-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGaloisFieldExtension.h
343 lines (290 loc) · 9.51 KB
/
GaloisFieldExtension.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#pragma once
#include <vector>
#include <iomanip>
#include <cmath>
#include "PolynomialGenerator.h"
#include "Polynomial.h"
#include "Factorizer.h"
namespace Algebra
{
template<size_t Zp, size_t Deg>
// GF(Zp^Deg)
class GaloisFieldExtension
{
Polynomial<Zp> factor_;
Polynomial<Zp> generator_;
std::vector<Polynomial<Zp>> elements_ = { Polynomial<Zp>::One };
static_assert(Deg > 0, "Degree should be greater than zero to build non-trivial field");
protected:
GaloisFieldExtension() = delete;
GaloisFieldExtension(const Polynomial<Zp>& factor, const Polynomial<Zp>& generator);
static GaloisFieldExtension BuildFactorGroup(const Polynomial<Zp>& factor);
public:
static Polynomial<Zp> DefaultGenerator;
// Most stupid test ever
static bool RabinTest(const Polynomial<Zp>& poly);
// Field's order
size_t order() const;
// Order of multiplicative gorup of the field
size_t m_order() const;
// get element by its order
Polynomial<Zp> operator[](size_t order) const;
// find log_generator(poly mod factor)
size_t log_alpha(const Polynomial<Zp>& poly) const;
std::vector<size_t> GetAdjointElements(size_t elem_index) const;
Polynomial<Zp> FindMinimalPolynomial(size_t elem_index) const;
std::vector<size_t> FindAllPrimitiveElements(size_t order = powl(Zp, Deg)) const;
// Tests primitivity over finite field in subfield or field itself
static bool TestPrimitivity(size_t elem_order, size_t order = powl(Zp, Deg));
static bool TestIrreducibility(const Polynomial<Zp>& poly);
static Polynomial<Zp> FindIrreducible(PolynomialGenerator<Zp, Deg> &generator)
{
Polynomial<Zp> poly = Polynomial<Zp>::Zero;
std::vector<int> vec(Deg + 1);
vec[Deg] = 1;
// every 1-degree Polynomial is irreducible
if (Deg == 1)
{
std::random_device rd;
std::mt19937 mt(rd());
vec[0] = randmod([&mt]() { return mt(); }, Zp);
return Polynomial<Zp>(vec);
}
auto end_deterministic = generator.end_supported();
while (!generator.end() || !end_deterministic)
{
Polynomial<Zp> candidate = generator();
if (TestIrreducibility(candidate))
return candidate;
}
throw std::runtime_error("Could not find an irreducible polynomial. Something wrong with Zp. Zp should be a prime number.");
}
// factorizes in field Zp^Deg
// first - irreducible polynomial, second - its arity
// Berlekamp's algorithm
std::vector<std::pair<Polynomial<Zp>, size_t>> FactorizeByFieldElements(const Polynomial<Zp>& poly) const;
static std::vector<Polynomial<Zp>> FindAllIrreducibles(PolynomialGenerator<Zp, Deg> &generator) noexcept(false)
{
std::vector<Polynomial<Zp>> res;
auto end_deterministic = generator.end_supported();
if (!end_deterministic)
throw std::runtime_error("Could not generate all irreducible polynomials with non-deterministic generator.");
while (!generator.end())
{
Polynomial<Zp> candidate = generator();
if (TestIrreducibility(candidate))
res.push_back(candidate);
}
return res;
}
static GaloisFieldExtension Build(PolynomialGenerator<Zp, Deg> &generator)
{
return BuildFactorGroup(FindIrreducible(generator));
}
static GaloisFieldExtension Build(const Polynomial<Zp>& factor, bool test_irreducibilty = true);
void PrintPretty(std::ostream& s, bool print_elements = true) const;
};
template<size_t Zp, size_t Deg>
Polynomial<Zp> GaloisFieldExtension<Zp, Deg>::DefaultGenerator = Polynomial<Zp>::X;
// IMPLEMENTATION
template <size_t Zp, size_t Deg>
GaloisFieldExtension<Zp, Deg>::GaloisFieldExtension(const Polynomial<Zp>& factor, const Polynomial<Zp>& generator): factor_(factor), generator_(generator)
{
}
template <size_t Zp, size_t Deg>
GaloisFieldExtension<Zp, Deg> GaloisFieldExtension<Zp, Deg>::BuildFactorGroup(const Polynomial<Zp>& factor)
{
auto generator = GaloisFieldExtension::DefaultGenerator;
GaloisFieldExtension f(factor, generator);
size_t i = 0;
auto poly = Polynomial<Zp>::One;
do
{
poly = (generator * f.elements_[i++]) % f.factor_;
if (poly.deg() != 0)
f.elements_.push_back(poly);
}
while (poly.deg() != 0);
return f;
}
template <size_t Zp, size_t Deg>
bool GaloisFieldExtension<Zp, Deg>::RabinTest(const Polynomial<Zp>& poly)
{
auto deg = poly.deg();
Factorizer factorize;
auto divisors = factorize(deg);
for (const auto& divisor : divisors)
{
auto nj = deg / divisor.first;
if (Polynomial<Zp>::Gcd(poly, Polynomial<Zp>::SpecialPolyMod(nj, poly)) != Polynomial<Zp>::One)
return false;
}
return Polynomial<Zp>::SpecialPolyMod(deg, poly) == Polynomial<Zp>::Zero;
}
template <size_t Zp, size_t Deg>
size_t GaloisFieldExtension<Zp, Deg>::order() const
{
return elements_.size() + 1;
}
template <size_t Zp, size_t Deg>
size_t GaloisFieldExtension<Zp, Deg>::m_order() const
{
return elements_.size();
}
template <size_t Zp, size_t Deg>
Polynomial<Zp> GaloisFieldExtension<Zp, Deg>::operator[](size_t order) const
{
return elements_[order];
}
template <size_t Zp, size_t Deg>
size_t GaloisFieldExtension<Zp, Deg>::log_alpha(const Polynomial<Zp>& poly) const
{
auto remainder = poly % factor_;
for (size_t i = 0, sz = elements_.size(); i < sz; ++i)
if (remainder == elements_[i])
return i;
throw std::runtime_error("Could not find logarithm of alpha. This is strange.");
}
template <size_t Zp, size_t Deg>
std::vector<size_t> GaloisFieldExtension<Zp, Deg>::GetAdjointElements(size_t elem_index) const
{
std::vector<size_t> indexes;
size_t last_adjoint = elem_index;
size_t power = 1, mult_order = m_order();
do
{
power = power * Zp;
last_adjoint = (elem_index * power) % mult_order;
if (last_adjoint != elem_index)
indexes.push_back(last_adjoint);
}
while (last_adjoint != elem_index);
return indexes;
}
template <size_t Zp, size_t Deg>
Polynomial<Zp> GaloisFieldExtension<Zp, Deg>::FindMinimalPolynomial(size_t elem_index) const
{
auto adjoints = GetAdjointElements(elem_index);
auto poly = Polynomial<Zp>::X - elements_[elem_index];
for (auto adjoint : adjoints)
{
poly *= Polynomial<Zp>::X - elements_[adjoint];
}
return poly;
}
template <size_t Zp, size_t Deg>
std::vector<size_t> GaloisFieldExtension<Zp, Deg>::FindAllPrimitiveElements(size_t order) const
{
std::vector<size_t> primitives;
// find first primitive with given field order
size_t primitive = 0;
for (size_t i = 1, mord = m_order(); i < mord; ++i)
{
if (TestPrimitivity(i, order))
{
primitive = i;
break;
}
}
primitives.push_back(primitive);
// generate remaining - Find all co-primes, lesser than order-1
for (size_t coprime_candidate = 1; coprime_candidate < order - 1; ++coprime_candidate)
{
if (gcd(coprime_candidate, order - 1) == 1)
primitives.push_back(powmod(primitive, coprime_candidate, order));
}
return primitives;
}
template <size_t Zp, size_t Deg>
bool GaloisFieldExtension<Zp, Deg>::TestPrimitivity(size_t elem_order, size_t order)
{
Factorizer frizer;
auto mult_order = order - 1;
auto factors = frizer(mult_order);
for (auto factor : factors)
{
size_t p_i = mult_order / factor.first;
if (powmod(elem_order, p_i, order) != 1)
return false;
}
return true;
}
template <size_t Zp, size_t Deg>
bool GaloisFieldExtension<Zp, Deg>::TestIrreducibility(const Polynomial<Zp>& poly)
{
auto deg = poly.deg();
if (deg <= 1)
return true;
for (size_t x = 0; x < Zp; ++x)
if (!poly.eval(x))
return false;
if (deg <= 3)
return true;
else
{
return RabinTest(poly);
}
return true;
}
template <size_t Zp, size_t Deg>
std::vector<std::pair<Polynomial<Zp>, size_t>> GaloisFieldExtension<Zp, Deg>::FactorizeByFieldElements(const Polynomial<Zp>& poly) const
{
std::vector<std::pair<Polynomial<Zp>, size_t>> factors;
// check simple roots
// TODO: Make it real Berlekamp's algorithm instead of this fucking dumb cycle
auto cur_poly = poly;
size_t cdeg = cur_poly.deg();
for (size_t i = 0, sz = order(); i < sz; ++i)
{
auto elem = i ? elements_[i - 1] : Polynomial<Zp>::Zero;
if (cdeg >= elem.deg() && elem != Polynomial<Zp>::X)
{
auto root = Polynomial<Zp>::X - elem;
if (root != Polynomial<Zp>::One)
{
auto div_res = cur_poly.divide(root);
size_t arity = 0;
while (div_res.second == Polynomial<Zp>::Zero)
{
++arity;
cur_poly = div_res.first;
cdeg = cur_poly.deg();
div_res = cur_poly.divide(root);
}
if (arity != 0)
factors.push_back(std::make_pair(root, arity));
}
}
// factorized successfully
if (cdeg == 0)
break;
}
if (cdeg != 0)
factors.push_back(std::make_pair(cur_poly, 1));
return factors;
}
template <size_t Zp, size_t Deg>
GaloisFieldExtension<Zp, Deg> GaloisFieldExtension<Zp, Deg>::Build(const Polynomial<Zp>& factor, bool test_irreducibilty)
{
if (test_irreducibilty && TestIrreducibility(factor))
throw std::runtime_error("Given polynomial is reducible");
return BuildFactorGroup(factor);
}
template <size_t Zp, size_t Deg>
void GaloisFieldExtension<Zp, Deg>::PrintPretty(std::ostream& s, bool print_elements) const
{
s << "Field GF(" << Zp << "^" << Deg << ")" << " [ " << this->order() << " elements ]" << std::endl;
s << "Generator: " << generator_ << std::endl;
s << "Irreducible polynomial as factor: " << factor_ << std::endl;
if (print_elements)
{
size_t sz = m_order();
s << "Elements of multiplicative group (" << sz << " elements ): " << std::endl;
auto space = log10(sz) + 1;
for (size_t i = 0; i < sz; ++i)
{
s << "a^" << std::setw(space) << i << " : " << elements_[i] << std::endl;
}
}
}
}