-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathimplement_experiment_functions.py
253 lines (240 loc) · 12.2 KB
/
implement_experiment_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from data.characteristics_data import stock_characteristics, stock_returns
from data.factors_data import factors_returns
from portfolio_construction.triple_sorting_portfolios import (
create_sorting,
create_sorting_groups_returns,
create_long_short_portfolios
)
from portfolio_construction.ap_tree_portfolios import create_ap_tree_sorting
from portfolio_construction.ridge_portfolios import (
calculate_ts_cv,
calculate_mv_portfolios_forcing_positive_weights,
calculate_portfolio_statistics,
calculate_mv_portfolio
)
from portfolio_construction.factors_statistics import (
factor_regression,
cross_section_factor_beta_regression
)
import math
import datetime
import pandas as pd
import numpy as np
import statistics
import sys
from dateutil.relativedelta import relativedelta
from sklearn.tree import DecisionTreeRegressor
from dateutil import rrule
def write_update(update, testing_start_date=None, testing_end_date=None):
if testing_start_date and testing_end_date:
update = testing_start_date.strftime("%Y-%m-%d") + " - " + testing_end_date.strftime("%Y-%m-%d") + " - " + update
sys.stdout.write(("\r" + datetime.datetime.now().strftime("%H:%M:%S") + ": " + update).ljust(100))
def test_period(
stock_characteristics,
stock_returns,
factors_returns,
training_start_date,
training_end_date,
validation_start_date,
validation_end_date,
testing_start_date,
testing_end_date,
characteristics,
factors,
sorting_quantiles,
ap_tree_max_depth,
ap_tree_min_samples_leaf
):
for char in ['mom', 'hml', 'smb']:
if char not in characteristics:
stock_characteristics = stock_characteristics.drop(char, axis=1)
for fac in ['mkt', 'mom', 'hml', 'smb']:
if fac not in factors:
fac = fac + "_minus_rf" if fac == 'mkt' else fac
factors_returns = factors_returns.drop(fac, axis=1)
# Characteristics
stock_characteristics_training_final_date = stock_characteristics.loc[lambda df: df.date == training_end_date]
stock_characteristics_validation_final_date = stock_characteristics.loc[lambda df: df.date == validation_end_date]
# Stock returns
stock_returns_training = stock_returns.loc[lambda df: (df.index >= training_start_date) & (df.index <= training_end_date)]
stock_returns_validation = stock_returns.loc[lambda df: (df.index >= validation_start_date) & (df.index <= validation_end_date)]
stock_returns_in_sample = pd.concat([stock_returns_training, stock_returns_validation])
stock_returns_testing = stock_returns.loc[lambda df: (df.index >= testing_start_date) & (df.index <= testing_end_date)]
write_update("Completed database imports.", testing_start_date, testing_end_date)
# Triple sorting portfolios
stock_sorting_groups = create_sorting(
stock_characteristics_validation_final_date,
characteristics=characteristics,
num_quantiles=sorting_quantiles
)
sorting_groups_returns_in_sample = create_sorting_groups_returns(stock_returns_in_sample, stock_sorting_groups)
sorting_groups_returns_testing = create_sorting_groups_returns(stock_returns_testing, stock_sorting_groups)
long_short_portfolios_returns_testing = create_long_short_portfolios(sorting_groups_returns_testing, max_quantile=sorting_quantiles)
write_update("Completed creation of Triple Sorting portfolios.", testing_start_date, testing_end_date)
# Triple sorting sharpe-ratio out-of-sample
best_lambda_cv = calculate_ts_cv(sorting_groups_returns_in_sample, folds_by_end_date=training_end_date, optimize_calculation=False)
w = calculate_mv_portfolio(sorting_groups_returns_in_sample, best_lambda_cv["ts_cv_fold0"])
triple_sorting_optimized_portfolio_returns_testing = calculate_portfolio_statistics(
w, sorting_groups_returns_testing, # .loc[lambda df: df.index < df.index.min() + relativedelta(months=12)],
return_ts=True
)
triple_sorting_optimized_portfolio_sharpe_testing = (
np.mean(triple_sorting_optimized_portfolio_returns_testing) / np.std(triple_sorting_optimized_portfolio_returns_testing)
)
# AP-Trees portfolios
# Training sample
characteristics_table = (
stock_characteristics_training_final_date
.rename({"rt_m12": "expected_return"}, axis=1)
.drop(["date", "rt_m1"], axis=1)
.set_index("stock_id")
)
X = characteristics_table.drop('expected_return', axis=1)
y = characteristics_table['expected_return']
tree = DecisionTreeRegressor(max_depth=ap_tree_max_depth, min_samples_leaf=ap_tree_min_samples_leaf)
tree.fit(X, y)
ap_tree_groups_returns_training = create_ap_tree_sorting(tree, characteristics_table)
portfolios_best_lambdas = {}
for portfolio_name, portfolio_stocks in ap_tree_groups_returns_training.items():
portfolio_stock_returns = (
pd.concat([stock_returns_training, stock_returns_validation])
.loc[:, portfolio_stocks]
)
portfolio_best_lambda = calculate_ts_cv(
portfolio_stock_returns,
return_all_lambdas=False,
folds_by_end_date=training_end_date,
optimize_calculation=False
)
portfolios_best_lambdas[portfolio_name] = portfolio_best_lambda["ts_cv_fold0"]
best_global_lambda = statistics.mean(list(portfolios_best_lambdas.values()))
write_update("Completed cross-validation to find best lambda.", testing_start_date, testing_end_date)
# Training + validation sample
characteristics_table = (
stock_characteristics_validation_final_date
.rename({"rt_m12": "expected_return"}, axis=1)
.drop(["date", "rt_m1"], axis=1)
.set_index("stock_id")
)
X = characteristics_table.drop('expected_return', axis=1)
y = characteristics_table['expected_return']
tree = DecisionTreeRegressor(max_depth=ap_tree_max_depth, min_samples_leaf=ap_tree_min_samples_leaf)
tree.fit(X, y)
ap_tree_groups_returns_training_validation = create_ap_tree_sorting(tree, characteristics_table)
ap_tree_portfolios_returns_in_sample = pd.DataFrame({})
ap_tree_portfolios_returns_testing = pd.DataFrame({})
for portfolio_name, portfolio_stocks in ap_tree_groups_returns_training_validation.items():
portfolio_stock_returns_in_sample = stock_returns_in_sample.loc[:, portfolio_stocks]
portfolio_stock_returns_testing = stock_returns_testing.loc[:, portfolio_stocks]
mv_optimal_weights_in_sample = calculate_mv_portfolios_forcing_positive_weights(
portfolio_stock_returns_in_sample,
lambda_reg=best_global_lambda,
)
portfolio_returns_in_sample = calculate_portfolio_statistics(
mv_optimal_weights_in_sample, portfolio_stock_returns_in_sample,
return_ts=True
)
portfolio_returns_testing = calculate_portfolio_statistics(
mv_optimal_weights_in_sample, portfolio_stock_returns_testing,
return_ts=True
)
ap_tree_portfolios_returns_in_sample = (
ap_tree_portfolios_returns_in_sample
.merge(
pd.DataFrame(portfolio_returns_in_sample).set_axis(["ap_tree_port_" + portfolio_name], axis=1),
left_index=True, right_index=True, how='outer'
)
)
ap_tree_portfolios_returns_testing = (
ap_tree_portfolios_returns_testing
.merge(
pd.DataFrame(portfolio_returns_testing).set_axis(["ap_tree_port_" + portfolio_name], axis=1),
left_index=True, right_index=True, how='outer'
)
)
write_update("Completed creation of AP-Tree portfolios", testing_start_date, testing_end_date)
# AP-Tree sharpe-ratio out-of-sample
best_lambda_cv = calculate_ts_cv(ap_tree_portfolios_returns_in_sample, folds_by_end_date=training_end_date, optimize_calculation=False)
w = calculate_mv_portfolios_forcing_positive_weights(ap_tree_portfolios_returns_in_sample, best_lambda_cv["ts_cv_fold0"])
ap_tree_optimized_portfolio_returns_testing = calculate_portfolio_statistics(
w, ap_tree_portfolios_returns_testing, # .loc[lambda df: df.index < df.index.min() + relativedelta(months=12)],
return_ts=True
)
ap_tree_optimized_portfolio_sharpe_testing = (
np.mean(ap_tree_optimized_portfolio_returns_testing) / np.std(ap_tree_optimized_portfolio_returns_testing)
)
# Time-series regression
ap_tree_time_series_factor_regressions = factor_regression(ap_tree_portfolios_returns_testing, factors_returns)
triple_sorting_time_series_factor_regressions = factor_regression(long_short_portfolios_returns_testing, factors_returns)
write_update("Completed time-series regression", testing_start_date, testing_end_date)
# Cross-section regression
sml_ap_tree_lines = cross_section_factor_beta_regression(
ap_tree_time_series_factor_regressions,
ap_tree_portfolios_returns_testing
)
sml_triple_sorting_lines = cross_section_factor_beta_regression(
triple_sorting_time_series_factor_regressions,
long_short_portfolios_returns_testing
)
sml_ap_tree_vs_triple_sorting = (
pd.concat([
sml_ap_tree_lines.assign(portfolio="AP-Tree Portfolio").assign(sharpe=ap_tree_optimized_portfolio_sharpe_testing),
sml_triple_sorting_lines.assign(portfolio="Triple Sorting Portfolio").assign(sharpe=triple_sorting_optimized_portfolio_sharpe_testing),
])
.assign(start_date=testing_start_date, end_date=testing_end_date)
)
write_update("Completed cross-section regression", testing_start_date, testing_end_date)
return sml_ap_tree_vs_triple_sorting
def test_multiple_periods(
months_testing_period,
characteristics,
factors,
sorting_quantiles,
ap_tree_max_depth,
ap_tree_min_samples_leaf,
first_testing_start_date = datetime.date(2009, 1, 1),
last_testing_end_date = datetime.date(2018, 1, 1),
):
testing_start_dates = list(
rrule.rrule(
freq=rrule.MONTHLY,
interval=6,
dtstart=first_testing_start_date,
until=last_testing_end_date - relativedelta(months=months_testing_period)
)
)
testing_start_dates = [d.date() for d in list(testing_start_dates)]
testing_end_dates = [d + relativedelta(months=months_testing_period) for d in testing_start_dates]
all_sml_ap_tree_vs_triple_sorting = pd.DataFrame({})
for testing_start_date, testing_end_date in zip(testing_start_dates, testing_end_dates):
new_sml_ap_tree_vs_triple_sorting = test_period(
stock_characteristics,
stock_returns,
factors_returns,
training_start_date=stock_returns.index.min(),
training_end_date=testing_start_date - relativedelta(years=2, months=1),
validation_start_date=testing_start_date - relativedelta(years=2),
validation_end_date=testing_start_date - relativedelta(months=1),
testing_start_date=testing_start_date,
testing_end_date=testing_end_date,
characteristics=characteristics,
factors=factors,
sorting_quantiles=sorting_quantiles,
ap_tree_max_depth=ap_tree_max_depth,
ap_tree_min_samples_leaf=ap_tree_min_samples_leaf
)
all_sml_ap_tree_vs_triple_sorting = pd.concat([
all_sml_ap_tree_vs_triple_sorting,
new_sml_ap_tree_vs_triple_sorting
])
write_update(f"Completed {testing_start_date.strftime('%Y-%m-%d')} - {testing_end_date.strftime('%Y-%m-%d')}")
file_name = [
"sml",
str(months_testing_period) + "_months_testing_period",
"_".join(characteristics) + "_characteristics",
"_".join(factors) + "_factors",
str(sorting_quantiles) + "_sorting_quantiles",
str(ap_tree_max_depth) + "_ap_tree_max_depth",
str(ap_tree_min_samples_leaf) + "_ap_tree_min_samples_leaf"
]
all_sml_ap_tree_vs_triple_sorting.to_csv("results/data/" + "_".join(file_name) + ".csv", index=False)