-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathProject.py
301 lines (301 loc) · 10.3 KB
/
Project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import time as t
import sklearn.utils as u
import sklearn.preprocessing as pp
import sklearn.tree as tr
import sklearn.ensemble as es
import sklearn.metrics as m
import sklearn.linear_model as lm
import sklearn.neural_network as nn
import numpy as np
#import random as rnd
import warnings as w
w.filterwarnings('ignore')
data = pd.read_csv("/AI-Data.csv")
ch = 0
while(ch != 10):
print("1.Marks Class Count Graph\t2.Marks Class Semester-wise Graph\n3.Marks Class Gender-wise Graph\t4.Marks Class Nationality-wise Graph\n5.Marks Class Grade-wise Graph\t6.Marks Class Section-wise Graph\n7.Marks Class Topic-wise Graph\t8.Marks Class Stage-wise Graph\n9.Marks Class Absent Days-wise\t10.No Graph\n")
ch = int(input("Enter Choice: "))
if (ch == 1):
print("Loading Graph....\n")
t.sleep(1)
print("\tMarks Class Count Graph")
axes = sb.countplot(x='Class', data=data, order=['L', 'M', 'H'])
plt.show()
elif (ch == 2):
print("Loading Graph....\n")
t.sleep(1)
print("\tMarks Class Semester-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='Semester', hue='Class', data=data, hue_order=['L', 'M', 'H'], axes=axesarr)
plt.show()
elif (ch == 3):
print("Loading Graph..\n")
t.sleep(1)
print("\tMarks Class Gender-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='gender', hue='Class', data=data, order=['M', 'F'], hue_order=['L', 'M', 'H'], axes=axesarr)
plt.show()
elif (ch == 4):
print("Loading Graph..\n")
t.sleep(1)
print("\tMarks Class Nationality-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='NationalITy', hue='Class', data=data, hue_order=['L', 'M', 'H'], axes=axesarr)
plt.show()
elif (ch == 5):
print("Loading Graph: \n")
t.sleep(1)
print("\tMarks Class Grade-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='GradeID', hue='Class', data=data, order=['G-02', 'G-04', 'G-05', 'G-06', 'G-07', 'G-08', 'G-09', 'G-10', 'G-11', 'G-12'], hue_order = ['L', 'M', 'H'], axes=axesarr)
plt.show()
elif (ch ==6):
print("Loading Graph..\n")
t.sleep(1)
print("\tMarks Class Section-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='SectionID', hue='Class', data=data, hue_order = ['L', 'M', 'H'], axes=axesarr)
plt.show()
elif (ch == 7):
print("Loading Graph..\n")
t.sleep(1)
print("\tMarks Class Topic-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='Topic', hue='Class', data=data, hue_order = ['L', 'M', 'H'], axes=axesarr)
plt.show()
elif (ch == 8):
print("Loading Graph..\n")
t.sleep(1)
print("\tMarks Class Stage-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='StageID', hue='Class', data=data, hue_order = ['L', 'M', 'H'], axes=axesarr)
plt.show()
elif (ch == 9):
print("Loading Graph..\n")
t.sleep(1)
print("\tMarks Class Absent Days-wise Graph")
fig, axesarr = plt.subplots(1, figsize=(10, 6))
sb.countplot(x='StudentAbsenceDays', hue='Class', data=data, hue_order = ['L', 'M', 'H'], axes=axesarr)
plt.show()
if(ch == 10):
print("Exiting..\n")
t.sleep(1)
#cor = data.corr()
#print(cor)
data = data.drop("gender", axis=1)
data = data.drop("StageID", axis=1)
data = data.drop("GradeID", axis=1)
data = data.drop("NationalITy", axis=1)
data = data.drop("PlaceofBirth", axis=1)
data = data.drop("SectionID", axis=1)
data = data.drop("Topic", axis=1)
data = data.drop("Semester", axis=1)
data = data.drop("Relation", axis=1)
data = data.drop("ParentschoolSatisfaction", axis=1)
data = data.drop("ParentAnsweringSurvey", axis=1)
#data = data.drop("VisITedResources", axis=1)
data = data.drop("AnnouncementsView", axis=1)
u.shuffle(data)
countD = 0
countP = 0
countL = 0
countR = 0
countN = 0
gradeID_dict = {"G-01" : 1,
"G-02" : 2,
"G-03" : 3,
"G-04" : 4,
"G-05" : 5,
"G-06" : 6,
"G-07" : 7,
"G-08" : 8,
"G-09" : 9,
"G-10" : 10,
"G-11" : 11,
"G-12" : 12}
data = data.replace({"GradeID" : gradeID_dict})
#sig = []
for column in data.columns:
if data[column].dtype == type(object):
le = pp.LabelEncoder()
data[column] = le.fit_transform(data[column])
ind = int(len(data) * 0.70)
feats = data.values[:, 0:4]
lbls = data.values[:,4]
feats_Train = feats[0:ind]
feats_Test = feats[(ind+1):len(feats)]
lbls_Train = lbls[0:ind]
lbls_Test = lbls[(ind+1):len(lbls)]
modelD = tr.DecisionTreeClassifier()
modelD.fit(feats_Train, lbls_Train)
lbls_predD = modelD.predict(feats_Test)
for a,b in zip(lbls_Test, lbls_predD):
if(a==b):
countD += 1
accD = (countD/len(lbls_Test))
print("\nAccuracy measures using Decision Tree:")
print(m.classification_report(lbls_Test, lbls_predD),"\n")
print("\nAccuracy using Decision Tree: ", str(round(accD, 3)))
t.sleep(1)
modelR = es.RandomForestClassifier()
modelR.fit(feats_Train, lbls_Train)
lbls_predR = modelR.predict(feats_Test)
for a,b in zip(lbls_Test, lbls_predR):
if(a==b):
countR += 1
print("\nAccuracy Measures for Random Forest Classifier: \n")
#print("\nConfusion Matrix: \n", m.confusion_matrix(lbls_Test, lbls_predR))
print("\n", m.classification_report(lbls_Test,lbls_predR))
accR = countR/len(lbls_Test)
print("\nAccuracy using Random Forest: ", str(round(accR, 3)))
t.sleep(1)
modelP = lm.Perceptron()
modelP.fit(feats_Train, lbls_Train)
lbls_predP = modelP.predict(feats_Test)
for a,b in zip(lbls_Test, lbls_predP):
if a == b:
countP += 1
accP = countP/len(lbls_Test)
print("\nAccuracy measures using Linear Model Perceptron:")
print(m.classification_report(lbls_Test, lbls_predP),"\n")
print("\nAccuracy using Linear Model Perceptron: ", str(round(accP, 3)), "\n")
t.sleep(1)
modelL = lm.LogisticRegression()
modelL.fit(feats_Train, lbls_Train)
lbls_predL = modelL.predict(feats_Test)
for a,b in zip(lbls_Test, lbls_predL):
if a == b:
countL += 1
accL = countL/len(lbls_Test)
print("\nAccuracy measures using Linear Model Logistic Regression:")
print(m.classification_report(lbls_Test, lbls_predL),"\n")
print("\nAccuracy using Linear Model Logistic Regression: ", str(round(accP, 3)), "\n")
t.sleep(1)
modelN = nn.MLPClassifier(activation="logistic")
modelN.fit(feats_Train, lbls_Train)
lbls_predN = modelN.predict(feats_Test)
for a,b in zip(lbls_Test, lbls_predN):
#sig.append(1/(1+ np.exp(-b)))
if a==b:
countN += 1
#print("\nAverage value of Sigmoid Function: ", str(round(np.average(sig), 3)))
print("\nAccuracy measures using MLP Classifier:")
print(m.classification_report(lbls_Test, lbls_predN),"\n")
accN = countN/len(lbls_Test)
print("\nAccuracy using Neural Network MLP Classifier: ", str(round(accN, 3)), "\n")
choice = input("Do you want to test specific input (y or n): ")
if(choice.lower()=="y"):
gen = input("Enter Gender (M or F): ")
if (gen.upper() == "M"):
gen = 1
elif (gen.upper() == "F"):
gen = 0
nat = input("Enter Nationality: ")
pob = input("Place of Birth: ")
gra = input("Grade ID as (G-<grade>): ")
if(gra == "G-02"):
gra = 2
elif (gra == "G-04"):
gra = 4
elif (gra == "G-05"):
gra = 5
elif (gra == "G-06"):
gra = 6
elif (gra == "G-07"):
gra = 7
elif (gra == "G-08"):
gra = 8
elif (gra == "G-09"):
gra = 9
elif (gra == "G-10"):
gra = 10
elif (gra == "G-11"):
gra = 11
elif (gra == "G-12"):
gra = 12
sec = input("Enter Section: ")
top = input("Enter Topic: ")
sem = input("Enter Semester (F or S): ")
if (sem.upper() == "F"):
sem = 0
elif (sem.upper() == "S"):
sem = 1
rel = input("Enter Relation (Father or Mum): ")
if (rel == "Father"):
rel = 0
elif (rel == "Mum"):
rel = 1
rai = int(input("Enter raised hands: "))
res = int(input("Enter Visited Resources: "))
ann = int(input("Enter announcements viewed: "))
dis = int(input("Enter no. of Discussions: "))
sur = input("Enter Parent Answered Survey (Y or N): ")
if (sur.upper() == "Y"):
sur = 1
elif (sur.upper() == "N"):
sur = 0
sat = input("Enter Parent School Satisfaction (Good or Bad): ")
if (sat == "Good"):
sat = 1
elif (sat == "Bad"):
sat = 0
absc = input("Enter No. of Abscenes(Under-7 or Above-7): ")
if (absc == "Under-7"):
absc = 1
elif (absc == "Above-7"):
absc = 0
arr = np.array([rai, res, dis, absc])
#arr = np.array([gen, rnd.randint(0, 30), rnd.randint(0, 30), sta, gra, rnd.randint(0, 30), rnd.randint(0, 30), sem, rel, rai, res, ann, dis, sur, sat, absc])
predD = modelD.predict(arr.reshape(1, -1))
predR = modelR.predict(arr.reshape(1, -1))
predP = modelP.predict(arr.reshape(1, -1))
predL = modelL.predict(arr.reshape(1, -1))
predN = modelN.predict(arr.reshape(1, -1))
if (predD == 0):
predD = "H"
elif (predD == 1):
predD = "M"
elif (predD == 2):
predD = "L"
if (predR == 0):
predR = "H"
elif (predR == 1):
predR = "M"
elif (predR == 2):
predR = "L"
if (predP == 0):
predP = "H"
elif (predP == 1):
predP = "M"
elif (predP == 2):
predP = "L"
if (predL == 0):
predL = "H"
elif (predL == 1):
predL = "M"
elif (predL == 2):
predL = "L"
if (predN == 0):
predN = "H"
elif (predN == 1):
predN = "M"
elif (predN == 2):
predN = "L"
t.sleep(1)
print("\nUsing Decision Tree Classifier: ", predD)
t.sleep(1)
print("Using Random Forest Classifier: ", predR)
t.sleep(1)
print("Using Linear Model Perceptron: ", predP)
t.sleep(1)
print("Using Linear Model Logisitic Regression: ", predL)
t.sleep(1)
print("Using Neural Network MLP Classifier: ", predN)
print("\nExiting...")
t.sleep(1)
else:
print("Exiting..")
t.sleep(1)