-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdynamicremesh.cpp
executable file
·576 lines (505 loc) · 19.2 KB
/
dynamicremesh.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/*
Copyright ©2013 The Regents of the University of California
(Regents). All Rights Reserved. Permission to use, copy, modify, and
distribute this software and its documentation for educational,
research, and not-for-profit purposes, without fee and without a
signed licensing agreement, is hereby granted, provided that the
above copyright notice, this paragraph and the following two
paragraphs appear in all copies, modifications, and
distributions. Contact The Office of Technology Licensing, UC
Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620,
(510) 643-7201, for commercial licensing opportunities.
IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING
DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS
IS". REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
#include "dynamicremesh.hpp"
#include "geometry.hpp"
#include "magic.hpp"
#include "remesh.hpp"
#include "tensormax.hpp"
#include "timer.hpp"
#include "util.hpp"
#include <algorithm>
#include <cstdlib>
#include <map>
using namespace std;
static const bool verbose = false;
static Cloth::Remeshing *remeshing;
static bool plasticity;
void create_vert_sizing (Mesh &mesh, const vector<Plane> &planes);
void destroy_vert_sizing (Mesh &mesh);
// sizing field
struct Sizing {
Mat2x2 M;
Sizing (): M(Mat2x2(0)) {}
};
Sizing &operator+= (Sizing &s1, const Sizing &s2) {
s1.M += s2.M; return s1;
}
Sizing operator+ (const Sizing &s1, const Sizing &s2) {
Sizing s = s1; s += s2; return s;
}
Sizing &operator*= (Sizing &s, double a) {
s.M *= a; return s;
}
Sizing operator* (const Sizing &s, double a) {
Sizing s2 = s; s2 *= a; return s2;
}
Sizing operator* (double a, const Sizing &s) {
return s*a;
}
Sizing &operator/= (Sizing &s, double a) {
s.M /= a; return s;
}
Sizing operator/ (const Sizing &s, double a) {
Sizing s2 = s; s2 /= a; return s2;
}
double norm2 (const Vec2 &u, const Sizing &s) {
return dot(u, s.M*u);
}
double norm (const Vec2 &u, const Sizing &s) {
return sqrt(max(norm2(u,s), 0.));
}
Mat2x2 mean (const Sizing &s) {
return s.M;
}
// The algorithm
bool fix_up_mesh (vector<Face*> &active, Mesh &mesh, vector<Edge*>* edges=0);
bool split_worst_edge (Mesh &mesh);
bool improve_some_face (vector<Face*> &active, Mesh &mesh);
void static_remesh (Cloth &cloth) {
::remeshing = &cloth.remeshing;
Mesh &mesh = cloth.mesh;
for (int v = 0; v < mesh.verts.size(); v++) {
bool boundary = is_seam_or_boundary(mesh.verts[v]);
// in the case of fixed high res mesh use size mult for min length!
Sizing *sizing = new Sizing;
sizing->M = Mat2x2(1.f/sq(boundary
? remeshing->size_min * remeshing->size_mult_boundary
: remeshing->size_min));
mesh.verts[v]->sizing = sizing;
}
while (split_worst_edge(mesh));
vector<Face*> active = mesh.faces;
while (improve_some_face(active, mesh));
for (int v = 0; v < mesh.verts.size(); v++)
delete mesh.verts[v]->sizing;
update_indices(mesh);
compute_ms_data(mesh);
compute_masses(cloth);
}
void dynamic_remesh (Cloth &cloth, const vector<Plane> &planes,
bool plasticity) {
::remeshing = &cloth.remeshing;
::plasticity = plasticity;
Mesh &mesh = cloth.mesh;
create_vert_sizing(mesh, planes);
vector<Face*> active = mesh.faces;
fix_up_mesh(active, mesh);
while (split_worst_edge(mesh));
active = mesh.faces;
while (improve_some_face(active, mesh));
destroy_vert_sizing(mesh);
update_indices(mesh);
compute_ms_data(mesh);
compute_masses(cloth);
}
// Sizing
double angle (const Vec3 &n1, const Vec3 &n2) {
return acos(clamp(dot(n1,n2),-1.,1.));
}
template <int n> Mat<n,n> sqrt (const Mat<n,n> &A) {
Eig<n> eig = eigen_decomposition(A);
for (int i = 0; i < n; i++)
eig.l[i] = eig.l[i]>=0 ? sqrt(eig.l[i]) : -sqrt(-eig.l[i]);
return eig.Q*diag(eig.l)*eig.Q.t();
}
template <int n> Mat<n,n> pos (const Mat<n,n> &A) {
Eig<n> eig = eigen_decomposition(A);
for (int i = 0; i < n; i++)
eig.l[i] = max(eig.l[i], 0.);
return eig.Q*diag(eig.l)*eig.Q.t();
}
Mat2x2 perp (const Mat2x2 &A) {return Mat2x2(Vec2(A(1,1), -A(1,0)),
Vec2(-A(0,1), A(0,0)));}
Mat2x2 compression_metric (const Mat2x2 &e, const Mat2x2 &S2, double c) {
Mat2x2 D = e.t()*e - 4*sq(c)*perp(S2)*::magic.rib_stiffening;
return pos(-e + sqrt(D))/(2*sq(c));
}
Mat2x2 obstacle_metric (const Face *face, const vector<Plane> &planes) {
Mat2x2 o = Mat2x2(0);
for (int v = 0; v < 3; v++) {
Plane p = planes[face->v[v]->node->index];
if (norm2(p.second) == 0)
continue;
double h[3];
for (int v1 = 0; v1 < 3; v1++)
h[v1] = dot(face->v[v1]->node->x - p.first, p.second);
Vec2 dh = derivative(h[0], h[1], h[2], face);
o += outer(dh,dh)/sq(h[v]);
}
return o/3.;
}
Sizing compute_face_sizing (const Face *face, const vector<Plane> &planes) {
Sizing s;
Mat2x2 Sp = curvature<PS>(face);
Mat2x2 Sw1 = curvature<WS>(face);
Mat3x2 Sw2 = derivative(face->v[0]->node->n, face->v[1]->node->n,
face->v[2]->node->n, face);
Mat2x2 Mcurvp = !::plasticity ? Mat2x2(0)
: (Sp.t()*Sp)/sq(remeshing->refine_angle);
Mat2x2 Mcurvw1 = (Sw1.t()*Sw1)/sq(remeshing->refine_angle);
Mat2x2 Mcurvw2 = (Sw2.t()*Sw2)/sq(remeshing->refine_angle);
Mat3x2 V = derivative(face->v[0]->node->v, face->v[1]->node->v,
face->v[2]->node->v, face);
Mat2x2 Mvel = (V.t()*V)/sq(remeshing->refine_velocity);
Mat3x2 F = derivative(face->v[0]->node->x, face->v[1]->node->x,
face->v[2]->node->x, face);
// Mat2x2 Mcomp = compression_metric(F.t()*F)
// / sq(remeshing->refine_compression);
Mat2x2 Mcomp = compression_metric(F.t()*F - Mat2x2(1), Sw2.t()*Sw2,
remeshing->refine_compression);
Mat2x2 Mobs = (planes.empty()) ? Mat2x2(0) : obstacle_metric(face, planes);
vector<Mat2x2> Ms(6);
Ms[0] = Mcurvp;
Ms[1] = Mcurvw1;
Ms[2] = Mcurvw2;
Ms[3] = Mvel;
Ms[4] = Mcomp;
Ms[5] = Mobs;
s.M = ::magic.combine_tensors ? tensor_max(Ms)
: Ms[0] + Ms[1] + Ms[2] + Ms[3] + Ms[4] + Ms[5];
Eig<2> eig = eigen_decomposition(s.M);
bool boundary = is_seam_or_boundary(face);
for (int i = 0; i < 2; i++)
eig.l[i] = clamp(eig.l[i],
1.f/sq(boundary
? remeshing->size_max * remeshing->size_mult_boundary
: remeshing->size_max),
1.f/sq(remeshing->size_min));
double lmax = max(eig.l[0], eig.l[1]);
double lmin = lmax*sq(remeshing->aspect_min);
for (int i = 0; i < 2; i++)
if (eig.l[i] < lmin)
eig.l[i] = lmin;
s.M = eig.Q*diag(eig.l)*eig.Q.t();
return s;
}
static double area (const Vec2 &u0, const Vec2 &u1, const Vec2 &u2) {
return 0.5*wedge(u1-u0, u2-u0);
}
static double area (const Face *face) {
return area(face->v[0]->u, face->v[1]->u, face->v[2]->u);
}
static double perimeter (const Vec2 &u0, const Vec2 &u1, const Vec2 &u2) {
return norm(u0 - u1) + norm(u1 - u2) + norm(u2 - u0);
}
static double aspect (const Vec2 &u0, const Vec2 &u1, const Vec2 &u2) {
double a = area(u0, u1, u2);
double p = perimeter(u0, u1, u2);
return 12*sqrt(3)*a/sq(p);
}
static double aspect (const Face *face) {
return aspect(face->v[0]->u, face->v[1]->u, face->v[2]->u);
}
Sizing compute_vert_sizing (const Vert *vert,
const map<Face*,Sizing> &face_sizing) {
Sizing sizing;
for (int f = 0; f < vert->adjf.size(); f++) {
const Face *face = vert->adjf[f];
sizing += face->a/3. * face_sizing.find((Face*)face)->second;
}
sizing /= vert->a;
return sizing;
}
// Cache
void create_vert_sizing (Mesh &mesh, const vector<Plane> &planes) {
map<Face*,Sizing> face_sizing;
for (int f = 0; f < mesh.faces.size(); f++)
face_sizing[mesh.faces[f]] = compute_face_sizing(mesh.faces[f], planes);
for (int v = 0; v < mesh.verts.size(); v++)
mesh.verts[v]->sizing =
new Sizing(compute_vert_sizing(mesh.verts[v], face_sizing));
}
void destroy_vert_sizing (Mesh &mesh) {
for (int v = 0; v < mesh.verts.size(); v++)
delete mesh.verts[v]->sizing;
}
double edge_metric (const Vert *vert0, const Vert *vert1) {
if (!vert0 || !vert1)
return 0;
Vec2 du = vert0->u - vert1->u;
return sqrt((norm2(du, *vert0->sizing) + norm2(du, *vert1->sizing))/2.);
}
double edge_metric (const Edge *edge) {
double m = (edge_metric(edge_vert(edge,0,0), edge_vert(edge,0,1))
+ edge_metric(edge_vert(edge,1,0), edge_vert(edge,1,1)));
return (edge->adjf[0] && edge->adjf[1]) ? m/2 : m;
}
// Helpers
template <typename T> void include_all (const vector<T> &u, vector<T> &v) {for (int i = 0; i < u.size(); i++) include(u[i], v);}
template <typename T> void exclude_all (const vector<T> &u, vector<T> &v) {for (int i = 0; i < u.size(); i++) exclude(u[i], v);}
template <typename T> void set_null_all (const vector<T> &u, vector<T> &v) {for (int i = 0; i < u.size(); i++) exclude(u[i], v);}
void update_active (const RemeshOp &op, vector<Face*> &active) {
exclude_all(op.removed_faces, active);
include_all(op.added_faces, active);
}
void update_active (const vector<RemeshOp> &ops, vector<Face*> &active) {
for (int i = 0; i < ops.size(); i++)
update_active(ops[i], active);
}
// Fixing-upping
RemeshOp flip_edges (vector<Face*> &active, Mesh &mesh);
Vert *most_valent_vert (const vector<Face*> &faces);
// Vert *farthest_neighbor (const Vert *vert);
bool fix_up_mesh (vector<Face*> &active, Mesh &mesh, vector<Edge*> *edges) {
RemeshOp flip_ops = flip_edges(active, mesh);
update_active(flip_ops, active);
if (edges)
set_null_all(flip_ops.removed_edges, *edges);
flip_ops.done();
return !flip_ops.empty();
}
RemeshOp flip_some_edges (vector<Face*> &active, Mesh &mesh);
RemeshOp flip_edges (vector<Face*> &active, Mesh &mesh) {
RemeshOp ops;
for (int i = 0; i < 3*mesh.verts.size(); i++) {// don't loop without bound
RemeshOp op = flip_some_edges(active, mesh);
if (op.empty())
break;
ops = compose(ops, op);
}
return ops;
}
vector<Edge*> find_edges_to_flip (const vector<Face*> &active);
vector<Edge*> independent_edges (const vector<Edge*> &edges);
bool inverted (const Face *face) {return area(face) < 1e-12;}
bool degenerate (const Face *face) {
return aspect(face) < remeshing->aspect_min/4;}
bool any_inverted (const vector<Face*> faces) {
for (int i=0; i<faces.size(); i++) if (inverted(faces[i])) return true;
return false;
}
bool any_degenerate (const vector<Face*> faces) {
for (int i=0; i<faces.size(); i++) if (degenerate(faces[i])) return true;
return false;
}
RemeshOp flip_some_edges (vector<Face*> &active, Mesh &mesh) {
RemeshOp ops;
static int n_edges_prev = 0;
vector<Edge*> edges = independent_edges(find_edges_to_flip(active));
if (edges.size() == n_edges_prev) // probably infinite loop
return ops;
n_edges_prev = edges.size();
for (int e = 0; e < edges.size(); e++) {
Edge *edge = edges[e];
RemeshOp op = flip_edge(edge);
op.apply(mesh);
if (any_inverted(op.added_faces)) {
op.inverse().apply(mesh);
op.inverse().done();
continue;
}
update_active(op, active);
ops = compose(ops, op);
}
return ops;
}
bool should_flip (const Edge *edge);
vector<Edge*> find_edges_to_flip (const vector<Face*> &active){
vector<Edge*> edges;
for (int f = 0; f < active.size(); f++) {
include(active[f]->adje[0], edges);
include(active[f]->adje[1], edges);
include(active[f]->adje[2], edges);
}
vector<Edge*> fedges;
for (int e = 0; e < edges.size(); e++) {
Edge *edge = edges[e];
if (is_seam_or_boundary(edge) || edge->label != 0
|| !should_flip(edge))
continue;
fedges.push_back(edge);
}
return fedges;
}
bool independent (const Edge *edge, const vector<Edge*> &edges) {
for (int i = 0; i < edges.size(); i++) {
Edge *edge1 = edges[i];
if (edge->n[0] == edge1->n[0] || edge->n[0] == edge1->n[1]
|| edge->n[1] == edge1->n[0] || edge->n[1] == edge1->n[1])
return false;
}
return true;
}
vector<Edge*> independent_edges (const vector<Edge*> &edges) {
vector<Edge*> iedges;
for (int e = 0; e < edges.size(); e++)
if (independent(edges[e], iedges))
iedges.push_back(edges[e]);
return iedges;
}
double cross (const Vec2 &u, const Vec2 &v) {return u[0]*v[1] - u[1]*v[0];}
// from Bossen and Heckbert 1996
bool should_flip (const Edge *edge) {
const Vert *vert0 = edge_vert(edge, 0, 0), *vert1 = edge_vert(edge, 0, 1),
*vert2 = edge_opp_vert(edge, 0), *vert3 = edge_opp_vert(edge, 1);
Vec2 x = vert0->u, z = vert1->u, w = vert2->u, y = vert3->u;
Mat2x2 M = (mean(*vert0->sizing) + mean(*vert1->sizing)
+ mean(*vert2->sizing) + mean(*vert3->sizing))/4.;
return wedge(z-y, x-y)*dot(x-w, M*(z-w)) + dot(z-y, M*(x-y))*wedge(x-w, z-w)
< -::magic.edge_flip_threshold*(wedge(z-y, x-y) + wedge(x-w, z-w));
}
// Splitting
vector<Edge*> find_bad_edges (const Mesh &mesh);
Sizing mean_vert_sizing (const Vert *vert0, const Vert *vert1);
Vert *adjacent_vert (const Node *node, const Vert *vert);
bool split_worst_edge (Mesh &mesh) {
vector<Edge*> edges = find_bad_edges(mesh);
for (int e = 0; e < edges.size(); e++) {
Edge *edge = edges[e];
if (!edge) continue;
Node *node0 = edge->n[0], *node1 = edge->n[1];
RemeshOp op = split_edge(edge);
op.apply(mesh);
for (int v = 0; v < op.added_verts.size(); v++) {
Vert *vertnew = op.added_verts[v];
Vert *v0 = adjacent_vert(node0, vertnew),
*v1 = adjacent_vert(node1, vertnew);
vertnew->sizing = new Sizing(mean_vert_sizing(v0, v1));
}
set_null_all(op.removed_edges, edges);
op.done();
if (verbose)
cout << "Split " << node0 << " and " << node1 << endl;
vector<Face*> active = op.added_faces;
fix_up_mesh(active, mesh, &edges);
}
return !edges.empty();
}
// don't use edge pointer as secondary sort key, otherwise not reproducible
struct Deterministic_sort {
inline bool operator()(const std::pair<double,Edge*> &left, const std::pair<double,Edge*> &right) {
return left.first < right.first;
}
} deterministic_sort;
vector<Edge*> find_bad_edges (const Mesh &mesh) {
vector< pair<double,Edge*> > edgems;
for (int e = 0; e < mesh.edges.size(); e++) {
Edge *edge = mesh.edges[e];
double m = edge_metric(edge);
if (m > 1)
edgems.push_back(make_pair(m, edge));
}
sort(edgems.begin(), edgems.end(), deterministic_sort);
vector<Edge*> edges(edgems.size());
for (int e = 0; e < edgems.size(); e++)
edges[e] = edgems[edgems.size()-e-1].second;
return edges;
}
Sizing mean_vert_sizing (const Vert *vert0, const Vert *vert1) {
Sizing sizing = *vert0->sizing;
sizing += *vert1->sizing;
return sizing/2.;
}
Vert *adjacent_vert (const Node *node, const Vert *vert) {
const Edge *edge = get_edge(node, vert->node);
for (int i = 0; i < 2; i++)
for (int s = 0; s < 2; s++)
if (edge_vert(edge, s, i) == vert)
return edge_vert(edge, s, 1-i);
return NULL;
}
// Collapsing
vector<int> sort_edges_by_length (const Face *face);
RemeshOp try_edge_collapse (Edge *edge, int which, Mesh &mesh);
bool improve_some_face (vector<Face*> &active, Mesh &mesh) {
for (int f = 0; f < active.size(); f++) {
Face *face = active[f];
for (int e = 0; e < 3; e++) {
Edge *edge = face->adje[e];
RemeshOp op;
if (op.empty()) op = try_edge_collapse(edge, 0, mesh);
if (op.empty()) op = try_edge_collapse(edge, 1, mesh);
if (op.empty()) continue;
op.done();
update_active(op, active);
vector<Face*> fix_active = op.added_faces;
RemeshOp flip_ops = flip_edges(fix_active, mesh);
update_active(flip_ops, active);
flip_ops.done();
return true;
}
remove(f--, active);
}
return false;
}
bool has_labeled_edges (const Node *node);
bool can_collapse (const Edge *edge, int which);
bool any_nearly_invalid (const vector<Edge*> edges) {
for (int i = 0; i < edges.size(); i++)
if (edge_metric(edges[i]) > 0.9) return true;
return false;
}
RemeshOp try_edge_collapse (Edge *edge, int which, Mesh &mesh) {
Node *node0 = edge->n[which], *node1 = edge->n[1-which];
if (node0->preserve
|| (is_seam_or_boundary(node0) && !is_seam_or_boundary(edge))
|| (has_labeled_edges(node0) && !edge->label))
return RemeshOp();
if (!can_collapse(edge, which))
return RemeshOp();
RemeshOp op = collapse_edge(edge, which);
op.apply(mesh);
if (op.empty())
return op;
// if (any_inverted(op.added_faces) || any_degenerate(op.added_faces)
// || any_nearly_invalid(op.added_edges)) {
// op.inverse().apply(mesh);
// op.inverse().done();
// return RemeshOp();
// }
for (int v = 0; v < op.removed_verts.size(); v++)
delete op.removed_verts[v]->sizing;
// delete op.removed_nodes[0]->res;
if (verbose)
cout << "Collapsed " << node0 << " into " << node1 << endl;
return op;
}
bool has_labeled_edges (const Node *node) {
for (int e = 0; e < node->adje.size(); e++)
if (node->adje[e]->label)
return true;
return false;
}
bool can_collapse (const Edge *edge, int i) {
for (int s = 0; s < 2; s++) {
const Vert *vert0 = edge_vert(edge,s,i), *vert1 = edge_vert(edge,s,1-i);
if (!vert0 || (s == 1 && vert0 == edge_vert(edge, 0, i)))
continue;
for (int f = 0; f < vert0->adjf.size(); f++) {
const Face *face = vert0->adjf[f];
if (is_in(vert1, face->v))
continue;
const Vert *vs[3] = {face->v[0], face->v[1], face->v[2]};
replace(vert0, vert1, vs);
double a = wedge(vs[1]->u - vs[0]->u, vs[2]->u - vs[0]->u)/2;
double asp = aspect(vs[0]->u, vs[1]->u, vs[2]->u);
if (a < 1e-6 || asp < remeshing->aspect_min)
return false;
for (int e = 0; e < 3; e++)
if (vs[e]!=vert1 && edge_metric(vs[NEXT(e)], vs[PREV(e)]) > 0.9)
return false;
}
}
return true;
}