-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathslice_width.py
1116 lines (937 loc) · 40.6 KB
/
slice_width.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Assumptions:
Square voxels, no multi-frame support
"""
import os
import sys
import traceback
from copy import copy, deepcopy
from math import pi
import numpy as np
import scipy.optimize as opt
from matplotlib import pyplot as plt
from scipy import ndimage
from scipy.interpolate import interp1d
from skimage.measure import regionprops
from hazenlib.HazenTask import HazenTask
from hazenlib.utils import Rod
class SliceWidth(HazenTask):
"""Slice width measurement class for DICOM images of the MagNet phantom
Inherits from HazenTask class
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.single_dcm = self.dcm_list[0]
self.pixel_size = self.single_dcm.PixelSpacing[0]
def run(self):
"""Main function for performing slice width measurement
Returns:
dict: results are returned in a standardised dictionary structure specifying the task name, input DICOM Series Description + SeriesNumber + InstanceNumber, task measurement key-value pairs, optionally path to the generated images for visualisation
"""
results = self.init_result_dict()
results["file"] = self.img_desc(self.single_dcm)
try:
results["measurement"] = self.get_slice_width(self.single_dcm)
except Exception as e:
print(
f"Could not calculate the slice_width for {self.img_desc(self.single_dcm)} because of : {e}"
)
traceback.print_exc(file=sys.stdout)
# only return reports if requested
if self.report:
results["report_image"] = self.report_files
return results
def sort_rods(self, rods):
"""Separate matrix of rods into sorted per row
Args:
rods (_type_): _description_
Returns:
_type_: _description_
"""
lower_row = sorted(rods, key=lambda rod: rod.y)[-3:]
lower_row = sorted(lower_row, key=lambda rod: rod.x)
middle_row = sorted(rods, key=lambda rod: rod.y)[3:6]
middle_row = sorted(middle_row, key=lambda rod: rod.x)
upper_row = sorted(rods, key=lambda rod: rod.y)[0:3]
upper_row = sorted(upper_row, key=lambda rod: rod.x)
return lower_row + middle_row + upper_row
def get_rods(self, arr):
"""Locate rods in the pixel array
Args:
arr (np.array): DICOM pixel array
Returns:
rods : array_like – centroid coordinates of rods
rods_initial : array_like – initial guess at rods (center-of mass)
Notes:
The rod indices are ordered as:
789
456
123
"""
# inverted image for fitting (maximisation)
arr_inv = np.invert(arr)
if np.min(arr_inv) < 0:
arr_inv = arr_inv + abs(
np.min(arr_inv)
) # ensure voxel values positive for maximisation
""" Initial Center-of-mass Rod Locator """
# threshold and binaries the image in order to locate the rods.
img_max = np.max(arr) # maximum number of img intensity
no_region = [None] * img_max
img_tmp = arr
# step over a range of threshold levels from 0 to the max in the image
# using the ndimage.label function to count the features for each threshold
for x in range(0, img_max):
tmp = img_tmp <= x
labeled_array, num_features = ndimage.label(tmp.astype(int))
no_region[x] = num_features
# find the indices that correspond to 10 regions and pick the median
index = [i for i, val in enumerate(no_region) if val == 10]
thres_ind = np.median(index).astype(int)
# Generate the labelled array with the threshold chosen
img_threshold = img_tmp <= thres_ind
labeled_array, num_features = ndimage.label(img_threshold.astype(int))
# check that we have got the 10 rods!
if num_features != 10:
sys.exit("Did not find the 9 rods")
# list of tuples of x,y coordinates for the centres
rod_centres = ndimage.center_of_mass(arr, labeled_array, range(2, 11))
rods = [Rod(x=x[1], y=x[0]) for x in rod_centres]
rods = self.sort_rods(rods)
rods_initial = deepcopy(rods) # save for later
""" Gaussian 2D Rod Locator """
# setup bounding box dict
# TODO: make these into Rod class properties and functions
# rather than loop over 9 each time
bbox = {
"x_start": [],
"x_end": [],
"y_start": [],
"y_end": [],
}
# Get average radius and inverse intensity of rods
rprops = regionprops(labeled_array, arr_inv)[1:] # ignore first label
# get relevant label properties: radius and intensity
bbox["rod_dia"] = [prop.feret_diameter_max for prop in rprops]
bbox["intensity_max"] = [prop.intensity_max for prop in rprops]
# Calculate mean
radius_of_rods_mean = int(np.mean(bbox["rod_dia"]))
# inv_intensity_of_rods_mean = int(np.mean(inv_intensity_of_rods))
bbox["radius"] = int(np.ceil((radius_of_rods_mean * 2) / 2))
# array extend bounding box regions around rods by radius no. pixels
for rprop in rprops:
bbox["x_start"].append(rprop.bbox[0] - bbox["radius"])
bbox["x_end"].append(rprop.bbox[2] + bbox["radius"])
bbox["y_start"].append(rprop.bbox[1] - bbox["radius"])
bbox["y_end"].append(rprop.bbox[3] + bbox["radius"])
# print(f'Rod {idx} – Bounding Box, x: ({bbox["x_start"][-1]}, {bbox["x_end"][-1]}), y: ({bbox["y_start"][-1]}, {bbox["y_end"][-1]})')
x0, y0, x0_im, y0_im = ([None] * 9 for i in range(4))
for idx in range(9):
cropped_data = arr_inv[
bbox["x_start"][idx] : bbox["x_end"][idx],
bbox["y_start"][idx] : bbox["y_end"][idx],
]
x0_im[idx], y0_im[idx], x0[idx], y0[idx] = self.fit_gauss_2d_to_rods(
cropped_data,
bbox["intensity_max"][idx],
bbox["rod_dia"][idx],
bbox["radius"],
bbox["x_start"][idx],
bbox["y_start"][idx],
)
# note: flipped x/y
rods[idx].x = y0_im[idx]
rods[idx].y = x0_im[idx]
rods = self.sort_rods(rods)
# save figure
if self.report:
fig, axes = plt.subplots(1, 3, figsize=(45, 15))
fig.tight_layout(pad=1)
# center-of-mass (original method)
axes[0].set_title("Initial Estimate")
axes[0].imshow(arr, cmap="gray")
for idx in range(9):
axes[0].plot(rods_initial[idx].x, rods_initial[idx].y, "y.")
# gauss 2D
axes[1].set_title("2D Gaussian Fit")
axes[1].imshow(arr, cmap="gray")
for idx in range(9):
axes[1].plot(rods[idx].x, rods[idx].y, "r.")
# combined
axes[2].set_title("Initial Estimate vs. 2D Gaussian Fit")
axes[2].imshow(arr, cmap="gray")
for idx in range(9):
axes[2].plot(rods_initial[idx].x, rods_initial[idx].y, "y.")
axes[2].plot(rods[idx].x, rods[idx].y, "r.")
img_path = os.path.realpath(
os.path.join(
self.report_path,
f"{self.img_desc(self.single_dcm)}_rod_centroids.png",
)
)
fig.savefig(img_path)
self.report_files.append(img_path)
return rods, rods_initial
def plot_rods(self, ax, arr, rods, rods_initial): # pragma: no cover
"""Plot rods and curve fit graphs
Args:
ax (matplotlib.pyplot.axis): image axis
arr (dcm.pixelarray): pixel array (image of phantom)
rods (_type_): _description_
rods_initial (_type_): _description_
Returns:
matplotlib.pyplot.axis: _description_
"""
ax.imshow(arr, cmap="gray")
for idx, rod in enumerate(rods):
# ax.plot(rods_initial[idx].x, rods_initial[idx].y, 'y.', markersize=2) # center-of-mass method
ax.plot(rod.x, rod.y, "r.", markersize=2) # gauss 2D
ax.scatter(
x=rod.x + 5,
y=rod.y - 5,
marker=f"${idx+1}$",
s=30,
linewidths=0.4,
c="w",
)
ax.set_title("Rod Centroids")
return ax
def get_rod_distances(self, rods):
"""
Calculates horizontal and vertical distances between adjacent rods in pixels
Parameters
----------
rods : array_like
rod positions in pixels
Returns
-------
horz_dist, vert_dist : array_like
horizontal and vertical distances between rods in pixels
"""
# TODO: move to be a function of the Rod class
horz_dist = [
np.sqrt(
np.square((rods[2].y - rods[0].y)) + np.square(rods[2].x - rods[0].x)
),
np.sqrt(
np.square((rods[5].y - rods[3].y)) + np.square(rods[5].x - rods[3].x)
),
np.sqrt(
np.square((rods[8].y - rods[6].y)) + np.square(rods[8].x - rods[6].x)
),
]
vert_dist = [
np.sqrt(
np.square((rods[0].y - rods[6].y)) + np.square(rods[0].x - rods[6].x)
),
np.sqrt(
np.square((rods[1].y - rods[7].y)) + np.square(rods[1].x - rods[7].x)
),
np.sqrt(
np.square((rods[2].y - rods[8].y)) + np.square(rods[2].x - rods[8].x)
),
]
return horz_dist, vert_dist
def get_rod_distortion_correction_coefficients(self, horizontal_distances) -> dict:
"""
Removes the effect of geometric distortion from the slice width measurement. Assumes that rod separation is
120 mm.
Args:
horizontal_distances (list): horizontal distances between rods, in pixels
Returns:
dict: dictionary containing top and bottom distortion coefficients, in mm
"""
# TODO: move to be a function of the Rod class
coefficients = {
"top": np.mean(horizontal_distances[1:3]) * self.pixel_size / 120,
"bottom": np.mean(horizontal_distances[0:2]) * self.pixel_size / 120,
}
coefficients = {
"top": np.mean(horizontal_distances[1:3]) * self.pixel_size / 120,
"bottom": np.mean(horizontal_distances[0:2]) * self.pixel_size / 120,
}
return coefficients
def get_rod_distortions(self, horz_dist, vert_dist):
"""
Args:
horz_dist (list): horizontal distances
vert_dist (list): vertical distances
Returns:
tuple of float: horizontal and vertical distortion values, in mm
"""
# TODO: move to be a function of the Rod class
# calculate the horizontal and vertical distances
horz_dist_mm = np.multiply(self.pixel_size, horz_dist)
vert_dist_mm = np.multiply(self.pixel_size, vert_dist)
horz_distortion = (
100 * np.std(horz_dist_mm, ddof=1) / np.mean(horz_dist_mm)
) # ddof to match MATLAB std
horz_distortion = (
100 * np.std(horz_dist_mm, ddof=1) / np.mean(horz_dist_mm)
) # ddof to match MATLAB std
vert_distortion = 100 * np.std(vert_dist_mm, ddof=1) / np.mean(vert_dist_mm)
return horz_distortion, vert_distortion
def baseline_correction(self, profile, sample_spacing):
"""Calculates quadratic fit of the baseline and subtracts from profile
Args:
profile (list)
sample_spacing (int)
Returns:
dict: of polynomial_coefficients, x_interpolated,
baseline/polynomial_fit, baseline, baseline_interpolated,
profile_interpolated, profile_corrected_interpolated
"""
profile_width = len(profile)
padding = 30
outer_profile = np.concatenate([profile[0:padding], profile[-padding:]])
# create the x axis for the outer profile
x_left = np.arange(padding)
x_right = np.arange(profile_width - padding, profile_width)
x_outer = np.concatenate([x_left, x_right])
# seconds order poly fit of the outer profile
polynomial_coefficients = np.polyfit(x_outer, outer_profile, 2)
polynomial_fit = np.poly1d(polynomial_coefficients)
# use the poly fit to generate a quadratic curve with 0.25 space (high res)
x_interp = np.arange(0, profile_width, sample_spacing)
x = np.arange(0, profile_width)
baseline_interp = polynomial_fit(x_interp)
baseline = polynomial_fit(x)
# Remove the baseline effects from the profiles
profile_corrected = profile - baseline
f = interp1d(x, profile_corrected, fill_value="extrapolate")
profile_corrected_interp = f(x_interp)
profile_interp = profile_corrected_interp + baseline_interp
return {
"f": polynomial_coefficients,
"x_interpolated": x_interp,
"baseline_fit": polynomial_fit,
"baseline": baseline,
"baseline_interpolated": baseline_interp,
"profile_interpolated": profile_interp,
"profile_corrected_interpolated": profile_corrected_interp,
}
return {
"f": polynomial_coefficients,
"x_interpolated": x_interp,
"baseline_fit": polynomial_fit,
"baseline": baseline,
"baseline_interpolated": baseline_interp,
"profile_interpolated": profile_interp,
"profile_corrected_interpolated": profile_corrected_interp,
}
def gauss_2d(self, xy_tuple, A, x_0, y_0, sigma_x, sigma_y, theta, C):
"""
Create 2D Gaussian
Based on code by Siân Culley, UCL/KCL
See also: https://en.wikipedia.org/wiki/Gaussian_function#Two-dimensional_Gaussian_function
Parameters
----------
xy_tuple : grid of x-y coordinates
A : amplitude of 2D Gaussian
x_0 / y_0 : centre of 2D Gaussian
sigma_x / sigma_y : widths of 2D Gaussian
theta : rotation of Gaussian
C : background/intercept of 2D Gaussian
Returns
-------
gauss : 1-D list of Gaussian intensities
"""
(x, y) = xy_tuple
x_0 = float(x_0)
y_0 = float(y_0)
cos_theta_2 = np.cos(theta) ** 2
sin_theta_2 = np.sin(theta) ** 2
cos_2_theta = np.cos(2 * theta)
sin_2_theta = np.sin(2 * theta)
sigma_x_2 = sigma_x**2
sigma_y_2 = sigma_y**2
sigma_x_2 = sigma_x**2
sigma_y_2 = sigma_y**2
a = cos_theta_2 / (2 * sigma_x_2) + sin_theta_2 / (2 * sigma_y_2)
b = -sin_2_theta / (4 * sigma_x_2) + sin_2_theta / (4 * sigma_y_2)
c = sin_theta_2 / (2 * sigma_x_2) + cos_theta_2 / (2 * sigma_y_2)
gauss = (
A
* np.exp(
-(
a * (x - x_0) ** 2
+ 2 * b * (x - x_0) * (y - y_0)
+ c * (y - y_0) ** 2
)
)
+ C
)
gauss = (
A
* np.exp(
-(
a * (x - x_0) ** 2
+ 2 * b * (x - x_0) * (y - y_0)
+ c * (y - y_0) ** 2
)
)
+ C
)
return gauss.ravel()
def fit_gauss_2d_to_rods(
self, cropped_data, gauss_amp, gauss_radius, box_radius, x_start, y_start
):
"""
Fit 2D Gaussian to Rods
- Important:
--- This uses a cropped region around a rod. If the cropped region is too large,
such that it includes signal with intensity similar to the rods, the fitting may fail.
--- This is a maximisation function, hence the rods should have higher signal than the surrounding region
Based on code by Siân Culley, UCL/KCL
Args:
cropped_data (np.array): 2D array of magnitude voxels (nb: should be inverted if rods hypointense)
gauss_amp (float/int): initial estimate of amplitude of 2D Gaussian
gauss_radius (int): initial estimate of centre of 2D Gaussian
box_radius (int): 'radius' of box around rod
x_start / y_start (int, int): coordinates of bounding box in original non-cropped data
Returns:
tuple of 4 values corresponding to:
x0_im / y0_im : rod centroid coordinates in dimensions of original image
x0 / y0 : rod centroid coordinates in dimensions of cropped image
"""
# get (x,y) coordinates for fitting
indices = np.indices(cropped_data.shape)
# estimate initial conditions for 2d gaussian fit
dims_crop = cropped_data.shape
h_crop = dims_crop[0]
w_crop = dims_crop[1]
A = gauss_amp # np.max() # amp of Gaussian
sigma = gauss_radius / 2 # radius of 2D Gaussian
C = np.mean(
[
cropped_data[0, 0],
cropped_data[h_crop - 1, 0],
cropped_data[0, w_crop - 1],
cropped_data[h_crop - 1, w_crop - 1],
]
) # background – np.min(outside of rod within cropped_data)
C = np.mean(
[
cropped_data[0, 0],
cropped_data[h_crop - 1, 0],
cropped_data[0, w_crop - 1],
cropped_data[h_crop - 1, w_crop - 1],
]
) # background – np.min(outside of rod within cropped_data)
# print("A:", A)
# print("box_radius:", box_radius)
# print("sigma:", sigma)
# print("C:", C, "\n")
p0 = [A, box_radius, box_radius, sigma, sigma, 0, C]
# print(f'initial conditions for 2d gaussian fitting: {p0}\n')
# do 2d gaussian fit to data
popt_single, pcov_single = opt.curve_fit(
self.gauss_2d, indices, cropped_data.ravel(), p0=p0
)
A = popt_single[0]
x0 = popt_single[1]
y0 = popt_single[2]
sigma_x = popt_single[3]
sigma_y = popt_single[4]
theta = popt_single[5]
C = popt_single[6]
# print(f'results of 2d gaussian fitting: \n\tamplitude = {A_} \n\tx0 = {x0} \n\ty0 = {y0} \n\tsigma_x = {sigma_x} \n\tsigma_y = {sigma_y} \n\ttheta = {theta} \n\tC = {C} \n')
# to get image coordinates need to add back on x_start and y_start
x0_im = x0 + x_start
y0_im = y0 + y_start
# print(f'Initial centre was ({rods[idx].x}, {rods[idx].y}). Refined centre is ({x0_im}, {y0_im})\n')
return x0_im, y0_im, x0, y0
def trapezoid(
self, n_ramp, n_plateau, n_left_baseline, n_right_baseline, plateau_amplitude
):
"""
Args:
n_ramp
n_plateau
n_left_baseline
n_right_baseline
plateau_amplitude
Returns:
tuple: trapezoid and fwmh
"""
if n_left_baseline < 1:
left_baseline = []
else:
left_baseline = np.zeros(n_left_baseline)
if n_ramp < 1:
left_ramp = []
right_ramp = []
else:
left_ramp = np.linspace(0, plateau_amplitude, n_ramp)
right_ramp = np.linspace(plateau_amplitude, 0, n_ramp)
if n_plateau < 1:
plateau = []
else:
plateau = plateau_amplitude * np.ones(n_plateau)
if n_right_baseline < 1:
right_baseline = []
else:
right_baseline = np.zeros(n_right_baseline)
trap = np.concatenate(
[left_baseline, left_ramp, plateau, right_ramp, right_baseline]
)
trap = np.concatenate(
[left_baseline, left_ramp, plateau, right_ramp, right_baseline]
)
fwhm = n_plateau + n_ramp
return trap, fwhm
def get_ramp_profiles(self, image_array, rods) -> dict:
"""Find the central y-axis point for the top and bottom profiles
done by finding the distance between the mid-distances of the central rods
Args:
image_array (dcm.pixelarray): pixel array from a DICOM image
rods (list of Rods): list of rods with x,y coordinates
Returns:
dict: top and bottom ramp profiles
"""
top_profile_vertical_centre = np.round(
((rods[3].y - rods[6].y) / 2) + rods[6].y
).astype(int)
bottom_profile_vertical_centre = np.round(
((rods[0].y - rods[3].y) / 2) + rods[3].y
).astype(int)
top_profile_vertical_centre = np.round(
((rods[3].y - rods[6].y) / 2) + rods[6].y
).astype(int)
bottom_profile_vertical_centre = np.round(
((rods[0].y - rods[3].y) / 2) + rods[3].y
).astype(int)
# Selected 20mm around the mid-distances and take the average to find the line profiles
top_profile = image_array[
(top_profile_vertical_centre - round(10 / self.pixel_size)) : (
top_profile_vertical_centre + round(10 / self.pixel_size)
),
int(rods[3].x) : int(rods[5].x),
]
bottom_profile = image_array[
(bottom_profile_vertical_centre - round(10 / self.pixel_size)) : (
bottom_profile_vertical_centre + round(10 / self.pixel_size)
),
int(rods[3].x) : int(rods[5].x),
]
return {
"top": top_profile,
"bottom": bottom_profile,
"top-centre": top_profile_vertical_centre,
"bottom-centre": bottom_profile_vertical_centre,
}
def get_initial_trapezoid_fit_and_coefficients(self, profile, slice_thickness):
"""
Args:
profile
slice_thickness (int)
Returns:
tuple: of trapezoid_fit_initial and trapezoid_fit_coefficients
"""
n_plateau, n_ramp = None, None
if slice_thickness == 3:
# not sure where these magic numbers are from, I subtracted 1 from MATLAB numbers
n_ramp = 7
n_plateau = 32
elif slice_thickness == 5:
# not sure where these magic numbers are from, I subtracted 1 from MATLAB numbers
n_ramp = 47
n_plateau = 55
trapezoid_centre = int(
round(np.median(np.argwhere(profile < np.mean(profile))))
)
n_total = len(profile)
n_left_baseline = int(trapezoid_centre - round(n_plateau / 2) - n_ramp - 1)
n_right_baseline = n_total - n_left_baseline - 2 * n_ramp - n_plateau
plateau_amplitude = np.percentile(profile, 5) - np.percentile(profile, 95)
trapezoid_fit_coefficients = [
n_ramp,
n_plateau,
n_left_baseline,
n_right_baseline,
plateau_amplitude,
]
trapezoid_fit_initial, _ = self.trapezoid(
n_ramp, n_plateau, n_left_baseline, n_right_baseline, plateau_amplitude
)
return trapezoid_fit_initial, trapezoid_fit_coefficients
def fit_trapezoid(self, profiles, slice_thickness):
"""
Args:
profile
slice_thickness (int)
Returns:
tuple: of trapezoid_fit_initial and trapezoid_fit_coefficients
"""
(
trapezoid_fit,
trapezoid_fit_coefficients,
) = self.get_initial_trapezoid_fit_and_coefficients(
profiles["profile_corrected_interpolated"], slice_thickness
)
x_interp = profiles["x_interpolated"]
profile_interp = profiles["profile_interpolated"]
baseline_interpolated = profiles["baseline_fit"](x_interp)
baseline_fit_coefficients = profiles["baseline_fit"]
baseline_fit_coefficients = [
baseline_fit_coefficients.c[0],
baseline_fit_coefficients.c[1],
baseline_fit_coefficients.c[2],
]
# sum squared differences
current_error = sum(
(
profiles["profile_corrected_interpolated"]
- (baseline_interpolated + trapezoid_fit)
)
** 2
)
def get_error(base, trap):
"""Check if fit is improving"""
trapezoid_fit_temp, _ = self.trapezoid(*trap)
baseline_fit_temp = np.poly1d(base)(x_interp)
sum_squared_difference = sum(
(profile_interp - (baseline_fit_temp + trapezoid_fit_temp)) ** 2
)
return sum_squared_difference
cont = 1
j = 0
# Go through a series of changes to reduce error,
# if error doesn't reduced in one entire loop then exit
while cont == 1:
j += 1
cont = 0
for i in range(14):
baseline_fit_coefficients_temp = copy(baseline_fit_coefficients)
trapezoid_fit_coefficients_temp = copy(trapezoid_fit_coefficients)
if i == 0:
baseline_fit_coefficients_temp[0] = (
baseline_fit_coefficients_temp[0] - 0.0001
)
elif i == 1:
baseline_fit_coefficients_temp[0] = (
baseline_fit_coefficients_temp[0] + 0.0001
)
elif i == 2:
baseline_fit_coefficients_temp[1] = (
baseline_fit_coefficients_temp[1] - 0.001
)
elif i == 3:
baseline_fit_coefficients_temp[1] = (
baseline_fit_coefficients_temp[1] + 0.001
)
elif i == 4:
baseline_fit_coefficients_temp[2] = (
baseline_fit_coefficients_temp[2] - 0.1
)
elif i == 5:
baseline_fit_coefficients_temp[2] = (
baseline_fit_coefficients_temp[2] + 0.1
)
elif i == 6: # Decrease the ramp width
trapezoid_fit_coefficients_temp[0] = (
trapezoid_fit_coefficients_temp[0] - 1
)
trapezoid_fit_coefficients_temp[2] = (
trapezoid_fit_coefficients_temp[2] + 1
)
trapezoid_fit_coefficients_temp[3] = (
trapezoid_fit_coefficients_temp[3] + 1
)
elif i == 7: # Increase the ramp width
trapezoid_fit_coefficients_temp[0] = (
trapezoid_fit_coefficients_temp[0] + 1
)
trapezoid_fit_coefficients_temp[2] = (
trapezoid_fit_coefficients_temp[2] - 1
)
trapezoid_fit_coefficients_temp[3] = (
trapezoid_fit_coefficients_temp[3] - 1
)
elif i == 8: # Decrease plateau width
trapezoid_fit_coefficients_temp[1] = (
trapezoid_fit_coefficients_temp[1] - 2
)
trapezoid_fit_coefficients_temp[2] = (
trapezoid_fit_coefficients_temp[2] + 1
)
trapezoid_fit_coefficients_temp[3] = (
trapezoid_fit_coefficients_temp[3] + 1
)
elif i == 9: # Increase plateau width
trapezoid_fit_coefficients_temp[1] = (
trapezoid_fit_coefficients_temp[1] + 2
)
trapezoid_fit_coefficients_temp[2] = (
trapezoid_fit_coefficients_temp[2] - 1
)
trapezoid_fit_coefficients_temp[3] = (
trapezoid_fit_coefficients_temp[3] - 1
)
elif i == 10: # Shift centre to the left
trapezoid_fit_coefficients_temp[2] = (
trapezoid_fit_coefficients_temp[2] - 1
)
trapezoid_fit_coefficients_temp[3] = (
trapezoid_fit_coefficients_temp[3] + 1
)
elif i == 11: # Shift centre to the right
trapezoid_fit_coefficients_temp[2] = (
trapezoid_fit_coefficients_temp[2] + 1
)
trapezoid_fit_coefficients_temp[3] = (
trapezoid_fit_coefficients_temp[3] - 1
)
elif i == 12: # Reduce amplitude
trapezoid_fit_coefficients_temp[4] = (
trapezoid_fit_coefficients_temp[4] - 0.1
)
elif i == 13: # Increase amplitude
trapezoid_fit_coefficients_temp[4] = (
trapezoid_fit_coefficients_temp[4] + 0.1
)
new_error = get_error(
base=baseline_fit_coefficients_temp,
trap=trapezoid_fit_coefficients_temp,
)
if new_error < current_error:
cont = 1
if i > 6:
trapezoid_fit_coefficients = trapezoid_fit_coefficients_temp
else:
baseline_fit_coefficients = baseline_fit_coefficients_temp
current_error = new_error
return trapezoid_fit_coefficients, baseline_fit_coefficients
def get_slice_width(self, dcm):
"""Calculates slice width using double wedge image
Args:
dcm (pydicom.FileDataset): DICOM image object
Returns:
dict: including
- slice_width_mm (float):
calculated slice width (top, bottom, combined; various methods) in mm
- horizontal_linearity_mm, vertical_linearity_mm (float):
calculated average rod distance in mm
- horz_distortion_mm, vert_distortion_mm (float)
calculated rod distance distortion in mm
"""
slice_width_mm = {"top": {}, "bottom": {}, "combined": {}}
arr = dcm.pixel_array
sample_spacing = 0.25
rods, rods_initial = self.get_rods(arr)
horz_distances, vert_distances = self.get_rod_distances(rods)
horz_distortion_mm, vert_distortion_mm = self.get_rod_distortions(
horz_distances, vert_distances
)
correction_coefficients_mm = self.get_rod_distortion_correction_coefficients(
horizontal_distances=horz_distances
)
ramp_profiles = self.get_ramp_profiles(arr, rods)
ramp_profiles_baseline_corrected = {
"top": self.baseline_correction(
np.mean(ramp_profiles["top"], axis=0), sample_spacing
),
"bottom": self.baseline_correction(
np.mean(ramp_profiles["bottom"], axis=0), sample_spacing
),
}
trapezoid_coefficients, baseline_coefficients = self.fit_trapezoid(
ramp_profiles_baseline_corrected["top"], dcm.SliceThickness
)
top_trap, fwhm = self.trapezoid(*trapezoid_coefficients)
slice_width_mm["top"]["default"] = (
fwhm * sample_spacing * self.pixel_size * np.tan((11.3 * pi) / 180)
)
# Factor of 4 because interpolated by factor of four
slice_width_mm["top"]["geometry_corrected"] = (
slice_width_mm["top"]["default"] / correction_coefficients_mm["top"]
)
# AAPM method directly incorporating phantom tilt
slice_width_mm["top"]["aapm"] = fwhm * sample_spacing * self.pixel_size
# AAPM method directly incorporating phantom tilt and independent of geometric linearity
slice_width_mm["top"]["aapm_corrected"] = (
fwhm * sample_spacing * self.pixel_size
) / correction_coefficients_mm["top"]
trapezoid_coefficients, baseline_coefficients = self.fit_trapezoid(
ramp_profiles_baseline_corrected["bottom"], dcm.SliceThickness
)
bottom_trap, fwhm = self.trapezoid(*trapezoid_coefficients)
slice_width_mm["bottom"]["default"] = (
fwhm * sample_spacing * self.pixel_size * np.tan((11.3 * pi) / 180)
)
# Factor of 4 because interpolated by factor of four
slice_width_mm["bottom"]["geometry_corrected"] = (
slice_width_mm["bottom"]["default"] / correction_coefficients_mm["bottom"]
)
# AAPM method directly incorporating phantom tilt
slice_width_mm["bottom"]["aapm"] = fwhm * sample_spacing * self.pixel_size
# AAPM method directly incorporating phantom tilt and independent of geometric linearity
slice_width_mm["bottom"]["aapm_corrected"] = (
fwhm * sample_spacing * self.pixel_size
) / correction_coefficients_mm["bottom"]
# Geometric mean of slice widths (pg 34 of IPEM Report 80)
slice_width_mm["combined"]["default"] = (
slice_width_mm["top"]["default"] * slice_width_mm["bottom"]["default"]
) ** 0.5
slice_width_mm["combined"]["geometry_corrected"] = (
slice_width_mm["top"]["geometry_corrected"]
* slice_width_mm["bottom"]["geometry_corrected"]
) ** 0.5
# AAPM method directly incorporating phantom tilt
theta = (180.0 - 2.0 * 11.3) * pi / 180.0
term1 = (np.cos(theta)) ** 2.0 * (
slice_width_mm["bottom"]["aapm"] - slice_width_mm["top"]["aapm"]
) ** 2.0 + (
4.0 * slice_width_mm["bottom"]["aapm"] * slice_width_mm["top"]["aapm"]
)
term2 = (
slice_width_mm["bottom"]["aapm"] + slice_width_mm["top"]["aapm"]
) * np.cos(theta)
term3 = 2.0 * np.sin(theta)
slice_width_mm["combined"]["aapm_tilt"] = (term1**0.5 + term2) / term3
phantom_tilt = (
np.arctan(
slice_width_mm["combined"]["aapm_tilt"]
/ slice_width_mm["bottom"]["aapm"]
)
+ (theta / 2.0)
- pi / 2.0
)
phantom_tilt_deg = phantom_tilt * (180.0 / pi)
phantom_tilt_check = (
-np.arctan(
slice_width_mm["combined"]["aapm_tilt"] / slice_width_mm["top"]["aapm"]
)
- (theta / 2.0)
+ pi / 2.0
)
phantom_tilt_check_deg = phantom_tilt_check * (180.0 / pi)
# AAPM method directly incorporating phantom tilt and independent of geometric linearity
theta = (180.0 - 2.0 * 11.3) * pi / 180.0
term1 = (np.cos(theta)) ** 2.0 * (
slice_width_mm["bottom"]["aapm_corrected"]
- slice_width_mm["top"]["aapm_corrected"]
) ** 2.0 + (
4.0
* slice_width_mm["bottom"]["aapm_corrected"]
* slice_width_mm["top"]["aapm_corrected"]
)
term2 = (
slice_width_mm["bottom"]["aapm_corrected"]
+ slice_width_mm["top"]["aapm_corrected"]
) * np.cos(theta)
term3 = 2.0 * np.sin(theta)
slice_width_mm["combined"]["aapm_tilt_corrected"] = (
term1**0.5 + term2
) / term3
phantom_tilt = (
np.arctan(
slice_width_mm["combined"]["aapm_tilt_corrected"]
/ slice_width_mm["bottom"]["aapm_corrected"]
)
+ (theta / 2.0)
- pi / 2.0
)
phantom_tilt_deg = phantom_tilt * (180.0 / pi)
phantom_tilt_check = (
-np.arctan(
slice_width_mm["combined"]["aapm_tilt_corrected"]