-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocess.py
executable file
·712 lines (627 loc) · 37.9 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
from genericpath import exists
import SimpleITK
import numpy as np
from pandas import DataFrame
from scipy.ndimage import center_of_mass, label
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import torch
from wandb import Config
from evalutils import DetectionAlgorithm
from evalutils.validators import (
UniquePathIndicesValidator,
UniqueImagesValidator,
)
from collections import OrderedDict
from skimage import transform
from torchvision import transforms
import json
from typing import Dict
import math
import albumentations as A
from typing import List, Optional
import shutil
# import training_utils.utils as utils
# from training_utils.dataset import CXRNoduleDataset, get_transform
import os
# from training_utils.train import train_one_epoch
import itertools
from pathlib import Path
from postprocessing import get_NonMaxSup_boxes, PostProcess
from omegaconf import DictConfig
from src.utils.utils import xyxy2yxyx, yxyx2xyxy
# Config stuff
import hydra
from omegaconf import DictConfig, OmegaConf
import glob
# import lightning modules
from pytorch_lightning import (
Callback,
LightningDataModule,
LightningModule,
Trainer,
seed_everything,
)
from pytorch_lightning.plugins import DDPPlugin
import pandas as pd
from src.utils.ensemble_boxes_weighted_numpy import ensemble_boxes
from sklearn.model_selection import StratifiedGroupKFold
from training_utils.yolov5.train import main as train_yolo
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
import sys
import yaml
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
# This parameter adapts the paths between local execution and execution in docker. You can use this flag to switch between these two modes.
# For building your docker, set this parameter to True. If False, it will run process.py locally for test purposes.
# update
# update
# update
execute_in_docker = True
if not execute_in_docker :
print('NOT IN DOCKER MODE')
class Noduledetection(DetectionAlgorithm):
def __init__(self, input_dir, output_dir, train=False, retrain=False, retest=False):
super().__init__(
validators=dict(
input_image=(
UniqueImagesValidator(),
UniquePathIndicesValidator(),
)
),
input_path = Path(input_dir) if execute_in_docker else Path('//home/Behrendt/projects/Node21/node21-submit/output/'),
output_file = Path(os.path.join(output_dir,'nodules.json')) if execute_in_docker else Path(os.path.join('//home/Behrendt/projects/Node21/node21-submit/output/','nodules.json'))
)
self.retrain = retrain
### Model ###
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('using the device ', self.device)
if train or retrain:
self.device = torch.device("cpu")
print('torch version: ',torch.__version__)
print('python version: ',sys.version)
self.input_path, self.output_path = input_dir, output_dir
self.model_ckpt_dir = self.output_path +"/retrain/" if execute_in_docker else "//home/Behrendt//projects/Node21/node21-submit/output/retrain/"
path_prefix_base = Path("/opt/algorithm/checkpoints/") if execute_in_docker else Path("//home/Behrendt/projects/Node21/node21-submit/checkpoints/")
if not retest:
path_prefix = {
'fcrnn_l': os.path.join(path_prefix_base,Path("notest_final/fcrnn_1024_gen//")), # all possible architectures
'retina_l': os.path.join(path_prefix_base,Path("notest_final/retina_1024_gen//")),
'effdet2_l': os.path.join(path_prefix_base,Path("notest_final/effdet_1024_gen/")),
'yolo_s': os.path.join(path_prefix_base,Path("notest_final/yolo_640_gen")),
# 'fcrnn_s': os.path.join(path_prefix_base,Path("notest_final/fcrnn_512_gen//")), # all possible architectures
# 'retina_s': os.path.join(path_prefix_base,Path("notest_final/retina_512_gen//")),
# 'effdet2_s': os.path.join(path_prefix_base,Path("notest_final/effdet_512_gen/")),
'yolo_l': os.path.join(path_prefix_base,Path("notest_final/yolo_1024_gen")),
# 'detr': os.path.join(path_prefix_base,Path("final_models/detr_1024_gen"))
}
else: # TODO
path_prefix = {
'fcrnn_l': os.path.join(self.input_path,Path("retrain/fcrnn_l/")), # all possible architectures
'retina_l': os.path.join(self.input_path,Path("retrain/retina_l")),
'effdet2_l': os.path.join(self.input_path,Path("retrain/effdet2_l")),
'yolo_s': os.path.join(self.input_path,Path("retrain/yolo_s")),
# 'fcrnn_s': os.path.join(self.input_path,Path("retrain/fcrnn_s")), # all possible architectures
# 'retina_s': os.path.join(self.input_path,Path("retrain/retina_s")),
# 'effdet2_s': os.path.join(self.input_path,Path("retrain/effdet2_s")),
'yolo_l': os.path.join(self.input_path,Path("retrain/yolo_l")),
# 'detr': os.path.join(self.input_path,Path("retrain/detr"))
}
# print(os.listdir(path_prefix['fcrnn_l']))
# print('prefix: ',path_prefix)
checkpoints = {'fold-1':[],
'fold-2':[],
'fold-3':[],
'fold-4':[],
'fold-5':[]
} # dict to store the checkpoints with their path for different folds
archs = {
'fcrnn_l': checkpoints, # all possible architectures
'retina_l': checkpoints,
'effdet2_l': checkpoints,
'yolo_s': checkpoints,
# 'fcrnn_s': checkpoints, # all possible architectures
# 'retina_s': checkpoints,
# 'effdet2_s': checkpoints,
'yolo_l': checkpoints,
# # 'detr': checkpoints
}
self.models = {}
self.ensemble_per_model = False
for arch in archs:
if 'yolo' in str(path_prefix[arch]).lower():
checkpoint_to_load = 'best_k'
else:
checkpoint_to_load = 'last'
print(f'LOADING {checkpoint_to_load} Checkpoints for {arch}')
archs[arch] = {'fold-1':[],
'fold-2':[],
'fold-3':[],
'fold-4':[],
'fold-5':[]
}
self.models[arch] = {'fold-1':[],
'fold-2':[],
'fold-3':[],
'fold-4':[],
'fold-5':[]
}
all_checkpoints = os.listdir(path_prefix[arch])
print('checkpoints in :', path_prefix[arch], all_checkpoints)
best_ckpts = []
if checkpoint_to_load == 'last':
matching_checkpoints = [c for c in all_checkpoints if "last" in c]
for fold, cp_name in enumerate(matching_checkpoints):
archs[arch][f'fold-{fold+1}'] = [Path(os.path.join(path_prefix[arch],Path(cp_name)))]
elif 'best_k' in checkpoint_to_load :
matching_checkpoints = [c for c in all_checkpoints if "last" not in c]
# matching_checkpoints.sort(key = lambda x: x.split('loss-')[1][0:4]) # sort by loss value -> increasing
for fold in checkpoints:
for cp in matching_checkpoints:
if f"{fold}" in cp:
archs[arch][fold].append(Path(os.path.join(path_prefix[arch],Path(cp))))
elif checkpoint_to_load == 'best':
for fold in archs[arch]:
for cp in best_ckpts:
if f"{fold}" in cp:
archs[arch][fold].append(cp)
if 'effdet' in str(path_prefix[arch]).lower():
del archs[arch]['fold-2']
del self.models[arch]['fold-2']
del archs[arch]['fold-5']
del self.models[arch]['fold-5']
del archs[arch]['fold-4']
del self.models[arch]['fold-4']
del archs[arch]['fold-3']
del self.models[arch]['fold-3']
# elif 'yolo_l' in str(path_prefix[arch]).lower():
# del archs[arch]['fold-2']
# del self.models[arch]['fold-2']
for fold in archs[arch]: # for all models
self.effdet = False
self.yolo = False
self.detr = False
# print(archs[arch][fold])
for ckpt in archs[arch][fold]: # for all individual checkpoints
if 'effdet' in str(ckpt).lower(): # important to name folder correct..
from src.models.Detector_effdet import Detector as Detector
self.effdet = True
self.model = Detector.load_from_checkpoint(ckpt,map_location=self.device)
print('USING E')
elif 'detr' in str(ckpt).lower():
from src.models.Detector_detr import Detector as Detector
self.detr = True
self.postprocessors = PostProcess()
self.model = Detector.load_from_checkpoint(ckpt,map_location=self.device)
print('USING D')
elif 'yolo' in str(ckpt).lower():
files = os.listdir(ckpt.parents[0])
for item in files: # we need to make sure that there are no image files
if item.endswith(".jpg") or item.endswith(".png"):
os.remove(os.path.join(ckpt.parents[0], item))
modelpath = Path("/opt/algorithm/training_utils/yolov5") if execute_in_docker else Path("//home/Behrendt/projects/Node21/node21-submit/training_utils/yolov5/")
self.model = torch.hub.load(modelpath, 'custom', path=ckpt, autoshape=True,force_reload=True, source='local',device=self.device) # local model
self.yolo = True
print('USING Y')
self.model.conf = 0.01 # 0.25
self.model.iou = 0.2 # 0.45
else:
from src.models.Detector import Detector as Detector
self.effdet = False
self.model = Detector.load_from_checkpoint(ckpt,map_location=self.device)
# print('loading: ',ckpt)
self.model.to(self.device)
self.models[arch][fold].append(self.model)
if retrain:
self.archs = archs
def save(self):
with open(str(self._output_file), "w") as f:
json.dump(self._case_results[0], f)
# TODO: Copy this function for your processor as well!
def process_case(self, *, idx, case):
'''
Read the input, perform model prediction and return the results.
The returned value will be saved as nodules.json by evalutils.
process_case method of evalutils
(https://github.com/comic/evalutils/blob/fd791e0f1715d78b3766ac613371c447607e411d/evalutils/evalutils.py#L225)
is overwritten here, so that it directly returns the predictions without changing the format.
'''
# Load and test the image for this case
input_image, input_image_file_path = self._load_input_image(case=case)
# Detect and score candidates
scored_candidates = self.predict(input_image=input_image)
# Write resulting candidates to nodules.json for this case
return scored_candidates
#--------------------Write your retrain function here ------------
def train(self, num_epochs = 1):
'''
input_dir: Input directory containing all the images to train with
output_dir: output_dir to write model to.
num_epochs: Number of epochs for training the algorithm.
'''
# create training dataset and defined transformations
for modelname in self.models:
yolo = 'yolo' in modelname
print(f'training {modelname}')
## Load Data
input_dir = self.input_path if execute_in_docker else Path("//home/Behrendt/projects/Node21/node21-submit/input_train/")
output_dir = self.output_path if execute_in_docker else "//home/Behrendt/projects/Node21/node21-submit/output/"
# save models to
model_ckpt_dir = self.model_ckpt_dir + modelname
# load meatadata from
path_data = os.path.join(input_dir, 'metadata.csv')
# make model paths if they dont exist
os.makedirs(model_ckpt_dir,exist_ok=True)
# load metadata and create train / val / test set(s)
train_df = pd.read_csv(path_data)
train_df['Path'] = os.path.join(input_dir, "images/") + train_df.img_name
cv = StratifiedGroupKFold(n_splits=5, shuffle = True, random_state=42)
train_sets = []
val_sets = []
## Create 5 CV-Folds in a grouped and stratified fashion (we dont want data leaks)
for fold , (train_inds, test_inds) in enumerate(cv.split(X=train_df, y=train_df.label, groups=train_df.img_name)):
train_df_cv = train_df.iloc[train_inds]
val_df_cv = train_df.iloc[test_inds]
train_df_cv.to_csv(output_dir+ f'/nodule_train_fold{fold}.csv')
val_df_cv.to_csv(output_dir + f'/nodule_val_fold{fold}.csv')
if yolo:
if not os.path.exists(f"{output_dir}/nodule_train_fold{fold}.txt"):
f=open(f"{output_dir}/nodule_train_fold{fold}.txt", "a+")
for idx, row in train_df_cv.iterrows():
name = row.Path
f.write(f"{name}\n")
f.close()
f=open(f"{output_dir}/nodule_val_fold{fold}.txt", "a+")
for idx, row in val_df_cv.iterrows():
name = row.Path
f.write(f"{name}\n")
f.close()
if yolo:
# only needed once
if not os.path.exists(f'{input_dir}/labels'):
os.makedirs(f'{input_dir}/labels',exist_ok=True)
# convert data to yolo format ({x_center} {y_center} {width} {height}) ene .txt file per image
if len(os.listdir(f'{input_dir}/labels')) == 0:
df = train_df[train_df['label']==1]
df.x = (df.x + df.width / 2) / 1024
df.y = (df.y + df.height / 2) / 1024
df.height = df.height / 1024
df.width = df.width / 1024
for idx, row in df.iterrows():
name = row.img_name.replace('.mha','')
label = row.label - 1
x_center = row.x
y_center = row.y
width = row.width
height = row.height
f=open(f"{input_dir}/labels/{name}.txt", "a+")
f.write(f"{label} {x_center} {y_center} {width} {height}\n")
f.close()
for fold in range(5): # train and validate each Fold
opt = self.parse_opt() # initial params
if '_l' in modelname: # larger input (1024px)
opt.hyp = '/opt/algorithm/training_utils/yolov5/hyp_1024.yaml' if execute_in_docker else "//home/Behrendt/projects/Node21/node21-submit/training_utils/yolov5/hyp_1024.yaml"
opt.imgsz = 1024
opt.batch_size = 3
else : # smaller input (640px)
opt.hyp = '/opt/algorithm/training_utils/yolov5/hyp_640.yaml' if execute_in_docker else "//home/Behrendt/projects/Node21/node21-submit/training_utils/yolov5/hyp_640.yaml"
opt.imgsz = 640
opt.batch_size = 8
# Write data info to yaml (bit of a hack)
data = {'path': str(input_dir) ,
'train': f"{output_dir}/nodule_train_fold{fold}.txt",
'val': f"{output_dir}/nodule_val_fold{fold}.txt",
'nc': 1 ,
'names': ['nodule']}
with open(f'{output_dir}/node_dataset_fold{fold}.yaml', 'w') as outfile:
yaml.dump(data, outfile, default_flow_style=False)
# specify training parameters
# opt.device = 0
opt.data = f'{output_dir}/node_dataset_fold{fold}.yaml'
opt.epochs = 20 # 20
opt.savedir = model_ckpt_dir
opt.project = model_ckpt_dir
opt.name = ''
opt.prefix = f'yolo-fold-{fold+1}-'
if self.retrain:
opt.weights = self.archs[modelname][f'fold-{fold+1}'][0]
else:
opt.weights = '/opt/algorithm/yolo5x_vindr.pt' if execute_in_docker else "//home/Behrendt/projects/Node21/node21-submit/yolo5x_vindr.pt"
# check if the model is already trained
if os.path.exists(model_ckpt_dir + f'/yolo-fold-{fold+1}-last.pt'):
ckpt = torch.load(model_ckpt_dir + f'/yolo-fold-{fold+1}-last.pt')
start_epoch = ckpt['epoch'] + 1
if start_epoch >= opt.epochs or start_epoch == 0 :
print(f'skipping fold {fold+1} as it is already trained')
continue
del ckpt
opt.resume = model_ckpt_dir + f'/yolo-fold-{fold+1}-last.pt'
else:
opt.resume=False
# train
model_path = train_yolo(opt)
files = os.listdir(model_ckpt_dir)
# we need to remove imagefiles for process() to work
for item in files:
if item.endswith(".jpg") or item.endswith(".png"):
os.remove(os.path.join(model_ckpt_dir, item))
else:
# Pytorch lightning pipeline
# load config (we need one config file for each model with all important training params etc.)
configpath = Path(f'/opt/algorithm/config_{modelname}.yaml') if execute_in_docker else Path(f"//home/Behrendt/projects/Node21/node21-submit/config_{modelname}.yaml/")
cfg = OmegaConf.load(configpath)
base = cfg.callbacks.model_checkpoint.monitor
if 'effdet' in modelname:
folds = 1
else:
folds = 5
for fold in range(folds): # iterate over folds
prefix = f'{fold+1}/'
cfg.datamodule.cfg.path.train.images = ''
cfg.datamodule.cfg.path.val.images = ''
cfg.datamodule.cfg.path.train.labels = [output_dir+ f'/nodule_train_fold{i}.csv' for i in range(5)]
cfg.datamodule.cfg.path.val.labels = [output_dir+ f'/nodule_val_fold{i}.csv' for i in range(5)]
if os.path.exists(model_ckpt_dir + f'/last_{modelname}_fold-{fold+1}.ckpt'):
ckpt = torch.load(model_ckpt_dir + f'/last_{modelname}_fold-{fold+1}.ckpt')
start_epoch = ckpt['epoch'] + 1
if start_epoch >= cfg.trainer.max_epochs :
print(f'skipping fold {fold+1} as it is already trained')
continue
else:
del ckpt
resume = True
# Init Data Module
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.datamodule,fold = fold)
if 'fcrnn' in modelname:
cfg.model.cfg.vindr_path = '/opt/algorithm/fastercnn50.pth' if execute_in_docker else "//home/Behrendt/projects/Node21/node21-submit/fastercnn50.pth"
elif 'effdet' in modelname :
cfg.model.cfg.vindr_path = '/opt/algorithm/F1_E79_ModelX_v4_T0.325_V0.410.ckpt' if execute_in_docker else "//home/Behrendt/projects/Node21/node21-submit/F1_E79_ModelX_v4_T0.325_V0.410.ckpt"
# Init lightning model
model: LightningModule = hydra.utils.instantiate(cfg.model, prefix=prefix) # what about passing cfg.datamodule here? This would also avoid e.g. the mapping of num_classes
# Init lightning callbacks
cfg.callbacks.model_checkpoint.monitor = f'{prefix}' + base
cfg.callbacks.model_checkpoint.filename = "epoch-{epoch}_step-{step}_loss-{"+f"{prefix}"+"val/losses/loss:.2f}"
cfg.callbacks.model_checkpoint.dirpath = model_ckpt_dir
if self.retrain:
cfg.trainer.resume_from_checkpoint = str(self.archs[modelname][f'fold-{fold+1}'][0])
model.load_state_dict(torch.load(self.archs[modelname][f'fold-{fold+1}'][0])['state_dict'])
else:
cfg.trainer.resume_from_checkpoint = None
# Resume training. The trainer will skip training if complete
if os.path.exists(model_ckpt_dir + f'/last_{modelname}_fold-{fold+1}.ckpt') and resume:
cfg.trainer.resume_from_checkpoint = model_ckpt_dir + f'/last_{modelname}_fold-{fold+1}.ckpt'
model.load_state_dict(torch.load(model_ckpt_dir + f'/last_{modelname}_fold-{fold+1}.ckpt')['state_dict'])
else:
cfg.trainer.resume_from_checkpoint = None
callbacks: List[Callback] = []
if "callbacks" in cfg:
for _, cb_conf in cfg.callbacks.items():
if "_target_" in cb_conf:
callbacks.append(hydra.utils.instantiate(cb_conf))
callbacks[0].FILE_EXTENSION = f'_{modelname}_fold-{fold+1}.ckpt'
# Init Lightning Trainer
# cfg.trainer.max_epochs=1
trainer: Trainer = hydra.utils.instantiate(
cfg.trainer, callbacks=callbacks, logger=None, _convert_="partial", plugins=None
)
trainer.fit(model, datamodule)
# print(f'copying {model_ckpt_dir}/last_{modelname}_fold-{fold+1}.ckpt to {output_dir}/last_{modelname}_fold-{fold+1}.ckpt')
# shutil.copyfile(model_ckpt_dir + f'/last_{modelname}_fold-{fold+1}.ckpt', output_dir + f'/last_{modelname}_fold-{fold+1}.ckpt')
def format_to_GC(self, np_prediction, spacing) -> Dict:
'''
Convenient function returns detection prediction in required grand-challenge format.
See:
https://comic.github.io/grandchallenge.org/components.html#grandchallenge.components.models.InterfaceKind.interface_type_annotation
np_prediction: dictionary with keys boxes and scores.
np_prediction[boxes] holds coordinates in the format as x1,y1,x2,y2
spacing : pixel spacing for x and y coordinates.
return:
a Dict in line with grand-challenge.org format.
'''
# For the test set, we expect the coordinates in millimeters.
# this transformation ensures that the pixel coordinates are transformed to mm.
# and boxes coordinates saved according to grand challenge ordering.
x_y_spacing = [spacing[0], spacing[1], spacing[0], spacing[1]]
boxes = []
for i, bb in enumerate(np_prediction['boxes']):
box = {}
box['corners']=[]
x_min, y_min, x_max, y_max = bb*x_y_spacing
x_min, y_min, x_max, y_max = round(x_min, 2), round(y_min, 2), round(x_max, 2), round(y_max, 2)
bottom_left = [x_min, y_min, np_prediction['slice'][i]]
bottom_right = [x_max, y_min, np_prediction['slice'][i]]
top_left = [x_min, y_max, np_prediction['slice'][i]]
top_right = [x_max, y_max, np_prediction['slice'][i]]
box['corners'].extend([top_right, top_left, bottom_left, bottom_right])
box['probability'] = round(float(np_prediction['scores'][i]), 2)
boxes.append(box)
return dict(type="Multiple 2D bounding boxes", boxes=boxes, version={ "major": 1, "minor": 0 })
def merge_dict(self, results):
merged_d = {}
for k in results[0].keys():
merged_d[k] = list(itertools.chain(*[d[k] for d in results]))
return merged_d
def _create_dummy_inference_targets(self,num_images,device,img_size):
dummy_targets = {
"bbox": [
torch.tensor([[0.0, 0.0, 0.0, 0.0]], device=device)
for i in range(num_images)
],
"cls": [torch.tensor([1.0], device=device) for i in range(num_images)],
"img_size": torch.tensor(
[(img_size, img_size)] * num_images, device=device
).float(),
"img_scale": torch.ones(num_images, device=device).float(),
}
return dummy_targets
def _postprocess_single_prediction_detections(self, detections):
boxes = detections[:, :4]
scores = detections[:, 4]
classes = detections[:, 5]
indexes = torch.where(scores > 0.01)[0]
boxes = boxes[indexes]
return {"boxes": boxes, "scores": scores[indexes], "classes": classes[indexes]}
def predict(self, *, input_image: SimpleITK.Image) -> DataFrame:
agg_results = []
agg_results_per_model = []
for arch in self.models:
for fold in self.models[arch]:
results = []
for model in self.models[arch][fold]:
self.effdet = False
self.yolo = False
self.detr = False
if '_s' in str(arch).lower():
input_res = 512
yolores = 640
aug = True
else:
input_res = 1024
yolores = 1024
aug = False
if 'effdet' in str(arch).lower():
self.effdet = True
# input_res = model._hparams.cfg.new_shape
dummy_targets = self._create_dummy_inference_targets(1,self.device,input_res)
elif 'detr' in str(arch).lower():
self.detr = True
elif 'yolo' in str(arch).lower():
self.yolo = True
model.eval()
# input_image = SimpleITK.ReadImage("/home/Behrendt/data/LUMEN/projects/Node21/cxr_images/proccessed_data/images/n0163.mha")
image_data = SimpleITK.GetArrayFromImage(input_image)
spacing = input_image.GetSpacing()
image_data = np.array(image_data)
if len(image_data.shape)==2:
image_data = np.expand_dims(image_data, 0)
# operate on 3D image (CXRs are stacked together)
for j in range(len(image_data)):
# Pre-process the image
image = image_data[j,:,:]
# The range should be from 0 to 1.
if input_res != 1024 and not self.yolo:
print('changing resolution')
old_size = 1024
image = A.Resize(input_res,input_res)(image=image)['image']
image = image.astype(np.float32) / np.max(image) # normalize
image = np.expand_dims(image, axis=0)
tensor_image = torch.from_numpy(image).to(self.device)#.reshape(1, 1024, 1024)
with torch.no_grad():
if self.effdet:
input = torch.stack([tensor_image,tensor_image,tensor_image],1) # to rgb
prediction = model(input,dummy_targets)['detections'][0]
postprocessed = self._postprocess_single_prediction_detections(prediction)
boxes = postprocessed['boxes']
if input_res != 1024: # rescale bbox predictions to the original size
boxes = boxes * old_size / input_res
scores = postprocessed['scores']
prediction = [{'boxes':boxes , 'scores':scores }]
prediction = [get_NonMaxSup_boxes(prediction[0])]
elif self.detr:
input = torch.stack([tensor_image,tensor_image,tensor_image],1)
pred = model(input)
orig_target_sizes = torch.tensor([[input_res, input_res]],device=self.device)
pred = self.postprocessors(pred, orig_target_sizes)
boxes = []
scores = []
for box, score in zip(pred[0]['boxes'],pred[0]['scores']):
if score > 0.1:
if input_res != 1024:
box = box * 1024 / input_res
boxes.append(box)
scores.append(score)
prediction = [{'boxes':boxes , 'scores':scores}]
prediction = [get_NonMaxSup_boxes(prediction[0])]
elif self.yolo:
input = torch.stack([tensor_image,tensor_image,tensor_image],1)
input = torchvision.transforms.ToPILImage()(input.squeeze())
pred = model(input,size=yolores,augment=True)
if len(pred.xyxy[0])!=0:
prediction = [{'boxes': [x[0:4] for x in pred.xyxy[0]], 'scores': [x[4] for x in pred.xyxy[0]]}]
else:
prediction = [{'boxes': torch.empty([0,4], dtype=torch.float32), 'scores': torch.tensor([])}] # to be changed?
prediction = [get_NonMaxSup_boxes(prediction[0])]
else :
prediction = model([tensor_image.to(self.device)])
if input_res != 1024:
prediction[0]['boxes'] = prediction[0]['boxes'] * 1024 / input_res
prediction = [get_NonMaxSup_boxes(prediction[0])]
# convert predictions from tensor to numpy array.
np_prediction = {str(key):[i.cpu().numpy() for i in val]
for key, val in prediction[0].items()}
np_prediction['slice'] = len(np_prediction['boxes'])*[j]
results.append(np_prediction)
agg_results.extend([results])
if self.ensemble_per_model:
agg_results_per_model.extend([ensemble_boxes(agg_results,skip_boxes_thresh=0.1)])
if self.ensemble_per_model:
ens_results = ensemble_boxes(agg_results_per_model,skip_boxes_thresh=0.1)
else:
print(len(agg_results))
# print(agg_results.)
ens_results = ensemble_boxes(agg_results,skip_boxes_thresh=0.1)
# [x.pop('labels') for x in ens_results]
predictions = self.merge_dict(ens_results)
data = self.format_to_GC(predictions, spacing)
print(data)
return data
def parse_opt(known=False): # default yolo params
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=2, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok',default=True, help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=12, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
# Weights & Biases arguments
parser.add_argument('--entity', default=None, help='W&B: Entity')
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
parser.add_argument('--bbox_interval', type=int, default=5, help='W&B: Set bounding-box image logging interval')
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
opt = parser.parse_known_args()[0] if known else parser.parse_args()
return opt
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
prog='process.py',
description=
'Reads all images from an input directory and produces '
'results in an output directory')
parser.add_argument('input_dir', help = "input directory to process")
parser.add_argument('output_dir', help = "output directory generate result files in")
parser.add_argument('--train', action='store_true', help = "Algorithm on train mode.")
parser.add_argument('--retrain', action='store_true', help = "Algorithm on retrain mode (loading previous weights).")
parser.add_argument('--retest', action='store_true', help = "Algorithm on evaluate mode after retraining.")
parsed_args = parser.parse_args()
if (parsed_args.train or parsed_args.retrain):# train mode: retrain or train
Noduledetection(parsed_args.input_dir, parsed_args.output_dir, parsed_args.train, parsed_args.retrain, parsed_args.retest).train()
else:# test mode (test or retest)
Noduledetection(parsed_args.input_dir, parsed_args.output_dir, retest=parsed_args.retest).process()