This repository has been archived by the owner on Mar 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtfkeras_convert.py
70 lines (59 loc) · 2.25 KB
/
tfkeras_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from __future__ import print_function
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
import os
import numpy as np
# Adapted from: https://keras.io/examples/mnist_cnn/
def load_acchu_data(mode='train'):
path = os.path.split(__file__)[0]
labels_path = os.path.join(path,'data',mode+'-label-onehot.npy')
images_path = os.path.join(path,'data',mode+'-image.npy')
labels = np.load(labels_path)
images = np.load(images_path)
# skip the rows which are more than 2 sides exceeding boundary.
keep_rows = []
for i in range(images.shape[0]):
img = images[i,:].reshape(28,28)
hasTopFilled=any(img[0,:])
hasBotFilled=any(img[27,:])
hasLeftFilled=any(img[:,0])
hasRightFilled=any(img[:,27])
if sum([hasBotFilled, hasTopFilled, hasLeftFilled, hasRightFilled]) < 2:
keep_rows.append(i)
return labels[keep_rows,:],images[keep_rows,:]
batch_size = 128
num_classes = 13
epochs = 200
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
y_train, x_train = load_acchu_data('test') #x-train.
y_test, x_test = load_acchu_data('train')
x_train = x_train.reshape(len(x_train), img_rows, img_cols,1)
x_test = x_test.reshape(len(x_test), img_rows, img_cols,1)
input_shape = (img_rows, img_cols,1)
half = x_test.shape[0]//2
x_train = np.concatenate(np.array([x_train,x_test[0:half,:]]),0)
y_train = np.concatenate(np.array([y_train,y_test[0:half,:]]),0)
x_test = x_test[half+1:,:]
y_test = y_test[half+1:,:]
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.0
x_test /= 255.0
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
modeldir = 'acchu_conv3_model_2'
model = keras.models.load_model(modeldir)
model.summary()
converter = tf.lite.TFLiteConverter.from_saved_model(modeldir)
tfl_model = converter.convert()
with open(modeldir+'.tflite','wb') as fp:
fp.write(tfl_model)
score = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', score[0])
print('Test accuracy:', score[1])