-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_bbh.py
179 lines (148 loc) · 6.34 KB
/
test_bbh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""Test the BigBench Hard suite"""
import time
import torch
import re
import json
import argparse
import os
import pytz
import hydra
import json
import pickle
import numpy as np
import torch.nn.functional as F
from datetime import datetime
from tqdm import tqdm
from transformers import T5Tokenizer, T5ForConditionalGeneration
from omegaconf import DictConfig, OmegaConf
from src.utils import tprint, parse_pred_ans
BIGBENCH_PATH = 'BIG-Bench-Hard/bbh/'
BIGBENCH_PROMPT_PATH = 'BIG-Bench-Hard/cot-prompts/'
def load_data(dataset_name):
data = json.load(open(BIGBENCH_PATH + dataset_name + '.json'))
return data['examples']
def parse_ans_boolean_expressions(ans, target):
if('the answer is' in ans):
ans_ = ans.split('the answer is ')[1]
if('True' in ans_): ans_ = 'True'
else: ans_ = 'False'
else: ans_ = 'NULL'
# if(len(ans_) > 1):
# ans_ = ans_[1][1]
# else:
# ans_ = 'A'
return ans_ == target, ans_
PARSE_FN = {'boolean_expressions': parse_ans_boolean_expressions}
def modify_prompt(prompt):
prompt_q = prompt.split('A:')[0]
prompt_answer = prompt.split('the answer is ')[1]
prompt_new = prompt_q + 'A: the answer is ' + prompt_answer
return prompt_new
def parse_ans_general(ans, target, prompt_mode):
if(prompt_mode == 'cot'):
if('the answer is' in ans):
ans_ = ans.split('the answer is')[1]
if(target in ans_): return True, ans_
else: return False, ans_
else: return False, ans
else: # prompt_mode == 'ao'
if(target in ans): return True, ans
else: return False, ans
def test_model(dataset_name, dataset, tokenizer, model, base_prompt, args, model_dir):
"""Test model on BBH dataset"""
tprint('Start decoding %s, %d cases... ' % (dataset_name, len(dataset)))
# parse_ans = PARSE_FN[dataset_name]
parse_ans = parse_ans_general
i = 0
output_path = args.output_path + dataset_name + '_' + args.prompt_mode + '_' + model_dir.split('/')[-1] + '.txt'
tprint('Model output to: %s' % output_path)
if(isinstance(args.batch_size, int)):
batch_size = args.batch_size
else:
batch_size = args.batch_size[dataset_name]
acc = 0
with open(output_path, 'w') as fd:
tqdm_total = len(dataset) // batch_size
if(len(dataset) % batch_size != 0): tqdm_total += 1
for i in tqdm(range(0, len(dataset), batch_size), total=tqdm_total):
questions = []
q_batch = []
a_batch = []
for k in range(batch_size):
if(i + k >= len(dataset)): break
q = dataset[i + k]['input']
q_batch.append(q)
a = dataset[i + k]['target']
a_batch.append(a)
if(args.prompt_mode == 'cot'):
prompt_q = base_prompt + '\n\nQ: ' + q + '\n' + "A: Let's think step by step.\n"
else: # prompt_mode == 'ao'
prompt_q = base_prompt + '\n\nQ: ' + q + '\n' + 'A: the answer is '
questions.append(prompt_q)
inputs = tokenizer(questions, padding=True, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(inputs['input_ids'].to(model.device),
attention_mask=inputs['attention_mask'].to(model.device),
max_length=256
)
for q, a, ans_ in zip(q_batch, a_batch, outputs):
ans_raw = tokenizer.decode(ans_).replace('<pad>', '').strip()
acc_, parsed_ans = parse_ans(ans_raw, a, args.prompt_mode)
fd.write('Q: %s\nA_model:\n%s\n%s\nA:\n%s\n\n' % (q, ans_raw, parsed_ans, a))
acc += acc_
fd.write('\n\n----\nEXAMPLE PROMPT: %s\n\n' % prompt_q)
fd.write('\n\n----\nEXAMPLE OUTPUT: %s\n\n' % ans_raw)
tprint('%s %d questions %d correct, acc %.4f' % (dataset_name, len(dataset), acc, acc / len(dataset)))
acc = acc / len(dataset)
return acc
def load_and_test(model_dir, args, datasets, prompts, tokenizer):
start_time = time.time()
tprint('Loading the model from %s' % model_dir)
model = T5ForConditionalGeneration.from_pretrained(model_dir)
if(args.model_size == '11b'):
# import ipdb; ipdb.set_trace()
model.parallelize(args.device_map)
else:
model.to('cuda:' + str(args.gpu_id))
tprint('Model loaded in %.1f seconds.' % (time.time() - start_time))
all_perf = []
for dataset_name in datasets:
base_prompt = prompts[dataset_name]
if(args.prompt_mode == 'ao'): # else, cot prompt, do nothing
base_prompt = modify_prompt(base_prompt)
dataset = datasets[dataset_name]
acc = test_model(dataset_name, dataset, tokenizer, model, base_prompt, args, model_dir)
all_perf.append(acc)
# tprint('%.4f' % acc)
acc = np.average(all_perf)
tprint('All average %.4f' % np.average(all_perf))
return acc
@hydra.main(version_base=None, config_path="src/conf", config_name="config_inference_bbh")
def main(args : DictConfig):
tprint(OmegaConf.to_yaml(args))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
tokenizer = T5Tokenizer.from_pretrained(args.tokenizer)
datasets = {}
prompts = {}
for dataset_name in args.batch_size:
tprint('Loading dataset: %s' % dataset_name)
datasets[dataset_name] = load_data(dataset_name)
prompts[dataset_name] = open(BIGBENCH_PROMPT_PATH + dataset_name + '.txt').read()
if(args.base_model in ['google/flan-t5-large', 'google/flan-t5-xl', 'google/flan-t5-xxl']): # test initial checkpoint
model_dir = args.base_model
load_and_test(model_dir, args, datasets, prompts, tokenizer)
else: # test specialized model
results = []
for i in args.iter:
model_dir = args.base_model + 'iter_' + str(i)
acc = load_and_test(model_dir, args, datasets, prompts, tokenizer)
results.append(acc)
model_dir = args.base_model + 'end'
acc = load_and_test(model_dir, args, datasets, prompts, tokenizer)
results.append(acc)
for acc in results:
tprint('%.4f' % acc)
return
if __name__ == '__main__':
main()