{n: attr_classes[n](p * unit) for p, (n, unit) in zip(new_posT, units.items())} ) # make coordinate new_cc = self.frame.realize_frame( diff --git a/discO/core/residual.py b/discO/core/residual.py index 0b4e402b..c3595057 100644 --- a/discO/core/residual.py +++ b/discO/core/residual.py @@ -33,10 +33,7 @@ import discO.type_hints as TH from .common import CommonBase from .wrapper import PotentialWrapper -from discO.utils.coordinates import ( - resolve_framelike, - resolve_representationlike, -) +from discO.utils.coordinates import resolve_framelike, resolve_representationlike from discO.utils.pbar import get_progress_bar ############################################################################## @@ -113,8 +110,7 @@ def __new__(cls, *args, method: T.Optional[str] = None, **kwargs): elif method is not None: raise ValueError( - f"Can't specify 'method' on {cls.__name__}, " - "only on ResidualMethod.", + f"Can't specify 'method' on {cls.__name__}, " "only on ResidualMethod.", ) return super().__new__(cls) @@ -140,9 +136,7 @@ def __init__( # representation type representation_type = ( resolve_representationlike(representation_type) - if not ( - representation_type is None or representation_type is Ellipsis - ) + if not (representation_type is None or representation_type is Ellipsis) else representation_type ) @@ -270,9 +264,7 @@ def evaluate_potential( evaluator: T.Callable = getattr(evaluator_cls, observable) # evaluate - value = evaluator( - points, representation_type=representation_type, **kwargs - ) + value = evaluator(points, representation_type=representation_type, **kwargs) # ----------------------- # Return diff --git a/discO/core/sample.py b/discO/core/sample.py index b4fdfbd3..4019b257 100644 --- a/discO/core/sample.py +++ b/discO/core/sample.py @@ -154,8 +154,7 @@ def __new__( if key not in cls._registry: raise ValueError( - "PotentialSampler has no registered sampler for key: " - f"{key}", + "PotentialSampler has no registered sampler for key: " f"{key}", ) # from registry. Registered in __init_subclass__ @@ -195,8 +194,7 @@ def __init__( mtot = potential.total_mass() if total_mass is None else total_mass if not np.isfinite(mtot): # divergent raise ValueError( - "The potential`s mass is divergent, " - "the argument `total_mass` cannot be None.", + "The potential`s mass is divergent, " "the argument `total_mass` cannot be None.", ) # potential is checked in __new__ as a PotentialWrapper @@ -642,9 +640,8 @@ def _get_dimensions(meshgrid): def _imapper(self): @frompyfunc(nin=1, nout=1) def imapper(uniform_draw): - iflat = np.where( - uniform_draw * self._normalization <= self._index_partition, - )[0][0] + iflat = np.where(uniform_draw * self._normalization <= self._index_partition) + iflat = iflat[0][0] i = np.unravel_index(iflat, self._gridshape) return i @@ -652,9 +649,7 @@ def imapper(uniform_draw): # /def - def __call__( - self, n: int, rng: T.Optional[np.random.Generator] = None, **kw - ): + def __call__(self, n: int, rng: T.Optional[np.random.Generator] = None, **kw): """Sample. .. todo:: diff --git a/discO/core/tests/test_fitter.py b/discO/core/tests/test_fitter.py index 608e1a45..7aa8c5a2 100644 --- a/discO/core/tests/test_fitter.py +++ b/discO/core/tests/test_fitter.py @@ -323,10 +323,7 @@ def test_representation_type(self): def test_potential_kwargs(self): """Test attribute ``potential_kwargs``.""" if hasattr(self.inst, "_instance"): - assert ( - self.inst.potential_kwargs - == self.inst._instance.potential_kwargs - ) + assert self.inst.potential_kwargs == self.inst._instance.potential_kwargs else: assert self.inst.potential_kwargs == MappingProxyType( self.inst._kwargs, @@ -388,10 +385,7 @@ def test_run(self, sample, mass, batch): assert isinstance(pots, np.ndarray) assert len(pots) == sample.shape[1] assert all( - [ - isinstance(p.__wrapped__, sample.cache["potential"]) - for p in pots - ], + [isinstance(p.__wrapped__, sample.cache["potential"]) for p in pots], ) # and then cleanup diff --git a/discO/core/tests/test_measurement.py b/discO/core/tests/test_measurement.py index 4e4fe82a..d0c1b98d 100644 --- a/discO/core/tests/test_measurement.py +++ b/discO/core/tests/test_measurement.py @@ -164,10 +164,7 @@ def test__registry(self): # The GaussianMeasurementErrorSampler is already registered, so can # test for that. assert "Gaussian" in self.obj._registry - assert ( - self.obj._registry["Gaussian"] - is measurement.GaussianMeasurementError - ) + assert self.obj._registry["Gaussian"] is measurement.GaussianMeasurementError # /def @@ -183,10 +180,7 @@ def test___class_getitem__(self): if self.obj is measurement.MeasurementErrorSampler: assert self.obj["Gaussian"] is measurement.GaussianMeasurementError - assert ( - self.obj["rvs", "Gaussian"] - is measurement.GaussianMeasurementError - ) + assert self.obj["rvs", "Gaussian"] is measurement.GaussianMeasurementError # not in own registry with pytest.raises(TypeError): @@ -275,9 +269,7 @@ def test___init__(self): representation_type=rep_type, ) assert obj.frame == coord.Galactocentric(), frame - assert ( - obj.representation_type == coord.CartesianRepresentation - ), rep_type + assert obj.representation_type == coord.CartesianRepresentation, rep_type assert "method" not in obj.params # /def @@ -407,9 +399,7 @@ def test__fix_branch_cuts(self): theta=[3, 4] * u.deg, r=[5, 6] * u.kpc, ) - array = ( - rep._values.view(dtype=np.float64).reshape(rep.shape[0], -1).T - ) + array = rep._values.view(dtype=np.float64).reshape(rep.shape[0], -1).T self.inst._fix_branch_cuts( array.copy(), coord.PhysicsSphericalRepresentation, @@ -422,7 +412,7 @@ def test__fix_branch_cuts(self): @abstractmethod def test___call__(self): - """Test method ``__call__``. """ + """Test method ``__call__``.""" # run tests on super super().test___call__() @@ -768,9 +758,7 @@ def test___init__(self): representation_type=rep_type, ) assert obj.frame == coord.Galactocentric(), frame - assert ( - obj.representation_type == coord.CartesianRepresentation - ), rep_type + assert obj.representation_type == coord.CartesianRepresentation, rep_type assert "method" not in obj.params # /def @@ -803,9 +791,7 @@ def test___call__set_random(self, c_err, random): expected_dec = [2.08003144, 3.5602674] expected_dist = [1.97873798, 0.02272212] - random = ( - np.random.RandomState(0) if random == "RandomState(0)" else random - ) + random = np.random.RandomState(0) if random == "RandomState(0)" else random res = self.inst(self.c, c_err=eval(c_err), random=random) # TODO! assert np.allclose(res.ra.deg, expected_ra) @@ -1083,9 +1069,7 @@ def test___init__(self): representation_type=rep_type, ) assert obj.frame == coord.Galactocentric(), frame - assert ( - obj.representation_type == coord.CartesianRepresentation - ), rep_type + assert obj.representation_type == coord.CartesianRepresentation, rep_type assert "method" not in obj.params # /def diff --git a/discO/core/tests/test_pipeline.py b/discO/core/tests/test_pipeline.py index 6b66907a..aa9ec124 100644 --- a/discO/core/tests/test_pipeline.py +++ b/discO/core/tests/test_pipeline.py @@ -93,9 +93,7 @@ def teardown_module(module): class MockSampler(PotentialSampler): """Dunder Sampler.""" - def __call__( - self, n, *, frame=None, representation_type=None, random=None, **kwargs - ): + def __call__(self, n, *, frame=None, representation_type=None, random=None, **kwargs): # Get preferred frames frame = self._infer_frame(frame) representation_type = self._infer_representation(representation_type) @@ -289,10 +287,7 @@ def test_potential_frame(self): def test_potential_representation_type(self): """Test property ``potential_representation_type``.""" - assert ( - self.inst.potential_representation_type - is self.inst.sampler.representation_type - ) + assert self.inst.potential_representation_type is self.inst.sampler.representation_type # /def @@ -310,10 +305,7 @@ def test_observer_frame(self): def test_observer_representation_type(self): """Test property ``observer_representation_type``.""" - assert ( - self.inst.observer_representation_type - is self.inst.measurer.representation_type - ) + assert self.inst.observer_representation_type is self.inst.measurer.representation_type # /def diff --git a/discO/core/tests/test_residual.py b/discO/core/tests/test_residual.py index 5376ab02..8817f462 100644 --- a/discO/core/tests/test_residual.py +++ b/discO/core/tests/test_residual.py @@ -197,10 +197,7 @@ def test_frame(self): def test_representation_type(self): """Test property ``representation_type``.""" - assert ( - self.inst.representation_type - is self.inst.original_potential.representation_type - ) + assert self.inst.representation_type is self.inst.original_potential.representation_type # /def diff --git a/discO/core/tests/test_sample.py b/discO/core/tests/test_sample.py index 665874b8..fc788f72 100644 --- a/discO/core/tests/test_sample.py +++ b/discO/core/tests/test_sample.py @@ -338,10 +338,7 @@ def test_frame(self): def test_representation_type(self): """Test method ``representation_type``.""" - assert ( - self.inst.representation_type - is self.inst.potential.representation_type - ) + assert self.inst.representation_type is self.inst.potential.representation_type # /def @@ -399,9 +396,7 @@ def test_call_parametrize(self, n, frame, kwargs): ) def test_run(self, n, niter, random, kwargs): """Test method ``run``.""" - samples = self.inst.run( - n=n, iterations=niter, random=random, batch=True, **kwargs - ) + samples = self.inst.run(n=n, iterations=niter, random=random, batch=True, **kwargs) if isinstance(samples, np.ndarray): for s, n_ in zip(samples, n): if niter == 1: @@ -430,20 +425,14 @@ def test__infer_representation(self): # ---------------- # None -> own frame - assert ( - self.inst._infer_representation(None) - == self.inst.potential.representation_type - ) + assert self.inst._infer_representation(None) == self.inst.potential.representation_type # ---------------- # still None old_representation_type = self.inst.representation_type self.inst.potential._representation_type = None - assert ( - self.inst._infer_representation(None) - == self.inst.frame.default_representation - ) + assert self.inst._infer_representation(None) == self.inst.frame.default_representation self.inst.potential._representation_type = old_representation_type # ---------------- @@ -460,10 +449,7 @@ def test__infer_representation(self): == coord.CartesianRepresentation ) - assert ( - self.inst._infer_representation("cartesian") - == coord.CartesianRepresentation - ) + assert self.inst._infer_representation("cartesian") == coord.CartesianRepresentation # /def diff --git a/discO/core/wrapper.py b/discO/core/wrapper.py index f1621914..3ba39152 100644 --- a/discO/core/wrapper.py +++ b/discO/core/wrapper.py @@ -458,9 +458,7 @@ def __init__( # the "intrinsic" frame of the potential. # resolve else-wise (None -> UnFrame) - self._frame = ( - resolve_framelike(frame) if frame is not Ellipsis else frame - ) + self._frame = resolve_framelike(frame) if frame is not Ellipsis else frame self._default_representation = ( resolve_representationlike(representation_type) if representation_type not in (None, Ellipsis) @@ -545,9 +543,7 @@ def __call__( values : |Quantity| """ - return self.potential( - points, representation_type=representation_type, **kwargs - ) + return self.potential(points, representation_type=representation_type, **kwargs) # /def @@ -601,9 +597,7 @@ def density( """ # if representation type is None, use default representation_type = ( - self.representation_type - if representation_type is None - else representation_type + self.representation_type if representation_type is None else representation_type ) return self.__class__.density( @@ -649,9 +643,7 @@ def potential( """ # if representation type is None, use default representation_type = ( - self.representation_type - if representation_type is None - else representation_type + self.representation_type if representation_type is None else representation_type ) return self.__class__.potential( @@ -696,9 +688,7 @@ def specific_force( """ # if representation type is None, use default representation_type = ( - self.representation_type - if representation_type is None - else representation_type + self.representation_type if representation_type is None else representation_type ) return self.__class__.specific_force( diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 18410945..738cbe71 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -52,6 +52,9 @@ from sklearn.svm import SVR from sklearn.utils import shuffle +# PROJECT-SPECIFIC +from .sky_distribution import main as sky_distribution_main + ############################################################################## # PARAMETERS @@ -242,7 +245,7 @@ def plot_parallax_prediction( ypred2: npt.NDArray[np.float_], ypred3: npt.NDArray[np.float_], patch_id: int, - ax: T.Optional[plt.Axes]=None, + ax: T.Optional[plt.Axes] = None, ) -> plt.Figure: """Plot predicted parallax. @@ -307,7 +310,9 @@ def plot_parallax_prediction( # /def -def plot_mollview(patch_ids: tuple[int, ...], order: int, fig: T.Optional[plt.Figure]=None) -> plt.Figure: +def plot_mollview( + patch_ids: tuple[int, ...], order: int, fig: T.Optional[plt.Figure] = None +) -> plt.Figure: """Plot Mollweide view with patches on sky. Parameters @@ -317,8 +322,7 @@ def plot_mollview(patch_ids: tuple[int, ...], order: int, fig: T.Optional[plt.Fi order : int The healpix order. See :func:`healpy.order2nside` """ - nside = hp.order2nside(order) - npix = hp.nside2npix(nside) + npix = hp.nside2npix(hp.order2nside(order)) # background plot m = np.arange(npix) @@ -344,6 +348,7 @@ def plot_mollview(patch_ids: tuple[int, ...], order: int, fig: T.Optional[plt.Fi return fig + # /def @@ -467,9 +472,72 @@ def query_and_fit_patch_set( plt.tight_layout() fig.savefig(PLOT_DIR / f"parallax-{'-'.join(map(str, patch_ids))}.pdf") + # /def +def make_groups(sky: table.QTable, order: int): + """Make groups. + + Parameters + ---------- + sky : `~astropy.table.QTable` + order : int + + Returns + ------- + groupsids : list[ndarray] + """ + nside = hp.order2nside(order) + npix = hp.nside2npix(nside) # the number of sky patches + + # get healpix column name. it depends on the order, but is the group key. + keyname = rgr.groups.keys.colnames[0] + + # get unique ids + patchids, hpx_indices, num_counts_per_patch = np.unique( + sky[keyname].value, return_index=True, return_counts=True + ) + + allpatchids = np.arange(npix) + patchnums = np.ones(npix) + patchnums[patchids] = num_counts_per_patch + patchnums[patchnums == 0] = 1 # set minimum number of 'counts' to 1 + + # sort by number of counts + sorter = np.argsort(patchnums)[::-1] + patchnums = patchnums[sorter] + allpatchids = allpatchids[sorter] + + numgroups = 200 + threshold = patchnums.sum() // numgroups + + # split arrays into numgroups + patchnums_split = np.array_split(patchnums, numgroups) + allpatchids_split = np.array_split(allpatchids, numgroups) + + # reverse every other, to try and even out the addition a little + patchnums_split = [ + (group if not i % 2 else group[::-1]) for i, group in enumerate(patchnums_split) + ] + allpatchids_split = [ + (group if not i % 2 else group[::-1]) for i, group in enumerate(allpatchids_split) + ] + + # turn back into 1 array + patchnums = np.concatenate(patchnums_split) + allpatchids = np.concatenate(allpatchids_split) + + groupsids = [allpatchids[i::numgroups] for i in range(numgroups)] + + # # plot the distribution of groups + # groups = [patchnums[i::numgroups] for i in range(numgroups)] + + return groupsids + + +# /def + ############################################################################## # Command Line ############################################################################## @@ -565,6 +633,9 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: help="number of computer cores to use, if parallelizing", ) + # local query for background + parser.add_argument("--use_local", default=True, type=bool, help="local query or not") + return parser @@ -605,25 +676,25 @@ def main( # /if + # ----------------------- + # make background distribution + + sky = sky_distribution_main(opts=ns) + + # ----------------------- + # random number generator rng = np.random.default_rng(ns.rng) # construct the list of batches of sky patches # [ (patch_1, patch_2, ...), (patch_i, patch_i+1, ...)] if ns.allsky: - nside = hp.order2nside(ns.order) - npix = hp.nside2npix(nside) # the number of sky patches - nbatches = npix // ns.batch_size - all_patches = np.arange(npix) - rng.shuffle(all_patches) # shuffle up the patches - - list_of_batches = np.array_split(np.arange(npix), nbatches) + list_of_batches = make_groups(sky, order=ns.order) elif ns.patches_range: + # TODO! get sky-weighted groups pi, pf = ns.patches_range if pi >= pf: - raise ValueError( - "`patches_range` must be [start, stop], with stop > start.", - ) + raise ValueError("`patches_range` must be [start, stop], with stop > start.") nbatches = (pf - pi) // ns.batch_size list_of_batches = np.array_split(np.arange(pi, pf), nbatches) elif ns.patches: @@ -642,10 +713,10 @@ def main( if ns.parallel: # TODO! not have galpy dependency just for this util - # THIRD PARTY + # PROJECT-SPECIFIC from .multi import parallel_map - def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: + def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: if len(batch) != 0: # skip empty batch query_and_fit_patch_set( tuple(batch), @@ -662,11 +733,7 @@ def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: with tqdm.tqdm(total=len(list_of_batches)) as pbar: # TODO! switch to # https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool.map - parallel_map( - wrapped_query_and_fit_patch_set, - list_of_batches, - numcores=ns.numcores - ) + parallel_map(wrapped_query_and_fit_patch_set, list_of_batches, numcores=ns.numcores) else: for batch in tqdm.tqdm(list_of_batches): diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py new file mode 100644 index 00000000..df180640 --- /dev/null +++ b/discO/data/err_field/sky_distribution.py @@ -0,0 +1,280 @@ +# -*- coding: utf-8 -*- + +"""Gaia Error Field Script. + +This script can be run from the command line with the following parameters: + +Parameters +---------- + +""" + +__all__ = [ + # script + "make_parser", + "main", + # functions + "fit_kernel_ridge", + "fit_gaussian_process", + "fit_support_vector", + "fit_linear", + # querying + "query_and_fit_patch_set", +] + + +############################################################################## +# IMPORTS + +# BUILT-IN +import argparse +import pathlib +import typing as T + +# THIRD PARTY +import healpy as hp +import matplotlib.colors as colors +import matplotlib.pyplot as plt +import numpy as np +from astropy import table +from gaia_tools.query import query as do_query + +############################################################################## +# PARAMETERS + +RandomStateType = T.Union[ + None, + int, + np.random.RandomState, + np.random.Generator, +] + +# General +THIS_DIR = pathlib.Path(__file__).parent + +############################################################################## +# CODE +############################################################################## + + +def query_sky_distribution( + order: int = 6, random_index: int = int(2e6), *, plot: bool = True, use_local: bool = True +) -> None: + """Query Sky and save number count. + + Parameters + ---------- + order : int, optional + random_index : int, optional + + plot : bool (optional, keyword-only) + use_local : bool (optional, keyword-only) + + Returns + ------- + sky : `~astropy.tables.QTable` + Grouped by + """ + # make ADQL + adql_query = f""" + SELECT + source_id, hpx{order}, + parallax, parallax_error, + ra, ra_error, + dec, dec_error + + FROM ( + SELECT + source_id, random_index, + GAIA_HEALPIX_INDEX({order}, source_id) AS hpx{order}, + parallax, parallax_error, + ra, ra_error, + dec, dec_error + + FROM gaiadr2.gaia_source AS gaia + ) AS gaia + + WHERE parallax >= 0 + AND random_index < {int(random_index)} + + ORDER BY hpx{order}; + """ + # data folder + FOLDER = THIS_DIR / f"order_{order}" + FOLDER.mkdir(exist_ok=True) + + # data file + DATA_DIR = FOLDER / f"sky_distribution_{order}.ecsv" + + try: + result = table.QTable.read(DATA_DIR) + except Exception as e: + print(e) + result = do_query(adql_query, local=use_local, use_cache=False) + result.write(DATA_DIR) + + # group by healpix index + sky = result.group_by(f"hpx{order}") + + if plot: + + PLOT_DIR = FOLDER / "figures" + PLOT_DIR.mkdir(exist_ok=True) + + # get unique ids + patchids, hpx_indices, num_counts_per_pixel = np.unique( + sky[f"hpx{order}"].value, return_index=True, return_counts=True + ) + + # ---------------- + # plot mollweide + + fig = plt.figure() + ax = fig.add_subplot( + title="Number of Counts per Pixel", + xlabel="Number of Counts", + ylabel=f"Frequency / {num_counts_per_pixel.sum()}", + ) + ax.hist(num_counts_per_pixel, bins=50, log=True) + fig.savefig(PLOT_DIR / f"num_counts_per_pixel_{order}.pdf") + plt.close(fig) + + # ---------------- + # plot mollweide + + fig = plt.figure(figsize=(10, 10), facecolor="white") + nside = hp.order2nside(order) + npix = hp.nside2npix(nside) + + ma = np.zeros(npix) + ma[patchids] = num_counts_per_pixel / num_counts_per_pixel.sum() + ma[ma == 0] = hp.UNSEEN + + hp.mollview( + ma, + nest=True, + coord=["C"], + cbar=True, + cmap="Greens", + fig=fig, + title=f"Star Count Fraction (Nest {order}, Mollweide)", + norm=colors.LogNorm(), + badcolor="white", + ) + fig.savefig(PLOT_DIR / f"sky_distribution_{order}.pdf") + plt.close(fig) + + return sky + + +# /def + + +############################################################################## +# Command Line +############################################################################## + + +def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: + """Expose ArgumentParser for ``main``. + + Parameters + ---------- + inheritable: bool, optional, keyword only + whether the parser can be inherited from (default False). + if True, sets ``add_help=False`` and ``conflict_hander='resolve'`` + + plot : bool, optional, keyword only + Whether to produce plots, or not. + + verbose : int, optional, keyword only + Script logging verbosity. + + Returns + ------- + parser: `~argparse.ArgumentParser` + The parser with arguments: + - plot + - verbose + """ + parser = argparse.ArgumentParser( + description="", + add_help=not inheritable, + conflict_handler="resolve" if not inheritable else "error", + ) + + # order + parser.add_argument("-o", "--order", default=6, type=int, help="healpix order") + + # stars in gaia + parser.add_argument( + "-i", + "--random_index", + default=int(2e6), + type=int, + help="limit queried stars within random index", + ) + + # plot or not + parser.add_argument("--plot", default=True, type=bool, help="make plots or not") + + # local query + parser.add_argument("--use_local", default=True, type=bool, help="local query or not") + + return parser + + +# /def + + +def main( + args: T.Union[list[str], str, None] = None, + opts: T.Optional[argparse.Namespace] = None, +) -> None: + """Script Function. + + Parameters + ---------- + args : list or str or None, optional + an optional single argument that holds the sys.argv list, + except for the script name (e.g., argv[1:]) + opts : `~argparse.Namespace`| or None, optional + pre-constructed results of parsed args + if not None, used ONLY if args is None + + - nside + """ + ns: argparse.Namespace + if opts is not None and args is None: + ns = opts + else: + if opts is not None: + warnings.warn("Not using `opts` because `args` are given") + if isinstance(args, str): + args = args.split() + + parser = make_parser() + ns = parser.parse_args(args) + + # /if + + sky = query_sky_distribution(**vars(ns)) + + return sky + + +# /def + + +# ------------------------------------------------------------------------ + +if __name__ == "__main__": + + # call script + main(args=None, opts=None) # all arguments except script name + + +# /if + +############################################################################## +# END diff --git a/discO/extern/galpy_potentials/self_consistent_field.py b/discO/extern/galpy_potentials/self_consistent_field.py index 6e3360a0..788a3ea0 100644 --- a/discO/extern/galpy_potentials/self_consistent_field.py +++ b/discO/extern/galpy_potentials/self_consistent_field.py @@ -53,8 +53,7 @@ def _C(xi, N, L, alpha=lambda x: 2 * x + 3.0 / 2): CC[n][ll] = 2.0 * a * xi if n + 1 != N: CC[n + 1][ll] = (n + 1.0) ** -1.0 * ( - 2 * (n + a) * xi * CC[n][ll] - - (n + 2 * a - 1) * CC[n - 1][ll] + 2 * (n + a) * xi * CC[n][ll] - (n + 2 * a - 1) * CC[n - 1][ll] ) return CC @@ -116,14 +115,9 @@ def scf_compute_coeffs_nbody( cosmphi = np.cos(phi * mm) sinmphi = np.sin(phi * mm) - Ylm = ( - np.sqrt( - (2.0 * ll + 1) - * gamma(ll - mm + 1) - / gamma(ll + mm + 1), - ) - * Plm - )[None, :] * np.array([cosmphi, sinmphi]) + Ylm = (np.sqrt((2.0 * ll + 1) * gamma(ll - mm + 1) / gamma(ll + mm + 1),) * Plm)[ + None, : + ] * np.array([cosmphi, sinmphi]) Ylm = np.nan_to_num(Ylm) C = gegenbauer(nn, 2.0 * ll + 1.5) @@ -133,15 +127,11 @@ def scf_compute_coeffs_nbody( ), ) - phinlm = ( - -np.power(ra, ll) / np.power(ra + 1, (2.0 * ll + 1)) * Cn - )[None, :] * Ylm + phinlm = (-np.power(ra, ll) / np.power(ra + 1, (2.0 * ll + 1)) * Cn)[None, :] * Ylm Sum = np.sum(mass[None, :] * phinlm, axis=1) - Knl = 0.5 * nn * (nn + 4.0 * ll + 3.0) + (ll + 1) * ( - 2.0 * ll + 1.0 - ) + Knl = 0.5 * nn * (nn + 4.0 * ll + 3.0) + (ll + 1) * (2.0 * ll + 1.0) Inl = ( -Knl * 4.0 diff --git a/discO/plugin/agama/fitter.py b/discO/plugin/agama/fitter.py index 14996636..6a7cbc29 100644 --- a/discO/plugin/agama/fitter.py +++ b/discO/plugin/agama/fitter.py @@ -23,10 +23,7 @@ import discO.type_hints as TH from .wrapper import AGAMAPotentialWrapper from discO.core.fitter import PotentialFitter -from discO.utils.coordinates import ( - resolve_framelike, - resolve_representationlike, -) +from discO.utils.coordinates import resolve_framelike, resolve_representationlike ############################################################################## # PARAMETERS diff --git a/discO/plugin/agama/sample.py b/discO/plugin/agama/sample.py index d871378d..35e8fa31 100644 --- a/discO/plugin/agama/sample.py +++ b/discO/plugin/agama/sample.py @@ -79,9 +79,7 @@ def __call__( ) else: differentials = None - rep = coord.CartesianRepresentation( - *pos.T * u.kpc, differentials=differentials - ) + rep = coord.CartesianRepresentation(*pos.T * u.kpc, differentials=differentials) if representation_type is None: representation_type = rep.__class__ diff --git a/discO/plugin/agama/tests/test_fitter.py b/discO/plugin/agama/tests/test_fitter.py index 2b030bc3..0c45b320 100644 --- a/discO/plugin/agama/tests/test_fitter.py +++ b/discO/plugin/agama/tests/test_fitter.py @@ -16,9 +16,7 @@ import pytest # PROJECT-SPECIFIC -from discO.core.tests.test_fitter import ( - Test_PotentialFitter as PotentialFitterTester, -) +from discO.core.tests.test_fitter import Test_PotentialFitter as PotentialFitterTester from discO.plugin.agama import fitter ############################################################################## diff --git a/discO/plugin/agama/tests/test_sample.py b/discO/plugin/agama/tests/test_sample.py index e37d21f7..5ef643f0 100644 --- a/discO/plugin/agama/tests/test_sample.py +++ b/discO/plugin/agama/tests/test_sample.py @@ -15,9 +15,7 @@ import pytest # PROJECT-SPECIFIC -from discO.core.tests.test_sample import ( - Test_PotentialSampler as PotentialSamplerTester, -) +from discO.core.tests.test_sample import Test_PotentialSampler as PotentialSamplerTester from discO.plugin.agama import AGAMAPotentialWrapper, sample ############################################################################## diff --git a/discO/plugin/agama/tests/test_wrapper.py b/discO/plugin/agama/tests/test_wrapper.py index 54474780..e15c102c 100644 --- a/discO/plugin/agama/tests/test_wrapper.py +++ b/discO/plugin/agama/tests/test_wrapper.py @@ -22,12 +22,8 @@ import pytest # PROJECT-SPECIFIC -from discO.core.tests.test_wrapper import ( - Test_PotentialWrapper as PotentialWrapper_Test, -) -from discO.core.tests.test_wrapper import ( - Test_PotentialWrapperMeta as PotentialWrapperMeta_Test, -) +from discO.core.tests.test_wrapper import Test_PotentialWrapper as PotentialWrapper_Test +from discO.core.tests.test_wrapper import Test_PotentialWrapperMeta as PotentialWrapperMeta_Test from discO.plugin.agama import wrapper from discO.utils import resolve_framelike, vectorfield diff --git a/discO/plugin/gala/tests/test_wrapper.py b/discO/plugin/gala/tests/test_wrapper.py index ef5cbe11..1c02fc8f 100644 --- a/discO/plugin/gala/tests/test_wrapper.py +++ b/discO/plugin/gala/tests/test_wrapper.py @@ -23,12 +23,8 @@ from gala.units import galactic # PROJECT-SPECIFIC -from discO.core.tests.test_wrapper import ( - Test_PotentialWrapper as PotentialWrapper_Test, -) -from discO.core.tests.test_wrapper import ( - Test_PotentialWrapperMeta as PotentialWrapperMeta_Test, -) +from discO.core.tests.test_wrapper import Test_PotentialWrapper as PotentialWrapper_Test +from discO.core.tests.test_wrapper import Test_PotentialWrapperMeta as PotentialWrapperMeta_Test from discO.plugin.gala import wrapper from discO.utils import resolve_framelike, vectorfield diff --git a/discO/plugin/galpy/fitter.py b/discO/plugin/galpy/fitter.py index ccd467c7..bb95d034 100644 --- a/discO/plugin/galpy/fitter.py +++ b/discO/plugin/galpy/fitter.py @@ -79,22 +79,17 @@ def __new__( if key not in cls._registry: raise ValueError( - "PotentialFitter has no registered fitter for key: " - f"{key}", + "PotentialFitter has no registered fitter for key: " f"{key}", ) # from registry. Registered in __init_subclass__ kls = cls._registry[key] - return kls.__new__( - kls, potential_cls=potential_cls, key=None, **kwargs - ) + return kls.__new__(kls, potential_cls=potential_cls, key=None, **kwargs) elif key is not None: raise ValueError(f"Can't specify 'key' on {cls.__name__}.") - return super().__new__( - cls, potential_cls=potential_cls, key=None, **kwargs - ) + return super().__new__(cls, potential_cls=potential_cls, key=None, **kwargs) # /def @@ -156,9 +151,7 @@ class GalpySCFPotentialFitter(GalpyPotentialFitter, key="scf"): def __new__(cls, **kwargs): kwargs.pop("potential_cls", None) kwargs.pop("key", None) - return super().__new__( - cls, potential_cls=SCFPotential, key=None, **kwargs - ) + return super().__new__(cls, potential_cls=SCFPotential, key=None, **kwargs) # /def @@ -243,9 +236,7 @@ def __call__( ) _scale_factor = kw.pop("scale_factor", 1 * u.one) - scale_factor = ( - scale_factor if scale_factor is not None else _scale_factor - ) + scale_factor = scale_factor if scale_factor is not None else _scale_factor # -------------- diff --git a/discO/plugin/galpy/sample.py b/discO/plugin/galpy/sample.py index f87f6140..d58e6837 100644 --- a/discO/plugin/galpy/sample.py +++ b/discO/plugin/galpy/sample.py @@ -81,10 +81,7 @@ def __init__( # initialize & store DF super().__init__( - potential, - representation_type=representation_type, - total_mass=total_mass, - **defaults + potential, representation_type=representation_type, total_mass=total_mass, **defaults ) self._df: gdf.df.df = df @@ -158,8 +155,7 @@ def __call__( self.frame.realize_frame( rep, representation_type=( - self._infer_representation(representation_type) - or rep.__class__ + self._infer_representation(representation_type) or rep.__class__ ), ), copy=False, @@ -206,9 +202,7 @@ def _pot(self): # /def - def sample( - self, n: int, rng: T.Optional[np.random.Generator] = None, **kw - ): + def sample(self, n: int, rng: T.Optional[np.random.Generator] = None, **kw): """Sample. .. todo:: diff --git a/discO/plugin/galpy/tests/test_fitter.py b/discO/plugin/galpy/tests/test_fitter.py index 1bd0df37..f085a8ed 100644 --- a/discO/plugin/galpy/tests/test_fitter.py +++ b/discO/plugin/galpy/tests/test_fitter.py @@ -17,9 +17,7 @@ from galpy import potential as gpot # PROJECT-SPECIFIC -from discO.core.tests.test_fitter import ( - Test_PotentialFitter as PotentialFitterTester, -) +from discO.core.tests.test_fitter import Test_PotentialFitter as PotentialFitterTester from discO.plugin.galpy import GalpyPotentialWrapper, fitter ############################################################################## @@ -44,9 +42,7 @@ def __init__( frame=None, **kwargs, ): - super().__init__( - potential_cls=potential_cls, frame=frame, **kwargs - ) + super().__init__(potential_cls=potential_cls, frame=frame, **kwargs) # /defs diff --git a/discO/plugin/galpy/tests/test_residual.py b/discO/plugin/galpy/tests/test_residual.py index 23c6d862..36e70a25 100644 --- a/discO/plugin/galpy/tests/test_residual.py +++ b/discO/plugin/galpy/tests/test_residual.py @@ -17,9 +17,7 @@ # PROJECT-SPECIFIC from discO.core import residual -from discO.core.tests.test_residual import ( - Test_GridResidual as GridResidual_Test, -) +from discO.core.tests.test_residual import Test_GridResidual as GridResidual_Test from discO.plugin.galpy.wrapper import GalpyPotentialWrapper from discO.utils import vectorfield diff --git a/discO/plugin/galpy/tests/test_sample.py b/discO/plugin/galpy/tests/test_sample.py index b557609c..fd8340eb 100644 --- a/discO/plugin/galpy/tests/test_sample.py +++ b/discO/plugin/galpy/tests/test_sample.py @@ -21,9 +21,7 @@ # PROJECT-SPECIFIC from discO.core.sample import MeshGridPotentialSampler -from discO.core.tests.test_sample import ( - Test_PotentialSampler as PotentialSampler_Test, -) +from discO.core.tests.test_sample import Test_PotentialSampler as PotentialSampler_Test from discO.plugin.galpy import GalpyPotentialWrapper, sample from discO.tests.helper import ObjectTest @@ -88,9 +86,7 @@ def test___call__(self): ) def test_call_parametrize(self, n, frame, representation, random, kwargs): """Parametrized call tests.""" - res = self.inst( - n, frame=frame, representation_type=representation, **kwargs - ) + res = self.inst(n, frame=frame, representation_type=representation, **kwargs) assert res.__class__ == coord.SkyCoord assert res.cache["potential"].__wrapped__ == self.potential diff --git a/discO/plugin/galpy/tests/test_wrapper.py b/discO/plugin/galpy/tests/test_wrapper.py index 70c92b62..5e48dfd5 100644 --- a/discO/plugin/galpy/tests/test_wrapper.py +++ b/discO/plugin/galpy/tests/test_wrapper.py @@ -22,12 +22,8 @@ import pytest # PROJECT-SPECIFIC -from discO.core.tests.test_wrapper import ( - Test_PotentialWrapper as PotentialWrapper_Test, -) -from discO.core.tests.test_wrapper import ( - Test_PotentialWrapperMeta as PotentialWrapperMeta_Test, -) +from discO.core.tests.test_wrapper import Test_PotentialWrapper as PotentialWrapper_Test +from discO.core.tests.test_wrapper import Test_PotentialWrapperMeta as PotentialWrapperMeta_Test from discO.plugin.galpy import wrapper from discO.utils import resolve_framelike, vectorfield diff --git a/discO/plugin/galpy/wrapper.py b/discO/plugin/galpy/wrapper.py index 97a0a8f0..dfd8b456 100644 --- a/discO/plugin/galpy/wrapper.py +++ b/discO/plugin/galpy/wrapper.py @@ -191,9 +191,7 @@ def specific_force( # the specific force = acceleration Frho = potential.Rforce(r.rho, r.z, phi=r.phi, **kwargs).to(_KMS2) - Fphi = ( - potential.phiforce(r.rho, r.z, phi=r.phi, **kwargs) / r.rho - ).to(_KMS2) + Fphi = (potential.phiforce(r.rho, r.z, phi=r.phi, **kwargs) / r.rho).to(_KMS2) Fz = potential.zforce(r.rho, r.z, phi=r.phi, **kwargs).to(_KMS2) vf = vectorfield.CylindricalVectorField( diff --git a/discO/utils/coordinates.py b/discO/utils/coordinates.py index 70711c2b..cbbf2f47 100644 --- a/discO/utils/coordinates.py +++ b/discO/utils/coordinates.py @@ -19,11 +19,7 @@ import typing as T # THIRD PARTY -from astropy.coordinates import ( - BaseCoordinateFrame, - BaseRepresentation, - SkyCoord, -) +from astropy.coordinates import BaseCoordinateFrame, BaseRepresentation, SkyCoord from astropy.coordinates import representation as r from astropy.coordinates import sky_coordinate_parsers diff --git a/discO/utils/tests/test_coordinates.py b/discO/utils/tests/test_coordinates.py index b8ef55c7..67bf3bf9 100644 --- a/discO/utils/tests/test_coordinates.py +++ b/discO/utils/tests/test_coordinates.py @@ -18,11 +18,7 @@ # PROJECT-SPECIFIC from discO.config import conf -from discO.utils.coordinates import ( - UnFrame, - resolve_framelike, - resolve_representationlike, -) +from discO.utils.coordinates import UnFrame, resolve_framelike, resolve_representationlike ############################################################################## # TESTS @@ -101,9 +97,7 @@ def test_error_if_not_type(): resolve_framelike(Exception) # check it doesn't error if - assert ( - resolve_framelike(Exception, error_if_not_type=False) is Exception - ) + assert resolve_framelike(Exception, error_if_not_type=False) is Exception # /def @@ -122,14 +116,12 @@ def test_representation_is_Ellipsis(): """Test when representation is a BaseCoordinateFrame.""" with conf.set_temp("default_representation_type", "cartesian"): assert ( - resolve_representationlike(representation=Ellipsis) - == coord.CartesianRepresentation + resolve_representationlike(representation=Ellipsis) == coord.CartesianRepresentation ) with conf.set_temp("default_representation_type", "spherical"): assert ( - resolve_representationlike(representation=Ellipsis) - == coord.SphericalRepresentation + resolve_representationlike(representation=Ellipsis) == coord.SphericalRepresentation ) # /def @@ -139,8 +131,7 @@ def test_representation_is_str(): """Test when representation is a string.""" # basic usage assert ( - resolve_representationlike(representation="cartesian") - == coord.CartesianRepresentation + resolve_representationlike(representation="cartesian") == coord.CartesianRepresentation ) # /def @@ -168,10 +159,7 @@ def test_representation_is_BaseCoordinateFrame(): lat=2 * u.deg, distance=3 * u.kpc, ) - assert ( - resolve_representationlike(representation=c) - == coord.SphericalRepresentation - ) + assert resolve_representationlike(representation=c) == coord.SphericalRepresentation # /def @@ -187,10 +175,7 @@ def test_error_if_not_type(): resolve_representationlike(Exception) # check it doesn't error if - assert ( - resolve_representationlike(Exception, error_if_not_type=False) - is Exception - ) + assert resolve_representationlike(Exception, error_if_not_type=False) is Exception # /def diff --git a/discO/utils/tests/test_random.py b/discO/utils/tests/test_random.py index bbea8db3..3a0d68a6 100644 --- a/discO/utils/tests/test_random.py +++ b/discO/utils/tests/test_random.py @@ -53,9 +53,7 @@ def test___init__(self): # Generator obj = self.obj(np.random.default_rng(3)) - assert ( - obj.seed.__getstate__() == np.random.default_rng(3).__getstate__() - ) + assert obj.seed.__getstate__() == np.random.default_rng(3).__getstate__() # /def diff --git a/discO/utils/tests/test_vectorfield.py b/discO/utils/tests/test_vectorfield.py index a7698271..f4fccddc 100644 --- a/discO/utils/tests/test_vectorfield.py +++ b/discO/utils/tests/test_vectorfield.py @@ -157,9 +157,7 @@ class FailedVectorField(self.obj): assert self.klass_name in vectorfield._VECTORFIELD_CLASSES assert vectorfield._VECTORFIELD_CLASSES[self.klass_name] is self.klass assert self.rep_cls in vectorfield.VECTORFIELD_REPRESENTATIONS - assert ( - vectorfield.VECTORFIELD_REPRESENTATIONS[self.rep_cls] is self.klass - ) + assert vectorfield.VECTORFIELD_REPRESENTATIONS[self.rep_cls] is self.klass # ------------------- # Check attributes @@ -529,9 +527,7 @@ def setup_class(cls): def test_attributes(self): """Test class attributes.""" - assert ( - self.klass.base_representation is coord.CylindricalRepresentation - ) + assert self.klass.base_representation is coord.CylindricalRepresentation assert self.inst.rho == self.points.rho assert self.inst.phi == self.points.phi @@ -617,10 +613,7 @@ def setup_class(cls): def test_attributes(self): """Test class attributes.""" - assert ( - self.klass.base_representation - is coord.PhysicsSphericalRepresentation - ) + assert self.klass.base_representation is coord.PhysicsSphericalRepresentation assert self.inst.phi == self.points.phi assert self.inst.theta == self.points.theta diff --git a/discO/utils/vectorfield.py b/discO/utils/vectorfield.py index 553ac51f..2589f6f4 100644 --- a/discO/utils/vectorfield.py +++ b/discO/utils/vectorfield.py @@ -37,9 +37,7 @@ import astropy.coordinates as coord import astropy.units as u import numpy as np -from astropy.coordinates.representation import ( - REPRESENTATION_CLASSES as _REP_CLSs, -) +from astropy.coordinates.representation import REPRESENTATION_CLASSES as _REP_CLSs from astropy.coordinates.representation import ( BaseRepresentationOrDifferential, _array2string, @@ -49,12 +47,7 @@ # PROJECT-SPECIFIC from .coordinates import resolve_framelike -from discO.type_hints import ( - FrameLikeType, - FrameType, - QuantityType, - RepresentationType, -) +from discO.type_hints import FrameLikeType, FrameType, QuantityType, RepresentationType ############################################################################## # PARAMETERS @@ -97,16 +90,13 @@ class BaseVectorField(BaseRepresentationOrDifferential): """ if not hasattr(cls, "base_representation"): raise NotImplementedError( - "VectorField representations must have a" - '"base_representation" class attribute.', + "VectorField representations must have a" '"base_representation" class attribute.', ) # If not defined explicitly, create attr_classes. if not hasattr(cls, "attr_classes"): base_attr_classes = cls.base_representation.attr_classes - cls.attr_classes = { - "vf_" + c: u.Quantity for c in base_attr_classes - } + cls.attr_classes = {"vf_" + c: u.Quantity for c in base_attr_classes} # Now check caches! repr_name = cls.get_name() @@ -116,8 +106,7 @@ class BaseVectorField(BaseRepresentationOrDifferential): ) elif cls.base_representation in VECTORFIELD_REPRESENTATIONS: raise ValueError( - "VectorField with representation " - f"'{cls.base_representation}' already exists.", + "VectorField with representation " f"'{cls.base_representation}' already exists.", ) _VECTORFIELD_CLASSES[repr_name] = cls @@ -361,10 +350,7 @@ def _combine_operation(self, op: T.Callable, other, reverse: bool = False): first, second = (self, other) if not reverse else (other, self) return self.__class__( self.points, - *[ - op(getattr(first, c), getattr(second, c)) - for c in self.components - ], + *[op(getattr(first, c), getattr(second, c)) for c in self.components], frame=self.frame, ) else: @@ -395,10 +381,7 @@ def norm(self) -> QuantityType: return np.sqrt( functools.reduce( operator.add, - ( - getattr(self, component) ** 2 - for component, cls in self.attr_classes.items() - ), + (getattr(self, component) ** 2 for component, cls in self.attr_classes.items()), ), ) @@ -452,13 +435,9 @@ def __repr__(self) -> str: ) pointsunitstr = ( - ("in " + self.points._unitstr) - if self.points._unitstr - else "[dimensionless]" - ) - unitstr = ( - ("in " + self._unitstr) if self._unitstr else "[dimensionless]" + ("in " + self.points._unitstr) if self.points._unitstr else "[dimensionless]" ) + unitstr = ("in " + self._unitstr) if self._unitstr else "[dimensionless]" return "<{} ({}) {:s} | ({}) {:s}\n{}{}>".format( self.__class__.__name__, ", ".join(self.points.components), diff --git a/docs/conf.py b/docs/conf.py index 899fc505..9c75d6e0 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -39,8 +39,7 @@ from sphinx_astropy.conf.v1 import * except ImportError: print( - "ERROR: the documentation requires the " - "sphinx-astropy package to be installed", + "ERROR: the documentation requires the " "sphinx-astropy package to be installed", ) sys.exit(1) diff --git a/setup.cfg b/setup.cfg index 80f733a7..793e5cb6 100644 --- a/setup.cfg +++ b/setup.cfg @@ -18,19 +18,20 @@ python_requires = >=3.8 setup_requires = setuptools_scm install_requires = astropy - numpy>1.20 - typing_extensions - importlib-metadata - scikit-learn>0.18 - healpy>=1.15.0 - tqdm astroquery Cython + healpy>=1.15.0 + importlib-metadata + numpy>1.20 + scikit-learn>0.18 scipy + tqdm + typing_extensions [options.entry_points] console_scripts = - make_gaia_err_field = discO.data.err_field.script:main + disco_make_gaia_err_field = discO.data.err_field.script:main + disco_query_sky_distribution = discO.data.err_field.sky_distribution:main [options.extras_require] all = From 6dda8a35a1ed5e49c48cd71bef3e0b87305d639c Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 19:47:04 -0400 Subject: [PATCH 11/74] add to setup Signed-off-by: Nathaniel Starkman (@nstarman) --- setup.cfg | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/setup.cfg b/setup.cfg index 793e5cb6..4f636bd0 100644 --- a/setup.cfg +++ b/setup.cfg @@ -15,7 +15,9 @@ github_project = nstarman/discO zip_safe = False packages = find: python_requires = >=3.8 -setup_requires = setuptools_scm +setup_requires = + extension_helpers + setuptools_scm install_requires = astropy astroquery From 9bb1005d0c7665e6fa71148fb958ef8b5b85ed83 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 20:02:34 -0400 Subject: [PATCH 12/74] fix passing arg Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- discO/data/err_field/sky_distribution.py | 4 +++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 738cbe71..ff0b0c0a 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -574,7 +574,7 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # order parser.add_argument("-o", "--order", default=6, type=int, help="healpix order") - # patches are done in batches. Need to decide the size + # patches are done in batches. Needed unless all-sky. parser.add_argument( "-b", "--batch_size", diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index df180640..fdfdda83 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -258,7 +258,9 @@ def main( # /if - sky = query_sky_distribution(**vars(ns)) + sky = query_sky_distribution( + order=ns.order, random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local + ) return sky From 22a69898d97f5a1ba25777dbd58094c000097066 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 20:13:48 -0400 Subject: [PATCH 13/74] update random index Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- discO/data/err_field/sky_distribution.py | 14 ++++++++------ 2 files changed, 9 insertions(+), 7 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index ff0b0c0a..5827da1f 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -398,7 +398,7 @@ def query_and_fit_patch_set( """ if random_index is not None: - query += f"AND random_index < {random_index}" + query += f"AND random_index < {int(random_index)}" job = Gaia.launch_job_async( query, diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index fdfdda83..5b622522 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -58,7 +58,7 @@ def query_sky_distribution( - order: int = 6, random_index: int = int(2e6), *, plot: bool = True, use_local: bool = True + order: int = 6, random_index: T.Optional[int] = None, *, plot: bool = True, use_local: bool = True ) -> None: """Query Sky and save number count. @@ -76,13 +76,14 @@ def query_sky_distribution( Grouped by """ # make ADQL + random_index = "" if random_index is None else "AND random_index < {int(random_index)}" adql_query = f""" SELECT source_id, hpx{order}, parallax, parallax_error, ra, ra_error, dec, dec_error - + FROM ( SELECT source_id, random_index, @@ -90,15 +91,16 @@ def query_sky_distribution( parallax, parallax_error, ra, ra_error, dec, dec_error - + FROM gaiadr2.gaia_source AS gaia ) AS gaia - + WHERE parallax >= 0 - AND random_index < {int(random_index)} - + {random_index} + ORDER BY hpx{order}; """ + # data folder FOLDER = THIS_DIR / f"order_{order}" FOLDER.mkdir(exist_ok=True) From 6a06ce13df4b06aed33fc5447725dbe7309c7a31 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 20:21:49 -0400 Subject: [PATCH 14/74] username Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 5 +++-- discO/data/err_field/sky_distribution.py | 17 ++++++++++++----- 2 files changed, 15 insertions(+), 7 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 5827da1f..52eef449 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -633,8 +633,9 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: help="number of computer cores to use, if parallelizing", ) - # local query for background - parser.add_argument("--use_local", default=True, type=bool, help="local query or not") + # gaia_tools + parser.add_argument("--use_local", default=True, type=bool, help="gaia_tools local query") + parser.add_argument("--username", default=None, type=str, help="gaia_tools query username") return parser diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 5b622522..31f984ed 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -58,7 +58,12 @@ def query_sky_distribution( - order: int = 6, random_index: T.Optional[int] = None, *, plot: bool = True, use_local: bool = True + order: int = 6, + random_index: T.Optional[int] = None, + *, + plot: bool = True, + use_local: bool = True, + user: T.Optional[str] = None, ) -> None: """Query Sky and save number count. @@ -112,7 +117,7 @@ def query_sky_distribution( result = table.QTable.read(DATA_DIR) except Exception as e: print(e) - result = do_query(adql_query, local=use_local, use_cache=False) + result = do_query(adql_query, local=use_local, use_cache=False, user=user) result.write(DATA_DIR) # group by healpix index @@ -220,8 +225,9 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # plot or not parser.add_argument("--plot", default=True, type=bool, help="make plots or not") - # local query - parser.add_argument("--use_local", default=True, type=bool, help="local query or not") + # gaia_tools + parser.add_argument("--use_local", default=True, type=bool, help="gaia_tools local query") + parser.add_argument("--username", default=None, type=str, help="gaia_tools query username") return parser @@ -261,7 +267,8 @@ def main( # /if sky = query_sky_distribution( - order=ns.order, random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local + order=ns.order, random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local, + user=ns.username ) return sky From 3d882279ff37b57d72155e7c81e275c6cb353a41 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 20:35:41 -0400 Subject: [PATCH 15/74] debug Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- discO/data/err_field/sky_distribution.py | 11 +++++++---- 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 52eef449..57592c0b 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -634,7 +634,7 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: ) # gaia_tools - parser.add_argument("--use_local", default=True, type=bool, help="gaia_tools local query") + parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") parser.add_argument("--username", default=None, type=str, help="gaia_tools query username") return parser diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 31f984ed..109d5f3e 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -113,10 +113,10 @@ def query_sky_distribution( # data file DATA_DIR = FOLDER / f"sky_distribution_{order}.ecsv" + print(user) try: result = table.QTable.read(DATA_DIR) except Exception as e: - print(e) result = do_query(adql_query, local=use_local, use_cache=False, user=user) result.write(DATA_DIR) @@ -226,7 +226,7 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: parser.add_argument("--plot", default=True, type=bool, help="make plots or not") # gaia_tools - parser.add_argument("--use_local", default=True, type=bool, help="gaia_tools local query") + parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") parser.add_argument("--username", default=None, type=str, help="gaia_tools query username") return parser @@ -267,8 +267,11 @@ def main( # /if sky = query_sky_distribution( - order=ns.order, random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local, - user=ns.username + order=ns.order, + random_index=ns.random_index, + plot=ns.plot, + use_local=ns.use_local, + user=ns.username, ) return sky From 39ffa23951a856c5e8af7332c5adca514329f090 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 20:53:28 -0400 Subject: [PATCH 16/74] respace query Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 30 ++++++++++++------------ 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 109d5f3e..db098cd0 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -83,28 +83,28 @@ def query_sky_distribution( # make ADQL random_index = "" if random_index is None else "AND random_index < {int(random_index)}" adql_query = f""" +SELECT +source_id, hpx{order}, +parallax, parallax_error, +ra, ra_error, +dec, dec_error + +FROM ( SELECT - source_id, hpx{order}, + source_id, random_index, + GAIA_HEALPIX_INDEX({order}, source_id) AS hpx{order}, parallax, parallax_error, ra, ra_error, dec, dec_error - FROM ( - SELECT - source_id, random_index, - GAIA_HEALPIX_INDEX({order}, source_id) AS hpx{order}, - parallax, parallax_error, - ra, ra_error, - dec, dec_error - - FROM gaiadr2.gaia_source AS gaia - ) AS gaia + FROM gaiadr2.gaia_source AS gaia +) AS gaia - WHERE parallax >= 0 - {random_index} +WHERE parallax >= 0 +{random_index} - ORDER BY hpx{order}; - """ +ORDER BY hpx{order}; +""" # data folder FOLDER = THIS_DIR / f"order_{order}" From f0c0c2861643e7b396fbfdf3946ea59878083835 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 21:10:35 -0400 Subject: [PATCH 17/74] debug Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index db098cd0..7b8d125d 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -106,6 +106,8 @@ def query_sky_distribution( ORDER BY hpx{order}; """ + print(adql_query) + # data folder FOLDER = THIS_DIR / f"order_{order}" FOLDER.mkdir(exist_ok=True) From 6916da13aca6b0ce9ca4a344594dfc95d510122c Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 21:12:05 -0400 Subject: [PATCH 18/74] fix string sub Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 7b8d125d..27bfccd2 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -81,7 +81,7 @@ def query_sky_distribution( Grouped by """ # make ADQL - random_index = "" if random_index is None else "AND random_index < {int(random_index)}" + random_index = "" if random_index is None else f"AND random_index < {int(random_index)}" adql_query = f""" SELECT source_id, hpx{order}, From b172e31e6bae0701ae1ca5c758842fee567f1816 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 21:14:49 -0400 Subject: [PATCH 19/74] update user default Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- discO/data/err_field/sky_distribution.py | 7 +++---- 2 files changed, 4 insertions(+), 5 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 57592c0b..87bc77d6 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -635,7 +635,7 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # gaia_tools parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") - parser.add_argument("--username", default=None, type=str, help="gaia_tools query username") + parser.add_argument("--username", default='postgres', type=str, help="gaia_tools query username") return parser diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 27bfccd2..84a75f2f 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -63,7 +63,7 @@ def query_sky_distribution( *, plot: bool = True, use_local: bool = True, - user: T.Optional[str] = None, + user: T.Optional[str] = 'postgres', ) -> None: """Query Sky and save number count. @@ -115,11 +115,10 @@ def query_sky_distribution( # data file DATA_DIR = FOLDER / f"sky_distribution_{order}.ecsv" - print(user) try: result = table.QTable.read(DATA_DIR) except Exception as e: - result = do_query(adql_query, local=use_local, use_cache=False, user=user) + result = do_query(adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True) result.write(DATA_DIR) # group by healpix index @@ -229,7 +228,7 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # gaia_tools parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") - parser.add_argument("--username", default=None, type=str, help="gaia_tools query username") + parser.add_argument("--username", default='postgres', type=str, help="gaia_tools query username") return parser From 7018341c65416f302a784a036c77aca471450c90 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 22:07:26 -0400 Subject: [PATCH 20/74] local query Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 56 +++++++++++++---------- discO/data/err_field/sky_distribution.py | 58 +++++++++++++----------- 2 files changed, 65 insertions(+), 49 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 87bc77d6..ed848e23 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -43,6 +43,7 @@ import tqdm # TODO! make optional from astropy import table from astroquery.gaia import Gaia +from gaia_tools.query import query as do_query from scipy.stats import gaussian_kde from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.kernel_ridge import KernelRidge @@ -68,6 +69,19 @@ # General THIS_DIR = pathlib.Path(__file__).parent +ADQL_QUERY = """ +SELECT +source_id, GAIA_HEALPIX_INDEX({order}, source_id) AS {hpl}, +parallax AS parallax, parallax_error AS parallax_error, +ra, ra_error AS ra_err, +dec, dec_error AS dec_err + +FROM gaiadr2.gaia_source + +WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} +AND parallax >= 0 +""" + ############################################################################## # CODE ############################################################################## @@ -358,8 +372,11 @@ def plot_mollview( def query_and_fit_patch_set( patch_ids: tuple[int, ...], order: int, - plot: bool, random_index: T.Optional[int] = 1000000, + *, + plot: bool = True, + use_local: bool = True, + user: str = "postgres", ) -> None: """Query and fit a set of sky patches. @@ -384,29 +401,20 @@ def query_and_fit_patch_set( # Query batch hpl = f"healpix{order}" # column name - query = f""" - SELECT - source_id, GAIA_HEALPIX_INDEX({order}, source_id) AS {hpl}, - parallax AS parallax, parallax_error AS parallax_error, - ra, ra_error AS ra_err, - dec, dec_error AS dec_err - - FROM gaiadr2.gaia_source - - WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} - AND parallax >= 0 - """ - + adql_query = ADQL_QUERY.format(order=order, hpl=hpl, patch_ids) if random_index is not None: - query += f"AND random_index < {int(random_index)}" + adql_query += f"AND random_index < {int(random_index)}" - job = Gaia.launch_job_async( - query, - dump_to_file=False, - verbose=False, + result = do_query( + adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True ) - # perform query and... - result = table.QTable(job.get_results(), copy=False) + # job = Gaia.launch_job_async( + # query, + # dump_to_file=False, + # verbose=False, + # ) + # # perform query and... + # result = table.QTable(job.get_results(), copy=False) if len(result) == 0: warnings.warn(f"no data in patches: {patch_ids}") return @@ -492,7 +500,7 @@ def make_groups(sky: table.QTable, order: int): npix = hp.nside2npix(nside) # the number of sky patches # get healpix column name. it depends on the order, but is the group key. - keyname = rgr.groups.keys.colnames[0] + keyname = sky.groups.keys.colnames[0] # get unique ids patchids, hpx_indices, num_counts_per_patch = np.unique( @@ -635,7 +643,9 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # gaia_tools parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") - parser.add_argument("--username", default='postgres', type=str, help="gaia_tools query username") + parser.add_argument( + "--username", default="postgres", type=str, help="gaia_tools query username" + ) return parser diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 84a75f2f..9a11b893 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -52,6 +52,30 @@ # General THIS_DIR = pathlib.Path(__file__).parent +ADQL_QUERY = """ +SELECT +source_id, hpx{order}, +parallax, parallax_error, +ra, ra_error, +dec, dec_error + +FROM ( + SELECT + source_id, random_index, + GAIA_HEALPIX_INDEX({order}, source_id) AS hpx{order}, + parallax, parallax_error, + ra, ra_error, + dec, dec_error + + FROM gaiadr2.gaia_source AS gaia +) AS gaia + +WHERE parallax >= 0 +{random_index} + +ORDER BY hpx{order}; +""" + ############################################################################## # CODE ############################################################################## @@ -63,7 +87,7 @@ def query_sky_distribution( *, plot: bool = True, use_local: bool = True, - user: T.Optional[str] = 'postgres', + user: T.Optional[str] = "postgres", ) -> None: """Query Sky and save number count. @@ -82,29 +106,7 @@ def query_sky_distribution( """ # make ADQL random_index = "" if random_index is None else f"AND random_index < {int(random_index)}" - adql_query = f""" -SELECT -source_id, hpx{order}, -parallax, parallax_error, -ra, ra_error, -dec, dec_error - -FROM ( - SELECT - source_id, random_index, - GAIA_HEALPIX_INDEX({order}, source_id) AS hpx{order}, - parallax, parallax_error, - ra, ra_error, - dec, dec_error - - FROM gaiadr2.gaia_source AS gaia -) AS gaia - -WHERE parallax >= 0 -{random_index} - -ORDER BY hpx{order}; -""" + adql_query = ADQL_QUERY.format(order=order, random_index=random_index) print(adql_query) @@ -118,7 +120,9 @@ def query_sky_distribution( try: result = table.QTable.read(DATA_DIR) except Exception as e: - result = do_query(adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True) + result = do_query( + adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True + ) result.write(DATA_DIR) # group by healpix index @@ -228,7 +232,9 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # gaia_tools parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") - parser.add_argument("--username", default='postgres', type=str, help="gaia_tools query username") + parser.add_argument( + "--username", default="postgres", type=str, help="gaia_tools query username" + ) return parser From 68b8c1b4f6ab5b706584f34d9cc3e0ee5c9367e6 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 22:10:05 -0400 Subject: [PATCH 21/74] str subs Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index ed848e23..b31aa907 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -401,7 +401,7 @@ def query_and_fit_patch_set( # Query batch hpl = f"healpix{order}" # column name - adql_query = ADQL_QUERY.format(order=order, hpl=hpl, patch_ids) + adql_query = ADQL_QUERY.format(order=order, hpl=hpl, patch_ids=patch_ids) if random_index is not None: adql_query += f"AND random_index < {int(random_index)}" From f837577f29ccd75a7c8a4c452171cd0da3914c42 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 22:37:48 -0400 Subject: [PATCH 22/74] pass opts through Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 8 ++++++-- discO/data/err_field/sky_distribution.py | 2 +- 2 files changed, 7 insertions(+), 3 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index b31aa907..b5c08c47 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -732,8 +732,10 @@ def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: query_and_fit_patch_set( tuple(batch), order=ns.order, - plot=False, # FIXME! doesn't work with parallel map random_index=ns.random_index, + plot=False, # FIXME! doesn't work with parallel map + use_local=ns.use_local, + user=ns.username, ) pbar.update(n=1) pbar.refresh() @@ -751,8 +753,10 @@ def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: query_and_fit_patch_set( tuple(batch), order=ns.order, - plot=ns.plot, random_index=ns.random_index, + plot=ns.plot, + use_local=ns.use_local, + user=ns.username, ) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 9a11b893..44362cee 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -87,7 +87,7 @@ def query_sky_distribution( *, plot: bool = True, use_local: bool = True, - user: T.Optional[str] = "postgres", + user: str = "postgres", ) -> None: """Query Sky and save number count. From cabfb7b9f09f48bc3aaebd76a990a4f6536f81dd Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Fri, 8 Oct 2021 22:47:26 -0400 Subject: [PATCH 23/74] cleanup Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 44362cee..7bfb2560 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -108,8 +108,6 @@ def query_sky_distribution( random_index = "" if random_index is None else f"AND random_index < {int(random_index)}" adql_query = ADQL_QUERY.format(order=order, random_index=random_index) - print(adql_query) - # data folder FOLDER = THIS_DIR / f"order_{order}" FOLDER.mkdir(exist_ok=True) From bd90be643554047dbf37dc4f84db364849d83c04 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 21 Oct 2021 11:02:29 -0400 Subject: [PATCH 24/74] there's no GAIA_HEALPIX_INDEX Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 61 +++++++++++++++++++--------------- 1 file changed, 34 insertions(+), 27 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index b5c08c47..c36e9fda 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -69,19 +69,44 @@ # General THIS_DIR = pathlib.Path(__file__).parent +# gaia_tools doesn't have ``GAIA_HEALPIX_INDEX``, so we use the equivalent +# formula source_id / 2^(35 + (12 - order) * 2) +# see https://www.gaia.ac.uk/data/gaia-data-release-1/adql-cookbook ADQL_QUERY = """ SELECT -source_id, GAIA_HEALPIX_INDEX({order}, source_id) AS {hpl}, -parallax AS parallax, parallax_error AS parallax_error, -ra, ra_error AS ra_err, -dec, dec_error AS dec_err - -FROM gaiadr2.gaia_source - -WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} +source_id, hpx{order}, +parallax, parallax_error, +ra, ra_error, +dec, dec_error + +FROM ( + SELECT + source_id, random_index, + source_id/power(35+(12-{order})*2, 2) AS hpx{order} + parallax, parallax_error, + ra, ra_error, + dec, dec_error + + FROM gaiadr2.gaia_source AS gaia +) AS gaia + +WHERE hpx{order} IN {patch_ids} AND parallax >= 0 """ +# """ +# SELECT +# source_id, GAIA_HEALPIX_INDEX({order}, source_id) AS {hpl}, +# parallax AS parallax, parallax_error AS parallax_error, +# ra, ra_error AS ra_err, +# dec, dec_error AS dec_err +# +# FROM gaiadr2.gaia_source +# +# WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} +# AND parallax >= 0 +# """ + ############################################################################## # CODE ############################################################################## @@ -508,7 +533,7 @@ def make_groups(sky: table.QTable, order: int): ) allpatchids = np.arange(npix) - patchnums = np.ones(npix) + patchnums = np.zeros(npix) patchnums[patchids] = num_counts_per_patch patchnums[patchnums == 0] = 1 # set minimum number of 'counts' to 1 @@ -518,24 +543,6 @@ def make_groups(sky: table.QTable, order: int): allpatchids = allpatchids[sorter] numgroups = 200 - threshold = patchnums.sum() // numgroups - - # split arrays into numgroups - patchnums_split = np.array_split(patchnums, numgroups) - allpatchids_split = np.array_split(allpatchids, numgroups) - - # reverse every other, to try and even out the addition a little - patchnums_split = [ - (group if not i % 2 else group[::-1]) for i, group in enumerate(patchnums_split) - ] - allpatchids_split = [ - (group if not i % 2 else group[::-1]) for i, group in enumerate(allpatchids_split) - ] - - # turn back into 1 array - patchnums = np.concatenate(patchnums_split) - allpatchids = np.concatenate(allpatchids_split) - groupsids = [allpatchids[i::numgroups] for i in range(numgroups)] # # plot the distribution of groups From 2cb9bd7e5b1c634fb9162c745fdf7c8d33a94682 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 21 Oct 2021 11:05:28 -0400 Subject: [PATCH 25/74] fix type Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index c36e9fda..4b31f17f 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -82,7 +82,7 @@ FROM ( SELECT source_id, random_index, - source_id/power(35+(12-{order})*2, 2) AS hpx{order} + source_id/power(35+(12-{order})*2, 2) AS hpx{order}, parallax, parallax_error, ra, ra_error, dec, dec_error From 4e187db7b969e4db9056466878ddc6bd492b1bd9 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Wed, 27 Oct 2021 17:33:58 -0400 Subject: [PATCH 26/74] fix healpix id integer division Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 21 ++++----------------- discO/data/err_field/sky_distribution.py | 5 ++++- 2 files changed, 8 insertions(+), 18 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 4b31f17f..0db88a5c 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -82,7 +82,7 @@ FROM ( SELECT source_id, random_index, - source_id/power(35+(12-{order})*2, 2) AS hpx{order}, + TO_INTEGER(FLOOR(source_id/POWER(35+(12-{order})*2, 2))) AS hpx{order}, parallax, parallax_error, ra, ra_error, dec, dec_error @@ -94,19 +94,6 @@ AND parallax >= 0 """ -# """ -# SELECT -# source_id, GAIA_HEALPIX_INDEX({order}, source_id) AS {hpl}, -# parallax AS parallax, parallax_error AS parallax_error, -# ra, ra_error AS ra_err, -# dec, dec_error AS dec_err -# -# FROM gaiadr2.gaia_source -# -# WHERE GAIA_HEALPIX_INDEX({order}, source_id) IN {patch_ids} -# AND parallax >= 0 -# """ - ############################################################################## # CODE ############################################################################## @@ -397,7 +384,7 @@ def plot_mollview( def query_and_fit_patch_set( patch_ids: tuple[int, ...], order: int, - random_index: T.Optional[int] = 1000000, + random_index: T.Optional[int] = 1_000_000, *, plot: bool = True, use_local: bool = True, @@ -425,8 +412,8 @@ def query_and_fit_patch_set( # ----------------------- # Query batch - hpl = f"healpix{order}" # column name - adql_query = ADQL_QUERY.format(order=order, hpl=hpl, patch_ids=patch_ids) + hpl = f"hpx{order}" # column name + adql_query = ADQL_QUERY.format(order=order, patch_ids=patch_ids) if random_index is not None: adql_query += f"AND random_index < {int(random_index)}" diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 7bfb2560..f80504fd 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -52,6 +52,9 @@ # General THIS_DIR = pathlib.Path(__file__).parent +# gaia_tools doesn't have ``GAIA_HEALPIX_INDEX``, so we use the equivalent +# formula source_id / 2^(35 + (12 - order) * 2) +# see https://www.gaia.ac.uk/data/gaia-data-release-1/adql-cookbook ADQL_QUERY = """ SELECT source_id, hpx{order}, @@ -62,7 +65,7 @@ FROM ( SELECT source_id, random_index, - GAIA_HEALPIX_INDEX({order}, source_id) AS hpx{order}, + TO_INTEGER(FLOOR(source_id/POWER(35+(12-{order})*2, 2))) AS hpx{order}, parallax, parallax_error, ra, ra_error, dec, dec_error From 74bc6481a175886757fcaa304d0ac18b394b402a Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Wed, 27 Oct 2021 20:59:34 -0400 Subject: [PATCH 27/74] use known SQL Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 9 +++++++-- discO/data/err_field/sky_distribution.py | 2 +- 2 files changed, 8 insertions(+), 3 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 0db88a5c..cabb4778 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -82,7 +82,7 @@ FROM ( SELECT source_id, random_index, - TO_INTEGER(FLOOR(source_id/POWER(35+(12-{order})*2, 2))) AS hpx{order}, + CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx6, parallax, parallax_error, ra, ra_error, dec, dec_error @@ -437,7 +437,12 @@ def query_and_fit_patch_set( if plot: fig = plt.figure() plot_mollview(patch_ids, order, fig=fig) - fig.savefig(PLOT_DIR / f"mollview-{'-'.join(map(str, patch_ids))}.pdf") + + shortened = hash(patch_ids) # TODO! do better. Put in PDF metadata + with open(PLOT_DIR / f"mollview-{shortened}.txt") as f: + f.write(patch_ids) + + fig.savefig(PLOT_DIR / f"mollview-{shortened}.pdf") # ----------------------- # Fits to each patch diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index f80504fd..5df2a5f5 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -65,7 +65,7 @@ FROM ( SELECT source_id, random_index, - TO_INTEGER(FLOOR(source_id/POWER(35+(12-{order})*2, 2))) AS hpx{order}, + CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx6, parallax, parallax_error, ra, ra_error, dec, dec_error From a7985e77a81ad2785ce140cd25209ce8f5e5667f Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Wed, 3 Nov 2021 22:09:47 -0400 Subject: [PATCH 28/74] use shortened name Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index cabb4778..2188bb6d 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -495,7 +495,7 @@ def query_and_fit_patch_set( if plot: plt.tight_layout() - fig.savefig(PLOT_DIR / f"parallax-{'-'.join(map(str, patch_ids))}.pdf") + fig.savefig(PLOT_DIR / f"parallax-{shortened}.pdf") # /def From f27091fd1da48804db8dbb579f8bd6fcfe3b7ad7 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 00:04:40 -0400 Subject: [PATCH 29/74] verbosity Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 32 ++-- discO/data/err_field/sky_distribution.py | 205 +++++++++++++---------- 2 files changed, 131 insertions(+), 106 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 2188bb6d..a6528fb5 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -42,7 +42,7 @@ import numpy.typing as npt import tqdm # TODO! make optional from astropy import table -from astroquery.gaia import Gaia +from astropy.table import QTable, Row from gaia_tools.query import query as do_query from scipy.stats import gaussian_kde from sklearn.gaussian_process import GaussianProcessRegressor @@ -52,6 +52,7 @@ from sklearn.model_selection import GridSearchCV from sklearn.svm import SVR from sklearn.utils import shuffle +from numpy.random import Generator # PROJECT-SPECIFIC from .sky_distribution import main as sky_distribution_main @@ -420,18 +421,11 @@ def query_and_fit_patch_set( result = do_query( adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True ) - # job = Gaia.launch_job_async( - # query, - # dump_to_file=False, - # verbose=False, - # ) - # # perform query and... - # result = table.QTable(job.get_results(), copy=False) if len(result) == 0: warnings.warn(f"no data in patches: {patch_ids}") return - rgr: table.QTable = result.group_by(hpl) # group stars by patch + rgr: QTable = result.group_by(hpl) # group stars by patch # plot the patches if plot: @@ -458,8 +452,8 @@ def query_and_fit_patch_set( else: axs = np.array([None] * len(rgr.groups)) # noop for iteration - key: table.Row - grp: table.Table + key: Row + grp: QTable for grp, ax in zip(rgr.groups, axs.flat): # iter thru patches patch_id: int = grp[hpl][0] @@ -501,7 +495,7 @@ def query_and_fit_patch_set( # /def -def make_groups(sky: table.QTable, order: int): +def make_groups(sky: QTable, order: int): """Make groups. Parameters @@ -520,13 +514,13 @@ def make_groups(sky: table.QTable, order: int): keyname = sky.groups.keys.colnames[0] # get unique ids - patchids, hpx_indices, num_counts_per_patch = np.unique( + patchids, hpx_indices, num_counts_per_pixel = np.unique( sky[keyname].value, return_index=True, return_counts=True ) allpatchids = np.arange(npix) patchnums = np.zeros(npix) - patchnums[patchids] = num_counts_per_patch + patchnums[patchids] = num_counts_per_pixel patchnums[patchnums == 0] = 1 # set minimum number of 'counts' to 1 # sort by number of counts @@ -684,17 +678,11 @@ def main( parser = make_parser() ns = parser.parse_args(args) - # /if - - # ----------------------- # make background distribution - - sky = sky_distribution_main(opts=ns) - - # ----------------------- + sky: QTable = sky_distribution_main(opts=ns) # random number generator - rng = np.random.default_rng(ns.rng) + rng: Generator = np.random.default_rng(ns.rng) # construct the list of batches of sky patches # [ (patch_1, patch_2, ...), (patch_i, patch_i+1, ...)] diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 5df2a5f5..a9fbfb79 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -9,18 +9,7 @@ """ -__all__ = [ - # script - "make_parser", - "main", - # functions - "fit_kernel_ridge", - "fit_gaussian_process", - "fit_support_vector", - "fit_linear", - # querying - "query_and_fit_patch_set", -] +__all__ = ["make_parser", "main"] ############################################################################## @@ -36,19 +25,12 @@ import matplotlib.colors as colors import matplotlib.pyplot as plt import numpy as np -from astropy import table +from astropy.table import QTable from gaia_tools.query import query as do_query ############################################################################## # PARAMETERS -RandomStateType = T.Union[ - None, - int, - np.random.RandomState, - np.random.Generator, -] - # General THIS_DIR = pathlib.Path(__file__).parent @@ -91,8 +73,9 @@ def query_sky_distribution( plot: bool = True, use_local: bool = True, user: str = "postgres", + verbose: bool = True, ) -> None: - """Query Sky and save number count. + """Query sky and save number count. Parameters ---------- @@ -100,17 +83,19 @@ def query_sky_distribution( random_index : int, optional plot : bool (optional, keyword-only) + Whether to make plots from the query results. use_local : bool (optional, keyword-only) + Perform the query on a local database or the Gaia server. + See :func:`gaia_tools.query.query` for details. + verbose : bool (optional, keyword-only) + Script verbosity. Returns ------- sky : `~astropy.tables.QTable` - Grouped by + Grouped by healpix index. """ - # make ADQL - random_index = "" if random_index is None else f"AND random_index < {int(random_index)}" - adql_query = ADQL_QUERY.format(order=order, random_index=random_index) - + # ---------------------- # data folder FOLDER = THIS_DIR / f"order_{order}" FOLDER.mkdir(exist_ok=True) @@ -118,69 +103,121 @@ def query_sky_distribution( # data file DATA_DIR = FOLDER / f"sky_distribution_{order}.ecsv" + if verbose: + print(f"data will be saved to / read from {DATA_DIR}") + + # ---------------------- + # Perform query or load from file + + # make ADQL + random_index = "" if random_index is None else f"AND random_index < {int(random_index)}" + adql_query = ADQL_QUERY.format(order=order, random_index=random_index) + try: - result = table.QTable.read(DATA_DIR) + result = QTable.read(DATA_DIR) except Exception as e: + if verbose: + print("starting query.") result = do_query( adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True ) + if verbose: + print("finished query.") + + # ensure tight columns are int + result["source_id"].dtype = int + result[f"hpx{order}"].dtype = int + + # write so next time don't need to query + if verbose: + print("saving sky distribution table.") result.write(DATA_DIR) + else: + if verbose: + print("loaded sky distribution table.") # group by healpix index sky = result.group_by(f"hpx{order}") if plot: + if verbose: + print("making plots.") + # save plots in the same location as the data PLOT_DIR = FOLDER / "figures" PLOT_DIR.mkdir(exist_ok=True) - # get unique ids + # get healpix counts patchids, hpx_indices, num_counts_per_pixel = np.unique( sky[f"hpx{order}"].value, return_index=True, return_counts=True ) - # ---------------- - # plot mollweide + # histogram of counts per pixel + plot_hist_pixel_count(num_counts_per_pixel, saveloc=PLOT_DIR) - fig = plt.figure() - ax = fig.add_subplot( - title="Number of Counts per Pixel", - xlabel="Number of Counts", - ylabel=f"Frequency / {num_counts_per_pixel.sum()}", - ) - ax.hist(num_counts_per_pixel, bins=50, log=True) - fig.savefig(PLOT_DIR / f"num_counts_per_pixel_{order}.pdf") - plt.close(fig) - - # ---------------- - # plot mollweide - - fig = plt.figure(figsize=(10, 10), facecolor="white") - nside = hp.order2nside(order) - npix = hp.nside2npix(nside) - - ma = np.zeros(npix) - ma[patchids] = num_counts_per_pixel / num_counts_per_pixel.sum() - ma[ma == 0] = hp.UNSEEN - - hp.mollview( - ma, - nest=True, - coord=["C"], - cbar=True, - cmap="Greens", - fig=fig, - title=f"Star Count Fraction (Nest {order}, Mollweide)", - norm=colors.LogNorm(), - badcolor="white", - ) - fig.savefig(PLOT_DIR / f"sky_distribution_{order}.pdf") - plt.close(fig) + # plot mollweide of sky colored by count + plot_sky_mollview(num_counts_per_pixel, order, saveloc=PLOT_DIR) return sky -# /def +def plot_hist_pixel_count(num_counts_per_pixel: np.ndarray, saveloc: pathlib.Path) -> None: + """Plot histogram of counts per pixel. + + Parameters + ---------- + num_counts_per_pixel : ndarray[int] + saveloc : path-like + """ + # make plot + fig = plt.figure() + ax = fig.add_subplot( + title="Number of Counts per Pixel", + xlabel="Number of Counts", + ylabel=f"Frequency / {num_counts_per_pixel.sum()}", + ) + # plot histogram + ax.hist(num_counts_per_pixel, bins=50, log=True) + # save and close + fig.savefig(saveloc / f"num_counts_per_pixel_{order}.pdf") + plt.close(fig) + + +def plot_sky_mollview(num_counts_per_pixel: np.ndarray, order: int, saveloc: pathlib.Path) -> None: + """Plot mollweide of sky colored by pixel count. + + Parameters + ---------- + num_counts_per_pixel : ndarray[int] + order : int + saveloc : path-like + """ + fig = plt.figure(figsize=(10, 10), facecolor="white") + + # calculate npix from order + nside = hp.order2nside(order) + npix = hp.nside2npix(nside) + + # create pixel map + pmap = np.zeros(npix) + pmap[patchids] = num_counts_per_pixel / num_counts_per_pixel.sum() + pmap[pmap == 0] = hp.UNSEEN + + # plot + hp.mollview( + pmap, + nest=True, + coord=["C"], + cbar=True, + cmap="Greens", + fig=fig, + title=f"Star Count Fraction (Nest {order}, Mollweide)", + norm=colors.LogNorm(), + badcolor="white", + ) + # save and close + fig.savefig(saveloc / f"sky_distribution_{order}.pdf") + plt.close(fig) ############################################################################## @@ -196,30 +233,26 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: inheritable: bool, optional, keyword only whether the parser can be inherited from (default False). if True, sets ``add_help=False`` and ``conflict_hander='resolve'`` - plot : bool, optional, keyword only Whether to produce plots, or not. - verbose : int, optional, keyword only Script logging verbosity. Returns ------- parser: `~argparse.ArgumentParser` - The parser with arguments: - - plot - - verbose """ + # make the argument parser parser = argparse.ArgumentParser( - description="", + description="Query Gaia for the approximate density distribution of stars across the sky.", add_help=not inheritable, conflict_handler="resolve" if not inheritable else "error", ) - # order + # healpix order. Order 6 has approximately 1 pixel per square degree. parser.add_argument("-o", "--order", default=6, type=int, help="healpix order") - # stars in gaia + # random index = depth to query of stars in gaia parser.add_argument( "-i", "--random_index", @@ -230,9 +263,12 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # plot or not parser.add_argument("--plot", default=True, type=bool, help="make plots or not") + parser.add_argument("-v", "--verbose", action="store_true", help="verbose") # gaia_tools - parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") + parser.add_argument( + "--use_local", action="store_true", help="perform a local database query or query gaia" + ) parser.add_argument( "--username", default="postgres", type=str, help="gaia_tools query username" ) @@ -240,14 +276,14 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: return parser -# /def +# ------------------------------------------------------------------------ def main( args: T.Union[list[str], str, None] = None, opts: T.Optional[argparse.Namespace] = None, ) -> None: - """Script Function. + """Query Gaia for distribution of stars on the sky. Parameters ---------- @@ -256,10 +292,13 @@ def main( except for the script name (e.g., argv[1:]) opts : `~argparse.Namespace`| or None, optional pre-constructed results of parsed args - if not None, used ONLY if args is None + if not None, used ONLY if args is None. - - nside + Returns + ------- + `astropy.table.QTable` """ + # parse args ns: argparse.Namespace if opts is not None and args is None: ns = opts @@ -272,22 +311,22 @@ def main( parser = make_parser() ns = parser.parse_args(args) - # /if + if verbose: + print("Starting script for the sky distribution of stars in Gaia.") + # query or load from sky = query_sky_distribution( order=ns.order, random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local, user=ns.username, + verbose=np.verbose, ) return sky -# /def - - # ------------------------------------------------------------------------ if __name__ == "__main__": @@ -296,7 +335,5 @@ def main( main(args=None, opts=None) # all arguments except script name -# /if - ############################################################################## # END From 0ac562dad75f6c4c7ca21c194f547f123c76c324 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 00:12:54 -0400 Subject: [PATCH 30/74] fix Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index a9fbfb79..75041856 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -311,7 +311,7 @@ def main( parser = make_parser() ns = parser.parse_args(args) - if verbose: + if np.verbose: print("Starting script for the sky distribution of stars in Gaia.") # query or load from From 3bc46c328fcdc07181b3654c4962205b57528bec Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 00:13:34 -0400 Subject: [PATCH 31/74] oops Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 75041856..d15dd409 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -311,7 +311,7 @@ def main( parser = make_parser() ns = parser.parse_args(args) - if np.verbose: + if ns.verbose: print("Starting script for the sky distribution of stars in Gaia.") # query or load from @@ -321,7 +321,7 @@ def main( plot=ns.plot, use_local=ns.use_local, user=ns.username, - verbose=np.verbose, + verbose=ns.verbose, ) return sky From 6ea59366a25b9761c7a3e4a89671d24666a7f0c8 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 00:15:01 -0400 Subject: [PATCH 32/74] Add order to plot func Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index d15dd409..4bdaeeed 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -153,7 +153,7 @@ def query_sky_distribution( ) # histogram of counts per pixel - plot_hist_pixel_count(num_counts_per_pixel, saveloc=PLOT_DIR) + plot_hist_pixel_count(num_counts_per_pixel, order, saveloc=PLOT_DIR) # plot mollweide of sky colored by count plot_sky_mollview(num_counts_per_pixel, order, saveloc=PLOT_DIR) @@ -161,12 +161,13 @@ def query_sky_distribution( return sky -def plot_hist_pixel_count(num_counts_per_pixel: np.ndarray, saveloc: pathlib.Path) -> None: +def plot_hist_pixel_count(num_counts_per_pixel: np.ndarray, order: int, saveloc: pathlib.Path) -> None: """Plot histogram of counts per pixel. Parameters ---------- num_counts_per_pixel : ndarray[int] + order : int saveloc : path-like """ # make plot From 5b59cb7bd32cb44ef904c28e044f9a8e3479c0c3 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 00:18:03 -0400 Subject: [PATCH 33/74] add patchids to plot func Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/sky_distribution.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 4bdaeeed..d1d2d566 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -156,7 +156,7 @@ def query_sky_distribution( plot_hist_pixel_count(num_counts_per_pixel, order, saveloc=PLOT_DIR) # plot mollweide of sky colored by count - plot_sky_mollview(num_counts_per_pixel, order, saveloc=PLOT_DIR) + plot_sky_mollview(patchids, num_counts_per_pixel, order, saveloc=PLOT_DIR) return sky @@ -184,11 +184,12 @@ def plot_hist_pixel_count(num_counts_per_pixel: np.ndarray, order: int, saveloc: plt.close(fig) -def plot_sky_mollview(num_counts_per_pixel: np.ndarray, order: int, saveloc: pathlib.Path) -> None: +def plot_sky_mollview(patchids, num_counts_per_pixel: np.ndarray, order: int, saveloc: pathlib.Path) -> None: """Plot mollweide of sky colored by pixel count. Parameters ---------- + patchids : ndarray[int] num_counts_per_pixel : ndarray[int] order : int saveloc : path-like From 95eebd26c61bf40dadef1e15ede11c1c39a74bd8 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 00:34:50 -0400 Subject: [PATCH 34/74] correct type casting Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- discO/data/err_field/sky_distribution.py | 11 ++++++----- 2 files changed, 7 insertions(+), 6 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index a6528fb5..58b0fa45 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -83,7 +83,7 @@ FROM ( SELECT source_id, random_index, - CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx6, + CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx{order}, parallax, parallax_error, ra, ra_error, dec, dec_error diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index d1d2d566..cbffba42 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -47,7 +47,7 @@ FROM ( SELECT source_id, random_index, - CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx6, + CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx{order}, parallax, parallax_error, ra, ra_error, dec, dec_error @@ -110,6 +110,7 @@ def query_sky_distribution( # Perform query or load from file # make ADQL + hpxO = f"hpx{order}" random_index = "" if random_index is None else f"AND random_index < {int(random_index)}" adql_query = ADQL_QUERY.format(order=order, random_index=random_index) @@ -125,8 +126,8 @@ def query_sky_distribution( print("finished query.") # ensure tight columns are int - result["source_id"].dtype = int - result[f"hpx{order}"].dtype = int + result["source_id"] = result["source_id"].value.astype(int) + result[hpxO] = result[hpxO].value.astype(int) # write so next time don't need to query if verbose: @@ -137,7 +138,7 @@ def query_sky_distribution( print("loaded sky distribution table.") # group by healpix index - sky = result.group_by(f"hpx{order}") + sky = result.group_by(hpxO) if plot: if verbose: @@ -149,7 +150,7 @@ def query_sky_distribution( # get healpix counts patchids, hpx_indices, num_counts_per_pixel = np.unique( - sky[f"hpx{order}"].value, return_index=True, return_counts=True + sky[hpxO].value, return_index=True, return_counts=True ) # histogram of counts per pixel From b70dd199c5fc4cccacfee9d65412586e39da9488 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 00:40:50 -0400 Subject: [PATCH 35/74] add verbose to main script Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 26 +------------------------- 1 file changed, 1 insertion(+), 25 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 58b0fa45..40d8f517 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -151,9 +151,6 @@ def fit_kernel_ridge( return ykr, kr -# /def - - def fit_support_vector( X: npt.NDArray[np.float_], y: npt.NDArray[np.float_], @@ -201,9 +198,6 @@ def fit_support_vector( return ysv, svr -# /def - - def fit_linear( X: npt.NDArray[np.float_], y: npt.NDArray[np.float_], @@ -258,9 +252,6 @@ def fit_linear( return ylr, lr -# /def - - # ============================================================================ @@ -334,9 +325,6 @@ def plot_parallax_prediction( return fig -# /def - - def plot_mollview( patch_ids: tuple[int, ...], order: int, fig: T.Optional[plt.Figure] = None ) -> plt.Figure: @@ -376,9 +364,6 @@ def plot_mollview( return fig -# /def - - # ============================================================================ @@ -492,9 +477,6 @@ def query_and_fit_patch_set( fig.savefig(PLOT_DIR / f"parallax-{shortened}.pdf") -# /def - - def make_groups(sky: QTable, order: int): """Make groups. @@ -537,8 +519,6 @@ def make_groups(sky: QTable, order: int): return groupsids -# /def - ############################################################################## # Command Line ############################################################################## @@ -619,6 +599,7 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # script verbosity parser.add_argument("--filter_warnings", action="store_true", help="filter warnings") + parser.add_argument("-v", "--verbose", action="store_true", help="verbose") # parallelize parser.add_argument( @@ -747,9 +728,6 @@ def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: ) -# /def - - # ------------------------------------------------------------------------ if __name__ == "__main__": @@ -758,8 +736,6 @@ def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: main(args=None, opts=None) # all arguments except script name -# /if - ############################################################################## # END From 7b0bec65eb4bbb9a802f27190b556a3fcfe7f671 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 01:32:57 -0400 Subject: [PATCH 36/74] write mode Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 40d8f517..733088d1 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -418,7 +418,7 @@ def query_and_fit_patch_set( plot_mollview(patch_ids, order, fig=fig) shortened = hash(patch_ids) # TODO! do better. Put in PDF metadata - with open(PLOT_DIR / f"mollview-{shortened}.txt") as f: + with open(PLOT_DIR / f"mollview-{shortened}.txt", mode="wb") as f: f.write(patch_ids) fig.savefig(PLOT_DIR / f"mollview-{shortened}.pdf") From 8615a252df0bcab762a2b62d1a682952fe233f7f Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 02:06:33 -0400 Subject: [PATCH 37/74] str contents Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 733088d1..82df89d4 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -419,7 +419,7 @@ def query_and_fit_patch_set( shortened = hash(patch_ids) # TODO! do better. Put in PDF metadata with open(PLOT_DIR / f"mollview-{shortened}.txt", mode="wb") as f: - f.write(patch_ids) + f.write(str(patch_ids)) fig.savefig(PLOT_DIR / f"mollview-{shortened}.pdf") @@ -466,7 +466,7 @@ def query_and_fit_patch_set( yreg, reg = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=kde) yreg1, reg1 = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=False) - with open(DATA_DIR / f"pk_{patch_id}.pkl", mode="wb") as f: + with open(DATA_DIR / f"pk_{patch_id}.pkl", mode="w") as f: pickle.dump(reg, f) # the weighted linear regression if plot: From c8d3aa795a67d1571038dd2586fa02f1303099aa Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 02:40:41 -0400 Subject: [PATCH 38/74] fix Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 82df89d4..8c4a6936 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -418,7 +418,7 @@ def query_and_fit_patch_set( plot_mollview(patch_ids, order, fig=fig) shortened = hash(patch_ids) # TODO! do better. Put in PDF metadata - with open(PLOT_DIR / f"mollview-{shortened}.txt", mode="wb") as f: + with open(PLOT_DIR / f"mollview-{shortened}.txt", mode="w") as f: f.write(str(patch_ids)) fig.savefig(PLOT_DIR / f"mollview-{shortened}.pdf") @@ -466,7 +466,7 @@ def query_and_fit_patch_set( yreg, reg = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=kde) yreg1, reg1 = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=False) - with open(DATA_DIR / f"pk_{patch_id}.pkl", mode="w") as f: + with open(DATA_DIR / f"pk_{patch_id}.pkl", mode="wb") as f: pickle.dump(reg, f) # the weighted linear regression if plot: From ad71760ebe13192697487723854bf334a1d0fc50 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 11:00:12 -0400 Subject: [PATCH 39/74] ensure QTable Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 1 + 1 file changed, 1 insertion(+) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 8c4a6936..cdc5eced 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -406,6 +406,7 @@ def query_and_fit_patch_set( result = do_query( adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True ) + result = QTable(result, copy=False) if len(result) == 0: warnings.warn(f"no data in patches: {patch_ids}") return From b07e264589fec75b2bd4eee0ab52a96240508ec3 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 4 Nov 2021 12:41:49 -0400 Subject: [PATCH 40/74] Quantities Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index cdc5eced..a1f79762 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -406,7 +406,6 @@ def query_and_fit_patch_set( result = do_query( adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True ) - result = QTable(result, copy=False) if len(result) == 0: warnings.warn(f"no data in patches: {patch_ids}") return @@ -442,7 +441,6 @@ def query_and_fit_patch_set( grp: QTable for grp, ax in zip(rgr.groups, axs.flat): # iter thru patches patch_id: int = grp[hpl][0] - grp = grp[np.isfinite(grp["parallax"])] # filter out NaN # TODO! in query # group = group[group["parallax"] > 0] # positive parallax @@ -451,9 +449,9 @@ def query_and_fit_patch_set( X = np.array( [ - grp["ra"].to_value(u.deg), - grp["dec"].to_value(u.deg), - np.log10(grp["parallax"].to_value(u.mas)), + u.Quantity(grp["ra"], u.deg, copy=False).value, + u.Quantity(grp["dec"], u.deg, copy=False).value, + np.log10(u.Quantity(grp["parallax"], u.mas, copy=False).value), ], ).T y = np.log10(grp["parallax_frac_error"].value.reshape(-1, 1))[:, 0] From 6b3bcc07488626a50e9c193ab31a075eec1584d2 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 18 Nov 2021 10:19:37 -0500 Subject: [PATCH 41/74] remove extraneous Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 119 +++++++++-------------- discO/data/err_field/sky_distribution.py | 7 +- 2 files changed, 49 insertions(+), 77 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index a1f79762..b669a865 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -367,6 +367,43 @@ def plot_mollview( # ============================================================================ +def fit_and_plot_patch(patch, healpix_colname, ax, saveloc): + """ + + """ + patch_id: int = grp[healpix_colname][0] + grp = grp[np.isfinite(grp["parallax"])] # filter out NaN # TODO! in query + + # add the fractional error + grp["parallax_frac_error"] = grp["parallax_error"] / grp["parallax"] + + # construct the signal array + X = np.array( + [ + u.Quantity(grp["ra"], u.deg, copy=False).value, + u.Quantity(grp["dec"], u.deg, copy=False).value, + np.log10(u.Quantity(grp["parallax"], u.mas, copy=False).value), + ], + ).T + y = np.log10(grp["parallax_frac_error"].value.reshape(-1, 1))[:, 0] + + # get signal density of the parallax + xy = np.vstack([X[:, 2], y]) + kde = gaussian_kde(xy)(xy) + + # fit a few different ways + # ykr, kr = fit_kernel_ridge(X, y, train_size=int(len(grp) * 0.8)) + # ysv, svr = fit_support_vector(X, y, train_size=int(len(grp) * 0.8)) + yreg, reg = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=kde) + yreg1, reg1 = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=False) + + with open(saveloc / f"pk_{patch_id}.pkl", mode="wb") as f: + pickle.dump(reg, f) # the weighted linear regression + + if plot: + plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, patch_id, ax=ax) + + def query_and_fit_patch_set( patch_ids: tuple[int, ...], order: int, @@ -374,7 +411,6 @@ def query_and_fit_patch_set( *, plot: bool = True, use_local: bool = True, - user: str = "postgres", ) -> None: """Query and fit a set of sky patches. @@ -404,7 +440,7 @@ def query_and_fit_patch_set( adql_query += f"AND random_index < {int(random_index)}" result = do_query( - adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True + adql_query, local=use_local, use_cache=False, verbose=True, timeit=True ) if len(result) == 0: warnings.warn(f"no data in patches: {patch_ids}") @@ -440,37 +476,9 @@ def query_and_fit_patch_set( key: Row grp: QTable for grp, ax in zip(rgr.groups, axs.flat): # iter thru patches - patch_id: int = grp[hpl][0] - grp = grp[np.isfinite(grp["parallax"])] # filter out NaN # TODO! in query - # group = group[group["parallax"] > 0] # positive parallax - - # add the fractional error - grp["parallax_frac_error"] = grp["parallax_error"] / grp["parallax"] - - X = np.array( - [ - u.Quantity(grp["ra"], u.deg, copy=False).value, - u.Quantity(grp["dec"], u.deg, copy=False).value, - np.log10(u.Quantity(grp["parallax"], u.mas, copy=False).value), - ], - ).T - y = np.log10(grp["parallax_frac_error"].value.reshape(-1, 1))[:, 0] - - xy = np.vstack([X[:, 2], y]) - kde = gaussian_kde(xy)(xy) - - # fit a few different ways - ykr, kr = fit_kernel_ridge(X, y, train_size=int(len(grp) * 0.8)) - ysv, svr = fit_support_vector(X, y, train_size=int(len(grp) * 0.8)) - yreg, reg = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=kde) - yreg1, reg1 = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=False) - - with open(DATA_DIR / f"pk_{patch_id}.pkl", mode="wb") as f: - pickle.dump(reg, f) # the weighted linear regression - - if plot: - plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, patch_id, ax=ax) + fit_and_plot_patch(grp, hpl, ax, DATA_DIR) + # save plot of all the patches if plot: plt.tight_layout() fig.savefig(PLOT_DIR / f"parallax-{shortened}.pdf") @@ -616,9 +624,6 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # gaia_tools parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") - parser.add_argument( - "--username", default="postgres", type=str, help="gaia_tools query username" - ) return parser @@ -689,42 +694,14 @@ def main( ) # TODO! warnings.simplefilter("ignore", category=UserWarning) # TODO! - if ns.parallel: - # TODO! not have galpy dependency just for this util - # PROJECT-SPECIFIC - from .multi import parallel_map - - def wrapped_query_and_fit_patch_set(batch: tuple[int, ...]) -> tuple[int, ...]: - if len(batch) != 0: # skip empty batch - query_and_fit_patch_set( - tuple(batch), - order=ns.order, - random_index=ns.random_index, - plot=False, # FIXME! doesn't work with parallel map - use_local=ns.use_local, - user=ns.username, - ) - pbar.update(n=1) - pbar.refresh() - return batch - - # /def - - with tqdm.tqdm(total=len(list_of_batches)) as pbar: - # TODO! switch to - # https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool.map - parallel_map(wrapped_query_and_fit_patch_set, list_of_batches, numcores=ns.numcores) - - else: - for batch in tqdm.tqdm(list_of_batches): - query_and_fit_patch_set( - tuple(batch), - order=ns.order, - random_index=ns.random_index, - plot=ns.plot, - use_local=ns.use_local, - user=ns.username, - ) + for batch in tqdm.tqdm(list_of_batches): + query_and_fit_patch_set( + tuple(batch), + order=ns.order, + random_index=ns.random_index, + plot=ns.plot, + use_local=ns.use_local + ) # ------------------------------------------------------------------------ diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index cbffba42..5f50c7c3 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -72,7 +72,6 @@ def query_sky_distribution( *, plot: bool = True, use_local: bool = True, - user: str = "postgres", verbose: bool = True, ) -> None: """Query sky and save number count. @@ -120,7 +119,7 @@ def query_sky_distribution( if verbose: print("starting query.") result = do_query( - adql_query, local=use_local, use_cache=False, user=user, verbose=True, timeit=True + adql_query, local=use_local, use_cache=False, verbose=True, timeit=True ) if verbose: print("finished query.") @@ -272,9 +271,6 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: parser.add_argument( "--use_local", action="store_true", help="perform a local database query or query gaia" ) - parser.add_argument( - "--username", default="postgres", type=str, help="gaia_tools query username" - ) return parser @@ -323,7 +319,6 @@ def main( random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local, - user=ns.username, verbose=ns.verbose, ) From bb58d04d8952452ea74961ec9933aeaea10ccc3c Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 18 Nov 2021 10:21:31 -0500 Subject: [PATCH 42/74] fix UnboundLocalError: Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index b669a865..a16b3735 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -367,11 +367,15 @@ def plot_mollview( # ============================================================================ -def fit_and_plot_patch(patch, healpix_colname, ax, saveloc): +def fit_and_plot_patch(patch, healpix_colname, ax, saveloc) -> None: """ + Parameters + ---------- + patch : QTable + healpix_colname : str """ - patch_id: int = grp[healpix_colname][0] + patch_id: int = patch[healpix_colname][0] grp = grp[np.isfinite(grp["parallax"])] # filter out NaN # TODO! in query # add the fractional error From d18e9c22a239a4b019a9354d76fd1ef5a5ce9f55 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 18 Nov 2021 10:23:10 -0500 Subject: [PATCH 43/74] ibid Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index a16b3735..bd86fd9f 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -376,20 +376,20 @@ def fit_and_plot_patch(patch, healpix_colname, ax, saveloc) -> None: healpix_colname : str """ patch_id: int = patch[healpix_colname][0] - grp = grp[np.isfinite(grp["parallax"])] # filter out NaN # TODO! in query + patch = patch[np.isfinite(patch["parallax"])] # filter out NaN # TODO! in query # add the fractional error - grp["parallax_frac_error"] = grp["parallax_error"] / grp["parallax"] + patch["parallax_frac_error"] = patch["parallax_error"] / patch["parallax"] # construct the signal array X = np.array( [ - u.Quantity(grp["ra"], u.deg, copy=False).value, - u.Quantity(grp["dec"], u.deg, copy=False).value, - np.log10(u.Quantity(grp["parallax"], u.mas, copy=False).value), + u.Quantity(patch["ra"], u.deg, copy=False).value, + u.Quantity(patch["dec"], u.deg, copy=False).value, + np.log10(u.Quantity(patch["parallax"], u.mas, copy=False).value), ], ).T - y = np.log10(grp["parallax_frac_error"].value.reshape(-1, 1))[:, 0] + y = np.log10(patch["parallax_frac_error"].value.reshape(-1, 1))[:, 0] # get signal density of the parallax xy = np.vstack([X[:, 2], y]) From 094b1696e17e3b554f1c035a8e2ed695c5a25cba Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 18 Nov 2021 10:24:36 -0500 Subject: [PATCH 44/74] ibid Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index bd86fd9f..7d79ab61 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -398,8 +398,8 @@ def fit_and_plot_patch(patch, healpix_colname, ax, saveloc) -> None: # fit a few different ways # ykr, kr = fit_kernel_ridge(X, y, train_size=int(len(grp) * 0.8)) # ysv, svr = fit_support_vector(X, y, train_size=int(len(grp) * 0.8)) - yreg, reg = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=kde) - yreg1, reg1 = fit_linear(X, y, train_size=int(len(grp) * 0.8), weight=False) + yreg, reg = fit_linear(X, y, train_size=int(len(patch) * 0.8), weight=kde) + yreg1, reg1 = fit_linear(X, y, train_size=int(len(patch) * 0.8), weight=False) with open(saveloc / f"pk_{patch_id}.pkl", mode="wb") as f: pickle.dump(reg, f) # the weighted linear regression From b2a1c30f3900fe611117274ab508a93f7a42172b Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 18 Nov 2021 10:25:54 -0500 Subject: [PATCH 45/74] no plot arg Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 7d79ab61..4e949fb3 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -404,7 +404,7 @@ def fit_and_plot_patch(patch, healpix_colname, ax, saveloc) -> None: with open(saveloc / f"pk_{patch_id}.pkl", mode="wb") as f: pickle.dump(reg, f) # the weighted linear regression - if plot: + if ax is not None: plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, patch_id, ax=ax) From 81b9e4cfde55df222dfcff2c8733cc812f4b328a Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 18 Nov 2021 10:27:47 -0500 Subject: [PATCH 46/74] ykr Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 4e949fb3..03b066cd 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -314,7 +314,7 @@ def plot_parallax_prediction( ).T ax.scatter(Xtrue[:, -1], ytrue, s=5, label="data", alpha=0.3, c=kde) - ax.scatter(Xpred[:, -1], ypred1, s=5, label="kernel-ridge") + # ax.scatter(Xpred[:, -1], ypred1, s=5, label="kernel-ridge") ax.scatter(Xpred[:, -1], ypred2, s=5, label="linear model: density-weighting") ax.scatter(Xpred[:, -1], ypred3, s=5, label="linear model: no density weight") @@ -396,6 +396,7 @@ def fit_and_plot_patch(patch, healpix_colname, ax, saveloc) -> None: kde = gaussian_kde(xy)(xy) # fit a few different ways + ykr = None # TODO! # ykr, kr = fit_kernel_ridge(X, y, train_size=int(len(grp) * 0.8)) # ysv, svr = fit_support_vector(X, y, train_size=int(len(grp) * 0.8)) yreg, reg = fit_linear(X, y, train_size=int(len(patch) * 0.8), weight=kde) From 994b4a5b413b8f7203d657d5ee70775c2d9821a8 Mon Sep 17 00:00:00 2001 From: "Nathaniel Starkman (@nstarman)" Date: Thu, 18 Nov 2021 10:29:31 -0500 Subject: [PATCH 47/74] test Signed-off-by: Nathaniel Starkman (@nstarman) --- discO/data/err_field/script.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 03b066cd..f3c7014d 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -393,7 +393,10 @@ def fit_and_plot_patch(patch, healpix_colname, ax, saveloc) -> None: # get signal density of the parallax xy = np.vstack([X[:, 2], y]) - kde = gaussian_kde(xy)(xy) + try: + kde = gaussian_kde(xy)(xy) + except: + breakpoint() # fit a few different ways ykr = None # TODO! From efacf7e28c48d94aade4685504cdec6bb030d18f Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 12:36:31 -0500 Subject: [PATCH 48/74] lots of small fixes Signed-off-by: nstarman --- discO/data/err_field/script.py | 775 +++++++++++------------ discO/data/err_field/sky_distribution.py | 105 +-- 2 files changed, 433 insertions(+), 447 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index f3c7014d..3efdf7b3 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -6,7 +6,40 @@ Parameters ---------- - +o, order : int (optional, keyword-only) + The HEALPix order. Default 6. +n, ngroups : int (optional, keyword-only) + The number of total groups. Default 200. + +allsky : bool, keyword-only + A flag indicating all HEALPix pixel ids are to be queried and fit. + If used, 'allsky' and 'pixels_range' cannot be included. +pixels : tuple of int, keyword-only + The set HEALPix pixel ids to query and fit. + If passed as a kwarg, 'allsky' and 'pixels_range' cannot be included. +r, pixels_range : tuple of int, keyword-only + 2 integers setting the range of HEALPix ids to query and fit. + If passed as a kwarg, 'allsky' and 'pixels' cannot be included. + +i, random_index : int or None (optional, keyword-only) + Limit the number of queried stars to within the random index. + This can be used to speed up test queries without impacting which pixels + are queried and fit. +rng : int (optional, keyword-only) + The random number generator seed. +use_local : bool (optional, keyword-only) + Whether to perform the queries on Gaia's server or locally. + See :mod:`gaia_tools` for details. + +plot : bool (optional, keyword-only) + Whether to make plots. +filter_warnings : bool (optional, keyword-only) + Whether to filter warnings. +v, verbose : bool (optional, keyword-only) + Script verbosity. + +saveloc : str (optional, keyword-only) + The save location for the data. """ __all__ = [ @@ -14,12 +47,8 @@ "make_parser", "main", # functions - "fit_kernel_ridge", - "fit_gaussian_process", - "fit_support_vector", - "fit_linear", - # querying - "query_and_fit_patch_set", + "fit_pixel", + "query_and_fit_pixel_set", ] @@ -36,23 +65,20 @@ # THIRD PARTY import astropy.coordinates as coord import astropy.units as u -import healpy as hp +import astropy_healpy +import healpy import matplotlib.pyplot as plt import numpy as np import numpy.typing as npt -import tqdm # TODO! make optional -from astropy import table +import tqdm from astropy.table import QTable, Row from gaia_tools.query import query as do_query +from numpy.random import Generator from scipy.stats import gaussian_kde -from sklearn.gaussian_process import GaussianProcessRegressor -from sklearn.kernel_ridge import KernelRidge from sklearn.linear_model import LinearRegression from sklearn.metrics._regression import UndefinedMetricWarning -from sklearn.model_selection import GridSearchCV -from sklearn.svm import SVR from sklearn.utils import shuffle -from numpy.random import Generator +from astropy_healpy import nside2npix, order2nside # PROJECT-SPECIFIC from .sky_distribution import main as sky_distribution_main @@ -60,14 +86,9 @@ ############################################################################## # PARAMETERS -RandomStateType = T.Union[ - None, - int, - np.random.RandomState, - np.random.Generator, -] +RandomStateType = T.Union[None, int, np.random.RandomState, np.random.Generator] +AxesSubplotType = T.TypeVar("AxesSubplotType", bound=plt.axes._subplots.AxesSubplot) -# General THIS_DIR = pathlib.Path(__file__).parent # gaia_tools doesn't have ``GAIA_HEALPIX_INDEX``, so we use the equivalent @@ -75,7 +96,7 @@ # see https://www.gaia.ac.uk/data/gaia-data-release-1/adql-cookbook ADQL_QUERY = """ SELECT -source_id, hpx{order}, +source_id, hpx{healpix_order}, parallax, parallax_error, ra, ra_error, dec, dec_error @@ -83,7 +104,7 @@ FROM ( SELECT source_id, random_index, - CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx{order}, + CAST(FLOOR(source_id/POWER(2, 35+(12-{healpix_order})*2)) AS BIGINT) AS hpx{healpix_order}, parallax, parallax_error, ra, ra_error, dec, dec_error @@ -91,7 +112,7 @@ FROM gaiadr2.gaia_source AS gaia ) AS gaia -WHERE hpx{order} IN {patch_ids} +WHERE hpx{healpix_order} IN {pixel_ids} AND parallax >= 0 """ @@ -100,440 +121,389 @@ ############################################################################## -def fit_kernel_ridge( - X: npt.NDArray[np.float_], - y: npt.NDArray[np.float_], - train_size: int, - random_state: RandomStateType = None, -) -> T.Tuple[npt.NDArray[np.float_], KernelRidge]: - """Kernel-Ridge Regression code. - - Parameters - ---------- - X : ndarray - y : ndarray - train_size : int - random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) - - Returns - ------- - ykr : ndarray - kr : `~sklearn.kernel_ridge.KernelRidge` - """ - # construct grid-search for optimal parameters - kr = GridSearchCV( - KernelRidge(alpha=1, kernel="linear", gamma=0.1), - param_grid={ - "alpha": [1e0, 0.1, 1e-2, 1e-3], - "gamma": np.logspace(-2, 2, 5), - }, - ) - - # randomize the data order - idx = shuffle( - np.arange(0, len(X)), - random_state=random_state, - n_samples=train_size, - ) - - # Fitting using the Kernel-Ridge Regression - kr.fit(X[idx], y[idx]) - # get predictions: ra & dec are at median value. parallax is linear - Xp = np.array( - [ - np.ones(100) * np.median(X[:, 0]), # ra - np.ones(100) * np.median(X[:, 1]), # dec - np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p - ], - ).T - ykr = kr.predict(Xp) - - return ykr, kr - - -def fit_support_vector( - X: npt.NDArray[np.float_], - y: npt.NDArray[np.float_], - train_size: int, - random_state: RandomStateType = None, -) -> T.Tuple[npt.NDArray[np.float_], SVR]: - """support-vector regression. - - Parameter - --------- - X : ndarray - y : ndarray - train_size : int - random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) - - Returns - ------- - ysv : ndarray - svr : `~sklearn.svm.SVR` - """ - svr = GridSearchCV( - SVR(kernel="linear", gamma=0.1), - param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}, - ) - - # randomize the data order - idx = shuffle( - np.arange(0, len(X)), - random_state=random_state, - n_samples=train_size, - ) - - # Fitting using the Support Vector - svr.fit(X[idx], y[idx]) - # get predictions: ra & dec are at median value. parallax is linear - Xp = np.array( - [ - np.ones(100) * np.median(X[:, 0]), # ra - np.ones(100) * np.median(X[:, 1]), # dec - np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p - ], - ).T - ysv = svr.predict(Xp) - - return ysv, svr - - -def fit_linear( +def _fit_linear( X: npt.NDArray[np.float_], y: npt.NDArray[np.float_], train_size: int, weight: T.Union[bool, npt.NDArray[np.float_]] = True, + *, random_state: RandomStateType = None, ) -> T.Tuple[npt.NDArray[np.float_], LinearRegression]: - """Linear regression model. + """Fit data with linear regression model. Parameters ---------- - X : ndarray - y : ndarray + X : (N, 3) ndarray[float] + The data with columns of + [:math:`\alpha`, :math:`\delta`, :math:`\log_{10}(\rm{parallax})`] + y : (N, ) ndarray[float] + Log10 of the fractional parallax error. train_size : int - weight : bool or ndarray, optional + Number of samples to generate. If left to None this is automatically + set to the first dimension of the arrays. It should not be larger than + the length of arrays. + See `sklearn.utils.shuffle`. + weight : bool or ndarray[float], optional + Individual weights for each sample. + See :meth:`sklearn.linear_model.LinearRegression.fit` random_state : `numpy.random.Generator`, `numpy.random.RandomState`, int, or None (optional) + The random number generator or constructor thereof. + Passed directly to `sklearn.utils.shuffle`. Returns ------- - ysv : ndarray - svr : `~sklearn.linear_model.LinearRegression` + ypred : ndarray[float] + Predicted labels. + model : `~sklearn.linear_model.LinearRegression` + The fit linear regression model. """ - lr = LinearRegression() + model = LinearRegression() # randomize the data order - idx = shuffle( - np.arange(0, len(X)), - random_state=random_state, - n_samples=train_size, - ) + idx: npt.NDArray[np.int_] = np.arange(0, len(X)) + order: npt.NDArray[np.int_] = shuffle(idx, random_state=random_state, n_samples=train_size) - # fit, optionally with weights + # create weight for fitting if weight is True: xy: npt.NDArray[np.float_] = np.vstack([X[:, 2], y]) wgt: npt.NDArray[np.float_] = gaussian_kde(xy)(xy) - lr.fit(X[idx], y[idx], sample_weight=(1 / wgt)[idx]) + sample_weight = (1 / wgt)[order] elif isinstance(weight, np.ndarray): - lr.fit(X[idx], y[idx], sample_weight=(1 / weight)[idx]) - else: - lr.fit(X[idx], y[idx]) + sample_weight = (1 / weight)[order] + else: # weight False + sample_weight = None - # get predictions: ra & dec are at median value. parallax is linear - Xp = np.array( - [ - np.ones(100) * np.median(X[:, 0]), # ra - np.ones(100) * np.median(X[:, 1]), # dec - np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # p - ], - ).T - ylr = lr.predict(Xp) + # fit data, with weights + model.fit(X[order], y[order], sample_weight=sample_weight) - return ylr, lr - - -# ============================================================================ + # get predictions: ra & dec are at median value. log10 parallax is linear. + Xp: npt.NDArray[np.float_] = np.c_[ + np.full(100, np.median(X[:, 0])), # ra + np.full(100, np.median(X[:, 1])), # dec + np.linspace(X[:, 2].min(), X[:, 2].max(), 100), # log10(p) + ] + ypred: npt.NDArray[np.float_] = model.predict(Xp) + return ypred, model -def plot_parallax_prediction( - Xtrue: npt.NDArray[np.float_], - ytrue: npt.NDArray[np.float_], - kde: gaussian_kde, - ypred1: npt.NDArray[np.float_], - ypred2: npt.NDArray[np.float_], - ypred3: npt.NDArray[np.float_], - patch_id: int, - ax: T.Optional[plt.Axes] = None, -) -> plt.Figure: - """Plot predicted parallax. - - Parameters - ---------- - Xtrue - ytrue - kde - ypred1 - ypred2 - ypred3 - patch_id - - Returns - ------- - `matplotlib.pyplot.Figure` - """ - if ax is None: - fig = plt.figure(figsize=(10, 8)) - ax = fig.add_subplot() - else: - fig = ax.figure - - ax.set_xlabel(r"$\log_{10}$ parallax [mas]") - ax.set_ylabel(r"$\log_{10}$ parallax fractional error") - ax.set_title(f"Patch={patch_id}") - - # distance label - secax = ax.secondary_xaxis( - "top", - functions=( - lambda logp: np.log10( - coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc), - ), - lambda logd: np.log10( - coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas), - ), - ), - ) - secax.set_xlabel(r"$\log_{10}$ Distance [kpc]") - - Xpred = np.array( - [ - np.ones(100) * np.median(Xtrue[:, 0]), # ra - np.ones(100) * np.median(Xtrue[:, 1]), # dec - np.linspace(Xtrue[:, 2].min(), Xtrue[:, 2].max(), 100), # p - ], - ).T - - ax.scatter(Xtrue[:, -1], ytrue, s=5, label="data", alpha=0.3, c=kde) - # ax.scatter(Xpred[:, -1], ypred1, s=5, label="kernel-ridge") - ax.scatter(Xpred[:, -1], ypred2, s=5, label="linear model: density-weighting") - ax.scatter(Xpred[:, -1], ypred3, s=5, label="linear model: no density weight") - - ax.set_ylim(-3, 3) - ax.invert_xaxis() - ax.legend() - - return fig - - -def plot_mollview( - patch_ids: tuple[int, ...], order: int, fig: T.Optional[plt.Figure] = None -) -> plt.Figure: - """Plot Mollweide view with patches on sky. - - Parameters - ---------- - patch_ids : tuple[int] - Set of patch ids (int). - order : int - The healpix order. See :func:`healpy.order2nside` - """ - npix = hp.nside2npix(hp.order2nside(order)) - - # background plot - m = np.arange(npix) - alpha = np.zeros_like(m) + 0.5 - alpha[patch_ids[0] : patch_ids[-1]] = 1 - hp.mollview(m, nest=True, coord=["C"], cbar=False, cmap="inferno", fig=fig, alpha=alpha) - - # patch plot - m[patch_ids[0] : patch_ids[-1]] = 3 * npix // 4 - alpha[: patch_ids[0]] = 0 - alpha[patch_ids[-1] :] = 0 - hp.mollview( - m, - title=f"Mollview image (RING, order={order})\nPatches {patch_ids}", - nest=True, - coord=["C"], - cbar=False, - cmap="Greens", - fig=fig, - reuse_axes=True, - alpha=alpha, - ) - - return fig - - -# ============================================================================ +def fit_pixel( + pixel: QTable, pixel_id: int, *, saveloc: pathlib.Path, ax: T.Optional[AxesSubplotType] = None +) -> None: + """Fit pixel with linear models. -def fit_and_plot_patch(patch, healpix_colname, ax, saveloc) -> None: - """ + The two linear models are 1) with and 2) without an inverse sample density + weighing. Parameters ---------- - patch : QTable - healpix_colname : str + pixel : `~astropy.table.QTable` + Must have columns 'ra', 'dec', 'parallax', 'parallax_frac_error' + pixel_id : int + Healpix index for the 'pixel'. + + saveloc : `pathlib.Path`, keyword-only + Where to save the fit to the 'pixel'. + ax : `matplotlib.axes._subplots.AxesSubplot` or None (optional, keyword-only) + Plot axes onto which to plot the data and fits. + If `None`, nothing is plotted. + See `plot_parallax_prediction`. """ - patch_id: int = patch[healpix_colname][0] - patch = patch[np.isfinite(patch["parallax"])] # filter out NaN # TODO! in query - - # add the fractional error - patch["parallax_frac_error"] = patch["parallax_error"] / patch["parallax"] + pixel = pixel[np.isfinite(pixel["parallax"])] # filter out NaN # TODO! in query # construct the signal array - X = np.array( - [ - u.Quantity(patch["ra"], u.deg, copy=False).value, - u.Quantity(patch["dec"], u.deg, copy=False).value, - np.log10(u.Quantity(patch["parallax"], u.mas, copy=False).value), - ], - ).T - y = np.log10(patch["parallax_frac_error"].value.reshape(-1, 1))[:, 0] + X: npt.NDArray[np.float_] + y: npt.NDArray[np.float_] + X = np.c_[ + u.Quantity(pixel["ra"], u.deg, copy=False).value, + u.Quantity(pixel["dec"], u.deg, copy=False).value, + np.log10(u.Quantity(pixel["parallax"], u.mas, copy=False).value), + ] + y = np.log10(pixel["parallax_frac_error"].value.reshape(-1, 1))[:, 0] # get signal density of the parallax - xy = np.vstack([X[:, 2], y]) - try: - kde = gaussian_kde(xy)(xy) - except: - breakpoint() + xy: npt.NDArray[np.float_] = np.vstack([X[:, 2], y]) + kde = gaussian_kde(xy)(xy) # fit a few different ways - ykr = None # TODO! - # ykr, kr = fit_kernel_ridge(X, y, train_size=int(len(grp) * 0.8)) - # ysv, svr = fit_support_vector(X, y, train_size=int(len(grp) * 0.8)) - yreg, reg = fit_linear(X, y, train_size=int(len(patch) * 0.8), weight=kde) - yreg1, reg1 = fit_linear(X, y, train_size=int(len(patch) * 0.8), weight=False) + yregkde, reg = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=kde) + yreguw, reg1 = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=False) - with open(saveloc / f"pk_{patch_id}.pkl", mode="wb") as f: + # save weighted fit + with open(saveloc / f"fit_{pixel_id:010}.pkl", mode="wb") as f: pickle.dump(reg, f) # the weighted linear regression if ax is not None: - plot_parallax_prediction(X, y, kde, ykr, yreg, yreg1, patch_id, ax=ax) - - -def query_and_fit_patch_set( - patch_ids: tuple[int, ...], - order: int, + plot_parallax_prediction( + X, + y, + kde, + yregkde, + yreguw, + pixel_id=pixel_id, + ax=ax, + labels=("linear model: density-weighting", "linear model: no density weight"), + ) + + +def query_and_fit_pixel_set( + pixel_ids: tuple[int, ...], + healpix_order: int, random_index: T.Optional[int] = 1_000_000, *, plot: bool = True, use_local: bool = True, + saveloc: pathlib.Path = THIS_DIR ) -> None: - """Query and fit a set of sky patches. + """Query and fit a set of sky pixels (healpix pixels). Parameters ---------- - patch_ids : tuple[int] - Set of patch ids (int). - order : int - The healpix order. See :func:`healpy.order2nside` + pixel_ids : tuple[int] + Set of Healpix indices, at order. + healpix_order : int + The healpix order. See :func:`order2nside` + random_index : int or None, optional + The Gaia random index depth in the query. `None` will query the whole + database. An integer (default 10^6) will limit the depth and make the + query much faster. + + plot : bool (optional, keyword-only) + Whether to plot the set of pixels. + use_local : bool (optional, keyword-only) + Whether to perform the query on a local database (`True`, default) or + on Gaia's servers (`False`). + saveloc : `pathlib.Path` (optional, keyword-only) + Where to save the fit to the 'pixel'. """ # create directories - FOLDER = THIS_DIR / f"order_{order}" + FOLDER = saveloc / f"order_{healpix_order}" FOLDER.mkdir(exist_ok=True) PLOT_DIR = FOLDER / "figures" PLOT_DIR.mkdir(exist_ok=True) - DATA_DIR = FOLDER / "pk_reg" + DATA_DIR = FOLDER / "pixel_fits" DATA_DIR.mkdir(exist_ok=True) # ----------------------- # Query batch - hpl = f"hpx{order}" # column name - adql_query = ADQL_QUERY.format(order=order, patch_ids=patch_ids) + # make query string + hpl = f"hpx{healpix_order}" # column name for healpix index + adql_query = ADQL_QUERY.format(healpix_order=healpix_order, pixel_ids=pixel_ids) if random_index is not None: adql_query += f"AND random_index < {int(random_index)}" - result = do_query( - adql_query, local=use_local, use_cache=False, verbose=True, timeit=True - ) + # perform query using `gaia_tools` + # if the query fails to return anything, stop there. + result = do_query(adql_query, local=use_local, use_cache=False, verbose=True, timeit=True) if len(result) == 0: - warnings.warn(f"no data in patches: {patch_ids}") + warnings.warn(f"no data in pixels: {pixel_ids}") return - rgr: QTable = result.group_by(hpl) # group stars by patch + # compute and add the fractional error to the table + result["parallax_frac_error"] = result["parallax_error"] / result["parallax"] + + # reorganize the results to group stars by pixel + pixels: QTable = result.group_by(hpl) - # plot the patches + # plot the pixels if plot: fig = plt.figure() - plot_mollview(patch_ids, order, fig=fig) + plot_mollview(pixel_ids, healpix_order, fig=fig) - shortened = hash(patch_ids) # TODO! do better. Put in PDF metadata + shortened = hash(pixel_ids) # TODO! do better. Put in PDF metadata with open(PLOT_DIR / f"mollview-{shortened}.txt", mode="w") as f: - f.write(str(patch_ids)) + f.write(str(pixel_ids)) fig.savefig(PLOT_DIR / f"mollview-{shortened}.pdf") # ----------------------- - # Fits to each patch + # Fits to each pixel - ax: T.Union[plt.Axes, None] axs: npt.NDArray[np.object_] # axes or 0s if plot: # set up parallax plots - rows, remainder = np.divmod(len(patch_ids), 4) + rows, remainder = np.divmod(len(pixel_ids), 4) width = remainder if (rows == 0) else 4 if remainder > 0: rows += 1 fig, axs = plt.subplots(rows, width, figsize=(5 * width, 5 * rows)) else: - axs = np.array([None] * len(rgr.groups)) # noop for iteration + axs = np.array([None] * len(pixels.groups)) # noop for iteration - key: Row - grp: QTable - for grp, ax in zip(rgr.groups, axs.flat): # iter thru patches - fit_and_plot_patch(grp, hpl, ax, DATA_DIR) + pixel: QTable + ax: T.Union[plt.axes._subplots.AxesSubplot, None] + for pixel, ax in zip(pixels.groups, axs.flat): # iter thru pixels + fit_pixel(pixel, int(pixel[hpl][0]), saveloc=DATA_DIR, ax=ax) - # save plot of all the patches + # save plot of all the pixels if plot: plt.tight_layout() fig.savefig(PLOT_DIR / f"parallax-{shortened}.pdf") -def make_groups(sky: QTable, order: int): - """Make groups. +def make_groups( + sky: QTable, healpix_order: int, numgroups: int = 200 +) -> T.List[npt.NDArray[np.int_]]: + """Group pixels together s.t. groups have approximate the same number of stars. Parameters ---------- sky : `~astropy.table.QTable` - order : int + Table of stars, grouped by healpix pixel ID. + healpix_order : int + The healpix order. See :func:`astropy_healpix.order2nside` + numgroups : int, optional + The number of groups to make. Returns ------- - groupsids : list[ndarray] + groupsids : list[ndarray[int]] + List of grouped pixels. """ - nside = hp.order2nside(order) - npix = hp.nside2npix(nside) # the number of sky patches + npix: int = nside2npix(order2nside(healpix_order)) # the number of sky pixels # get healpix column name. it depends on the order, but is the group key. - keyname = sky.groups.keys.colnames[0] + colname = sky.groups.keys.colnames[0] # get unique ids - patchids, hpx_indices, num_counts_per_pixel = np.unique( - sky[keyname].value, return_index=True, return_counts=True + pixelids, hpx_indices, num_counts_per_pixel = np.unique( + sky[colname].value, return_index=True, return_counts=True ) - allpatchids = np.arange(npix) - patchnums = np.zeros(npix) - patchnums[patchids] = num_counts_per_pixel - patchnums[patchnums == 0] = 1 # set minimum number of 'counts' to 1 + allpixelids = np.arange(npix) + pixelnums = np.zeros(npix) + pixelnums[pixelids] = num_counts_per_pixel + pixelnums[pixelnums == 0] = 1 # set minimum number of 'counts' to 1 # sort by number of counts - sorter = np.argsort(patchnums)[::-1] - patchnums = patchnums[sorter] - allpatchids = allpatchids[sorter] + sorter = np.argsort(pixelnums)[::-1] + pixelnums = pixelnums[sorter] + allpixelids = allpixelids[sorter] - numgroups = 200 - groupsids = [allpatchids[i::numgroups] for i in range(numgroups)] - - # # plot the distribution of groups - # groups = [patchnums[i::numgroups] for i in range(numgroups)] + groupsids = [allpixelids[i::numgroups] for i in range(numgroups)] return groupsids +# ============================================================================ +# Plotting + + +def plot_parallax_prediction( + Xtrue: npt.NDArray[np.float_], + ytrue: npt.NDArray[np.float_], + kde: gaussian_kde, + *ypred: npt.NDArray[np.float_], + pixel_id: int, + ax: T.Optional[plt.Axes] = None, + labels: T.Tuple[str, ...], +) -> plt.Figure: + """Plot predicted parallax. + + Parameters + ---------- + Xtrue : ndarray[float] + ytrue : ndarray[float] + kde : `scipy.stats.gaussian_kde` + *ypred : ndarray[float] + pixel_id : int, keyword-only + ax : `matplotlib.pyplot.Axes` or None, keyword-only + + Returns + ------- + `matplotlib.pyplot.Figure` + """ + # Get figure from axes. If None, make new. + if ax is None: + fig = plt.figure(figsize=(10, 8)) + ax = fig.add_subplot(111) + else: + fig = ax.figure + + # make average coordinates which approximate the location where `ypred` + # were evaluated. This is just spread out better than the real location. + Xpred = np.c_[ + np.full(100, np.median(Xtrue[:, 0])), # ra + np.full(100, np.median(Xtrue[:, 1])), # dec + np.linspace(Xtrue[:, 2].min(), Xtrue[:, 2].max(), 100), # p + ] + + # plot the coordinates and evaluations + ax.scatter(Xtrue[:, -1], ytrue, s=5, label="data", alpha=0.3, c=kde) + for i, y in enumerate(ypred): + ax.scatter(Xpred[:, -1], y, s=5, label=r"$y_{pred}$ " + str(i)) + + # set axes labels and adjust properties + ax.set_xlabel(r"$\log_{10}$ parallax [mas]") + ax.set_ylabel(r"$\log_{10}$ parallax fractional error") + ax.set_title(f"Patch={pixel_id}") + # distance label is secondary to parallax + secax = ax.secondary_xaxis( + "top", + functions=( + lambda logp: np.log10( + coord.Distance(parallax=10 ** logp * u.mas).to_value(u.pc), + ), + lambda logd: np.log10( + coord.Distance(10 ** logd * u.pc).parallax.to_value(u.mas), + ), + ), + ) + secax.set_xlabel(r"$\log_{10}$ Distance [kpc]") + + ax.set_ylim(-3, 3) + ax.invert_xaxis() + ax.legend() + + return fig + + +# FIXME! this doesn't seem to be plotting correctly +def plot_mollview( + pixel_ids: tuple[int, ...], healpix_order: int, fig: T.Optional[plt.Figure] = None +) -> plt.Figure: + """Plot Mollweide view with pixels on sky. + + Parameters + ---------- + pixel_ids : tuple[int] + Set of pixel ids (int). + healpix_order : int + The healpix order. See :func:`order2nside` + + Returns + ------- + `matplotlib.pyplot.Figure` + """ + npix = nside2npix(order2nside(healpix_order)) + + # background plot + m = np.arange(npix) + alpha = np.zeros_like(m) + 0.5 + alpha[pixel_ids[0] : pixel_ids[-1]] = 1 + healpy.mollview(m, nest=True, coord=["C"], cbar=False, cmap="inferno", fig=fig, alpha=alpha) + + # pixel plot + m[pixel_ids[0] : pixel_ids[-1]] = 3 * npix // 4 + alpha[: pixel_ids[0]] = 0 + alpha[pixel_ids[-1] :] = 0 + healpy.mollview( + m, + title=f"Mollview image (RING, order={healpix_order})\nPatches {pixel_ids}", + nest=True, + coord=["C"], + cbar=False, + cmap="Greens", + fig=fig, + reuse_axes=True, + alpha=alpha, + ) + + return fig + + ############################################################################## # Command Line ############################################################################## @@ -570,31 +540,31 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: # order parser.add_argument("-o", "--order", default=6, type=int, help="healpix order") - # patches are done in batches. Needed unless all-sky. + # pixels are done in groups. parser.add_argument( - "-b", - "--batch_size", - default=30, + "-n", + "--ngroups", + default=200, type=int, - help="number of patches in a batch", + help="number of total groups", ) - # which patches + # which pixels group = parser.add_mutually_exclusive_group(required=True) - group.add_argument("--allsky", action="store_true", help="fit all sky patches") + group.add_argument("--allsky", action="store_true", help="fit all sky pixels") group.add_argument( - "--patches", + "--pixels", action="append", type=int, nargs="+", - help="only fit specified sky patches by ID", + help="only fit specified sky pixels by ID", ) group.add_argument( "-r", - "--patches_range", + "--pixels_range", type=int, nargs=2, - help="fit specified sky patches within range", + help="fit specified sky pixels within range", ) # stars in gaia @@ -607,7 +577,10 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: ) # random number generator - parser.add_argument("--rng", default=0, type=int, help="random number generator") + parser.add_argument("--rng", default=0, type=int, help="random number generator seed") + + # gaia_tools + parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") # plot or not parser.add_argument("--plot", default=True, type=bool, help="plot") @@ -616,29 +589,12 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: parser.add_argument("--filter_warnings", action="store_true", help="filter warnings") parser.add_argument("-v", "--verbose", action="store_true", help="verbose") - # parallelize - parser.add_argument( - "--parallel", - action="store_true", - default=False, - help="whether to parallelize fitting the batches", - ) - parser.add_argument( - "--numcores", - type=int, - default=None, - help="number of computer cores to use, if parallelizing", - ) - - # gaia_tools - parser.add_argument("--use_local", action="store_true", help="gaia_tools local query") + # save location + parser.add_argument("--saveloc", type=str, default=THIS_DIR) return parser -# /def - - # ------------------------------------------------------------------------ @@ -653,12 +609,17 @@ def main( args : list or str or None, optional an optional single argument that holds the sys.argv list, except for the script name (e.g., argv[1:]) - opts : `~argparse.Namespace`| or None, optional - pre-constructed results of parsed args - if not None, used ONLY if args is None - - nside + opts : `~argparse.Namespace` or None, optional + Pre-constructed results of parsed args. + Used ONLY if args is None. + + Warns + ----- + UserWarning + If 'args' and 'opts' are not None """ + # parse the input / command-line options ns: argparse.Namespace if opts is not None and args is None: ns = opts @@ -671,44 +632,41 @@ def main( parser = make_parser() ns = parser.parse_args(args) - # make background distribution + # ----------------------- + # Make background distribution + # This loads a table of 2 million stars, organized by healpix pixel number. sky: QTable = sky_distribution_main(opts=ns) - # random number generator - rng: Generator = np.random.default_rng(ns.rng) - - # construct the list of batches of sky patches - # [ (patch_1, patch_2, ...), (patch_i, patch_i+1, ...)] + # construct the list of groups of healpix pixels. + # [ (pixel_1, pixel_2, ...), (pixel_i, pixel_i+1, ...)] + list_of_groups: T.List[T.Tuple[int, ...]] if ns.allsky: - list_of_batches = make_groups(sky, order=ns.order) - elif ns.patches_range: - # TODO! get sky-weighted groups - pi, pf = ns.patches_range + # groups the pixels together so that each group will have + # approximately the same number of stars. + list_of_groups = make_groups(sky, healpix_order=ns.order, numgroups=ns.ngroups) + elif ns.pixels_range: + pi, pf = ns.pixels_range if pi >= pf: - raise ValueError("`patches_range` must be [start, stop], with stop > start.") - nbatches = (pf - pi) // ns.batch_size - list_of_batches = np.array_split(np.arange(pi, pf), nbatches) - elif ns.patches: - list_of_batches = ns.patches - - list_of_batches = np.array(list_of_batches, dtype=object) + raise ValueError("`pixels_range` must be [start, stop], with stop > start.") + list_of_groups = np.array_split(np.arange(pi, pf), ns.ngroups) + elif ns.pixels: + list_of_groups = ns.pixels + # ----------------------- # optionally ignore warnings with warnings.catch_warnings(): if ns.filter_warnings: - warnings.simplefilter( - "ignore", - category=UndefinedMetricWarning, - ) # TODO! - warnings.simplefilter("ignore", category=UserWarning) # TODO! - - for batch in tqdm.tqdm(list_of_batches): - query_and_fit_patch_set( + warnings.simplefilter("ignore", category=UndefinedMetricWarning) + warnings.simplefilter("ignore", category=UserWarning) + + for batch in tqdm.tqdm(list_of_groups): + query_and_fit_pixel_set( tuple(batch), - order=ns.order, + healpix_order=ns.order, random_index=ns.random_index, plot=ns.plot, - use_local=ns.use_local + use_local=ns.use_local, + saveloc=pathlib.Path(ns.saveloc), ) @@ -720,6 +678,5 @@ def main( main(args=None, opts=None) # all arguments except script name - ############################################################################## # END diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 5f50c7c3..387d53b7 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -6,7 +6,21 @@ Parameters ---------- - +o, order : int (optional, keyword-only) + The HEALPix order. Default 6. +i, random_index : int or None (optional, keyword-only) + Limit the number of queried stars to within the random index. + This can be used to speed up test queries without impacting which pixels + are queried and fit. +use_local : bool (optional, keyword-only) + Whether to perform the queries on Gaia's server or locally. + See :mod:`gaia_tools` for details. +plot : bool (optional, keyword-only) + Whether to make plots. +v, verbose : bool (optional, keyword-only) + Script verbosity. +saveloc : str (optional, keyword-only) + The save location for the data. """ __all__ = ["make_parser", "main"] @@ -19,14 +33,17 @@ import argparse import pathlib import typing as T +import warnings # THIRD PARTY -import healpy as hp +import healpy import matplotlib.colors as colors import matplotlib.pyplot as plt import numpy as np +import numpy.typing as npt from astropy.table import QTable from gaia_tools.query import query as do_query +from astropy_healpy import nside2npix, order2nside ############################################################################## # PARAMETERS @@ -39,7 +56,7 @@ # see https://www.gaia.ac.uk/data/gaia-data-release-1/adql-cookbook ADQL_QUERY = """ SELECT -source_id, hpx{order}, +source_id, hpx{healpix_order}, parallax, parallax_error, ra, ra_error, dec, dec_error @@ -47,7 +64,7 @@ FROM ( SELECT source_id, random_index, - CAST(FLOOR(source_id/POWER(2, 35+(12-{order})*2)) AS BIGINT) AS hpx{order}, + CAST(FLOOR(source_id/POWER(2, 35+(12-{healpix_order})*2)) AS BIGINT) AS hpx{healpix_order}, parallax, parallax_error, ra, ra_error, dec, dec_error @@ -58,7 +75,7 @@ WHERE parallax >= 0 {random_index} -ORDER BY hpx{order}; +ORDER BY hpx{healpix_order}; """ ############################################################################## @@ -67,18 +84,19 @@ def query_sky_distribution( - order: int = 6, + healpix_order: int = 6, random_index: T.Optional[int] = None, *, plot: bool = True, use_local: bool = True, verbose: bool = True, -) -> None: + saveloc: pathlib.Path = THIS_DIR, +) -> QTable: """Query sky and save number count. Parameters ---------- - order : int, optional + healpix_order : int, optional random_index : int, optional plot : bool (optional, keyword-only) @@ -96,11 +114,11 @@ def query_sky_distribution( """ # ---------------------- # data folder - FOLDER = THIS_DIR / f"order_{order}" + FOLDER = saveloc / f"order_{healpix_order}" FOLDER.mkdir(exist_ok=True) # data file - DATA_DIR = FOLDER / f"sky_distribution_{order}.ecsv" + DATA_DIR = FOLDER / f"sky_distribution_{healpix_order}.ecsv" if verbose: print(f"data will be saved to / read from {DATA_DIR}") @@ -109,18 +127,16 @@ def query_sky_distribution( # Perform query or load from file # make ADQL - hpxO = f"hpx{order}" - random_index = "" if random_index is None else f"AND random_index < {int(random_index)}" - adql_query = ADQL_QUERY.format(order=order, random_index=random_index) + hpxO = f"hpx{healpix_order}" + random_idx_sql = "" if random_index is None else f"AND random_index < {int(random_index)}" + adql_query = ADQL_QUERY.format(healpix_order=healpix_order, random_index=random_idx_sql) try: result = QTable.read(DATA_DIR) except Exception as e: if verbose: print("starting query.") - result = do_query( - adql_query, local=use_local, use_cache=False, verbose=True, timeit=True - ) + result = do_query(adql_query, local=use_local, use_cache=False, verbose=True, timeit=True) if verbose: print("finished query.") @@ -148,26 +164,31 @@ def query_sky_distribution( PLOT_DIR.mkdir(exist_ok=True) # get healpix counts - patchids, hpx_indices, num_counts_per_pixel = np.unique( + pixelids: npt.NDArray[np.int_] + hpx_indices: npt.NDArray[np.int_] + num_counts_per_pixel: npt.NDArray[np.int_] + pixelids, hpx_indices, num_counts_per_pixel = np.unique( sky[hpxO].value, return_index=True, return_counts=True ) # histogram of counts per pixel - plot_hist_pixel_count(num_counts_per_pixel, order, saveloc=PLOT_DIR) + plot_hist_pixel_count(num_counts_per_pixel, healpix_order, saveloc=PLOT_DIR) # plot mollweide of sky colored by count - plot_sky_mollview(patchids, num_counts_per_pixel, order, saveloc=PLOT_DIR) + plot_sky_mollview(pixelids, num_counts_per_pixel, healpix_order, saveloc=PLOT_DIR) return sky -def plot_hist_pixel_count(num_counts_per_pixel: np.ndarray, order: int, saveloc: pathlib.Path) -> None: +def plot_hist_pixel_count( + num_counts_per_pixel: npt.NDArray[np.int_], healpix_order: int, saveloc: pathlib.Path +) -> None: """Plot histogram of counts per pixel. Parameters ---------- num_counts_per_pixel : ndarray[int] - order : int + healpix_order : int saveloc : path-like """ # make plot @@ -180,45 +201,49 @@ def plot_hist_pixel_count(num_counts_per_pixel: np.ndarray, order: int, saveloc: # plot histogram ax.hist(num_counts_per_pixel, bins=50, log=True) # save and close - fig.savefig(saveloc / f"num_counts_per_pixel_{order}.pdf") + fig.savefig(saveloc / f"num_counts_per_pixel_{healpix_order}.pdf") plt.close(fig) -def plot_sky_mollview(patchids, num_counts_per_pixel: np.ndarray, order: int, saveloc: pathlib.Path) -> None: +def plot_sky_mollview( + pixelids: npt.NDArray[np.int_], + num_counts_per_pixel: npt.NDArray[np.int_], + healpix_order: int, + saveloc: pathlib.Path, +) -> None: """Plot mollweide of sky colored by pixel count. Parameters ---------- - patchids : ndarray[int] + pixelids : ndarray[int] num_counts_per_pixel : ndarray[int] - order : int + healpix_order : int saveloc : path-like """ fig = plt.figure(figsize=(10, 10), facecolor="white") # calculate npix from order - nside = hp.order2nside(order) - npix = hp.nside2npix(nside) + npix = nside2npix(order2nside(healpix_order)) # create pixel map pmap = np.zeros(npix) - pmap[patchids] = num_counts_per_pixel / num_counts_per_pixel.sum() - pmap[pmap == 0] = hp.UNSEEN + pmap[pixelids] = num_counts_per_pixel / num_counts_per_pixel.sum() + pmap[pmap == 0] = healpy.UNSEEN # plot - hp.mollview( + healpy.mollview( pmap, nest=True, coord=["C"], cbar=True, cmap="Greens", fig=fig, - title=f"Star Count Fraction (Nest {order}, Mollweide)", + title=f"Star Count Fraction (Nest {healpix_order}, Mollweide)", norm=colors.LogNorm(), badcolor="white", ) # save and close - fig.savefig(saveloc / f"sky_distribution_{order}.pdf") + fig.savefig(saveloc / f"sky_distribution_{healpix_order}.pdf") plt.close(fig) @@ -263,15 +288,18 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: help="limit queried stars within random index", ) - # plot or not - parser.add_argument("--plot", default=True, type=bool, help="make plots or not") - parser.add_argument("-v", "--verbose", action="store_true", help="verbose") - # gaia_tools parser.add_argument( "--use_local", action="store_true", help="perform a local database query or query gaia" ) + # plot or not + parser.add_argument("--plot", default=True, type=bool, help="make plots or not") + parser.add_argument("-v", "--verbose", action="store_true", help="verbose") + + # save location + parser.add_argument("--saveloc", type=str, default=THIS_DIR) + return parser @@ -281,7 +309,7 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: def main( args: T.Union[list[str], str, None] = None, opts: T.Optional[argparse.Namespace] = None, -) -> None: +) -> QTable: """Query Gaia for distribution of stars on the sky. Parameters @@ -315,11 +343,12 @@ def main( # query or load from sky = query_sky_distribution( - order=ns.order, + healpix_order=ns.order, random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local, verbose=ns.verbose, + saveloc=pathlib.Path(ns.saveloc), ) return sky From f5ffacb2f2f4ddfc4b9b949985e0b7473f7910bf Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 12:46:19 -0500 Subject: [PATCH 49/74] correct import name Signed-off-by: nstarman --- discO/data/err_field/script.py | 4 ++-- discO/data/err_field/sky_distribution.py | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 3efdf7b3..ac6bc85d 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -65,7 +65,7 @@ # THIRD PARTY import astropy.coordinates as coord import astropy.units as u -import astropy_healpy +import astropy_healpix import healpy import matplotlib.pyplot as plt import numpy as np @@ -78,7 +78,7 @@ from sklearn.linear_model import LinearRegression from sklearn.metrics._regression import UndefinedMetricWarning from sklearn.utils import shuffle -from astropy_healpy import nside2npix, order2nside +from astropy_healpix import nside2npix, order2nside # PROJECT-SPECIFIC from .sky_distribution import main as sky_distribution_main diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 387d53b7..47209dc5 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -43,7 +43,7 @@ import numpy.typing as npt from astropy.table import QTable from gaia_tools.query import query as do_query -from astropy_healpy import nside2npix, order2nside +from astropy_healpix import nside2npix, order2nside ############################################################################## # PARAMETERS From 264140fec3ea79e2043486d0847189c9cedf4a41 Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 12:47:29 -0500 Subject: [PATCH 50/74] ibid Signed-off-by: nstarman --- discO/data/err_field/script.py | 2 +- discO/data/err_field/sky_distribution.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index ac6bc85d..e60c62c8 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -78,7 +78,7 @@ from sklearn.linear_model import LinearRegression from sklearn.metrics._regression import UndefinedMetricWarning from sklearn.utils import shuffle -from astropy_healpix import nside2npix, order2nside +from astropy_healpix.healpy import nside2npix, order2nside # PROJECT-SPECIFIC from .sky_distribution import main as sky_distribution_main diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 47209dc5..18dd63ce 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -43,7 +43,7 @@ import numpy.typing as npt from astropy.table import QTable from gaia_tools.query import query as do_query -from astropy_healpix import nside2npix, order2nside +from astropy_healpix.healpy import nside2npix, order2nside ############################################################################## # PARAMETERS From 5ee46243b848bb2e4f3e9067e0b31ba9319c7c15 Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 12:49:14 -0500 Subject: [PATCH 51/74] get type of Axes Signed-off-by: nstarman --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index e60c62c8..8a8f83d1 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -87,7 +87,7 @@ # PARAMETERS RandomStateType = T.Union[None, int, np.random.RandomState, np.random.Generator] -AxesSubplotType = T.TypeVar("AxesSubplotType", bound=plt.axes._subplots.AxesSubplot) +AxesSubplotType = T.TypeVar("AxesSubplotType", bound=type(plt.gca())) THIS_DIR = pathlib.Path(__file__).parent From 1183141610ac70c8f4ce2c4b89876eb0aaf9d013 Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 12:57:45 -0500 Subject: [PATCH 52/74] path should exist Signed-off-by: nstarman --- discO/data/err_field/sky_distribution.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 18dd63ce..06cc3662 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -106,6 +106,7 @@ def query_sky_distribution( See :func:`gaia_tools.query.query` for details. verbose : bool (optional, keyword-only) Script verbosity. + saveloc : `pathlib.Path` (optional, keyword-only) Returns ------- @@ -348,7 +349,7 @@ def main( plot=ns.plot, use_local=ns.use_local, verbose=ns.verbose, - saveloc=pathlib.Path(ns.saveloc), + saveloc=pathlib.Path(ns.saveloc).expanduser().resolve(), ) return sky From afe52d49b356bb67035307e34b2b554a4ccff5f8 Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 13:57:46 -0500 Subject: [PATCH 53/74] expand user Signed-off-by: nstarman --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 8a8f83d1..ffd6ce3d 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -666,7 +666,7 @@ def main( random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local, - saveloc=pathlib.Path(ns.saveloc), + saveloc=pathlib.Path(ns.saveloc).expanduser().resolve(), ) From 680391fd7a444c48d544b3cf4af3a99d18acef95 Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 17:00:51 -0500 Subject: [PATCH 54/74] add utils Signed-off-by: nstarman --- discO/data/err_field/script.py | 4 +- discO/data/err_field/sky_distribution.py | 2 +- discO/data/err_field/utils.py | 218 +++++++++++++++++++++++ 3 files changed, 221 insertions(+), 3 deletions(-) create mode 100644 discO/data/err_field/utils.py diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index ffd6ce3d..d36d92c2 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -72,13 +72,13 @@ import numpy.typing as npt import tqdm from astropy.table import QTable, Row +from astropy_healpix.healpy import nside2npix, order2nside from gaia_tools.query import query as do_query from numpy.random import Generator from scipy.stats import gaussian_kde from sklearn.linear_model import LinearRegression from sklearn.metrics._regression import UndefinedMetricWarning from sklearn.utils import shuffle -from astropy_healpix.healpy import nside2npix, order2nside # PROJECT-SPECIFIC from .sky_distribution import main as sky_distribution_main @@ -253,7 +253,7 @@ def query_and_fit_pixel_set( *, plot: bool = True, use_local: bool = True, - saveloc: pathlib.Path = THIS_DIR + saveloc: pathlib.Path = THIS_DIR, ) -> None: """Query and fit a set of sky pixels (healpix pixels). diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 06cc3662..3a7cba9a 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -42,8 +42,8 @@ import numpy as np import numpy.typing as npt from astropy.table import QTable -from gaia_tools.query import query as do_query from astropy_healpix.healpy import nside2npix, order2nside +from gaia_tools.query import query as do_query ############################################################################## # PARAMETERS diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py new file mode 100644 index 00000000..fb9fa1d5 --- /dev/null +++ b/discO/data/err_field/utils.py @@ -0,0 +1,218 @@ +# -*- coding: utf-8 -*- + +"""**DOCSTRING**.""" + +# __all__ = [] + + +############################################################################## +# IMPORTS + +# BUILT-IN +import os +import pathlib +import typing as T + +# THIRD PARTY +import astropy.coordinates as coord +import astropy.units as u +import numpy as np +import tqdm +from astropy_healpix import HEALPix +from astropy_healpix.healpy import order2nside +from scipy.interpolate import NearestNDInterpolator + +############################################################################## +# PARAMETERS + +RFS = T.TypeVar("RFS", coord.BaseRepresentation, coord.BaseCoordinateFrame, coord.SkyCoord) + + +############################################################################## +# CODE +############################################################################## + + +class NearestNDInterpolatorWithUnits(NearestNDInterpolator): + def __init__( + self, + x: T.Union[np.ndarray, u.Quantity], + y: T.Union[np.ndarray, u.Quantity], + rescale: bool = False, + tree_options: T.Optional[dict] = None, + yunit: u.Unit = u.one, + ) -> None: + # process x value and units + self._xunit: u.UnitBase = getattr(x, "unit", u.one) + xv: np.ndarray = (x << self._xunit).value + + # process y value and units + self._yunit: u.UnitBase = u.Unit(yunit) + yv: np.ndarray = (y << self._yunit).value + + # bild interpolation + super().__init__(xv, yv, rescale=rescale, tree_options=tree_options) + + def __call__(self, x: T.Union[np.ndarray, u.Quantity]) -> u.Quantity: + xv: np.ndarray = (x << self._xunit).value + return super().__call__(x) << self._yunit + + +def make_healpix_los_unitsphere_grid(order: int, frame=coord.ICRS()) -> coord.SkyCoord: + """Unit sphere grid. + + Parameters + ---------- + order : int + The HEALPix order + frame : `~astropy.coordinates.BaseCoordinateFrame` + The frame of the data. + + Returns + ------- + `~astropy_healpix.HEALPix` + (N,) `~astropy.coordinates.SkyCoord` + """ + nside: int = order2nside(order) + hp = HEALPix(nside, order="nested", frame=frame) + + pixel_ids: np.ndarray = np.arange(hp.npix, dtype=int) # get all pixels + # TODO! support more than one point per pixel + dxs, dys = [0.5], [0.5] + + temp_dim = np.zeros((len(pixel_ids), len(dxs))) + temp_r = coord.UnitSphericalRepresentation(temp_dim * u.rad, temp_dim * u.rad) + healpix_sc = coord.SkyCoord(hp.frame.realize_frame(temp_r)) + + for i, dx in enumerate(dxs): + healpix_sc[:, i] = hp.healpix_to_skycoord(pixel_ids, dx=dx) + + return hp, healpix_sc.flatten() + + +def make_los_sphere_grid(unitsphere: RFS, distances: u.Quantity = np.arange(1, 20) * u.kpc) -> RFS: + """Make a spherical grid given the unit layer. + + Parameters + ---------- + unitsphere : (N,) Representation, CoordinateFrame, or SkyCoord + Unit spherical grid. + distances : (M,) |Quantity| + Distances to which to scale the unit-spherical grid. + + Returns + ------- + (N, M) Representation or CoordinateFrame or SkyCoord + Same type as 'unitsphere'. In spherical coordinates. + """ + # translate to the unit layer + us: coord.UnitSphericalRepresentation + us = unitsphere.represent_as(coord.UnitSphericalRepresentation) + + # create an empty spherical grid + placeholder = np.zeros((len(us), len(distances))) + grid = coord.SphericalRepresentation( + placeholder * u.rad, placeholder * u.rad, placeholder * u.kpc + ) + + # fill in coordinates, at different distances + for i, distance in enumerate(distances): + grid[:, i] = us * distance + + if isinstance(unitsphere, coord.BaseRepresentation): + return grid + elif isinstance(unitsphere, coord.BaseCoordinateFrame): + return unitsphere.realize_frame(grid) + else: + return coord.SkyCoord(unitsphere.realize_frame(grid)) + + +def make_X(sr: coord.SphericalRepresentation) -> np.ndarray: + """Make coordinates for evaluating `scipy` interpolations. + + Parameters + ---------- + sr : (N, M) `~astropy.coordinates.SphericalRepresentation` + + Returns + ------- + (NxM, 3) ndarray + columns are flattened dimensions of 'sr': + - longitude in deg, + - latitude in deg + - log10 parallax + """ + X = np.c_[ + sr.lon.to_value(u.deg).flat, + sr.lat.to_value(u.deg).flat, + np.log10(sr.distance.parallax.to_value(u.mas).flat), + ] + return X + + +def interpolate_errfield_on_los_sphere_grid( + directory: T.Union[str, os.PathLike], healpix: HEALPix, sphere_grid: RFS +) -> NearestNDInterpolatorWithUnits: + """Evaluate error field on spherical grid. + + Parameters + ---------- + directory : str or path-like + healpix : `~astropy_healpix.HEALPix` + sphere_grid : (N, M) Representation or CoordinateFrame or SkyCoord + For example, see `make_los_sphere_grid`. + + Returns + ------- + `~scipy.interpolate.ndgriddata.NearestNDInterpolator` + Interpolation of the evaluation of the saved patch fits + on the LOS spherical grid. + See :func:`make_X` for how the grid is interpreted. + For a given input in the same coordinates, returns the + predicted :math:`\log_{10}{\delta{\text{parallax}} / \text{parallax}}`. + """ + if isinstance(sphere_grid, coord.BaseRepresentation) and not isinstance( + sphere_grid, coord.SphericalRepresentation + ): + raise ValueError("`sphere_grid` must be a `SphericalRepresentation`.") + elif ( + hasattr(sphere_grid, "representation_type") + and sphere_grid.representation_type is not coord.SphericalRepresentation + ): + raise ValueError("`sphere_grid` must be in a spherical representation.") + + # data directory + datadir = pathlib.Path(directory).expanduser().resolve() + + # Work with spherical representation, LOS + sr = sphere_grid.represent_as(coord.SphericalRepresentation) + + # Start with empty prediction (N, M) + ypred = np.full(sr.shape, np.nan) + + # iterate through the LOS + for i, los in enumerate(tqdm.tqdm(sr)): + + # Get ID. Indices are (sphere, distance) so only need (sphere, ) + los_hp_id = healpix.skycoord_to_healpix(sphere_grid.realize_frame(los[0])) + + # Open correct file + with open(datadir / f"fit_{los_hp_id:010}.pkl", mode="rb") as f: + patchfit = pickle.load(f) + + # Build coordinates to evaluate scipy interpolation object + # [lon, lat, log10(parallax)] + X = make_X(los) + + # Evaluate object, filling in the LOS + ypred[i, :] = patchfit.predict(X) + + # Make ND interpolation + X = make_X(sr) # Build coordinates from all data. + interp = NearestNDInterpolatorWithUnits(X, ypred.flat, rescale=True, yunit=u.dex(u.mas)) + + return interp + + +############################################################################## +# END From 4b18d80d663a331551008eb898c6b61458356b77 Mon Sep 17 00:00:00 2001 From: nstarman Date: Tue, 30 Nov 2021 17:07:34 -0500 Subject: [PATCH 55/74] add import Signed-off-by: nstarman --- discO/data/err_field/utils.py | 1 + 1 file changed, 1 insertion(+) diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py index fb9fa1d5..8407d36d 100644 --- a/discO/data/err_field/utils.py +++ b/discO/data/err_field/utils.py @@ -11,6 +11,7 @@ # BUILT-IN import os import pathlib +import pickle import typing as T # THIRD PARTY From f4f6bf0dc0a8dfcbfe6af17142fea3017c9301d3 Mon Sep 17 00:00:00 2001 From: nstarman Date: Wed, 1 Dec 2021 09:50:21 -0500 Subject: [PATCH 56/74] relax make_X input Signed-off-by: nstarman --- discO/data/err_field/utils.py | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py index 8407d36d..913ed8a1 100644 --- a/discO/data/err_field/utils.py +++ b/discO/data/err_field/utils.py @@ -128,21 +128,24 @@ def make_los_sphere_grid(unitsphere: RFS, distances: u.Quantity = np.arange(1, 2 return coord.SkyCoord(unitsphere.realize_frame(grid)) -def make_X(sr: coord.SphericalRepresentation) -> np.ndarray: +def make_X(c: RFS) -> np.ndarray: """Make coordinates for evaluating `scipy` interpolations. Parameters ---------- - sr : (N, M) `~astropy.coordinates.SphericalRepresentation` + sr : (N, M) BaseRepresentation, BaseCoordinateFrame, SkyCoord Returns ------- - (NxM, 3) ndarray + (NxM, 3) ndarray[float] columns are flattened dimensions of 'sr': - longitude in deg, - latitude in deg - log10 parallax """ + # change to spherical representation + sr = c.represent_as(coord.SphericalRepresentation) + # [lon, lat, log10(p)] X = np.c_[ sr.lon.to_value(u.deg).flat, sr.lat.to_value(u.deg).flat, From a24711f17557ef3aa25178b1f19785af470dc577 Mon Sep 17 00:00:00 2001 From: nstarman Date: Wed, 1 Dec 2021 10:02:42 -0500 Subject: [PATCH 57/74] don't use healpy compat Signed-off-by: nstarman --- discO/data/err_field/script.py | 12 ++++++------ discO/data/err_field/sky_distribution.py | 4 ++-- discO/data/err_field/utils.py | 15 ++++----------- 3 files changed, 12 insertions(+), 19 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index d36d92c2..891f2bef 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -72,7 +72,7 @@ import numpy.typing as npt import tqdm from astropy.table import QTable, Row -from astropy_healpix.healpy import nside2npix, order2nside +from astropy_healpix import level_to_nside, nside_to_npix from gaia_tools.query import query as do_query from numpy.random import Generator from scipy.stats import gaussian_kde @@ -262,7 +262,7 @@ def query_and_fit_pixel_set( pixel_ids : tuple[int] Set of Healpix indices, at order. healpix_order : int - The healpix order. See :func:`order2nside` + The healpix order. See :func:`~astropy_healpix.level_to_nside` random_index : int or None, optional The Gaia random index depth in the query. `None` will query the whole database. An integer (default 10^6) will limit the depth and make the @@ -353,7 +353,7 @@ def make_groups( sky : `~astropy.table.QTable` Table of stars, grouped by healpix pixel ID. healpix_order : int - The healpix order. See :func:`astropy_healpix.order2nside` + The healpix order. See :func:`astropy_healpix.level_to_nside` numgroups : int, optional The number of groups to make. @@ -362,7 +362,7 @@ def make_groups( groupsids : list[ndarray[int]] List of grouped pixels. """ - npix: int = nside2npix(order2nside(healpix_order)) # the number of sky pixels + npix: int = nside_to_npix(level_to_nside(healpix_order)) # the number of sky pixels # get healpix column name. it depends on the order, but is the group key. colname = sky.groups.keys.colnames[0] @@ -471,13 +471,13 @@ def plot_mollview( pixel_ids : tuple[int] Set of pixel ids (int). healpix_order : int - The healpix order. See :func:`order2nside` + The healpix order. See :func:`~astropy_healpix.level_to_nside` Returns ------- `matplotlib.pyplot.Figure` """ - npix = nside2npix(order2nside(healpix_order)) + npix = nside_to_npix(level_to_nside(healpix_order)) # background plot m = np.arange(npix) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index 3a7cba9a..c717c0cd 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -42,7 +42,7 @@ import numpy as np import numpy.typing as npt from astropy.table import QTable -from astropy_healpix.healpy import nside2npix, order2nside +from astropy_healpix import level_to_nside, nside_to_npix from gaia_tools.query import query as do_query ############################################################################## @@ -224,7 +224,7 @@ def plot_sky_mollview( fig = plt.figure(figsize=(10, 10), facecolor="white") # calculate npix from order - npix = nside2npix(order2nside(healpix_order)) + npix = nside_to_npix(level_to_nside(healpix_order)) # create pixel map pmap = np.zeros(npix) diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py index 913ed8a1..808e9ffe 100644 --- a/discO/data/err_field/utils.py +++ b/discO/data/err_field/utils.py @@ -20,7 +20,6 @@ import numpy as np import tqdm from astropy_healpix import HEALPix -from astropy_healpix.healpy import order2nside from scipy.interpolate import NearestNDInterpolator ############################################################################## @@ -59,24 +58,18 @@ def __call__(self, x: T.Union[np.ndarray, u.Quantity]) -> u.Quantity: return super().__call__(x) << self._yunit -def make_healpix_los_unitsphere_grid(order: int, frame=coord.ICRS()) -> coord.SkyCoord: +def make_healpix_los_unitsphere_grid(healpix) -> coord.SkyCoord: """Unit sphere grid. Parameters ---------- - order : int - The HEALPix order - frame : `~astropy.coordinates.BaseCoordinateFrame` - The frame of the data. + healpix : `~astropy_healpix.HEALPix` + The HEALPix instance. Returns ------- - `~astropy_healpix.HEALPix` (N,) `~astropy.coordinates.SkyCoord` """ - nside: int = order2nside(order) - hp = HEALPix(nside, order="nested", frame=frame) - pixel_ids: np.ndarray = np.arange(hp.npix, dtype=int) # get all pixels # TODO! support more than one point per pixel dxs, dys = [0.5], [0.5] @@ -88,7 +81,7 @@ def make_healpix_los_unitsphere_grid(order: int, frame=coord.ICRS()) -> coord.Sk for i, dx in enumerate(dxs): healpix_sc[:, i] = hp.healpix_to_skycoord(pixel_ids, dx=dx) - return hp, healpix_sc.flatten() + return healpix_sc.flatten() def make_los_sphere_grid(unitsphere: RFS, distances: u.Quantity = np.arange(1, 20) * u.kpc) -> RFS: From acb990b04ea2d6bd44dae68b4aca214b2c420217 Mon Sep 17 00:00:00 2001 From: nstarman Date: Wed, 1 Dec 2021 10:03:54 -0500 Subject: [PATCH 58/74] fix arg reference Signed-off-by: nstarman --- discO/data/err_field/utils.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py index 808e9ffe..98a3b0d1 100644 --- a/discO/data/err_field/utils.py +++ b/discO/data/err_field/utils.py @@ -70,16 +70,16 @@ def make_healpix_los_unitsphere_grid(healpix) -> coord.SkyCoord: ------- (N,) `~astropy.coordinates.SkyCoord` """ - pixel_ids: np.ndarray = np.arange(hp.npix, dtype=int) # get all pixels + pixel_ids: np.ndarray = np.arange(healpix.npix, dtype=int) # get all pixels # TODO! support more than one point per pixel dxs, dys = [0.5], [0.5] temp_dim = np.zeros((len(pixel_ids), len(dxs))) temp_r = coord.UnitSphericalRepresentation(temp_dim * u.rad, temp_dim * u.rad) - healpix_sc = coord.SkyCoord(hp.frame.realize_frame(temp_r)) + healpix_sc = coord.SkyCoord(healpix.frame.realize_frame(temp_r)) for i, dx in enumerate(dxs): - healpix_sc[:, i] = hp.healpix_to_skycoord(pixel_ids, dx=dx) + healpix_sc[:, i] = healpix.healpix_to_skycoord(pixel_ids, dx=dx) return healpix_sc.flatten() From 1f9030100a8a2eb72ca5a06510e7a392700163a0 Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 2 Dec 2021 13:09:18 -0500 Subject: [PATCH 59/74] easier interpolation class Signed-off-by: nstarman --- discO/data/err_field/utils.py | 28 ++++++++++++++++++++++++++-- 1 file changed, 26 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py index 98a3b0d1..a83e7679 100644 --- a/discO/data/err_field/utils.py +++ b/discO/data/err_field/utils.py @@ -58,9 +58,33 @@ def __call__(self, x: T.Union[np.ndarray, u.Quantity]) -> u.Quantity: return super().__call__(x) << self._yunit +class SphericalLogParallaxNearestNDInterpolator(NearestNDInterpolatorWithUnits): + + def __init__( + self, + c: RFS, + y: T.Union[np.ndarray, u.Quantity], + rescale: bool = False, + tree_options: T.Optional[dict] = None, + yunit: u.Unit = u.one, + ) -> None: + x = make_X(c) + super().__init__(x, y, rescale=rescale, tree_options=tree_options, yunit=yunit) + + def __call__(self, c: RFS) -> u.Quantity: + return super().__call__(make_X(c)) + + + def make_healpix_los_unitsphere_grid(healpix) -> coord.SkyCoord: """Unit sphere grid. + .. todo:: + + Allow for more than one point per pixel. + Possibly by going one further order and merging to get desired number + of points. + Parameters ---------- healpix : `~astropy_healpix.HEALPix` @@ -205,8 +229,8 @@ def interpolate_errfield_on_los_sphere_grid( ypred[i, :] = patchfit.predict(X) # Make ND interpolation - X = make_X(sr) # Build coordinates from all data. - interp = NearestNDInterpolatorWithUnits(X, ypred.flat, rescale=True, yunit=u.dex(u.mas)) + interp = SphericalLogParallaxNearestNDInterpolator(sr, ypred.flat, + rescale=True, yunit=u.dex(u.one)) return interp From dfed73b78dea804b992f5445a4d466e1f29dacf8 Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 17:20:20 +0000 Subject: [PATCH 60/74] switch to table per set want to switch to 1 table for the whole thing Signed-off-by: nstarman --- discO/data/err_field/script.py | 50 +++++++++++++++++++++++++--------- discO/data/err_field/utils.py | 7 ++--- 2 files changed, 40 insertions(+), 17 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 891f2bef..f5bb2098 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -188,7 +188,7 @@ def _fit_linear( def fit_pixel( - pixel: QTable, pixel_id: int, *, saveloc: pathlib.Path, ax: T.Optional[AxesSubplotType] = None + pixel: QTable, pixel_id: int, *, row: Row, ax: T.Optional[AxesSubplotType] = None ) -> None: """Fit pixel with linear models. @@ -202,8 +202,8 @@ def fit_pixel( pixel_id : int Healpix index for the 'pixel'. - saveloc : `pathlib.Path`, keyword-only - Where to save the fit to the 'pixel'. + row : `~astropy.table.Row`, keyword-only + Where to store the fit information to the 'pixel'. ax : `matplotlib.axes._subplots.AxesSubplot` or None (optional, keyword-only) Plot axes onto which to plot the data and fits. If `None`, nothing is plotted. @@ -230,8 +230,9 @@ def fit_pixel( yreguw, reg1 = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=False) # save weighted fit - with open(saveloc / f"fit_{pixel_id:010}.pkl", mode="wb") as f: - pickle.dump(reg, f) # the weighted linear regression + row.table[row.index] = reg.__getstate__().values() + # with open(saveloc / f"fit_{pixel_id:010}.pkl", mode="wb") as f: + # pickle.dump(reg, f) # the weighted linear regression if ax is not None: plot_parallax_prediction( @@ -277,7 +278,9 @@ def query_and_fit_pixel_set( Where to save the fit to the 'pixel'. """ # create directories - FOLDER = saveloc / f"order_{healpix_order}" + FOLDER = saveloc / f"order_{healpix_order}" + ( + f"-random_{random_index}" if random_index is not None else "-allsky" + ) FOLDER.mkdir(exist_ok=True) PLOT_DIR = FOLDER / "figures" @@ -286,6 +289,26 @@ def query_and_fit_pixel_set( DATA_DIR = FOLDER / "pixel_fits" DATA_DIR.mkdir(exist_ok=True) + empty = np.empty(len(pixel_ids)) + dtype = [ + ("pixel_id", "float64"), + ("fit_intercept", "bool"), + ("normalize", "U10"), + ("copy_X", "bool"), + ("n_jobs", object), + ("positive", "bool"), + ("n_features_in_", "i4"), + ("coef_", "float64", 3), + ("_residues", "float64"), + ("rank_", "i4"), + ("singular_", "float64", 3), + ("intercept_", "float64"), + ("_sklearn_version", "U4"), + ] + fits = QTable(data=np.empty(len(pixel_ids), dtype=dtype)) + + shortened = hash(pixel_ids) # TODO! do better. Put in PDF metadata + # ----------------------- # Query batch @@ -312,11 +335,6 @@ def query_and_fit_pixel_set( if plot: fig = plt.figure() plot_mollview(pixel_ids, healpix_order, fig=fig) - - shortened = hash(pixel_ids) # TODO! do better. Put in PDF metadata - with open(PLOT_DIR / f"mollview-{shortened}.txt", mode="w") as f: - f.write(str(pixel_ids)) - fig.savefig(PLOT_DIR / f"mollview-{shortened}.pdf") # ----------------------- @@ -334,8 +352,14 @@ def query_and_fit_pixel_set( pixel: QTable ax: T.Union[plt.axes._subplots.AxesSubplot, None] - for pixel, ax in zip(pixels.groups, axs.flat): # iter thru pixels - fit_pixel(pixel, int(pixel[hpl][0]), saveloc=DATA_DIR, ax=ax) + for i, (pixel, ax) in enumerate(zip(pixels.groups, axs.flat)): # iter thru pixels + fit_pixel(pixel, int(pixel[hpl][0]), row=fits[i], ax=ax) + + # save table + fits.write(DATA_DIR / "fit_{shortened}.ecsv", overwrite=True) + # and reference for content of table + with open(DATA_DIR / f"ref-{shortened}.txt", mode="w") as f: + f.write(str(pixel_ids)) # save plot of all the pixels if plot: diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py index a83e7679..ca4e0c21 100644 --- a/discO/data/err_field/utils.py +++ b/discO/data/err_field/utils.py @@ -59,7 +59,6 @@ def __call__(self, x: T.Union[np.ndarray, u.Quantity]) -> u.Quantity: class SphericalLogParallaxNearestNDInterpolator(NearestNDInterpolatorWithUnits): - def __init__( self, c: RFS, @@ -75,7 +74,6 @@ def __call__(self, c: RFS) -> u.Quantity: return super().__call__(make_X(c)) - def make_healpix_los_unitsphere_grid(healpix) -> coord.SkyCoord: """Unit sphere grid. @@ -229,8 +227,9 @@ def interpolate_errfield_on_los_sphere_grid( ypred[i, :] = patchfit.predict(X) # Make ND interpolation - interp = SphericalLogParallaxNearestNDInterpolator(sr, ypred.flat, - rescale=True, yunit=u.dex(u.one)) + interp = SphericalLogParallaxNearestNDInterpolator( + sr, ypred.flat, rescale=True, yunit=u.dex(u.one) + ) return interp From a3eca42fb921a5cc049a6fc79fc784604ab8f7af Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 17:26:07 +0000 Subject: [PATCH 61/74] proper parent folder Signed-off-by: nstarman --- discO/data/err_field/script.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index f5bb2098..065c29ba 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -278,9 +278,10 @@ def query_and_fit_pixel_set( Where to save the fit to the 'pixel'. """ # create directories - FOLDER = saveloc / f"order_{healpix_order}" + ( - f"-random_{random_index}" if random_index is not None else "-allsky" - ) + PFOLDER = saveloc / f"order_{healpix_order}" + PFOLDER.mkdir(exist_ok=True) + + FOLDER = PFOLDER / f"random_{random_index}" if random_index is not None else "allsky" FOLDER.mkdir(exist_ok=True) PLOT_DIR = FOLDER / "figures" From 33840d4e2721b5df3c5ad9b341e790afb29a1556 Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 17:28:22 +0000 Subject: [PATCH 62/74] correct number of columns Signed-off-by: nstarman --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 065c29ba..cd69b394 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -230,7 +230,7 @@ def fit_pixel( yreguw, reg1 = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=False) # save weighted fit - row.table[row.index] = reg.__getstate__().values() + row.table[row.index] = [pixel_id, *reg.__getstate__().values()] # with open(saveloc / f"fit_{pixel_id:010}.pkl", mode="wb") as f: # pickle.dump(reg, f) # the weighted linear regression From 04f7b26c2fe9f912577e7802ee637b7bec14e67d Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 17:32:32 +0000 Subject: [PATCH 63/74] actually save table separately Signed-off-by: nstarman --- discO/data/err_field/script.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index cd69b394..664368d2 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -321,7 +321,7 @@ def query_and_fit_pixel_set( # perform query using `gaia_tools` # if the query fails to return anything, stop there. - result = do_query(adql_query, local=use_local, use_cache=False, verbose=True, timeit=True) + result = do_query(adql_query, local=use_local, use_cache=False, verbose=False, timeit=True) if len(result) == 0: warnings.warn(f"no data in pixels: {pixel_ids}") return @@ -357,7 +357,7 @@ def query_and_fit_pixel_set( fit_pixel(pixel, int(pixel[hpl][0]), row=fits[i], ax=ax) # save table - fits.write(DATA_DIR / "fit_{shortened}.ecsv", overwrite=True) + fits.write(DATA_DIR / f"fit_{shortened}.ecsv", overwrite=True) # and reference for content of table with open(DATA_DIR / f"ref-{shortened}.txt", mode="w") as f: f.write(str(pixel_ids)) From daba307954af7cd0066f9eb0501aba1cebb5dc2e Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 17:57:50 +0000 Subject: [PATCH 64/74] make table for all fits Signed-off-by: nstarman --- discO/data/err_field/script.py | 129 ++++++++++++++++++++++----------- 1 file changed, 87 insertions(+), 42 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 664368d2..5ab61dca 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -252,9 +252,9 @@ def query_and_fit_pixel_set( healpix_order: int, random_index: T.Optional[int] = 1_000_000, *, + savetable: QTable, plot: bool = True, use_local: bool = True, - saveloc: pathlib.Path = THIS_DIR, ) -> None: """Query and fit a set of sky pixels (healpix pixels). @@ -274,39 +274,39 @@ def query_and_fit_pixel_set( use_local : bool (optional, keyword-only) Whether to perform the query on a local database (`True`, default) or on Gaia's servers (`False`). - saveloc : `pathlib.Path` (optional, keyword-only) - Where to save the fit to the 'pixel'. + savetable : `~astropy.table.QTable` (optional, keyword-only) + Where to store the fit to the 'pixel'. """ - # create directories - PFOLDER = saveloc / f"order_{healpix_order}" - PFOLDER.mkdir(exist_ok=True) - - FOLDER = PFOLDER / f"random_{random_index}" if random_index is not None else "allsky" - FOLDER.mkdir(exist_ok=True) - - PLOT_DIR = FOLDER / "figures" - PLOT_DIR.mkdir(exist_ok=True) - - DATA_DIR = FOLDER / "pixel_fits" - DATA_DIR.mkdir(exist_ok=True) - - empty = np.empty(len(pixel_ids)) - dtype = [ - ("pixel_id", "float64"), - ("fit_intercept", "bool"), - ("normalize", "U10"), - ("copy_X", "bool"), - ("n_jobs", object), - ("positive", "bool"), - ("n_features_in_", "i4"), - ("coef_", "float64", 3), - ("_residues", "float64"), - ("rank_", "i4"), - ("singular_", "float64", 3), - ("intercept_", "float64"), - ("_sklearn_version", "U4"), - ] - fits = QTable(data=np.empty(len(pixel_ids), dtype=dtype)) +# # create directories +# PFOLDER = saveloc / f"order_{healpix_order}" +# PFOLDER.mkdir(exist_ok=True) +# +# FOLDER = PFOLDER / f"random_{random_index}" if random_index is not None else "allsky" +# FOLDER.mkdir(exist_ok=True) +# +# PLOT_DIR = FOLDER / "figures" +# PLOT_DIR.mkdir(exist_ok=True) +# +# DATA_DIR = FOLDER / "pixel_fits" +# DATA_DIR.mkdir(exist_ok=True) + + # empty = np.empty(len(pixel_ids)) + # dtype = [ + # ("pixel_id", "int64"), + # ("fit_intercept", "bool"), + # ("normalize", "U10"), + # ("copy_X", "bool"), + # ("n_jobs", object), + # ("positive", "bool"), + # ("n_features_in_", "i4"), + # ("coef_", "float64", 3), + # ("_residues", "float64"), + # ("rank_", "i4"), + # ("singular_", "float64", 3), + # ("intercept_", "float64"), + # ("_sklearn_version", "U4"), + # ] + # fits = QTable(data=np.empty(len(pixel_ids), dtype=dtype)) shortened = hash(pixel_ids) # TODO! do better. Put in PDF metadata @@ -336,7 +336,10 @@ def query_and_fit_pixel_set( if plot: fig = plt.figure() plot_mollview(pixel_ids, healpix_order, fig=fig) - fig.savefig(PLOT_DIR / f"mollview-{shortened}.pdf") + fig.savefig(PLOT_DIR / f"mollview_{shortened}.pdf") + + with open(PLOT_DIR / f"ref_{shortened}.txt", mode="w") as f: + f.write(str(pixel_ids)) # ----------------------- # Fits to each pixel @@ -354,18 +357,16 @@ def query_and_fit_pixel_set( pixel: QTable ax: T.Union[plt.axes._subplots.AxesSubplot, None] for i, (pixel, ax) in enumerate(zip(pixels.groups, axs.flat)): # iter thru pixels - fit_pixel(pixel, int(pixel[hpl][0]), row=fits[i], ax=ax) + fit_pixel(pixel, int(pixel[hpl][0]), row=savetable[i], ax=ax) # save table - fits.write(DATA_DIR / f"fit_{shortened}.ecsv", overwrite=True) - # and reference for content of table - with open(DATA_DIR / f"ref-{shortened}.txt", mode="w") as f: - f.write(str(pixel_ids)) + # fits.write(DATA_DIR / f"fit_{shortened}.ecsv", overwrite=True) + # # and reference for content of table # save plot of all the pixels if plot: plt.tight_layout() - fig.savefig(PLOT_DIR / f"parallax-{shortened}.pdf") + fig.savefig(PLOT_DIR / f"parallax_{shortened}.pdf") def make_groups( @@ -669,21 +670,61 @@ def main( # groups the pixels together so that each group will have # approximately the same number of stars. list_of_groups = make_groups(sky, healpix_order=ns.order, numgroups=ns.ngroups) + npix = nside_to_npix(level_to_nside(ns.order)) elif ns.pixels_range: pi, pf = ns.pixels_range if pi >= pf: raise ValueError("`pixels_range` must be [start, stop], with stop > start.") list_of_groups = np.array_split(np.arange(pi, pf), ns.ngroups) + npix = pf - pi elif ns.pixels: list_of_groups = ns.pixels + # npix = # TODO! # ----------------------- - # optionally ignore warnings + # query and fit + # optionlly ignore warnings + + # create directories + saveloc = pathlib.Path(ns.saveloc).expanduser().resolve() + + PFOLDER = saveloc / f"order_{ns.order}" + PFOLDER.mkdir(exist_ok=True) + + FOLDER = PFOLDER / f"random_{ns.random_index}" if random_index is not None else "allsky" + FOLDER.mkdir(exist_ok=True) + + PLOT_DIR = FOLDER / "figures" + PLOT_DIR.mkdir(exist_ok=True) + + DATA_DIR = FOLDER / "pixel_fits" + DATA_DIR.mkdir(exist_ok=True) + + dtype = [ + ("pixel_id", "int64"), + ("fit_intercept", "bool"), + ("normalize", "U10"), + ("copy_X", "bool"), + ("n_jobs", object), + ("positive", "bool"), + ("n_features_in_", "i4"), + ("coef_", "float64", 3), + ("_residues", "float64"), + ("rank_", "i4"), + ("singular_", "float64", 3), + ("intercept_", "float64"), + ("_sklearn_version", "U4"), + ] + fits = QTable(data=np.empty(npix, dtype=dtype)) + # TODO! save to HDF5 and work with it in append mode so that + # each pixel set can be saved as soon as it's done. + with warnings.catch_warnings(): if ns.filter_warnings: warnings.simplefilter("ignore", category=UndefinedMetricWarning) warnings.simplefilter("ignore", category=UserWarning) + running_index = 0 for batch in tqdm.tqdm(list_of_groups): query_and_fit_pixel_set( tuple(batch), @@ -691,8 +732,12 @@ def main( random_index=ns.random_index, plot=ns.plot, use_local=ns.use_local, - saveloc=pathlib.Path(ns.saveloc).expanduser().resolve(), + savetable=fits[running_index:running_index+len(batch)], ) + # update starting index + running_index += len(batch) + + fits.write(DATA_DIR / f"fits.ecsv", overwrite=True) # ------------------------------------------------------------------------ From 9d58dd5fb1b0c462237dd3a1cdaf4f192a0aa36e Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 18:01:40 +0000 Subject: [PATCH 65/74] fix reference Signed-off-by: nstarman --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 5ab61dca..2b5ca836 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -691,7 +691,7 @@ def main( PFOLDER = saveloc / f"order_{ns.order}" PFOLDER.mkdir(exist_ok=True) - FOLDER = PFOLDER / f"random_{ns.random_index}" if random_index is not None else "allsky" + FOLDER = PFOLDER / f"random_{ns.random_index}" if ns.random_index is not None else "allsky" FOLDER.mkdir(exist_ok=True) PLOT_DIR = FOLDER / "figures" From ff3fe9ec2fa9fe4a984ba6c6bc7680b0120e0cbe Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 18:06:45 +0000 Subject: [PATCH 66/74] plot dir Signed-off-by: nstarman --- discO/data/err_field/script.py | 59 ++++++++-------------------------- 1 file changed, 13 insertions(+), 46 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 2b5ca836..20f90ee4 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -253,7 +253,7 @@ def query_and_fit_pixel_set( random_index: T.Optional[int] = 1_000_000, *, savetable: QTable, - plot: bool = True, + plot: T.Union[pathlib.Path, T.Literal[False]] = False, use_local: bool = True, ) -> None: """Query and fit a set of sky pixels (healpix pixels). @@ -269,50 +269,14 @@ def query_and_fit_pixel_set( database. An integer (default 10^6) will limit the depth and make the query much faster. - plot : bool (optional, keyword-only) - Whether to plot the set of pixels. + plot : `pathlib.Path` or `False` (optional, keyword-only) + Whether and where to plot the set of pixel fits. use_local : bool (optional, keyword-only) Whether to perform the query on a local database (`True`, default) or on Gaia's servers (`False`). savetable : `~astropy.table.QTable` (optional, keyword-only) Where to store the fit to the 'pixel'. """ -# # create directories -# PFOLDER = saveloc / f"order_{healpix_order}" -# PFOLDER.mkdir(exist_ok=True) -# -# FOLDER = PFOLDER / f"random_{random_index}" if random_index is not None else "allsky" -# FOLDER.mkdir(exist_ok=True) -# -# PLOT_DIR = FOLDER / "figures" -# PLOT_DIR.mkdir(exist_ok=True) -# -# DATA_DIR = FOLDER / "pixel_fits" -# DATA_DIR.mkdir(exist_ok=True) - - # empty = np.empty(len(pixel_ids)) - # dtype = [ - # ("pixel_id", "int64"), - # ("fit_intercept", "bool"), - # ("normalize", "U10"), - # ("copy_X", "bool"), - # ("n_jobs", object), - # ("positive", "bool"), - # ("n_features_in_", "i4"), - # ("coef_", "float64", 3), - # ("_residues", "float64"), - # ("rank_", "i4"), - # ("singular_", "float64", 3), - # ("intercept_", "float64"), - # ("_sklearn_version", "U4"), - # ] - # fits = QTable(data=np.empty(len(pixel_ids), dtype=dtype)) - - shortened = hash(pixel_ids) # TODO! do better. Put in PDF metadata - - # ----------------------- - # Query batch - # make query string hpl = f"hpx{healpix_order}" # column name for healpix index adql_query = ADQL_QUERY.format(healpix_order=healpix_order, pixel_ids=pixel_ids) @@ -334,11 +298,13 @@ def query_and_fit_pixel_set( # plot the pixels if plot: + shortened = hash(pixel_ids) # TODO! do better. Put in PDF metadata + fig = plt.figure() plot_mollview(pixel_ids, healpix_order, fig=fig) - fig.savefig(PLOT_DIR / f"mollview_{shortened}.pdf") + fig.savefig(plot / f"mollview_{shortened}.pdf") - with open(PLOT_DIR / f"ref_{shortened}.txt", mode="w") as f: + with open(plot / f"ref_{shortened}.txt", mode="w") as f: f.write(str(pixel_ids)) # ----------------------- @@ -366,7 +332,7 @@ def query_and_fit_pixel_set( # save plot of all the pixels if plot: plt.tight_layout() - fig.savefig(PLOT_DIR / f"parallax_{shortened}.pdf") + fig.savefig(plot / f"parallax_{shortened}.pdf") def make_groups( @@ -683,7 +649,6 @@ def main( # ----------------------- # query and fit - # optionlly ignore warnings # create directories saveloc = pathlib.Path(ns.saveloc).expanduser().resolve() @@ -716,9 +681,8 @@ def main( ("_sklearn_version", "U4"), ] fits = QTable(data=np.empty(npix, dtype=dtype)) - # TODO! save to HDF5 and work with it in append mode so that - # each pixel set can be saved as soon as it's done. + # optionally ignore warnings while fitting with warnings.catch_warnings(): if ns.filter_warnings: warnings.simplefilter("ignore", category=UndefinedMetricWarning) @@ -730,13 +694,16 @@ def main( tuple(batch), healpix_order=ns.order, random_index=ns.random_index, - plot=ns.plot, + plot=PLOT_DIR if ns.plot else False, use_local=ns.use_local, savetable=fits[running_index:running_index+len(batch)], ) # update starting index running_index += len(batch) + # save! + # TODO! save to HDF5 and work with it in append mode so that + # each pixel set can be saved as soon as it's done. fits.write(DATA_DIR / f"fits.ecsv", overwrite=True) From 8e8c0b4385f431112430206045bc2148c3136681 Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 18:11:52 +0000 Subject: [PATCH 67/74] fix verbosity flag and save loc Signed-off-by: nstarman --- discO/data/err_field/script.py | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 20f90ee4..20e5958d 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -285,7 +285,7 @@ def query_and_fit_pixel_set( # perform query using `gaia_tools` # if the query fails to return anything, stop there. - result = do_query(adql_query, local=use_local, use_cache=False, verbose=False, timeit=True) + result = do_query(adql_query, local=use_local, use_cache=False, verbose=True, timeit=False) if len(result) == 0: warnings.warn(f"no data in pixels: {pixel_ids}") return @@ -661,9 +661,6 @@ def main( PLOT_DIR = FOLDER / "figures" PLOT_DIR.mkdir(exist_ok=True) - - DATA_DIR = FOLDER / "pixel_fits" - DATA_DIR.mkdir(exist_ok=True) dtype = [ ("pixel_id", "int64"), @@ -704,7 +701,7 @@ def main( # save! # TODO! save to HDF5 and work with it in append mode so that # each pixel set can be saved as soon as it's done. - fits.write(DATA_DIR / f"fits.ecsv", overwrite=True) + fits.write(FOLDER / f"fits.ecsv", overwrite=True) # ------------------------------------------------------------------------ From 070e435eb7d2156d7abbc54ef1be5fcf01f453ed Mon Sep 17 00:00:00 2001 From: nstarman Date: Thu, 9 Dec 2021 18:21:28 +0000 Subject: [PATCH 68/74] incremental saves Signed-off-by: nstarman --- discO/data/err_field/script.py | 8 +++++--- discO/data/err_field/sky_distribution.py | 21 ++++++++++----------- 2 files changed, 15 insertions(+), 14 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 20e5958d..2c71c625 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -698,9 +698,11 @@ def main( # update starting index running_index += len(batch) - # save! - # TODO! save to HDF5 and work with it in append mode so that - # each pixel set can be saved as soon as it's done. + # TODO! save to HDF5 and work with it in append mode so that + # each pixel set can be saved as soon as it's done. + fits.write(FOLDER / f"fits.ecsv", overwrite=True) + + # final save! fits.write(FOLDER / f"fits.ecsv", overwrite=True) diff --git a/discO/data/err_field/sky_distribution.py b/discO/data/err_field/sky_distribution.py index c717c0cd..e7c6ad12 100644 --- a/discO/data/err_field/sky_distribution.py +++ b/discO/data/err_field/sky_distribution.py @@ -115,14 +115,17 @@ def query_sky_distribution( """ # ---------------------- # data folder - FOLDER = saveloc / f"order_{healpix_order}" + + PFOLDER = saveloc / f"order_{healpix_order}" + PFOLDER.mkdir(exist_ok=True) + FOLDER = PFOLDER / "sky_distribution" FOLDER.mkdir(exist_ok=True) # data file - DATA_DIR = FOLDER / f"sky_distribution_{healpix_order}.ecsv" + DATA_LOC = FOLDER / f"sky_distribution_{healpix_order}.ecsv" if verbose: - print(f"data will be saved to / read from {DATA_DIR}") + print(f"data will be saved to / read from {DATA_LOC}") # ---------------------- # Perform query or load from file @@ -133,7 +136,7 @@ def query_sky_distribution( adql_query = ADQL_QUERY.format(healpix_order=healpix_order, random_index=random_idx_sql) try: - result = QTable.read(DATA_DIR) + result = QTable.read(DATA_LOC) except Exception as e: if verbose: print("starting query.") @@ -148,7 +151,7 @@ def query_sky_distribution( # write so next time don't need to query if verbose: print("saving sky distribution table.") - result.write(DATA_DIR) + result.write(DATA_LOC) else: if verbose: print("loaded sky distribution table.") @@ -160,10 +163,6 @@ def query_sky_distribution( if verbose: print("making plots.") - # save plots in the same location as the data - PLOT_DIR = FOLDER / "figures" - PLOT_DIR.mkdir(exist_ok=True) - # get healpix counts pixelids: npt.NDArray[np.int_] hpx_indices: npt.NDArray[np.int_] @@ -173,10 +172,10 @@ def query_sky_distribution( ) # histogram of counts per pixel - plot_hist_pixel_count(num_counts_per_pixel, healpix_order, saveloc=PLOT_DIR) + plot_hist_pixel_count(num_counts_per_pixel, healpix_order, saveloc=FOLDER) # plot mollweide of sky colored by count - plot_sky_mollview(pixelids, num_counts_per_pixel, healpix_order, saveloc=PLOT_DIR) + plot_sky_mollview(pixelids, num_counts_per_pixel, healpix_order, saveloc=FOLDER) return sky From bd96bdb5b333bcbebc59030cc4f998b8c2ac7c5b Mon Sep 17 00:00:00 2001 From: nstarman Date: Mon, 20 Dec 2021 16:54:04 +0000 Subject: [PATCH 69/74] differently limit background depth Signed-off-by: nstarman --- discO/data/err_field/script.py | 38 ++++++++++++++++++---------------- 1 file changed, 20 insertions(+), 18 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 2c71c625..48e34503 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -226,13 +226,11 @@ def fit_pixel( kde = gaussian_kde(xy)(xy) # fit a few different ways - yregkde, reg = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=kde) - yreguw, reg1 = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=False) + yregkde, reg = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=kde) # inverse density weighting to normalize natural density + yreguw, reg1 = _fit_linear(X, y, train_size=int(len(pixel) * 0.8), weight=False) # fit "fairly", but this shouldn't capture intended behavior. - # save weighted fit + # add weighted fit to save tble row.table[row.index] = [pixel_id, *reg.__getstate__().values()] - # with open(saveloc / f"fit_{pixel_id:010}.pkl", mode="wb") as f: - # pickle.dump(reg, f) # the weighted linear regression if ax is not None: plot_parallax_prediction( @@ -510,26 +508,20 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: whether the parser can be inherited from (default False). if True, sets ``add_help=False`` and ``conflict_hander='resolve'`` - plot : bool, optional, keyword only - Whether to produce plots, or not. - - verbose : int, optional, keyword only - Script logging verbosity. - Returns ------- parser: `~argparse.ArgumentParser` - The parser with arguments: - - plot - - verbose + The parser with arguments: ``order``, ``ngroups``, ``allsky``, + ``pixels``, ``random_index``, ``rng``, ``use_local``, ``plot``, + ``filter_warnings``, ``verbose``, and ``saveloc``. """ parser = argparse.ArgumentParser( - description="", + description="Create interpolatable Gaia error field.", add_help=not inheritable, conflict_handler="resolve" if not inheritable else "error", ) - # order + # HEALPix order parser.add_argument("-o", "--order", default=6, type=int, help="healpix order") # pixels are done in groups. @@ -568,6 +560,13 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: help="limit queried stars within random index", ) + parser.add_argument( + "--sky_distribution_depth", + default=int(2e6), + type=int, + help="limit queried stars within random index, when making the estimate of the background distribution.", + ) + # random number generator parser.add_argument("--rng", default=0, type=int, help="random number generator seed") @@ -627,7 +626,9 @@ def main( # ----------------------- # Make background distribution # This loads a table of 2 million stars, organized by healpix pixel number. - sky: QTable = sky_distribution_main(opts=ns) + ns_sd = copy.deepcopy(ns) + ns_sd.random_index = ns.sky_distribution_depth + sky: QTable = sky_distribution_main(opts=ns_sd) # construct the list of groups of healpix pixels. # [ (pixel_1, pixel_2, ...), (pixel_i, pixel_i+1, ...)] @@ -662,7 +663,8 @@ def main( PLOT_DIR = FOLDER / "figures" PLOT_DIR.mkdir(exist_ok=True) - dtype = [ + # create blank Table, which will be filled in by each fit. + dtype = [ # data type for each column. Needed for blank tables. ("pixel_id", "int64"), ("fit_intercept", "bool"), ("normalize", "U10"), From a6149a1cce969566ebc550ec6407f94559a8f353 Mon Sep 17 00:00:00 2001 From: nstarman Date: Mon, 20 Dec 2021 16:59:24 +0000 Subject: [PATCH 70/74] fix imports Signed-off-by: nstarman --- discO/data/err_field/script.py | 1 + 1 file changed, 1 insertion(+) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 48e34503..30af6d8c 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -57,6 +57,7 @@ # BUILT-IN import argparse +import copy import pathlib import pickle import typing as T From c3d95ee9d143faf568ef3a35fd2724907220522b Mon Sep 17 00:00:00 2001 From: nstarman Date: Mon, 20 Dec 2021 17:02:55 +0000 Subject: [PATCH 71/74] folder suffix Signed-off-by: nstarman --- discO/data/err_field/script.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 30af6d8c..1b68dc4b 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -658,7 +658,8 @@ def main( PFOLDER = saveloc / f"order_{ns.order}" PFOLDER.mkdir(exist_ok=True) - FOLDER = PFOLDER / f"random_{ns.random_index}" if ns.random_index is not None else "allsky" + suffix = ns.random_index if ns.random_index is not None else 'allsky' + FOLDER = PFOLDER / f"random_{suffix}" FOLDER.mkdir(exist_ok=True) PLOT_DIR = FOLDER / "figures" From 6be6470e46499e3d72585d77e2ef41860a6606a7 Mon Sep 17 00:00:00 2001 From: nstarman Date: Mon, 20 Dec 2021 17:23:32 +0000 Subject: [PATCH 72/74] actully fix Signed-off-by: nstarman --- discO/data/err_field/script.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 1b68dc4b..6cea6bb1 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -657,9 +657,9 @@ def main( PFOLDER = saveloc / f"order_{ns.order}" PFOLDER.mkdir(exist_ok=True) - - suffix = ns.random_index if ns.random_index is not None else 'allsky' - FOLDER = PFOLDER / f"random_{suffix}" + + fname = f"random_{ns.random_index}" if ns.random_index is not None else 'allsky' + FOLDER = PFOLDER / fname FOLDER.mkdir(exist_ok=True) PLOT_DIR = FOLDER / "figures" From a836f7f5288150b43f75ed31db01e575292974bc Mon Sep 17 00:00:00 2001 From: nstarman Date: Fri, 21 Jan 2022 16:10:21 -0500 Subject: [PATCH 73/74] resume from last go Signed-off-by: nstarman --- discO/data/err_field/script.py | 108 ++++++++++++++++++++------------- discO/data/err_field/utils.py | 2 +- 2 files changed, 68 insertions(+), 42 deletions(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index 6cea6bb1..a54142d3 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -299,9 +299,10 @@ def query_and_fit_pixel_set( if plot: shortened = hash(pixel_ids) # TODO! do better. Put in PDF metadata - fig = plt.figure() - plot_mollview(pixel_ids, healpix_order, fig=fig) - fig.savefig(plot / f"mollview_{shortened}.pdf") + # fig = plt.figure() + # plot_mollview(pixel_ids, healpix_order, fig=fig) + # fig.savefig(plot / f"mollview_{shortened}.pdf") + # plt.close(fig) with open(plot / f"ref_{shortened}.txt", mode="w") as f: f.write(str(pixel_ids)) @@ -324,14 +325,11 @@ def query_and_fit_pixel_set( for i, (pixel, ax) in enumerate(zip(pixels.groups, axs.flat)): # iter thru pixels fit_pixel(pixel, int(pixel[hpl][0]), row=savetable[i], ax=ax) - # save table - # fits.write(DATA_DIR / f"fit_{shortened}.ecsv", overwrite=True) - # # and reference for content of table - # save plot of all the pixels if plot: plt.tight_layout() fig.savefig(plot / f"parallax_{shortened}.pdf") + plt.close(fig) def make_groups( @@ -422,9 +420,10 @@ def plot_parallax_prediction( ] # plot the coordinates and evaluations - ax.scatter(Xtrue[:, -1], ytrue, s=5, label="data", alpha=0.3, c=kde) + ax.scatter(Xtrue[:, -1], ytrue, s=5, label="data", alpha=0.3, c=kde, + rasterized=True) for i, y in enumerate(ypred): - ax.scatter(Xpred[:, -1], y, s=5, label=r"$y_{pred}$ " + str(i)) + ax.scatter(Xpred[:, -1], y, s=5, label=r"$y_{pred}$ " + str(i), rasterized=True) # set axes labels and adjust properties ax.set_xlabel(r"$\log_{10}$ parallax [mas]") @@ -551,6 +550,11 @@ def make_parser(*, inheritable: bool = False) -> argparse.ArgumentParser: nargs=2, help="fit specified sky pixels within range", ) + parser.add_argument( + "--resume", + action="store_true", + help="resume from previous run. All the same options should be used.", + ) # stars in gaia parser.add_argument( @@ -624,6 +628,19 @@ def main( parser = make_parser() ns = parser.parse_args(args) + # create directories + saveloc = pathlib.Path(ns.saveloc).expanduser().resolve() + + PFOLDER = saveloc / f"order_{ns.order}" + PFOLDER.mkdir(exist_ok=True) + + fname = f"random_{ns.random_index}" if ns.random_index is not None else 'allsky' + FOLDER = PFOLDER / fname + FOLDER.mkdir(exist_ok=True) + + PLOT_DIR = FOLDER / "figures" + PLOT_DIR.mkdir(exist_ok=True) + # ----------------------- # Make background distribution # This loads a table of 2 million stars, organized by healpix pixel number. @@ -631,57 +648,67 @@ def main( ns_sd.random_index = ns.sky_distribution_depth sky: QTable = sky_distribution_main(opts=ns_sd) + if ns.resume: + fits = QTable.read(FOLDER / f"fits.ecsv") + i_end = np.where(fits["pixel_id"] == 0)[0][0] - 1 + last_pixel_id = fits["pixel_id"][i_end] + + # list_of_groups = list_of_groups[resume_from_group:] + # construct the list of groups of healpix pixels. # [ (pixel_1, pixel_2, ...), (pixel_i, pixel_i+1, ...)] + running_index = 0 list_of_groups: T.List[T.Tuple[int, ...]] if ns.allsky: # groups the pixels together so that each group will have # approximately the same number of stars. list_of_groups = make_groups(sky, healpix_order=ns.order, numgroups=ns.ngroups) npix = nside_to_npix(level_to_nside(ns.order)) + + if ns.resume: + i_stop_pixel = np.where(fits["pixel_id"] == 0)[0][0] - 1 + stop_pixel = fits["pixel_id"][i_stop_pixel] + in_group = np.array([stop_pixel in group for group in list_of_groups]) + i_stop_group = np.where(in_groups)[0][0] + list_of_groups = list_of_groups[i_stop_group+1:] # TODO! will repeat last group + running_index = i_stop_pixel + 1 elif ns.pixels_range: pi, pf = ns.pixels_range if pi >= pf: raise ValueError("`pixels_range` must be [start, stop], with stop > start.") list_of_groups = np.array_split(np.arange(pi, pf), ns.ngroups) npix = pf - pi + + if ns.resume: + raise NotImplementedError("TODO") elif ns.pixels: list_of_groups = ns.pixels - # npix = # TODO! + npix = len(ns.pixels) + + if ns.resume: + raise NotImplementedError("TODO") # ----------------------- # query and fit - # create directories - saveloc = pathlib.Path(ns.saveloc).expanduser().resolve() - - PFOLDER = saveloc / f"order_{ns.order}" - PFOLDER.mkdir(exist_ok=True) - - fname = f"random_{ns.random_index}" if ns.random_index is not None else 'allsky' - FOLDER = PFOLDER / fname - FOLDER.mkdir(exist_ok=True) - - PLOT_DIR = FOLDER / "figures" - PLOT_DIR.mkdir(exist_ok=True) - - # create blank Table, which will be filled in by each fit. - dtype = [ # data type for each column. Needed for blank tables. - ("pixel_id", "int64"), - ("fit_intercept", "bool"), - ("normalize", "U10"), - ("copy_X", "bool"), - ("n_jobs", object), - ("positive", "bool"), - ("n_features_in_", "i4"), - ("coef_", "float64", 3), - ("_residues", "float64"), - ("rank_", "i4"), - ("singular_", "float64", 3), - ("intercept_", "float64"), - ("_sklearn_version", "U4"), - ] - fits = QTable(data=np.empty(npix, dtype=dtype)) + if not ns.resume: + # create blank Table, which will be filled in by each fit. + dtype = [ # data type for each column. Needed for blank tables. + ("pixel_id", "int64"), + ("fit_intercept", "bool"), + ("normalize", "U10"), + ("copy_X", "bool"), + ("n_jobs", object), + ("positive", "bool"), + ("n_features_in_", "i4"), + ("coef_", "float64", 3), + ("_residues", "float64"), + ("rank_", "i4"), + ("singular_", "float64", 3), + ("intercept_", "float64"), + ("_sklearn_version", "U4"), + ] + fits = QTable(data=np.empty(npix, dtype=dtype)) # optionally ignore warnings while fitting with warnings.catch_warnings(): @@ -689,7 +716,6 @@ def main( warnings.simplefilter("ignore", category=UndefinedMetricWarning) warnings.simplefilter("ignore", category=UserWarning) - running_index = 0 for batch in tqdm.tqdm(list_of_groups): query_and_fit_pixel_set( tuple(batch), diff --git a/discO/data/err_field/utils.py b/discO/data/err_field/utils.py index ca4e0c21..51c0c45b 100644 --- a/discO/data/err_field/utils.py +++ b/discO/data/err_field/utils.py @@ -1,6 +1,6 @@ # -*- coding: utf-8 -*- -"""**DOCSTRING**.""" +"""Utilities for making an interpolated error field.""" # __all__ = [] From 083f291cad0b0d9044560bc5ea1949391eaba48d Mon Sep 17 00:00:00 2001 From: nstarman Date: Fri, 28 Jan 2022 15:25:44 -0500 Subject: [PATCH 74/74] fix typo Signed-off-by: nstarman --- discO/data/err_field/script.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/discO/data/err_field/script.py b/discO/data/err_field/script.py index a54142d3..880e88c2 100644 --- a/discO/data/err_field/script.py +++ b/discO/data/err_field/script.py @@ -668,7 +668,7 @@ def main( if ns.resume: i_stop_pixel = np.where(fits["pixel_id"] == 0)[0][0] - 1 stop_pixel = fits["pixel_id"][i_stop_pixel] - in_group = np.array([stop_pixel in group for group in list_of_groups]) + in_groups = np.array([stop_pixel in group for group in list_of_groups]) i_stop_group = np.where(in_groups)[0][0] list_of_groups = list_of_groups[i_stop_group+1:] # TODO! will repeat last group running_index = i_stop_pixel + 1