-
Notifications
You must be signed in to change notification settings - Fork 2
/
ANN_network.py
168 lines (152 loc) · 7.13 KB
/
ANN_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: utf-8 -*-
"""
This is a rewrite of the network class for the Artifical Neural Network class
at Colorado School of Mines
"""
# import build in libraries
import random
# import third party libraries
import numpy as np
class Network(object):
def __init__(self, sizes):
"""The list ``sizes`` contains the number of neurons in the
respective layers of the network. For example, if the list
was [2, 3, 1] then it would be a three-layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,
and the third layer 1 neuron. The biases and weights for the
network are initialized randomly, using a Gaussian
distribution with mean 0, and variance 1. Note that the first
layer is assumed to be an input layer, and by convention we
won't set any biases for those neurons, since biases are only
ever used in computing the outputs from later layers."""
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = []
self.weights = []
# Generate biases for all but the input neurons
for y in sizes[1:]:
self.biases.append(np.random.randn(y, 1))
# Generate weights for all but input and output neurons
for x, y in zip(sizes[:-1], sizes[1:]):
self.weights.append(np.random.randn(y, x))
def feedforward(self, a):
"""Return the output of the network if ``a`` is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a) + b)
return a
def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The ``training_data`` is a list of tuples
``(x, y)`` representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If ``test_data`` is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""
# convert training set to list and store length
training_data = list(training_data)
n = len(training_data)
# if there is test data, convert to list and store length
if test_data:
test_data = list(test_data)
n_test = len(test_data)
# If there are epochs divide the training sets up into batches
for j in range(epochs):
# randomly shuffle training data
random.shuffle(training_data)
mini_batches = []
# create the mini batches
for k in range(0, n, mini_batch_size):
mini_batches.append(training_data[k:k + mini_batch_size])
# perform gradient descent to each batch through update function.
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
x = self.evaluate(test_data)
print("Epoch {} : {} / {}".format(j, x, n_test));
else:
print("Epoch {} complete".format(j))
return x
def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
for i in range(len(nabla_b)):
nabla_b[i] = nabla_b[i] + delta_nabla_b[i]
for i in range(len(nabla_w)):
nabla_w[i] = nabla_w[i] + delta_nabla_w[i]
for i in range(len(self.weights)):
w = self.weights[i]
nw = nabla_w[i]
self.weights[i] = w - (eta / len(mini_batch)) * nw
for i in range(len(self.biases)):
b = self.biases[i]
nb = nabla_b[i]
self.biases[i] = b - (eta / len(mini_batch)) * nb
def backprop(self, x, y):
"""Return a tuple ``(nabla_b, nabla_w)`` representing the
gradient for the cost function C_x. ``nabla_b`` and
``nabla_w`` are layer-by-layer lists of numpy arrays, similar
to ``self.biases`` and ``self.weights``."""
nabla_b, nabla_w = [], []
for b in self.biases:
nabla_b.append(np.zeros(b.shape))
for w in self.weights:
nabla_w.append(np.zeros(w.shape))
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation) + b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l + 1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l - 1].transpose())
return (nabla_b, nabla_w)
def evaluate(self, test_data):
"""Return the number of test inputs for which the neural
network outputs the correct result. Note that the neural
network's output is assumed to be the index of whichever
neuron in the final layer has the highest activation."""
test_results = [(self.feedforward(x), y)
for (x, y) in test_data]
# print('results')
# print(test_results[0])
dist = 0
for x, y in test_results:
dist += (np.linalg.norm(x - y) / len(x))
return dist
def cost_derivative(self, output_activations, y):
"""Return the vector of partial derivatives \partial C_x /
\partial a for the output activations."""
return 2 * (output_activations - y)
#### Miscellaneous functions
def sigmoid(z):
"""The sigmoid function."""
return 1.0 / (1.0 + np.exp(-z))
def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z) * (1 - sigmoid(z))