-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhungarian.cpp
395 lines (334 loc) · 13.9 KB
/
hungarian.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
///////////////////////////////////////////////////////////////////////////////
// Hungarian.cpp: Implementation file for Class HungarianAlgorithm.
//
// This is a C++ wrapper with slight modification of a hungarian algorithm implementation by Markus Buehren.
// The original implementation is a few mex-functions for use in MATLAB, found here:
// http://www.mathworks.com/matlabcentral/fileexchange/6543-functions-for-the-rectangular-assignment-problem
//
// Both this code and the orignal code are published under the BSD license.
// by Cong Ma, 2016
//
#include <stdlib.h>
#include <cfloat> // for DBL_MAX
#include <cmath> // for fabs()
#include "hungarian.h"
HungarianAlgorithm::HungarianAlgorithm(){}
HungarianAlgorithm::~HungarianAlgorithm(){}
//********************************************************//
// A single function wrapper for solving assignment problem.
//********************************************************//
double HungarianAlgorithm::Solve(vector <vector<double> >& DistMatrix, vector<int>& Assignment)
{
unsigned int nRows = DistMatrix.size();
unsigned int nCols = DistMatrix[0].size();
double *distMatrixIn = new double[nRows * nCols];
int *assignment = new int[nRows];
double cost = 0.0;
// Fill in the distMatrixIn. Mind the index is "i + nRows * j".
// Here the cost matrix of size MxN is defined as a double precision array of N*M elements.
// In the solving functions matrices are seen to be saved MATLAB-internally in row-order.
// (i.e. the matrix [1 2; 3 4] will be stored as a vector [1 3 2 4], NOT [1 2 3 4]).
for (unsigned int i = 0; i < nRows; i++)
for (unsigned int j = 0; j < nCols; j++)
distMatrixIn[i + nRows * j] = DistMatrix[i][j];
// call solving function
assignmentoptimal(assignment, &cost, distMatrixIn, nRows, nCols);
Assignment.clear();
for (unsigned int r = 0; r < nRows; r++)
Assignment.push_back(assignment[r]);
delete[] distMatrixIn;
delete[] assignment;
return cost;
}
//********************************************************//
// Solve optimal solution for assignment problem using Munkres algorithm, also known as Hungarian Algorithm.
//********************************************************//
void HungarianAlgorithm::assignmentoptimal(int *assignment, double *cost, double *distMatrixIn, int nOfRows, int nOfColumns)
{
double *distMatrix, *distMatrixTemp, *distMatrixEnd, *columnEnd, value, minValue;
bool *coveredColumns, *coveredRows, *starMatrix, *newStarMatrix, *primeMatrix;
int nOfElements, minDim, row, col;
/* initialization */
*cost = 0;
for (row = 0; row<nOfRows; row++)
assignment[row] = -1;
/* generate working copy of distance Matrix */
/* check if all matrix elements are positive */
nOfElements = nOfRows * nOfColumns;
distMatrix = (double *)malloc(nOfElements * sizeof(double));
distMatrixEnd = distMatrix + nOfElements;
for (row = 0; row<nOfElements; row++)
{
value = distMatrixIn[row];
if (value < 0)
cerr << "All matrix elements have to be non-negative." << endl;
distMatrix[row] = value;
}
/* memory allocation */
coveredColumns = (bool *)calloc(nOfColumns, sizeof(bool));
coveredRows = (bool *)calloc(nOfRows, sizeof(bool));
starMatrix = (bool *)calloc(nOfElements, sizeof(bool));
primeMatrix = (bool *)calloc(nOfElements, sizeof(bool));
newStarMatrix = (bool *)calloc(nOfElements, sizeof(bool)); /* used in step4 */
/* preliminary steps */
if (nOfRows <= nOfColumns)
{
minDim = nOfRows;
for (row = 0; row<nOfRows; row++)
{
/* find the smallest element in the row */
distMatrixTemp = distMatrix + row;
minValue = *distMatrixTemp;
distMatrixTemp += nOfRows;
while (distMatrixTemp < distMatrixEnd)
{
value = *distMatrixTemp;
if (value < minValue)
minValue = value;
distMatrixTemp += nOfRows;
}
/* subtract the smallest element from each element of the row */
distMatrixTemp = distMatrix + row;
while (distMatrixTemp < distMatrixEnd)
{
*distMatrixTemp -= minValue;
distMatrixTemp += nOfRows;
}
}
/* Steps 1 and 2a */
for (row = 0; row<nOfRows; row++)
for (col = 0; col<nOfColumns; col++)
if (fabs(distMatrix[row + nOfRows*col]) < DBL_EPSILON)
if (!coveredColumns[col])
{
starMatrix[row + nOfRows*col] = true;
coveredColumns[col] = true;
break;
}
}
else /* if(nOfRows > nOfColumns) */
{
minDim = nOfColumns;
for (col = 0; col<nOfColumns; col++)
{
/* find the smallest element in the column */
distMatrixTemp = distMatrix + nOfRows*col;
columnEnd = distMatrixTemp + nOfRows;
minValue = *distMatrixTemp++;
while (distMatrixTemp < columnEnd)
{
value = *distMatrixTemp++;
if (value < minValue)
minValue = value;
}
/* subtract the smallest element from each element of the column */
distMatrixTemp = distMatrix + nOfRows*col;
while (distMatrixTemp < columnEnd)
*distMatrixTemp++ -= minValue;
}
/* Steps 1 and 2a */
for (col = 0; col<nOfColumns; col++)
for (row = 0; row<nOfRows; row++)
if (fabs(distMatrix[row + nOfRows*col]) < DBL_EPSILON)
if (!coveredRows[row])
{
starMatrix[row + nOfRows*col] = true;
coveredColumns[col] = true;
coveredRows[row] = true;
break;
}
for (row = 0; row<nOfRows; row++)
coveredRows[row] = false;
}
/* move to step 2b */
step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
/* compute cost and remove invalid assignments */
computeassignmentcost(assignment, cost, distMatrixIn, nOfRows);
/* free allocated memory */
free(distMatrix);
free(coveredColumns);
free(coveredRows);
free(starMatrix);
free(primeMatrix);
free(newStarMatrix);
return;
}
/********************************************************/
void HungarianAlgorithm::buildassignmentvector(int *assignment, bool *starMatrix, int nOfRows, int nOfColumns)
{
int row, col;
for (row = 0; row<nOfRows; row++)
for (col = 0; col<nOfColumns; col++)
if (starMatrix[row + nOfRows*col])
{
#ifdef ONE_INDEXING
assignment[row] = col + 1; /* MATLAB-Indexing */
#else
assignment[row] = col;
#endif
break;
}
}
/********************************************************/
void HungarianAlgorithm::computeassignmentcost(int *assignment, double *cost, double *distMatrix, int nOfRows)
{
int row, col;
for (row = 0; row<nOfRows; row++)
{
col = assignment[row];
if (col >= 0)
*cost += distMatrix[row + nOfRows*col];
}
}
/********************************************************/
void HungarianAlgorithm::step2a(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
bool *starMatrixTemp, *columnEnd;
int col;
/* cover every column containing a starred zero */
for (col = 0; col<nOfColumns; col++)
{
starMatrixTemp = starMatrix + nOfRows*col;
columnEnd = starMatrixTemp + nOfRows;
while (starMatrixTemp < columnEnd){
if (*starMatrixTemp++)
{
coveredColumns[col] = true;
break;
}
}
}
/* move to step 3 */
step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}
/********************************************************/
void HungarianAlgorithm::step2b(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
int col, nOfCoveredColumns;
/* count covered columns */
nOfCoveredColumns = 0;
for (col = 0; col<nOfColumns; col++)
if (coveredColumns[col])
nOfCoveredColumns++;
if (nOfCoveredColumns == minDim)
{
/* algorithm finished */
buildassignmentvector(assignment, starMatrix, nOfRows, nOfColumns);
}
else
{
/* move to step 3 */
step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}
}
/********************************************************/
void HungarianAlgorithm::step3(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
bool zerosFound;
int row, col, starCol;
zerosFound = true;
while (zerosFound)
{
zerosFound = false;
for (col = 0; col<nOfColumns; col++)
if (!coveredColumns[col])
for (row = 0; row<nOfRows; row++)
if ((!coveredRows[row]) && (fabs(distMatrix[row + nOfRows*col]) < DBL_EPSILON))
{
/* prime zero */
primeMatrix[row + nOfRows*col] = true;
/* find starred zero in current row */
for (starCol = 0; starCol<nOfColumns; starCol++)
if (starMatrix[row + nOfRows*starCol])
break;
if (starCol == nOfColumns) /* no starred zero found */
{
/* move to step 4 */
step4(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim, row, col);
return;
}
else
{
coveredRows[row] = true;
coveredColumns[starCol] = false;
zerosFound = true;
break;
}
}
}
/* move to step 5 */
step5(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}
/********************************************************/
void HungarianAlgorithm::step4(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim, int row, int col)
{
int n, starRow, starCol, primeRow, primeCol;
int nOfElements = nOfRows*nOfColumns;
/* generate temporary copy of starMatrix */
for (n = 0; n<nOfElements; n++)
newStarMatrix[n] = starMatrix[n];
/* star current zero */
newStarMatrix[row + nOfRows*col] = true;
/* find starred zero in current column */
starCol = col;
for (starRow = 0; starRow<nOfRows; starRow++)
if (starMatrix[starRow + nOfRows*starCol])
break;
while (starRow<nOfRows)
{
/* unstar the starred zero */
newStarMatrix[starRow + nOfRows*starCol] = false;
/* find primed zero in current row */
primeRow = starRow;
for (primeCol = 0; primeCol<nOfColumns; primeCol++)
if (primeMatrix[primeRow + nOfRows*primeCol])
break;
/* star the primed zero */
newStarMatrix[primeRow + nOfRows*primeCol] = true;
/* find starred zero in current column */
starCol = primeCol;
for (starRow = 0; starRow<nOfRows; starRow++)
if (starMatrix[starRow + nOfRows*starCol])
break;
}
/* use temporary copy as new starMatrix */
/* delete all primes, uncover all rows */
for (n = 0; n<nOfElements; n++)
{
primeMatrix[n] = false;
starMatrix[n] = newStarMatrix[n];
}
for (n = 0; n<nOfRows; n++)
coveredRows[n] = false;
/* move to step 2a */
step2a(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}
/********************************************************/
void HungarianAlgorithm::step5(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
double h, value;
int row, col;
/* find smallest uncovered element h */
h = DBL_MAX;
for (row = 0; row<nOfRows; row++)
if (!coveredRows[row])
for (col = 0; col<nOfColumns; col++)
if (!coveredColumns[col])
{
value = distMatrix[row + nOfRows*col];
if (value < h)
h = value;
}
/* add h to each covered row */
for (row = 0; row<nOfRows; row++)
if (coveredRows[row])
for (col = 0; col<nOfColumns; col++)
distMatrix[row + nOfRows*col] += h;
/* subtract h from each uncovered column */
for (col = 0; col<nOfColumns; col++)
if (!coveredColumns[col])
for (row = 0; row<nOfRows; row++)
distMatrix[row + nOfRows*col] -= h;
/* move to step 3 */
step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}