-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtractogram_filtering.py
executable file
·354 lines (293 loc) · 12.3 KB
/
tractogram_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#!/usr/bin/env python
from __future__ import print_function
import argparse
import configparser
import glob
import json
import os
from os import path as osp
from os.path import basename as osbn
from time import time
import ants
import nibabel as nib
import numpy as np
import torch
import torch.nn.functional as F
from torch_geometric.data import Batch as gBatch
from torch_geometric.data import DataListLoader as gDataLoader
from datasets.basic_tract import TractDataset
# from nilab import load_trk as ltrk
from utils.data import selective_loader as sload
from utils.data.data_utils import resample_streamlines, tck2trk, trk2tck
from utils.data.transforms import TestSampling, SeqSampling
from utils.general_utils import get_cfg_value
from utils.model_utils import get_model
import subprocess
# os.environ["DEVICE"] = torch.device(
# 'cuda' if torch.cuda.is_available() else 'cpu')
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
np.random.seed(10)
def get_gpu_free_memory_map():
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are free memory as integers in MB.
"""
result = subprocess.check_output([
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
],
encoding='utf-8')
# Convert lines into a dictionary
gpu_used_memory = [int(x) for x in result.strip().split('\n')]
n_gpus = len(gpu_used_memory)
gpu_free_memory = []
for i in range(n_gpus):
tot_mem = torch.cuda.get_device_properties(i).total_memory
tot_mem = int(tot_mem / 1024**2)
gpu_free_memory.append(tot_mem - gpu_used_memory[i])
gpu_free_memory_map = dict(zip(range(n_gpus), gpu_free_memory))
return gpu_free_memory_map
def get_max_batchsize(curr_device):
free_mem = int(get_gpu_free_memory_map()[curr_device] / 1024) # in GB
if free_mem <= 4:
return 10000
elif free_mem <= 8:
return 20000
elif free_mem <= 10:
return 30000
elif free_mem <= 11:
return 35000
elif free_mem >= 12:
return 40000
def tract2standard(t_fn,
t1_fn,
fixed_fn,
trans_type='SyNRA'):
print(f'registration using ANTs {trans_type}...')
fixed = ants.image_read(fixed_fn)
moving = ants.image_read(t1_fn)
# this is a workaround to emulate antsRegistrationSyNQuick.sh.
# Unfortunately it is not possible to equally emulate the script.
# There are differences in terms of parameters (shrink factor and num of
# iterations) in the rigid and in the affine registration
if trans_type == 'SyNRA':
# values taken from https://github.com/ANTsX/ANTs/blob/952e7918b47385ebfb730f9c844977762b8437f8/Scripts/antsRegistrationSyNQuick.sh#L455
# Notes:
# 1. syn_metric and num_of_bins (syn_sampling) are the same as default:
# "mattes" and 32 respectively
# 2. the three values that configure the SyN[x,x,x] optimization are
# respectively grad_step, flow_sigma, and total_sigma
# 3. syn_iterations correspond to reg_iterations
# 4. smoothing sigmas and shrink factor are automatically set inside the
# function. As desired they are set to be: "3x2x1x0vox" and "8x4x2x1"
# respectively
mytx = ants.registration(fixed=fixed,
moving=moving,
type_of_transform=trans_type,
reg_iterations=(100,70,50,0),
grad_step=0.1,
flow_sigma=3,
total_sigma=0)
else:
mytx = ants.registration(fixed=fixed,
moving=moving,
type_of_transform=trans_type)
ants.image_write(mytx['warpedmovout'], f'{tmp_dir}/struct_warped.nii.gz')
print('correcting warp to mrtrix convention...')
os.system(f'warpinit {fixed_fn} {tmp_dir}/ID_warp[].nii.gz -force')
for i in range(3):
temp_warp = ants.image_read(f'{tmp_dir}/ID_warp{i}.nii.gz')
temp_warp = ants.apply_transforms(fixed=moving,
moving=temp_warp,
transformlist=mytx['invtransforms'],
whichtoinvert=[True, False],
defaultvalue=2147483647
)
ants.image_write(temp_warp, f'{tmp_dir}/mrtrix_warp{i}.nii.gz')
os.system(
f'warpcorrect {tmp_dir}/mrtrix_warp[].nii.gz ' +
f'{tmp_dir}/mrtrix_warp_cor.nii.gz ' +
'-marker 2147483647 -tolerance 0.0001 -force'
)
print('applaying warp to tractogram...')
t_mni_fn = t_fn[:-4] + '_mni.tck'
os.system(
f'tcktransform {t_fn} {tmp_dir}/mrtrix_warp_cor.nii.gz {t_mni_fn} ' +
'-force -nthreads 0')
return t_mni_fn
def get_sample(data):
gdata = gBatch().from_data_list([data['points']])
gdata = gdata.to(DEVICE)
gdata.batch = gdata.bvec.clone()
del gdata.bvec
gdata['lengths'] = gdata['lengths'][0].item()
return gdata
if __name__ == '__main__':
script_dir = osp.dirname(osp.realpath(__file__))
tmp_dir = 'tmp_tractogram_filtering'
parser = argparse.ArgumentParser()
parser.add_argument('-config',
nargs='?',
default=f'{script_dir}/run_config.json',
help='The tag for the configuration file.')
args = parser.parse_args()
## load config
t0_global = time()
print('reading arguments')
cfg = json.load(open(args.config))
print(cfg)
move_tract = cfg['t1'] or cfg['fa'] != ''
tck_fn = f'{tmp_dir}/input/tract.tck'
trk_fn = f'{tmp_dir}/input/tract_mni_resampled.trk'
in_dir = f'{tmp_dir}/input'
if not osp.exists(in_dir):
os.makedirs(in_dir)
## resample trk to 16points if needed
if cfg['resample_points']:
t0 = time()
print('loading tractogram...')
streams, lengths = sload.load_selected_streamlines(cfg['trk'])
streamlines = np.split(streams, np.cumsum(lengths[:-1]))
print(f'done in {time()-t0} sec')
t0 = time()
print('streamlines resampling...')
streamlines = resample_streamlines(streamlines)
print(f'done in {time()-t0} sec')
t0 = time()
print('saving resampled tractogram...')
resampled_t = nib.streamlines.Tractogram(streamlines,
affine_to_rasmm=np.eye(4))
resampled_fn = tck_fn if move_tract else trk_fn
nib.streamlines.save(resampled_t, resampled_fn)
print(f'done in {time()-t0} sec')
## compute warp to mni and move tract if needed
if move_tract:
if not osp.exists(tck_fn):
t0 = time()
print('convert trk to tck...')
trk2tck(cfg['trk'], out_fn=tck_fn)
print(f'done in {time()-t0} sec')
t0 = time()
if cfg['fa'] != '':
struct_fn = cfg['fa']
mni_fn = f'{script_dir}/data/standard/FSL_HCP1065_FA_1mm.nii.gz'
else:
struct_fn = cfg['t1']
mni_fn = f'{script_dir}/data/standard/MNI152_T1_1mm_brain.nii.gz'
if cfg['fast_warp']:
# TODO: uncomment following line when antspy will release precompiled > 0.2.6
# warp_type = 'antsRegistrationSyNQuick[s]'
warp_type = 'SyNRA'
else:
warp_type = 'SyNCC'
tck_mni_fn = tract2standard(tck_fn,
struct_fn,
mni_fn,
trans_type=warp_type)
print(f'done in {time()-t0} sec')
t0 = time()
print('convert warped tck to trk...')
tck2trk(tck_mni_fn, mni_fn, out_fn=trk_fn)
print(f'done in {time()-t0} sec')
if not osp.exists(trk_fn):
print('The tractogram loaded is already compatible with the model')
os.system(f'''ln -sf {cfg['trk']} {trk_fn}''')
## run inference
print(f'launching inference using {DEVICE}...')
exp = f'{script_dir}/paper_runs/sdec_nodropout_loss_nll-data_hcp20_gt20mm_resampled16_fs8000_balanced_sampling_1'
var = 'HCP20'
cfg_parser = configparser.ConfigParser()
cfg_parser.read(exp + '/config.txt')
for name, value in cfg_parser.items('DEFAULT'):
cfg[name] = get_cfg_value(value)
for name, value in cfg_parser.items(var):
cfg[name] = get_cfg_value(value)
cfg['with_gt'] = False
cfg['weights_path'] = ''
cfg['exp_path'] = exp
# this prevent errors in loading streamlines that miss out of bounds points,
# removed by tcktranform during warping. Setting same_size to false we lose
# a bit of loading speed, but we are sure we load correctly streamlines
cfg['same_size'] = False
# check available memory to decide how many streams sample
if DEVICE == 'cuda':
torch.cuda.set_device(DEVICE)
curr_device = torch.cuda.current_device()
cfg['fixed_size'] = get_max_batchsize(curr_device)
print(f'''Using mini-batches of size {cfg['fixed_size']}''')
dataset = TractDataset(trk_fn,
transform=TestSampling(cfg['fixed_size']),
return_edges=True,
split_obj=True,
same_size=cfg['same_size'])
dataloader = gDataLoader(dataset,
batch_size=1,
shuffle=False,
num_workers=0,
pin_memory=True)
classifier = get_model(cfg)
if cfg['weights_path'] == '':
cfg['weights_path'] = glob.glob(cfg['exp_path'] + '/models/best*')[0]
state = torch.load(cfg['weights_path'], map_location=DEVICE)
classifier.load_state_dict(state)
classifier.to(DEVICE)
classifier.eval()
preds = []
probas = []
with torch.no_grad():
j = 0
i = 0
while j < len(dataset):
t0 = time()
print(f'processing subject {j}...')
consumed = False
data = dataset[j]
obj_pred = np.zeros(data['obj_full_size'])
obj_proba = np.zeros(data['obj_full_size'])
obj_cls_embedding = np.zeros((data['obj_full_size'], 256))
while not consumed:
points = get_sample(data)
batch = points.batch
logits = classifier(points)
pred = F.log_softmax(logits, dim=-1)
pred_choice = pred.data.max(1)[1].int()
obj_pred[data['obj_idxs']] = pred_choice.cpu().numpy()
obj_proba[data['obj_idxs']] = F.softmax(
logits, dim=-1)[:, 0].cpu().numpy()
if len(dataset.remaining[j]) == 0:
consumed = True
break
data = dataset[j]
i += 1
preds.append(obj_pred)
probas.append(obj_proba)
j += 1
print(f'done in {time()-t0} sec')
## save predictions
out_dir = f'{tmp_dir}/output'
if not osp.exists(out_dir):
os.makedirs(out_dir)
print(f'saving predictions...')
for pred in preds:
idxs_P = np.where(pred == 1)[0]
np.savetxt(f'{out_dir}/idxs_plausible.txt', idxs_P, fmt='%d')
idxs_nonP = np.where(pred == 0)[0]
np.savetxt(f'{out_dir}/idxs_non-plausible.txt',
idxs_nonP,
fmt='%d')
if cfg['return_trk']:
hdr = nib.streamlines.load(cfg['trk'], lazy_load=True).header
streams, lengths = sload.load_selected_streamlines(cfg['trk'])
streamlines = np.split(streams, np.cumsum(lengths[:-1]))
streamlines = np.array(streamlines, dtype=np.object)[idxs_P]
out_t = nib.streamlines.Tractogram(streamlines,
affine_to_rasmm=np.eye(4))
out_t_name = osbn(cfg['trk'])[:-4] + '_filtered.trk'
out_t_fn = f'''{out_dir}/{out_t_name}'''
nib.streamlines.save(out_t, out_t_fn, header=hdr)
print(f'saved {out_t_fn}')
print(f'End')
print(f'Duration: {(time()-t0_global)/60} min')