-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcollision.cpp
executable file
·507 lines (449 loc) · 17.5 KB
/
collision.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
Copyright ©2013 The Regents of the University of California
(Regents). All Rights Reserved. Permission to use, copy, modify, and
distribute this software and its documentation for educational,
research, and not-for-profit purposes, without fee and without a
signed licensing agreement, is hereby granted, provided that the
above copyright notice, this paragraph and the following two
paragraphs appear in all copies, modifications, and
distributions. Contact The Office of Technology Licensing, UC
Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620,
(510) 643-7201, for commercial licensing opportunities.
IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING
DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS
IS". REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
#include "collision.hpp"
#include "collisionutil.hpp"
#include "geometry.hpp"
#include "magic.hpp"
#include "optimization.hpp"
#include "simulation.hpp"
#include "timer.hpp"
#include <algorithm>
#include <fstream>
#include <omp.h>
using namespace std;
static const int max_iter = 100;
static const double &thickness = ::magic.projection_thickness;
static double obs_mass;
static bool deform_obstacles;
static vector<Vec3> xold;
static vector<Vec3> xold_obs;
double get_mass (const Node *node) {return is_free(node) ? node->m : obs_mass;}
// returns pair of (i) is_free(vert), and
// (ii) index of mesh in ::meshes or ::obs_meshes that contains vert
pair<bool,int> find_in_meshes (const Node *node) {
int m = find_mesh(node, *::meshes);
if (m != -1)
return make_pair(true, m);
else
return make_pair(false, find_mesh(node, *::obs_meshes));
}
struct Impact {
enum Type {VF, EE} type;
double t;
Node *nodes[4];
double w[4];
Vec3 n;
Impact () {}
Impact (Type type, const Node *n0, const Node *n1, const Node *n2,
const Node *n3): type(type) {
nodes[0] = (Node*)n0;
nodes[1] = (Node*)n1;
nodes[2] = (Node*)n2;
nodes[3] = (Node*)n3;
}
};
struct ImpactZone {
vector<Node*> nodes;
vector<Impact> impacts;
bool active;
};
void update_active (const vector<AccelStruct*> &accs,
const vector<AccelStruct*> &obs_accs,
const vector<ImpactZone*> &zones);
vector<Impact> find_impacts (const vector<AccelStruct*> &acc,
const vector<AccelStruct*> &obs_accs);
vector<Impact> independent_impacts (const vector<Impact> &impacts);
void add_impacts (const vector<Impact> &impacts, vector<ImpactZone*> &zones);
void apply_inelastic_projection (ImpactZone *zone,
const vector<Constraint*> &cons);
vector<Constraint> impact_constraints (const vector<ImpactZone*> &zones);
ostream &operator<< (ostream &out, const Impact &imp);
ostream &operator<< (ostream &out, const ImpactZone *zone);
void collision_response (vector<Mesh*> &meshes, const vector<Constraint*> &cons,
const vector<Mesh*> &obs_meshes) {
::meshes = &meshes;
::obs_meshes = &obs_meshes;
::xold = node_positions(meshes);
::xold_obs = node_positions(obs_meshes);
vector<AccelStruct*> accs = create_accel_structs(meshes, true),
obs_accs = create_accel_structs(obs_meshes, true);
vector<ImpactZone*> zones;
::obs_mass = 1e3;
int iter;
for (int deform = 0; deform <= 1; deform++) {
::deform_obstacles = deform;
zones.clear();
for (iter = 0; iter < max_iter; iter++) {
if (!zones.empty())
update_active(accs, obs_accs, zones);
// can have difficulty finding impacts
vector<Impact> impacts = find_impacts(accs, obs_accs);
impacts = independent_impacts(impacts);
if (impacts.empty())
break;
add_impacts(impacts, zones);
for (int z = 0; z < zones.size(); z++) {
ImpactZone *zone = zones[z];
apply_inelastic_projection(zone, cons);
}
for (int a = 0; a < accs.size(); a++)
update_accel_struct(*accs[a]);
for (int a = 0; a < obs_accs.size(); a++)
update_accel_struct(*obs_accs[a]);
if (deform_obstacles)
::obs_mass /= 2;
}
if (iter < max_iter) // success!
break;
}
if (iter == max_iter) {
cerr << "Collision resolution failed to converge!" << endl;
debug_save_meshes(meshes, "meshes");
debug_save_meshes(obs_meshes, "obsmeshes");
exit(1);
}
for (int m = 0; m < meshes.size(); m++) {
compute_ws_data(*meshes[m]);
update_x0(*meshes[m]);
}
for (int o = 0; o < obs_meshes.size(); o++) {
compute_ws_data(*obs_meshes[o]);
update_x0(*obs_meshes[o]);
}
for (int z = 0; z < zones.size(); z++)
delete zones[z];
destroy_accel_structs(accs);
destroy_accel_structs(obs_accs);
}
void update_active (const vector<AccelStruct*> &accs,
const vector<AccelStruct*> &obs_accs,
const vector<ImpactZone*> &zones) {
for (int a = 0; a < accs.size(); a++)
mark_all_inactive(*accs[a]);
for (int a = 0; a < obs_accs.size(); a++)
mark_all_inactive(*obs_accs[a]);
for (int z = 0; z < zones.size(); z++) {
const ImpactZone *zone = zones[z];
if (!zone->active)
continue;
for (int n = 0; n < zone->nodes.size(); n++) {
const Node *node = zone->nodes[n];
pair<bool,int> mi = find_in_meshes(node);
AccelStruct *acc = (mi.first ? accs : obs_accs)[mi.second];
for (int v = 0; v < node->verts.size(); v++)
for (int f = 0; f < node->verts[v]->adjf.size(); f++)
mark_active(*acc, node->verts[v]->adjf[f]);
}
}
}
// Impacts
static int nthreads = 0;
static vector<Impact> *impacts = NULL;
void find_face_impacts (const Face *face0, const Face *face1);
vector<Impact> find_impacts (const vector<AccelStruct*> &accs,
const vector<AccelStruct*> &obs_accs) {
if (!impacts) {
::nthreads = omp_get_max_threads();
::impacts = new vector<Impact>[::nthreads];
}
for (int t = 0; t < ::nthreads; t++)
::impacts[t].clear();
// std::cout << "before finding overlapping faces" << std::endl;
for_overlapping_faces(accs, obs_accs, ::thickness, find_face_impacts);
// std::cout << "before finding overlapping faces" << std::endl;
vector<Impact> impacts;
for (int t = 0; t < ::nthreads; t++)
append(impacts, ::impacts[t]);
return impacts;
}
bool vf_collision_test (const Vert *vert, const Face *face, Impact &impact);
bool ee_collision_test (const Edge *edge0, const Edge *edge1, Impact &impact);
void find_face_impacts (const Face *face0, const Face *face1) {
int t = omp_get_thread_num();
Impact impact;
for (int v = 0; v < 3; v++)
if (vf_collision_test(face0->v[v], face1, impact))
::impacts[t].push_back(impact);
for (int v = 0; v < 3; v++)
if (vf_collision_test(face1->v[v], face0, impact))
::impacts[t].push_back(impact);
for (int e0 = 0; e0 < 3; e0++)
for (int e1 = 0; e1 < 3; e1++)
if (ee_collision_test(face0->adje[e0], face1->adje[e1], impact))
::impacts[t].push_back(impact);
}
bool collision_test (Impact::Type type, const Node *node0, const Node *node1,
const Node *node2, const Node *node3, Impact &impact);
bool vf_collision_test (const Vert *vert, const Face *face, Impact &impact) {
const Node *node = vert->node;
if (node == face->v[0]->node
|| node == face->v[1]->node
|| node == face->v[2]->node)
return false;
if (!overlap(node_box(node, true), face_box(face, true), ::thickness))
return false;
return collision_test(Impact::VF, node, face->v[0]->node, face->v[1]->node,
face->v[2]->node, impact);
}
bool ee_collision_test (const Edge *edge0, const Edge *edge1, Impact &impact) {
if (edge0->n[0] == edge1->n[0] || edge0->n[0] == edge1->n[1]
|| edge0->n[1] == edge1->n[0] || edge0->n[1] == edge1->n[1])
return false;
if (!overlap(edge_box(edge0, true), edge_box(edge1, true), ::thickness))
return false;
return collision_test(Impact::EE, edge0->n[0], edge0->n[1],
edge1->n[0], edge1->n[1], impact);
}
int solve_cubic (double a3, double a2, double a1, double a0, double t[3]);
Vec3 pos (const Node *node, double t);
bool collision_test (Impact::Type type, const Node *node0, const Node *node1,
const Node *node2, const Node *node3, Impact &impact) {
impact.type = type;
impact.nodes[0] = (Node*)node0;
impact.nodes[1] = (Node*)node1;
impact.nodes[2] = (Node*)node2;
impact.nodes[3] = (Node*)node3;
const Vec3 &x0 = node0->x0, v0 = node0->x - x0;
Vec3 x1 = node1->x0 - x0, x2 = node2->x0 - x0, x3 = node3->x0 - x0;
Vec3 v1 = (node1->x - node1->x0) - v0, v2 = (node2->x - node2->x0) - v0,
v3 = (node3->x - node3->x0) - v0;
double a0 = stp(x1, x2, x3),
a1 = stp(v1, x2, x3) + stp(x1, v2, x3) + stp(x1, x2, v3),
a2 = stp(x1, v2, v3) + stp(v1, x2, v3) + stp(v1, v2, x3),
a3 = stp(v1, v2, v3);
double t[4];
int nsol = solve_cubic(a3, a2, a1, a0, t);
t[nsol] = 1; // also check at end of timestep
for (int i = 0; i < nsol; i++) {
if (t[i] < 0 || t[i] > 1)
continue;
impact.t = t[i];
Vec3 x0 = pos(node0,t[i]), x1 = pos(node1,t[i]),
x2 = pos(node2,t[i]), x3 = pos(node3,t[i]);
Vec3 &n = impact.n;
double *w = impact.w;
double d;
bool inside;
if (type == Impact::VF) {
d = signed_vf_distance(x0, x1, x2, x3, &n, w);
inside = (min(-w[1], -w[2], -w[3]) >= -1e-6);
} else {// Impact::EE
d = signed_ee_distance(x0, x1, x2, x3, &n, w);
inside = (min(w[0], w[1], -w[2], -w[3]) >= -1e-6);
}
if (dot(n, w[1]*v1 + w[2]*v2 + w[3]*v3) > 0)
n = -n;
if (abs(d) < 1e-6 && inside)
return true;
}
return false;
}
Vec3 pos (const Node *node, double t) {
return node->x0 + t*(node->x - node->x0);}
// Solving cubic equations
double newtons_method (double a, double b, double c, double d, double x0,
int init_dir);
// solves a x^3 + b x^2 + c x + d == 0
int solve_cubic (double a, double b, double c, double d, double x[3]) {
double xc[2];
int ncrit = solve_quadratic(3*a, 2*b, c, xc);
if (ncrit == 0) {
x[0] = newtons_method(a, b, c, d, xc[0], 0);
return 1;
} else if (ncrit == 1) {// cubic is actually quadratic
return solve_quadratic(b, c, d, x);
} else {
double yc[2] = {d + xc[0]*(c + xc[0]*(b + xc[0]*a)),
d + xc[1]*(c + xc[1]*(b + xc[1]*a))};
int i = 0;
if (yc[0]*a >= 0)
x[i++] = newtons_method(a, b, c, d, xc[0], -1);
if (yc[0]*yc[1] <= 0) {
int closer = abs(yc[0])<abs(yc[1]) ? 0 : 1;
x[i++] = newtons_method(a, b, c, d, xc[closer], closer==0?1:-1);
}
if (yc[1]*a <= 0)
x[i++] = newtons_method(a, b, c, d, xc[1], 1);
return i;
}
}
double newtons_method (double a, double b, double c, double d, double x0,
int init_dir) {
if (init_dir != 0) {
// quadratic approximation around x0, assuming y' = 0
double y0 = d + x0*(c + x0*(b + x0*a)),
ddy0 = 2*b + x0*(6*a);
x0 += init_dir*sqrt(abs(2*y0/ddy0));
}
for (int iter = 0; iter < 100; iter++) {
double y = d + x0*(c + x0*(b + x0*a));
double dy = c + x0*(2*b + x0*3*a);
if (dy == 0)
return x0;
double x1 = x0 - y/dy;
if (abs(x0 - x1) < 1e-6)
return x0;
x0 = x1;
}
return x0;
}
// Independent impacts
bool operator< (const Impact &impact0, const Impact &impact1) {
return impact0.t < impact1.t;
}
bool conflict (const Impact &impact0, const Impact &impact1);
vector<Impact> independent_impacts (const vector<Impact> &impacts) {
vector<Impact> sorted = impacts;
sort(sorted.begin(), sorted.end());
vector<Impact> indep;
for (int e = 0; e < sorted.size(); e++) {
const Impact &impact = sorted[e];
bool con = false;
for (int e1 = 0; e1 < indep.size(); e1++)
if (conflict(impact, indep[e1]))
con = true;
if (!con)
indep.push_back(impact);
}
return indep;
}
bool conflict (const Impact &i0, const Impact &i1) {
return (is_free(i0.nodes[0]) && is_in(i0.nodes[0], i1.nodes, 4))
|| (is_free(i0.nodes[1]) && is_in(i0.nodes[1], i1.nodes, 4))
|| (is_free(i0.nodes[2]) && is_in(i0.nodes[2], i1.nodes, 4))
|| (is_free(i0.nodes[3]) && is_in(i0.nodes[3], i1.nodes, 4));
}
// Impact zones
ImpactZone *find_or_create_zone (const Node *node, vector<ImpactZone*> &zones);
void merge_zones (ImpactZone* zone0, ImpactZone *zone1,
vector<ImpactZone*> &zones);
void add_impacts (const vector<Impact> &impacts, vector<ImpactZone*> &zones) {
for (int z = 0; z < zones.size(); z++)
zones[z]->active = false;
for (int i = 0; i < impacts.size(); i++) {
const Impact &impact = impacts[i];
Node *node = impact.nodes[is_free(impact.nodes[0]) ? 0 : 3];
ImpactZone *zone = find_or_create_zone(node, zones);
for (int n = 0; n < 4; n++)
if (is_free(impact.nodes[n]) || ::deform_obstacles)
merge_zones(zone, find_or_create_zone(impact.nodes[n], zones),
zones);
zone->impacts.push_back(impact);
zone->active = true;
}
}
ImpactZone *find_or_create_zone (const Node *node, vector<ImpactZone*> &zones) {
for (int z = 0; z < zones.size(); z++)
if (is_in((Node*)node, zones[z]->nodes))
return zones[z];
ImpactZone *zone = new ImpactZone;
zone->nodes.push_back((Node*)node);
zones.push_back(zone);
return zone;
}
void merge_zones (ImpactZone* zone0, ImpactZone *zone1,
vector<ImpactZone*> &zones) {
if (zone0 == zone1)
return;
append(zone0->nodes, zone1->nodes);
append(zone0->impacts, zone1->impacts);
exclude(zone1, zones);
delete zone1;
}
// Response
struct NormalOpt: public NLConOpt {
ImpactZone *zone;
double inv_m;
NormalOpt (): zone(NULL), inv_m(0) {nvar = ncon = 0;}
NormalOpt (ImpactZone *zone): zone(zone), inv_m(0) {
nvar = zone->nodes.size()*3;
ncon = zone->impacts.size();
for (int n = 0; n < zone->nodes.size(); n++)
inv_m += 1/get_mass(zone->nodes[n]);
inv_m /= zone->nodes.size();
}
void initialize (double *x) const;
void precompute (const double *x) const;
double objective (const double *x) const;
void obj_grad (const double *x, double *grad) const;
double constraint (const double *x, int i, int &sign) const;
void con_grad (const double *x, int i, double factor, double *grad) const;
void finalize (const double *x) const;
};
void apply_inelastic_projection (ImpactZone *zone,
const vector<Constraint*> &cons) {
if (!zone->active)
return;
augmented_lagrangian_method(NormalOpt(zone));
}
void NormalOpt::initialize (double *x) const {
for (int n = 0; n < zone->nodes.size(); n++)
set_subvec(x, n, zone->nodes[n]->x);
}
void NormalOpt::precompute (const double *x) const {
for (int n = 0; n < zone->nodes.size(); n++)
zone->nodes[n]->x = get_subvec(x, n);
}
const Vec3 &get_xold (const Node *node);
double NormalOpt::objective (const double *x) const {
double e = 0;
for (int n = 0; n < zone->nodes.size(); n++) {
const Node *node = zone->nodes[n];
Vec3 dx = node->x - get_xold(node);
e += inv_m*get_mass(node)*norm2(dx)/2;
}
return e;
}
void NormalOpt::obj_grad (const double *x, double *grad) const {
for (int n = 0; n < zone->nodes.size(); n++) {
const Node *node = zone->nodes[n];
Vec3 dx = node->x - get_xold(node);
set_subvec(grad, n, inv_m*get_mass(node)*dx);
}
}
double NormalOpt::constraint (const double *x, int j, int &sign) const {
sign = 1;
double c = -::thickness;
const Impact &impact = zone->impacts[j];
for (int n = 0; n < 4; n++)
c += impact.w[n]*dot(impact.n, impact.nodes[n]->x);
return c;
}
void NormalOpt::con_grad (const double *x, int j, double factor,
double *grad) const {
const Impact &impact = zone->impacts[j];
for (int n = 0; n < 4; n++) {
int i = find(impact.nodes[n], zone->nodes);
if (i != -1)
add_subvec(grad, i, factor*impact.w[n]*impact.n);
}
}
void NormalOpt::finalize (const double *x) const {
precompute(x);
}
const Vec3 &get_xold (const Node *node) {
pair<bool,int> mi = find_in_meshes(node);
int ni = get_index(node, mi.first ? *::meshes : *::obs_meshes);
return (mi.first ? ::xold : ::xold_obs)[ni];
}