-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
280 lines (221 loc) · 9.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# pip install torchtext==0.6
import os
import torch
import random
import pandas as pd
import numpy as np
import requests
import urllib.request
# 데이터 불러오기
urllib.request.urlretrieve("https://raw.githubusercontent.com/e9t/nsmc/master/ratings_train.txt", filename="ratings_train.txt")
urllib.request.urlretrieve("https://raw.githubusercontent.com/e9t/nsmc/master/ratings_test.txt", filename="ratings_test.txt")
train_file = "ratings_train.txt"
test_file = "ratings_test.txt"
columns = ['id','text','label']
train_data = pd.read_csv(train_file, sep='\t', names=columns, skiprows=1).dropna() # null데이터 삭제
test_data = pd.read_csv(test_file, sep='\t', names=columns, skiprows=1).dropna()
# 랜덤 시드 고정
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
# bert-base-multilingual-cased 토크나이저를 사용
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
# 토큰화
tokens = tokenizer.tokenize('내일은 드디어 주말이 시작되는 날입니다.')
indexes = tokenizer.convert_tokens_to_ids(tokens)
# 토큰 학습
init_token = tokenizer.cls_token
eos_token = tokenizer.sep_token
pad_token = tokenizer.pad_token
unk_token = tokenizer.unk_token
init_token_idx = tokenizer.convert_tokens_to_ids(init_token)
eos_token_idx = tokenizer.convert_tokens_to_ids(eos_token)
pad_token_idx = tokenizer.convert_tokens_to_ids(pad_token)
unk_token_idx = tokenizer.convert_tokens_to_ids(unk_token)
max_input_length = tokenizer.max_model_input_sizes['bert-base-multilingual-cased']
# 토크나이저의 문장 시작 토큰과 마지막 토큰을 제거
def tokenize_and_cut(sentence):
tokens = tokenizer.tokenize(sentence)
tokens = tokens[:max_input_length-2]
return tokens
# 필드 정의
from torchtext import data
TEXT = data.Field(batch_first = True,
use_vocab = False,
tokenize = tokenize_and_cut,
preprocessing = tokenizer.convert_tokens_to_ids,
init_token = init_token_idx,
eos_token = eos_token_idx,
pad_token = pad_token_idx,
unk_token = unk_token_idx)
LABEL = data.LabelField(dtype = torch.float)
# 데이터 분리
fields = {'text': ('text',TEXT), 'label': ('label',LABEL)}
current_dir = os.path.dirname(os.path.abspath(__file__))
train_data_path = os.path.join(current_dir, 'train_data.csv')
test_data_path = os.path.join(current_dir, 'test_data.csv')
train_data, test_data = data.TabularDataset.splits(
path = current_dir,
train = 'train_data.csv',
test = 'test_data.csv',
format = 'csv',
fields = fields,
)
train_data, valid_data = train_data.split(random_state=random.seed(SEED))
LABEL.build_vocab(train_data)
# 이터레이터 생성
BATCH_SIZE = 128
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size = BATCH_SIZE,
sort_key = lambda x: len(x.text),
sort_within_batch = True,
device = device)
# 모델 생성
from transformers import BertModel
bert = BertModel.from_pretrained('bert-base-multilingual-cased')
# 모델 정의
import torch.nn as nn
class BERTGRUSentiment(nn.Module):
def __init__(self, bert, hidden_dim, output_dim,
n_layers, bidirectional, dropout):
super().__init__()
self.bert = bert
embedding_dim = bert.config.to_dict()['hidden_size']
self.rnn = nn.GRU(embedding_dim, hidden_dim,
num_layers = n_layers,
bidirectional = bidirectional,
batch_first = True,
dropout = 0 if n_layers <2 else dropout)
self.out = nn.Linear(hidden_dim * 2 if bidirectional
else hidden_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, text):
#text = [batch_size, sent_len]
with torch.no_grad():
embedded = self.bert(text)[0]
#embedded = [batch_size, sent_len, emb_dim]
_, hidden = self.rnn(embedded)
#hideen = [n_layers * n_directions, batch_size, emb_dim]
if self.rnn.bidirectional:
# 마지막 레이어의 양방향 히든 벡터만 가져옴
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1))
else:
hidden = self.dropout(hidden[-1,:,:])
#hidden = [batch_size, hid_dim]
output = self.out(hidden)
#output = [batch_size, out_dim]
return output
# 하이퍼파라미터 지정
HIDDEN_DIM = 256
OUTPUT_DIM = 1
N_LAYERS = 2
BIDIRECTIONAL = True
DROPOUT = 0.25
model = BERTGRUSentiment(bert, HIDDEN_DIM, OUTPUT_DIM,
N_LAYERS, BIDIRECTIONAL, DROPOUT)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# bert 모델 훈련 x
for name, param in model.named_parameters():
if name.startswith('bert'):
param.requires_grad = False
# 모델 훈련
import torch.optim as optim
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
model = model.to(device)
criterion = criterion.to(device)
def binary_accuracy(preds, y):
rounded_preds = torch.round(torch.sigmoid(preds))
correct = (rounded_preds==y).float()
acc = correct.sum() / len(correct)
return acc
# train 함수 정의
def train(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text).squeeze(1) # output_dim = 1
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
# 시간 확인 함수
import time
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
# 토크나이저 설정에서 attention_mask 생성
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased',
attention_mask=True)
# transformer 모델 훈련
N_EPOCHS = 1
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut6-model.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
model.load_state_dict(torch.load('tut6-model.pt'))
test_loss, test_acc = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
def predict_sentiment(model, tokenizer, sentence):
model.eval()
tokens = tokenizer.tokenize(sentence)
tokens = tokens[:max_input_length-2]
indexed = [init_token_idx] + tokenizer.convert_tokens_to_ids(tokens) + [eos_token_idx]
tensor = torch.LongTensor(indexed).to(device)
tensor = tensor.unsqueeze(0)
# 모델에 입력하여 감정 예측
with torch.no_grad():
prediction = torch.sigmoid(model(tensor))
# 감정 예측 범위로 분류
sentiment_score = prediction.item()
if sentiment_score <= 0.45:
return "부정적"
elif 0.45 < sentiment_score <= 0.55:
return "중립적"
else:
return "긍정적"
text = input("감정 분석을 수행할 텍스트를 입력하세요: ")
# 감정 예측 및 출력
print("입력한 텍스트의 감정은:", predict_sentiment(model, tokenizer, text))
# 라이브러리 import
import requests
import pprint
import json
# url 입력
url = 'http://34.22.69.63/5000'
# url 불러오기
response = requests.get(url)