-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathrenderer.py
804 lines (687 loc) · 36.2 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import bpy
import os
import time
import gpu
import numpy as np
from math import sin, cos, tan, ceil, degrees, pi
from datetime import datetime
from gpu_extras.batch import batch_for_shader
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from . import Properties
from . import Preferences
# Define parts of fragment shader
commdef = '''
#define PI 3.1415926535897932384626
#define FOVFRAC %f
#define SIDEFRAC %f
#define TBFRAC %f
#define HCLIP %f
#define VCLIP %f
#define HMARGIN %f
#define VMARGIN %f
#define SMARGIN %f
#define EXTRUSION %f
#define INTRUSION %f
const float SIDEHTEXSCALE = 1 / (SIDEFRAC - INTRUSION);
const float SIDEVTEXSCALE = 1 / (1 + 2 * SMARGIN);
const float TBVTEXSCALE = 1 / (TBFRAC - INTRUSION);
const float HTEXSCALE = 1 / (1 + 2 * (HMARGIN + EXTRUSION));
const float VTEXSCALE = 1 / (1 + 2 * (VMARGIN + EXTRUSION));
const float ACTUALHMARGIN = HMARGIN * HTEXSCALE;
const float ACTUALVMARGIN = VMARGIN * VTEXSCALE;
vec2 tr(vec2 src, vec2 offset, vec2 scale)
{
return (src + offset) * scale;
}
vec2 to_uv(float x, float y)
{
return vec2(0.5 * x + 0.5, 0.5 * y + 0.5);
}
vec2 to_uv_right(vec3 pt)
{
return tr(to_uv(-pt.z/pt.x, pt.y/pt.x), vec2(-INTRUSION, SMARGIN), vec2(SIDEHTEXSCALE, SIDEVTEXSCALE));
}
vec2 to_uv_left(vec3 pt)
{
return tr(to_uv(-pt.z/pt.x, -pt.y/pt.x), vec2(SIDEFRAC - 1, SMARGIN), vec2(SIDEHTEXSCALE, SIDEVTEXSCALE));
}
vec2 to_uv_top(vec3 pt)
{
return tr(to_uv(pt.x/pt.y, -pt.z/pt.y), vec2(0, -INTRUSION), vec2(1, TBVTEXSCALE));
}
vec2 to_uv_bottom(vec3 pt)
{
return tr(to_uv(-pt.x/pt.y, -pt.z/pt.y), vec2(0, TBFRAC - 1), vec2(1, TBVTEXSCALE));
}
vec2 apply_margin(vec2 src)
{
return tr(src, vec2(HMARGIN + EXTRUSION, VMARGIN + EXTRUSION), vec2(HTEXSCALE, VTEXSCALE));
}
vec2 to_uv_front(vec3 pt)
{
return apply_margin(to_uv(pt.x/pt.z, pt.y/pt.z));
}
vec2 to_uv_back(vec3 pt)
{
return apply_margin(to_uv(pt.x/pt.z, -pt.y/pt.z));
}
float atan2(float y, float x)
{
return x == 0.0 ? sign(y) * 0.5 * PI : atan(y, x);
}
void main() {
'''
dome = '''
vec2 d = vTexCoord.xy;
float r = length(d);
if(r > 1.0) discard;
// Calculate the position on unit sphere
vec2 dunit = normalize(d);
float phi = FOVFRAC * PI * r;
vec3 pt;
%s
pt.z = cos(phi);
float azimuth = atan2(pt.x, pt.z);
'''
domemodes = [
'pt.xy = dunit * phi;',
'pt.xy = dunit * sin(phi);',
'pt.xy = 2.0 * dunit * sin(phi * 0.5);',
'pt.xy = 2.0 * dunit * tan(phi * 0.5);'
]
equi = '''
// Calculate the pointing angle
float azimuth = FOVFRAC * PI * vTexCoord.x;
float elevation = 0.5 * PI * vTexCoord.y;
// Calculate the position on unit sphere
vec3 pt;
pt.x = cos(elevation) * sin(azimuth);
pt.y = sin(elevation);
pt.z = cos(elevation) * cos(azimuth);
'''
fetch_setup = '''
// Select the correct pixel
// left or right
float lor = step(abs(pt.y), abs(pt.x)) * step(abs(pt.z), abs(pt.x));
// top or bottom
float tob = (1 - lor) * step(abs(pt.z), abs(pt.y));
// front or back
float fob = (1 - lor) * (1 - tob);
float right = step(0, pt.x);
float up = step(0, pt.y);
float front = step(0, pt.z);
float over45 = step(0.25 * PI, abs(azimuth));
float over135 = step(0.75 * PI, abs(azimuth));
{
float angle;
angle = (fob + tob) * (1 - over45) * front * abs(pt.x/pt.z) * 0.25 * PI;
angle += (lor + tob) * over45 * (1 - over135) * right * (2 - pt.z/pt.x) * 0.25 * PI;
angle += (lor + tob) * over45 * (1 - over135) * (1 - right) * (pt.z/pt.x + 2) * 0.25 * PI;
angle += (fob + tob) * over135 * (1 - front) * (4 - abs(pt.x/pt.z)) * 0.25 * PI;
if(angle > HCLIP*0.5) discard;
}
{
float near_horizon = step(abs(pt.y), abs(pt.z));
float angle;
angle = (fob + lor * near_horizon) * abs(pt.y/pt.z) * 0.25 * PI;
angle += (tob + lor * (1 - near_horizon)) * (2 - abs(pt.z/pt.y)) * 0.25 * PI;
if(angle > VCLIP*0.5) discard;
}
fragColor = vec4(0.0);
'''
fetch_top_bottom = '''
fragColor += tob * up * texture(cubeTopImage, to_uv_top(pt));
fragColor += tob * (1 - up) * texture(cubeBottomImage, to_uv_bottom(pt));
'''
fetch_sides = '''
vec2 right_uv = to_uv_right(pt);
float right_inner = step(0, right_uv.x);
fragColor += lor * right * right_inner * texture(cubeRightImage, right_uv);
vec2 left_uv = to_uv_left(pt);
float left_inner = step(left_uv.x, 1);
fragColor += lor * (1 - right) * left_inner * texture(cubeLeftImage, left_uv);
'''
blend_seam_sides = '''
{
float range = over45 * (1 - over135);
float alpha = range * right * tob * up * smoothstep(1.0, 0.0, clamp((right_uv.y - 1 + ACTUALVMARGIN) / ACTUALVMARGIN, 0.0, 1.0));
alpha *= right_inner;
fragColor = mix(fragColor, texture(cubeRightImage, right_uv), alpha);
alpha = range * right * tob * (1 - up) * smoothstep(0.0, 1.0, clamp(right_uv.y / ACTUALVMARGIN, 0.0, 1.0));
alpha *= right_inner;
fragColor = mix(fragColor, texture(cubeRightImage, right_uv), alpha);
alpha = range * (1 - right) * tob * up * smoothstep(1.0, 0.0, clamp((left_uv.y - 1 + ACTUALVMARGIN) / ACTUALVMARGIN, 0.0, 1.0));
alpha *= left_inner;
fragColor = mix(fragColor, texture(cubeLeftImage, left_uv), alpha);
alpha = range * (1 - right) * tob * (1 - up) * smoothstep(0.0, 1.0, clamp(left_uv.y / ACTUALVMARGIN, 0.0, 1.0));
alpha *= left_inner;
fragColor = mix(fragColor, texture(cubeLeftImage, left_uv), alpha);
}
'''
fetch_back = '''
{
vec2 uv = to_uv_back(pt);
fragColor += fob * (1 - front) * texture(cubeBackImage, uv);
%s
}
'''
fetch_front = '''
{
vec2 uv = to_uv_front(pt);
fragColor += fob * front * texture(cubeFrontImage, uv);
%s
}
'''
blend_seam_front_h = '''
{
float in_range = step(0, uv.x) * (1 - step(1, uv.x));
float alpha = in_range * front * lor * right * smoothstep(1.0, 0.0, clamp((uv.x - 1 + ACTUALHMARGIN) / ACTUALHMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeFrontImage, uv), alpha);
alpha = in_range * front * lor * (1 - right) * smoothstep(0.0, 1.0, clamp(uv.x / ACTUALHMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeFrontImage, uv), alpha);
}
'''
blend_seam_front_v = '''
{
float in_range = step(0, uv.y) * (1 - step(1, uv.y));
float alpha = in_range * front * tob * up * smoothstep(1.0, 0.0, clamp((uv.y - 1 + ACTUALVMARGIN) / ACTUALVMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeFrontImage, uv), alpha);
alpha = in_range * front * tob * (1 - up) * smoothstep(0.0, 1.0, clamp(uv.y / ACTUALVMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeFrontImage, uv), alpha);
}
'''
blend_seam_back_h = '''
{
float alpha = (1 - front) * lor * right * smoothstep(1.0, 0.0, clamp((1.0 - uv.x - 1 + ACTUALHMARGIN) / ACTUALHMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeBackImage, uv), alpha);
alpha = (1 - front) * lor * (1 - right) * smoothstep(0.0, 1.0, clamp((1.0 - uv.x) / ACTUALHMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeBackImage, uv), alpha);
}
'''
blend_seam_back_v = '''
{
float alpha = (1 - front) * tob * up * smoothstep(1.0, 0.0, clamp((uv.y - 1 + ACTUALVMARGIN) / ACTUALVMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeBackImage, uv), alpha);
alpha = (1 - front) * tob * (1 - up) * smoothstep(0.0, 1.0, clamp(uv.y / ACTUALVMARGIN, 0.0, 1.0));
fragColor = mix(fragColor, texture(cubeBackImage, uv), alpha);
}
'''
# Define the vertex shader
vertex_shader = '''
void main() {
vTexCoord = aVertexTextureCoord;
gl_Position = vec4(aVertexPosition, 1);
}
'''
class Renderer:
def __init__(self, context : bpy.types.Context, is_animation = False, folder = ''):
# Check if the file is saved or not, can cause errors when not saved
if not bpy.data.is_saved:
raise PermissionError("Save file before rendering")
props: Properties = context.scene.eeVR
self.preferences: Preferences = context.preferences.addons[__package__].preferences
# Set internal variables for the class
self.scene = context.scene
# Get the file extension
self.fext = os.path.splitext(bpy.context.scene.render.frame_path(preview=True))[-1]
self.fformat = bpy.context.scene.render.image_settings.file_format.format()
self.color_mode = bpy.context.scene.render.image_settings.color_mode
self.is_float = True if self.fformat in ['CINEON', 'DPX', 'OPEN_EXR_MULTILAYER', 'OPEN_EXR', 'HDR'] else False
self.has_alpha = True if self.color_mode == 'RGBA' else False
# save original active object
self.viewlayer_active_object_origin = context.view_layer.objects.active
# save original active camera handle
self.camera_origin = context.scene.camera
# create a new camera for rendering
bpy.ops.object.camera_add()
if context.object:
self.camera = context.object
else:
# camera_add in render contect don't set context.object by new camera...
if context.active_object and context.active_object.type == 'CAMERA':
self.camera = context.active_object
else:
raise PermissionError("Script cannot handle added temporal camera")
self.camera.name = 'eeVR_camera'
# set new cam active
context.scene.camera = self.camera
# set coordinates same as origin by using world matrix already transformed but not location or rotation
# and always using it to update correct coordinates before rendering
# no constraints, parent, drivers and keyframes for new cam, now we can handle cameras with those stuff
self.camera.matrix_world = self.camera_origin.matrix_world
# transfer key attributes that may affect rendering, conv dis not needed 'cause it is parallel
self.camera.data.stereo.interocular_distance = self.camera_origin.data.stereo.interocular_distance
# transfer clip_start & clip_end parameter to new camera
self.camera.data.clip_start = self.camera_origin.data.clip_start
self.camera.data.clip_end = self.camera_origin.data.clip_end
self.path = bpy.path.abspath(context.preferences.filepaths.render_output_directory)
self.tmpdir = bpy.path.abspath(context.preferences.filepaths.temporary_directory if context.preferences.filepaths.temporary_directory else
bpy.app.tempdir)
self.tmpfile_format = 'OPEN_EXR' if self.is_float else self.preferences.temporal_file_format
self.tmpfext = '.exr' if self.tmpfile_format == 'OPEN_EXR' else '.tga' if self.tmpfile_format == 'TARGA_RAW' else '.png'
self.is_stereo = context.scene.render.use_multiview
self.is_animation = is_animation
is_dome = props.renderModeEnum == 'DOME'
h_fov = props.get_hfov()
v_fov = props.get_vfov()
front_fov = props.get_front_fov()
ext_front_view = front_fov > pi/2
self.no_back_image = h_fov <= 3*pi/2
self.no_side_images = h_fov <= front_fov
self.no_top_bottom_images = v_fov <= front_fov
self.seamless = not (context.scene.render.use_multiview and h_fov > pi and props.appliesParallaxForSideAndBack)
self.createdFiles = set()
# Calcurate dimension
self.resolution_x_origin = self.scene.render.resolution_x
self.resolution_y_origin = self.scene.render.resolution_y
self.pixel_aspect_x_origin = self.scene.render.pixel_aspect_x
self.pixel_aspect_y_origin = self.scene.render.pixel_aspect_y
self.resolution_percentage_origin = self.scene.render.resolution_percentage
scale = self.resolution_percentage_origin / 100.0
self.image_size = int(ceil(self.scene.render.resolution_x * scale)), int(ceil(self.scene.render.resolution_y * scale))
coeff = 1 / sin(pi/4)
if props.fovModeEnum == '180':
resolution_rate = (0.5 * coeff, 0.5 * coeff)
elif props.fovModeEnum == '360':
resolution_rate = (0.25 * coeff, (0.25 if is_dome else 0.5) * coeff)
elif is_dome:
resolution_rate = ((pi/2) / max(h_fov, v_fov) * coeff, (pi/2) / max(h_fov, v_fov) * coeff)
else:
resolution_rate = ((pi/2) / h_fov * coeff, (pi/2) / v_fov * coeff)
base_resolution = (
int(ceil(self.image_size[0] * resolution_rate[0])),
int(ceil(self.image_size[1] * resolution_rate[1]))
)
# Generate fragment shader code
fovfrac = 0.5 if props.fovModeEnum == '180' else 1 if props.fovModeEnum == '360' else max(h_fov, v_fov) / (2*pi)
sidefrac = max(0, min(1, (h_fov - pi/2) / pi))
tbfrac = max(sidefrac, max(0, min(1, (v_fov - pi/2) / pi)))
base_angle = min(h_fov, front_fov)
stitch_margin = 0.0 if self.no_side_images and self.no_top_bottom_images else props.stitchMargin
margin = max(0.0, 0.5 * (tan(base_angle/2 + stitch_margin) - tan(base_angle/2)))
extrusion = max(0.0, 0.5 * tan(base_angle/2) - 0.5) if ext_front_view else 0.0
intrusion = max(0.0, 0.5 - 0.5 * tan(pi/2-base_angle/2)) if ext_front_view else 0.0
if tbfrac - intrusion <= 0.0 or base_resolution[1]*(tbfrac-intrusion) < 1.0:
self.no_top_bottom_images = True
hmargin = 0.0 if self.no_side_images else margin
vmargin = 0.0 if self.no_top_bottom_images else margin
smargin = 0.0 if self.no_side_images or not vmargin > 0.0 else max(0.0, 0.5 * (tan(pi/4 + stitch_margin) - tan(pi/4)))
# print(f"stichAngle {stitch_margin} margin:{margin} hmargin:{hmargin} vmargin:{vmargin} smargin:{smargin} extrusion:{extrusion} intrusion:{intrusion}")
# print(f"HTEXSCALE:{1 / (1 + 2 * (extrusion + hmargin))} VTEXSCALE:{1 / (1 + 2 * (extrusion + vmargin))}")
frag_shader = \
(commdef % (fovfrac, sidefrac, tbfrac, h_fov, v_fov, hmargin, vmargin, smargin, extrusion, intrusion))\
+ (dome % domemodes[int(props.domeMethodEnum)] if is_dome else equi)\
+ fetch_setup\
+ ('' if self.no_top_bottom_images else fetch_top_bottom)\
+ ('' if self.no_side_images else fetch_sides + (blend_seam_sides if vmargin > 0.0 else ''))\
+ ('' if self.no_back_image else (fetch_back % ((blend_seam_back_h if hmargin > 0.0 else '') + (blend_seam_back_v if vmargin > 0.0 else ''))))\
+ (fetch_front % ((blend_seam_front_h if hmargin > 0.0 or ext_front_view else '') + (blend_seam_front_v if vmargin > 0.0 or ext_front_view else '')))\
+ '}'
shader_info = gpu.types.GPUShaderCreateInfo()
vert_out = gpu.types.GPUStageInterfaceInfo("eevr")
vert_out.smooth("VEC2", "vTexCoord")
shader_info.vertex_in(0, 'VEC3', "aVertexPosition")
shader_info.vertex_in(1, 'VEC2', "aVertexTextureCoord")
shader_info.vertex_out(vert_out)
shader_info.sampler(0, 'FLOAT_2D', "cubeLeftImage")
shader_info.sampler(1, 'FLOAT_2D', "cubeRightImage")
shader_info.sampler(2, 'FLOAT_2D', "cubeBottomImage")
shader_info.sampler(3, 'FLOAT_2D', "cubeTopImage")
shader_info.sampler(4, 'FLOAT_2D', "cubeBackImage")
shader_info.sampler(5, 'FLOAT_2D', "cubeFrontImage")
shader_info.fragment_out(0, 'VEC4', "fragColor")
shader_info.vertex_source(vertex_shader)
shader_info.fragment_source(frag_shader)
self.shader = gpu.shader.create_from_info(shader_info)
# Set the image name to the current time
self.start_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
# get folder name from outside
self.folder_name = folder
# Get initial camera and output information
# now origin camera data not need store, and no more need to use empty as proxy
self.camera_rotation = list(self.camera.rotation_euler)
self.IPD = self.camera.data.stereo.interocular_distance
# Set camera variables for proper result
self.camera.data.type = 'PANO'
self.camera.data.stereo.convergence_mode = 'PARALLEL'
self.camera.data.stereo.pivot = 'CENTER'
# transfer depth of field settings
self.camera.data.dof.use_dof = self.camera_origin.data.dof.use_dof
if self.camera.data.dof.use_dof:
self.camera.data.dof.focus_distance = self.camera_origin.data.dof.focus_distance
self.camera.data.dof.aperture_fstop = self.camera_origin.data.dof.aperture_fstop
self.camera.data.dof.aperture_blades = self.camera_origin.data.dof.aperture_blades
self.camera.data.dof.aperture_ratio = self.camera_origin.data.dof.aperture_ratio
self.camera.data.dof.aperture_rotation = self.camera_origin.data.dof.aperture_rotation
# setup render targets information
aspect_ratio = base_resolution[0] / base_resolution[1]
def make_resolution(hscale, vscale, hmargin, vmargin, scale):
return int(ceil((base_resolution[0] * hscale + 2 * hmargin * base_resolution[0]) * scale)),\
int(ceil((base_resolution[1] * vscale + 2 * vmargin * base_resolution[1]) * scale))
f_resolution = make_resolution(1, 1, extrusion+hmargin, extrusion+vmargin, props.frontViewResolution / 100.0)
b_resolution = make_resolution(1, 1, extrusion+hmargin, extrusion+vmargin, props.rearViewResolution / 100.0)
side_resolution = make_resolution(sidefrac-intrusion, 1, 0, smargin, props.sideViewResolution / 100.0)
top_resolution = make_resolution(1, tbfrac-intrusion, 0, 0, props.topViewResolution / 100.0)
bot_resolution = make_resolution(1, tbfrac-intrusion, 0, 0, props.bottomViewResolution / 100.0)
fb_angle = base_angle + 2 * stitch_margin
side_angle = pi/2 + ((2 * stitch_margin) if smargin > 0.0 else 0.0)
side_shift_scale = 1 / (1 + 2 * smargin)
self.camera_settings = {
'top': (0.0, 0.5*(tbfrac-1+intrusion), pi/2, top_resolution[0], top_resolution[1], aspect_ratio),
'bottom': (0.0, 0.5*(1-tbfrac-intrusion), pi/2, bot_resolution[0], bot_resolution[1], aspect_ratio),
'right': (0.5*(sidefrac-1+intrusion)*side_shift_scale, 0.0, side_angle, side_resolution[0], side_resolution[1], aspect_ratio),
'left': (0.5*(1-sidefrac-intrusion)*side_shift_scale, 0.0, side_angle, side_resolution[0], side_resolution[1], aspect_ratio),
'front': (0.0, 0.0, fb_angle, f_resolution[0], f_resolution[1], aspect_ratio),
'back': (0.0, 0.0, fb_angle, b_resolution[0], b_resolution[1], aspect_ratio)
}
if self.is_stereo:
self.view_format = self.scene.render.image_settings.views_format
self.scene.render.image_settings.views_format = 'STEREO_3D'
self.stereo_mode = self.scene.render.image_settings.stereo_3d_format.display_mode
if self.stereo_mode in ('SIDEBYSIDE', 'TOPBOTTOM'):
self.sidebyside = self.stereo_mode == 'SIDEBYSIDE'
else:
self.sidebyside = aspect_ratio < 1.5
props.trueTopBottom = self.stereo_mode == 'TOPBOTTOM'
self.use_sidebyside_crosseyed = self.scene.render.image_settings.stereo_3d_format.use_sidebyside_crosseyed
self.scene.render.image_settings.stereo_3d_format.display_mode = 'TOPBOTTOM'
self.direction_offsets = self.find_direction_offsets()
def cubemap_to_panorama(self, imageList, outputName):
# Generate the OpenGL shader
pos = [(-1.0, -1.0, -1.0), # left, bottom, back
(-1.0, 1.0, -1.0), # left, top, back
(1.0, -1.0, -1.0), # right, bottom, back
(1.0, 1.0, -1.0)] # right, top, back
coords = [(-1.0, -1.0), # left, bottom
(-1.0, 1.0), # left, top
(1.0, -1.0), # right, bottom
(1.0, 1.0)] # right, top
vertexIndices = [(0, 3, 1),(3, 0, 2)]
batch = batch_for_shader(self.shader, 'TRIS', {
"aVertexPosition": pos,
"aVertexTextureCoord": coords
}, indices=vertexIndices)
# Change the color space of all of the images to Linear
# and load them into OpenGL textures
textures = []
for image in imageList:
image.colorspace_settings.name = 'Linear' if bpy.app.version < (4, 0, 0) else 'Linear Rec.709'
tex = gpu.texture.from_image(image)
textures.append(tex)
# set the size of the final image
width = self.image_size[0]
height = self.image_size[1]
# Create an offscreen render buffer and texture
offscreen = gpu.types.GPUOffScreen(width, height)
with offscreen.bind():
fb = gpu.state.active_framebuffer_get()
fb.clear(color=(0.0, 0.0, 0.0, 0.0))
self.shader.bind()
self.shader.uniform_sampler("cubeFrontImage", textures[0])
if self.no_side_images:
if not self.no_top_bottom_images:
self.shader.uniform_sampler("cubeBottomImage", textures[1])
self.shader.uniform_sampler("cubeTopImage", textures[2])
if not self.no_back_image:
self.shader.uniform_sampler("cubeBackImage", textures[3])
else:
if not self.no_back_image:
self.shader.uniform_sampler("cubeBackImage", textures[1]) # for development purpose
else:
self.shader.uniform_sampler("cubeLeftImage", textures[1])
self.shader.uniform_sampler("cubeRightImage", textures[2])
if not self.no_top_bottom_images:
self.shader.uniform_sampler("cubeBottomImage", textures[3])
self.shader.uniform_sampler("cubeTopImage", textures[4])
if not self.no_back_image:
self.shader.uniform_sampler("cubeBackImage", textures[5])
else:
if not self.no_back_image:
self.shader.uniform_sampler("cubeBackImage", textures[3])
# new 'gpu' api has no method for setting a TexParamter...
# black_color = bgl.Buffer(bgl.GL_FLOAT, [4])
# for tex in [bgl.GL_TEXTURE0, bgl.GL_TEXTURE1, bgl.GL_TEXTURE2, bgl.GL_TEXTURE3, bgl.GL_TEXTURE4, bgl.GL_TEXTURE5, bgl.GL_TEXTURE6]:
# bgl.glActiveTexture(tex)
# bgl.glTexParameterf(bgl.GL_TEXTURE_2D, bgl.GL_TEXTURE_MIN_FILTER, bgl.GL_LINEAR)
# bgl.glTexParameterf(bgl.GL_TEXTURE_2D, bgl.GL_TEXTURE_MAG_FILTER, bgl.GL_LINEAR)
# bgl.glTexParameteri(bgl.GL_TEXTURE_2D, bgl.GL_TEXTURE_WRAP_S, bgl.GL_CLAMP_TO_BORDER)
# bgl.glTexParameteri(bgl.GL_TEXTURE_2D, bgl.GL_TEXTURE_WRAP_T, bgl.GL_CLAMP_TO_BORDER)
# bgl.glTexParameterfv(bgl.GL_TEXTURE_2D, bgl.GL_TEXTURE_BORDER_COLOR, black_color)
# Render the image
batch.draw(self.shader)
# Read the resulting pixels into a buffer
buffer = fb.read_color(0, 0, width, height, 4, 0, 'FLOAT')
buffer.dimensions = width * height * 4
# Unload the offscreen texture
offscreen.free()
# Remove the cubemap textures:
del textures
for image in imageList:
bpy.data.images.remove(image)
# Copy the pixels from the buffer to an image object
if not outputName in bpy.data.images.keys():
bpy.data.images.new(outputName, width, height, float_buffer=self.is_float, alpha=self.has_alpha)
imageRes = bpy.data.images[outputName]
imageRes.file_format = self.fformat
imageRes.scale(width, height)
imageRes.pixels.foreach_set(buffer)
return imageRes
def find_direction_offsets(self):
# update location and rotation of our camera from origin one
self.camera.matrix_world = self.camera_origin.matrix_world
# Calculate the pointing directions of the camera for each face of the cube
# Using euler.rotate_axis() to handle, notice that rotation should be done on copies
eul = self.camera.rotation_euler.copy()
direction_offsets = {}
#front
direction_offsets['front'] = list(eul)
#back
eul.rotate_axis('Y', pi)
direction_offsets['back'] = list(eul)
#top
eul = self.camera.rotation_euler.copy()
eul.rotate_axis('X', pi/2)
direction_offsets['top'] = list(eul)
#bottom
eul.rotate_axis('X', pi)
direction_offsets['bottom'] = list(eul)
#left
eul = self.camera.rotation_euler.copy()
eul.rotate_axis('Y', pi/2)
direction_offsets['left'] = list(eul)
#right
eul.rotate_axis('Y', pi)
direction_offsets['right'] = list(eul)
return direction_offsets
def set_camera_direction(self, direction):
# Set the camera to the required postion
self.camera.rotation_euler = self.direction_offsets[direction]
self.camera.data.shift_x = self.camera_settings[direction][0]
self.camera.data.shift_y = self.camera_settings[direction][1]
self.camera.data.angle = self.camera_settings[direction][2]
if self.camera.data.dof.use_dof:
rate = tan(self.camera_origin.data.angle / 2) / tan(self.camera.data.angle / 2)
self.camera.data.dof.aperture_fstop = self.camera_origin.data.dof.aperture_fstop * rate
self.scene.render.resolution_x = self.camera_settings[direction][3]
self.scene.render.resolution_y = self.camera_settings[direction][4]
if self.camera_settings[direction][5] >= 1.0:
self.scene.render.pixel_aspect_x = 1.0
self.scene.render.pixel_aspect_y = self.camera_settings[direction][5]
else:
self.scene.render.pixel_aspect_x = 1 / self.camera_settings[direction][5]
self.scene.render.pixel_aspect_y = 1.0
self.scene.render.resolution_percentage = 100
print(f"{direction} float:{self.is_float} alpha:{self.has_alpha} : {self.scene.render.resolution_x} x {self.scene.render.resolution_y} {degrees(self.camera.data.angle):.2f}° [{self.camera.data.shift_x:.3f}, {self.camera.data.shift_y:.3f}] ({self.scene.render.pixel_aspect_x:.2f} : {self.scene.render.pixel_aspect_y:.2f}) fstop={self.camera.data.dof.aperture_fstop:.2f}")
def clean_up(self, context):
# Reset all the variables that were changed
context.view_layer.objects.active = self.viewlayer_active_object_origin
context.scene.camera = self.camera_origin
camera = self.camera.data
bpy.data.objects.remove(self.camera)
bpy.data.cameras.remove(camera)
self.scene.render.resolution_x = self.resolution_x_origin
self.scene.render.resolution_y = self.resolution_y_origin
self.scene.render.pixel_aspect_x = self.pixel_aspect_x_origin
self.scene.render.pixel_aspect_y = self.pixel_aspect_y_origin
self.scene.render.resolution_percentage = self.resolution_percentage_origin
if self.is_stereo:
self.scene.render.image_settings.views_format = self.view_format
self.scene.render.image_settings.stereo_3d_format.display_mode = self.stereo_mode
if not self.preferences.remain_temporalies:
for filename in self.createdFiles:
try:
os.remove(filename)
except Exception as e:
print('at remove temporary file.', e)
self.createdFiles.clear()
def render_image(self, direction):
# Render the image and load it into the script
name = f'temp_img_store_{os.getpid()}_{direction}'
org_filepath = self.scene.render.filepath
org_file_format = self.scene.render.image_settings.file_format
self.scene.render.image_settings.file_format = self.tmpfile_format
if self.is_stereo:
nameL = name + '_L'
nameR = name + '_R'
if nameL in bpy.data.images:
bpy.data.images.remove(bpy.data.images[nameL])
if nameR in bpy.data.images:
bpy.data.images.remove(bpy.data.images[nameR])
if self.seamless and direction in {'right', 'left'}:
# If rendering for VR, render the side images separately to avoid seams
self.scene.render.use_multiview = False
tmp_loc = list(self.camera.location)
camera_angle = self.direction_offsets['front'][2]
self.camera.location = [tmp_loc[0]+(0.5*self.IPD*cos(camera_angle)),\
tmp_loc[1]+(0.5*self.IPD*sin(camera_angle)),\
tmp_loc[2]]
self.scene.render.filepath = self.tmpdir + nameL + self.tmpfext
bpy.ops.render.render(write_still=True)
self.createdFiles.add(self.scene.render.filepath)
renderedImageL = bpy.data.images.load(self.scene.render.filepath)
renderedImageL.name = nameL
self.camera.location = [tmp_loc[0]-(0.5*self.IPD*cos(camera_angle)),\
tmp_loc[1]-(0.5*self.IPD*sin(camera_angle)),\
tmp_loc[2]]
self.scene.render.filepath = self.tmpdir + nameR + self.tmpfext
bpy.ops.render.render(write_still=True)
print(self.scene.render.filepath)
self.createdFiles.add(self.scene.render.filepath)
renderedImageR = bpy.data.images.load(self.scene.render.filepath)
renderedImageR.name = nameR
self.scene.render.use_multiview = True
self.camera.location = tmp_loc
else:
if name in bpy.data.images:
bpy.data.images.remove(bpy.data.images[name])
if nameL in bpy.data.images:
bpy.data.images.remove(bpy.data.images[nameL])
if nameR in bpy.data.images:
bpy.data.images.remove(bpy.data.images[nameR])
self.scene.render.filepath = self.tmpdir + name + self.tmpfext
bpy.ops.render.render(write_still=True)
self.createdFiles.add(self.scene.render.filepath)
renderedImage = bpy.data.images.load(self.scene.render.filepath)
renderedImage.name = name
renderedImage.colorspace_settings.name = 'Linear' if bpy.app.version < (4, 0, 0) else 'Linear Rec.709'
imageLen = len(renderedImage.pixels)
renderedImageL = bpy.data.images.new(nameL, self.scene.render.resolution_x, self.scene.render.resolution_y, float_buffer=self.is_float, alpha=self.has_alpha)
renderedImageR = bpy.data.images.new(nameR, self.scene.render.resolution_x, self.scene.render.resolution_y, float_buffer=self.is_float, alpha=self.has_alpha)
# Split the render into two images
buff = np.empty((imageLen,), dtype=np.float32)
renderedImage.pixels.foreach_get(buff)
if self.seamless and direction == 'back':
renderedImageL.pixels.foreach_set(buff[imageLen//2:])
renderedImageR.pixels.foreach_set(buff[:imageLen//2])
else:
renderedImageR.pixels.foreach_set(buff[imageLen//2:])
renderedImageL.pixels.foreach_set(buff[:imageLen//2])
renderedImageL.pack()
renderedImageR.pack()
bpy.data.images.remove(renderedImage)
else:
if name in bpy.data.images:
bpy.data.images.remove(bpy.data.images[name])
self.scene.render.filepath = self.tmpdir + name + self.tmpfext
bpy.ops.render.render(write_still=True)
self.createdFiles.add(self.scene.render.filepath)
renderedImageL = bpy.data.images.load(self.scene.render.filepath)
renderedImageL.name = name
renderedImageR = None
self.scene.render.filepath = org_filepath
self.scene.render.image_settings.file_format = org_file_format
return renderedImageL, renderedImageR
def render_images(self):
# update focus distance if focus object is set
if self.camera.data.dof.use_dof and self.camera_origin.data.dof.focus_object is not None:
focus_location = self.camera_origin.data.dof.focus_object.matrix_world.translation
icm = self.camera_origin.matrix_world.inverted_safe()
self.camera.data.dof.focus_distance = abs((icm @ focus_location).z)
# Render the images for every direction
image_list_l = []
image_list_r = []
directions = ['front']
if not self.no_side_images:
directions += ['left', 'right']
if not self.no_top_bottom_images:
directions += ['bottom', 'top']
if not self.no_back_image:
directions += ['back']
self.direction_offsets = self.find_direction_offsets()
for direction in reversed(directions): # I want the results of the front camera to remain in the render window... just that.
self.set_camera_direction(direction)
imgl, imgr = self.render_image(direction)
image_list_l.insert(0, imgl)
image_list_r.insert(0, imgr)
return image_list_l, image_list_r
def render_and_save(self):
frame_step = self.scene.frame_step
# Render the images and return their names
imageList, imageList2 = self.render_images()
if self.is_animation:
image_name = f"frame{self.scene.frame_current:06d}{self.fext}"
else:
image_name = f"{os.path.splitext(bpy.path.basename(bpy.data.filepath))[0]} {self.start_time}{self.fext}"
start_time = time.time()
# Convert the rendered images to equirectangular projection image and save it to the disk
if self.is_stereo:
leftImage = self.cubemap_to_panorama(imageList, "Render Left")
rightImage = self.cubemap_to_panorama(imageList2, "Render Right")
# If it doesn't already exist, create an image object to store the resulting render
if not image_name in bpy.data.images.keys():
imageResult = bpy.data.images.new(image_name, leftImage.size[0], 2 * leftImage.size[1], float_buffer=self.is_float, alpha=self.has_alpha)
imageResult = bpy.data.images[image_name]
imageResult.file_format = self.fformat
img1arr = np.empty((leftImage.size[1], 4 * leftImage.size[0]), dtype=np.float32)
leftImage.pixels.foreach_get(img1arr.ravel())
img2arr = np.empty((rightImage.size[1], 4 * rightImage.size[0]), dtype=np.float32)
rightImage.pixels.foreach_get(img2arr.ravel())
if self.sidebyside:
imageResult.scale(2*leftImage.size[0], leftImage.size[1])
if self.use_sidebyside_crosseyed:
imageResult.pixels.foreach_set(np.concatenate((img1arr, img2arr), axis=1).ravel())
else:
imageResult.pixels.foreach_set(np.concatenate((img2arr, img1arr), axis=1).ravel())
else:
imageResult.scale(leftImage.size[0], 2*leftImage.size[1])
if self.scene.eeVR.isTopRightEye:
imageResult.pixels.foreach_set(np.concatenate((img2arr, img1arr)).ravel())
else:
imageResult.pixels.foreach_set(np.concatenate((img1arr, img2arr)).ravel())
bpy.data.images.remove(leftImage)
bpy.data.images.remove(rightImage)
else:
imageResult = self.cubemap_to_panorama(imageList, "RenderResult")
save_start_time = time.time()
if self.is_animation:
imageResult.filepath_raw = self.path+self.folder_name+image_name
imageResult.save()
self.scene.frame_set(self.scene.frame_current+frame_step)
else:
imageResult.filepath_raw = self.path+image_name
imageResult.save()
print(f'''Saved '{imageResult.filepath_raw} float:{self.is_float} alpha:{self.has_alpha}'
Time : {round(time.time() - start_time, 2)} seconds (Saving : {round(time.time() - save_start_time, 2)} seconds)
''')
bpy.data.images.remove(imageResult)