-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpointnet2_utils.py
379 lines (297 loc) · 10.2 KB
/
pointnet2_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import torch
import torch.nn as nn
import warnings
from torch.autograd import Function
from typing import *
try:
import pointnet2_ops._ext as _ext
except ImportError:
from torch.utils.cpp_extension import load
import glob
import os.path as osp
import os
warnings.warn("Unable to load pointnet2_ops cpp extension. JIT Compiling.")
_ext_src_root = osp.join(osp.dirname(__file__), "_ext-src")
_ext_sources = glob.glob(osp.join(_ext_src_root, "src", "*.cpp")) + glob.glob(
osp.join(_ext_src_root, "src", "*.cu")
)
_ext_headers = glob.glob(osp.join(_ext_src_root, "include", "*"))
os.environ["TORCH_CUDA_ARCH_LIST"] = "3.7+PTX;5.0;6.0;6.1;6.2;7.0;7.5"
_ext = load(
"_ext",
sources=_ext_sources,
extra_include_paths=[osp.join(_ext_src_root, "include")],
extra_cflags=["-O3"],
extra_cuda_cflags=["-O3", "-Xfatbin", "-compress-all"],
with_cuda=True,
)
class FurthestPointSampling(Function):
@staticmethod
def forward(ctx, xyz, npoint):
# type: (Any, torch.Tensor, int) -> torch.Tensor
r"""
Uses iterative furthest point sampling to select a set of npoint features that have the largest
minimum distance
Parameters
----------
xyz : torch.Tensor
(B, N, 3) tensor where N > npoint
npoint : int32
number of features in the sampled set
Returns
-------
torch.Tensor
(B, npoint) tensor containing the set
"""
out = _ext.furthest_point_sampling(xyz, npoint)
ctx.mark_non_differentiable(out)
return out
@staticmethod
def backward(ctx, grad_out):
return ()
furthest_point_sample = FurthestPointSampling.apply
class GatherOperation(Function):
@staticmethod
def forward(ctx, features, idx):
# type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor
r"""
Parameters
----------
features : torch.Tensor
(B, C, N) tensor
idx : torch.Tensor
(B, npoint) tensor of the features to gather
Returns
-------
torch.Tensor
(B, C, npoint) tensor
"""
ctx.save_for_backward(idx, features)
return _ext.gather_points(features, idx)
@staticmethod
def backward(ctx, grad_out):
idx, features = ctx.saved_tensors
N = features.size(2)
grad_features = _ext.gather_points_grad(grad_out.contiguous(), idx, N)
return grad_features, None
gather_operation = GatherOperation.apply
class ThreeNN(Function):
@staticmethod
def forward(ctx, unknown, known):
# type: (Any, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]
r"""
Find the three nearest neighbors of unknown in known
Parameters
----------
unknown : torch.Tensor
(B, n, 3) tensor of known features
known : torch.Tensor
(B, m, 3) tensor of unknown features
Returns
-------
dist : torch.Tensor
(B, n, 3) l2 distance to the three nearest neighbors
idx : torch.Tensor
(B, n, 3) index of 3 nearest neighbors
"""
dist2, idx = _ext.three_nn(unknown, known)
dist = torch.sqrt(dist2)
ctx.mark_non_differentiable(dist, idx)
return dist, idx
@staticmethod
def backward(ctx, grad_dist, grad_idx):
return ()
three_nn = ThreeNN.apply
class ThreeInterpolate(Function):
@staticmethod
def forward(ctx, features, idx, weight):
# type(Any, torch.Tensor, torch.Tensor, torch.Tensor) -> Torch.Tensor
r"""
Performs weight linear interpolation on 3 features
Parameters
----------
features : torch.Tensor
(B, c, m) Features descriptors to be interpolated from
idx : torch.Tensor
(B, n, 3) three nearest neighbors of the target features in features
weight : torch.Tensor
(B, n, 3) weights
Returns
-------
torch.Tensor
(B, c, n) tensor of the interpolated features
"""
ctx.save_for_backward(idx, weight, features)
return _ext.three_interpolate(features, idx, weight)
@staticmethod
def backward(ctx, grad_out):
# type: (Any, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
r"""
Parameters
----------
grad_out : torch.Tensor
(B, c, n) tensor with gradients of ouputs
Returns
-------
grad_features : torch.Tensor
(B, c, m) tensor with gradients of features
None
None
"""
idx, weight, features = ctx.saved_tensors
m = features.size(2)
grad_features = _ext.three_interpolate_grad(
grad_out.contiguous(), idx, weight, m
)
return grad_features, torch.zeros_like(idx), torch.zeros_like(weight)
three_interpolate = ThreeInterpolate.apply
class GroupingOperation(Function):
@staticmethod
def forward(ctx, features, idx):
# type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor
r"""
Parameters
----------
features : torch.Tensor
(B, C, N) tensor of features to group
idx : torch.Tensor
(B, npoint, nsample) tensor containing the indicies of features to group with
Returns
-------
torch.Tensor
(B, C, npoint, nsample) tensor
"""
ctx.save_for_backward(idx, features)
return _ext.group_points(features, idx)
@staticmethod
def backward(ctx, grad_out):
# type: (Any, torch.tensor) -> Tuple[torch.Tensor, torch.Tensor]
r"""
Parameters
----------
grad_out : torch.Tensor
(B, C, npoint, nsample) tensor of the gradients of the output from forward
Returns
-------
torch.Tensor
(B, C, N) gradient of the features
None
"""
idx, features = ctx.saved_tensors
N = features.size(2)
grad_features = _ext.group_points_grad(grad_out.contiguous(), idx, N)
return grad_features, torch.zeros_like(idx)
grouping_operation = GroupingOperation.apply
class BallQuery(Function):
@staticmethod
def forward(ctx, radius, nsample, xyz, new_xyz):
# type: (Any, float, int, torch.Tensor, torch.Tensor) -> torch.Tensor
r"""
Parameters
----------
radius : float
radius of the balls
nsample : int
maximum number of features in the balls
xyz : torch.Tensor
(B, N, 3) xyz coordinates of the features
new_xyz : torch.Tensor
(B, npoint, 3) centers of the ball query
Returns
-------
torch.Tensor
(B, npoint, nsample) tensor with the indicies of the features that form the query balls
"""
output = _ext.ball_query(new_xyz, xyz, radius, nsample)
ctx.mark_non_differentiable(output)
return output
@staticmethod
def backward(ctx, grad_out):
return ()
ball_query = BallQuery.apply
class QueryAndGroup(nn.Module):
r"""
Groups with a ball query of radius
Parameters
---------
radius : float32
Radius of ball
nsample : int32
Maximum number of features to gather in the ball
"""
def __init__(self, radius, nsample, use_xyz=True):
# type: (QueryAndGroup, float, int, bool) -> None
super(QueryAndGroup, self).__init__()
self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz
def forward(self, xyz, new_xyz, features=None):
# type: (QueryAndGroup, torch.Tensor. torch.Tensor, torch.Tensor) -> Tuple[Torch.Tensor]
r"""
Parameters
----------
xyz : torch.Tensor
xyz coordinates of the features (B, N, 3)
new_xyz : torch.Tensor
centriods (B, npoint, 3)
features : torch.Tensor
Descriptors of the features (B, C, N)
Returns
-------
new_features : torch.Tensor
(B, 3 + C, npoint, nsample) tensor
"""
idx = ball_query(self.radius, self.nsample, xyz, new_xyz)
xyz_trans = xyz.transpose(1, 2).contiguous()
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1)
if features is not None:
grouped_features = grouping_operation(features, idx)
if self.use_xyz:
new_features = torch.cat(
[grouped_xyz, grouped_features], dim=1
) # (B, C + 3, npoint, nsample)
else:
new_features = grouped_features
else:
assert (
self.use_xyz
), "Cannot have not features and not use xyz as a feature!"
new_features = grouped_xyz
return new_features
class GroupAll(nn.Module):
r"""
Groups all features
Parameters
---------
"""
def __init__(self, use_xyz=True):
# type: (GroupAll, bool) -> None
super(GroupAll, self).__init__()
self.use_xyz = use_xyz
def forward(self, xyz, new_xyz, features=None):
# type: (GroupAll, torch.Tensor, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor]
r"""
Parameters
----------
xyz : torch.Tensor
xyz coordinates of the features (B, N, 3)
new_xyz : torch.Tensor
Ignored
features : torch.Tensor
Descriptors of the features (B, C, N)
Returns
-------
new_features : torch.Tensor
(B, C + 3, 1, N) tensor
"""
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
if features is not None:
grouped_features = features.unsqueeze(2)
if self.use_xyz:
new_features = torch.cat(
[grouped_xyz, grouped_features], dim=1
) # (B, 3 + C, 1, N)
else:
new_features = grouped_features
else:
new_features = grouped_xyz
return new_features