-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrenderer.go
1302 lines (1107 loc) · 44.5 KB
/
renderer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// renderer.go
// Copyright(c) 2022 Matt Pharr, licensed under the GNU Public License, Version 3.
// SPDX: GPL-3.0-only
package main
import (
"fmt"
"image"
"log/slog"
"math"
"sync"
"unsafe"
"github.com/mmp/imgui-go/v4"
)
// Renderer defines an interface for all of the various drawing that happens in vice.
// There is currently a single implementation of it--OpenGL2Renderer--though having
// all of these details behind the Renderer interface would make it realtively easy
// to write a Vulkan, Metal, or DirectX rendering backend.
type Renderer interface {
// CreateTextureFromImage returns an identifier for a texture map defined
// by the specified image.
CreateTextureFromImage(image image.Image, magNearest bool) uint32
// CreateTextureFromImage returns an identifier for a texture map defined
// by the specified image pyramid.
CreateTextureFromImages(image []image.Image, magNearest bool) uint32
// UpdateTextureFromImage updates the contents of an existing texture
// with the provided image.
UpdateTextureFromImage(id uint32, image image.Image, magNearest bool)
// UpdateTextureFromImage updates the contents of an existing texture
// with the provided image pyramid.
UpdateTextureFromImages(id uint32, image []image.Image, magNearest bool)
// DestroyTexture frees the resources associated with the given texture id.
DestroyTexture(id uint32)
// RenderCommandBuffer executes all of the commands encoded in the
// provided command buffer, returning statistics about what was
// rendered.
RenderCommandBuffer(*CommandBuffer) RendererStats
// Dispose releases resources allocated by the renderer.
Dispose()
}
// RendererStats encapsulates assorted statistics from rendering.
type RendererStats struct {
nBuffers, bufferBytes int
nDrawCalls int
nPoints, nLines, nTriangles, nQuads int
}
func (rs *RendererStats) String() string {
return fmt.Sprintf("%d buffers (%.2f MB), %d draw calls: %d points, %d lines, %d tris, %d quads",
rs.nBuffers, float32(rs.bufferBytes)/(1024*1024), rs.nDrawCalls, rs.nPoints, rs.nLines, rs.nTriangles, rs.nQuads)
}
func (rs *RendererStats) Merge(s RendererStats) {
rs.nBuffers += s.nBuffers
rs.bufferBytes += s.bufferBytes
rs.nDrawCalls += s.nDrawCalls
rs.nPoints += s.nPoints
rs.nLines += s.nLines
rs.nTriangles += s.nTriangles
rs.nQuads += s.nQuads
}
func (rs RendererStats) LogValue() slog.Value {
return slog.GroupValue(
slog.Int("buffers", rs.nBuffers),
slog.Int("buffer_memory", rs.bufferBytes),
slog.Int("draw_calls", rs.nDrawCalls),
slog.Int("points_drawn", rs.nPoints),
slog.Int("lines", rs.nLines),
slog.Int("tris", rs.nTriangles),
slog.Int("quads", rs.nQuads),
)
}
///////////////////////////////////////////////////////////////////////////
// The command buffer stores a series of rendering commands, represented by
// the following values. Each one is followed in the buffer by a number of
// command arguments, after which the next command follows. Comments
// after each command briefly describe its arguments.
//
// Buffers (vertex, index, color, texcoord), are all stored directly in the
// CommandBuffer, following RendererFloatBuffer and RendererIntBuffer
// commands; the first argument after those commands is the length of the
// buffer and then its values follow directly. Rendering commands that use
// buffers (e.g., buffer binding commands like RendererVertexArray or draw
// commands like RendererDrawLines) are then directed to those buffers via
// integer parameters that encode the offset from the start of the command
// buffer where a buffer begins. (Note that this implies that one
// CommandBuffer cannot refer to a vertex/index buffer in another
// CommandBuffer.
const (
RendererLoadProjectionMatrix = iota // 16 float32: matrix
RendererLoadModelViewMatrix // 16 float32: matrix
RendererClearRGBA // 4 float32: RGBA
RendererScissor // 4 int32: x, y, width, height
RendererViewport // 4 int32: x, y, width, height
RendererBlend // no args: for now always src alpha, 1-src alpha
RendererSetRGBA // 4 float32: RGBA
RendererDisableBlend // no args
RendererFloatBuffer // int32 size, then size*float32 values
RendererIntBuffer // int32: size, then size*int32 values
RendererRawBuffer // int32: size *in bytes*, then (3+size)/4 int32 values
RendererEnableTexture // int32 handle
RendererDisableTexture // no args
RendererVertexArray // byte offset to array values, n components, stride (bytes)
RendererDisableVertexArray // no args
RendererRGB8Array // byte offset to array values, n components, stride (bytes)
RendererRGB32Array // byte offset to array values, n components, stride (bytes)
RendererDisableColorArray // no args
RendererTexCoordArray // byte offset to array values, n components, stride (bytes)
RendererDisableTexCoordArray // no args
RendererLineWidth // float32
RendererDrawLines // 2 int32: offset to the index buffer, count
RendererDrawTriangles // 2 int32: offset to the index buffer, count
RendererDrawQuads // 2 int32: offset to the index buffer, count
RendererCallBuffer // 1 int32: buffer index
RendererResetState // no args
)
// CommandBuffer encodes a sequence of rendering commands in an
// API-agnostic manner. It makes it possible for other parts of vice to
// "pre-bake" rendering work into a form that can be efficiently processed
// by a Renderer and possibly reused over multiple frames.
type CommandBuffer struct {
Buf []uint32
called []CommandBuffer
}
// CommandBuffers are managed using a sync.Pool so that their buf slice
// allocations persist across multiple uses.
var commandBufferPool = sync.Pool{New: func() any { return &CommandBuffer{} }}
func GetCommandBuffer() *CommandBuffer {
return commandBufferPool.Get().(*CommandBuffer)
}
func ReturnCommandBuffer(cb *CommandBuffer) {
cb.Reset()
commandBufferPool.Put(cb)
}
// Reset resets the command buffer's length to zero so that it can be
// reused.
func (cb *CommandBuffer) Reset() {
cb.Buf = cb.Buf[:0]
cb.called = cb.called[:0]
}
// growFor ensures that at least n more values can be added to the end of
// the buffer without going past its capacity.
func (cb *CommandBuffer) growFor(n int) {
if len(cb.Buf)+n > cap(cb.Buf) {
sz := 2 * cap(cb.Buf)
if sz < 1024 {
sz = 1024
}
if sz < len(cb.Buf)+n {
sz = 2 * (len(cb.Buf) + n)
}
b := make([]uint32, len(cb.Buf), sz)
copy(b, cb.Buf)
cb.Buf = b
}
}
func (cb *CommandBuffer) appendFloats(floats ...float32) {
for _, f := range floats {
// Convert each one to a uint32 since that's the type that is
// actually stored...
cb.Buf = append(cb.Buf, math.Float32bits(f))
}
}
func (cb *CommandBuffer) appendInts(ints ...int) {
for _, i := range ints {
if i != int(uint32(i)) {
lg.Errorf("%d: attempting to add non-32-bit value to CommandBuffer", i)
}
cb.Buf = append(cb.Buf, uint32(i))
}
}
// FloatSlice returns a []float32 for the specified segment of the command
// buffer. It is up to the caller to be sure that this region actually
// stores float32 values. This method allows code to patch data in an
// already-generated CommandBuffer, for example to change colors in a color
// buffer without needing to regenerate a new command buffer from scratch.
func (cb *CommandBuffer) FloatSlice(start, length int) []float32 {
if length == 0 {
return nil
}
if start%4 != 0 {
lg.Errorf("%d: unaligned offset passed to FloatSlice", start)
}
ptr := (*float32)(unsafe.Pointer(&cb.Buf[start/4]))
return unsafe.Slice(ptr, length)
}
func (cb *CommandBuffer) LoadProjectionMatrix(m Matrix3) {
cb.appendInts(RendererLoadProjectionMatrix)
cb.appendFloats(
m[0][0], m[1][0], 0, m[2][0],
m[0][1], m[1][1], 0, m[2][1],
0, 0, 1, 0,
m[0][2], m[1][2], 0, m[2][2])
}
func (cb *CommandBuffer) LoadModelViewMatrix(m Matrix3) {
cb.appendInts(RendererLoadModelViewMatrix)
cb.appendFloats(
m[0][0], m[1][0], 0, m[2][0],
m[0][1], m[1][1], 0, m[2][1],
0, 0, 1, 0,
m[0][2], m[1][2], 0, m[2][2])
}
// ClearRGB adds a command to the command buffer to clear the framebuffer
// to the specified RGB color.
func (cb *CommandBuffer) ClearRGB(color RGB) {
cb.appendInts(RendererClearRGBA)
cb.appendFloats(color.R, color.G, color.B, 1)
}
// Scissor adds a command to the command buffer to set the scissor
// rectangle as specified.
func (cb *CommandBuffer) Scissor(x, y, w, h int) {
cb.appendInts(RendererScissor, x, y, w, h)
}
// Viewport adds a command to the command buffer to set the viewport to the
// specified rectangle.
func (cb *CommandBuffer) Viewport(x, y, w, h int) {
cb.appendInts(RendererViewport, x, y, w, h)
}
// SetDrawBounds sets the scissor rectangle and viewport according to the
// specified bounds so that subsequent code can assume window (or Pane)
// coordinates from (0,0)-(width,height) when drawing things.
func (cb *CommandBuffer) SetDrawBounds(b Extent2D) {
// One messy detail here is that these windows are specified in
// framebuffer coordinates, not display coordinates, so they must be
// scaled for e.g., retina displays.
scale := platform.FramebufferSize()[1] / platform.DisplaySize()[1]
x0, y0 := int(scale*b.p0[0]), int(scale*b.p0[1])
w, h := int(scale*b.Width()), int(scale*b.Height())
w, h = max(w, 0), max(h, 0)
cb.Scissor(x0, y0, w, h)
cb.Viewport(x0, y0, w, h)
}
// SetScissorBounds sets the scissor rectangle according to the
// specified bounds so that subsequent code can assume window (or Pane)
// coordinates from (0,0)-(width,height) when drawing things.
func (cb *CommandBuffer) SetScissorBounds(b Extent2D) {
// One messy detail here is that these windows are specified in
// framebuffer coordinates, not display coordinates, so they must be
// scaled for e.g., retina displays.
scale := platform.FramebufferSize()[1] / platform.DisplaySize()[1]
x0, y0 := int(scale*b.p0[0]), int(scale*b.p0[1])
w, h := int(scale*b.Width()), int(scale*b.Height())
w, h = max(w, 0), max(h, 0)
cb.Scissor(x0, y0, w, h)
}
// SetRGBA adds a command to the command buffer to set the current RGBA
// color. Subsequent draw commands will inherit this color unless they
// specify e.g., per-vertex colors themselves.
func (cb *CommandBuffer) SetRGBA(rgba RGBA) {
cb.appendInts(RendererSetRGBA)
cb.appendFloats(rgba.R, rgba.G, rgba.B, rgba.A)
}
// SetRGB adds a command to the command buffer to set the current RGB
// color (alpha is set to 1). Subsequent draw commands will inherit this
// color unless they specify e.g., per-vertex colors themselves.
func (cb *CommandBuffer) SetRGB(rgb RGB) {
cb.appendInts(RendererSetRGBA)
cb.appendFloats(rgb.R, rgb.G, rgb.B, 1)
}
// Blend adds a command to the command buffer enable blending. The blend
// mode cannot be specified currently, since only one mode (alpha over
// blending) is used.
func (cb *CommandBuffer) Blend() {
cb.appendInts(RendererBlend)
}
// DisableBlend adds a command to the command buffer that disables
// blending.
func (cb *CommandBuffer) DisableBlend() {
cb.appendInts(RendererDisableBlend)
}
// Float2Buffer stores the provided slice of [2]float32 values in the
// CommandBuffer and returns the byte offset where the first value of the
// slice is stored; this offset can then be passed to commands like
// VertexArray to specify this array.
func (cb *CommandBuffer) Float2Buffer(buf [][2]float32) int {
cb.appendInts(RendererFloatBuffer, 2*len(buf))
offset := 4 * len(cb.Buf)
n := 2 * len(buf)
cb.growFor(n)
start := len(cb.Buf)
cb.Buf = cb.Buf[:start+n]
copy(cb.Buf[start:start+n], unsafe.Slice((*uint32)(unsafe.Pointer(&buf[0])), n))
return offset
}
// RGBBuffer stores the provided slice of RGB values in the command buffer
// and returns the byte offset where the first value of the slice is
// stored.
func (cb *CommandBuffer) RGBBuffer(buf []RGB) int {
cb.appendInts(RendererFloatBuffer, 3*len(buf))
offset := 4 * len(cb.Buf)
n := 3 * len(buf)
cb.growFor(n)
start := len(cb.Buf)
copy(cb.Buf[start:start+n], unsafe.Slice((*uint32)(unsafe.Pointer(&buf[0])), n))
cb.Buf = cb.Buf[:start+n]
return offset
}
// IntBuffer stores the provided slice of int32 values in the command buffer
// and returns the byte offset where the first value of the slice is stored.
func (cb *CommandBuffer) IntBuffer(buf []int32) int {
cb.appendInts(RendererIntBuffer, len(buf))
offset := 4 * len(cb.Buf)
n := len(buf)
cb.growFor(n)
start := len(cb.Buf)
copy(cb.Buf[start:start+n], unsafe.Slice((*uint32)(unsafe.Pointer(&buf[0])), n))
cb.Buf = cb.Buf[:start+n]
return offset
}
// RawBuffer stores the provided bytes, without further interpretation in
// the command buffer and returns the byte offset from the start of the
// buffer where they begin.
func (cb *CommandBuffer) RawBuffer(buf []byte) int {
nints := (len(buf) + 3) / 4
cb.appendInts(RendererRawBuffer, nints)
offset := 4 * len(cb.Buf)
cb.growFor(nints)
start := len(cb.Buf)
ptr := uintptr(unsafe.Pointer(&cb.Buf[0])) + uintptr(4*start)
slice := unsafe.Slice((*byte)(unsafe.Pointer(ptr)), len(buf))
copy(slice, buf)
cb.Buf = cb.Buf[:start+nints]
return offset
}
// EnableTexture enables texturing from the specified texture id (as
// returned by the Renderer CreateTextureFromImage method implementation).
func (cb *CommandBuffer) EnableTexture(id uint32) {
cb.appendInts(RendererEnableTexture, int(id))
}
// DisableTexture adds a command to the command buffer to disable
// texturing.
func (cb *CommandBuffer) DisableTexture() {
cb.appendInts(RendererDisableTexture)
}
// VertexArray adds a command to the command buffer that specifies an array
// of vertex coordinates to use for a subsequent draw command. offset gives
// the offset into the current command buffer where the vertices again (e.g.,
// as returned by Float2Buffer), nComps is the number of components per
// vertex (generally 2 for vice), and stride gives the stride in bytes
// between vertices (e.g., 8 for densely packed 2D vertex coordinates.)
func (cb *CommandBuffer) VertexArray(offset, nComps, stride int) {
cb.appendInts(RendererVertexArray, offset, nComps, stride)
}
// DisableVertexArray adds a command to the command buffer to disable the
// current vertex array.
func (cb *CommandBuffer) DisableVertexArray() {
cb.appendInts(RendererDisableVertexArray)
}
// ColorArray adds a command to the command buffer that specifies an array
// of float32 RGB colors to use for a subsequent draw command. Its
// arguments are analogous to the ones passed to VertexArray.
func (cb *CommandBuffer) RGB32Array(offset, nComps, stride int) {
cb.appendInts(RendererRGB32Array, offset, nComps, stride)
}
// ColorArray adds a command to the command buffer that specifies an array
// of 8-bit RGBA colors to use for a subsequent draw command. Its arguments
// are analogous to the ones passed to VertexArray.
func (cb *CommandBuffer) RGB8Array(offset, nComps, stride int) {
cb.appendInts(RendererRGB8Array, offset, nComps, stride)
}
// DisableColorArray adds a command to the command buffer that disables
// the current array of RGB per-vertex colors.
func (cb *CommandBuffer) DisableColorArray() {
cb.appendInts(RendererDisableColorArray)
}
// TexCoordArray adds a command to the command buffer that specifies an
// array of per-vertex texture coordinates. Its arguments are analogous
// to the ones passed to VertexArray.
func (cb *CommandBuffer) TexCoordArray(offset, nComps, stride int) {
cb.appendInts(RendererTexCoordArray, offset, nComps, stride)
}
// DisableTexCoordArray adds a command to the command buffer that disables
// the currently-active array of texture coordinates.
func (cb *CommandBuffer) DisableTexCoordArray() {
cb.appendInts(RendererDisableTexCoordArray)
}
// LineWidth adds a command to the command buffer that sets the width in
// pixels of subsequent lines that are drawn.
func (cb *CommandBuffer) LineWidth(w float32) {
cb.appendInts(RendererLineWidth)
// Scale as needed so that lines are the same width on retina-style displays.
cb.appendFloats(w * platform.DPIScale())
}
// DrawLines adds a command to the command buffer to draw a number of
// lines; each line is specified by two indices in the index buffer.
// offset gives the offset in the current command buffer where the index
// buffer is (e.g., as returned by IntBuffer), and count gives the total
// number of vertices in the vertex buffer.
func (cb *CommandBuffer) DrawLines(offset, count int) {
cb.appendInts(RendererDrawLines, offset, count)
}
// DrawTriangles adds a command to the command buffer to draw a number of
// triangles; each is specified by three vertices in the index
// buffer. offset gives the offset to the start of the index buffer in the
// current command buffer and count gives the total number of indices.
func (cb *CommandBuffer) DrawTriangles(offset, count int) {
cb.appendInts(RendererDrawTriangles, offset, count)
}
// DrawTriangles adds a command to the command buffer to draw a number of
// quads; each is specified by four vertices in the index buffer. offset
// gives the offset to the start of the index buffer in the current command
// buffer and count gives the total number of indices.
func (cb *CommandBuffer) DrawQuads(offset, count int) {
cb.appendInts(RendererDrawQuads, offset, count)
}
// Call adds a command to the command buffer that causes the commands in
// the provided command buffer to be processed and executed. After the end
// of the command buffer is reached, processing of command in the current
// command buffer continues.
func (cb *CommandBuffer) Call(sub CommandBuffer) {
if sub.Buf == nil {
// make it a no-op
return
}
cb.appendInts(RendererCallBuffer, len(cb.called))
// Make our own copy of the slice to ensure it isn't garbage collected.
cb.called = append(cb.called, sub)
}
// ResetState adds a command to the comment buffer that resets all of the
// assorted graphics state (scissor rectangle, blending, texturing, vertex
// arrays, etc.) to default values.
func (cb *CommandBuffer) ResetState() {
cb.appendInts(RendererResetState)
}
///////////////////////////////////////////////////////////////////////////
// DrawBuilders
// The various *DrawBuilder classes provide capabilities for specifying a
// number of independent things of the same type to draw and then
// generating corresponding buffer storage and draw commands in a
// CommandBuffer. This allows batching up many things to be drawn all in a
// single draw command, with corresponding GPU performance benefits.
// PointsDrawBuilder accumulates colored points to be drawn.
type PointsDrawBuilder struct {
td ColoredTrianglesDrawBuilder
}
// Reset resets all of the internal storage in the PointsDrawBuilder so that
// new points can be specified. It maintains the memory allocations so that
// once the system reaches steady state, there will generally not be dynamic
// memory allocations when it is used.
func (p *PointsDrawBuilder) Reset() {
p.td.Reset()
}
// AddPoint adds the specified point to the draw list in the
// PointsDrawBuilder.
func (p *PointsDrawBuilder) AddPoint(pt [2]float32, diameter float32, color RGB) {
// Draw points as a fan of triangles around the center point. Choose
// the number of points based on its diameter, which we assume is in
// window coordinates.
np := max(5, int(diameter))
pts := getCirclePoints(np)
radius := diameter / 2
for i := range pts {
p0, p1 := scale2f(pts[i], radius), scale2f(pts[(i+1)%np], radius)
p.td.AddTriangle(pt, add2f(pt, p0), add2f(pt, p1), color)
}
}
// GenerateCommands adds a draw command for all of the points in the
// PointsDrawBuilder to the provided command buffer.
func (p *PointsDrawBuilder) GenerateCommands(cb *CommandBuffer) {
p.td.GenerateCommands(cb)
}
// LinesDrawBuilder accumulates lines to be drawn together. Note that it does
// not allow specifying the colors of the lines; instead, whatever the current
// color is (as set via the CommandBuffer SetRGB method) is used when drawing
// them. If per-line colors are required, the ColoredLinesDrawBuilder should be
// used instead.
type LinesDrawBuilder struct {
p [][2]float32
indices []int32
}
// Reset resets the internal arrays used for accumulating lines,
// maintaining the initial allocations.
func (l *LinesDrawBuilder) Reset() {
l.p = l.p[:0]
l.indices = l.indices[:0]
}
// AddLine adds a lines with the specified vertex positions to the set of
// lines to be drawn.
func (l *LinesDrawBuilder) AddLine(p0, p1 [2]float32) {
idx := int32(len(l.p))
l.p = append(l.p, p0, p1)
l.indices = append(l.indices, idx, idx+1)
}
// AddLineStrip adds multiple lines to the lines draw builder where each
// line is given by a successive pair of points, a la GL_LINE_STRIP.
func (l *LinesDrawBuilder) AddLineStrip(p [][2]float32) {
idx := int32(len(l.p))
l.p = append(l.p, p...)
for i := 0; i < len(p)-1; i++ {
l.indices = append(l.indices, idx+int32(i), idx+int32((i+1)))
}
}
// Adds a line loop, like a line strip but where the last vertex connects
// to the first, a la GL_LINE_LOOP.
func (l *LinesDrawBuilder) AddLineLoop(p [][2]float32) {
idx := int32(len(l.p))
l.p = append(l.p, p...)
for i := range p {
l.indices = append(l.indices, idx+int32(i), idx+int32((i+1)%len(p)))
}
}
var (
// So that we can efficiently draw circles with various tessellations,
// circlePoints caches vertex positions of a unit circle at the origin
// for specified tessellation rates.
circlePoints map[int][][2]float32
)
// getCirclePoints returns the vertices for a unit circle at the origin
// with the given number of segments; it creates the vertex slice if this
// tessellation rate hasn't been seen before and otherwise returns a
// preexisting one.
func getCirclePoints(nsegs int) [][2]float32 {
if circlePoints == nil {
circlePoints = make(map[int][][2]float32)
}
if _, ok := circlePoints[nsegs]; !ok {
// Evaluate the vertices of the circle to initialize a new slice.
var pts [][2]float32
for d := 0; d < nsegs; d++ {
angle := radians(float32(d) / float32(nsegs) * 360)
pt := [2]float32{sin(angle), cos(angle)}
pts = append(pts, pt)
}
circlePoints[nsegs] = pts
}
// One way or another, it's now available in the map.
return circlePoints[nsegs]
}
// AddCircle adds lines that draw the outline of a circle with specified
// and color centered at the specified point p. The nsegs parameter
// specifies the tessellation rate for the circle.
func (l *LinesDrawBuilder) AddCircle(p [2]float32, radius float32, nsegs int) {
circle := getCirclePoints(nsegs)
idx := int32(len(l.p))
for i := 0; i < nsegs; i++ {
// Translate the points to be centered around the point p with the
// given radius and add them to the vertex buffer.
pi := [2]float32{p[0] + radius*circle[i][0], p[1] + radius*circle[i][1]}
l.p = append(l.p, pi)
}
for i := 0; i < nsegs; i++ {
// Initialize the index buffer; note that the first vertex is
// reused as the endpoint of the last line segment.
l.indices = append(l.indices, idx+int32(i), idx+int32((i+1)%nsegs))
}
}
func (l *LinesDrawBuilder) AddLatLongCircle(p Point2LL, nmPerLongitude float32, r float32, nsegs int) {
// We want vertices in lat-long space but will draw the circle in
// nm space since distance is uniform there.
pc := ll2nm(p, nmPerLongitude)
for i := 0; i < nsegs; i++ {
pt := func(i int) [2]float32 {
a := float32(i) / float32(nsegs) * 2 * math.Pi
v := [2]float32{sin(a), cos(a)}
v = scale2f(v, r)
return nm2ll(add2f(pc, v), nmPerLongitude)
}
l.AddLine(pt(i), pt(i+1))
}
}
// Draws a number using digits drawn with lines. This can be helpful in
// cases like drawing an altitude on a video map where we want the number
// size to change when the user zooms the scope.
func (l *LinesDrawBuilder) AddNumber(p [2]float32, sz float32, v string) {
// digit -> slice of line segments
coords := [][][2][2]float32{
{{{0, 2}, {2, 2}}, {{2, 2}, {2, 0}}, {{2, 0}, {0, 0}}, {{0, 0}, {0, 2}}},
{{{1, 2}, {1, 0}}, {{1, 2}, {0.5, 1.5}}},
{{{0, 2}, {2, 2}}, {{2, 2}, {2, 1}}, {{2, 1}, {0, 1}}, {{0, 1}, {0, 0}}, {{0, 0}, {2, 0}}},
{{{0, 2}, {2, 2}}, {{2, 2}, {2, 0}}, {{2, 0}, {0, 0}}, {{1, 1}, {2, 1}}},
{{{0, 1}, {2, 1}}, {{2, 2}, {2, 0}}, {{0, 2}, {0, 1}}},
{{{2, 2}, {0, 2}}, {{0, 2}, {0, 1}}, {{0, 1}, {2, 1}}, {{2, 1}, {2, 0}}, {{2, 0}, {0, 0}}},
{{{0, 0}, {2, 0}}, {{2, 0}, {2, 1}}, {{2, 1}, {0, 1}}, {{0, 0}, {0, 2}}, {{0, 2}, {1, 2}}},
{{{0, 2}, {2, 2}}, {{2, 2}, {1, 0}}},
{{{0, 2}, {2, 2}}, {{2, 2}, {2, 1}}, {{2, 1}, {0, 1}}, {{0, 1}, {0, 2}}, {{0, 1}, {2, 1}}, {{2, 1}, {2, 0}}, {{2, 0}, {0, 0}}, {{0, 0}, {0, 1}}},
{{{1, 0}, {2, 0}}, {{2, 0}, {2, 2}}, {{2, 2}, {0, 2}}, {{0, 2}, {0, 1}}, {{0, 1}, {2, 1}}},
}
for _, digit := range v {
d := digit - '0'
if d >= 0 && d <= 9 {
for _, seg := range coords[d] {
l.AddLine(add2f(p, scale2f(seg[0], sz)), add2f(p, scale2f(seg[1], sz)))
}
} else {
// draw an x
l.AddLine(p, add2f(p, scale2f([2]float32{2, 2}, sz)))
l.AddLine(add2f(p, [2]float32{2 * sz, 0}), add2f(p, [2]float32{0, 2 * sz}))
}
p[0] += 2.5 * sz
}
}
// Bounds returns the 2D bounding box of the specified lines.
func (l *LinesDrawBuilder) Bounds() Extent2D {
return Extent2DFromPoints(l.p)
}
// GenerateCommands adds commands to the specified command buffer to draw
// the lines stored in the LinesDrawBuilder.
func (l *LinesDrawBuilder) GenerateCommands(cb *CommandBuffer) {
if len(l.indices) == 0 {
return
}
// Add the vertex positions to the command buffer.
p := cb.Float2Buffer(l.p)
cb.VertexArray(p, 2, 2*4)
// Add the vertex indices and issue the draw command.
ind := cb.IntBuffer(l.indices)
cb.DrawLines(ind, len(l.indices))
// Clean up
cb.DisableVertexArray()
}
// LinesDrawBuilders are managed using a sync.Pool so that their buf slice
// allocations persist across multiple uses.
var linesDrawBuilderPool = sync.Pool{New: func() any { return &LinesDrawBuilder{} }}
func GetLinesDrawBuilder() *LinesDrawBuilder {
return linesDrawBuilderPool.Get().(*LinesDrawBuilder)
}
func ReturnLinesDrawBuilder(ld *LinesDrawBuilder) {
ld.Reset()
linesDrawBuilderPool.Put(ld)
}
// ColoredLinesDrawBuilder is similar to the LinesDrawBuilder though it
// allows specifying the color of each line individually. Its methods
// otherwise mostly parallel those of LinesDrawBuilder; see the
// documentation there.
type ColoredLinesDrawBuilder struct {
LinesDrawBuilder
color []RGB
}
func (l *ColoredLinesDrawBuilder) Reset() {
l.LinesDrawBuilder.Reset()
l.color = l.color[:0]
}
func (l *ColoredLinesDrawBuilder) AddLine(p0, p1 [2]float32, color RGB) {
l.LinesDrawBuilder.AddLine(p0, p1)
l.color = append(l.color, color, color)
}
func (l *ColoredLinesDrawBuilder) AddLineLoop(color RGB, p [][2]float32) {
l.LinesDrawBuilder.AddLineLoop(p)
for range p {
l.color = append(l.color, color)
}
}
// AddCircle adds lines that draw the outline of a circle with specified
// radius and color centered at the specified point p. The nsegs parameter
// specifies the tessellation rate for the circle.
func (l *ColoredLinesDrawBuilder) AddCircle(p [2]float32, radius float32, nsegs int, color RGB) {
l.LinesDrawBuilder.AddCircle(p, radius, nsegs)
for i := 0; i < nsegs; i++ {
l.color = append(l.color, color)
}
}
func (l *ColoredLinesDrawBuilder) GenerateCommands(cb *CommandBuffer) (int, int) {
if len(l.indices) == 0 {
return 0, 0
}
rgb := cb.RGBBuffer(l.color)
cb.RGB32Array(rgb, 3, 3*4)
l.LinesDrawBuilder.GenerateCommands(cb)
return rgb, 3 * len(l.color)
}
// ColoredLinesDrawBuilders are managed using a sync.Pool so that their buf
// slice allocations persist across multiple uses.
var coloredLinesDrawBuilderPool = sync.Pool{New: func() any { return &ColoredLinesDrawBuilder{} }}
func GetColoredLinesDrawBuilder() *ColoredLinesDrawBuilder {
return coloredLinesDrawBuilderPool.Get().(*ColoredLinesDrawBuilder)
}
func ReturnColoredLinesDrawBuilder(ld *ColoredLinesDrawBuilder) {
ld.Reset()
coloredLinesDrawBuilderPool.Put(ld)
}
// TrianglesDrawBuilder collects triangles to be batched up in a single
// draw call. Note that it does not allow specifying per-vertex or
// per-triangle color; rather, the current color as specified by a call to
// the CommandBuffer SetRGB method is used for all triangles.
type TrianglesDrawBuilder struct {
p [][2]float32
indices []int32
}
func (t *TrianglesDrawBuilder) Reset() {
t.p = t.p[:0]
t.indices = t.indices[:0]
}
// AddTriangle adds a triangle with the specified three vertices to be
// drawn.
func (t *TrianglesDrawBuilder) AddTriangle(p0, p1, p2 [2]float32) {
idx := int32(len(t.p))
t.p = append(t.p, p0, p1, p2)
t.indices = append(t.indices, idx, idx+1, idx+2)
}
// AddQuad adds a quadrilateral with the specified four vertices to be
// drawn; the quad is split into two triangles for drawing.
func (t *TrianglesDrawBuilder) AddQuad(p0, p1, p2, p3 [2]float32) {
idx := int32(len(t.p))
t.p = append(t.p, p0, p1, p2, p3)
t.indices = append(t.indices, idx, idx+1, idx+2, idx, idx+2, idx+3)
}
// AddCircle adds a filled circle with specified radius around the
// specified position to be drawn using triangles. The specified number of
// segments, nsegs, sets the tessellation rate for the circle.
func (t *TrianglesDrawBuilder) AddCircle(p [2]float32, radius float32, nsegs int) {
circle := getCirclePoints(nsegs)
idx := int32(len(t.p))
t.p = append(t.p, p) // center point
for i := 0; i < nsegs; i++ {
pi := [2]float32{p[0] + radius*circle[i][0], p[1] + radius*circle[i][1]}
t.p = append(t.p, pi)
}
for i := 0; i < nsegs; i++ {
t.indices = append(t.indices, idx, idx+1+int32(i), idx+1+int32((i+1)%nsegs))
}
}
func (t *TrianglesDrawBuilder) Bounds() Extent2D {
return Extent2DFromPoints(t.p)
}
func (t *TrianglesDrawBuilder) GenerateCommands(cb *CommandBuffer) {
if len(t.indices) == 0 {
return
}
p := cb.Float2Buffer(t.p)
cb.VertexArray(p, 2, 2*4)
ind := cb.IntBuffer(t.indices)
cb.DrawTriangles(ind, len(t.indices))
cb.DisableVertexArray()
}
// TrianglesDrawBuilders are managed using a sync.Pool so that their buf
// slice allocations persist across multiple uses.
var trianglesDrawBuilderPool = sync.Pool{New: func() any { return &TrianglesDrawBuilder{} }}
func GetTrianglesDrawBuilder() *TrianglesDrawBuilder {
return trianglesDrawBuilderPool.Get().(*TrianglesDrawBuilder)
}
func ReturnTrianglesDrawBuilder(td *TrianglesDrawBuilder) {
td.Reset()
trianglesDrawBuilderPool.Put(td)
}
// ColoredTrianglesDrawBuilder
type ColoredTrianglesDrawBuilder struct {
TrianglesDrawBuilder
color []RGB
}
func (t *ColoredTrianglesDrawBuilder) Reset() {
t.TrianglesDrawBuilder.Reset()
t.color = t.color[:0]
}
// AddTriangle adds a triangle with the specified three vertices to be
// drawn.
func (t *ColoredTrianglesDrawBuilder) AddTriangle(p0, p1, p2 [2]float32, rgb RGB) {
t.TrianglesDrawBuilder.AddTriangle(p0, p1, p2)
t.color = append(t.color, rgb, rgb, rgb)
}
// AddQuad adds a quadrilateral with the specified four vertices to be
// drawn; the quad is split into two triangles for drawing.
func (t *ColoredTrianglesDrawBuilder) AddQuad(p0, p1, p2, p3 [2]float32, rgb RGB) {
t.TrianglesDrawBuilder.AddQuad(p0, p1, p2, p3)
t.color = append(t.color, rgb, rgb, rgb, rgb)
}
// AddCircle adds a filled circle with specified radius around the
// specified position to be drawn using triangles. The specified number of
// segments, nsegs, sets the tessellation rate for the circle.
func (t *ColoredTrianglesDrawBuilder) AddCircle(p [2]float32, radius float32, nsegs int, rgb RGB) {
t.TrianglesDrawBuilder.AddCircle(p, radius, nsegs)
for i := 0; i < nsegs; i++ {
t.color = append(t.color, rgb)
}
}
func (t *ColoredTrianglesDrawBuilder) GenerateCommands(cb *CommandBuffer) {
if len(t.indices) == 0 {
return
}
rgb := cb.RGBBuffer(t.color)
cb.RGB32Array(rgb, 3, 3*4)
t.TrianglesDrawBuilder.GenerateCommands(cb)
cb.DisableColorArray()
}
// ColoredTrianglesDrawBuilders are managed using a sync.Pool so that their buf
// slice allocations persist across multiple uses.
var coloredTrianglesDrawBuilderPool = sync.Pool{New: func() any { return &ColoredTrianglesDrawBuilder{} }}
func GetColoredTrianglesDrawBuilder() *ColoredTrianglesDrawBuilder {
return coloredTrianglesDrawBuilderPool.Get().(*ColoredTrianglesDrawBuilder)
}
func ReturnColoredTrianglesDrawBuilder(td *ColoredTrianglesDrawBuilder) {
td.Reset()
coloredTrianglesDrawBuilderPool.Put(td)
}
// TexturedTrianglesDrawBuilder generates commands for drawing a set of
// triangles with associated uv texture coordinates using a specified
// single texture map.
type TexturedTrianglesDrawBuilder struct {
TrianglesDrawBuilder
uv [][2]float32
}
func (t *TexturedTrianglesDrawBuilder) Reset() {
t.TrianglesDrawBuilder.Reset()
t.uv = t.uv[:0]
}
// AddTriangle adds a triangle with the specified three vertices and uv
// coordinates to be drawn.
func (t *TexturedTrianglesDrawBuilder) AddTriangle(p0, p1, p2 [2]float32, uv0, uv1, uv2 [2]float32) {
t.TrianglesDrawBuilder.AddTriangle(p0, p1, p2)
t.uv = append(t.uv, uv0, uv1, uv2)
}
// AddQuad adds a quadrilateral with the specified four vertices and
// associated texture coordinates to the list to be drawn; the quad is
// split into two triangles for drawing.
func (t *TexturedTrianglesDrawBuilder) AddQuad(p0, p1, p2, p3 [2]float32, uv0, uv1, uv2, uv3 [2]float32) {
t.TrianglesDrawBuilder.AddQuad(p0, p1, p2, p3)
t.uv = append(t.uv, uv0, uv1, uv2, uv3)
}
func (t *TexturedTrianglesDrawBuilder) GenerateCommands(cb *CommandBuffer) {
if len(t.indices) == 0 {
return
}
uv := cb.Float2Buffer(t.uv)
cb.TexCoordArray(uv, 2, 2*4)
t.TrianglesDrawBuilder.GenerateCommands(cb)
cb.DisableTexCoordArray()
}
// And as above, these are also managed in a pool.
var texturedTrianglesDrawBuilderPool = sync.Pool{New: func() any { return &TexturedTrianglesDrawBuilder{} }}
func GetTexturedTrianglesDrawBuilder() *TexturedTrianglesDrawBuilder {
return texturedTrianglesDrawBuilderPool.Get().(*TexturedTrianglesDrawBuilder)
}
func ReturnTexturedTrianglesDrawBuilder(td *TexturedTrianglesDrawBuilder) {
td.Reset()
texturedTrianglesDrawBuilderPool.Put(td)
}
// TextDrawBuilder accumulates text to be drawn, batching it up in a single
// draw command.
type TextDrawBuilder struct {
// Vertex/index buffers for regular text and drop shadows, if enabled.
regular map[uint32]*TextBuffers // Map from texid to buffers
// Buffers for background quads, if specified (shared for all tex ids)
background struct {
p [][2]float32
rgb []RGB
indices []int32
}
}
// TextBuffers is a helper class that maintains vertex and index buffers
// for drawing text.
type TextBuffers struct {
p [][2]float32
uv [][2]float32
rgb []RGB
indices []int32
}
func (t *TextBuffers) Reset() {
t.p = t.p[:0]
t.uv = t.uv[:0]
t.rgb = t.rgb[:0]
t.indices = t.indices[:0]
}
// Add updates the buffers to draw the given glyph with the given color,
// with upper-left coordinates specified by p.
func (t *TextBuffers) Add(p [2]float32, glyph *Glyph, color RGB) {
// Get the vertex positions and texture coordinates for the
// glyph.