-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathacr_spatial_resolution.py
541 lines (431 loc) · 18.1 KB
/
acr_spatial_resolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
"""
ACR Spatial Resolution (MTF)
https://www.acraccreditation.org/-/media/acraccreditation/documents/mri/largephantomguidance.pdf
Calculates the effective resolution (MTF50) for slice 1 for the ACR phantom. This is done in accordance with the
methodology described in Section 3 of the following paper:
https://opg.optica.org/oe/fulltext.cfm?uri=oe-22-5-6040&id=281325
WARNING: The phantom must be slanted for valid results to be produced. This test is not within the scope of ACR
guidance.
This script first identifies the rotation angle of the ACR phantom using slice 1. It provides a warning if the
slanted angle is less than 3 degrees.
The location of the ramps within the slice thickness are identified and a square ROI is selected around the anterior
edge of the slice thickness insert.
A rudimentary edge response function is generated based on the edge within the ROI to provide initialisation values for
the 2D normal cumulative distribution fit of the ROI.
The edge is then super-sampled in the direction of the bright-dark transition of the edge and binned at right angles
based on the edge slope determined from the 2D Normal CDF fit of the ROI to obtain the edge response function.
This super-sampled ERF is then fitted using a weighted sigmoid function. The raw data and this fit are then used to
determine the LSF and the subsequent MTF. The MTF50 for both raw and fitted data are reported.
The results are also visualised.
Created by Yassine Azma
22/02/2023
"""
import os
import sys
import traceback
import numpy as np
import cv2
import scipy
import skimage.morphology
import skimage.measure
from hazenlib.HazenTask import HazenTask
from hazenlib.ACRObject import ACRObject
from hazenlib.logger import logger
class ACRSpatialResolution(HazenTask):
"""Spatial resolution measurement class for DICOM images of the ACR phantom
Inherits from HazenTask class
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.ACR_obj = ACRObject(self.dcm_list)
def run(self) -> dict:
"""Main function for performing spatial resolution measurement
using slice 1 from the ACR phantom image set
Returns:
dict: results are returned in a standardised dictionary structure specifying the task name, input DICOM Series Description + SeriesNumber + InstanceNumber, task measurement key-value pairs, optionally path to the generated images for visualisation
"""
# Identify relevant slices
mtf_dcm = self.ACR_obj.slice_stack[0]
rot_ang = self.ACR_obj.determine_rotation(mtf_dcm.pixel_array)
if np.abs(rot_ang) < 3:
logger.warning(
f"The estimated rotation angle of the ACR phantom is {np.round(rot_ang, 3)} degrees, which "
f"is less than the recommended 3 degrees. Results will be unreliable!"
)
# Initialise results dictionary
results = self.init_result_dict()
results["file"] = self.img_desc(mtf_dcm)
try:
raw_res, fitted_res = self.get_mtf50(mtf_dcm)
results["measurement"] = {
"estimated rotation angle": round(rot_ang, 2),
"raw mtf50": round(raw_res, 2),
"fitted mtf50": round(fitted_res, 2),
}
except Exception as e:
print(
f"Could not calculate the spatial resolution for {self.img_desc(mtf_dcm)} because of : {e}"
)
traceback.print_exc(file=sys.stdout)
# only return reports if requested
if self.report:
results["report_image"] = self.report_files
return results
def y_position_for_ramp(self, img, cxy):
"""Identify the y coordinate of the ramp
Args:
img (np.ndarray): dcm.pixelarray
cxy (tuple): x,y coordinates of the object centre
Returns:
float: y coordinate of the ramp min
"""
investigate_region = int(np.ceil(5.5 / self.ACR_obj.dy).item())
if np.mod(investigate_region, 2) == 0:
investigate_region = investigate_region + 1
line_profile_y = skimage.measure.profile_line(
img,
(cxy[1] - 2 * investigate_region, cxy[0]),
(cxy[1] + 2 * investigate_region, cxy[1]),
mode="constant",
).flatten()
abs_diff_y_profile = np.absolute(np.diff(line_profile_y))
y_peaks = scipy.signal.find_peaks(abs_diff_y_profile, height=1)
pk_heights = y_peaks[1]["peak_heights"]
pk_ind = y_peaks[0]
highest_y_peaks = pk_ind[(-pk_heights).argsort()[:2]]
y_locs = highest_y_peaks - 1
height_pts = cxy[1] - 2 * investigate_region - 1 + y_locs
y = np.min(height_pts) + 2
return y
def crop_image(self, img, x, y, width):
"""Return a rectangular subset of a pixel array
Args:
img (np.ndarray): dcm.pixelarray
x (int): x coordinate of centre
y (int): y coordinate of centre
width (int): size of the array top subset
Returns:
np.ndarray: subset of a pixel array with given width
"""
crop_x, crop_y = (x - width // 2, x + width // 2), (
y - width // 2,
y + width // 2,
)
crop_img = img[crop_y[0] : crop_y[1], crop_x[0] : crop_x[1]]
return crop_img
def get_edge_type(self, crop_img):
"""Determine direction of ramp edge
Args:
crop_img (np.ndarray): cropped pixel array ~ subset of the image
Returns:
tuple of string: vertical/horizontal and up/down or left/rigtward
"""
edge_sum_rows = np.sum(crop_img, axis=1).astype(np.int_)
edge_sum_cols = np.sum(crop_img, axis=0).astype(np.int_)
_, pk_rows_height = self.ACR_obj.find_n_highest_peaks(
np.abs(np.diff(edge_sum_rows)), 1
)
_, pk_cols_height = self.ACR_obj.find_n_highest_peaks(
np.abs(np.diff(edge_sum_cols)), 1
)
edge_type = "vertical" if pk_rows_height > pk_cols_height else "horizontal"
thresh_roi_crop = crop_img > 0.6 * np.max(crop_img)
edge_dir = (
np.sum(thresh_roi_crop, axis=0)
if edge_type == "vertical"
else np.sum(thresh_roi_crop, axis=1)
)
if edge_type == "vertical":
direction = "downward" if edge_dir[-1] > edge_dir[0] else "upward"
else:
direction = "leftward" if edge_dir[-1] > edge_dir[0] else "rightward"
return edge_type, direction
def edge_location_for_plot(self, crop_img, edge_type):
"""Determine the location of the edge so it can be visualised
Args:
crop_img (np.array): cropped pixel array ~ subset of the image
edge_type (tuple): vertical/horizontal and up/down or left/rigtward
Returns:
np.array: mask array for edge location
"""
thresh_roi_crop = crop_img > 0.6 * np.max(crop_img)
naive_lsf = (
np.abs(np.diff(np.sum(thresh_roi_crop, 1))) > 1
if edge_type == "vertical"
else np.abs(np.diff(np.sum(thresh_roi_crop, 0)))
)
edge_test = np.diff(np.where(naive_lsf == 0))[0]
edge_begin = np.where(edge_test > 1)
edge_loc = np.array(
[edge_begin, edge_begin + edge_test[edge_begin] - 1]
).flatten()
return edge_loc
def fit_normcdf_surface(self, crop_img, edge_type, direction):
"""Fit normalised CDF? to surface
Args:
crop_img (np.array): cropped pixel array ~ subset of the image
edge_type (string): vertical/horizontal
direction (string): up/down or left/rigtward
Returns:
tuple of floats: slope, surface
"""
thresh_roi_crop = crop_img > 0.6 * np.max(crop_img)
temp_x = np.linspace(1, thresh_roi_crop.shape[1], thresh_roi_crop.shape[1])
temp_y = np.linspace(1, thresh_roi_crop.shape[0], thresh_roi_crop.shape[0])
x, y = np.meshgrid(temp_x, temp_y)
bright = max(crop_img[thresh_roi_crop])
dark = 20 + np.min(crop_img[~thresh_roi_crop])
def func(x, slope, mu, bright, dark):
"""Maths function
Args:
x (_type_): _description_
slope (_type_): _description_
mu (_type_): _description_
bright (_type_): _description_
dark (_type_): _description_
Returns:
_type_: _description_
"""
norm_cdf = (bright - dark) * scipy.stats.norm.cdf(
x[0], mu + slope * x[1], 0.5
) + dark
return norm_cdf
sign = 1 if direction in ("downward", "leftward") else -1
x_data = (
np.vstack((sign * x.ravel(), y.ravel()))
if edge_type == "vertical"
else np.vstack((sign * y.ravel(), x.ravel()))
)
popt, pcov = scipy.optimize.curve_fit(
func, x_data, crop_img.ravel(), p0=[0, 0, bright, dark], maxfev=1000
)
surface = func(x_data, popt[0], popt[1], popt[2], popt[3]).reshape(
crop_img.shape
)
slope = 1 / popt[0] if direction in ("leftward", "upward") else -1 / popt[0]
return slope, surface
def sample_erf(self, crop_img, slope, edge_type):
"""_summary_
Args:
crop_img (np.array): cropped pixel array ~ subset of the image
slope (float): value of slope of edge
edge_type (string): vertical/horizontal
Returns:
np.array: _description_
"""
resamp_factor = 8
if edge_type == "horizontal":
resample_crop_img = cv2.resize(
crop_img, (crop_img.shape[0] * resamp_factor, crop_img.shape[1])
)
else:
resample_crop_img = cv2.resize(
crop_img, (crop_img.shape[0], crop_img.shape[1] * resamp_factor)
)
mid_loc = [i / 2 for i in resample_crop_img.shape]
temp_x = np.linspace(1, resample_crop_img.shape[1], resample_crop_img.shape[1])
temp_y = np.linspace(1, resample_crop_img.shape[0], resample_crop_img.shape[0])
x_resample, y_resample = np.meshgrid(temp_x, temp_y)
erf = []
n_inside_roi = []
if edge_type == "horizontal":
diffY = (y_resample - 1) - mid_loc[0]
x_prime = x_resample + resamp_factor * diffY * slope
x_min, x_max = np.min(x_prime).astype(int), np.max(x_prime).astype(int)
for k in range(x_min, x_max):
erf_val = np.mean(resample_crop_img[(x_prime >= k) & (x_prime < k + 1)])
erf.append(erf_val)
number_nonzero = np.count_nonzero(
resample_crop_img[(x_prime >= k) & (x_prime < k + 1)]
)
n_inside_roi.append(number_nonzero)
else:
diffX = (x_resample.shape[0] - 1) - x_resample - mid_loc[1]
y_prime = np.flipud(y_resample) + resamp_factor * diffX * slope
y_min, y_max = np.min(y_prime).astype(int), np.max(y_prime).astype(int)
for k in range(y_min, y_max):
erf_val = np.mean(resample_crop_img[(y_prime >= k) & (y_prime < k + 1)])
erf.append(erf_val)
number_nonzero = np.count_nonzero(
resample_crop_img[(y_prime >= k) & (y_prime < k + 1)]
)
n_inside_roi.append(number_nonzero)
erf = np.array(erf)
n_inside_roi = np.array(n_inside_roi)
erf = erf[n_inside_roi == np.max(n_inside_roi)]
return erf
def fit_erf(self, erf):
"""Fit ERF
Args:
erf (np.array): _description_
Returns:
_type_: _description_
"""
true_erf = np.diff(erf) > 0.2 * np.max(np.diff(erf))
turning_points = np.where(true_erf)[0][0], np.where(true_erf)[0][-1]
weights = 0.5 * np.ones((len(true_erf) + 1))
weights[turning_points[0] : turning_points[1]] = 1
def func(x, a, b, c, d, e):
"""Maths function for sigmoid curve equation
Args:
x (_type_): _description_
a (_type_): _description_
b (_type_): _description_
c (_type_): _description_
d (_type_): _description_
e (_type_): _description_
Returns:
_type_: _description_
"""
sigmoid = a + b / (1 + np.exp(c * (x - d))) ** e
return sigmoid
popt, pcov = scipy.optimize.curve_fit(
func,
np.arange(1, len(erf) + 1),
erf,
sigma=(1 / weights),
p0=[np.min(erf), np.max(erf), 0, sum(turning_points) / 2, 1],
maxfev=5000,
)
erf_fit = func(
np.arange(1, len(erf) + 1), popt[0], popt[1], popt[2], popt[3], popt[4]
)
return erf_fit
def calculate_MTF(self, erf):
"""Calculate MTF
Args:
erf (np.array): array of ?
Returns:
tuple: freq, lsf, MTF
"""
lsf = np.diff(erf)
N = len(lsf)
n = (
np.arange(-N / 2, N / 2)
if N % 2 == 0
else np.arange(-(N - 1) / 2, (N + 1) / 2)
)
resamp_factor = 8
Fs = 1 / (
np.sqrt(np.mean(np.square((self.ACR_obj.dx, self.ACR_obj.dy))))
* (1 / resamp_factor)
)
freq = n * Fs / N
MTF = np.abs(np.fft.fftshift(np.fft.fft(lsf)))
MTF = MTF / np.max(MTF)
zero_freq = np.where(freq == 0)[0][0]
freq = freq[zero_freq:]
MTF = MTF[zero_freq:]
return freq, lsf, MTF
def identify_MTF50(self, freq, MTF):
"""Calculate effective resolution
Args:
freq (float or int): _description_
MTF (float or int): _description_
Returns:
float: _description_
"""
freq_interp = np.arange(0, 1.005, 0.005)
MTF_interp = np.interp(
freq_interp, freq, MTF, left=None, right=None, period=None
)
equivalent_linepairs = freq_interp[np.argmin(np.abs(MTF_interp - 0.5))]
eff_res = 1 / (equivalent_linepairs * 2)
return eff_res
def get_mtf50(self, dcm):
"""_summary_
Args:
dcm (pydicom.Dataset): DICOM image object
Returns:
tuple: _description_
"""
img = dcm.pixel_array
cxy, _ = self.ACR_obj.find_phantom_center(img, self.ACR_obj.dx, self.ACR_obj.dy)
ramp_x = int(cxy[0])
ramp_y = self.y_position_for_ramp(img, cxy)
width = int(13 * img.shape[0] / 256)
crop_img = self.crop_image(img, ramp_x, ramp_y, width)
edge_type, direction = self.get_edge_type(crop_img)
slope, surface = self.fit_normcdf_surface(crop_img, edge_type, direction)
erf = self.sample_erf(crop_img, slope, edge_type)
erf_fit = self.fit_erf(erf)
freq, lsf_raw, MTF_raw = self.calculate_MTF(erf)
_, lsf_fit, MTF_fit = self.calculate_MTF(erf_fit)
eff_raw_res = self.identify_MTF50(freq, MTF_raw)
eff_fit_res = self.identify_MTF50(freq, MTF_fit)
if self.report:
edge_loc = self.edge_location_for_plot(crop_img, edge_type)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
fig, axes = plt.subplots(5, 1)
fig.set_size_inches(8, 40)
fig.tight_layout(pad=4)
axes[0].imshow(img, interpolation="none")
rect = patches.Rectangle(
(ramp_x - width // 2 - 1, ramp_y - width // 2 - 1),
width,
width,
linewidth=1,
edgecolor="w",
facecolor="none",
)
axes[0].add_patch(rect)
axes[0].axis("off")
axes[0].set_title("Segmented Edge")
axes[1].imshow(crop_img)
if edge_type == "vertical":
axes[1].plot(
np.arange(0, width - 1),
np.mean(edge_loc) - slope * np.arange(0, width - 1),
color="r",
)
else:
axes[1].plot(
np.mean(edge_loc) + slope * np.arange(0, width - 1),
np.arange(0, width - 1),
color="r",
)
axes[1].axis("off")
axes[1].set_title("Cropped Edge", fontsize=14)
axes[2].plot(erf, "rx", ms=5, label="Raw Data")
axes[2].plot(erf_fit, "k", lw=3, label="Fitted Data")
axes[2].set_ylabel("Signal Intensity")
axes[2].set_xlabel("Pixel")
axes[2].grid()
axes[2].legend(fancybox="true")
axes[2].set_title("ERF", fontsize=14)
axes[3].plot(lsf_raw, "rx", ms=5, label="Raw Data")
axes[3].plot(lsf_fit, "k", lw=3, label="Fitted Data")
axes[3].set_ylabel(r"$\Delta$" + " Signal Intensity")
axes[3].set_xlabel("Pixel")
axes[3].grid()
axes[3].legend(fancybox="true")
axes[3].set_title("LSF", fontsize=14)
axes[4].plot(
freq,
MTF_raw,
"rx",
ms=8,
label=f"Raw Data - {round(eff_raw_res, 2)}mm @ 50%",
)
axes[4].plot(
freq,
MTF_fit,
"k",
lw=3,
label=f"Weighted Sigmoid Fit of ERF - {round(eff_fit_res, 2)}mm @ 50%",
)
axes[4].set_xlabel("Spatial Frequency (lp/mm)")
axes[4].set_ylabel("Modulation Transfer Ratio")
axes[4].set_xlim([-0.05, 1])
axes[4].set_ylim([0, 1.05])
axes[4].grid()
axes[4].legend(fancybox="true")
axes[4].set_title("MTF", fontsize=14)
img_path = os.path.realpath(
os.path.join(self.report_path, f"{self.img_desc(dcm)}.png")
)
fig.savefig(img_path)
self.report_files.append(img_path)
return eff_raw_res, eff_fit_res