-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObject_detection_webcam.py
228 lines (175 loc) · 8.43 KB
/
Object_detection_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
######## Webcam Object Detection Using Tensorflow-trained Classifier #########
#
# Author: Evan Juras
# Date: 1/20/18
# Description:
# This program uses a TensorFlow-trained classifier to perform object detection.
# It loads the classifier uses it to perform object detection on a webcam feed.
# It draws boxes and scores around the objects of interest in each frame from
# the webcam.
## Some of the code is copied from Google's example at
## https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
## and some is copied from Dat Tran's example at
## https://github.com/datitran/object_detector_app/blob/master/object_detection_app.py
## but I changed it to make it more understandable to me.
# Import packages
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
import time
import logging
from networktables import NetworkTables
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'inference_graph'
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
# Number of classes the object detector can identify
NUM_CLASSES = 1
## Load the label map.
# Label maps map indices to category names, so that when our convolution
# network predicts `5`, we know that this corresponds to `king`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
setHeight = 480
setWidth = 640
# Initialize webcam feed
video = cv2.VideoCapture(0)
ret = video.set(3, setWidth) #width
ret = video.set(4, setHeight) #height
#video.set() commands
# 0. CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
# 1. CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
# 2. CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file
# 3. CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
# 4. CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
# 5. CV_CAP_PROP_FPS Frame rate.
# 6. CV_CAP_PROP_FOURCC 4-character code of codec.
# 7. CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
# 8. CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
# 9. CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
# 10. CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
# 11. CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
# 12. CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
# 13. CV_CAP_PROP_HUE Hue of the image (only for cameras).
# 14. CV_CAP_PROP_GAIN Gain of the image (only for cameras).
# 15. CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
# 16. CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
# 17. CV_CAP_PROP_WHITE_BALANCE Currently unsupported
# 18. CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
#initialize networkTables
logging.basicConfig(level=logging.DEBUG)
NetworkTables.initialize()
sd = NetworkTables.getTable("SmartDashboard")
coords = NetworkTables.getTable("coordinates")
res = NetworkTables.getTable("Resolution")
while(True):
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
ret, frame = video.read()
frame_expanded = np.expand_dims(frame, axis=0)
height, width, channels = frame.shape
#inputs camera resolution to networktables
res.putNumber("Height", height)
res.putNumber("Width", width)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.60)
# print("dsTime:", hf.getNumber("robotTime", i))
# hf.putNumber("robotTime", i)
# time.sleep(0)
# i = i+1
numDetections = [category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.5]
ymin = []
xmin = []
ymax = []
xmax = []
widthOfBox = []
heightOfBox = []
centerXCoordinates = []
centerYCoordinates = []
# top left is: xmin, ymin
# bottom right is xmax, ymax
#centerXCoordinates formula (xmin + xmax) / 2, (ymin + ymax) / 2
flag = 0
for x in numDetections:
yminVal = int((boxes[0][flag][0]*height))
xminVal = int((boxes[0][flag][1]*width))
ymaxVal = int((boxes[0][flag][2]*height))
xmaxVal = int((boxes[0][flag][3]*width))
ymin.append(yminVal)
xmin.append(xminVal)
ymax.append(ymaxVal)
xmax.append(xmaxVal)
widthOfBox.append(xmax[flag] - xmin[flag])
heightOfBox.append(ymax[flag] - ymin[flag])
centerXCoordinates.append((xmin[flag] + xmax[flag]) / 2)
centerYCoordinates.append((ymin[flag] + ymax[flag]) / 2)
coords.putNumberArray("ymin", ymin)
coords.putNumberArray("ymax", ymax)
coords.putNumberArray("xmin", xmin)
coords.putNumberArray("xmax", xmax)
coords.putNumberArray("centerX", centerXCoordinates)
coords.putNumberArray("centerY", centerXCoordinates)
coords.putNumberArray("boxWidth", widthOfBox)
coords.putNumberArray("boxHeight", heightOfBox)
cv2.circle(frame,(xminVal, yminVal), 10, (0,0,255), -1)
cv2.circle(frame,(xmaxVal, ymaxVal), 10, (0,0,255), -1)
cv2.circle(frame,(xmaxVal, yminVal), 10, (0,0,255), -1)
cv2.circle(frame,(xminVal, ymaxVal), 10, (0,0,255), -1)
cv2.circle(frame,(int(centerXCoordinates[flag]), int(centerYCoordinates[flag])), 20, (0,0,255), -1)
flag += 1
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
# Clean up
video.release()
cv2.destroyAllWindows()