forked from alexhernandezgarcia/ActiveLearningPipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgflownet.py
1368 lines (1292 loc) · 51.3 KB
/
gflownet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
GFlowNet
TODO:
- Seeds
"""
import copy
import time
from argparse import ArgumentParser
from collections import defaultdict
from itertools import count
from pathlib import Path
from comet_ml import Experiment
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import yaml
from torch.distributions.categorical import Categorical
from tqdm import tqdm
from aptamers import AptamerSeq
from oracle import numbers2letters
from utils import get_config, namespace2dict, numpy2python
# Float and Long tensors
_dev = [torch.device("cpu")]
tf = lambda x: torch.FloatTensor(x).to(_dev[0])
tl = lambda x: torch.LongTensor(x).to(_dev[0])
def add_args(parser):
"""
Adds command-line arguments to parser
Returns:
argparse.Namespace: the parsed arguments
"""
args2config = {}
# YAML config
parser.add_argument(
"-y",
"--yaml_config",
default=None,
type=str,
help="YAML configuration file",
)
args2config.update({"yaml_config": ["yaml_config"]})
# General
parser.add_argument("--workdir", default=None, type=str)
args2config.update({"workdir": ["workdir"]})
parser.add_argument("--overwrite_workdir", action="store_true", default=False)
args2config.update({"overwrite_workdir": ["overwrite_workdir"]})
parser.add_argument("--device", default="cpu", type=str)
args2config.update({"device": ["gflownet", "device"]})
parser.add_argument("--progress", action="store_true")
args2config.update({"progress": ["gflownet", "progress"]})
parser.add_argument("--debug", action="store_true")
args2config.update({"debug": ["debug"]})
parser.add_argument("--model_ckpt", default=None, type=str)
args2config.update({"model_ckpt": ["gflownet", "model_ckpt"]})
parser.add_argument("--reload_ckpt", action="store_true")
args2config.update({"reload_ckpt": ["gflownet", "reload_ckpt"]})
parser.add_argument("--ckpt_period", default=None, type=int)
args2config.update({"ckpt_period": ["gflownet", "ckpt_period"]})
parser.add_argument(
"--rng_seed",
type=int,
default=0,
help="Seed for random number generator",
)
args2config.update({"rng_seed": ["seeds", "gflownet"]})
# Training hyperparameters
parser.add_argument(
"--loss", default="flowmatch", type=str, help="flowmatch | trajectorybalance/tb"
)
args2config.update({"loss": ["gflownet", "loss"]})
parser.add_argument(
"--lr_z_mult",
default=10,
type=int,
help="Multiplicative factor of the Z learning rate",
)
args2config.update({"lr_z_mult": ["gflownet", "lr_z_mult"]})
parser.add_argument(
"--early_stopping",
default=0.01,
help="Threshold loss for early stopping",
type=float,
)
args2config.update({"early_stopping": ["gflownet", "early_stopping"]})
parser.add_argument(
"--ema_alpha",
default=0.5,
help="alpha coefficient for exponential moving average",
type=float,
)
args2config.update({"ema_alpha": ["gflownet", "ema_alpha"]})
parser.add_argument(
"--learning_rate", default=1e-4, help="Learning rate", type=float
)
args2config.update({"learning_rate": ["gflownet", "learning_rate"]})
parser.add_argument("--opt", default="adam", type=str)
args2config.update({"opt": ["gflownet", "opt"]})
parser.add_argument("--adam_beta1", default=0.9, type=float)
args2config.update({"adam_beta1": ["gflownet", "adam_beta1"]})
parser.add_argument("--adam_beta2", default=0.999, type=float)
args2config.update({"adam_beta2": ["gflownet", "adam_beta2"]})
parser.add_argument(
"--reward_beta_init",
default=1,
type=float,
help="Initial beta for exponential reward scaling",
)
args2config.update({"reward_beta_init": ["gflownet", "reward_beta_init"]})
parser.add_argument(
"--reward_max",
default=1e6,
type=float,
help="Max reward to prevent numerical issues",
)
args2config.update({"reward_max": ["gflownet", "reward_max"]})
parser.add_argument(
"--reward_beta_mult",
default=1.25,
type=float,
help="Multiplier for rescaling beta during training",
)
args2config.update({"reward_beta_mult": ["gflownet", "reward_beta_mult"]})
parser.add_argument(
"--reward_beta_period",
default=-1,
type=float,
help="Period (number of iterations) for beta rescaling",
)
args2config.update({"reward_beta_period": ["gflownet", "reward_beta_period"]})
parser.add_argument("--momentum", default=0.9, type=float)
args2config.update({"momentum": ["gflownet", "momentum"]})
parser.add_argument("--mbsize", default=16, help="Minibatch size", type=int)
args2config.update({"mbsize": ["gflownet", "mbsize"]})
parser.add_argument("--train_to_sample_ratio", default=1, type=float)
args2config.update({"train_to_sample_ratio": ["gflownet", "train_to_sample_ratio"]})
parser.add_argument("--n_hid", default=256, type=int)
args2config.update({"n_hid": ["gflownet", "n_hid"]})
parser.add_argument("--n_layers", default=2, type=int)
args2config.update({"n_layers": ["gflownet", "n_layers"]})
parser.add_argument("--n_train_steps", default=20000, type=int)
args2config.update({"n_train_steps": ["gflownet", "n_iter"]})
parser.add_argument(
"--num_empirical_loss",
default=200000,
type=int,
help="Number of samples used to compute the empirical distribution loss",
)
args2config.update({"num_empirical_loss": ["gflownet", "num_empirical_loss"]})
parser.add_argument("--clip_grad_norm", default=0.0, type=float)
args2config.update({"clip_grad_norm": ["gflownet", "clip_grad_norm"]})
parser.add_argument("--random_action_prob", default=0.0, type=float)
args2config.update({"random_action_prob": ["gflownet", "random_action_prob"]})
parser.add_argument("--pct_batch_empirical", default=0.0, type=float)
args2config.update({"pct_batch_empirical": ["gflownet", "pct_batch_empirical"]})
# Environment
parser.add_argument("--func", default="arbitrary_i")
args2config.update({"func": ["gflownet", "func"]})
parser.add_argument(
"--max_seq_length",
default=42,
help="Maximum number of episodes; maximum sequence length",
type=int,
)
args2config.update({"max_seq_length": ["gflownet", "max_seq_length"]})
parser.add_argument(
"--min_seq_length",
default=1,
help="Minimum sequence length",
type=int,
)
args2config.update({"min_seq_length": ["gflownet", "min_seq_length"]})
parser.add_argument("--nalphabet", default=4, type=int)
args2config.update({"nalphabet": ["gflownet", "nalphabet"]})
parser.add_argument("--min_word_len", default=1, type=int)
args2config.update({"min_word_len": ["gflownet", "min_word_len"]})
parser.add_argument("--max_word_len", default=1, type=int)
args2config.update({"max_word_len": ["gflownet", "max_word_len"]})
args2config.update({"learning_rate": ["gflownet", "learning_rate"]})
# Sampling
parser.add_argument("--bootstrap_tau", default=0.0, type=float)
args2config.update({"bootstrap_tau": ["gflownet", "bootstrap_tau"]})
parser.add_argument("--batch_reward", action="store_true")
args2config.update({"batch_reward": ["gflownet", "batch_reward"]})
# Test set
parser.add_argument("--test_set_path", default=None, type=str)
args2config.update({"test_set_path": ["gflownet", "test", "path"]})
parser.add_argument("--test_set_base", default=None, type=str)
args2config.update({"test_set_base": ["gflownet", "test", "base"]})
parser.add_argument("--test_set_seed", default=167, type=int)
args2config.update({"test_set_seed": ["gflownet", "test", "seed"]})
parser.add_argument("--ntest", default=10000, type=int)
args2config.update({"ntest": ["gflownet", "test", "n"]})
parser.add_argument("--min_length", default=1, type=int)
args2config.update({"min_length": ["gflownet", "test", "min_length"]})
parser.add_argument("--test_output", default=None, type=str)
args2config.update({"test_output": ["gflownet", "test", "output"]})
parser.add_argument("--test_period", default=500, type=int)
args2config.update({"test_period": ["gflownet", "test", "period"]})
# Oracle metrics
parser.add_argument("--oracle_period", default=500, type=int)
args2config.update({"oracle_period": ["gflownet", "oracle", "period"]})
parser.add_argument("--oracle_nsamples", default=500, type=int)
args2config.update({"oracle_nsamples": ["gflownet", "oracle", "nsamples"]})
parser.add_argument(
"--oracle_k",
default=[1, 10, 100],
nargs="*",
type=int,
help="List of K, for Top-K",
)
args2config.update({"oracle_k": ["gflownet", "oracle", "k"]})
# Comet
parser.add_argument("--comet_project", default=None, type=str)
args2config.update({"comet_project": ["gflownet", "comet", "project"]})
parser.add_argument(
"-t", "--tags", nargs="*", help="Comet.ml tags", default=[], type=str
)
args2config.update({"tags": ["gflownet", "comet", "tags"]})
parser.add_argument("--no_comet", action="store_true")
args2config.update({"no_comet": ["gflownet", "comet", "skip"]})
parser.add_argument("--no_log_times", action="store_true")
args2config.update({"no_log_times": ["gflownet", "no_log_times"]})
return parser, args2config
def process_config(config):
config.gflownet.test.score = config.gflownet.func.replace("nupack ", "")
return config
def set_device(dev):
_dev[0] = dev
class GFlowNetAgent:
def __init__(self, args, comet=None, proxy=None, al_iter=-1, data_path=None):
# Misc
self.rng = np.random.default_rng(args.seeds.gflownet)
self.debug = args.debug
self.device_torch = torch.device(args.gflownet.device)
self.device = self.device_torch
set_device(self.device_torch)
if args.gflownet.loss in ["flowmatch"]:
self.loss = "flowmatch"
self.Z = None
elif args.gflownet.loss in ["trajectorybalance", "tb"]:
self.loss = "trajectorybalance"
self.Z = nn.Parameter(torch.ones(64) * 150.0 / 64)
else:
print("Unkown loss. Using flowmatch as default")
self.loss == "flowmatch"
self.Z = None
self.loss_eps = torch.tensor(float(1e-5)).to(self.device)
self.lightweight = True
self.tau = args.gflownet.bootstrap_tau
self.ema_alpha = args.gflownet.ema_alpha
self.early_stopping = args.gflownet.early_stopping
self.reward_beta = args.gflownet.reward_beta_init
self.reward_beta_mult = args.gflownet.reward_beta_mult
self.reward_beta_period = args.gflownet.reward_beta_period
if self.reward_beta_period in [None, -1]:
self.reward_beta_period = np.inf
self.reward_max = args.gflownet.reward_max
if al_iter >= 0:
self.al_iter = "_iter{}".format(al_iter)
else:
self.al_iter = ""
self.logsoftmax = torch.nn.LogSoftmax(dim=1)
# Comet
if args.gflownet.comet.project and not args.gflownet.comet.skip:
self.comet = Experiment(
project_name=args.gflownet.comet.project, display_summary_level=0
)
if args.gflownet.comet.tags:
if isinstance(args.gflownet.comet.tags, list):
self.comet.add_tags(args.gflownet.comet.tags)
else:
self.comet.add_tag(args.gflownet.comet.tags)
self.comet.log_parameters(vars(args))
if "workdir" in args and Path(args.workdir).exists():
with open(Path(args.workdir) / "comet.url", "w") as f:
f.write(self.comet.url + "\n")
else:
if isinstance(comet, Experiment):
self.comet = comet
else:
self.comet = None
self.no_log_times = args.gflownet.no_log_times
# Environment
self.env = AptamerSeq(
args.gflownet.max_seq_length,
args.gflownet.min_seq_length,
args.gflownet.nalphabet,
args.gflownet.min_word_len,
args.gflownet.max_word_len,
func=args.gflownet.func,
proxy=proxy,
allow_backward=False,
debug=self.debug,
reward_beta=self.reward_beta,
)
self.envs = [
AptamerSeq(
args.gflownet.max_seq_length,
args.gflownet.min_seq_length,
args.gflownet.nalphabet,
args.gflownet.min_word_len,
args.gflownet.max_word_len,
func=args.gflownet.func,
proxy=proxy,
allow_backward=False,
debug=self.debug,
reward_beta=self.reward_beta,
)
for _ in range(args.gflownet.mbsize)
]
self.batch_reward = args.gflownet.batch_reward
# Model
self.model = make_mlp(
[args.gflownet.max_seq_length * args.gflownet.nalphabet]
+ [args.gflownet.n_hid] * args.gflownet.n_layers
+ [len(self.env.action_space) + 1]
)
self.reload_ckpt = args.gflownet.reload_ckpt
if args.gflownet.model_ckpt:
if "workdir" in args and Path(args.workdir).exists():
if (Path(args.workdir) / "ckpts").exists():
self.model_path = (
Path(args.workdir) / "ckpts" / args.gflownet.model_ckpt
)
else:
self.model_path = Path(args.workdir) / args.gflownet.model_ckpt
else:
self.model_path = args.gflownet.model_ckpt
if self.model_path.exists() and self.reload_ckpt:
self.model.load_state_dict(torch.load(self.model_path))
else:
self.model_path = None
self.ckpt_period = args.gflownet.ckpt_period
if self.ckpt_period in [None, -1]:
self.ckpt_period = np.inf
self.model.to(self.device_torch)
self.target = copy.deepcopy(self.model)
# Training
self.opt = make_opt(self.parameters(), self.Z, args)
self.n_train_steps = args.gflownet.n_iter
self.mbsize = args.gflownet.mbsize
self.progress = args.gflownet.progress
self.clip_grad_norm = args.gflownet.clip_grad_norm
self.num_empirical_loss = args.gflownet.num_empirical_loss
self.ttsr = max(int(args.gflownet.train_to_sample_ratio), 1)
self.sttr = max(int(1 / args.gflownet.train_to_sample_ratio), 1)
self.random_action_prob = args.gflownet.random_action_prob
self.pct_batch_empirical = args.gflownet.pct_batch_empirical
# Empirical data from active learning
if data_path:
self.data_path = Path(data_path)
self.al_init_length = args.dataset.init_length
self.al_queries_per_iter = args.al.queries_per_iter
self.pct_test = args.gflownet.test.pct_test
self.data_seed = args.seeds.dataset
if self.data_path.suffix == ".npy":
self.df_data = np2df(
self.data_path,
args.gflownet.test.score,
self.al_init_length,
self.al_queries_per_iter,
self.pct_test,
self.data_seed,
)
self.df_train = self.df_data.loc[self.df_data.train]
else:
self.df_data = None
self.df_train = None
else:
self.df_data = None
self.df_train = None
# Test set
self.test_period = args.gflownet.test.period
if self.test_period in [None, -1]:
self.test_period = np.inf
self.df_test = None
else:
self.test_score = args.gflownet.test.score
if self.df_data is not None:
self.df_test = self.df_data.loc[self.df_data.test]
elif args.gflownet.test.path:
self.df_test = pd.read_csv(args.gflownet.test.path, index_col=0)
else:
self.df_test, test_set_times = make_approx_uniform_test_set(
path_base_dataset=args.gflownet.test.base,
score=self.test_score,
ntest=args.gflownet.test.n,
min_length=args.gflownet.test.min_length,
max_length=args.gflownet.max_seq_length,
seed=args.gflownet.test.seed,
output_csv=args.gflownet.test.output,
)
if self.df_test is not None:
print("\nTest data")
print(f"\tAverage score: {self.df_test[self.test_score].mean()}")
print(f"\tStd score: {self.df_test[self.test_score].std()}")
print(f"\tMin score: {self.df_test[self.test_score].min()}")
print(f"\tMax score: {self.df_test[self.test_score].max()}")
# Oracle metrics
self.oracle_period = args.gflownet.oracle.period
self.oracle_nsamples = args.gflownet.oracle.nsamples
self.oracle_k = args.gflownet.oracle.k
def parameters(self):
return self.model.parameters()
def sample_batch(self, mask_eos=True):
"""
Builds a mini-batch of data
Each item in the batch is a list of 5 elements:
- all parents of the state
- actions that lead to the state from each parent
- reward of the state
- the state, as seq2obs(seq)
- done
- trajectory id: identifies each trajectory
- seq id: identifies each sequence within a trajectory
Args
----
mbsize : int
Mini-batch size
"""
times = {
"all": 0.0,
"actions_model": 0.0,
"actions_envs": 0.0,
"rewards": 0.0,
}
t0_all = time.time()
batch = []
envs = [env.reset(idx) for idx, env in enumerate(self.envs)]
# Sequences from empirical distribution
n_empirical = int(self.pct_batch_empirical * len(envs))
for env in envs[:n_empirical]:
env.done = True
seq_letters = self.rng.permutation(self.df_train.letters.values)[0]
seq = env.letters2seq(seq_letters)
done = True
action = env.eos
while len(seq) > 0:
parents, parents_a = env.parent_transitions(seq, action)
batch.append(
[
tf(parents),
tl(parents_a),
seq,
tf([env.seq2obs(seq)]),
done,
tl([env.id]),
tl([env.n_actions]),
]
)
seq = env.obs2seq(self.rng.permutation(parents)[0])
done = False
action = -1
envs = [env for env in envs if not env.done]
# Rest of batch
while envs:
seqs = [env.seq2obs() for env in envs]
mask = [len(env.seq) < env.min_seq_length for env in envs]
random_action = self.rng.uniform()
if random_action > self.random_action_prob:
with torch.no_grad():
t0_a_model = time.time()
action_probs = self.model(tf(seqs))
if mask_eos:
action_probs[mask, -1] = -1000
t1_a_model = time.time()
times["actions_model"] += t1_a_model - t0_a_model
if all(torch.isfinite(action_probs).flatten()):
actions = Categorical(logits=action_probs).sample()
else:
random_action = -1
if self.debug:
print("Action could not be sampled from model!")
if random_action < self.random_action_prob:
high = (len(self.env.action_space) + 1) * np.ones(len(envs), dtype=int)
if mask_eos:
high[mask] -= 1
actions = self.rng.integers(low=0, high=high, size=len(envs))
t0_a_envs = time.time()
assert len(envs) == actions.shape[0]
for env, action in zip(envs, actions):
if len(env.seq) == env.max_seq_length:
action = env.eos
seq, valid = env.step(action)
if valid:
parents, parents_a = env.parent_transitions(seq, action)
batch.append(
[
tf(parents),
tl(parents_a),
seq,
tf([env.seq2obs()]),
env.done,
tl([env.id]),
tl([env.n_actions]),
]
)
envs = [env for env in envs if not env.done]
t1_a_envs = time.time()
times["actions_envs"] += t1_a_envs - t0_a_envs
parents, parents_a, seqs, obs, done, traj_id, seq_id = zip(*batch)
t0_rewards = time.time()
rewards = env.reward_batch(seqs, done)
t1_rewards = time.time()
times["rewards"] += t1_rewards - t0_rewards
rewards = [tf([r]) for r in rewards]
done = [tl([d]) for d in done]
batch = list(zip(parents, parents_a, rewards, obs, done, traj_id, seq_id))
t1_all = time.time()
times["all"] += t1_all - t0_all
return batch, times
def flowmatch_loss(self, it, batch):
"""
Computes the loss of a batch
Args
----
it : int
Iteration
batch : ndarray
A batch of data: every row is a state (list), corresponding to all states
visited in each sequence in the batch.
Returns
-------
loss : float
Loss, as per Equation 12 of https://arxiv.org/abs/2106.04399v1
term_loss : float
Loss of the terminal nodes only
flow_loss : float
Loss of the intermediate nodes only
"""
loginf = tf([1000])
batch_idxs = tl(
sum(
[
[i] * len(parents)
for i, (parents, _, _, _, _, _, _) in enumerate(batch)
],
[],
)
)
parents, actions, r, sp, done, _, _ = map(torch.cat, zip(*batch))
# Sanity check if negative rewards
if self.debug and torch.any(r < 0):
neg_r_idx = torch.where(r < 0)[0].tolist()
for idx in neg_r_idx:
obs = sp[idx].tolist()
seq = list(self.env.obs2seq(obs))
seq_oracle = self.env.seq2oracle([seq])
output_proxy = self.env.proxy(seq_oracle)
reward = self.env.proxy2reward(output_proxy)
print(idx, output_proxy, reward)
import ipdb
ipdb.set_trace()
# Q(s,a)
parents_Qsa = self.model(parents)[torch.arange(parents.shape[0]), actions]
# log(eps + exp(log(Q(s,a)))) : qsa
in_flow = torch.log(
tf(torch.zeros((sp.shape[0],))).index_add_(
0, batch_idxs, torch.exp(parents_Qsa)
)
)
# the following with work if autoregressive
# in_flow = torch.logaddexp(parents_Qsa[batch_idxs], torch.log(self.loss_eps))
if self.tau > 0:
with torch.no_grad():
next_q = self.target(sp)
else:
next_q = self.model(sp)
qsp = torch.logsumexp(next_q, 1)
# qsp: qsp if not done; -loginf if done
qsp = qsp * (1 - done) - loginf * done
out_flow = torch.logaddexp(torch.log(r + self.loss_eps), qsp)
loss = (in_flow - out_flow).pow(2).mean()
with torch.no_grad():
term_loss = ((in_flow - out_flow) * done).pow(2).sum() / (
done.sum() + 1e-20
)
flow_loss = ((in_flow - out_flow) * (1 - done)).pow(2).sum() / (
(1 - done).sum() + 1e-20
)
if self.tau > 0:
for a, b in zip(self.model.parameters(), self.target.parameters()):
b.data.mul_(1 - self.tau).add_(self.tau * a)
return loss, term_loss, flow_loss
def trajectorybalance_loss(self, it, batch):
"""
Computes the trajectory balance loss of a batch
Args
----
it : int
Iteration
batch : ndarray
A batch of data: every row is a state (list), corresponding to all states
visited in each sequence in the batch.
Returns
-------
loss : float
term_loss : float
Loss of the terminal nodes only
flow_loss : float
Loss of the intermediate nodes only
"""
# Unpack batch
parents, actions, rewards, _, done, traj_id, _ = map(torch.cat, zip(*batch))
# Log probs of each (s, a)
logprobs = self.logsoftmax(self.model(parents))[
torch.arange(parents.shape[0]), actions
]
# Sum of log probs
sumlogprobs = tf(
torch.zeros(len(torch.unique(traj_id, sorted=True)))
).index_add_(0, traj_id, logprobs)
# Sort rewards of done sequences by ascending traj id
rewards = rewards[done.eq(1)][torch.argsort(traj_id[done.eq(1)])]
# Trajectory balance loss
loss = (self.Z.sum() + sumlogprobs - torch.log((rewards))).pow(2).mean()
return loss, loss, loss
def train(self):
# Metrics
all_losses = []
all_visited = []
empirical_distrib_losses = []
loss_term_ema = None
loss_flow_ema = None
# Train loop
for i in tqdm(range(self.n_train_steps + 1)): # , disable=not self.progress):
t0_iter = time.time()
data = []
for j in range(self.sttr):
batch, times = self.sample_batch()
data += batch
rewards = [d[2][0].item() for d in data if bool(d[4].item())]
proxy_vals = self.env.reward2proxy(rewards)
for j in range(self.ttsr):
if self.loss == "flowmatch":
losses = self.flowmatch_loss(
i * self.ttsr + j, data
) # returns (opt loss, *metrics)
elif self.loss == "trajectorybalance":
losses = self.trajectorybalance_loss(
i * self.ttsr + j, data
) # returns (opt loss, *metrics)
else:
print("Unknown loss!")
if (
not all([torch.isfinite(loss) for loss in losses])
or np.max(rewards) > self.reward_max
):
if self.debug:
print(
"Too large rewards: Skipping backward pass, increasing "
"reward temperature from -{:.4f} to -{:.4f} and cancelling "
"beta scheduling".format(
self.reward_beta,
self.reward_beta / self.reward_beta_mult,
)
)
self.reward_beta /= self.reward_beta_mult
self.reward_beta_period = np.inf
for env in [self.env] + self.envs:
env.reward_beta = self.reward_beta
all_losses.append([loss for loss in all_losses[-1]])
else:
losses[0].backward()
if self.clip_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(
self.parameters(), self.clip_grad_norm
)
self.opt.step()
self.opt.zero_grad()
all_losses.append([i.item() for i in losses])
# Reward beta scaling
if not i % self.reward_beta_period and i > 0:
if self.debug:
print(
"\tDecreasing reward temperature from "
"-{:.4f} to -{:.4f}".format(
self.reward_beta, self.reward_beta * self.reward_beta_mult
)
)
self.reward_beta *= self.reward_beta_mult
for env in [self.env] + self.envs:
env.reward_beta = self.reward_beta
# Log
seqs_batch = [
tuple(self.env.obs2seq(d[3][0].tolist()))
for d in data
if bool(d[4].item())
]
idx_best = np.argmax(rewards)
seq_best = "".join(self.env.seq2letters(seqs_batch[idx_best]))
if self.lightweight:
all_losses = all_losses[-100:]
all_visited = seqs_batch
else:
all_visited.extend(seqs_batch)
if self.comet:
self.comet.log_text(
seq_best + " / proxy: {}".format(proxy_vals[idx_best]), step=i
)
self.comet.log_metrics(
dict(
zip(
[
"mean_reward{}".format(self.al_iter),
"max_reward{}".format(self.al_iter),
"mean_proxy{}".format(self.al_iter),
"min_proxy{}".format(self.al_iter),
"max_proxy{}".format(self.al_iter),
"mean_seq_length{}".format(self.al_iter),
"batch_size{}".format(self.al_iter),
"reward_beta{}".format(self.al_iter),
],
[
np.mean(rewards),
np.max(rewards),
np.mean(proxy_vals),
np.min(proxy_vals),
np.max(proxy_vals),
np.mean([len(seq) for seq in seqs_batch]),
len(data),
self.reward_beta,
],
)
),
step=i,
)
# Test set metrics
if not i % self.test_period and self.df_test is not None:
data_logq = []
times.update(
{
"test_traj": 0.0,
"test_logq": 0.0,
}
)
# TODO: this could be done just once and store it
for seqstr, score in tqdm(
zip(self.df_test.letters, self.df_test[self.test_score])
):
t0_test_traj = time.time()
traj_list, actions = self.env.get_trajectories(
[[self.env.letters2seq(seqstr)]],
[[self.env.eos]],
)
t1_test_traj = time.time()
times["test_traj"] += t1_test_traj - t0_test_traj
t0_test_logq = time.time()
data_logq.append(logq(traj_list, actions, self.model, self.env))
t1_test_logq = time.time()
times["test_logq"] += t1_test_logq - t0_test_logq
corr = np.corrcoef(data_logq, self.df_test[self.test_score])
if self.comet:
self.comet.log_metrics(
dict(
zip(
[
"test_corr_logq_score{}".format(self.al_iter),
"test_mean_logq{}".format(self.al_iter),
],
[
corr[0, 1],
np.mean(data_logq),
],
)
),
step=i,
)
# Oracle metrics (for monitoring)
if not i % self.oracle_period and self.debug:
oracle_dict, oracle_times = self.sample(
self.oracle_nsamples,
self.env.max_seq_length,
self.env.min_seq_length,
self.env.nalphabet,
self.env.min_word_len,
self.env.max_word_len,
self.env.oracle,
get_uncertainties=False,
)
scores = oracle_dict["scores"]
if any([s in self.env.func for s in ["pins", "pairs"]]):
scores_sorted = np.sort(scores)[::-1]
else:
scores_sorted = np.sort(scores)
dict_topk = {}
for k in self.oracle_k:
mean_topk = np.mean(scores_sorted[:k])
dict_topk.update(
{"oracle_mean_top{}{}".format(k, self.al_iter): mean_topk}
)
if self.comet:
self.comet.log_metrics(dict_topk)
if not i % 100:
if not self.lightweight:
empirical_distrib_losses.append(
compute_empirical_distribution_error(
self.env, all_visited[-self.num_empirical_loss :]
)
)
else:
empirical_distrib_losses.append((None, None))
if self.progress:
k1, kl = empirical_distrib_losses[-1]
if self.debug:
print("Empirical L1 distance", k1, "KL", kl)
if len(all_losses):
print(
*[
f"{np.mean([i[j] for i in all_losses[-100:]]):.5f}"
for j in range(len(all_losses[0]))
]
)
if self.comet:
self.comet.log_metrics(
dict(
zip(
[
"loss{}".format(self.al_iter),
"term_loss{}".format(self.al_iter),
"flow_loss{}".format(self.al_iter),
],
[loss.item() for loss in losses],
)
),
step=i,
)
if not self.lightweight:
self.comet.log_metric(
"unique_states{}".format(self.al_iter),
np.unique(all_visited).shape[0],
step=i,
)
# Save intermediate model
if not i % self.ckpt_period and self.model_path:
path = self.model_path.parent / Path(
self.model_path.stem
+ "{}_iter{:06d}".format(self.al_iter, i)
+ self.model_path.suffix
)
torch.save(self.model.state_dict(), path)
# Moving average of the loss for early stopping
if loss_term_ema and loss_flow_ema:
loss_term_ema = (
self.ema_alpha * losses[1] + (1.0 - self.ema_alpha) * loss_term_ema
)
loss_flow_ema = (
self.ema_alpha * losses[2] + (1.0 - self.ema_alpha) * loss_flow_ema
)
if (
loss_term_ema < self.early_stopping
and loss_flow_ema < self.early_stopping
):
break
else:
loss_term_ema = losses[1]
loss_flow_ema = losses[2]
# Log times
t1_iter = time.time()
times.update({"iter": t1_iter - t0_iter})
times = {"time_{}{}".format(k, self.al_iter): v for k, v in times.items()}
if self.comet and not self.no_log_times:
self.comet.log_metrics(times, step=i)
# Save final model
if self.model_path:
path = self.model_path.parent / Path(
self.model_path.stem + "_final" + self.model_path.suffix
)
torch.save(self.model.state_dict(), path)
torch.save(self.model.state_dict(), self.model_path)
# Close comet
if self.comet and self.al_iter == -1:
self.comet.end()
def sample(
self,
n_samples,
max_seq_length,
min_seq_length,
nalphabet,
min_word_len,
max_word_len,
proxy,
mask_eos=True,
get_uncertainties=True,
):
times = {
"all": 0.0,
"actions_model": 0.0,
"actions_envs": 0.0,
"proxy": 0.0,
"sanitycheck": 0.0,
}
t0_all = time.time()
batch = []
envs = [
AptamerSeq(
max_seq_length=max_seq_length,
min_seq_length=min_seq_length,
nalphabet=nalphabet,
min_word_len=min_word_len,
max_word_len=max_word_len,
proxy=proxy,
)
for i in range(n_samples)
]
envs = [env.reset() for env in envs]
while envs:
seqs = [env.seq2obs() for env in envs]
mask = [len(env.seq) < env.min_seq_length for env in envs]
with torch.no_grad():
t0_a_model = time.time()
action_probs = self.model(tf(seqs))
if mask_eos:
action_probs[mask, -1] = -1000
t1_a_model = time.time()
times["actions_model"] += t1_a_model - t0_a_model
if all(torch.isfinite(action_probs).flatten()):
actions = Categorical(logits=action_probs).sample()
else:
actions = np.random.randint(
low=0, high=action_probs.shape[1], size=action_probs.shape[0]
)
if self.debug:
print("Action could not be sampled from model!")
t0_a_envs = time.time()
assert len(envs) == actions.shape[0]
for env, action in zip(envs, actions):
seq, valid = env.step(action)
if valid and env.done:
batch.append(env.seq2oracle([seq])[0])
envs = [env for env in envs if not env.done]
t1_a_envs = time.time()
times["actions_envs"] += t1_a_envs - t0_a_envs
t0_proxy = time.time()
batch = np.asarray(batch)
if get_uncertainties:
proxy_vals, uncertainties = env.proxy(batch, "Both")
else:
proxy_vals = env.proxy(batch)
uncertainties = None
t1_proxy = time.time()
times["proxy"] += t1_proxy - t0_proxy
samples = {
"samples": batch.astype(np.int64),
"scores": proxy_vals,
"energies": proxy_vals,
"uncertainties": uncertainties,
}
# Sanity-check: absolute zero pad
t0_sanitycheck = time.time()
zeros = np.where(batch == 0)
row_unique, row_unique_idx = np.unique(zeros[0], return_index=True)
for row, idx in zip(row_unique, row_unique_idx):
if np.sum(batch[row, zeros[1][idx] :]):
print(f"Found sequence with positive values after last 0, row {row}")
import ipdb