-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
128 lines (96 loc) · 3.68 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from logging import debug
from flask import Flask, request, render_template, redirect, url_for
from werkzeug.utils import secure_filename
import pickle
import numpy as np
import os
import pandas as pd
import tensorflow as tf
# Importing libraries for Keras:
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
app = Flask(__name__)
modelPath = 'models\covid_detect.h5'
# Loading our diabetes model:
modelDB = pickle.load(open("models/LogModelDiabetes.pkl", "rb"))
modelBC = pickle.load(open("models/RFModelCancer.pkl", "rb"))
# Loading our COVID-19 model
modelCV = load_model(modelPath)
# Creating function for predicting from our model:
def model_predict(img_path, model):
print(img_path)
img = image.load_img(img_path, target_size = (128, 128))
# Preprocessing the image:
x = image.img_to_array(img)
# Scaling our image:
x = x/255
x = np.expand_dims(x, axis=0)
predictions = model.predict(x)
predictions = np.argmax(predictions, axis=1)
if predictions == 1:
predictions = "The patient doesn't have COVID."
else:
predictions = "The patient has COVID."
return predictions
# Setting routes for our web-pages:
@app.route("/")
def home():
return render_template("home.html")
@app.route("/diabetes")
def diabetes_prediction():
return render_template("diabetes.html")
@app.route("/cancer")
def cancer_prediction():
return render_template("cancer.html")
@app.route("/covid")
def covid_prediction():
return render_template("covid.html")
@app.route("/diabetes-predict", methods=["GET", "POST"])
def db_prediction():
if request.method == "POST":
pregnancies = int(request.form["pregnancies"])
glucose = int(request.form["glucose"])
bp = int(request.form["bp"])
skin_thickness = int(request.form["skin_thickness"])
insulin = int(request.form["insulin"])
bmi = int(request.form["bmi"])
dpf = int(request.form["dpf"])
glucose = int(request.form["glucose"])
predictions = modelDB.predict([[pregnancies, glucose, bp, skin_thickness, insulin, bmi, dpf, glucose]])
output = predictions[0]
if output == 0:
result = "The patient doesn't have Diabetes"
else:
result = "The patient has Diabetes"
return render_template('diabetes-result.html', prediction_text=result)
@app.route("/cancer-predict", methods=["GET", "POST"])
def bc_prediction():
if request.method == "POST":
cpm = float(request.form["cpm"])
area = float(request.form["area"])
radius = float(request.form["radius"])
perimeter = float(request.form["perimeter"])
concavity = float(request.form["concavity"])
predictions = modelBC.predict([[cpm, area, radius, perimeter, concavity]])
output = predictions[0]
if output == 0:
result = "Type of cells: Benign. Hence the patient is cancer-free"
else:
result = "Type of cells: Malign. Hence the patient has cancer"
return render_template('cancer-result.html', prediction_text=result)
@app.route('/predict', methods = ['GET', 'POST'])
def upload():
if request.method == 'POST':
f = request.files['file']
basePath = os.path.dirname(__file__)
file_path = os.path.join(
basePath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Making our prediction:
prediction = model_predict(file_path, modelCV)
result = prediction
return result
return None
if __name__ == '__main__':
app.run(debug=True)