-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathburger1D_fourier.py
104 lines (77 loc) · 2.31 KB
/
burger1D_fourier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
code to solve burger equation using fourier trasform in space
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import matplotlib.animation as animation
#=============================================================
# Parameters
#=============================================================
L = 1
T = 0.31
dx = 0.001
dt = 0.001
nu = 0.005
Nx = int(L/dx)
Nt = int(T/dt)
t = np.linspace(0, T, Nt)
x = np.linspace(0, L, Nx)
# wave number
k = 2*np.pi*np.fft.rfftfreq(Nx, dx)
# Initial conditions
u0 = np.sin(2*np.pi*x)
#=============================================================
# Solutions
#=============================================================
def eq(u, t, k, nu):
'''
equation to be solved in spatial transform
'''
u_hat = np.fft.rfft(u)
du_hat = 1j*k*u_hat # first derivative
ddu_hat = -k**2*u_hat # second derivative
#antitrasform
du = np.fft.irfft(du_hat)
ddu = np.fft.irfft(ddu_hat)
#pde in time and space -> ode in time
u_t = -u*du + nu*ddu
return u_t.real
sol = odeint(eq, u0, t, args=(k, nu,)).T
#=============================================================
# Plot
#=============================================================
plt.figure(1)
freq = np.fft.rfftfreq(Nx, dx)
sp_i = np.fft.rfft(sol[:, 0])
sp_f = np.fft.rfft(sol[:,-1])
plt.subplot(211)
plt.title(f'spettro soluzione a t = 0')
plt.ylabel("$|sol(k)|^2$", fontsize=10)
plt.plot(freq, abs(sp_i)**2, marker='.', linestyle='-', color='b')
plt.yscale('log')
plt.grid()
plt.subplot(212)
plt.title(f'spettro soluzione a t = {T}')
plt.xlabel("k", fontsize=10)
plt.ylabel("$|sol(k)|^2$", fontsize=10)
plt.plot(freq, abs(sp_f)**2, marker='.', linestyle='-', color='b')
plt.yscale('log')
plt.grid()
#=============================================================
# Animations
#=============================================================
fig = plt.figure(2)
plt.xlim(np.min(x), np.max(x))
plt.ylim(np.min(sol), np.max(sol))
line, = plt.plot([], [], 'b')
def animate(i):
line.set_data(x, sol[:,i])
return line,
anim = animation.FuncAnimation(fig, animate, frames=Nt, interval=5, blit=True, repeat=True)
plt.grid()
plt.title('burger equation')
plt.xlabel('Distanza')
plt.ylabel('ampiezza')
#anim.save('buger.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
plt.show()